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Abstract

The notion of when two schemas are equivalent is fundamental to database design, schema
integration, and data model translation. An important notion of schema equivalence, query
equivalence was introduced in [2], and used to evaluate the correctness of schema transformations.
The logically equivalent notion of calculous equivalence, as well as three progressively weaker
notions of schema equivalence were introduced in 1984 by Hull [8, 9], who showed that two
schemas with no dependencies are equivalent (under all four notions of equivalence) if and only
if they are identical (up to renaming and re-ordering of attributes and relations). Hull also
conjectured that the same result holds for schemas with primary keys. In this work, we resolve
the conjecture in the affirmative for the case of query equivalence based on mappings using

conjunctive relational queries with equality selections.



1 Introduction

A fundamental concept in database theory is that of schema equivalence. Informally, two schemas
are equivalent if either one can simulate the other in terms of their capacities to store database
instances and support queries. An understanding of schema equivalence is important for schema
integration in heterogeneous multidatabase systems, [3, 15], where two schemas with dependencies
describing the semantics of the data are given, and one would like to integrate the schemas. Because
the schemas to be integrated may have semantic incompatibilities, it may be necessary to transform
one or both of the schemas to equivalent schemas in preparation for integration.

For example, consider the following two relational schemas with key dependencies and referential
integrity constraints, and suppose one wants to integrate them. Key attributes are marked with

an asterisk, and referential integrity constraints are shown using standard inclusion dependency

notation. i
employee(ss*, eName, salary, depld) empl(ssn*, ename, sal, dep, yrsExp)
department(deptld*, deptName, mgr) dept(departld*, dName, manager)

salespeople(ss*, yearsExp)

employee[depld] C department[deptld] empl[dep] C dept{departld]
salespeople[ss] C employee[ss]

employee[ss] C salespeoplefss]

Schema 1 Schema 2

Suppose it is desirable to integrate the two schemas by integrating the employee relation in the
first schema with the empl relation in the second schema to form a unified employee relation, and
to integrate the department relation from the first schema with the dept relation in the second
schema to form a unified department relation. In this case, there is a semantic incompatibility in

that the yearsExp attribute of an employee is stored in a separate relation, salespeople, so that a
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fully general integration of the employee relation and empl relation is not posssible.
However, it is straightforward to show that the first schema could be transformed into an
equivalent schema in which the incompatibility is removed. Such a schema, Schema 1, is shown

here with Schema 2.

employee(ss*, eName, salary, depld, yearsExp) empl(ssn*, ename, sal, dep, yrsExp)
department(deptld*, deptName, mgr) dept(departld*, dName, manager)
salespeople(ss*)

employee[depld] C department[deptld] empl[dep] C dept[departld]

salespeople[ss] C employee]ss]

employee[ss] C salespeople|ss]

Schema 1’ Schema 2

Note that in the absence of the inclusion dependencies specified, Schema 1 and Schema 1’ would
not be equivalent. With the dependencies that hold on Schema 1, however, the transformation
is equivalence preserving, so that Schema 1 and Schema 1’ are equivalent, and the incompability
has been removed. The employee and empl relations now can be integrated into a unified relation.
Syntactic characterizations of equivalence of relational schemas with various families of dependen-
cies, such as primary keys, referential integrity constraints, functional dependencies, are needed.
In particular, one would like to have a set of transformations for which all schemas equivalent to a
given schema can be generated by applying some sequence of transformations from the set.

The notion of schema equivalence also is important in database design [4, 7, 10, 16] where,
given a schema proposed for some application, one may want to choose an equivalent schema that
satisfies one or more desirable normal forms. Indeed, schema equivalence was first proposed in this
context by Codd [7], wherein two schemas are considered equivalent if they can support the same

queries. Subsequently, a notion of schema equivalence was proposed in which two schemas, both



of which are decompositions of the same universal relation, are equivalent if the set of instances of
the universal relation for which the decomposition is lossless is the same for both schemas [5, 11].
That is, either schema can represent the same set of universal instances. This notion of equivalence
was used for database design, but has the limitation that it only applies to pairs of schemas both
of which are projections of the same universal relation scheme. In general, such an assumption is
not possible in multidatabase schema integration. Moreover, closed-form characterizations of this
form of equivalence are not available, although an algorithm to test for such equivalence is given
in [5]. Similar notions of equivalence were defined in (1, 13].

Another notion of equivalence that has been proposed considers two schemas to be equivalent
if there is a bijection between the set of database instances of one schema and the set of instances
of the other [12, 14]. However, this simply means that the set of instances of one schema has the
same cardinality as the set of instances of the other schema. Moreover, if the domain of values
available to store in a database is infinite, then all schemas are equivalent. )

The limitations of these notions of equivalence are overcome by the notion of query equivalence
that was introduced in [2], and studied by Hull, who also introduced three progressively less restric-
tive notions of equivalence, Z-generic equivalence, Z-internal equivalence, and absolute equivalence,
and provided a rich foundation of theoretical results on schema equivalence [9]. Hull also showed
that for relational schemas with no dependencies, all four notions of schema equivalence are logically
equivalent, and that two relational schemas with no dependencies are equivalent if and only if they
are identical, up to renaming and re-ordering of attributes and relations. Thus a characterization
of schema equivalence for relational schemas with no dependencies is available.

Hull conjectured that this should generalize to relational schemas with primary keys, that is, that
they are equivalent if and only if they are identical, up to renaming and re-ordering of attributes
and relations. We resolve this conjecture in the affirmative for conjunctive query equivalence,
where instance mappings are conjunctive relational algebra queries with equality selections. (Query
equivalence in [9] uses the full relational algebra for such mappings.)

Such a result demonstrates that two keyed schemas support the same conjunctive queries if




and only if there are identical, up to renaming and re-ordering of attributes and relations. This
is a negative result about the existence of non-trivial equivalence-preserving transformations for
schemas with only primary keys, which suggests that other dependencies are important for trans-
forming schemas in meaningful ways. Indeed, the example above shows that when both primary key
dependencies and referential integrity constraints are available, there are non-trivial equivalence-
preserving schema transformations.

A characterization of equivalence for schemas with only primary keys is critical to obtaining
similar characterizations for schemas with other dependencies. For instance, when schemas with
primary keys and referential integrity constraints are considered, a schema with only primary
keys is a degenerate case where it happens that no referential integrity constraints have been
specified. Thus, it would be impossible to characterize equivalence of schemas with primary keys and
referential integrity constraints without characterizing equivalence of schemas with only primary

keys.

2 Preliminaries

In this section, we formalize what is meant by a schema and define various concepts and notation.
We assume that the reader is familiar with the relational model of data [6]. A domain is a countably
infinite set of atomic values. A collection of attribute types over some domain D is a finite collection
of disjoint subsets of D. Attribute types are also (countably) infinite. An atiribute is a pair
consisting of a name (called the name of the attribute) and an attribute type (called the type of
the attribute). A relation scheme consists of a name (name of the relation) and an ordered list of
attributes, generally written R[A;, A2, ..., Ax]. R is the name of the relation. If for each i, N; is
the type of attribute A;, then an instance r of relation R is just some subset of the cross-product
N; X Ny X ..X Ng. The tuple (N1, N3, ...y Ni) is called the type of the relation R.

The set of all instances of R, written i(R), is defined as the power set of the cross-product

of attribute types in the scheme. A relational database schema is a tuple of relation schemes. A



database instance of the schema is a tuple of instances of each relation scheme in the schema. We
write i(S) for the set of all instances of schema S.

A superkey dependency on a relation is a decla;ed subset of attributes of the relation. The
subset of attributes is called a superkey. A superkey dependency on some relation is satisfied by
an instance of the relation if any pair of distinct tuples in the instance have different values for at
least one of the attributes in the superkey. If no proper subset of some superkey of a relation is
also a superkey, then the superkey is called a key, and the associated dependency is called a key
dependency. A keyed schema is one where a single key is specified for each relation in the schema,
and no other dependencies are specified to hold in the schema. A schema for which no dependencies
are specified is called an unkeyed schema.

A functional dependency on a schema is a pair of attribute sets. If X and Y are the two sets
of attributes, the dependency is usually written X — Y. If all of the attributes in both X and Y
belong to the same relation, then an instance of that relation is said to satisfy dependency if every
pair of tuples of the relation which differ on some attributein ¥ also differ on some attribute in X.
Otherwise, the dependency fails for the given relation instance. An instance of the schema satisfies
some functional dependency X — Y if all of the attributes in both X and ¥ belong to the same
relation, and the instance of this relation in the database instance satisfies the dependency. If all
of the attributes in X and Y do not belong to the same relation, then the functional dependency
fails for any instance of the schema. Note that allowing functional dependencies to be expressed in
this way differs from the usual formalization where a functional dependency is only defined using
attributes from a single relation, but this trivial extension allows for a concise statement of some
of the results below.

A view over a schema S is a pair (V, g), where V is a relation scheme and ¢ : i(5) — (V) maps
each instance of S to an instance of V. The mapping g is called a query. If ¢(d) = a for some
database d, and a is an instance of V, then a is called the answer to the query ¢ for database d.
The type of the view, as well as the type of the query, is just the type of V. A query language

consists of a set of queries together with a syntax capable of specifying any query in the set.




Definition: Given two queries g : i(8) — i(V) and ¢’ : i(S) — (V) that have the same type, we
say that q is contained in ¢', written ¢ C ¢/, if for every d € i(S), ¢(d) C ¢'(d). m
Definition: We say that g is equivalent to ¢', written ¢ = ¢,if¢gC ¢’ and ¢'C q. m
Definition: Given schemas Sy = (R}, R}, ..., RL) and S, = (R}, R}, ..., R%,), and a query language,
L, then a = (v1,v2, ..y Um) i8 @ query mapping from S to Sy if each v is a view over S defined
using queries in £, and the type of vk is the same as the type of RZ for each k. m

For each instance of S;, the query mapping defines an instance of Sy, since each vy defines an
instance of R:. We write a : i(S1) — i(Ss). If a is a query mapping from the keyed schema S5 to
the keyed schema Sy, then we say that « is valid if it maps each instance of S, satisfying the key
dependencies for S; to an instance of Sy satisfying the key dependencies for S;. Query mappings
between unkeyed schemas are always valid.
Definition: Let S; and S, be two keyed schemas, and let £ be a query language. Then we say
that Sy L-dominates Sy, written S; <c Sz, if there are valid query maps a : i(S1) — i(S2) and
B : i(S3) — i(S1) such that 8o« is the identity map on i(S1). To indicate the query mappings
that establish the dominance we sometimes write S; <. Sa2 by (o,0). ®
Definition: IfS; <¢ S; and S» =<, Si, then we say that the two schemas are L-equivalent,
written 51 =¢ S2- 8

The notions of L-dominance and L-equivalence were introduced in [2]. We sometimes write
S; < Sp,0rS; = S,, when the particular language L is clear from the context. The following
result is proved in [9].
Theorem (Hull 1986) If L is the relational algebra, Sy and S, are schemas with no dependencies,
then S; =¢ Sa, if and only if Sy and S, are identical up to renaming and re-ordering of attributes
and relations. g
Hull also conjectured that this result holds for keyed schemas, but this conjecture remains open.
Definition: A conjunctive query is a relational algebra query that can be expressed using only
the operations of select, project, join, and cartesian product. g

A conjunctive query view (V,q) is specified using a syntactic style borrowed from Datalog.



However, the syntax used here is more restrictive than Datalog, allowing only distinct variables as
placeholders in columns of relations, with all selection and join conditions occurring in a separate

list of equality predicates included in the conjunct:
V(A1 Az, oon An) ¢ — Ri(XE, oy X2), o Ri(XE, s XE), equality — list.

Each R; is a relation, and each Xf is a distinct variable serving as a placeholder. The A;’s are (not
necessarily distinct) variables that occur among the Xf variables to signify this variable is in the
result of the query. Other variables might be dummy placeholders to signify attributes in the R;
that are projected out of the result, or variables participating in joins or selections whose columns
do not appear in the final result.

As in Datalog, a comma between two relations signifies a join or cross-product. The equality list
is a list of equality predicates with form either X =Y or X = a. In the first case, the two variables
X and Y are being equated. If both X and Y are used as placeholders in the same relation, then
this is a column selection. If the two variables occur in different relations, then this corresponds
to a join condition. For the equality predicate X = a, the column of the relation containing the
variable X as a placeholder in the query has a selection condition, selecting tuples with value for
that attribute equal to the constant a. Constants may occur explicitly among the A;. All variables
occurring in equality predicates in the equality list must also occur as a placeholder for some
attribute in some relation occurring in the body of the query. Note that all conjunctive relational
algebra queries with equality selections can be expressed with the syntax just described. For the
remainder of this paper, ”conjunctive query” means »conjunctive query with equality selections”.

Note that equality of variables in a conjunctive query induces a natural equivalence relation on
the variables. In particular, V) is equivalent to V; either if V; = V, appears in the equality-list, or
can be inferred by reflexivity, symmetry, or transitivity. We call the equivalence classes generated
by this equivalence relation the equality classes of variables. In other words, V; and V; belong to
the same equality class if V; = V; can be inferred from the equality predicates in the equality-list.

Definition: For any attribute A assigned from a column in the result of a conjunctive query, we




say that A receives attribute B from relation R if in the representation of the query, A is assigned
from a variable that occurs at or is equated to a variable at the location of attribute B in R. If an
attribute A is assigned by a constant symbol, then we say that attribute A receives the constant. g

Thus, in the query: R(X,Y,Z) : — P(X,Y),Q(T, Z),Y = T. the second attribute of relation
R receives from P the second attribute listed in the scheme of P, and it also receives from Q the
first attribute listed in the scheme of Q. On the other hand, in the query: R(q,Y, X) : - P(X,Y).,
the first attribute of relation R receives the constant a. An attribute can receive multiple, distinct
attributes, as shown in the first example.

Definition: A database instance d of some schema is atiribute-specific if for any two distinct
attributes A and B, ma(d)N7p(d) = 0. m

Definition: In a conjunctive query, a join is an identity join if all of the relations participating in
the join are the same relation, and every join condition equates an attribute in one occurrence of
the relation in the query body to the same attribute in another occurrence of the same relation in
the query body. &

For example, in the query: Q(X,Y,Z) : —R(X,Z),R(Y,T),Z = T., the join condition is
an identity join. This is because the join is of a relation with itself, and the only join con-
dition equates the second attribute of relation R to itself. On the other hand, in the query:
Q(X,Y,Z) : —R(X,Y,Z),R(T,U,V),Y = T,Z = V. there is a self-join that is not an identity
join. In this case, the join condition Y = T equates two different attributes of relation R. A
cross-product of a relation with itself (some number of times) is a degenerate identity join.
Definition: A relation R occurring in the body of a conjunctive query is #j-saturated if no oc-
currence of R in the query participates in a selection condition, all join conditions involving R
are identity joins, and all possible identity join conditions for R can be inferred from the equality
conditions specified. g

Thus, R is ij-saturated in the following query:

Q(X,Y): —R(X,Y),R(4,B),R(C,D),X = A, X =C,Y = B,Y = D.



The join condition A = C is inferred by transitivity from X = Aand X = C. But R is not

ij-saturated in the query:
Q(X,Y): —R(X,Y),R(A,B),R(C, D}, X =A, X = C,A=C,Y =B.

This is because neither Y = D nor B = D can be inferred from the list of join conditions.
Definition: A conjunctive query is ij-saturated if every relation occurring in its body is ij-
saturated. g

Note that given any conjunctive query g that has no gelection conditions and no join conditions
other than identity joins, we can construct an ij-saturated query g that has the same number of
occurrences of relations among its literals as the original query g, but with the extra identity join

conditions added so each relation is ij-saturated. For example, given the query:
Q(X,Y) : - R(X,Y),R(4, B),R(C,D),X=A,X=C,A=CY =B.
we can construct the ij-saturated query:
Q(X,Y) : - R(X,Y),R(4,B),R(C,D), X =4, X = C,A=C,Y=BY=D,B=D.
Note that § C g always holds because § is just ¢ with extra join conditions added.
Definition: A conjunctive query is a product query if there are no selection or join conditions, and

every relation occurring in the body of the query occurs only once. That is, a product query can

consist of only a single relation, or a cross-product of distinct relations. g

3 Results

In this section, we show that Hull’s result stated in the previous section can be generalized to keyed
schemas for query equivalence by conjunctive relational algebra with equality selections. For ease
of presentation, we write S; X Sz by (@, B) to mean that Sz dominates S; by the conjunctive query
mappings « and 3, throughout this section.

The following two lemmas demonstrate some basic properties of conjunctive queries, and their

proofs are straightforward.
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Lemma 1 Every ij-saturated query is equivalent to a product query having the same relations in

its body as the ij-saturated query.

Proof: Given some ij-saturated query g, construct a query ¢’ as follows:

1. eliminate all (identity) join conditions from the body of g;

2. eliminate all duplicate occurrences of any relation in the body of g.

3. replace any variable X in the head of the query that no 'longer occurs in the body with a
variable Y that does still occur in the body, such that X = Y is an identity join condition that
can be inferred from the join conditions specified in the ij-saturated query. Such a Y always exists
because g is ij-saturated.

Clearly the resulting query ¢’ is a product query having the same relations in its body as g. We
claim that ¢ 2 ¢'. By construction, ¢ and ¢’ both have the same type, and are defined over the
same schema. Let this schema be S and let d be an arbitrary instance of S. To show that ¢ C _q' ,
let 7 € g(d). Then there must be tuples in each relation occurring in the body of ¢ that are used
in inferring 7. But then, since each relation in the product query q' occurs in the body of ¢, and
¢ has no selections of joins, 7 must be a member of ¢'(d), as required. To show that ¢' C g, let
7' € ¢'(d). Then there must be tuples in each relation occurring in the body of g’ that are used
to infer 7/. But since any tuple of a relation always satisifies an identity join, these tuples will
satisfy the identity join conditions, and 7' will be a member of g(d), as required. With this claim

established, the lemma follows. g

Lemma 2 Given some conjunctive query q defined over schema S such that ¢ has no selection
conditions nor any join conditions that are not identity joins, there ezists a product query § satis-
fying the following conditions:

a) € g;

b) for every d € i(S), any functional dependency that holds on g(d) also holds on g(d);

c) for every d € i(S), if q(d) is non-empty, then §(d) is non-empty;

d) all of the relations occurring in the body of g also occur in the body of §.
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Proof: Let g be some conjunctive query as in the statement of the lemma. Then let ¢’ be the
ij-saturated query that results from adding to ¢ all the valid identity join conditions missing from
g. Clearly, ¢’ C ¢. If we take § to be the product query that Lemma 1 guarantees to be equivalent
to ¢', then § is a product query satisfying condition (a) and (d) of the lemma. Condition (b) follows
immediately from the fact that § C g, since if some functional dependency fails for some database
state d, then there is a pair of tuples in §(d) that violate the dependency, and these tuples are in
g(d) also. For condition (c), let § be empty when evaluated over some database instance d. Then,
since § is a cross product of the relations occurring in ¢ (along with a projection to the attributes
occurring in the head of ¢), it follows that one of these relations is empty in the database instance
d. But then, the query ¢ is empty when evaluated over d as well, establishing condition (c). m
The next three lemmas present some properties of conjunctive query maps that establish dom-

inance.

Lemma 3 If S; < S; by (a,B) then for every attribute A occurring in Sy there is some atiribute

B in S, such that A is received by B under a, and B is recetved by A under 3.

Proof: Let A be an arbitrary attribute in schema S;. Let d be some attribute-specific instance
of Sy in which there is some value a for A in the database instance such that a is not among any
constants in any of the queries in the maps a or f. Since 8 o @ is the identity map on %(S1),
B(a(d)) = d. Thus, the value a occurs as a value of attribute A in B(a(d)), and since a does not
occur among any of the constants in the queries in a or B, A must have received some attribute
B of S, under 8. Moreover, B must contain the value a in the instance «a(d). Since d is an
attribute-specific instance, and a doesn’t occur in any query constants, B must receive A under a,

establishing the lemma. g

Lemma 4 If S; < Sz by (a,B) and B is an attribute in Sy, then if B is received by some attribute

A in S, under B, then A must be received by atiribute B under c.

Proof: Suppose not. Then there is some attribute A in S; that receives attribute B under £,

12




but A is not received by B under a. Let d be an attribute-specific database instance having some
value a for attribute A that is not among any of the query constants in o or 3. Then, since Alis
not received by B under , the value a will not be among the values found for attribute B in the
database instance a(d). Thus, since A receives attribute B under f3, the value a cannot be a value
for attribute A in the database instance B(a(d)), contradicting that 8 o a is the identity map on
i(51) m

Lemma 5 Let S; < Sz by (o, 8) and let B be an atiribute in Sy that receives some attribute A

under a. If B is received by some attribute in S; under (8, then B must be received by A under 3.

Proof: Let Si, Sz, A, and B be as in the statement of the lemma, and suppose to the contrary
that B is not received by A under 3. Then B is received by some other attribute A’ of S; under 8.
By Lemma 4, A’ must be received by B under a. But since A is received by B under «, it must
be that there is a join condition between A and A’ in the query defining the relation of Sa that
contains B.

Let d be an attribute-specific database instance such that the relation(s) containing A and
A’ are non-empty, and there is some value a for attribute A that is not among any of the query
constants in @ or . Then, since there are no values in common between A and A’ in d, the join
condition between A and A’ must fail, whence the relation containing B must be empty in a(d).
Since A received B under 3, the relation containing A in S(a(d)) must also be empty. But a is a
value for attribute A in d, so the relation containing attribute A is not empty in d, contradicting
that 08 o a is the identity map on (S1). m '

The following theorem shows when functional dependencies in one schema, can be inferred from
functional dependencies that hold in a schema that dominates the first schema, and can be used to

infer key dependencies in a schema that is dominated by another schema.

Theorem 6 Let S; and S, be keyed schemas such that Sy < Sz by (@,3) for conjunctive query

mappings o and B. Suppose that Y — B holds in some relation R in schema Sy for atiribute B

13



and attribute set Y. Suppose B is received by some aitribute A under f, and every attribute in
Y is received by an attribute in some set X of attributes in S1 under 8. Then it follows that the

functional dependency X —» A maust hold in schema S;.

Proof: Suppose not. Then there exist keyed schemas 5; and S, such that 5; < S; by (o, ) for
conjunctive query mappings @ and 3, and a relation R in S; with Y a superkey of R, and B an
attribute of R. Further, there is a set X of attributes such that every attribute in Y is received by
some attribute in X under 3, and an attribute A that receives B, but the dependency X — A fails

in S;. These relationships are shown in the following figure.

( R \

|
A= \ B /

S1 Sy

By Lemma 4, every attribute in the set ¥ receives some attribute in X under «, and B receives
attribute A under o. Let d be an attribute-specific database instance of schema S; such that none
of the values in the database d appear as constants in the queries in « or B, all the relations in d
are non-empty, and the dependency X — A fails in d. Let ¢ be the query in « that defines relation
R under a. Note that the instance of R in a(d) must be non-empty, for otherwise, the relations
in S; containing either attribute A or any attribute in X would be empty in S(a(d)) = d, since
each attribute in Y is received by an attribute in X under 8, and B is received by A under §, a
contradiction.

Since the dependency X — A fails, and all the attributes in X are received by an attribute in
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Y, and B receives A, there must be some join or selection conditions that filter out the necessary
tuples so that Y — B holds in R. If there is a selection of an attribute as a constant value, this
selection will fail because no query constants are in the database instance d, whence R will be
empty in a(d), a contradiction. There also can be no column selection (that is, a selection that
selects tuples that agree on two columns of the same relation) since R would again be empty in a(d)
on account of d being an attribute-specific instance. Similarly, any join condition that references
different attributes (either different attributes of the same relation or different attributes of different
relations) will fail because d is an attribute-specific instance, whence R would be empty in a(d),
again a contradiction.

Thus, g has no selection conditions, and the only join conditions are identity joins. By Lemma 2,
there is another query ¢ such that all of the relations that occur in the body of g also occur in the
body of §, the dependency ¥ — B holds in the relation resulting from evaluating § over database
d, and § has no selection or join conditions. Since, § can only contain cross-products and projection
operations, this is a contradiction, since a functional dependency that does not hold over any
relation in a set of relations (in this case, the relations occurring in the body of §) cannot hold in
their cross-product, and the theorem is established. g

The following lemma shows that when S; < Sz, all of the data values for the key attributes in
Sy are encoded by « in key attributes in Sa, although they also may be mapped extraneously to

other non-key attributes.

Lemma 7 If Sy and S, are keyed schemas, and 51 X Sz by (e, B), then if some non-key attribute
B in some relation in S, receives some key attribute K in some relation in S, under a, and either
B is received by K under 3, or B is involved in a join or selection condition in the body of some
query in (3, then:

a) K is received by some key attribute K ! in Sy under o with K' in the same relation as B; and
b) for any database instance in the range of o, K' and B have the same value in each tuple of the

relation containing them.

15



Proof: Let S; < Sz by (a,8) and let K and B be as in the statement of the lemma. Let R; be
the relation in S; containing K, and let R; be the relation in S; containing B. Let P be a relation
in S, that is defined by a query in § in which B is used either in a join or selection condition, or B
is received by K (P will be the same relation as R; if B is received by K under (3). Let {ki, k2} be
a set of two unique values belonging to the attribute type of attribute K such that neither k; nor
ko occur as constants in the queries in o or B. Also define a function g on the domain of schema
Sy so that g(k;) = ko and g(k2) = ki, but g(z) = ¢ when z # k; for i = 1,2.

Now let d be an attribute specific instance of S; such that all relations of the schema are non-
empty, none of the values in d occur as constants in any of the queries in @ or 3, each attribute other
than K has only a single value stored in d, but there are exactly two values, k; and kp stored for
attribute K. Thus, the instance of relation R; in d has two tuples, and all other relation instances
in d have a single tuple. Let ry be the instance of Ry in a(d).

First we claim that ry is non-empty. In proof, suppose not. Then, since the relation P is defined
by a query in 8 in which B either is received by an attribute in P or B is involved in a join or
selection condition, it must be that the instance of P in f(a(d)) is empty. This is a contradiction
because all relations in d are non-empty and d = S(a(d)), establishing the claim.

Next note that there can be no selection or join conditions in the query in a that defines R
except for selection or join conditions that equate an attribute to itself. This is because d is an
attribute specific instance containing no query constants, so if there were a selection condition
equating an attribute to a constant or a selection or join condition equating two different attributes
in the query, r; would be empty, a contradiction.

Since 7, is non-empty, there is some tuple 7 € 7. Because the instance 7, is defined by a query
in o, there is a derivation of the tuple 7. Let V be the variable in the position of attribute B in the
head of the query, and suppose that the body of the query has n relations in it (the occurrences of
relations in the body need not be distinct). Let these relations be called Q; for i = 1,2, ...,n. Note
that R; occurs one or more times among the Q;. Then there exist n tuples, T1,72,...,Tn that are

used to derive T in rq, and for each i, 7; € Q;. Now, define tuples 7;' for i = 1,2, ...,n as follows.
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A = g(r:.A) if Q; is an occurrence of relation Ry, and has a variable in the same equality class
as V in the position of attribute K

r!{.A = 1;.A otherwise.

Thus, each 7/ € Q;, and since the only join or selection conditions in the query are ones that equate
an attribute with itself, there must be a derivation of some tuple 7/ € r; using the tuples 7}.

By construction, 7.B = g(7.B), so that 7.B # 7!.B. Since B is a non-key attribute, and two
tuples which disagree on a non-key attribute must also disagree on some key attribute, there must
be at least one key attribute of R, for which 7 and 7' disagree. Let this key attribute be K’. Then
it must be that .K’ = g(r.K'), and by construction, the head of the query that defines R has
either variable V, or some other variable in the same equality class as V in the position of attribute
K'. But this means that K' receives attribute K under o, establishing part (a) of the lemma, and
since the variables in the head of the query in the positions for attributes K "and B are in the same
equality class, K’ and B must have the same value in every tuple in any instance of R in the range
of a, establishing part (b) of the lemma. g
Definition: If S is a keyed schema, x(S) is the unkeyed schema that can be obtained by deleting
all non-key attributes from each relation scheme, and dropping the key dependencies. Thus, for
each relation scheme R in S, there is a relation scheme R’ in x(S) whose scheme consists only of
the key attributes of K. @

Definition: If S is a keyed schema, and d is a database instance of S, then m.(d) is the database
instance of k(S) that corresponds to projecting all of the non-key attributes out of the database
instance d. @

Let S; and S, be keyed schemas with S; < S; by (e, B) for conjunctive query maps « and £.
We would like to construct query maps a, and f, such that k(S1) = k(Sz) by (e, Br)- If Ais the
collection of attribute types and D the domain of values for the schema S;, then let- f : A — D be
some fixed, arbitrary map such that f(T) € T foreach T € A. That is, the mapping f is a choice

function that associates each attribute type with a constant value belonging to that attribute type.
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We will define mappings v and & so that a, is given by m, 0 @0, and B is given by 7, 0 Bod.

The mapping relationships are shown in the following figure.

Sl - SZ
A /B A
~y | {7k O || me
4 (899 - y
k(S1) < ~k(S2)

B

First we define the mapping 7 : i(k(S1)) — i(S1) as follows. The mapping 7 is a conjunctive
query mapping such that for any relation Rin S; having n key attributes and m non-key attributes,

the query in 7 to define R from x(S51) is given by:

R(Kl, Kz, aeey Kn, C1,C2y eeny Cm) . ~RI(K1,K2, cany Kn),

where R’ is the relation in &(S;) corresponding to R but with non-key attributes projected out.
We are assuming without loss of generality that the key attributes of relation R are ordered so as
to correspond to the leftmost n variables of R, and that the attributes of R’ obey the same order.
A similar assumption will be made in the definition of § below. Each c; is a constant symbol, and
¢; = f(T') where T is the type of the attribute corresponding to the position of ¢; in R. Note that
Te(7(de)) = du, for any database instance d, of k(S1).

Given an arbitrary database instance d of x(S1), define ax(d) = me(a(y(d))). Note that oy
is a conjunctive query mapping from x(S;) to k(Sz2), since the conjunctive rules for ¢, can be
constructed by simple query substitution of each query in 7y for the relations appearing in the body
of a.

To define the mapping B«, we first define the mapping & : i(x(S2)) — i(S2) as follows. The

mapping 8 is a conjunctive query mapping, such that for any relation R in S having n key attributes
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and m non-key attributes, the query in § to define R from k(S2) is given by:
R(Kl,Kz, veey ,Kn,tl,tz, cory tm) : -—-RI(K;[, Kz, veey Kn),

where R’ is the relation in x(S;) corresponding to R but with non-key attributes projected out.
Each ¢; either is a constant symbol or variable, and is defined as follows. Let attribute B have type
T and let it be the attribute of relation R whose placeholder in the conjunctive query is ¢;.

1. If attribute B receives some constant b under e, then ¢; is just the constant b.

9. If attribute B receives a non-key attribute N from S; under a, then t; is just the constant f (T).
3. If attribute B receives a key attribute K from S; under a, and either B is received by K under
B, or B is involved in a join or selection condition in the body of some query in 3, then t; is just
K;, where K is the variable in the position of the key attribute K " in R that is guaranteed by
Lemma 7 to receive attribute X and have the same value as B in every tuple in R.

4. Otherwise, t; is just the constant f(T'). -

Given any database instance e of x(Sz), the mapping B« is defined by Bx(e) = mc(B(é(e)))-
Clearly By is a conjunctive query map since each conjunctive query in & can be substituted for the
appropriate relations in the body of each query in .

The mapping B, must map a database instance in the range of a, back to its pre-image under
@, (recoverying the original database instance). Recall that a, creates values for the non-key
attributes that are projected out of some instance of x(S1), and applies the map « to the resulting
instance of S;. This results in an instance of Sy for which the non-key attributes are then projected
out to form the result of the map ax.

The map 6§ above re-creates these non-key attribute values that were projected out. While
there typically is not sufficient information in the key attributes to re-create the missing non-key
attribute values precisely, the following lemma shows that § re-creates the values accurately for any
non-key attributes that can affect the result of applying the map J to the resulting instance with

the values re-created.
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Lemma 8 Let S, and Sa be keyed schemas. If e is a database instance of S» such that there is

some database instance dx of k(S1) satisfying e = a(y(dx)), then S(8(nx(e)) = B(e).

Proof: First note that m.(8(mc(e))) = mx(e), because § creates values for the non-key attributes
of e that are missing from m.(e), and the outer application of 7, just projects them back out again.
Thus, §(nc(e)) and e have the same number of tuples in each relation, with identical key values. We
now claim that if there are tuples 7 in e and 7' in §(w«(e)) in the corresponding instances of the same
relation that agree on key values, but disagree on non-key attributes, then those tuples disagree on
non-key attributes that are neither received by any attributes in S; under 83, nor participate in any
selection or join conditions.

Suppose to the contrary, that a pair of tuples, 7 in e and 7' in §(m,(e)) exist and agree on their
key values, but disagree on some arbitrary non-key attribute B that either is received by some
attribute in S; under S, or participates in a join or selection condition in a query in 8. Let B
have type T. By hypothesis there is some d, such that e = a(y(dy)). If attribute B receives some
constant b under @, then attribute B of 7 has value b from the query mapping, and attribute B
of 7/ has value b by construction of §, a contradiction. If attribute B receives a non-key attribute
under «, then attribute B of 7 has value f(T') by construction of 7, and attribute B of 7/ has value
f(T) by construction of 4, again a contradiction. If attribute B receives a key attribute K under
@, then by Lemma 7, there is a key attribute K'in R such that K’ has the same value as attribute
B in the tuple 7. By the construction of 4, attribute B also has the same value as K’ in 7/, again
a contradiction, establishing the claim.

We have shown that 6(mc(e)) and e have the same number of tuples in each relation, with
identical key values, and either the two instances in fact are equal, or corresponding tuples that
agree on key values may disagree only on non-key attributes that are not received by any attribute
in S; under B and which do not participate in any join or selection conditions in any queries in 8.
But then, B(8(mx(e))) = B(e), and the lemma follows. g

The following theorem is central to establishing the main result of the paper, but also is of
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independent interest, since it establishes an important property of conjunctive query dominance.
In particular, it shows that for one schema to be dominated by a second schema, its key set must be
dominated by the key set of the second schema. This result is important because given some keyed
schema S, «(S) is an unkeyed schema, so this result allows results concerning unkeyed schemas to
be used in reasoning about keyed schemas. For instance, if one wanted to show that some schema
S, were not dominated by some other schema S3, it would suffice to show that k(S1) was not
dominated by x(S2), which in turn might be demonstrated using techniques concerning unkeyed

schemas.
Theorem 9 If S; and Sy are keyed schemas, and S; < S, then k(S1) < k(S2).

Proof: We show that x(S5;) < k(S2) by (o, Bk). It suffices to show that S, o a is the identity
map on i(k(S1)). Suppose not. Then there is some database instance dy of k(S1) such that
Br(e(dy)) # de. Noting that d = me(y(dx)) by the definition of , and substituting the definitions
of By and ay, we have that m.(B(8(mx((7(dx)))))) # 7x(7(dx)). Since two database instances that
disagree on their keys cannot be the same instance, we infer that B(8(mx(a(y(ds))))) # v(di)-
Now, if we let d = v(dy), we have B(8(mc(c(d)))) # d. But, letting e = (d) Lemma 8 ensures that
B(8(me(e))) = B(e), that is B(8(nx(e(d)))) = B(a(d)), whence, B(a(d)) # d. This contradicts that
B o a is the identity map on i(S;), and the theorem follows. m

The following three lemmas demonstrate some additional properties of conjunctive query maps

that establish schema dominance, and can be proved in a straightforward manner.

Lemma 10 Let S; and S, be keyed schemas such that Sy < Sz by (a,8). Then there cannot be

two distinct attributes in Sy that receive the same attribute in Sy under (3.

Proof: Let S; and S, be as in the statement of the lemma, and suppose to the contrary that there
is some attribute B in relation R in S, that is received under 8 by two distinct attributes A and
A'in §,. By Lemma 4, B receives both A and A’ under a. Let d be an attribute-specific instance

of S; such that the relation(s) containing A and A’ is/are non-empty. Since 4 and A’ are distinct
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attributes, they have no values in common in d. But B receives both A and A’ under ¢, which
means that there is a join condition between A and A’ in the query defining R But then R must be
empty, whence the relation containing A must be empty in the instance B(«(d)), since A receives

B under 8. This is a contradiction, establishing the lemma. g

Lemma 11 Let S; and S, be keyed schemas such that Sy < Sz by (e, B). If, for every attribute
type T, the number of attributes in Sy of type T is the same as the number of attributes in Sy of

type T, then every attribute in Sy is recetved by some atiribute in S; under (.

Proof: Suppose not. Then there is some attribute C in S, which is not received by any attribute
in S; under A. By Lemma 3, for every attribute A in S; there is some attribute B such that A is
received by B under o and B is received by A under (. Since, in a query mapping, any attribute
of some type T' that is received by another attribute, is always received by an attribute with the
same type T, and since there are the same numbers of attributes of each type in each schema, it
follows that if T is the type of attribute C, there are fewer attributes of type T¢ in S, that are
received by attributes of type T¢ in Sy than there are attributes of type T¢ in S;. It follows that
there must be two distinct attributes A and A’ in S; such that the same attribute B is received by

both A and A’ under B, contradicting Lemma 10. g

Lemma 12 Let Sy and S, be keyed schemas such that S; < S by (a,B). If, for every attribute
type T, the number of attributes in Sy of type T is the same as the number of attributes in Sy of

type T', then there cannot be two distinct attributes in Sy that are received by the same attribute in

S under (.

Proof: Let S; and S; be as in the statement of the lemma, and suppose to the contrary that
some attribute A in S; receives two distinct attributes from S under 8. Then, since Lemma 11
guarantees that every attribute in S5; is received by some attribute in S, and since the number

of attributes of each type is the same in both schemas, it follows by simple counting that there
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must be some other attribute in S, which is received by two or more distinct attributes in Sy,
contradicting Lemma 10. g
We now are ready to prove the central result of the paper, namely that keyed schemas can be

conjunctive query equivalent if and only if they are the same, up to renamings and re-orderings.

Theorem 13 If S; and Sy are keyed schemas, then S1 = S, if and only if S1 and S» are identical

up to renaming and re-ordering of relations or attributes.

Proof: One direction is trivial, that is, if two schemas are identical up to renaming and re-ordering
of relations and attributes, then glearly they are equivalent. For the other direction, let S; and 53
be keyed schemas with S; = S2. Then S = S, and S; < Sy, and by Theorem 9, x(S;) = k(S2)
and £(Sz) < K(S1). Thus, k(S51) = &(S2). Note that all of the attributes of an unkeyed schema
(schema with no depenencies) always implicitly form a key, so that £(S1) and &(Sz) can be viewed
as unkeyed schemas. The fact that the set of attributes of any relation in either schema forms a key
is implicit. Thus, from the result of Hull [9] mentioned above, that states that equivalent unkeyed
schemas are identical up to renaming of attributes and relations and re-ordering of attributes, we
conclude that x(5;) and x(S;) must be identical, up to renaming of attributes and relations and
re-ordering of attributes.

But this means that S; has the same number of relations as Sz, and, for every relation R; in 51,
if Ry has key K, where K is a set of attributes, then there is a corresponding relation R; in Sy with
the same key, up to renaming and re-ordering of attributes. The same is true for Sy: corresponding
to every relation in Sy there is a corresponding relation in S; with the same key (up to renaming
and re-ordering of attributes).

It remains to be shown that the two schemas also agree on non-key attributes. First, we claim
that the number of occurrences of any attribute type among the non-key attributes in one of the
schemas must be the same as the number of occurrences of the same attribute type among non-key
attributes in the other schema. Without loss of generality, suppose to the contrary, that there is

some attribute type A in S; that occurs a greater number of times among non-key attributes in S;
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than in Sz. Let (o, 8) be the pair of conjunctive query maps establishing S; < 5.

By Lemma 3, each non-key attribute of type A in S; must be received by some attribute in Sz
under @. Because there are more non-key attributeg of type A in S; than in Sy, it must be that
there is some (key or non-key) attribute Ao with type Ain S, that receives more than one attribute
with type A in Si, under the map a. Call the relation in which Ap occurs Ry, and let Ay,..., 4An
be the attributes of type A in S; that are received by Ao under a. Note that A, ...y A, must be
bound by a join condition in the conjunctive query in « that defines Ro.

Let d be an attribute-specific instance of Sy that includes some value a € 74, (d) that is not
among the constants used in any of the queries in & or 8. Then a is not found in the instance a(d),
since d is an attribute-specific instance, whence the join condition which equates the attributes
Ay, ..., A, must fail. However, § must map the instance a(d) back to d, since § o « is the identity
map on (S1). But this implies that A; must receive some attribute with type A in S; under 3, and
a must be a value of that attribute in the instance a(d). This is a contradiction, which establishres
the claim.

We have established that the two schemas have the same number of relations, with corresponding
key sets, and the same number of occurrences of each non-key attribute type. It remains only to be
shown that the non-key attributes cannot be re-arranged so that the S; and Sz are not identical.

Let (a, 8) be the pair of conjunctive-query maps establishing S; < S,. Let {Ry, R3,..., Rn} be
the set of all relations in schema S,. For each 4, let K; be the set of attributes comprising the key
of R;, and let N; be the remaining attributes of R;. The functional dependency, K; -+ N;, which
is just the key dependency for R;, holds for each i.

Now, for each i, let K; be the set of all attributes that receive some attribute in K; under g,
and let N; be the set of all attributes that receive some attribute in N; under B. The sets (K’,’, N,-)
must be pairwise disjoint, since otherwise, there would an attribute in S; that receives two different
attributes from S, under B3, contradicting Lemma 10.

By Lemma 11 every attribute of each R; is received by some attribute in Sy under 8. Thus, by

Theorem 6, the functional dependencies K; — N; must hold in schema § for each 7. Since the only
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functional dependencies holding on S; are key dependencies, it follows that each K; is a superkey
of some relation, P; in S1, and that there are n such relations F;.

For each i, and for every attribute type T, N; must contain the same number attributes of
type T as N;. If not, for some i there either must be two attributes in N; that are received by
the same attribute in N; under 8, contradicting Lemma 12, or there must be an attribute in N;
that is received by two different attributes in N;, contradicting Lemma 10. The same argument
can be used to show that K; has the same number of occurrences of any attribute type among its
attributes as Kj, for each 1.

Thus, every non-key attribute in S; is an element of one of the N;, since for every attribute
type T, there are the same number of non-key attributes of type T in both schemas. This also
means that each K; is in fact the key of PB;, since if some K; were a proper superkey, there would
be additional non-key attributes included in K;. Finally, because the only functional dependencies
holding in S; are key dependencies, it follows that for each ¢, all of the attributes in N; occur as

non-key attributes in P;, and the theorem follows. m

4 Conclusions

Schema equivalence is a fundamental property of relational database schemas, and is of critical im-
portance for such problems as database design, data model translation, and multidatabase schema
integration. Yet, while the notion of schema equivalence has been known for many years, there are
surprisingly few results to characterize the equivalence of relational schemas.

For example, a thorough understanding of database design or multidatabase schema integra-
tion would require, at a minimum, characterizations of schema equivalence for various classes of
dependencies, such as primary keys, primary keys plus referential integrity constraints, as well as
other families of dependencies of interest. However, these problems remain open.

In this work, we have provided a number of results concerned with conjuctive query equivalence

of relational schemas with primary keys, including having shown that two relational schemas with
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primary keys are conjunctive query equivalent if and only if they are identical (up to renaming and
re-ordering of attributes and relations).

These results make substantial progress toward a characterization of the equivalence of schemas
with primary keys (where the full relational algebra is available for schema mappings), and develop

techniques that may be applicable to the solution of other problems concerning schema equivalence.
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