EEEEEWEBEHEEWEEEEﬂﬁﬁﬂﬂﬁﬂﬂﬂ@mﬂ@ﬁﬂﬂﬁﬁaﬁﬂﬁﬁEEE@EEE@EEEEﬁﬁﬂﬁaﬁﬁﬁﬁﬁﬂﬁ%!ﬂﬂ@ﬁﬂﬂ

User-Oriented Resource Scheduling in UNIX

John Edwards
Pei Cao

Technical Report #1318

February 1997

UNIVERSITY OF

11T

User-Oriented Resource Scheduling in UNIX

John K. Edwards and Pei Cao
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706
{edwards,cao }@cs.wisc.edu

Abstract

In many current operating systems resource schedul-
ing decisions are made exclusively based upon through-
put considerations. With the trend toward personal
workstations, scheduling of resources, in particular
physical memory and disk access, should be more
user oriented. Local modifications are made to the
Linux kernel to allow the user to guarantee minimum
or maximum amounts of physical memory for par-
ticular processes and to set disk access priorities for
processes. A daemon that authenticates all requests
to adjust resource allocation and which automatic-
ally sets default allocations and priorities for new in-
stances of interactive programs is implemented. The
daemon also dynamically adjusts limits for inactive
interactive processes. Experimental results suggest
appropriate minimum memory allocations for vari-
ous programs. These adjustments result in signific-
antly improved responsiveness for interactive applica-
tions, with minimal impact on the throughput of back-
ground applications.

1 Introduction

An important task of operating systems is to man-
age the allocation of resources to multiple processes.
Many modern operating systems, however, do not
manage resources in a user-friendly way. They of-
ten consider throughput alone, and ignore the relative
importance of processes. The user has no control on
how much resources a process can take. If a back-
ground process or other users’ processes monopolize
the resources of a machine, the user cannot instruct
the operating system to correct it, even if he or she
bought and owns the machine.

For example, if a process needs a lot of memory
and starts to thrash the machine, that process is awar-
ded with all of the machine’s main memory. When this
happens, the user finds that the interactive processes
are frequently paged out and become sluggish to key-

strokes or mouse movements. The user then feels that
the usability of the machine is significantly reduced.

Modern operating systems adopt the throughput-
oriented, uncoordinated approach to resource man-
agement because they were designed to run on time-
sharing computing servers. As cost concerns and tech-
nological advances push PCs and workstations to re-
place servers, we believe it is time to reconsider how
operating systems should manage resources on these
platforms. The owner of a machine should be given
control over resource allocation. In addition, user sat-
isfaction should be the goal of resource management.
That is, both the interactive applications’ prompt re-
sponses to user inputs and the throughput of the sys-
tem should be considered.

We propose a user-oriented resource management
approach for operating systems on PCs or worksta-
tions. The approach introduces a set of simple kernel
mechanisms to allow users to adjust memory alloca-
tion and I/O priorities, and an authorization scheme
to prevent users from misusing the kernel mechan-
isms. The approach also includes a user-level policy
daemon, which monitors and dynamically adjusts re-
sources to create a better working environment for the
user. In particular, it recognizes the current interact-
ive processes and reserves resources for them. In the
mean time, it lets non-interactive processes have the
rest of the resources and keep progressing.

We have implemented user-oriented resource man-
agement in Linux [14]. The kernel modifications are
limited to two modules and are quite simple. We
found that the facility is easy to use and gives us
greater control over the machine, Together with other
tools like “top”, the facilities provide a nice way for
users to tune the performance of various processes.
In addition, the user-level daemon makes the new sys-
tem behave much more pleasantly in over-loaded situ-
ations. On average, reserving resources for interactive
applications only slightly increases the turn-around
time of non-interactive processes (less than 20% see
Table 13). As a result, in our daily work we use the

modified kernel on our PCs.

2 Design

User-oriented resource management consists of three
compornents:

o kernel mechanisms to allow users to control re-
source allocation;

s authorization policies deciding which user can
reserve or limit resources for which process;

e a user-level policy daemon that implements the
authorization policy, carries out users’ requests
for resource allocation, monitors and dynamic-
ally adjusts resources for interactive processes.

Below we describe each component in more detail.

2.1 Kernel Mechanisms

Traditionally, the kernel controls physical memory al-
location and I/O scheduling using global policies that
optimize throughput. There is no user level input on
the resource allocation, the rationale being that the
kernel is designed for time-sharing systems and all
users should be subject to the kernel’s decisions so
that the throughput is maximized.

As personal computers and workstations become
more widespread, there emerges a need for users to
be able to adjust resource allocation. Many PCs or
workstations are bought by individuals and shared by
a number of people; the owner may wish to make sure
that his or her jobs will always receive priority in
obtaining resources. Users may also want to limit
resources used by background jobs in order for fore-
ground jobs to perform better. Existing mechanisms
such as mlock or mpin do not satisfy this need because
they can only be used by the superuser, and they re-
quire precise information on which parts of a process’s
address space need to be resident in memory.

We introduce the following system calls to give
users control on memory allocation and 1/O schedul-
ing:

e minmemory(pid, size): asks the kernel to give
process pid at least size amount of physical
memory ;

e max memory(pid, size): asks the kernel to never

Default priority is 0. Common pri values are
1 (for interactive processes) and -1 (for back-
ground processes).

e register. resource.daemon(pid) : Notifies the
kernel that all of these system calls should only
be accepted from process pid. All requests by
other processes must be funneled through this
daemon.

Existing kernels can implement these system calls
quite easily. As will be seen in Section 3, implement-
ing the calls in Linux requires only modest changes in
the VM module and the disk scheduling routine.

We separate the mechanisms for user control from
authorization and policy issues: the system calls can
only be called from the user-level policy daemon. A
user’s request on resource allocation is implemented
as a message to the daemon, which checks whether the
user can issue the request, and issues the appropriate
system calls. This way, the authorization policy can
be changed easily at runtime without involving the
kernel.

2.2 Authorization for Resource Con-
trol

Giving users the opportunity to manage resources does
not mean any user can deprive other users of re-
sources. The authorization policies, implemented by
the policy daemon, prevent this from happening. Au-
thorization deals with who can make what request on
which process’s resources. Similar to access control
matrices, authorization policies can be expressed as
matrices: users are rows, process types are columns,
and allowed requests are matrix elements.

For the environments we are considering (i.e. PCs
and workstations), we consider only two types of pro-
cesses: those that are owned by the user, and those
that are not. We also consider only two types of re-
quests: reservation and limitation. Setting upper lim-
its on physical memory and setting the I/0O priority
to below 0 are limitation requests; setting lower limits
on physical memory and setting I/O priority to above
0 are reservation requests.

In our system we use the following simple policy.
There is a special user who is considered the owner of
the machine. The owner can perform all requests on
all user processes, and all other users can only limit
resources on their own processes. In other words, the

allocate more than size amount of physical memory authorization matrix is:

to process pid;

e io_priority(pid, pri): tells the kernel that
disk I/0 requests from process pid have pri-
ority pri; lower pri indicates lower priority.

other users’ processes
reserve/limit
none

user | user’s processes
owner | reserve/limit
other limit

Note that even though non-owner users cannot reserve
resources for their processes, they can indirectly im-
prove the performance of some processes by limiting
the resources consumed by other processes.

Clearly, different environments need different fla-
vors of authorization policy. The groups of users,
types of processes and types of requests can be much
more elaborate than what we described. Once the
users, types of processes and requests are set, the
policy can be expressed as a matrix, put in a config-
uration file and interpreted by the policy daemon.

2.3 User-Level Policy Daemon

The policy daemon serves two functions:

1. to enforce authorization policy and carry out le-
gitimate requests from users;

2. to improve the user’s working environment by
identifying the processes that the user is cur-
rently interacting with, and adjusting their re-
sources to ensure satisfactory reponse times.

By dynamically adjusting resources, the daemon seeks
to maximize user satisfaction.

The second role of the daemon comes from our
desire for a better working environment. In current
systems, whenever we run a process that needs more
memory than the workstation has (this is not always
avoidable), the systems becomes sluggish. A ten-second
think time easily leads to a couple of seconds delay for
the next mouse movement or keystrokes. This is often
annoying enough that we search for some other vic-
tim machine to run the job, or stop using the machine
while the job is running.

The reason for sluggish responses is that operating
systems do not take into account the “importance” of
processes in allocating memory. Most of them use
a global least-recently-used replacement algorithm or
its approximations. If the user stops interacting with a
process for a few seconds while a background memory
“eater” is running, the process will gradually lose its
memory resident pages. When the process is woken
up at the next keystroke, it has to page in those pages
in order to process the keystroke. Thus, a few seconds
of delay is observed by the user.

With kernel mechanisms to adjust the memory al-
location, the policy daemon has the opportunity to
improve the interactive processes’ response time. We
identify the following applications which are respons-
ible for most of user inputs, and the typical user in-
teractions:

e window system processes: X server, window
manager (e.g. fuwm), terminal emulator (zterm).

Typical user interactions include mouse move-
ments, switching among windows, moving and
resizing windows, as well as menu pull-downs.

e command interpreters: various flavors of shells.
Typically invoked functions include file name
completion, traversing history list, and common
commands such as Is.

o screen editors: emacs and vi. Typical interac-
tions are inserting and deleting text, starting a
new line, searching and other menu options.

o web browser: netscape. Typical interactions in-
clude using an internal link, using BACK and
searching.

The list is particular to the UNIX environment we are
familiar with, but similar lists can be easily specified
for other environments.

We performed the following experiments to under-
stand what resources the program needs to process
the user inputs. Our machine is a 133MHz Pentium
PC running Linux and XF86, with 32MB of physical
memory and a 1.6GB SCSI disk. We first start the ap-
plication, and after making sure it is mostly memory
resident, invoke various interactions, and measure the
screen response time. The time is mostly due to CPU
time needed to process the interaction. We then swap
out all of the application’s memory pages, and invoke
the same interactions again. Table 1 shows differences
between the response times and the number and types
of pages the application has to bring into memory.
Since we used zmon to measure the response time,
the times for X window system processes are not avail-
able.

How would the response times be different if some,
but not all, pages are in memory? To answer this we
use an EXPECT script to measure the latency of in-
teractions with »i and emacs in text mode, that is
with no X server present. The script ran the pro-
gram being tested, and then used a memory intensive
program to wip it completely from memory. It then
measured the latency of the next interaction with the
program. The process repeated with various amounts
of vi or emacs kept resident. The results for emacs
are shown in figure 1. The results for vi are shown
in figure 2. As can be seen, emacs needs about 160
pages (640K) to respond to the user promptly, while
vi needs about 49 pages (196K).

We conducted similar experiments with other ap-
plications, and found that they all need some specfic
amounts of memory to respond to user input promptly.
Table 2 shows the parameters we use for various ap-
plications. The numbers are obtained by first swap-
ping the process out of memory, then giving it vari-
ous user inputs, and observing the resident sizes of

Application Interaction Resident Non-Resident | Total Pages | Text | Library | Data
Response(sec) | Response(sec) Needed

X server send letter ’i’ to emacs - - 49 18 31 0
send '’ \b \r to emacs - - 77 33 41 3
fvwm changing windows - - 64 37 18 9
xterm display+rollback - - 114 69 29 16
emacs (in X) type 'V’ .002 1.2 154 94 13 47
type i’ \b \n .005 1.5 139 133 87 18
vi (in xterm) typing 7’ .003 794 39 20 15 5

Table 1: Number of pages accessed by various applications to process common user interactions.

—0— simple characters
---&-- simple characters + “\n*

Response Time (seconds)

<

]] v]
0 200 400 600
Resident Set Size (KB)

Figure 1: Effect of reserving memory on Emacs’ re-
sponse time to user keystrokes. Two type of interac-
tions are measured: the solid curve shows the latency
when the user simply types letters, and the dashed
curve shows when the user types a letter, then back-
space, and then return. The numbers are gathered
using expect scripts, and are average of three tests,
with variances all within 20%.

--Q-— simple characters

0.4-

Response Time (seconds)
o
o
ETERETE FETTETNETE FNETHT RN FPRTET

0.0 T
50 100 150 200

Resident Set Size (KB)

=]

Figure 2: Effecting of reserving memory on vi’s re-
sponse time to user keystrokes. Only one type of in-
teraction, user typing letters, is measured here. The
numbers are gathered using expect scripts, and are
average of three tests, with variances all within 20%.

Application Lower Memory Limit

X servers 1MB

xterm 524KB

fvwm 380KB

tesh 384KB

bash 480KB

emacs (basic typing) 1080KB
emacs (several commands) 2MB
vi 216KB
netscape 3MB

Table 2: Approximate amounts of memory needed to
be reserved for interactive applications.

the process in “top”. These data, along with the path
name of the executable of each application, are spe-
cified in a configuration file. The policy daemon reads
the file to recognize the interactive processes and sets
the corresponding lower memory limits. The daemon
also sets the I/O priority of the processes to 1.

Finally, the daemon needs to recognize which of
the nominally interactive processes are actually act-
ive. The daemon makes the decision by watching the
stdin, tty and socket activities for each interactive
process. If the process has not shown any activity for
a specified period of time, the daemon resets its lower
memory limit to zero and lowers its I/O priority. The
“time-out” period is adjustable, with the default value
being 30 minutes.

We have implemented the kernel mechanisms, the
authorization policy and the policy daemon for our
PC, which runs Linux. Below we describe the imple-
mentations in more detail.

3 Implementation

There are two parts in our implementation, kernel
modifications for the new system calls, and the policy
daemon.

3.1 Kernel Modifications

Section 2.1 introduced the system calls: min memory,
max.memory, and io_priority. Implementing the calls
requires modifying the page stealing algorithm in the
VM system, and the elevator algorithm in disk I/0O
scheduling.

3.1.1 Implementing Memory Limits

In the unmodified Linux kernel, whenever a process
running in the kernel needs a new physical page, it
first attempts to tear a page from the free page list [17].

If the free page list is empty, it tries to get a free page
in one of three ways: it can shrink any memory maps
(that is it will traverse the page tables describing any
file to memory memory mappings), it can steal a page
from the file buffers, or it can steal a page from a pro-
cess. Successive requests for a free page cycle through
the three options. In enforcing upper and lower lim-
its on the physical memory allocated to a process, we
focus on the last source of free pages.

When the unmodified kernel tries to steal a page
from a process, it determines how many pages to steal
from that process before moving on to the next pro-
cess, taking into account the number of pages resid-
ent. Each time a process is visited, the algorithm tries
to steal a fixed proportion of the processes resident
set.

Our modifications are the following. If a process
has a lower limit set on its physical memory, and it is
already at its lower limit, the process is skipped when
some process tries to steal a page from it. The steal-
ing process simply moves on to another process, the
buffers or the memory maps to continue the search.

When a process needs a free page, it is first checked
to see whether there is an upper limit on its physical
memory, and if so, whether it is at or above its upper
limit. If it is, then the process does not get a page
from the free page list, the buffers, the memory maps,
or other processes. Instead it steals a page from itself.

The kernel also checks the upper limit when it ex-
amines a process to decide how many pages to steal
from the process. If the process has an upper limit
and is above the limit, the kernel takes enough pages
away from the process so that it is within the limit.
Note that this situation only occurs when an upper
limit is first set for a process, or when an exisiting
upper limit is lowered.

Whenever both an upper limit and a lower limit
are set for a process, they are checked to ensure that
the upper limit is higher than the lower limit. In
addition, whenever a lower limit is requested, all of
the lower limits are checked to ensure that memory is
not overcommitted. If a user attempts a request that
would violate either of these conditions, it is ignored
and an error is returned.

These changes to the kernel result in little addi-
tional overhead. The only effect is that when a pro-
cess has a lower limit set and is at or below its lower
limit, the average search for a free page is slightly
lengthened, as the process is skipped in the search.

3.1.2 Implementing I/O Priorities

The unmodified Linux kernel uses an elevator algorithm
for disk I/O scheduling. The algorithm sorts I/O re-
quests by disk addresses. That is, whenever a process

issues a block I/O request, the request is inserted
to a device specific queue according to its disk ad-
dress. The scheduling algorithm attempts to maxim-
ize the throughput from disks, but makes no distinc-
tion about the relative importance of I/O turnaround
time for different processes.

We changed the elevator algorithm to take I/O
priorities into account. Disk I/O requests are now
sorted first by priority, and then within each priority,
by disk addresses. To avoid starvation, we maintain
a count of the number of times any request is skipped
over by a higher priority request. After the count
excedes skip.threshold, the request is moved to the
next higher priority class. Currently skip_threshold
is set at 5.

The implementation adds additional CPU over-
head because of the slightly more complicated order-
ing scheme. Overall disk throughput may be reduced
since the strict elevator scheme is broken up into pri-
ority classes. However, the concern is secondary to
the primary concern of improved response time.

3.1.3 Providing Activity Information

In order for the user level daemon to make decisions
regarding the allocation of resources, it must be able
to determine which nominally interactive processes
are actually active and which are being ignored by
the user. The information, however, cannot be easily
infered from process idle time, since some processes
periodically receive messages from the window system
as commonly occurs when a process is sent re-display
messages. In addition, there are a wide variety of
ways that processes can obtain their inputs. Thus, we
instrument the kernel to gather statistics on a variety
of apparent activity that might qualify as actual user
interaction.

For each process, we keep track of reads from
stdin, reads from sockets, and reads from ttys. The
number of page faults are also remembered. All these
statistics are provided to the daemon as a virtual file
in the proc file system, /proc/pid/activity. We

also introduce another virtual file, /proc/pid/mem limits,

which shows the current values of any upper and lower
limits on the physical memory dedicated to process
pid, any I/O priority, the number of free pages the
process has used, and the number of pages stolen from
other processes and from the process itself. Together
with /proc/pid/stat and /proc/pid/statm, these
files provide a wealth of information about a process,
including the page faults statistics, the memory resid-
ent set and the current status of the process.

3.2 User Level Policy Daemon

The policy daemon depends on a FIFO to be notified
of user requests, and the configuration files to handle
default settings for interactive processes. It is started
at boot time along with the other standard daemons.
We use the register.resource_daemon system call
to notify the system of the pid of the daemon. The
kernel remembers the pid of the daemon to check upon
invocations of the system calls. A daemon can only
be registered if none has yet been registered, or if the
previous daemon has exited. It can only be registered
by root.

3.2.1 Handling User Requests

We developed library routines that pass user requests
to the daemon process. The routine writes a message
containing the user id of the requester to the daemon’s
FIFO and writes a confirmation to a special file owned
by the owner of the process. We have placed these
files in /var/adm/resources, one file for each user.
The daemon polls the FIFO and, upon seeing a new
message claiming to be from a user, checks that user’s
confirmation file. Since each user can only write to his
or her own file, the daemon is sure about the identity
of the user making the request. The daemon can then
go through the authorization checks to see if the user
can make the request. If so, a system call is issued
to the kernel. The kernel then checks the pid of the
process issuing the system call to ensure that it is the
previously registered daemon.

We also developed several programs to allow a
user to set the memory limits and I/O priorities through
the command line. Chief among these are:

e launchapp priorities program_name params:
launches an application with priorities determ-
ined by priorities and with command line
parameters params to the program,

e adjustapp pid priorities: adjusts the prior-
ities of pid acording to priorities.

The options for priorities are:

o —u#t###: sets an upper limit of #### on the phys-
ical memory devoted to the process;

o -1####: sets a lower limit of #### on the phys-
ical memory devoted to the process;

o -plinb]: sets the I/Q priority of the process
to interactive(1), normal(0) or background(-1).
Only one can be chosen.

A key point that makes these commands worthwhile
is that they can be embedded in scripts or window

manager “dots” files. Also, many applications can
have default values set in the daemon’s configuration
file. Thus in typical system use the user will not no-
tice any burdensome requirements when using the new
resources.

3.2.2 Dynamic Resource Adjustments

The second job of the daemon process is to imple-
ment a “user-oriented” resource policy, which sep-
arates the processes into interactive ones and non-
interactive ones, and reserves resources for interactive
processes to ensure user satisfaction.

The configuration file described in Section 2.3 lists
the names of important interactive applications and
their resource needs. Periodically (every 3 seconds in
our environment), the daemon wakes up, and checks
the new processes that were created since the last time
it went to sleep. It does this by scanning the proc
directory for any process files with pid’s larger than
the largest present when the daemon last checked. If
any of the new processes has an executable that is
listed in the configuration file, the daemon adds the
process to it’s list of those to be monitored and sets
it’s memory limits and I/Q priority as specified in the
configuration file.

Less often (every 30 seconds in our environment)
the daemon wakes up and checks the activity of all
processes which have lower limits on their physical
memory. This activity information can be obtained
from the various files detailed in 3.1.3. The daemon
considers a process to be have been active during the
last wakeup cycle if the process has shown stdin, tty or
socket activities, or if the process has had page faults.
If the daemon discovers that no activities are detected
for a time-out period (30 minutes in our environment),
the daemon decides that the user has stopped using
the process. The daemon then resets the process’s
lower memory limit to 0 (i.e. no lower limit), thus
allowing it to be paged out of memory. At any time,
however, if some activities are detected, the original
lower limit is restored.

We have implemented this policy and it appears
to perform well. However, the policy is by no means
optimal. On the other hand, since it is implemented at
user level, it can be changed easily without involving
the kernel. We plan to experiment with more policies
on dynamically adjusting resource allocations. On
our current test system, the daemon consumes ap-
proximately 1/10 of 1% of CPU time while monit-
oring the activity of more than a dozen interactive
processes.

4 Performance

A natural question about our resource adjustment
policy is how effective it is, and what impacts it has on
non-interactive processes. In this section we attempt
to answer the questions with experimental results. All
tests in this section were done on a 133MHz Pentium,
with 16MB of memory and 2 1.2GB disk drives.

4.1 Maintaining performance of inter-
active applications, measured with
EXPECT scripts

In order to measure the effects of min.memory on in-
teractive processes, we use EXPECT to mimic simple
user interactions with emacs, vi, and bash. Each test
involves starting up the interactive process with vari-
ous amounts of memory reserved, and then starting a
memory intensive process to compete with the inter-
active one. The FXPECT script then begin various
typing interactions and measures the latency of each
interaction. The script pauses for various periods of
time between each interaction, ranging from no time
to 30 seconds. Since these tests are intended to meas-
ure delays during ongoing work, the script performs
each interaction several times to allow the pages re-
quired to support the interaction to be paged into
memory for the first time or to be created as neces-
sary. After these startup interactions, the script then
begins to measure interactions’ latencies.

For these tests we keep the EXPECT testing pro-
gram fully resident in memory so that our timing does
not include any page faults from it. For each each
combination of test, background process and pause
interval we report the minimum, maximum and aver-
age latency of the interaction.

We ran the tests with the following interactions:

o bash : cat a file in the bash shell (Table 3 and
Table 4),

e emacsl : typing characters in emacs in text
mode, no X server (Table 5 and Table 6),

e emacs? : typing characters and \r in emacs
with no X server present (Table 7 and Table 8),

e vi: typing characters in vi (Table 10 and Table 9).

We tested each of these in the presence of two
numerical computations:

s tridiag : atridiagonal matrix computation (pro-
cess size TOMB); thrashes badly,

e es: an electrostatic computation (process size
100MB); alternates between being CPU intens-
ive and thrashing.

pages Interval between interactions

0 sec. 1 sec. 5 sec. 10 sec. 30 sec.
0 16 | 16 | 16 | 194 | 204 | 214 | 391 | 490 | 647 | 1849 | 1881 | 1919 601 | 2127 | 4425
35 16 | 16 | 16 | 204 | 214 | 234 | 851 | 881 | 905 | 1726 | 1735 | 17562 | 1522 | 2357 | 2855
70 16 | 16 | 16 | 194 | 194 | 194 | 151 | 434 | 946 751 891 | 1021 | 1098 | 1311 | 1594
105 15 1 16 | 16 | 194 | 207 | 224 | 119 | 287 | 377 421 440 474 397 729 923
122 16 | 16 | 16 | 184 | 191 | 194 | 357 | 407 | 437 403 447 504 464 578 755

Table 3: Running cat with a small file under bash with es in background. Latencies (min/avg/max) in ms.

pages Interval between interactions

0 sec. 1 sec. 5 sec. 10 sec. 30 sec.
0 16 | 20 | 39 | 36 | 63 | 8 | 40 | 119 | 313 | 173 | 447 | 1053 | 1116 | 1665 | 1938
35 16 | 17 | 18 | 34 | 48 59 | 55 | 100 | 140 | 179 | 423 724 | 1452 | 1617 | 1855
70 16 | 18 | 21 | 36 | 98 | 298 | 94 | 159 | 283 | 187 | 416 762 809 | 1104 | 1543
105 17 1 19 1 24 | 31 | 53 78 | 52 | 107 | 218 71 | 298 508 349 426 591
122 16 | 17 | 22 | 38 | 55 77 | 31 50 64 16 | 137 | 464 261 306 | 412

Table 4: Running cat with a small file under bash with tridiag in background. Latencies (min, avg, max) in

pages Interval between interactions
0 sec. 1 sec. 5 sec. 10 sec. 30 sec.

0 Ty1 711112122 2 2 11052 | 1173 | 1388 | 1021 | 1554 | 2552
40 1111412222 2 2 322 807 | 1055 820 | 1036 | 1315
80 17111412} 2]2]2 2 3 97 131 151 216 913 | 1695
120 11111212]2]2)253 | 738 2 2 2 556 600 666
140 1(111412}2]2]|2 3 4 2 10 23 1 16 47
160 11111121342 9 20 4 6 11 1 3 5

Table 5: Typing characters in emacs with es in background. Latencies (min/avg/max) in ms.

pages Interval between interactions
0 sec. 1 sec. 5 sec. 10 sec. 30 sec.

0 112 712111 | 44 2| 175 | 629 55 | 276 | 1806 | 744 | 1225 | 1644
40 1131102 9|35 2 24 76 | 132 | 314 591 | 676 873 | 1164
80 114171210 | 28|15 58 | 172 | 106 | 166 234 | 108 487 | 1339
120 114116210 32 2 10 43 2 15 35 2 7 25
140 1131123 7120 2 4 14 1 5 19 1 15 42
160 115117212 |47 2 7 22 2 6 24 1 6 24

Table 6: Typing characters in emacs with tridiag in background. Latencies (min/avg/max) in ms.

pages Interval between interactions

0 sec. 1 sec. b sec. 10 sec. 30 sec.
0 31313133 |3|3]25) 69 687 | 1220 | 1625 662 | 2695 | 4441
57 3131313433 8 | 19 | 1406 | 1472 | 1531 | 1569 | 2330 | 3072
114 31313133133 4 4 621 735 905 860 | 1001 | 1117
171 31313131333 3 3 3 3 3 4 4 4

Table 7: Typing ’i’ + 'r’

in emacs with es in background

. Latencies (min/avg/max) in ms

pages Interval between interactions

0 sec. 1 sec. 5 sec. 10 sec. 30 sec.
0 3/]4{6|6]|6 713164 | 274 | 42 | 248 | 470 | 1224 | 1597 | 2090
57 2147613715343 | 172|168 | 294 | 380 | 1100 | 1371 | 1605
114 3/]4 5|46 713 3 3| 144 | 294 | 540 480 606 715
171 313|545 713 4 4 3 4 6 51 214 281

Table 8: Typing ’i’ + ’r’ in emacs with emacs in background. Latencies (min/avg/max) in ms.

pages Interval between interactions

0 sec. 1 sec. 5 sec. 10 sec. 30 sec.
0 1 211 153 | 493 | 1| 19 88 | 62 234 | 483 | 500 | 598 813
17 118 12 | 4 | 114 199 | 1 9 28 | 66 | 201 274 | 228 | 422 716
34 111 13234 83 | 11 46 129 | 38 | 111 184 31 79 | 116
51 141 3|1 3 411 1 1 1 1 1 1 11 37

Table 9: Typing a single character in vi with ¢ridiag in background. Latencies (min/avg/max) in ms.

pages Interval between interactions

0 sec. 1 sec. 5 sec. 10 sec. 30 sec.
0 111 [171]1 |1]415| 462 | 486 | 577 | 668 | 775 | 587 | 766 | 986
17 111 {1711 1] 30| 366|609 | 436 | 516 | 656 | 562 | 686 | 760
34 1|11 1|11 (1] 21,131 | 211 | 90| 124 | 181 | 229 | 329 | 519
51 111 1)1)11 1 1 1 1 1 1 1 1 1 1

Table 10: Typing a single character in vi with tridiag in background. Latencies (min/avg/max) in ms.

As can be seen from the charts, as more memory
was allocated to the interactive process, latencies were
generally reduced to times that are imperceptible to
a human user. Since the bash test requires file access
and creating a new process with a new address space,
it does not decrease as significantly as the others.
Since these are tests with real background applica-
tions, there is significant variation in some of the num-
bers, in particular the major outlier in Table /refemacs-
results-1-es.

4.2 Maintaining performance of inter-
active applications, measured with
xmon

To measure the latency of various real-world in-
teraction with emacs and netscape under X, we used
zmon to timestamp each message between the X server
and the application. We then measured the latency of
various interactions, while running a thrashing applic-
ation in the background. We measured the latencies
with 1/2, 2/3, and 1 times the physical memory re-
quired by the process resident. The thrashing applic-
ation was an extreme worst case process which cycles
through a large array, writing to a page and then mov-
ing on to the next page.

For emacs we measured the latency of display-
ing the window when switching from another virtual
desktop, of moving the mouse into the window, of
pressing the meta-key, of entering the command re-
search-forward, and of the actual search and result-
ing redisplay. Table 11 shows that if a full 400 pages
are devoted to emacs, overall latency for this simple
sequence of operations can be significantly decreased.

For netscape we browsed a local file, in this case a
copy of the Linuz Documentation Project web page.
We measured the latency of displaying the window, of
the mouse entering the window, of clicking on a link
internal to the file, then clicking BACK and then repeat-
ing a previous search for Linus. In Table 12 we see
that allocating 692 pages (2768 KB) would dramatic-
ally decrease overall latency for these operations.

Since zmon is only able to measure the time between
the message from X and the response from the ap-
plication, we are not able to quantify the latency as X
itself pages into memory.

4.3 Effects on background processes

In order to measure the effects of lower limits on some
applications on other, memory intensive applications,
we ran the two memory-intensive applications above
in the presence of an artificial application that simply
occupied memory. The lower limits for this program

were set in a range from 0KB to 8MB. As can be seen
in Table 13, as the amount of memory reserved for the
memory resident process is increased, the turnaround
time increased by less than 20%, until 8MB were
reserved, at which time a majority of the memory
was committed to other things: kernel, free page list,
memory resident process, EXPECT test program).

5 Related Work

There are many early studies on resource manage-
ment, especially memory management [15, 3, 18, 2,
1, 24, 9, 10, 7]. Except for some early multiprogram-
ming systems [15], most operating systems adopted
the kernel-based global management of memory [3,
18, 2, 1, 24]. Hence, most of the research focused on
finding algorithms that would optimize the through-
put of the system. Denning’s working set paper[10]
gives a very good survey on the research results up
to the 80’s, and shows that the working-set principle
is an effective technique to control multiprogramming
level and maximize throughput. Unfortunately, true
working-set policy is very hard to implement. In-
stead, most systems use a FIFO with second chance
or CLOCK algorithm [18, 2, 1].

Recently the operating system community has been
looking into the issues in incorporating application
control on resource management in modern kernels
(16, 5, 6, 4, 11]. A number of research projects stud-
ied the policy and implementation issues of giving
programmers the oppurtunity to manage resources
given to an application [16, 5, 6], and better kernel
structures to facilitate application control [4, 11].
However, the focus in these studies is on application
control, not user control. The systems still consider
the global resource allocation to be the job of the ker-
nel, and do not investigate issues of giving users au-
thority to manage resources.

There are also proposals to use new schemes to
manage global resource allocation and scheduling [16,
23, 12]. For example, the money-market approach [16]
allocates resources as if they were commodities sold in
a market, and applications are required to “buy” their
resources; the lottery scheduling approach [23] uses a
probablistic scheme to allocate resources so that pro-
potional share can be achieved without starvation.
These approaches still keep the kernel as the only
one who has authorities on resource management, and
treat interactive processes and non-interactive one in
the same way.

Modern UNIX systems provide a system call, “mpin”
or “mlock”, which allows super user to pin part of the
address space of certain application in memory [13].
However, using “mpin” for our purpose would require

Number of emacs pages resident
emacs interaction 0 187 374 400
display 3231 | 1283 576 517
mouse enters window 300 237 230 115
pressing meta key 1580 556 77 65
typing first key in meta-window 89 39 4 3
M-x re-search-forward 425 153 151 126
actual search and redisplay 207 153 151 126
Total latency: 4270 | 2599 | 1057 831

Table 11: Latency of interactions with emacs in X, in the presence of a thrashing background process.

Number of Netscape pages resident
Netscape interaction 0 346 462 692
display 3231 | 2311 | 1448 385
move mouse into window 210 165 146 17
click on internal link 3840 | 2263 | 2410 451
... then click on “BACK” 1059 | 1221 | 1147 983
Do a repeat of a previos search. 294 152 169 159
Total latency: 8634 | 6112 | 5320 2395

Table 12: Latency of interactions with emacs in Netscape, in the presence of a thrashing background process.

application KB kept resident (unavailable to these applications)

0KB | 512 KB | 1024 KB | 1536 KB | 2048 KB | 4096 KB | 8192 KB
tridiag 578 569 567 574 506 508 619
es 3361 3326 3369 3646 3496 3970 15249

Table 13: Effect of keeping other processes resident on test memory intensive applications. Turnaround times in
seconds.

that the user runs in superuser mode, the applica-
tion be changed to pin its relevant address space in
memory, and the pinned pages will not be paged out,
even if the process is stopped. It also do not address
the I/O priority problem. Thus, “mpin” would not
be the appropriate mechanism to use for user level
resource management.

Our dynamic resource adjustment approach bor-
rows ideas from soft real-time systems [21, 22, 19, 20].
In some sense, we are viewing a PC as a soft real-time
system: interactive processes have deadlines in the
sense that they must respond to user inputs within
a human tolerable threshold. Similar to real time
systems, our goal is to maximize throughput under
the constraint of the interactive jobs meeting their
deadlines most of the time. Most real time systems,
however, are not general purpose computing systems.
Studies in this area often assume precise knowledge
on each job’s resource requirements and computa-
tion time, which is often unavailable for general pur-
pose computing environments. To our knowledge, our
characterization of the memory needs of interactive
applications in section 2.3 is the first effort on char-
acterizing the performances of interactive processes
using real-time system techniques.

Finally, some operating systems like Windows N'T [§]

set memory and CPU time limits on processes. Unfor-
tuantely, the systems do not guarantee the minimum
memory required by interactive applications. Thus,
multiple background processes can still collectively
thrash the machine, making interactive processes very
slow. Neither do the systems address the I/O priorit-
ies. On the other hand, although we focus most of our
discussion on UNIX-like systems, user-oriented re-

source management applies to other multi-programming

operating systems.

6 Conclusion and Future Work

As personal computers become more common in vari-
ous organizations, it is time to reconsider the assump-
tions made by traditional operating systems on re-
source management. In this paper we propose user-
oriented resource scheduling, which allows authorized
users to influence the resource allocation decisions
made by the kernel. The goal of the approach is to
give user greater control over the computer, and to
maximize user satisfaction in daily use of the com-
puter.

User-oriented resource management includes three
components: new system calls to allow users to spe-
cify memory limits and I/Q priorities, authorization
policies that decide which user can make what request
on resource allocation, and a user-level policy daemon

that implements the authorization policy and makes
the system calls on users’ behalf. Since interaction
applications have greater impact on user’s perceived
usability of the system, the policy daemon also em-
ploys a dynamic resource adjustment policy that re-
serves resources for interactive applications to ensure
prompt responses to user inputs.

Our implementation of the approach in Linux demon-
strated that user-oriented resource management can
be easily incorporated into existing kernels. Our ex-
periments also show that common interactive applic-
ations need only modest amount of memory in or-
der to process user interactions promptly, and that
reserving the memory for those applications signific-
antly improve the usability of the machine with only
slight slowdown of non-interactive applications.

There are many limitations in our work. Our
current model of the authorization policy is designed
for personal computers; other environments may need
a more expressive framework. Current schemes on
identifying active interactive applications need to be
more precise. We have not fully studied the perform-
ance implications of I/ priorities (we plan to exper-
iment more on this issue in the coming weeks). (more
limitations?...)

We plan to extend our work in a number of direc-
tions. We will look into how the resource reservation
scheme can be extended to support multi-media ap-
plications. We will also investigate how user-oriented
resource scheduling facilitate sharing of people’s work-
stations. In addition, putting limits on resources help
thwart “denial of service attacks” from malicious parties
and we plan to look more into that. We are also in-
terested in extending our framework to provide better
working environment on time-sharing systems. Fi-
nally, we plan to look into the broader question of
“quality of service” in an operating system.

References

[1] Ozalp Babaoglu and William Joy. Converting a swap-
based system to do paging in an architecture lack-
ing page-reference bits. In Proceedings of the Sth
SOSP, Operating Systems Review 15(5), pages 78—
86, December 1981.

[2] Maurice J. Bach. The Design of the UNIX Operating
System. Prentice-Hall Software Series, 1986.

[3] A. Bensoussan, C.T. Clingen, and R.C. Daley. The
multics virtual memory: Concepts and design. In
Communications of the ACM, 15(5), pages 308-318,
May 1972.

[4] Brian N. Bershad, Stefan Savage, Przemyslaw
Pardyak, Emin Gun Sirer, Marc E. Fiuczynski, David
Becker, Craig Chambers, and Susan Eggers. Extens-
ibility, safety and performance in the SPIN operating

[12]

system. In Proceedings of the 15th SOSP, pages 267~
284, December 1995.

Pei Cao, Edward W. Felten, and Kai Li. Application-
controlled file caching policies. In Proc. USENIX
Summer 1994 Technical Conference, pages 171-182,
June 1994.

Pei Cao, Edward W. Felten, and Kai Li. Implement-
ation and performance of application-controlled file
caching. In Proc. First USENIX Symposium on Op-
erating Systems Design and Implemeniation, pages
165-178, November 1994.

R. Carr and J. Hennessy. WSCLOCK-a simple and
effective algorithm for virtual memory management.
In Proceedings of the 8th SOSP, Operating Systems
Review 15(5), pages 87-95, December 1981.

Helen Custer. Inside Windows NT. Microsoft Press,
1992.

Peter J. Denning. The working set model for program
behavior. Communications of the ACM, 11(5):323~
333, May 1968.

Peter J. Denning. Working sets past and present.
IEEE Transactions on Software Fngineering, SE-
6(1):64-84, January 1980.

D. R. Engler, M. F. Kaashoek, and J. O’Toole.
ExoKernel: An operating system architecture for
application-level resource management. In Proceed-
ings of the 15th SOSP, pages 251-266, December
1995.

Gregory R. Ganger and Yale N. Patt. The process-
flow model: Examining i/o performance from the sys-
tem’s point of view. In Proceedings of the ACM Sig-
metrics Conference, pages 86-97, May 1993.

R. Gingell, J. Moran, and W. Shannon. Virtual
memory architecture in SunOS. In Proceedings of
the USENIX Conference, Summer 1987.

Greg Hankins. Linuz Documentation Project Home
Page. http://sunsite.unc.edu/mdw/linux.html, 1996.

Per Brinch Hansen. The nucleus of a multiprogram-
ming system. In Communications of the ACM, 13(4),
pages 238-250, April 1970.

Kieran Harty and David R. Cheriton. Application-
controlled physical memory using external page-
cache management. In The Fifth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, pages 187-197,
October 1992.

Michael K. Johnson. The Kernel Hacker’s Guide 0.7.

http://www.redhat.com:8080/HyperNews/get/khg html,

1996.

Henry M. Levy and Peter Lipman. Virtual memory
management in vax/vms. In Computer, 15(3), pages
35-41, March 1982.

Cliff Mercer, Ragunathan Rajkumar, and Jim
Zelenka. Temporal protection in real-time operating
systems. In Proceedings of the 11th IEEE Workshop

(23]

[24]

on Real-Time Operating Systems and Software, pages
79-83, May 1994.

Clifford W. Mercer, Stefan Savage, and Hideyuki
Tokuda. Processor capacity reserves: Operating sys-
tem support for multimedia applications. In Proceed-
ings of the IEEE International Conference on Multi-
media Computing and Systems, May 1994.

J. A. Stankovic and K. Ramamritham. The spring
kernel: A new paradigm for real-time systems. In
IEEE Software, pages 62-72, May 1991.

Hideyuki Tokuda, Tatsuo Nakajima, and Prithvi
Rao. Real-time mach: Towards a predictable real-
time system. In Proceedings of USENIX Mach Work-
shop, October 1990.

Carl A. Waldspurger and William E. Weihl. Lot-
tery scheduling: Flexible proportional-share resource
management. In Proceedings First Symposium
on Operating Systems Design and Implementation
(OSDI), pages 1-12. USENIX, November 1994.

Michael Young, Avadis Tevanian, Richard Rashid,
David Golub, Jeffrey Eppinger, Jonathan Chew, Wil-
liam Bolosky, David Black, and Robert Baron. The
duality of memory and communication in the imple-
mentation of a multiprocessor operating system. In
Proceedings of the Eleventh Symposium on Operating
Systems Principles, pages 63-76, November 1987,

