Interconvertibility of Set Constraints
and Context-Free Language Reachability

David Melski
Thomas Reps

Technical Report #1330

November 1996






Interconvertibility of Set Constraints and
Context-Free Language Reachability

David Melski Thomas Reps

November 18, 1996

Abstract

We show the interconvertibility of context-free-language reachability problems and a class
of set-constraint problems: given a context-free-language reachability problem, we show how to
construct a set-constraint problem whose answer gives a solution to the reachability problem;
given a set-constraint problem, we show how to construct a context-free-language reachability
problem whose answer gives a solution to the set-constraint problem. The interconvertibility
of these two formalisms offers an conceptual advantage akin to the advantage gained from the
interconvertibility of finite-state automata and regular expressions in language theory, namely,
a problem can be formulated in whichever formalism is most natural. It also offers some in-
sight into the “O(n3) bottleneck” for different types of program-analysis problems, and allows
results previously obtained for context-free-language reachability problems to be applied to set-
constraint problems.
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1 Introduction

This paper concerns algorithms for converting between two techniques for formalizing program-
analysis problems: context-free-language reachability and a class of set constraints. Context-free-
language reachability (CFL-reachability) is a generalization of ordinary graph reachability (i.e., tran-
sitive closure). It has been used for a number of program-analysis applications, including interproce-
dural slicing(7, 9], interprocedural dataflow analysis[8], shape analysis(12], and binding-time analysis
for partial evaluation[l].

Set constraints are used for program analysis by using them to collect (a superset of) the set of
values that the program’s variables may hold during execution. Typically, a set variable is created for
each program variable at each program point. Set constraints are then generated that approximate
the program’s behavior. Program analysis then becomes a problem of finding the least solution of
the set-constraint problem[4].

The principal contribution of this paper is to relate these two techniques:

o We give a construction for converting a CFL-reachability problem into a set-constraint problem.
This construction can be carried out in O(n + ¢) time, where n is the number of nodes in the
graph, and e is the number of edges in the graph.

o We give a second construction for converting a set-constraint problem into a CFL-reachability
problem. Again the construction can be carried out in time linear in the size of the set-
constraint problem.

We gain several benefits from knowing that these two program-analysis formalisms are intercon-
vertible:

e There is an advantage from the conceptual standpoint: When confronted with a program-
analysis problem, one can think and reason in terms of whichever paradigm is most appropri-
ate. (This is analogous to the situation one has in language theory with finite-state automata
and regular expressions, or with pushdown automata and context-free grammars.) For exam-
ple, CFL-reachability leads to natural formulations of interprocedural dataflow analysis[9] and
interprocedural slicing[11, 7]. Set-constraints lead to natural formulations of shape-analysis[4].
Each of these problems could be formulated using the (respective) opposite formalisms—our
interconvertibility result formulates this idea precisely—but it would be awkward.

o These constructions also offer some insight into the “O(n®) bottleneck” for program-analysis
problems. (Le., a number of program-analysis problems are known to be solvable in time
O(n®), but no sub-cubic-time algorithm is known.) This is sometimes (erroneously) attributed
to the need to perform transitive closure when a problem is solved. However, because transitive
closure can be performed in sub-cubic time[2], this is not the correct explanation. We have
long believed that the real source of the O(n®) bottleneck is that a CFL-reachability problem
needs to be solved. This paper shows this to be the case for a class of set-constraint problems.

o CFL-reachability is known to be log-space complete for polynomial time (or “PTIME-complete”)[13],
and hence this paper demonstrates that a class of set-constraint problems are also PTIME-
complete. Because PTIME-complete problems are believed not to be efficiently parallelizable
(i.e., cannot be solved in polylog time on a polynomial number of processors), this paper extends
the class of program-analysis problems that are unlikely to have efficient parallel algorithms.

For both constructions there is a thorny issue that we must address: When we plug the various
parameters that characterize the size of the transformed problems into the standard formulas for the
worst-case asymptotic running time in which the transformed problems can be solved, it appears that
both of our constructions cause a blowup in the time required to solve the problem. That is, from
the standpoint of worst-case asymptotic running time, it appears that we do worse by performing the
transformation and solving the transformed problem. If this were true, it would not be a satisfactory
demonstration of “interconvertibility.” In Sections 3.3 and 4.2, we examine this issue and show that
in fact the asymptotic run-time of the constructed problems is the same as the problems they were
constructed from.



A:=BC A production of a context free grammar

AV, Vi) An edge labelled A from node V; to node V;

c(Va,.., Ve) An atomic expression of arity r used in set constraints
X Dec(Vi,..., ;) A set constraint

X =>a A production of a regular tree grammar

Table 1: Notation used throughout this paper.

We assume that the reader is familiar with context-free grammars. In Section 2, we define
CFL-reachability and set-constraint problems, and describe dynamic-programming algorithms that
can be used to solve them. Section 2 also defines regular-tree grammars, which are used to give
finite presentations of solutions to set-constraint problems. In Section 3, we show how to express
CFL-reachability using set constraints, and discuss the running time of the dynamic programming
algorithm on the resulting problem. Finally, in Section 4, we discuss how to restate set-constraint
problems as CFL-reachability problems and again examine the running time of the dynamic pro-
gramming algorithm.

2 Background

To understand the interconvertibility result, it is necessary to have a grasp of the problem domains
that we are working with and the algorithms for solving these types of problems. (Table 1 summarizes
some of the notational conventions we will use in the paper.)

2.1 CFL-reachability

In this section, we define CFL-reachability and describe a dynamic-programming algorithm for solv-
ing CFL-reachability problems.

Definition 2.1 Let CF be a context-free grammar over alphabet I, and let G be a graph whose
edges are labelled with members of 2. Each path in G defines a word over ¥, namely, the word
obtained by concatenating, in order, the labels of the edges on the path. A path in G is an S-path
if its word is derived from the start symbol S of the grammar CF. We are interested in the most
general statement of the context-free-language reachability problem ( CFL-reachability problem). This
is the all-pairs S-path problem, which is to determine all pairs of vertices vy, vy such that there exists
an S-path in G from vy to ve. O

2.1.1 Solving CFL-reachability Problems

We now give a dynamic-programming algorithm for solving CFL-reachability problems. We are given
a graph G whose edges are labelled with terminal symbols from a context-free grammar. To find
the S-paths in this graph, we go through a process of “filling in” the graph with new edges, which
are labelled with non-terminal symbols. A new edge labelled A from node ¢ to node 7 indicates that
there is an A-path from node i to node j. (For the rest of the paper, we use the notation A(z,7j) to
represent an edge labelled A from node  to node j.) When this process is completed, there will be
an edge labelled S between any two nodes connected by an S-path. This idea is formalized in the
following algorithm:

Algorithm 2.1 (CFL-reachability Algorithm)

1. Normalize the grammar: In order for this process to work efficiently, we first convert the

grammar to a normal form?!. This can be done by introducing new non-terminal symbols.

Thus, a production such as A ::= a B C d might be converted into these productions:
A=A A
A :=aB
A w=Cd

1 The normal form we use is similar to Chomsky Normal Form.




This transformation can be done in time linear in the size of the grammar, and causes a linear
blowup in the size of the grammar. When the grammar is in normal form, each production will
have one of the forms 4 := M N, B := P, or C ::= ¢, where A, B, and C are nonterminals,
M, N, P are terminals or nonterminals, and ¢ represents the empty string.

. Create the initial worklist: Let W be a worklist of edges. Initialize W with all of the edges
in the original graph.

. Add edges for e-productions: The production A ::= ¢ indicates that there are cyclic A-

paths from each node ¢ to node 7 (i.e., there is an A-path wherever the empty path occurs).
Hence:

for each production of the form A = ¢ do
for each node 7 in the graph do
if the edge A(i,1) is not G then
add A(4,7) to G and to W
fi
od
od

. Add edges for other productions: To determine where to add other edges to the graph,
the current edges must be examined.

while W is not empty do
Select and remove an edge B({, j) from W

/* Step 4.1: look for productions of the form A ::= B (see Figure 1(b)) */
for each production of the form 4 ::= B do
if the edge A(z,j) is not in G then
add A(7,j) to G and to W

i
od
/* Step 4.2: look for productions of the form A ::= B C */
/* For each such production, for each edge C(j, k), add A(i, k) */
/* (see Figure 1(c)) */

for each production of the form A := B C do
for each outgoing edge C{j, k) from node j do
if the edge A(s, k) is not in G then
add A(i,k) to G and to W

fi
od
od
/* Step 4.3: look for productions of the form 4 ::= C' B */
/* For each such production, for each edge C(k, 1), add A(k, j) */
/* (see Figure 1(d)) */

for each production of the form A == C B do
for each incoming edge C(k, 1) into node i do
if the edge A(k,j) is not in G then
add A(k,j) to G and to W
fi
od
od
od
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Figure 1: Edge induction in the CFL-reachability Algorithm (Algorithm 2.1). The figures show how
a production of the context-free grammar causes that the algorithm to add, or induce, an edge in the
graph (dashed lines show induced edges): (a) from the production A ::= ¢; (b) from the production
A = B; (c) from a production A ::= B C; and (d) from a production 4 == C B.

O(IZ}) possible
edges per source.

O(n) possible
source nodes.

Figure 2: In a graph from a CFL-reachability problem, the number of edges into any given node
is bounded by |E|n, where ¥ is the alphabet of the grammar, and n is the number of nodes in the
graph. Similarly, the number of outgoing edges from any given node is bounded by |Z|n.

5. Return the set {(¢,7)|S(, j) € G}.

O

We now show that the running time of this algorithm is bounded by O(IE]3n3), where T is the
set of terminals and nonterminals in the normalized grammar, and 7 is the number of nodes in the
graph. The running time is dominated by the amount of work performed in steps 4.2 and 4.3. In
these steps, each edge added to the graph is potentially paired with each of its neighboring edges.
This is equivalent to saying that each pair of neighboring edges is considered; that is, for each node
4, each incoming edge A(i, j) is potentially paired with each outgoing edge B(j, k).

For any given node j, the number of incoming edges is bounded by |Z|n (see Figure 2). Similarly,
the number of outgoing edges from j is bounded by |E|n. This means that the total number of edge
pairings that j ever participates in is bounded by lEtznz‘ For any given edge pair B(z, j) and C(j, k),
the number of productions that may have “B C” as the body of the production is bounded by |l
Node j is one of n nodes; consequently the total amount of work performed during any run of the
algorithm is bounded by O(|zPn?).

For a fixed grammar, |Z| is constant, and therefore an all-pairs CFL-reachability problem can be
solved in time O(n®) (where the constant of proportionality is cubic in |Z}).




2.2 Set Constraints

In this section, we define the class of set constraints considered in this paper. (The material in this
section is a summary of work done by Heintze and Jaffar [4, 5, 6].)

2.2.1 Set Expressions and Set Constraints

In the class of set constraints we deal with, a set expression is either a set variable (denoted by V,
W, X, etc.) or has one of the following forms:

o ¢(Vi,...,V;). An expression of this form is called an atomic ezpression, and c is called a
constructor or a function symbol. When set constraints are used for program analysis, atomic
expressions are typically used to model data constructors of the language being analyzed (e.g.,
cons). All constructors have a fixed arity greater than or equal to zero. We will follow the
convention of abbreviating nullary constructors as ¢, rather than writing ¢().

° ci‘l(V). An expression of this form is called a projection. Projections are used to model
selection operators (such as car and cdr). The subscript of a projection indicates which field

of the corresponding constructor is selected.

In the class of problems we consider, all set constraints are of the form V' D sezp, where sezp is a
set expression.
The following example should clarify how set constraints can be used for program analysis:

Example 2.2 Suppose a program contains the following bindings:
x = cons(y,z)
w = cdr(x)

This would generate the constraints X 2 cons(Y,Z) and W D consy 1(X). In the second constraint,
the projection consy!(X) models cdr, asking for the second element of each cons value in X. O

2.2.2 Solutions to Set Constraints

A solution to a collection of set constraints is a mapping from set variables to sets of “values” such
that the constraints are satisfied. “Values” in this context are ground terms composed of constructors.
If we have a mapping Z from set variables to sets of values, then the mapping can be extended to
map set expressions to sets of values:

o Z(c(Vi,.. ., Vu)) = {c(v1,...,v)lut €Z(Vh), ..., ur € Z(V})}
e Z(c;7 (V) = {uile(v, ..., o) €Z(V)}

7 is said to satisfy a constraint X D sexp if Z(X) D Z(sexp). T is said to be a solution to a collection
of constraints if Z satisfies each of the constraints.

An issue of how to represent a solution to a collection of set constraints arises because a solution
may consist of an infinite set. Furthermore, a collection of set constraints may have multiple solutions.

Example 2.3 Consider the following constraints:

X Da
X 2 suce(X)

One solution to these constraints maps X to the infinite set {a, succ(a), suce(succ(a)),...}. Another
solution maps X to the infinite set {cons(a, a), succ(cons(a, a)),.. ., a, succ(a), suce(suce(a)), .. .}. O

We will always be interested in least solutions (under the subset ordering), e.g., the first of the two
solutions listed in the above example. Heintze formalizes this idea in [4].

The solution to a collection of set constraints can be written as a regular term grammar{3], which
is a formalism that allows certain infinite sets of terms to be represented in a finite manner. There are
standard algorithms for dealing with regular term grammars (e.g., for determining membership){3].



A regular term grammar consists of a finite, non-empty set of non-terminals, a set of function
symbols, and a finite set of productions. Each function symbol has a fixed arity. Productions
are of the form N => term where N is a non-terminal. A term is a non-terminal or of the form
c(termy, ..., term,), where c is a function symbol of arity 7. As with other grammars, a derivability
relation is defined. Given a production N = term, term, derives termg (term; = termaz) if terms
is obtained from term; by replacing an occurrence of N in term; with term. The reflexive, transitive
closure =>* is defined as usual.

The term grammar that describes the solution to Example 2.3 above has these productions:

X =a
X = suce(X)

2.2.3 Solving Set Constraints

The reader may notice that in Example 2.3 the set constraints X 2 a and X 2 suce{X) look very
similar to the productions X = a and X = succ(X) of the solution. Such constraints are said
to be in ezplicit form[4]: A constraint is in explicit form if it is of the form V' 2 c(Vi,..., Vo). A
collection of constraints in explicit form is converted to a term grammar by taking the variables to
be non-terminals and converting each 2 into =

For any collection of constraints C, we say that a variable X is ground if the least solution to
the constraints of C that are in explicit form does not map X to the empty set (i.e., X is mapped
to some ground term in the least solution). We say that c¢(Vi,...,V,) is ground if Vi ...V, are all
ground.

The algorithm for solving set constraints involves augmenting the collection of set constraints
with constraints in explicit form until no more can be added:

Algorithm 2.2 (SC-Reduction Algorithm) Given a collection of set constraints €, the following
steps are repeated until neither step causes C to change:

1.IEX Dct}(Y)and Y 2 ¢(Vh,...,V;) both appear in C and the expression ¢(Vy,...,V;) is
ground, then add the constraint X D V; to C, if it is not already there.

2. fX DY and Y D ¢(Vi,...,V,) both appear in C, and ¢(V4,...,V;) is ground, then add the
constraint X D ¢(V4,...,V;) to C, if it is not already there.

When C reaches a fixed point, the constraints in explicit form are converted to a regular term
grammar; this describes the least solution[4]. O

The SC-Reduction Algorithm never generates new atomic expressions; this means that when the
algorithm finishes, for a fixed variable Y, the number of constraints of the formY 2 ¢(Va,, Vay,y -+, Va,)
in C is bound by O(t). The total number of constraints in C of the form ¥ 2 c(Vayr Vagy -5 V)
is bounded by O(tv), where v is the number of variables. The total number of constraints in C of
the form Y D X is bounded by O(v?). Thus, the total number of times the first reduction step is
ever applied is bounded by O(vt), and the number of times the second step is applied is bounded by
O(v%t). In the worst case, v is proportional to O(t), and the total number of steps is bounded by
o(t3).

The SC-Reduction Algorithm can be made to run in time O(t3) by using a worklist:

1. Let W be a worklist of constraints. Initialize W to {z D a € C|a is a nullary constructor}.

2. Perform the reduction steps:

while W is not empty do
Select and remove a constraint X D sezp from W
if X D sexp is of the form X 2 ¢(Va,, Vay,-- -, Va,) then
for each constraint of the form Y 2 ¢/ ' (X) in C do
if Y D V,, is not in C then
Insert Y D V,, into C and W
fi




od
for each constraint of the form Y 2 X in C do
if Y 2 ¢(Vay, Vasy- .-, Va,) is not in C then
Insert Y 2 ¢(Vay, Vay, .., Va,.) into C and W
fi
od
else if X D sezp is of the form X DY then

for each constraint of the form Y 2 ¢(Va,, Va,, ..., Va,) in C such that ¢(Va,, Va,, .-

if X D c(Va,, Vag,y..-, Vo) is not in C then
Insert X D ¢(Vay, Vi, ---y Va,) into C and W
fi
od
fi
if X is not marked as ground then
mark X as ground

., Va,)is ground de

for each constraint of the form ¥ D ¢(...X ...) in the original collection of constraints do

if ¢(...X ...) is ground then
Insert Y De(...X...) into W
fi
od
for each constraint of the form Y 2 X in the original collection of constraints do
Insert Y O X into W
od

od

To make this run in time O(t), constant-time access is needed to certain subsets of C in different
parts of the algorithm; this can be achieved with a constant amount of overhead if the proper data
structures (e.g, matrices) are maintained for storing the subsets. Also, ground information need not
be propagated to generated constraints because generated constraints can only be created if their
right-hand sides are ground. This means that ground information need only be propagated to the
original constraints, of which there are only O(t). Therefore, propagating ground information takes
no more than time O(t), and the entire algorithm runs in time O(t%).

3 Transforming CFL-Reachability into Set-Constraint Problems

We now turn to the method for expressing a CFL-reachability problem as a set-constraint problem.
We first address how to encode the graph using set constraints. We then address how to encode the
productions of the context-free grammar. Finally, we examine the time needed to solve the resulting
collection of constraints.

3.1 Encoding the Graph

The construction is based on the idea of representing each node ¢ with one variable X; and one
nullary constructor node;. For each node i in the graph, we introduce a unique set variable X; and
a unique, nullary constructor node;. These are linked by constraints of the form

Xi Dnode;,fori=1...n

In essence, node; serves as a label identifying the node to which X; belongs.

We now need a way to associate a node with a set of edges to other nodes. (As in Section 2.1.1,
“edges” also means the A-edges that may be added to a graph to represent A-paths.) In the final
solution, an edge from node i to node j labelled A (where A is a terminal or nonterminal), is
represented by the fact that the term A(node;) is in the solution set for variable X;. In accordance
with this goal, we use constraints involving X; to indicate the set of targets of outgoing edges from
node 7, using unary constructors to encode the labels of edges. The argument to a constructor ¢ is
the target of an encoded c-edge. For example, if the initial graph contains an edge from node 7 to
node j with label a, then the initial collection of constraints includes



Rchd,,,
i Dstyy

Figure 3: Use of Dsty4 4 and Rchd[B;x,i] to encode production A ::= B C. The variable Rchd[B—x'i]

represents the set of nodes reached by following B-edges from i. The variable Dstj4 ;; represents the
set of nodes to which there should be an A-edge from node i.

Xi 2 a(Xj)
The set of constraints constructed in this manner completely encodes the initial graph.

3.2 Encoding the Productions

To encode the productions, we first convert the context-free grammar to the normal form discussed
in Section 2.1.1. Thus, we assume that the right-hand side of each production has no more than two
symbols. Now consider a production of the form A ::= B C, where A is a nonterminal, and B and
C are either nonterminals or terminals. This production indicates that there is an A-path from node
i to node k when there exists a node j such that there is an B-path from node ¢ to node j, and a
C-path from node j to node k.

Consider a fixed node i. To what nodes should node i have an A-edge (i.e., to what nodes is
there an A-path)? Let Dstj ;) be a unique set variable for holding the set of nodes that answer this
question. To specify that there is an A-edge from node i to the nodes in Dstj4 ;j, we generate the
constraint X; 2 A(Dstia i)

The production A ::= B C indicates that we should add an A-edge from node ¢ to any nodes
reached by following B edges from node i and then following C edges. We introduce another unique
variable RChd[B;‘,i] to hold the set of nodes reached by following B edges from node . In our
representation of the graph, edges are represented as constructors, and “following an edge” can be
encoded using projection: in particular, we generate the constraint RChd{B;‘,i] 2 Bl 1(X,-).

Finally, the set of nodes to which we want to add an A-edge from ¢ is found by following C edges
from the nodes in RChd[Bl—lyi], and so we generate the constraint Dsi{a i) 2 C'fl(Rchd[Bl-x‘i]).

All told, we generate three constraints to encode A == B C:

RChd[Bl—l,i] 2 BN (Xy) (Follow B edges from node 1)
Dstig 2 C;l(RChd[B;-l’i]) (Follow C edges from those nodes)
Xi D A(Dstya.91) (Add A edges to the reached nodes)

Figure 3 depicts the use of the set variables RChd[B;‘,i] and Dstj4 ;) in this encoding. These con-
straints encode the production A ::= B C, but only “locally” for node 1. Le., the solution to these
constraints will give the A-paths starting at node ¢ (assuming that the B-paths and C-paths are also
solved for). To find all A-paths in the graph, similar constraints are generate for all other nodes of
the graph..

We note that the set variables introduced to encode this production (i.e., Dst4 ;) and Rchd[ B! 'l.])
may also be used in encoding other productions. For example, to encode A == B D, we need to
generate only one new constraint: Dst i) 2 D;I(Rchd[Bl—l’i])u

The above discussion shows how to encode a production of the form A ::= B C. In a normalized
CFL grammar, productions may also have the form A == B and A ::= ¢. To encode a constraint of
the form A ::= B at node i, we generate the constraints X; D A(Dst[a i) and Dsta,) 2 ByH(X:).
To encode a constraint of the form A ::= €, we generate the constraint X; 2 A(Xj).




[ Constraint form

Constraint form

Produced Constraint

RChd[Al‘l,i] 2 A;l(.X,') Xi D A(Xj) Rchd{ =14 2 2X;

X; D A(Dstraq) Rchd[ ') ) Dst[A i]
Dstia; 2 By ' (Rehdig=r ) Rehdig-1 ;) 2 B(X;) Dstia 5 2 X

Rchd[c;- ] 2 D) B(DSt[B’j]) Dst[A ] 2 Dst[B 3l
Dsta ) 2 By (Xi) Xi 2 B(X;) Dstia 2 X;

X; 2 B(DSL‘[BJ]) Dstra i1 2 Dstip g
RChd[A;‘,i} 2 X; X; D node; Rchd; - e node]

X; 2 B(Xk) Rchd[ act, }DB(XA)

X; 2 B(Dst(p r) Rchd , Azt 2 B(Dstp k)
RChd[A;l’i] D Dstya g Dstia,q 2 B(X;) Rchd; , 4t ]D B(X;)

Dstra i 2 B(Dsts ) Rehd 41 12 B(Dstp,5)
Dstra s 2 Xj X; 2 node; Dst[A i 2 nodej

Xj 2 B(Xk) Dsta ) 2 B(Xk)

X; D B(Dstip,51) Dstja 2 B(Dstiz ;)
Dstrg 51 2 Dstp j) Dstig j; 2 C(Xk) Dstrg 5 2 C(Xk)

Dsyp j) 2 C(Dstic,j)) Dstia s 2 C(Dstic, )

Table 2: This table shows the possible matches between constraints that may occur from applying
the SC-Reduction Algorithm to the set of constraints produced for an encoding of a context-free
reachability problem.

This completes the construction of the set-constraint problem.

We claim that the solution to the set-constraint problem gives a solution to the original CFL-
reachability problem. More precisely, let G be the term grammar that results from solving the
set-constraint problem. Then there is an A-edge from node 7 to node j in the solution to the all-pairs
problem iff X; =* A(node;) under G.

This can be proven by contradiction. The form of the argument is as follows: if solving the CFL-~
reachability problem introduces an edge that the solution to the constructed set-constraint problem
misses, then there must be a first such edge. This leads to a contradiction. A similar argument
works in the other direction.

3.3 Analysis of the Running Time

In general, an all-pairs CFL-reachability problem can be solved in time O(n 3), where n is the number
of nodes in the graph. The class of set constraints considered can be solved in time O(t%) where
t is the number of constraints. However, for a set-constraint problem constructed from a CFL-
reachability problem, this does not yield a satisfactory time bound—at least from the standpoint of
showing that the two classes of problems are interconvertible: encoding the graph potentially creates
n constraints of the form X; D node; and e constraints of the form X; D a(.X;), where e is the
number of edges in the graph. Encoding the productions may create O{pn) constraints, where p is
the number of productions. Because e can be as large as n?, this would give an bound of O(n%) on
the running time to solve the set-constraint problem.

However, as we now show, a sharper analysis yields a better bound on the running time for the
constructed set-constraint problem. We argue that the set-constraint problem can be solved in the
same asymptotic time as the original CFL-reachability problem (i.e., O(n®)). The initial constraints
in a set-constraint problem constructed from a CFL-reachability problem must be in one of the
following forms:

Rchd{B_ 72 B1 (Xi) (Follow B-edges from node 7; used to encode A := B C)

Dstian 2 Cr (RChd[B;‘,i]) (Follow C-edges from those nodes; used to encode A ::= B C)

Xi D A(Dstjaq) (Add A-edges to the reached nodes; used to encode A ::= B C and A = B)
Dstia5 2 B (X:) (Follow B-edges from X;; used to encode A ::= B)
Xi 2 node; (Encode X; as representing node 1)
Xi 2 A(Xj;) (Encode an A edge from i to j)



Constraint form Num. of Matching constraint form Num. of Totals
possible possible
constraints matching

constraints

Rehdjg=n ) 2 ATH(X) sn X D A(X;) n sn?

X; D A(Dsta i) 1 sn

Dstrai 2 Bl'l(Rchd[Cl-xyi]) s3n Rehdg-1 4 2 B(X;) n s3n?

Rchd(c;.x,i] 2 B(Dstp 3) n s3n?
Dstia,1 2 BT (X:) s°n X; D B(X;) n s2n?
X; D B(Dstip 1) 1 s2n
Rehdiy-1 4 2 Xj sn* X; D node; 1 sn*
X; 2 B(Xk) sn s%n
X; 2 B(Dstip k) sn sn3
RChd[A;‘,z‘] D Dstia 4 sM Dstia,n 2 B(X;) sn 5°n?
Dstra ;1 2 B(Dstig j1) sn s2n?
Dstia 5 2 X; sn- X; 2 node; 1 snt
X; 2 B(Xk) sn s?n3
X; D B(Dsti ;1) s s2n?
Dstra,i 2 Dstip ;) s?n® Dstp ;1 2 C(Xk) sn s°n?
Dstig i1 2 C{Dstic 1)) s s3n?

Table 3: Cost of the steps performed in solving a set-constraint problem that encodes a context-free
reachability problem, where n is the number of nodes in the graph, and s is the size of the alphabet
used by the context-free grammar. Column 1 and column 3 show a pair of constraints that the
SC-Reduction Algorithm will reduce. Column 2 shows how many constraints of the form given in
column 1 may occur. Column 4 shows how many constraints of the form in column 3 may pair with
a given constraint of the form in column 1. Column 5 shows how many pairings may occur between
constraints of the forms given in columns 1 and 3.

Following the rules of the SC-Reduction Algorithm, these constraints will give rise to constraints of
the following forms:

RChd[A;-l’i] 2 XJ
RChd[Arl,i] 2 DSt[A,i]
Rehdigo 5 2 B(X;)
RChd[C;—I,i] 2 B(Dst[B,J])
Dstian 2 X

DSt[A’,'} _D_ DSt[B,j]
Dstip 51 2 C(Xk)
Dstip,j) 2 C(Dstc,j))

The reductions that may take place are summarized in Table 2. Table 3 summarizes the cost of the
work performed. Overall, the dominant term is s3n2, where s = |Z| is the size of the grammar’s
alphabet. Since s is a constant independent of the input, this gives a bound on the running time of

0(n).

4 Solving Set Constraints Using CFL-reachability
4.1 Encoding Set Constraints as Graphs

4.1.1 The Idea Behind the Construction

We now turn to the problem of encoding set-constraint problems as CFL-reachability problems. The
basic technique is a modification of work done by Reps in using CFL-reachability to do shape analysis
[12). In essence, our encoding involves simulating the steps of the SC-Reduction Algorithm with the
productions of a reachability problem. In the following example, we show how the SC-Reduction

10




Id Id

QK\Q .K\.

v, v, V, cons(V,V,)

vV, oV Viocons(V, V,)

cons,

cons, cons,
ed™ e e ° ®
v, v, v, v, Vv,
V,2cons( V,, V,) V,2cons;(V,)

Figure 4: Edges inserted in the constructed graph to model constraints.

Algorithm computes what atomic expressions reach each set variable and consider how this can be
simulated with a CFL-reachability problem:

Example 4.1 Consider the following constraints:
e V12a
e V320V
o V3 D cons(V1,V3)
e V4D COTlS;l(Vg)

The SC-Reduction Algorithm reduces the constraints Vi 2 a and V2 2 V; by adding the constraint
Vs D a, which indicates that the atomic expression a reaches V5. This will be simulated in the CFL-
reachability problem by nodes for a, V4, and Va2, together with edges Id(a, V1) and Id(V1, V2). The
counterpart of the reduction step is reachability in the graph: the path made of edges Id{a, V1) and
1d(Vy, V»), together with the production “Id ::= Id Id”, yields an edge Id{a,V2). Just as the SC-
Reduction Algorithm outputs the regular-term grammar production Va2 = a because of the constraint
Vs D a, we output the regular-term grammar production V; = a because of the edge Id(a, Va).

The SC-Reduction Algorithm also reduces the constraints V3 2 cons(V;, V) and V4 D consy ! (V)
by adding the constraint V4 D V2. In the CFL-reachability problem, this will (roughly) be simulated
by the edges consz(Va, V3) and consz‘l(Vg, V4) and the production “Id ::= conss consgl”‘ This
yields the edge Id(Va, V4), which models the constraint V4 2 V2. O

With this intuition in mind, we make our first attempt to construct a CFL-reachability problem
that will give the solution to a set-constraint problem. (For now, we ignore the clauses about ground
expressions in the SC-Reduction Algorithm. Section 4.1.2 covers the modifications needed to account
for ground expressions.)

The CFL-reachability framework uses a graph and context-free grammar and finds paths in the
graph. We want to use this framework to find what atomic expressions reach each set variable; we
construct a graph containing a node for each atomic expression and each set variable. This graph
will contain edges that encode the set constraints. We construct a context-free grammar such that
the CFL-reachability Algorithm will find identity paths from nodes representing atomic expressions
to nodes representing set variables.

The solution to the set-constraint problem (in the form of a regular term grammar) is obtained
from the reachability relations that hold in the graph. If node a represents an atomic expression,
node V represents a variable, and there is an identity path from a to V, then the production V = a
is in the regular term grammar.

More precisely, the graph is constructed as follows:
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Figure 6: The graph for Example 4.1 after the All-
pairs CFL-reachability algorithm has been run.
Dashed lines represent edges inserted by the al-
gorithm.

o For each set variable V;, the graph contains a node labelled V;.

o For each atomic expression cons(Vi,

labelled cons(V;, V;).

V;) used in the constraints, the graph contains a node

o For each constraint of the form V; D V;, the graph contains an edge /d(V}, V,) An edge labelled
Id indicates an identity path in the graph. An identity path from node j to node 7 indicates
that the values that reach node j also reach node 7. (See Figure 4(a).)

o For each constraint of the form Vi D cons(V;, V;), the graph contains an edge Id(cons(V;,

Vj)’ Vk}'

This indicates that the atomic expression cons(V;, V;) reaches Vi. (See Figure 4(b).)

o For each constraint of the form Vi 2 cons(Vi,V;

and consa(Vj, Vi).

.), the graph contains the edges consi(Vi, Vi)

An edge consm<V,, Vi) 1nd1cates that the values that reach node ¢ are

wrapped in the m?® position of a cons value at node k. (See Figure 4(c).)

e For each constramt of the form Vi D consy !(V;), the graph contains an edge consj NV, V).
An edge consy (VJ , Vi) indicates that values at node i are taken from the k** position of cons

values at node j. (See Figure 4(d).)

Figure 5 shows the graph that is constructed to represent the set constraints of Example 4.1.
Productions are introduced in the context-free grammar to encode the simplification steps of the

SC-Reduction Algorithm. The first reduction step of the SC-Reduction Algorithm is encoded via

productions that indicate the fact that values can pass through cons values by being wrapped in a

cons and then unwrapped by a projection:

e Id ::= consy Id consfl
o Id ::= cons, Id cons;1
o Id = ¢

In Example 4.1, the SC-Reduction Algorithm adds the constraint V4 D V5 because of the constraints
Vaz D cons(Vi, Vg) and V4 D consy *(Vs). Similarly, in the constructed graph, the CFL-reachability
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Figure 7: The edge Id(V;, Vs) should be induced if and only if cons(V1,V2) is ground. If the edge
Id(Vy, Vs) is added when cons(Vy, V) is not ground, it may incorrectly cause the edge Id{a, V5) to
be added, and the production Vs = a to be output.

algorithm adds the edge Id(V5, Va) because of the edges consz(Va, Va), 1d(V3, V3), and consy 1 (Vs, Va)
(see Figure 6). (Id(Vs, V3) is added to the graph because of production Id ::= €)

To encode the second reduction step of the SC-Reduction Algorithm, the following production is
pub in the context-free grammar:

o Jd :=1Id Id

In Example 4.1, the SC-Reduction Algorithm adds the constraint V2 2 a because of the constraints
Vo D V; and V5 D a. Similarly, the CFL-reachability algorithm adds the edge Id(a, V3) because of
the edges Id(a, V) and Id(Vi, V3) (see Figure 6).

Figure 6 shows the graph constructed from Example 4.1 after the All-pairs CFL-reachability
algorithm is run. The term-grammar that is the solution to the set-constraint problem can be
obtained from this graph by examining Id edges from nodes representing atomic expressions. Thus,
the edges Id{(a, V1), Id(a, V), and Id(a, V4) indicate that the atomic expression a reaches set variables
Vi, Vs, and Vi; this indicates that the regular term-grammar that is a solution to the set constraints
should contain the following productions:

e Vi=a
e Vo=>a
e Vy=a

The edge Id{cons(Vi, V=), V3) indicates that the following production should be in the regular term
grammar:

e Vi = cons(V1, V)

4.1.2 Accounting for Ground Expressions

For any given set-constraint problem, the construction of Section 4.1.1 does yield a term grammar
that describes a solution to the problem. However, this term grammar does not necessarily describe
the least solution. The problem is that a production of the form Id ::= cons; Id consy! allows
identity paths though cons expressions that are not ground. This is at odds with the simplification
steps of the SC-Reduction Algorithm.

Example 4.2 Let C be a collection of constraints. Suppose that C is a superset of the following
constraints:

13



Vi2a
Va D cons(Vy, Va)
Va2 Vs
Vs D consyt(Va)

In the least solution to C, V5 may or may not be ground. If V2 is ground, then cons(Vy, Va) is grbund
(since V; must be ground because of the constraint Vi 2 a), and the SC-Reduction Algorithm would
perform the following steps:

o Add the constraint V4 D cons(Vy, Va) (because of constraints V3 2 cons(V1,V2) and Vi D V3).

o Add the constraint Vs D Vi (because of the new constraint V4 2 cons(V, Va) and the constraint
Vs D consTH(Va)).

o Add the constraint Vs D a (because of the new constraint V5 2 V1 and the constraint V3 2 a).

Output the production Vs = a (because of the new constraint V5 2 a).

If V> ultimately is not ground, then the expression cons(Vy, V2) is not ground, and the SC-Reduction
Algorithm does not perform the first two of these steps and might not generate the production
Vs = a. The SC-Reduction Algorithm may still generate Vs => a as a result of reducing other
constraints in C; but it would not generate Vs = a as a result of reducing the few constraints
discussed above.

Figure 7 shows a fragment of the graph created to represent these constraints by the construction
from Section 4.1.1. The CFL-reachability algorithm will add the edge Id(Vi,Vs) to this graph
regardless of whether or not the expression cons(V1, V2) is ground. This is because of the production
Id ::= cons; Id consl"1 and the edges consy(Vy, V3), Id(Vs, Vy), and consl‘l(V4, V5). Adding edge
[d{Vy, Vs) when the expression cons(Vi,Va) is not ground may lead to a non-minimal solution. In
the remainder of the section, we give a modified construction of set constraints to CFL-reachability
problems. With the modified construction, the edge Id(Vy,Vs) would be added if and only if the
expression cons(Vi, Vs) is ground. O

We now give a modified construction in which the production Id ::= cons; Id consl‘1 is replaced
with productions that capture the groundness conditions. To do this we need a technique for tracking
additional boolean information about set variables. (For example we need to keep track whether
or not a set variable is ground.) In the constructed CFL-reachability problem, set variables are
represented by nodes, and we will use cyclic edges to mark boolean information: the value of a
boolean property of a variable will be indicated by the presence or absence of a cyclic edge at a node.
Some of these cyclic edges are generated during the construction of the graph; others are induced by
the CFL-reachability Algorithm. The graph and context-free grammar must be constructed properly
for this to happen.

We now illustrate the major elements of the construction by means of Example 4.2. In Exam-
ple 4.2, we want the graph to contain the cyclic edge MarkVy GrAtVs(Vs, V3) (“Mark V) ground at
V4”) if and only if V; is ground. Similarly, we want the cyclic edge MarkVs GrAtVs(Vs, Vs) if and only
if V4 is ground. In place of the production Id ::= cons; Id consy ', we use the following production:

Id ::= cons, MarkVy GrAtVs MarkV,GrAtVs Id cons'l‘1

With this production, the CFL-reachability Algorithm will add the edge [d(V1, V) if and only if
the edges MarkV; GrAtVa(Va, Va) and MarkVs GrAtV3(Vs, V3) exist (i.e., if and only if V3 and Vo are
ground). See Figure 8(c). In essence, these productions transfer knowledge about groundness at V1
and V5 to knowledge about groundness (of Vi and V3) at V3.

We need still more edges and productions to ensure that the CFL-reachability Algorithm will
induce the edges MarkV, GrAtVa(Vs, Va) and MarkVs GrAtVs(Vs, Va) when appropriate. In particular,
we introduce a new kind of edge label, “Ground”, which will be used to indicate that a variable is
ground: edge Ground(V;, V;) indicates that variable V; is known to be ground. In Figure 7, the edges
Ground{Vy, Vi) and Ground(Vs, Vs) will be added to the graph if and only if V; and V3 are ground,
respectively.
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We also introduce the following edges during construction of the original graph:
EdgeVatoVy(Va, V1), EdgeVyitoVa(Vi, V), EdgeVztoVa(Vs, Vi), and EdgeVatoVs(Va, Va). These edges
simply connect nodes Vi, V5, and Vs, and allow us to introduce the following productions:

MarkV; GrAtVa .:= EdgeVatoV; Ground EdgeV:tols
MarkV; GrAtVa = EdgeVatoVs Ground EdgeV)toVs

With these productions and the edges used in them, the CFL-reachability Algorithm will induce the
edges MarkV; GrAtVa(Vs, Vs) and MarkVy GrAtVa(Va, Vs) iff the respective edges Ground(V;, V1) and
Ground(Va, Va) exist. See Figure 8(a-b).

We now show how to modify the graph and the productions to deal with Ground edges. Some
Ground edges are generated when constructing the graph. In particular, for every constraint of the
form V; D a, we generate the edge Ground(V;,V;), because a nullary constructor is always ground.

Other Ground edges are induced during the running of the CFL-reachability Algorithm. In
Example 4.2, the variable V3 is ground if V; and V, are both ground. This is captured by the
following production:

Ground = MarkV, GrAtVs MarkV, GrAtVs

With this production, the CFL-reachability Algorithm will add the edge Ground(V3, Va) if and only
if the edges MarkVy GrAtVs(Vs, Va) and MarkVs GrAtVs(Vs, V3) are both in the graph.

There is one last situation we must take into account: Suppose that in Example 4.2 the set variable
Vs is known to be ground, and consider the constraint V4 2 V3; this implies that the variable Vj is also
ground. In the graph constructed for this situation, we have the edges Ground(V3, V) and Id(V3, Va),
and we want the edge Ground(Va, Vy) to be added. In effect, we want the Ground information at Va
to be propagated along the Id edge. To accomplish this, we introduce the edges Rev_Id(Vy, V3) and
EdgeVytoVy(Va, Va), and the following production:

Ground := EdgeVitoVy Rev_Id Ground Id EdgeVitoVy

With this production, the CFL-reachability Algorithm will add the edge Ground(4,4) to the graph
(see Figure 9).

There is one more issue that is not well illustrated in Example 4.2. In order to propagate ground
information along an Id edge, we need a corresponding Rev_Id edge. That is, for any edge Id(V;, V)
in the graph, we need an edge Rev_Id(Vj, Vi) in the reverse direction. We now show how these
Rev_Id edges are created. Recall that some Id edges are induced by the CF1L-reachability Algorithm.
If the CFL-reachability Algorithm induces an edge Id(V;,V;), then we want it to induce an edge
Rev_Id(V;, V;). To have this happen without changing the CFL-reachability Algorithm, we need to
add more productions to the grammar. For example, the following production indicates that the
CFL-reachability Algorithm should induce an Id edge (assuming an appropriate path exists in the

graph):
Id ::= cons, MarkVy GrAtVs MarkVa GrAtVs Id consl'1

Consequently, we need an equivalent “reverse” production to indicate that the corresponding Rev_Id
edge should be induced:

Rev.Id ::= Rev_cons;1 Rev.Id MarkVo, GrAtVs MarkV, GrAtVs Rev.cons

Figure 10 illustrates the use of this reverse production.

For this production to work, we need additional reverse edges: For every edge consy(V;, V) in
the graph, we want the edge Rev_consi(Vj,V;) to be in the graph; for every edge consl'l(V;, Vi), we
want the edge Rev_consT (V;, Vi) to be in the graph. Fortunately, these reverse edges can be added
when we construct the graph. They do not require the introduction of new productions. Notice also
that an edge like MarkV, GrAtVa is always cyclic. Hence, it can serve as its own reverse edge and so
we do not need an edge labelled Rev_-MarkV,GrAiVs.

15



Ground Ground Ground Ground
>0V, ey,
; 3
g %, |
ERGAL N
MarkV,GrAtV,: . \ —J MarkV,GrAtV,
1d
v ¥
, V, . V4
cons, cons;
v v
eV, eV,
(a) (b)
Ground Ground
N S |
% 4
/t
Legend

LAA

(c)

- » Non-path edge
m——3p  Path edge
mm = New edge (from path)

Figure 8: Use of Ground edges in producing Id edges.

4.1.3 Summary of the construction

Above, we presented the concepts of the construction in terms of a specific example. In this section,
we present it for an arbitrary set-constraint problem. In general, the CFL-reachability problem—
which consists of a graph and a context-free grammar—is constructed as follows:

1. For each set variable V;, the graph contains a node named V;, and a uniquely labelled edge
EdgeV;toVi(Vi, Vi). The context-free grammar contains the production

Ground ::= EdgeV;toV; Rev.Ild Ground Id EdgeV;toV;.
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Figure 10: The production Rev.Id ::= Rev. cons; Rev_Id MarkVeGrAtVs MarkV, GrAtVs Rev.consy
causes the CFL- reachabxhty Algorlthm to produce Rev.Id edges. (This production 1s the counterpart
of the production Id ::= cons; MarkV,GrAtVs MarkV, GrAtVs Id cons] )

2. For each atomic expression ¢( V4, Va,,-- ., Va,) used in the set constraints the graph contains
a node named ¢(Va,, Vas, .-, Va,).

3. For each constraint of the form Vi D V;, the graph contains edges [d(V;, V;) and Rev_Id(V;, V).

4. For each constraint of the form V,, 2 ¢(Va,, Vas,.-., Va,), the graph contains an edge
1d{c(Va,, Vas,---» Va, ), a0). This edge indicates that the value ¢(Va,, Vo, ..., Va,) reaches
the variable V,,. For each position j of the atomic expression (c(Va,, Vas, .-, Va,)) used in

this constraint (where j = 1...r), the graph contains the following edges:
(a) ¢;{(Va; Vao)

(b) Rev-ej(Va,, Va;)

(c) EdgeVe;toVae(Va;, Vao)

(d) EdgeVa,toVa;{Vay, Va;)

For each position j of the atomic expression in this constraint, the context-free grammar
contains the following productions:

(a) MarkV,, GrAtVy, = EdgeVo,toVe; Ground EdgeVy;toVa,

(b) Id == ¢; MarkVa1 GrAtV,, MarkV,, GrAtVy, ... MarkV, GrAtV,, Id cJ’-'l
(c) Rev.Id ::= Rev.c; Rev.Id MarkV, GrAtV,,...MarkV, GrAtV,, Rev.c;
(d) Ground ::= MarkV,, GrAtV,, MarkV,, GrAtVy, ... MarkV, GrAtV,,

5. For each constraint of the form V; D ¢; ! (V;), the graph contains an edge cp 1V, Vi),
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4.2 Cost of Solving the Constructed CFL-reachability problem

A CFL-reachability problem can be solved in time O(|=|’n3), where n is the number of nodes in the
graph and ¥ is the alphabet of the grammar. Ordinarily, || is considered to be a constant and is
ignored; however, in a constructed CFL-reachability problem, |Z| is O(t), where ¢ is the number of
constraints and the constant of proportionality depends on the maximum arity of the constructors.
Since n is also O(t), this gives us a bound on the running time to solve the context-free reachability
problem of O(t%), which is worse than the bound of O(t®) of the SC-Reduction Algorithm.

However, a closer examination of the CFL-reachability Algorithm shows that the worst-case time
bound is not realized on constructed CFL-reachability problems. We will focus our analysis on step
4 of the CFL-reachability Algorithm (Algorithm 2.1). In this step, the algorithm processes each edge
that appears in the (final) graph. For each edge, it examines the productions in which that edge’s
label appears on the right-hand side, and attempts to add edges to the graph when it can complete
the right-hand side of a production by matching the edge with neighboring edges in the graph. Recall
that the CFL-reachability Algorithm will not add an edge to the graph if the edge already exists.

We show that for each type of label used in the graph, the number of edges with a label of
that type is bounded by O(t2) (this gives an upper bound on the number of edges that the CFL-
reachability Algorithm must examine). Also, for any given edge B(i,j) in a constructed graph, the
amount of work performed can be broken down into two categories:

1. The number of productions examined by the Algorithm: for a given edge B(, j), this is the
number of productions in which B appears on the right-hand side of the production. In a
constructed CFL-reachability problem, this is bounded by O(t).

2. The number of edges that the CFL-reachability Algorithm attempts to add to the graph: in
a constructed CFL-reachability problem, this is bounded by O(t) over all of the productions
examined when processing a given edge B(i, j).

Thus, the total amount of work performed by the CFL-reachability Algorithm on a constructed
problem is O(t2) * (O(t) + O(t)) = O(#%).

We start by showing how a constructed grammar can be normalized in Section 4.2.1. In Sec-
tion 4.2.2, we present Table 4 which summarizes all of the different types of edge labels that may
be used in a constructed CFL-reachability problem, including those introduced by the normalization
of the grammar. For every given type of edge label, Table 4 also shows a bound on the number of
edges with a label of that type, and a bound on the number of steps the CFL-reachability Algorithm
performs on any given edge with a label of that type.

Throughout the rest of the section, we use v to refer to the number of variables in the set
constraint problem, t to refer to the number of constraints, n to refer the number of nodes in the
graph (n = v +1), and r to refer to the maximum arity of a constructor.

4.2.1 Normalization of a constructed grammar

We start by converting the productions of the grammar to normal form. Consider the following
prototypical production:

Ground ::= EdgeV;toV; Revld Ground Id EdgeVjtoV;

There are v productions of this form, one for each node V;. To normalize the production, we introduce
several new non-terminals and productions to replace the original production:

Ground = EdgeVjtoV; G-EdgeV;toV;
G-EdgeVitoV; == G EdgeV;jtoV;
G u= Revid Ground-Id

Ground-Id Ground Id

Figure 11 depicts this normalization. Note that edges labelled Id and Rev_Id may be ubiquitous;
they may occur anywhere in the graph. This means that the CFL-reachability Algorithm may use the
above productions and put edges labelled Ground-Id and G anywhere in the graph. However, for any
given V;, there is only one edge labelled EdgeV;toV; in the graph; this is the edge EdgeV;toV;(V;, V;).
This means that for a fixed V;, if the CFL-reachability Algorithm adds an edge G-EdgeV;toV;(Vi, Vi),

18




Ground ::=EdgeVtoV, Rev_Id Ground ld EdgeVioV,

L__\/._J

v
Rev_Ild Ground-Id

[\ — .
v
G EdgeVioV,
v (- _
EdgeVioV, G-EdgeVioV,
— -
Ground
Figure 11: Normalization of the production

Ground ::= EdgeV;jtoV; Revld Ground Id EdgeVjtoV;.

MarkVGrAtV, = EdgeVioV, Ground EdgeVioV,
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Figure 12: Normalization of the production
MarkV; GrAtV; .= EdgeV;toV; Ground EdgeVitoV;.

then it must use EdgeV;toV;{V;,V;) to do so, and k = j. That is, all edges labelled G-EdgeV;toV;
must have node V; as their destination, although they may have any node as their source. This in
turn implies that for a fixed node V;, the number of incoming edges of the form G-EdgeV;toV;(V;, Vi)
is bounded by O(n), and the number of outgoing edges of the form G-EdgeVi toVi(V;, Vi) is bounded
by O(n). Also, of all the edges G-EdgeV;toV;(V;,V;), only one—G-EdgeV;toV;(V;, Vj)—can be
combined with EdgeV;toV;(V;,V;) to generate Ground(V;, V;).

Now we consider the following prototypical production:

MarkV; GrAtV; ::= EdgeV;toV; Ground EdgeV;toV;

There are O(tr) productions of this form, one for each position of each atomic expression used in
each constraint. It is normalized to the following productions:
MarkV; GrAtV; = EdgeV;toV; Ground-EdgeV;toV;
Ground-EdgeV;toV; = Ground EdgeV;toV;

This normalization is shown in Figure 12. Ground edges are always cyclic, and for fixed 7 and j
there is only one edge labelled EdgeV;toV;. This means that for fixed ¢ and j, the CFL-reachability
Algorithm will introduce at most one edge labelled Ground-EdgeV;toVj. Also, the Algorithm will
introduce at most one edge labelled MarkV; GrAtV;, and this edge is cyclic.

Finally, productions having the following form must also be normalized:

Id = ¢; MarkV,, GrAtV,, MarkV,,GrAtVy, MarkVy, GrAtV,, ... MarkV, GrAtV,, Id ci"l

This normalization is shown in Figure 13. This production is used to encode the second reduction
step of the SC-Reduction Algorithm for a constraint of the form Vi 2 ¢(Va,, Vas, .-+, Va,). The
string

MarkV,, GrAtV,, MarkV,, GrAtVq, MarkV,, GrAtV,, ... MarkVy, GrAiVg,

in the right-hand side of this production is takes into account whether or not the atomic expression
¢(Vay, Vas, -, Va,)is ground. Thus, when we introduce non terminals to normalize this part of the
production, we must make sure that they are unique for the constraint; otherwise, confusion may
occur with labels representing atomic expressions in other constraints. To this end, we assume that
each constraint has been assigned a unique index. In the following productions, the superscript (k)
on the introduced non terminals refers to the index of the constraint that is encoded by the above
production. The following productions are introduced:

Id o= ci-MarkVy, -V, GrAtVE) 1d-¢7?
ci-MarkVy, Vo, GrAtVEE) = ¢; MarkV,, -V, GrAtv
la'»ci~l = Id c{'l
MarkVy, Ve, GrAtVSE) .= MarkV,, GrAtV,, MarkV,, GrAtV,,
MarkV,, Ve, GrAtVSE) = MarkV,, Ve, GrAtVSY)  MarkVs GrAtVy
MarkVy, Vo, GrAtVEE) = MarkVi, -Va,_, GrAtVSY  MarkV,, GrAtV,,
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MarkV, -V, GrAtV MarkV,GrAtV,, : Id-c!

— _/
——

MarkV,-V,GrAtV}

Id = ¢, MarkV,GrAtV, MarkV,GrAtV, MarkV,GrAtV, ... MarkV,GrAtv, Id ¢,
R —— -/ . :

v

: MarkV,-V, GrAtV# MarkV, GrAtV,
v — v
o MarkV,-V, GrAtV®
— _J
c-MarkV,-V,GrAtV® ld-c;'
— o

Id
Figure 13: Normalization of the production Id ::= ¢; MarkV,, GrAtV,, MarkV,, GrAtV,, ... MarkV,, GrAtVs,

We can use the non-terminal MarkVy, -V, Gr,/lﬂ/'a(;c ) introduced here to normalize other productions
associated with the constraint Vs, 2 ¢(Vay, Vag, - -+, Va,). For example, the production

Rev_ ld = Rev.c;‘1 Rev_Id MarkV,, GrAtV,, ... MarkVy, GrAtV,, Rev.c

is normalized to the following productions:

Rev.ld == Rev.cr'-Rev.ld MarkV,,-Va, GrAtVS -Rev.c;
Rev.c;'-Rev.ld == Revc;' Rev.ld
MarkVy, Vs, GrAtVE) .Rev.e; = MarkV,, Ve, GrAtVsl Reve

—

This works because MarkV,, -V, Gr’rAtVa(’,c ) is cyclic; it is its own reverse edge. We can also normalize
the production

Ground ::= MarkV,, GrAtV,, ... MarkV, GrAtVe,

to the following production:

Ground = MarkV,, -V, GrAtVa(f)

With these normalized productions, the CFL-reachability Algorithm will add at most O(tr) edges

with labels of the form MarkV,, -V, GrAtVa(f) (O(r) edges for each of O(t) productions). All of
these edges will be cyclic. The number of edges with labels of the form ¢, ¢;'t, Reve;, or Reve] lis
bounded by O(tr) (these edges are introduced when constructing the original graph). This means that
the number of edges with a label of the form ¢;-MarkVy, -Va, GrAtVa(ff Vor MarkVy, -Va, G’rAtVa(éc ).Rev_ciis
bounded by O(¢r). Also, the number of edges with a label of the form Id—ci‘1 or Rev.ci_l-Rev-Id is

bounded by O(nt).
4.2.2 Counting steps

Table 4 lists the various forms of labels that may appear in a constructed graph. For each form
of label, it gives a bound on the number of edges with a label of that form (column 2), and shows
the productions in which a label of that form appears on the right-hand side (column 3). Also, for
each kind of label, Table 4 shows how many productions the CFL-reachability Algorithm may use
with a given edge with that kind of label (column 4), and how many new edges the CFL-reachability
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Algorithm may attempt to produce as a result of examining that edge (column 5). (The latter is the
total for all the productions the CFL-reachability Algorithm will examine.)

For example, consider the edge label Id. There may be O(n?) edges labelled Id in the graph.
When the CFL-reachability Algorithm takes a given edge of the form /d(V}, Vi) from its worklist, it
could potentially examine O(tr) productions of the form I/d-c;'* := Id ¢f ', in which Id appears on
the right-hand side. There is one production of this form for every position of every different kind of
constructor used in the set-constraint problem. When the algorithm considers one of these produc-
tions, it will look for an edge of the form ¢; Vi, Vm), in an attempt to add the edge Id-c; XV, Vin).
However, edges of the form ¢] *(Vi, Vi) are introduced in the graph to encode projection constraints;
this means that their number is bounded by O(t). Thus for all of the O(tr) productions of the form
Id-c;? = Id ¢!, the CFL-reachability Algorithm will find no more than O(t) matching edges of
the form ci"l(Vk, Vin), and so it will add no more than O(t) new edges as a result of processing any
given edge of the form Id(V;, Vi).

The accounting is more straightforward in most other cases. Table 4 summarizes the results. A
bound on the amount of work performed is found by summing column 4 and column 5 and then
multiplying by column 2. Since r is constant, and v and n are in the worst case proportional to ¢,
the total running time of the algorithm is bounded by O(#?).

5 Concluding Remarks

The techniques described in this paper can be extended to apply to the class of set constraints used
by Heintze to do set-based analysis of ML programs [5]. This class of set constraints is effectively
a superset of the class of set constraints used in this paper. In particular, Heintze extends the
set constraints to handle A-terms and function applications. These can be modelled in the CFL-
reachability framework using techniques that are similar to those used in tracking ground information
in the construction given in this paper. The techniques might also be used to do slicing of higher-order
functional languages.

It is also interesting to note an old result about CFL-reachability: every CFL-reachability problem
can be stated as a chain program in DATALOG(14]; edges are represented as facts, and productions
are encoded as Horn clauses. In fact, the CFL-reachability Algorithm presented here in effect em-
ulates semi-naive bottom-up evaluation of the equivalent DATALOG program. This suggests that
the class of DATALOG programs that run in cubic time may be useful for program analysis (see also
[10]). Many parts of a constructed CFL-reachability problem are more easily expressed in a DATA-
LOG program. In particular, the addition of reverse edges, and the tracking of ground information
is easy to express. The program would not necessarily be a chain program, but it would still run in
cubic time. Of course, this result also implies that set-constraints may be solved using an equivalent
DATALOG program.
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