E W B REOBEHNERDEEESEEREEEEER

EEEEHHEEEBEEEEEEEHQEEEEEEEEENWW%EEEQEEEEBEEEEE&EEE

BTA Termination Using CFL-Reachability

Manuvir Das
Thomas Reps

Technical Report #1329

November 1996

UNIVERSITY OF

M A D1 S O

BTA Termination Using CFL-Reachability

Manuvir Das Thomas Reps

University of Wisconsin-Madison

Abstract

In this paper, we develop a BTA algorithm that ensures termination of off-line partial evaluation
for first-order functional programs, extending the work of Holst and of Glenstrup and Jones. Holst’s
characterization of in-situ-decreasing behaviour does not account for parameters that do not control
the recursion of their functions. We extend Holst’s framework to handle this phenomenon by defining
the "influential” property for parameters. Glenstrup and Jones’s algorithm for identifying in-situ-
decreasing parameters, which relies on the size markings (t, 4, =) on the edges of a dependence graph,
says that a path must be free of 1 edges and must contain at least one | edge to be size-decreasing. We
extend their language of size-decreasing paths: A size-decreasing path may contain t edges provided
that every 1 edge is balanced by the appropriate kind of | edge. We modify the size markings on the
graph edges and use Context-Free-Language Reachability, a generalized form of graph reachability, to
identify such complex size-decreasing paths.

Keywords: partial evaluation, binding-time analysis, termination, context-free-language reachability

Manuvir Das , Thomas Reps

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton St.

Madison, WI 53706, USA
manuvir@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton St.

Madison, W1 53706, USA
reps@cs. wisc.edu

Tel: 1 (608) 262-2091

Fax: 1 (608) 262-9777

1 Introduction

This paper concerns the definition of binding-time analyses that ensure termination of off-line partial
evaluation of functional programs. The role of a binding-time analysis (BTA) is to annonate all statements
in a subject program as either “gtatic® or “dynamic”. A typical basis for binding-time analysis is the
notion of congruence [5]: A BTA is congruent if no statements annotated “static” by the BTA depend on
statements annotated “dynamic”. The annotated program is passed to a specializer, which executes the
statements marked static and produces residual code for the statements marked dynamic. A known problem
with off-line partial evaluators that use congruence-based binding-time analysis is that they may fall into
an infinite loop or an infinite recursion because of “static-infinite computations” in a subject program
[5, 13] (e.g. infinite loops that are completely static.) In this paper, we develop a BTA algorithm that
marks every “static-infinite computation” as “dynamic”, extending the work of Holst [4] and of Glenstrup
and Jones [3].

As pointed out by Jones in [6], partial evaluation involves a basic tradeoff between “totality” and
“computational completeness”. If a partial evaluator is computationally complete — in the sense that it
executes every static computation in its subject programs — then on a program that contains static-infinite
computations the partial evaluator must diverge without producing a residual program. On the other hand,
a partial evaluator can be total by attempting to execute only static computations that are guaranteed
to terminate, but it will lack computational completeness as a result. In this paper we focus on partial
evaluators that aim towards totality.

In the context of functional programs without looping constructs and infinite data structures, non-
terminating behaviour results from infinite recursion. Holst has shown that in programs that manipulate
list data it is possible to identify functions that are limited to finite recursion [4]. He identifies parameters
that are “in-situ decreasing”: An in-situ decreasing parameter of a function f strictly decreases in size on
every (recursive) chain of calls from f to f. A function that contains an in-situ decreasing parameter can
only call itself a finite number of times before this parameter takes on the value null!

Glenstrup and Jones have defined a second algorithm that identifies in-situ decreasing parameters
[3]. They define a structure, called the parameter dependency graph (PDG), whose edges denote data
dependences between function parameters. Edges are labelled to indicate their size-changing effects, as
in Example 1 below. In this framework, a “size-decreasing path” is a path free of 1 edges but containing
at least one | edge. An in-situ decreasing parameter is one for which every path in the PDG from the
parameter to itself is size decreasing. Such parameters can be identified by solving a simple reachability
problem on the PDG: A parameter is in-situ decreasing if its vertex in the PDG is reachable from itself
only via paths that are size-decreasing. The presence of in-situ decreasing parameters is used to classify
some static statements as “bounded-static-varying” (BSV); BSV statements can always be executed with
terminating behaviour. All statements not marked as BSV (including some previously marked “static”)
are reclassified as dynamic, and the modified annotations are passed to the specialization phase.

A limitation of Glenstrup and Jones’s method for identifying in-situ decreasing parameters is the re-
quirement that size-decreasing paths must be free of 1 edges. In general, size-decreasing paths may include
1 edges that are “matched” by | edges, as is the case for a path from parameter vals of function eval to
itself in Example 1 below.

Example 1 In program P below, eval is an infix expression evaluator that take a list of operators (ops),
a list of values (vals), the current value of the expression (tot), and an error token (err) that it returns if an
invalid operator is encountered. Function check Valid sets the list of remaining values to null if an invalid

1 A discussed later in this section, an in-situ decreasing parameter may not control the recursion of the function, in which
case operations such as car(null) may be executed, resulting in an error or in infinite unrolling.

operator s detected, while accum updates the expression value at each step.

Pl . eval(ops,vals,tot,err) checkValid(state) accum(op,val,totVal)
if ops = null and vals = null if invalid(car(state)) ifop="+
tot nuil totVal + val
else if vals = null else elseifop="-
err cdr(state) totVal - val
else

eval(cdr(ops),new Vals,newTot,err)
where newVals = checkValid(cons(car(ops),cdr(vals)))
newTot = accum(car(ops),car(vals),tot)

On each successive call to eval, the operations cdr, cons, and cdr are applied to parameter vals. The net
effect is that cdr(vals) (or null) is passed to the next call on eval. The graph shown in (a) below is a snippet
of the PDG for P, as defined by Glenstrup and Jones, while the graph in (b) is a snippet of the modified
PDG used in our approach. Each graph represents the same cycle from vertex vals to itself that is present
in each PDG.

I}

d

id

t

checkValidg

newVals

(a) (b)

The path from vals to itself in (a) contains an T edge, and is therefore not a size-decreasing path under
Glenstrup and Jones's approach. For the corresponding path in (b), the label ¢/ on the edge from cdr(vals)
to cons(car(ops),cdr(vals)) indicates that the value cons(car(ops),cdr(vals)) has the value cdr(vals) as its
tail while the label t/=" from state to cdr(state) indicates that the value cdr(state) is obtained by extracting
the tail of state. This allows our technique to determine that the path is size-decreasing: Because the cons
operation on cdr(vals) is balanced by the cdr operation on state, the net effect is that just a single cdr is
applied to vals.]

To handle such cases, we use CFL-reachability [9], a generalized form of graph reachability. A CFL-
reachability problem is one in which a path is considered to connect two vertices in a graph only if the
concatenation of the labels on the edges of the path is a word in a certain context-free language. Thus the
path from parameter vals to itself in example (b) above has the concatenated label ¢~ .tl.id tI™* id.id.id,
which is in the language insitu_decr_path defined later in the paper (insitu_decr_path is the language that
defines the notion of size-decreasing paths used in this paper.)

Andersen and Holst have also addressed the problem of identifying in-situ-decreasing parameters more
precisely, using a different formalism than the one we use. A comparison of our work with their results 18
given in Section 8.

Another drawback of Glenstrup and Jones’s approach is that an in-situ decreasing parameter may not
control the recursion of its associated function. If specialization continues after the parameter has taken
on the value null, the specializer may attempt to perform operations such as cdr(null) or car(null). If the
specializer detects such errors, the specialization phase will terminate with an error, while infinite recursion

may result if such errors are ignored. This effect is illustrated by the following example:

Example 2 In program P, from Example 1, parameter ops strictly decreases in size each time eval is
invoked in a recursive manner. Therefore ops is in-situ-decreasing. However, eval can call itself recursively
if ops takes on the value null (if ops = null and vals # null.) During specialization, if eval is unfolded after
ops takes on the value null, the specializer will try to evaluate the expression cdr(null). o

In our terminology, parameter ops is not “influential” because it does not influence the cessation of recursion
for function eval. Thus, a parameter must be both “in-situ decreasing” and “influential” for its associated
function to be unrolled safely during the specialization phase. We refer to parameters that are both in-situ
decreasing and influential as “controlling”. We provide a semantic characterization of such parameters.
This allows us to provide a firm semantic foundation for our BTA termination algorithm, which we define
as a CFL-reachability operation (on an augmented version of the PDG) that approximates the semantic
definitions.
The contributions of the paper can be summarized as follows:

o We give a semantic characterization of when a parameter is controlling.

— A parameter is in-situ-decreasing iff it strictly decreases in size on every recursive call from its
associated function to itself.

— A parameter is influential iff a null value for the parameter guarantees no further recursive calls
to its associated function.

— A parameter is controlling iff it is both in-situ-decreasing and influential.
e We provide an algorithm that identifies a subset of all controlling parameters.

— The algorithm uses CFL-reachability to identify more in-situ-decreasing parameters the algo-
rithm of Glenstrup and Jones.

o We give a semantic characterization of when a parameter is quasi-BSV (quasi-bounded-static-varying.)

— A parameter is quasi-BSV if it has a sibling parameter that is controlling. A quasi-BSV param-
eter will take values limited to finite changes on its entry values. Hence if the set of entry values
for the parameter is finite, the parameter itself will be BSV.

o We provide an algorithm that identifies a subset of all BSV parameters.

— The reachability algorithm uses information about quasi-BSV parameters to propagate BSV
information from the program’s input parameters.

In addition to a number of other differences between our work and that of Glenstrup and Jones, there
is a significant difference in the structure of the two algorithms: In their algorithm, parameters may be
identified as in-situ-decreasing because other parameters are BSV, and vice versa. This mutual dependence
means that the two phases of their algorithm must be applied iteratively to identify the maximum number
of BSV parameters. In our algorithm, in-situ-decreasing parameters are identified once and for all, and
then this information is used to identify BSV parameters. There is no need to iterate the two phases.

The rest of the paper is organized as follows: In Section 2, we present an overview of the subject func-
tional language and its semantics. In Section 3, we use this semantics to define the in-situ-decreasing, in-
fluential, controlling, quasi-BSV, and initially-bounded properties. In Section 4, we present the augmented
data dependence graph (ADDG), an extended form of the parameter dependency graph. In Section 5, we
define several CFL-path languages on the ADDG. In Section 6, we relate the in-situ decreasing property
with the presence or absence of certain CFL-paths in the ADDG. In Section 7, we present an algorithm that
uses the presence or absence of certain CFL-paths in the ADDG to identify a subset of all BSV parameters
in a program. In Section 8, we discuss related work.

2 A simple functional language and its semantics

In this section we present a simple, first-order call-by-value functional language, F, and the semantics of
programs in F. The language and its description is taken directly from Glenstrup and Jones's work in [3];
we use the same language so that our results can be compared with previous work, while we reproduce the
language description here for completeness. The language F is defined by the grammar below:

p : Program u= fl(zy,...,Zm,) = €1 ... falzy, . 2m,) = éen

e : Ezpression n= se|if e; then es else e | e; where z = e | fi(ser,..., sem,)
se - SimpleErpression == be | basefcn(bey, . .., bek)

be : BasicEzpression == & | constant

Base functions consist of cons, car and cdr, all of which have the usual meanings. When dealing with the
semantics of programs in F we treat the tail recursive subset of F. However our algorithms apply to all
programs in F.

2.1 Concrete semantics of programs in F

A state is a pair (f,7) with f defined in p, where v is a shorthand for (v1,...,v,), n = arity(f), and v
is the ith component of a tuple. Given two values v; and vy in a value set V of S-expressions, vy < v iff
vy is a substructure of va. Any vector 7! of input values for the parameters of the main function (flor
main) can be split into the pair (7%, 5] where 7} € V, is a vector of values for the known parameters of
main and 7} € Vy is a vector of values for the unknown parameters of main.

Given a value set V, call-free evaluation of expression e is defined as:

[e],7 = w, if ¢’s value won ¥ is computable without function calls.
A W), if e’s value on ¥ is ¢’s value on w.
g

A single step state transition, written (f, 7) — (g, @), occurs if p contains fZ = e, and [e],7 = (g, w). Total
evaluation of an expression is then defined as:

if s value v on ¥ is computable without function calls.

le]o = { [[i,ody(g)]]u?, if [el, 7 = (g, @)

A multi-step transition sequence T = [(f1,7"), .., (f%,7%)] is obtained by composing several state tran-
sitions (fL,74) = (f%,8%), (f%, %) = (f3,7°), etc. Every recursive call from a function f to itself is
associated with a transition sequence of the form [(f, 74y, ..., (f, 7%)] where 5 is the vector of the values

of f’s parameters at the caller and 7 is the vector of the values of f's parameters at the callee.

3 Semantically controlling behaviour

As mentioned in the introduction, the fact that a function has an in-situ-decreasing parameter does not
guarantee that a function can be unrolled without error. In this section we define the in-situ-decreasing
property for function parameters, as well as the “influential” property; these two properties can be combined
to identify parameters that can limit a function to finite recursion.

A parameter is in-situ-decreasing if it strictly decreases in size each time its associated function is called
recursively. This is characterized formally in Definition 1 below:

Definition 1 A parameter f; of function f in p is in-situ-decreasing iff for every transition sequence
r=[(fL.3Y), ., (ff, 7)) where /! = f* = f, % < @} o

A parameter such as f; in the definition above will take a null value after some number n of recursive calls
to f, where n is determined by the size of f; at the first call to f. For instance, parameter ops of function
eval from Example 1 is in-situ-decreasing as 1t must decrease in size each time eval calls itself.

As can be seen from Example 2 however, function eval will be unfolded after parameter ops has taken
on the value null, resulting in an error when cdr(null) is performed. This is because parameter ops does
not influence the recursive behaviour of eval. This idea is formalised through the property defined below:

Definition 2 A parameter f; of function f in p is influential iff for every transition sequence
r=[(fL,), ..., (f*, 7*)] where k > 1 and fr=ff =, 0 #null a

Definition 2 says that there is no transition sequence from f to f in which parameter f; has the value
null. In other words, a null value for f; guarantees that there will be no further recursive call to f in the
execution of p.

Example 3 In program Py from Example 1, function eval cannot call itself if vals takes on the value null.
Hence parameter vals is influential. u]

Together, the in-situ-decreasing and influential properties limit the number of levels of recursion that a
function can go through: the in-situ-decreasing property provides the assurance that a parameter will take
on the value null at some point in the recursion of the function, while the influential property guarantees
that when the parameter takes on the value null, recursion of the function will stop. Definition 3 below
formalises this notion.

Definition 3 A parameter f; of function f inp is controllingiff f; is in-situ-decreasing and f; is influential.
O

A parameter that is controlling may cause BSV behaviour in itself and in its sibling parameters. More
precisely, if parameter f; above is controlling, function f in the definition above must go through only a
finite number of recursion steps. Thus for all other parameters f; of f, the values taken by f; are limited
to finite changes of the entry values of f;. Such parameters are characterized below.

Definition 4 A parameter f; of function finpis quasi-BSV iff there is a parameter f; of function f such
that f; is controlling. a

The values of a quasi-BSV parameter are limited to finite changes on its entry values. Hence if the set
of entry values for the parameter is finite, the parameter itself will be BSV. We say that a parameter is
“initially-bounded” if for any static input the set of all entry values for the parameter if finite. This concept
is formalized below:

Definition 5 A parameter f; of function f in p is initially bounded iff for every static input it e Vi,
{ 173‘ |3 r= [(fl,[z')},l?ﬁ}),ﬁ.A,(f",ﬁ")] st 7% € Vg, f! = main, ff = fandVie (2,k-1) fiftflisa
finite set. O

A parameter that is quasi-BSV and initially-bounded will take on only finitely many different values, and
is therefore BSV.

Theorem 1 A parameter f; of function f in pis BSV if f; is quasi-BSV and f; is initially bounded. O

4 The augmented data dependence graph

In this section we present the augmented data dependence graph (ADDG), an extension of Glenstrup and
Jones’ parameter dependency graph, in which data and control flow in a program is captured through
edges in the graph.

The augmented data dependence graph for a program p is a directed graph G(p) = (V,E), where V
s a set of vertices and E is a set of edges. V(G) includes a header vertex and return value vertex for
each function in p, a constant vertex for every function in p whose body includes any constants (other
than null), a vertex for every intermediate expression in the body of any function in p, a vertex for each
variable in p, and a vertex for every parameter of p. E(G) includes flow edges and control edges. Control
edges in E(G) are identical to call edges in the call grafsph of p (a control edge exists from f to g iff the
expression body of f contains a call on g.) Every control edge has the label control. Flow edges in E(G)
represent standard data-dependence relationships between vertices (a flow edge exists from u to v if the
expression at v is defined in terms of the expression at u.) Every flow edge in G has a label from the set
{id, hd, tl, hd~!,tI7'}, where the label on the edge is determined as follows: edge e from vertex u to vertex
v has the label { where

[=id if v is a parameter vertex or if v is a return-value vertex
{=hd ifv=cons(u,w)
L=t if v = cons(w, u)

[=hd™" if v=car(u)
L=t if v = cdr(u)

Example 4 The ADDG for program P from Example 1 is shown below.

control

control acoum
Loy PR

err

]

evalg cons(car(ops),cdr(vals))

newTot checkValid

There are three paths that have vertex vals as their target vertex: The path from vertex vals with concate-
nated label t1= ! t1.id.tl~* id.id.id, the path from vertex ops with concatenated label hd™ L hd.id 17 id.id.id,
and the path from vertex env with concatenated label L id hd~ ' hd.id.tl" " id.id id. a

The number of vertices in the ADDG G of program p is bounded by O(P + Var + Ops), where P is
the number of parameters in p, Var is the number of where variables in p, and Ops is the number of
cons/car/cdr operations in p. The number of edges in G is bounded by O((P + Var)” + Ops).

5 Paths in the ADDG

In Section 3 we gave a semantic characterization of “in-situ-decreasing parameters”. Qur purpose in this
section is to characterize a subset of the in-situ-decreasing parameters in a program using the augmented
data dependence graph defined in the previous section. More accurately, we use the presence or absence of
certain kinds of paths in the ADDG to determine whether given parameter vertices in the ADDG satisfy
the in-situ-decreasing property. We do this by solving several path problems in which a path is considered
to connect two vertices only if the concatenation of the labels on the edges of the path is a word in a certain
context-free language.

Definition 6 (Context-Free-Language Reachability; CFL-Reachability) Let L be a context-free language
over alphabet %, and let G be a graph whose edges are labelled with members of . Each path in G defines
a word over £, namely, the word obtained by concatenating, in order, the labels on the edges on the path.
A path in G is an L-path if its word is a member of L. The all-pairs L-path problem is to determine all
pairs of vertices vy, va € V(G) such that there exists an L-path in G from vy to va. The source-target L-path
problem is to determine whether there exists an L-path in G from a given source v; to a given target vz. O

Ordinary reachability (transitive closure) is a degenerate case of CFL-reachability: Let all edges of a graph
be labelled with the letter e; transitive closure is the all-pairs e*-path problem. More general instances of
CFL-reachability are useful for focusing on certain paths of interest. By choosing an appropriate language
L, we are able to enforce certain types of restrictions on when two vertices are considered to be “connected”
(beyond just “connected by a sequence of edges, as one has with ordinary reachability).

CFL-reachability problems can be solved using a dynamic-programming algorithm. (The algorithm can
be thought of as a generalization of the CYK algorithm for context-free recognition [7, 16].) There is a
general result that all CFL-reachability problems can be solved in time cubic in the number of vertices in the
graph [15]. Because the number of vertices in the ADDG for a program p is bounded by O(P + Var+Ops),
where P is the number of parameters in p, Var is the number of where variables in p, and Ops is the number
of cons/car/cdr operations in p, the problem of identifying whether an L-path exists from every vertex in the
ADDG to every other vertex (the all-pairs L-path problem) can be solved in time O((P + Var + Ops)°).

Every flow edge from a vertex u in the ADDG to a vertex v in the ADDG has a label from the alphabet
{id, hd, tl, hd~', tl"'}, indicating the relationship between the values at u and v along a certain execution
path. Similarly, the concatenated label on a path from vertex u to vertex v indicates the relationship
between the structures of the values at u and v along a certain execution path. We define several contex-
free languages such that all paths whose labels are in a given language L relate the values at their source
and target vertices in some particular manner (For instance, all Li-paths as defined below connect vertices
whose values are equal along some execution path.) We can then solve the all-pairs L-path problem to
determine whether parameters v and v are related in the given manner along some execution path.

We define the following context-free languages:

e The language L; represents paths in which each hd(resp. tl) is balanced by a hd”l(tl“l); these
paths correspond to values transmitted along execution paths in which each cons operation (which
gives rise to a hd or t! label on an edge in the path) is eventually “taken apart” by a car(hd'l) or
cdr(tl™!) operation:

[,: eq.path —hd eq.path hd~! eq.path
eq.path — t1 eq_path t1"! eq_path
eq-path — id eq_path
eqg.path — ¢

e An L,-path is a path that has one or more hd~1(t1"") labels that is not balanced by any hd(t!) label.
Such paths are “decreasing” in the sense that they correspond to execution paths in which the value
at the target vertex of the path is a proper substructure of the value at the source vertex:

La: decr_path — eq.path hd~! decr_path
decr_path — eq.path t1”1 decr_path
decr.path — eq.path hd™! eq.path
decr_path — eq_path t1™% eq.path

e Similarly, La-paths have zero or more hd~!(t{") labels that are not balanced by any hd(t!) label.
Such paths are “equal or decreasing”:

Ls: eq.or.decr_path — eq.path hd~! eq.or_decr_path
eq.or_decr_path — eq_path t1"! eq.or_decr_path
eq.or.decr_path — eq_path

e The languages of L4 and Ls represent paths that have hd(tl) labels that are not balanced by any
hd~*(t{~") labels. L4 paths are “increasing” and correspond to execution paths in which the value at
the source of the path is a proper substructure of the value at the target, while Ls paths are “equal
or increasing”:

Ly incr_path — eq_path hd incr_path
incr_path — eq.path tl incr_path
incr_path — eq.path hd eq.path
incr_path -+ eq.path tl eq_path

Ls: eq.or_incr_path — eq_path hd eq_or.incr_path
eq.or_incr_path — eq.path tl eq.or.incr_path
eq_or_incr.path -+ eq_path

o As illustrated by Example 5 below, an arbitrary path of flow edges from vertex u to vertex v may
represent a “false” dependence because the values at u and v have no common substructure. The
language of Ls consists of all paths of flow edges that do not represent “false” dependences. In
other words, if vertices u and v are connected by an Ls-path, the values at u and v have a common
substructure along some execution path:

Ls: flow_path —» eq.or_decr_path eg_or.incr.path

Example 5 In the ADDG for program P shown in Example 4, the path from vertex ops to vertex vals
with label hd=!.hd.id tI” " .id.id.id suggests that the value of vals depends on the value of ops. However,
the path represents a “false” dependence, because the t{~! (or cdr) operation on parameter state extracts
its tail, whereas the hd (or cons) operation on car(ops) places car(ops) in the the head of state. Similarly,
the path from ops to vals with label t~Y id hd~ ' hd.id.tl"".id.id id represents a “false” dependence. O

The context-free language Lg of all flow paths that do not represent “false” dependences can be split
into two disjoint context-free languages that represent either decreasing behaviour or possibly increasing
behaviour, as follows:

L= insitu_decr_path -+ decr_path

The language of L7 represents paths that are size-decreasing. We would like to test the in-situ-decreasing
property for a parameter by testing whether every path from the parameter vertex to itself in the ADDG
is in the language L7. However, CFG-reachability can only be used to test whether there exists an L-
path from a source to a target. Hence we need to define the language of all flow paths without “false”
dependences that are not Lr-paths. This can be done as follows:

Lg: insitu.eq.or_incr_path —+ eq-or.decr_path incr_path
insitu_eq_or_incr_path — eq_path®

eq.path™ — hd eq_path® hd™! eq_path*
eq_patht — tl eqpatht t17' eqpath™
eq_path™ —id eq.path™

eq_path+ —id

The paths in the language of Lg are either “equal” or contain at least one hd(t!) label that is not balanced
by hd~'(tl"!). (Language eq_path™ is like eg.path, but does not contain ¢.) Such paths are not size-
decreasing because the value at the target of the path may not be a substructure of the value at the source
of the path. It can be shown that the languages L7 and Lg are disjoint and that their union is Lg — <. In
other words, every Lg-path is either an L7-path or an Lg-path, and no path is both an L7-path and an
Ls-path. Thus, verifying that no flow path from vertex u to vertex v is in insitu_eq.or_incr._path is sufficient
to ensure that every flow path from u to v is either in insitu.decr_path or represents a “false” dependence.

The final path language of interest in the ADDG is the language of control paths. A control path from
function f to function g indicates that a call on f may produce a call on g, and is a sequence of zero or
more edges labeled with control:

Lg: control_path —+ control control_path
control_path — ¢

The languages of path labels defined in this section are all context free languages. Every source-target
L-path problem for each of these languages can therefore be solved in time cubic in the number of nodes
in the ADDG.

6 Linking ADDG paths and in-situ-decreasing behaviour

In this section we relate the presence or absence of various L-paths in the ADDG (for various languages
L defined in the previous section) with the semantic characterization of in-situ-decreasing behaviour from
Section 3. This serves as a formal justification of the algorithm for identifying in-situ-decreasing-parameters
that is presented in Section 7.

We first relate the semantic concept of a transition sequence defined in Section 2 with the syntactic
concept of a call path defined by Glensrup and Jones in [3]. A call path is an abstraction of a transition
sequence where every vector of values is replaced by a vector of syntactic expressions. We show that every
transition sequence from function f to itself corresponds to a call path from f to itself. We then relate the
in-situ-decreasing property for parameters as expressed in terms of call paths with the presence or absence
of certain paths in the ADDG.

6.1 Call paths

A call path of length k — 1 is a sequence 7 = [(F1,5), (F2,8%), ..., (S5, &)], where p (assumed to be tail
recursive) contains definitions ficly = .. fle. for2 < i<k & is a vector of arguments for f*
obtained by unfolding the call from f' to F? without doing any computation, and is expressed in terms
of 7 Similarly, & is obtained by unfolding the calls from Flito f2 ... fF7! to f* without doing any
computation, and is expressed as a function of . Argument é’? is said to “depend” on argument I iff the
expression for é’; in terms of & contains the symbol £;. We define the size operator < on expressions as
follows: given two expressions e, and e, e; K en iff VU : [e1]7 < [é=]7.

Example 6 In program Py from Example 1, [(eval, [0, v,t,¢€)), (eval, [cdr(0), cdr(v), t + car(v),e]}] isacall
path that represents a possible recursive call from eval to itself. a

Call paths are abstractions of transition sequences in which every vector of values is replaced by a vector
of syntactic expressions. In general, every real computation or transition sequence is represented by some
call path, although the reverse does not hold.

We can express the in-situ-decreasing property for function parameters in terms of call paths instead of
transition sequences: If the expression e‘;? is strictly smaller in size than the expression £; along some call
path from f to f, the parameter f; must strictly decrease in size along every transition sequence from f
to itself that corresponds to the given call path. Hence if éj-‘ is strictly smaller than Z; along all call paths

from f to f, the parameter f; must be in-situ-decreasing.

Lemma 1 A parameter f; of function f in p is in-situ-decreasing if for every call path m = [(f}, &), .. ., (f*,é
where fl = f* = f, & < &. o

The re-staternent of the in-situ-decreasing property through Lemma 1 has the advantage that call paths
are directly related to paths in the ADDG. This is because the syntactic “dependence” between arguments
f; and g; in a call path is directly represented in the ADDG by a path of flow edges from parameter vertex
fi to parameter vertex g;.

6.2 Relating call paths and paths in the ADDG

In this subsection, we relate the in-situ-decreasing property for function parameters with the presence
or absence of certain paths in the ADDG. This justifies the use of the CFG-reachability algorithm for
identifying in-situ-decreasing parameters.

The observation below formalises the idea that in a recursive call from function f to itself, parameter
fj can depend on f; itself, on other sibling parameters of f, on constant values, or on a combination of
these.

Observation 1 In every call path = = [(f1, &), ..., (f*,&)] in p where f! = f*k = f, & depends only on
z.]

This result is useful in justifying the lemmas that follow in this section, which link the existence of paths
in ADDG G with semantic properties of parameters in program p.

An in-situ-decreasing parameter must satisfy two basic conditions: it must depend on itself in a size-
decreasing manner, and it must not depend on sibling parameters or constants.

The presence of a flow-path from vertex f; to itself ensures that parameter f; depends on itself, while
the lemma below says that if a parameter depends on itself and that dependence is one that is not-size-
decreasing, there must be a path from f; to f; in the ADDG such that the path label is in the language
insitu_eq.or_incr.path.

Lemma 2 If parameter f; of function f in p is not in-situ-decreasing and there exists a call path
m=[(f45),...,(f* &) in p where f' = f¥ = f and & depends only on Fj, then there exists a path s
from f; to f; in G such that s is an Ls-path (the concatenated label on s is in insitu_eq_or.incr_path.) O

Read as its contrapositive, Lemma 2 says that if all paths from fj to fj in G are size-decreasing, there can
be no recursive call from f to itself where f; depends only on itself and does not become strictly smaller
in size. Thus f; can only depend on itself in a size-decreasing manner.

If parameter f; depends on a sibling parameter fi, there must be a flow path from vertex fi to vertex
f; in G. This is expressed in lemma 3 below.

Lemma 3 If there exists a call path = = [(f!,£),..., (f*,é%)] in p where fl=f*=fand é’; depends on
#; where i # j, then there exists a path s from fi to fj in G such that s is an Lg-path (the concatenated
label on s is in flow_path.) o

10

Thus, if there is no flow-path in G from a sibling parameter f; to fj, then the value of f; can depend only
on f; itself or on constant values.

If parameter f; takes on a constant value in a call from f to itself, there must be a Alow-path from the
associated constant vertex within the control structure of f to vertex fj, as shown in the lemma below.

Lemma 4 If there exists a call path = = [(f*,), .., (f*, &)] in p where f''= f* = f and & does not
depend on Z, then there exists a constant vertex ¢ in G such that there is an Lg-path from ¢ to f; in G and
there is an Lg-path (with a concatenated label in control_path) from f to g in G where g is the function
that encloses c. O

Thus, if there are no flow-paths to f; from constant vertices within a call path from f to f, then f; cannot
take on constant values in any recursive calls on f.

To summarize: Given a parameter vertex f; in G, the presence of an Lr-path (insitu_decr_path) from
f; to f; along with the absence of any Ls-paths (insitu_eg-or_incr.path) from f; to f; guarantees that f;
depends on itself in a size-decreasing manner, while the absence of Le-paths (flow.paths) from siblings fi to
f; and from constant vertices ¢ to f; ensures that f; depends only on itself. Hence under these conditions
fj must be in-situ-decreasing. This is formalized in Theorem 2 below.

Theorem 2 Parameter f; of function f in pis in-situ-decreasing if all of the following properties hold:

(a) there exists an L7-path (insitu_decr_path) from vertex f; to vertex fj in G, and there does
not exist an Lg-path (insitu_eg-or_incr.path) from vertex fj to vertex f; in G, and
(b) there does not exist an Le-path (flow_path) from vertex f; to vertex f; in G such that f; is
a sibling parameter of f;, and
(c) there does not exist an Ls-path (flow_path) from constant vertex ¢ to f; in G such that
there exists an Lo-path (control_path) from f to g enclosing c. O

Property (a) ensures that successive values of f; in a recursive call on f are related to previous values of
f; in a size-decreasing manner, while properties (b) and (c) ensure that successive values of f; depend only
on the previous values of f;.

In the terminology of Section 6.1, the three properties of Theorem 2 combine to provide a safe test for
the condition éj? & £ on all call paths from f to f.

7 A safe algorithm for marking BSV parameters

In the previous section, we established the link between the presence or absence of certain kinds of paths in
the ADDG and the in-situ-decreasing behaviour of function parameters. All the languages of path labels
defined earlier are context-free languages. Hence, we can use CFL-reachability to determine whether any
of these paths exists between any two vertices in the ADDG.

This section contains descriptions of three algorithms: an algorithm that uses CFL-reachability to
identify a subset of all in-situ-decreasing parameters in a program, an algorithm that identifies a subset
of all influential parameters, and an algorithm that uses the results of these two algorithms to identify a
subset of all BSV parameters in a program.

7.1 Identifying in-situ-decreasing parameters

The algorithm to identify in-situ-decreasing vertices that is described here is a restatement of Theorem
9 from the previous section. A parameter f; of function f is in-situ-decreasing if it depends on itself in
a size-decreasing manner, it does not depend on any sibling vertex, and it does not take any constant
value during a (recursive) chain of calls from f to f. Any parameter of a non-recursive function is also
in-situ-decreasing.

11

Algorithm 1 (Identify in-situ-decreasing vertices) Mark as isd all parameter vertices that are members
of the relation isd defined below:?

isd(v) if —incr(v,v) and decr(v,u) and -const(v) and -—sibl(v)
isd(v) if —rec(function(v))
where
incr(m,n) if insitu_eq.or-incr_path(m,n)
and
decr(m,n) if insitu_decr.path(m,n)
and
const(m) if control_path(function(m),function(c)) and flow_path(c,m) and
¢ is a constant vertex
and
sibl(m) if flow_path(n,m) and function(n) = function(m) and
n is a parameter vertex
and
rec(f) if control_path(f.f) a

Example 7 The result of applying Algorithm 1 to program P from Example 1 is as follows: all parameters
of functions checkValid and accum are marked isd because these functions are non-recursive (there is no
control_path from checkValid to itself or from accum to itself.) Parameter err is not marked isd because
there is an insitu_egor_incr_path from err to itself (with label id.) Similarly, tot is not marked isd because
of the path with label id.id.id.id from ¢ot to itself. Parameter ops is marked isd because the only paths to
vertex ops are in insitu-decr_path. Finally, parameter vals of eval is marked isd because the only paths in
fow_path that have vals as their target are in insitu_decr_path. o

Readers familiar with the work of Glenstrup and Jones {3} will notice that Algorithm 1 has a substantially
different structure than their algorithm (quite apart from the use of CFL-reachability). In the algorithm of
Glenstrup and Jones, parameters may be identified as in-situ-decreasing on the basis of the BSV behaviour
of other parameters. At the same time, parameters may be identified as BSV if other vertices are in-
situ-decreasing. This mutual dependence means that the two phases of their algorithm must be applied
iteratively to identify the maximum number of BSV parameters.

In contrast, Algorithm 1 does not depend on information about the BSV behaviour of parameters in the
program. Hence a single application of Algorithm 1 followed by Algorithm 3 (our algorithm that identifies
BSV parameters) is sufficient to mark all BSV vertices that can be identified by our approach.

7.2 ldentifying influential parameters

As pointed out in the introduction, an in-situ-decreasing parameter may not control the recursion of its
associated function. If specialization continues after the parameter has taken on the value null, operations
such as cdr(null) or car(null) may be performed. If the specializer does not detect such errors, infinite
unrolling may result. Even if the specializer checks for such invalid operations, it cannot determine whether
the error occured because of problematic code or because of “too much” unrolling.

In Section 3, we defined the influential property for function parameters: A parameter f; of function
f is influential if a null value for f; guarantees that no further recursive calls to f take place. Because
precise identification of the set of all parameters that satisfy this definition is not possible, we identify a
subset of all parameters that are guaranteed to generate no further function calls (recursive or otherwise)
when their value is null.

Algorithm 2 (Mark influential vertices) Given a parameter f; of function f, the expression body of f
is modified by replacing all occurences of f; with null and by replacing all function calls with L. The

2We use the notation foo.path(m,n) to mean that that n is reachable from m via a path in the language foo_path.

12

expression is then simplified using a standard intra-procedural constant propagation technique such as the
algorithm of Wegman and Zadeck in [14]. If the simplified expression does not contain any occurences of
L, parameter fj satisfies the influential property and f; is marked as influ. This procedure is applied to
every parameter in p. 0

Example 8 The result of applying Algorithm 2 to program P, from Example 1 is as follows: All parame-
ters of functions check Valid and accum are marked as influ because these functions do not have any function
calls in their expressions. Parameter vals of eval is marked as influ because the result of simplifying the
expression body of eval with vals = null is the expression err, which is free of function calls. No other
parameter of eval is marked as influ. a

7.3 Identifying BSV parameters

Algorithms 1 and 2 mark some function parameters as isd (in-situ-decreasing) and influ (influential). These
markings can be used to identify a subset of all the BSV parameters in a program, as in Algorithm 3 below.

Algorithm 3 (Mark BSV vertices) The algorithm has two phases: In the first phase, a subset of all quasi-
BSV parameters in a program are marked gbsv. Vertices are marked as gbsv on the basis of Definition 4
from Section 3. Parameters that are marked both isd and influ are identified as controlling and marked
cont, following which the parameters marked cont and their siblings are marked gbsv (quasi-bounded-static-
varying).

In the second phase of Algorithm 3, BSV markings from the static inputs of the main function are prop-
agated through the ADDG according to the following rules: Initially, every known input parameter to
the main function is marked bsv, while every other input parameter is marked D. At every non-parameter
vertex, the vertex is marked bsv if all its predecessors are marked bsv. At every parameter vertex marked
gbsv, the vertex is marked bsv if all its non-recursive predecessors (see below) are marked bsv. Every vertex
is marked D if any of its predecessors is marked D. When no further vertices can be marked bsv, all vertices
not marked bsv are marked D. 0

A non-recursive predecessor of a parameter vertex f; of function f is a predecessor of f; that may define
an entry value for f;. Such a predecessor vertex must be enclosed by a function that cannot be called by

f:

Definition 7 A vertex v in the ADDG G of program p is a non-recursive predecessor of parameter f; of
function f in p iff there is no Lg-path (control_path) from f to g where g is the function that encloses v. [

The marking rule used at parameter vertices marked gbsv in the second phase of the algorithm follows from
Theorem 1 in Section 3. A parameter is initially-bounded if all of its non-recursive predecessors are BSV.
If, in addition, the parameter is quasi-BSV, it must be BSV.

In Algorithm 3, steps 3 and 4 of Phase I and steps 3 and 4 of Phase II are all operations that are linear
in the number of vertices in the ADDG, (P + Var + Ops), where P is the number of parameters in p, Var
is the number of where variables in p, and Ops is the number of cons/car/cdr operations in p.

8 Related work

The basis for the work described in this paper is Holst’s definition of the in-situ-decreasing property for
function parameters in [4]: An in-situ decreasing parameter of a function f strictly decreases in size on
every (recursive) chain of calls from fto f.

Glenstrup and Jones define a second algorithm for identifying in-situ-decreasing parameters, which uses
the markings t, | and = on edges in the parameter dependency graph [3]. The algorithm described in this

13

paper extends their work by using more precise markings on flow edges and by using CFL-reachability to
identify a broader class of size-decreasing paths.

Andersen and Holst have described an extension of Holst’s analysis to a higher-order lambda calculus
[2]. Although their primary emphasis was termination analysis for programs with higher-order functions,
they observe that their technique for handling higher-order functions can be adapted to discover some
size-decreasing paths containing 1 edges.

Our approach was conceived independently of their work, but we became aware of it shortly after it
was presented at SAS this fall. Some of the differences between their work and our approach are:

o Their approach is based on tree grammars, whereas our approach is an extension of Glenstrup and
Jones’s approach, which is based on graph reachability. In order to identify a greater number of
in-situ-decreasing parameters than Glenstrup and Jones, we extend the parameter dependency graph
with new nodes and new edge markings and we use CFL-reachability rather than a closed semi-ring
graph algorithm [1, 3].

o There is a general result that all “context-free language reachability problems” can be solved in time
cubic in the number of vertices in the graph [15]. This allows us to obtain a cubic-time bound for
our algorithm. (Andersen and Holst did not report a bound on the running time of their algorithm,
although we suspect that for the class of problems we are addressing, their methods would also run
in cubic time.)

o We are able to provide a semantic justification for our method by showing that every parameter
identified as in-situ-decreasing by our algorithm is semantically in-situ-decreasing.

CFL-reachability has also been used for a number of other program-analysis problems: Reps, Sagiv,
and Horwitz applied CFL-reachability techniques to interprocedural dataflow-analysis problems [11, 12]
and to inter-procedural slicing [10]. Reps used CFL-reachability to develop a shape-analysis algorithm [9].
He used edge markings that are identical to the markings used on the edges of the ADDG defined in this
paper.

Melski and Reps have shown that CFL-reachability problems are convertible into a class of set-constraint
problems (and vice versa) [8]. Because set-constraints are related to regular-tree grammars, this result also
has some bearing on the relationship between our work and that of Andersen and Holst. The exact
relationship issomewhat fuzzy at this point because the tree grammars used in the Andersen and Holst
paper do not make a direct application of the Melski-Reps result possible. (Even if it were, the details of
the general-case construction would obscure the relatively simple concepts expressed by the context-free
grammars given in Section 5.)

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

[2] P. H. Andersen and C. K. Holst. Termination analysis for offline partial evaluation of a higher order
functional language. In Proceedings of the Third International Static Analysis Symposium, 1996.

[3] Arne J. Glenstrup and Neil D. Jones. BTA algorithms to ensure termination of off-line partial evalu-
ation. Andrei Ershov Second International Conference ‘Perspectives of System Informatics’, Lecture
Notes in Computer Science, 1996.

[4] CK. Holst. Finiteness analysis. In J. Hughes, editor, Functional Programming Languages and Com-
puter Architecture, Cambridge, Massachusetts, August 1991 (Lecture Notes in Computer Science, vol.
523), pages 473-495. ACM, Berlin: Springer-Verlag, 1991.

14

(5] N.D. Jones. Automatic program specialization: A re-examination from basic principles. In D. Bjgrner,
A.P. Ershov, and N.D. Jones, editors, Partial Evaluation and Mized Computation, pages 225-282.
Amsterdam: North-Holland, 1988.

[6] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program (Generation.
Englewood Cliffs, NJ: Prentice Hall, 1993.

[7] J. Kasami. An efficient recognition and syntax analysis algorithm for context-free languages. Scientific
Report AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA, 1965.

[8] D. Melski and T. Reps. Interconvertibility of set constraints and context-free langauge reachability.
Technical Report 1330, Computer Sciences Department, University of Wisconsin-Madison, November
1996.

[9] T. Reps. Shape analysis as a generalized path problem. In Partial Evaluation and Semantics-Based
Program Manipulation, La Jolla, California, June 1995, pages 1-11. New York: ACM, 1995.

[10] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. In SIGSOFT 94: Proceedings of
the Second ACM SIGSOFT Symposium on the Foundations of Software Engineering, (New Orleans,
LA, December 7-9, 1994), ACM SIGSOFT Software Engineering Notes 19(5), pages 11-20, December
1994.

[11] T. Reps, M. Sagiv, and S. Horwitz. Interprocedural dataflow analysis via graph reachability. Technical
Report 94/14, DIKU, University of Copenhagen, Denmark, April 1994.

[12] T. Reps, M. Sagiv, and S. Horwitz. Precise interprocedural dataflow analysis via graph reachability.
In Conference Record of the Twenty-Second ACM Syposium on Principles of Programming Languages,
(San Francisco, CA, Jan. 23-25, 1995), pages 49-61, 1995.

[13] P. Sestoft. Automatic call unfolding in a partial evaluator. In D. Bjgrner, A.P. Ershov, and N.D. Jones,
editors, Partial Evaluation and Mized Computation, pages 485-506. Amsterdam: North-Holland, 1988.

[14] M. Wegman and K. Zadeck. Constant propagation with conditional branches. In Conference Record
of the Twelfth ACM Syposium on Principles of Programming Languages, pages 291-299, 1985.

[15] M. Yannakakis. Graph-theoretic methods in database theory. In Proceedings of the Symposium on
Principles of Database Systems, 1990, pages 230-242, 1990.

[16] D.H. Younger. Recognition and parsing of context-free languages in time n Information and Control,
(10):189-208, 1967.

15

