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Abstract

Programs need to be monitored for many reasons, including performance evaluation,
correctness checking, and security. However, the cost of monitoring programs can be very
high. This thesis contributes two techniques for reducing the high execution time overhead
of program monitoring: 1) customization and 2) shadow processing. These techniques

have been tested using a memory access monitoring system for C programs.

“Customization” reduces the cost of monitoring programs by decoupling monitoring
from original computation. A user program can be customized for any desired monitoring
activity by deleting computation not relevant for monitoring. The customized program is
smaller, easier to analyze, and almost always faster than the original program. It can be
readily instrumented to perform the desired monitoring. We have explored the use of pro-
gram slicing technology for customizing C programs. Customization can cut the overhead

of memory access monitoring by up to half.

“Shadow processing” hides the cost of on-line monitoring by using ‘idle processors in
multiprocessor workstations. A user program is partitioned into two run-time processes.
One is the main process executing as usual, without any monitoring code. The other is a
shadow process following the main process and performing the desired monitoring. One
key issue in the use of shadow process is the degree to which the main process is burdened

by the need to synchronize and communicate with the shadow process. We believe the



i
overhead to the main process must be very modest to allow routine use of shadow process-

ing for heavily-used production programs. We therefore limit the interaction between the
two processes to communicating certain irreproducible values. In our experimental
shadow processing system for memory access checking the overhead to the main process
is very low — almost always less than 10%. Further, since the shadow process avoids
repeating some of the computations from the main program, it runs much faster than a sin-

gle process performing both the computation and monitoring.
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Chapter 1

Introduction

1.1 Motivation

Programs are monitored for various reasons including fault-tolerance, performance eval-
uation, correctness checking, and security [30]. There are three basic approaches to moni-
toring: hardware, software, and hybrid approaches. Hardware monitoring requires
specialized hardware on which application programs run. Software monitoring requires
instrumenting the application program’s source code, system libraries, or compiler.

Hybrid monitoring combines the hardware and software approaches.

Software monitoring approaches are generally more portable than hardware approaches
and hence are more widely used. Profiling on Unix by giving compilers a special flag (typ-
ically -p for the analyzer prof) and memory access checking using Purify[11] are two

widely used examples of the software monitoring approach. Other examples of software
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monitoring include run-time correctness checking provided by diagnostic compilers [7].
Run-time checks can detect errors that cannot be detected at compile-time, including array

bound violations, invalid pointer accesses, and use of un-initialized variables.

Unfortunately, instrumentation required for software monitoring imposes a very heavy
overhead on the speed of execution of the user program. In [32], run-time checks were
added to a C compiler. The code generated ran 10 times slower than the original code.
Similar slowdowns are reported for commercially available run-time error checking sys-
tems such as Purify [11]. This penalty limits the usefulness of software monitoring for
most kinds of performance analysis or correctness checking; especially for heavily-used
production programs.The goal of this work is to speed up software monitoring so that it

becomes affordable even for heavily used production programs.

1.2 Contributions

The major contributions of this thesis are two techniques to reduce the high cost of soft-
ware monitoring: 1) program customization and 2) shadow processing. These techniques
were mainly tested in the context of monitoring memory accesses in C programs, though

they can be easily adapted to other kinds of monitoring activities.

As an experimental framework a source-to-source translation technique called “guard-
ing” was developed for monitoring array and pointer accesses in C programs. Although
the basic ideas in guarding have been previously studied, we contribute many innovations

and practical solutions for handling “real” C programs. We have used guarding to uncover



many previously unreported errors in popular Unix utilities and benchmarks.

A prototype slicing tool for C programs was also developed during this work. The tool is
based on a slicing back end that is an offshoot of the Wisconsin Program-Integration Sys-
tem [26]. We believe our use of slicing for program customization is a novel application of

program slicing technology.

1.3 Customization

In practice when a user program is monitored for a particular activity the results from the
original computations of the program are seldom of any immediate interest. Customization
reduces the overhead of monitoring by decoupling monitoring from the original computa-
tion. A user program is customized for a monitoring activity by throwing away computa-
tions not relevant for the monitoring. The customized program is easier to analyze and
almost always faster than the original program. We have explored using static program
slicing for customization as a novel application of slicing technology. We use the activity
being monitored as the slicing criteria to get an executable, sliced user program custom-
ized for monitoring. Customization can cut the overhead of memory acc:‘ess monitoring by

up to half.

1.4 Shadow Processing

General purpose multiprocessors are becoming increasingly common. “Shadow process-

ing” is a technique that uses pairs of processors, one running an ordinary application pro-
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gram and the other monitoring the application’s execution. We call the processor doing the
monitoring a “shadow processor,” as it ‘“‘shadows” the main processor’s execution. We
have developed a prototype shadow processing system for memory access monitoring of C
programs. Our system instruments a user program to obtain a “main process” and a
“shadow process.” The main process performs computations from the original program,
occasionally communicating a few key values to the shadow process. The shadow process
follows the main process, checking pointer and array accesses. The overhead to the main
process is very low — almost always less than 10%. Further, since the shadow process
avoids repeating some of the computations from the input program, it runs much faster
than a single process performing both the computation and monitoring. Sometimes the
shadow process can even run ahead of the main process catching errors before they actu-

ally occur.

1.5 Thesis Organization

The two monitoring techniques proposed in this work were tested in the context of mem-
ory access checking of C programs. Our experimental framework, inclu-ding the details of
our basic instrumentation technique for checking pointer and array accesses in C pro-
grams, is described in Chapter 2. Chapter 3 presents ways to reduce the overhead of mon-
itoring by customizing the user program. Shadow processing, a technique for concurrent
monitoring using idle processors in multiprocessor workstations, is described in

Chapter 4. Conclusions and directions for future work are presented in Chapter 5. A brief
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description of some of the errors discovered by our prototype guarding system is pre-

sented in the Appendix.



Chapter 2

Experimental Framework

2.1 Introduction

This chapter describes a prototype memory access monitoring system used to evaluate
the effectiveness of various monitoring techniques proposed during this work. The proto-
type implements a source-to-source translation technique for run-time checking of array
bound violations and invalid pointer accesses in C programs. We call our checking tech-
nique guarding. It involves creating objects called guards to verify time and space bounds
for pointers and arrays in the user program. These guards are used to check legality of
pointer dereferences and array accesses. An illegal access may either violate a space
bound (accessing an array element past the maximum index) or a time bound (accessing
memory that has been de-allocated). Austin er al [2] have reported a similar technique. We

call a user program instrumented for guarding a guarded program.



2.2 Implementation

Guarding was implemented on a Sun SPARCstation running SunOS Release 5.4 (Solaris

2.4). An overview of our prototype is shown in Figure 1.

foo.c )-#>| Simplifier -9 _s_foo.c }-#=| Translator @—» GCC

Original Program Simplified Program Guarded Program

D Frontend for guarding. driver.c

Figure 1: Overview of guarding system

Analyzing and tracking expressions involving pointers in C can be a formidable task.
These expressions may involve side-effects and multiple dereferences. Further, they can
occur as loop conditions, array indices, actual parameters etc. A simplification phase was
introduced to restrict the case analysis required for guarding. Our simplifier is a C-to-C
translator whose output is a subset of C similar to the intermediate representation called
SIMPLE from McGill university[13]. Simplification greatly reduces the number of cases
to be analyzed by the translator phase — there are only 15 types of basic statements in any
simplified program. However a large number of temporary variables may be introduced.
These variables can increase the demands on register allocation. Hencc; a simplified pro-
gram (compiled with —~04 using gcc 2. 5. 8) typically runs around 1-2% slower than the

original input program on a Sun SPARC 630 MP.
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The translator in Figure 1 reads in a simplified program and produces a guarded pro-

gram. The guarded program along with a driver routine can then be compiled by a native C

compiler such as gcc.

2.2.1 Guards

Each pointer1 p in the original program has a guard G_p in the guarded program. The
guard for a pointer stores spatial and temporal attributes for the pointer’s referent. The idea
is similar to safe pointers used in [2]. However we store attributes separately from the
actual pointer; this allows us to concurrently monitor pointers in one process using guards
in another process. Operations on pointers in the original program lead to corresponding
operations on guards in the guarded program. An array of pointers in the original program
has an array of guards in the guarded program. Structures and unions containing pointers

have objects containing guards in the guarded program.

Valid pointers in C contain addresses of data objects (including pointers) or functions. In
programs that do not cast non-pointers into pointers, the origin of a valid object pointer
can be traced back to either the address-of operator, &, or a call to a r;lemory allocation
routine such as malloc (). In either case, there is an object the pointer is meant to refer-
ence. We call the object the intended referent of the pointer. The intended referent has a
fixed size and a definite lifetime. It is clearly illegal to dereference an uninitialized pointer.

Dereferencing an initialized pointer can be illegal for two reasons:

|.We will use the term pointer to include array references as well as ordinary pointers because when an array
identifier appears in an expression, the array is converted from “array of T” to “‘pointer to T"[10].
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1. The memory location being referenced is outside the intended referent of the pointer.
Dereferencing the pointer will lead to a spatial error.
The attributes necessary to verify that a pointer dereference is spatially valid include
the number of elements in the intended referent and the current position of the pointer

inside the intended referent. The actual value of the pointer is unimportant.

2. The lifetime of the intended referent has expired (e.g. the pointer points to a heap or a
local object that has been freed). Dereferencing the pointer will lead to a temporal
error.

We allocate a unique capability (called a key) for each memory allocation in the orig-
inal program. These keys are stored in auxiliary data structures in the guarded pro-
gram. Key values change as objects are allocated and freed. Two attributes are
necessary to catch temporal access errors for a pointer p — a copy of the key of p’s

intended referent and a pointer to the location where the key is stored.

Given the declaration T *ptr; the guard G_ptr in the guarded program has fields
storing spatial and temporal attributes for ptr. Fields of G_ptr are updated in the
guarded program as the value of ptr changes in the original program. The fields of

G_ptr are as follows:

« count : The number of objects of type T being pointed to by ptr. If the intended
referent of ptr is an array, this field will hold the number of elements of the array. If
ptr gets cast into a pointer to another object type, this field will have to be recalcu-
lated.

« index: A pointer in general may point to a collection of objects of a given type;
pointer arithmetic is used to access a particular object in that collection. The field
index in G_ptr denotes the offset of the current object being pointed to by ptr. For
legal pointers, this is a non-negative value less than G_ptx .count . Pointer arith-
metic on ptr leads to changes in G_ptr . index. e.g. in Figure 2, G_p . index is
modified in the guarded program due to the statement “p +=5" in the original pro-
gram.

» lock: An identifying code used to check the temporal legality of a dereference of
ptr.

« key_ Ptr: This field points to the identifying key of an object.This code must match
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Original code Guarding code added
int arr[10]; a_int_guard G_arr;
int *p; a_int_guard G_p;

G_arr.count = 10; /* + clear other fields of G_arr*/
/*code to clear all the fields of G_p*/

p = ait; G_p=G_arr;

p+=35; G_p.index +=3;

‘ | count index lock key ptr shptr
arr G_arr ‘ 10 I 0 |(911)| . l null I
/‘ Gp [10 T 5 [OID] +« Tnul]

', ' . Global_key

&)

Figure 2: An example of guards for pointers and arrays

with the lock field of G_ptr for a dereference of ptr to be temporally valid. In
Figure 2, arr is a global array, the field G_arr . Key_Ptr points to the location of
the key for all global objects, GLobal_Key. Further, G_arr.lock has the same
value (911) as that of Global_Key. After the assignment, p = arr, the intended
referent of p is the same as that of arr, hence all the fields of G_arr are copied in
G_p.

Assignment of the fields 1ock and Key_Ptr is discussed in Subsections 2.2.2 and
2.2.3.

shptr: Pointers are data objects themselves, hence a pointer can reference another
pointer. Each level of a multi-level pointer has a guard associated with it, and there
must be a way to access each of those guards.The field shptr is used for that pur-
pose. In Figure 3, the intended referent of p is another pointer g, G_p . shptr points
to the guard of g viz. G_g. Thus the 2-level dereference * *p leads to checking of two
guards G_p and * (G_p.shptr) (whichis G_q).



Original code

Guarding code added

char **p,*q, c;

q = &c;
p=&4q;

b_char_guard G_p; /* Level 2 guard */
a_char_guard G_gq; /* Level 1 guard */
/*set fields of G_q*/G_q.shptr = NULL;
/*set fields of G_p*/G_p.shptr = &G_g;

p q

Figure 3: An example of guards for multi-level pointers.

C

shptr —«Sgp(u NULL

G_p G q

In C, invalid pointers [10] can be created by casting arbitrary integer values to pointer
types, by de-allocating the storage for the referent of the pointer, or by using pointer arith-
metic to produce a pointer pointing outside its intended referent. It is legal to create or

copy invalid pointers — attempts to dereference them are illegal. Thus pointer arithmetic

and copying in the main program go unchecked.

Each pointer dereference implicit in p[1] or * (p+1) in the original program leads to

two run-time checks in the guarded program:

check((unsigned)(G_p.index + i) < G_p.count)
check(G_p.lock == *(G_p.key_ptr))
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The two checks are for the spatial and temporal legality of the dereference p[{i] or

* (p+1). The first check is equivalent to "0 <= (G_p.index+1) <

G_p.count.”

2.2.2 Shadow heap

An auxiliary data structure called the shadow heap is maintained in the guarded program
to help check accesses to heap objects in the original program. The shadow heap is an
expandable array of unsigned integers. Each heap object in the original program has a slot
in the shadow heap containing an identifying integer that is a key for the object. After a
dynamic allocation of an object O in the original program, a slot from the shadow heap is
reserved for O until the time O is de-allocated. This slot stores the (essentially) unique key
value for O. A list of empty slots arising due to de-allocations of objects is maintained
along with the shadow heap. These empty slots are reused later to avoid unbounded expan-
sion of the shadow heap (much like a free-space list). When a pointer p points to a valid
heap object O, G_p .key_ptr points to the shadow heap slot corresponding to O. Fur-
ther, the key value in that slot matches G_p . lock. Key values are assigned using a glo-
bal counter called HeapKey which wraps around to zero after reaching the maximum
value (typically 232.1). Thus there is an extremely small chance (typically << 232y that a

dereference (*p) of a pointer whose referent has been freed will go undetected. We shall
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consider the chance so small that it may be safely ignored. Actions on a dynamic alloca-

tion are explained below:

Original code Guarding code added

p = malloc(S) G_p.count = S/aligned_sizeof( *p)
G_p.index =0

G_p.key_ptr = Next_heap_slot()
*(G_p.key_ptr)= G_p.lock = HeapKey++

The function Next_heap_slot () returns the address of an empty slot in the shadow
heap. If p is a multi-level pointer, malloc (S) results in allocation of a certain number
(N) of pointers. Guards for these newly allocated pointers also need to be allocated using
the statement “G_p.shptr = calloc(N,sizeof (G_p))” where N is
G_p.count. If p is a single level pointer, a NULL value is assigned to G_p.shptr.
Calls to calloc are handled very much like calls to malloc. A call real-
loc(p,newsize) leads to changes in G_p.count. A call free(p) leads to the
checking of temporal and spatial legality of *p. “G _p.index > 0 indicates p cur-
rently points in the middle of an object; a warning message may be printed here. In addi-
tion, freeing of non-heap objects is detected by requiring that G_p . key_ptr points into

the shadow heap.

2.2.3 Shadow stack

In C, it is illegal to dereference a pointer to a local variable of a function that has exited.
To catch these dereferences, an auxiliary data structure called a shadow stack is main-

tained. It is a stack of unsigned integers. Each active frame in the run-time stack has a slot
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in the shadow stack containing its identifying key value. All local variables in a function
share a slot and a key value. The key values are assigned using a global counter called
StackKey. On a function entry, a slot gets pushed on the shadow stack, StackKey is incre-
mented and its value gets stored in the newly pushed slot. On a function exit, the top slot
from the shadow stack is erased and popped. After the assignment p = &var in the orig-
inal program, G_p.key_ptr in the guarded program is made to point to the shadow
stack slot corresponding to var’s enclosing frame (global variables use a special
Global_ Key which is the same as the shadow stack slot for the function main()). As
long as the frame containing var is active, G_p. lock will continue to match the key
value in the slot pointed by G_p . key_ptr. After the frame containing var is exited, its
shadow stack slot will be erased. If an attempt is made to dereference p now, the temporal
check (G_p.lock==*(G_p.Key_Ptr)) will fail. The shadow stack slot corresponding to
an exited function will get reused on the next function entry (possibly to the same func-
tion) with a different key value (StackKey value at that time). Hence, dereferencing p will

continue to lead to a temporal error.

Actions after an assignment p = &var are explained below:

Pointer operation Guard operation

p = &var G_p.count = |

G_p.index =0

G_p.key_ptr = <frame_slot for var>
G_p.lock = *(G_p.key_ptr)
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The value <frame_slot for var> is the address of the slot corresponding to var’s

activation record in the shadow stack. If p is a multi-level pointer, var must be a pointer
with its own guard G_var. In this case the statement “G_p.shptr = &G_var” is

needed. Otherwise a NULL value is assigned to G_p . shptr.

setjmp and longjmp functions in C implement a primitive form of non-local jumps
[10]. setjmp (env) records its caller’s environment in the “jump buffer” env, an
implementation-defined array. The function longjmp takes as its argument a jump buffer
previously filled by calling setjmp and restores the environment stored in that buffer.
Many active frames on the stack may become inactive after a longjmp. We handle this
by popping and erasing corresponding slots in the shadow stack before doing the corre-

sponding Longjmp in the guarded program.

2.2.4 Handling peculiar C language features

Our prototype requires that the input program does not cast non-pointer values into
pointers. Casting a low level pointer to a higher level (e.g. casting an_int * into int
**) is also prohibited; as an exception casting char * returned by malloc () orcal-
loc () to higher level pointers is allowed. We had to modify some of the test programs to
handle casting of low level pointers to a higher level. Our translator currently detects
pointer misuses and quits with an appropriate message. An alternative would be to flag the
guard for a misused pointer to be unsafe at run-time and skip further checking for that

pointer.
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Multidimensional arrays in C can be reshaped (e.g. a two dimensional array of size mXn

can be treated as a one dimensional array of size m*n or another two dimensional array of
size (m/2)X(2n)). To uniformly handle such reshaping our simplifier converts multi
dimensional arrays to one dimensional arrays. All the accesses to a multidimensional

array are simplified into accesses to the corresponding uni-dimensional array.

There may be unions overlaying pointers with non-pointers in a C program. For exam-
ple:

union {
char *fieldl;
int field2;
struct s * field3;
jul;

Suppose ul is a union described above. It is a “misuse” [10] to treat the value of £ield?2
of ul as fieldl. We maintain a run-time tag indicating the type of the currently active
field of a union in the guarding object for the union. The guard G_ul for ul in the exam-
ple above looks as follows:

struct {
char * tagname; /* currently active field */
union {
a_char G_fieldl;
a_struct_s G_field3;

}
}G_ul;
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G_ul.tagname is set appropriately whenever a field of ul is assigned to in the origi-
nal program. A reference to a field of ul in the original program leads to a verification of

G_ul.tagname in the guarded program.

Functions with pointer arguments take corresponding guards as extra arguments in the
guarded program. Functions returning pointers need to also return corresponding guards

in the guarded program. A guard for a returned pointer is returned indirectly using an extra

parameter.
Original code Guarded code
foo(char *p,int c); guarded_foo(char *p,int c,a_char_guard G_p);
char * bar(); char * guarded_bar(a_char_guard *G_retval);
q = bar(); q = guarded_bar(&G_q);

Currently, we perform checks only for user defined functions for which source code is
available and we provide a clean interface for external functions. There is no passing of
guards for pointer parameters to external functions. Special handling is needed for exter-
nal functions returning pointers. The external functions may either be “system calls” (as
described in section 2 of the UNIX man pages) or “C-library routines” (as described in
section 3 of the UNIX man pages). Calls to operating system kernel routines (system
calls) are one source of non-determinism for programs. A system call is a well defined
entry point into operating system code. The return value of a system call depends on the
state of the operating system data structures at the time the call was made. If we want the
guarded program to get the exact same return values from the system calls as the original

program then we will have to instrument the original program to record the return values
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of system calls. From our experience with SPEC92 benchmarks, the number of values to
be recorded are too few to cause any significant difference in the execution of the original
program. However, we believe that letting the guarded program repeat the system calls is
safe —as it will monitor some feasible run of the original program. Also it allows us to run

a monitored program independent of the original program.

Currently, we support only single process programs. Programs calling fork or exec
are not supported. We can envision creating a new guarding process for each child of the

original process.

2.3 Errors uncovered

Run-time errors that do not crash programs can go unnoticed for a long time. Guarded
programs report such errors as they occur. Programmers can use the feedback from the
guarded programs to eliminate subtle bugs. We uncovered unreported errors in seven test
programs that did not crash. These programs (with the number of errors in parentheses)
were decompress(1) and sc(2) from SPEC92, cholesky(2) and locus(2) from the SPLASH
benchmarks, and cb(1), ptx(4), and ul(1) from SunOS. Four SunOS u.tilities col, deroff,
uniq, and units crashed with random inputs. These were already reported to be buggy [24]
in earlier versions of SunOS. However, we found new errors in these utilities as well. In
all, we uncovered 19 errors in eleven programs. We include a brief description of some of
those errors in the Appendix. We expect further testing will reveal errors in other widely-

used programs.



2.4 Performance of Basic Guarding

We use programs from the SPEC92[4] benchmarks to report performance of guarding.

Table 1: Guarding: Characteristics of test programs

Pro- f# of # of Description
gram files lines P
. l 272 | Trains a neural network using back propagation to
alvinn . .
keep a vehicle from driving off a road.
com- 1 1503 | A data compression application that uses Lempel-Ziv
press coding to compress a 1MB file. (Modified for testing.)
ear 13 5237 | Uses FFTs and other library routines to simulate the
human ear.
eqntott 23 3454 | Translates boolean equations into truth tables.
44 14838 | An EDA tool that generates and optimizes PLA struc-
espresso
tures.
sc 8 8485 | A spreadsheet benchmark.
xlisp 22 7741 | A LISP interpreter. (Modified for testing.)

Some characteristics of our test programs are described in Table 1. For performance mea-
surement we used gcc version 2.6.3 with optimization level -O4 to compile various ver-
sions of test programs. Execution times were measured on a dual processor Sun
SPARCstation 20 running SunOS 5.4 (Solaris 2). This machine has two 66 Mhz Ross

HyperSPARC with 256K L2 cache and 64MB of memory.

The core of our implementation is a source-to-source translator that generates a guarded

program for an input C program. We compared the performance of our implementation of
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basic guarding with that of Purify which is a very popular commercial tool modifying

object files for a variety of run-time checks. See Section 2.5 for more details on Purify.

Adding code for run-time checking increases static program sizes as shown in Table 2.
In purified programs the increase in text segment size is proportional to the static number
of loads and stores, in guarded programs it is proportional to the static number of pointer

operations. We do not know the implementation details of Purify but our best guess is that

Table 2: Guarding: Increase in program sizes

Program (#((3; i)g)i':lélsl in P}n’iﬁed GParded
thousands) (% increase) (% increase)
text | data+bss text data+bss text data+bss
alvinn 144.6 | 463.6 181.2% 9.9% 8.1% 0.2%
compress | 103.7 4247 218.8% 10.8% 12.9% 0.2%
ear 181.7 24.1 156.8% 190.9% 52.6% 7.5%
eqntott | 121.2 284.7 194.6% 16.1% 111.7% 467.0%
espresso | 274.2 15.2 131.5% 302.6% 355.5% 32.9%
sc 253.4 97.4 133.9% 47.1% 145.3% 313.4%
xlisp 197.4 13.8 151.1% 333.3% 191.5% 65.2%

the increase in data and bss segment sizes in purified programs is due to some internal data
structures that a purified program maintains. For a guarded program, the increase is pro-
portional to the global pointer declarations in the original program since they lead to dec-
larations of corresponding guards (of size 5 times the original pointer size) in the guarded

program. The increase is very pronounced in case of egnrott and sc. Both these programs
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use parsers generated by the parser generator yacc. These parsers contain large global
arrays of structures containing pointers generating even larger arrays of objects containing

guards in the guarded program.

Run-time checking incurs overhead in execution time as shown in Table 3. The increase

Table 3: Guarding: Increase in execution time (user + system)

Original Purified Guarded
Program (time in sec- (% (%
onds) increase) increase)
alvinn 25.6s 774.6% 472.3%
(50
epochs) '
compress 29s 748.3% 113.8%
decom- 20s 765.0% 145.0%
press
ear 307.7 s 589.1% 642.0%
eqntott 18.8 s 735.6% 1337.2%
espresso 79 s 1107.6% 648.1%
sC 38.6s 613.5% 173.3%
(loadc2)
xlisp 122.1s 988.1% 775.6%

in execution time for purified programs is proportional to the dynamic number of loads
and stores in the original program. For guarded programs the increase is proportional to
the dynamic number of pointer operations including array references. The pointer opera-

tions include pointer arithmetic, pointer copying, passing pointer parameters in addition to
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pointer dereferences. The effect of having a large number of dynamic pointer operations is

most apparent in the increased execution time for egntott.

Run-time checking also increases the dynamic memory requirements of programs. Most
of the dynamic memory a purified program uses is obtained using a call to mmap (),
whereas guarded programs use heap-allocated dynamic memory. We could not meaning-
fully compare the increase in dynamic memory requirements for purified and guarded pro-
grams because it is very hard to monitor the amount of mmaped dynamic memory on
Solaris 2. The increase in heap usage for guarded programs is due to two factors: 1)
dynamic allocations of structures/unions containing pointers and 2) sizes of the shadow
heap and shadow stack. A dynamic allocation of structures/unions containing pointers
leads to a larger allocation of objects containing guards. We maintain the auxiliary data
structures ‘shadow heap’ and ‘shadow stack’ in the heap at run-time in guarded programs.
The size of the shadow heap is proportional to the total number of dynamic allocations in
the original program. The size of the shadow stack is proportional to the maximum depth

of the run-time stack of the original program.

We found that the time to generate a guarded program is generally higher (up to 5-6
times in the worst case) than the time to generate a purified program. Increase in compila-
tion time due to Purify’s object level instrumentation can be high if an entire library has to
be instrumented (as is the case with 1ibcurses used in sc). Guarding increases process-

ing time in two ways. First, the source-to-source translation with extensive analysis of
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pointer declarations and uses can be time consuming; our implementation works in two
phases (simplification followed by translation) paying the cost of disk I/O for simplified
files. Second, the guarded program takes much longer to compile and link than the original

program because of the instrumentation added.

2.5 Related Work

CodeCenter[17] is a programming environment that supports an interpreter-based devel-
opment scheme for the C language. The evaluator in CodeCenter provides a wide range of
run-time checks. It detects approximately 70 run-time violations involving illegal array
and pointer accesses, improper function arguments, type mismatches etc. Interpretation of
the intermediate code for supporting these checks is very expensive though; the evaluator

executes C code approximately 200 times slower than the compiled object code.

Purify [11] is a commercially available system that modifies object files to, essentially
implement a byte-level tagged architecture in software. It maintains a table at run-time to
hold a two-bit state code for each byte in the memory. A byte can have a status of i) unal-
located, ii) allocated but uninitialized, or iii) allocated & initialized. A call to a checking
function is inserted before each load and store instruction in the input object files. This
checking function verifies that the locations from which values are being loaded are read-
able (i.e. allocated and initialized) and the locations in which values are being stored are
writable (i.e. allocated). Slowdowns by a factor of 5-6 are very common for Purified

pointer intensive programs. Purify is very convenient to use because it works on object
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files and can handle third-party libraries for which source code may not be readily avail-
able. However the major disadvantage of working at the object level is that Purify can not
track the intended referents of pointers. Any access to memory that is in an allocated state
is allowed. This severely restricts the kinds of errors that Purify detects. For example, an
out of bounds array access can go undetected if it accesses a location belonging to another
variable. If a pointer’s intended referent is freed and the memory is reallocated, derefer-
encing the pointer should lead to a temporal access error; however Purify is also unable to
detect that error. However, Purify detects more types of errors than our system (e.g. detect-

ing un-initialized memory read) and also performs memory leak detection.

Austin et al [2] have proposed translation of C programs to SafeC form to handle array
and pointer access errors. Their technique provides “complete” error detection under cer-
tain conditions. They have reported execution time overhead in the range of 130% to
540% for 6 (optimized) test programs. Their experimental system requires the user to con-
vert each pointer to a safe pointer using a set of macros. A safe pointer is a structure con-
taining the value of the original pointer and a number of object attributes. An input C
program, annotated with macros, results in a C++ program which combined with some
run-time support performs pointer access checking. Guarding shares the “completeness”
of error detection with SafeC. Unlike the SafeC system, insertion of checks in our system
is completely automated. Temporal access errors in SafeC are caught using a “capability”
attribute which is an essentially unique value per object, much like the lock in shadow

guards. However, checking temporal validity of a pointer access involves an expensive
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associative search in a capability database. Such a search is avoided in shadow guarding

by adding the key_ptr field in guards. The value of the key_ptr in shadow guards
also serves to determine the storage class of objects. Hence a separate “storage class”

attribute, as in safe pointers, to catch freeing of global objects is not necessary.

We are aware of commercially available memory access checking tools called
BoundsChecker from NuMega Technologies (http://www.numega.com/) and Insure++
from ParaSoft (http://www.parsoft.com/). Presumably these tools also work at the source
level like our system. Unfortunately we could not meaningfully compare our system with
these tools as we have not come across any publications describing the internal details of

these tools.
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Chapter 3

Customization

3.1 Introduction

Monitoring any activity in a program involves instrumenting the program to collect data
or trigger run-time actions. An instrumentation tool first identifies points in the program
where the activity of interest may be taking place — we call these program points the
monitor points. The next step is to add code around the monitor points to actually collect
data or trigger actions. For example, for producing branch statistics the monitor points
include all the branches and function calls in the program; instrumentation is then added to

increment counters.

For many activities of interest, instrumentation often slows down a program 3-4 times.
Hence programs are not routinely monitored. Many researchers have focussed on using

compile time analysis to reduce the cost of instrumentation. For example QPT, a profiling
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and tracing tool[3], places code for incrementing branch counters at strategic places
instead of at all the branch points. Other examples of static analysis include eliminating
redundant array access checks[9] and efficiently deciding which variables to trace for data

race detection[23].

We propose to speed up the monitoring process by decoupling monitoring from the orig-
inal computation. Our approach is motivated by the observation that in practice an instru-
mented program is executed with the sole purpose of monitoring some activity -— the
results of the computation from an instrumented program are seldom of primary interest.
The basic idea is to obtain a modified version of the original program that performs just
enough computation to monitor the activity of interest. We call this modified version of
the program a customized program. The customized program can then be instrumented to

perform the desired monitoring. Figure 4 outlines two ways of instrumenting programs for

p.c Input program p.c

\

(' Customize @

cst_p.c Customized program

C Instrument > C Instrument )
mon_p.c I.nstrumented mon_cst_p.c Instrumented
original program customized program
A: Traditional Approach B: Our Approach

Figure 4: Generating Monitoring Programs
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monitoring. Figure 4:A shows the traditional approach where many optimizations are per-
formed in the instrumentation phase. Figure 4:B outlines our approach to generating pro-
grams. Instead of focusing on how much instrumentation needs to be included for the
given monitoring activity we focus on how much computation can be excluded from an
instrumented program. The result is an input program customized for a given monitoring
activity. The customized program is smaller and faster than the original program. It can
then be instrumented for actual monitoring. Use of our technique is orthogonal to use of
other static analysis techniques for reducing instrumentation overhead — all those tech-

niques can be used during instrumentation of the customized program.

During this work, we experimented with customization in two different contexts 1) cus-
tomization of shared-memory parallel C programs (SPLASH benchmarks [31]) for moni-
toring shared-memory accesses and synchronization operations and 2) customization of
sequential C programs for guarding. We mainly used static program slicing for customiza-
tion. A program slice consists of all the parts of a program that (potentially) affect the val-
ues computed at some point of interest, referred to as a slicing criterion. To customize a

program for a given monitoring activity, we use the monitor points as the criteria for slic-

ing the program.

Our customizer uses a slicing tool based on a slicing back end from the Wisconsin Pro-
gram Integration System (WPIS). The back end operates on a program representation

[14] called the system dependence graph (SDG). The algorithm described in [15] is used
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to produce an interprocedural executable slice from the control flow and call graph infor-

mation produced by a C front end.

The overall benefit of customization in terms of the reduction in monitoring overhead
depends on three factors: 1) the frequency of occurrence of the monitor points, 2) the
nature of the instrumentation added, and 3) the precision of the slicing tool used for cus-
tomization. These factors are discussed in more detail in the sub-sections on performance

later in this chapter.

3.2 Background and Related Work

The slice of a program with respect to program point p and variable x consists of all
statements and predicates of that program that might affect the value of x at point p. An
executable slice (version 2 of the slicing problems described in [14]) of a program with
respect to program point p and variable x consists of a reduced program that computes the
same sequence of values for x at p. One classification of program slices considers whether
the slice is specific to a particular execution of the program for a given input (a dynamic
slice) or the slice covers all possible executions of the program (a static slice). We are

interested in executable static slices.

Tip [33] reports many applications of static and dynamic slices. Not many applications
actually try to execute a static slice. One such application is proposed by Weiser in [34]
where he describes use of executable static slicing for automatically parallelizing the exe-

cution of a sequential program. Several slices of a program are executed in parallel and the
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outputs of the slices are spliced together in such a way that the input/output behavior of
the original program is preserved. The splicing process may take place in parallel with the

execution of slices. Only programs with structured control flow are considered.

The idea of executing modified, abstract versions of programs to reduce time and space
overhead of tracing was used by a system called AE[20]. AE implements a technique
called Abstract Execution for tracing incidents during a program’s execution. Instead of
instrumenting a program P to record a set of events E, Abstract Execution instruments P to
collect a smaller set of significant events SE and also derives a program P’ that uses SE to
re-generate E. The implementation of abstract execution in the system AE uses a restricted
form of intra-procedural slice to determine which events are significant. An event is con-
sidered significant if a backward slice with respect to that event includes a so-called
impossible instruction (such as a function call). In addition, branches are always consid-
ered significant and the outcome of every branch condition is always recorded. P’ uses SE,
outcomes of branches and performs some recomputation to regenerate E. Our technique
can be viewed as one extreme form of abstract execution where the set of significant
events, SE, is emptyl; and P’ recomputes all the information, including the branch condi-
tions, needed to regenerate E. Our technique uses a general, inter-procedural slicing algo-

rithm to generate P’.

1.Except possibly the return values of system calls; see Section 3.5 for more details.
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3.3 Customizing SPLASH benchmarks

We customized some programs from the SPLASH benchmarks [31] for monitoring syn-
chronization operations and shared memory accesses in parallel programs. These monitor
points are needed for tracing shared-memory programs for instant replay. The same moni-

tor points can also be used for data race detection [5].

SPLASH programs are parallel programs with a shared memory programming model,

they use explicit synchronization and process creation operations. Some characteristics of

our test programs are described in Table 4.
Table 4: Characteristics of SPLASH programs tested

#of # of lines
Program # of files procedures in | (preprocessed
the call graph | & simplified)
mp3d 3 44 4204
cholesky 9 74 5693
water 12 33 7876
locus 15 135 12105
pthor 25 258 29175

To generate a SPLASH program customized for execution replay we provided all the
synchronization operations and all the shared memory references in the program as slicing
criteria to our slicing tool. To side-step the alias problem while identifying the shared ref-
erences, we modified the SPLASH benchmarks to make all the shared references explicit

by converting them to macros. This is not unusual; the question of what shared memory
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addresses are accessed by a statement is very hard to answer precisely (particularly for C

programs). Many researchers either bypass the problem or make conservative assumptions
[12]. Since our current approach of manually annotating shared references is very tedious

and error-prone an automated analysis is definitely warranted.

3.3.1 Results

We used two criteria to determine the accuracy of the slices that are produced by our
technique: 1) The slice should execute without any run-time errors. 2) The count of moni-
tor points produced by executing the slice should match the count from the original pro-
gram. A trivial instrumentation phase was built into our slicer that instruments the sliced

programs to count monitor points.

Slicing and experiments were performed on a dual processor Sun SPARCstation 20 run-
ning SunOS 5.4 (Solaris 2). This machine has two 66 Mhz Ross HyperSPARC with 256K
1.2 cache and 64MB of memory. For performance measurement we used gcc version 2.6.3
with optimization level -O4 to compile various versions of test programs. We sliced the
test programs using two kinds of slicing criteria 1) synchronization operations 2) synchro-

nization operations and shared memory accesses. The time spent in the slicing back end
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was a typically a few minutes, with the time for pthor being the maximum, around 30 min-

utes.
Table 5: Slicing SPLASH benchmarks: # of SDG vertices
Program # of nodes in the system dependence graph (SDG)
Slice: Slice:
.. . o Synchronizations & shared
Original Synchronization only
(% deleted) memory references
(% deleted)
mp3d 5331 3831(28.1%) 4117 (22.8%)
cholesky 5680 3932 (30.8%) 4008(29.4%)
water 6411 5125 (20.1%) 5194 (19.0%)
locus 23909 15220 (36.3%) 17159(28.2%)
pthor 51289 21906(57.3%) 27844 (45.7%)

Looking at the static information (# of SDG nodes) in Table 5 as much as 1/2 of the sys-
tem dependence graph gets “sliced away.” This may not directly translate into an equiva-
lent reduction in monitoring overhead because part of the SDG nodes deleted represent
dead code which would not have been executed in the original program anyway. However,
eliminating that dead code leads to smaller programs which are easier to analyze than the

original program.

It appears that slicing may not benefit the smaller test programs very much because they
are short, tightly written kernel routines with very little output — they are unlikely to have
much computation that does not contribute to synchronization operations and shared

memory references. Results for the larger applications are very encouraging. One interest-



34
ing point from the results in Table 5 is the that number of SDG nodes deleted for synchro-

nization only is not much larger than the number for both synchronization and shared
references. This may be due to the fact that most of the synchronization operations them-
selves use shared memory locations, hence most of the computations affecting shared ref-

erences get included in a synchronization-only slice.

The real measure of how well our approach of generating monitoring programs com-
pares with the traditional approach (Figure 4) is the ratio of the execution time of the cus-
tomized monitoring program (mon_cst_p.c in Figure 4:B) to the execution time of a
monitoring program obtained using the traditional approach(mon_p.c in Figure 4). How-
ever, this ratio also depends on the nature of actual instrumentation and optimizations per-
formed during instrumentation. Unfortunately, instrumenting SPLASH benchmarks for
any real task (e.g. race detection) was beyond the scope of this work. To judge the poten-
tial benefit of our slicing approach in isolation, we instrumented the SPLASH programs to
simply count the number of synchronizations and shared memory accesses. Table 6 and

Table 7 present the overhead of “trivial” monitoring of SPLASH programs. The instruc-
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tion counts reported in these tables were obtained using the utilities gpt2 and gpr2_stats

[3].
Table 6: Effect of Customization: Counting Synchronizations
Original F requency of % Overhead
. synchroniza-
(dynamic tions
Program i“Stl;‘fCtiOf‘l [once every Traditional Our approach
count In M= N instruc- approach
lions) .
tions]
mp3d 17.9 31470 0.01% -0.2%
cholesky 34.0 689 0.6% 0.2%
water 28.4 2270 0.1% -0.0%
locus 815.0 10008 0.1% -4.7%
pthor 76.9 2107 0.2% -2.4%

The monitor points used for customizing the SPLASH programs in our experiments are
very sparse. This is indicated by the numbers in the third columns of Table 6 and Table 7.
Since the monitor points are executed so infrequently the basic overhead of counting the
monitor points with the traditional approach is not much; however customization with
slicing reduces this overhead even further. In some cases the customized program actually

ran faster than the original program.

Since the instrumentation added is extremely light weight we believe the improvements
obtained for “trivial” instrumentation give an upper bound on the benefit of customization.
On the other hand, the numbers presented in Table 6 and Table 7 can be further improved

with a better alias detection algorithm in our slicing tool as currently many conservative
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assumptions about possible side-effects of pointer dereferences result in larger program

slices than are needed.

Table 7: Effect of Customization: Counting Synchronizations and Shared accesses

Frequency of % Overhead
Original synchroniza-
(dynamic tions and
Program instruction shared Traditional Our approach
count in mil- accesses approach
lions) [once every N
instructions]
mp3d 17.9 1483 0.2% 0.1%
cholesky 34.0 689 0.6% 0.2%
water 28.4 1133 0.2% 0.1%
locus 815.0 9 32.6% 28.8%
pthor 76.9 200 1.6% -0.1%

3.4 Customization for guarding

Checking pointer and array accesses is an expensive operation; it routinely slows down

the input program 3-4 times. Most past attempts at reducing this overhead have concen-

trated on using compile time analysis to reduce the number of run-time checking asser-

tions. There has been much work on eliminating redundant array bound checks in

FORTRAN [9, 18]. Unfortunately techniques for FORTRAN can not be readily applied to

C programs because of the presence of pointers. Pointer arithmetic, equivalence of arrays

and pointers, and aliasing in C programs require conservative assumptions to be made dur-

ing compile-time analysis for eliminating run-time checks. We have implemented such a
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conservative analysis in our guarding prototype. We were able to remove up to 10% of the

run-time checks from test programs.

As an alternative way to reduce the guarding overhead we experimented with customiz-
ing C programs for pointer and array access checking. As outlined in Figure 4, we use the
pointer and array accesses as the monitor points for customizing an input program (p . )
for guarding. The reduced, customized program (est_p.c) can then be instrumented for
run-time checking. We call the instrumented reduced program (mon_cst_p.c) a custom-

ized guarded program.

We first implemented a simple scheme to generate a reduced program for guarding. We
look at calls in the user program to functions not defined by the user. These include calls to
external functions — library calls and system calls. We term calls to functions such as
printf which affect the external environment as “output calls.” Some output calls such as
writing into a file must not be repeated in the guarded program lest they interfere with the
result of the user program. Most output calls clearly do not affect the pointer and array
operations in the user program. We have modified the translator for basic guarding shown
in Figure 1 for deleting output calls. We maintain a database of external calls. For each
external function the database stores the category of the call — whether the call is an “out-
put call” or not. Our modified translator consults this database to delete the output calls

from the user program and adds code for maintaining and checking guards to generate a

customized guarded program. Deleting output calls in turn results in deletion of some
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more computation (via dead code elimination) contributing solely to those calls. We have

found that this basic technique of deleting output calls can result in a customized guarded
program that runs up to 23% faster than an embedded checking program (non-customized

guarded program).

We found some test cases in which the customized guarded program obtained by delet-
ing output calls takes almost as much time as the standard embedded checking approach.
These programs do not spend much time in the output routines, hence the value of reduc-

ing output calls is minor.

The speed of guarding can be further improved by using slicing technology to remove
computations not necessary for guarding. To customize the user program for guarding, we
slice the user program using the pointer and array accesses as the criteria for slicing. The
result is a smaller and faster executable program that performs only the computations
affecting the array indices and pointers being dereferenced. This program is then instru-
mented to generate a guarded program. A customized guarded program obtained using

slicing can run more than twice as fast as an embedded checking program.

Our translator for generating a customized guarded program using slicing works in 4
phases. The first phase processes simplified files one-by-one. For each simplified file it
produces two files: 1) a file containing the control flow graph (CFG) for the code in the
simplified file along with node numbers for the abstract syntax tree (AST) and 2) another

file containing the slicing criteria in terms of AST node numbers for array accesses and
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pointer dereferences in the simplified file. The second phase of our translator reads in the

pairs of files for all the simplified files produced by the first phase and calls a slicing rou-
tine in the slicing back end with nodes in the CFG marked according to the slicing criteria.
The slicing back end gives back results by marking the CFG nodes in the slice. For each
simplified file, phase two of our translator then produces a file containing numbers of AST
nodes in the resulting slice. Phase three processes simplified files one by one using the
corresponding slicing results file from phase two and generates sliced simplified files.
Phase four is exactly like the original translator in Figure 1, except that it reads in a sliced

simplified file. The result is a customized guarded program obtained using slicing.

3.4.1 Performance of Guarding with Customization

To judge the effectiveness of various overhead reduction techniques using customization
we compared the performance of customized guarded programs with those of basic, non-
customized guarded programs.Table 8 presents execution times (user and system) for a
few of our test cases with and without output calls in the guarded program. Deleting out-
put calls mainly reduces system time; there is also some change in the user time due to
elimination of code rendered dead by deleting output calls. We noticed that deleting output
calls did affect all the programs we tested; the effect is most pronounced for programs

with a lot of output calls at run-time. An example of such a program is gueens in Table 8
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where deleting output calls made the customized guarded program run not only faster than

Table 8: Customized guarding: Effect of deleting output calls

user and system times
Program ;::;s- d;ig:sl- ear C(l-lzlleilllj
user 23s 1.3s 302.5s 1.0s
Original system 0.6s 0.7s 528 3.5s
total 29s 2.0s 307.7s 45s
user 5.2 4.0s 22779 s 3.7s
Guarded system 1.0s 0.9s 53s 35s
total 6.2 49s 2283.2 s 7.2s
Custom- user 48s 34s 2264.0 s 29s
Gszige 4| sysem | 04s 0.2 0.5s 0.1s
(With- 525 3.6 2264.5s 305
out out- total
put calls)

the basic guarded program but also faster than the original program. This test program
(from McGill University) prints all the solutions to the 11 queens problem. The original
program and the basic guarded program spend a lot of time in output calls, most of which
vanishes from the customized guarded program. We believe that queens is representative
of a certain class of programs such as graphics utilities that spend a lot of time in the out-

put calls and can benefit greatly from customized guarding by deletion of output calls.
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We did notice that for some of our test cases deleting output calls from the guarded pro-

gram has hardly any effect on execution time. We are have experimented with using slic-
ing technology to customize programs as outlined in Section 3.3. We have been able to
slice some of our test cases to obtain sliced customized guarded programs. Table 9 pre-

sents the effect of customization on reducing the overhead of “trivial” monitoring of deref-

Table 9: Effect of Customization: Counting Dereferences

Original % Overhead
. Frequency of
(dynamic
instruction dereferences .
Program | U’ L :nil- [once every N | Traditional Our approach
. instructions] approach
lions)
alvinn 1224.6 3 82.0% -39.0%
(50 epochs)
compress 92.0 11 24.8% 6.8%
decompress 76.0 13 16.9% -24.9%
queens 112.2 21 14.2% -50.2%
(-a1l)
stanford 4473 5 55.2% 49.3%
(20 itera-
tions)

erences in some test cases. The dereferences occur rather frequent1y~ in these cases as
indicated by the numbers in column two of Table 9. Correspondingly, the basic overhead
of counting dereferences with the traditional approach is high. Customization reduced the
overhead of counting dereferences in all the cases; in some cases the customized program

actually ran faster than the original program.
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We also instrumented our customized test programs for guarding. The results are pre-

sented in Table 10. This instrumentation is much more heavy-weight than the “trivial”

Table 10: Effect of Customization: Guarding

% Overhead
(dynamic instruction counts)
Program | Traditional | Our approach
approach
alvinn 635.4% 328.7%
(50 epochs)
compress 212.8% 193.6%
decompress 223.2% 173.6%
queens 280.0% 141.7%
(-a11)
stanford 568.2% 560.0%
(20 itera-
tions)

instrumentation for counting. Further, unlike in the “trivial” monitoring instrumentation 18
added not only at the dereferences but also at various other pointer operations. Hence the
basic monitoring overhead using the traditional approach is very high. Customization

reduced this overhead in all the test cases.



Table 11 presents the execution time overhead for the purified programs and 3 versions

Table 11: Customized guarding: Effect of slicing

Execution time (user + system)
Custom- Custom-
. . . ized ized
Of‘lgm.al Purified Guarded Guarded Guarded
Program (time in (% (% .
. . (no output) (sliced)
seconds) increase) increase)
(% (%
increase) increase)
alvinn 25.1s 792.0% 483.7% 482.9% 282.1%
(50 epochs)
compress 29s 748.3% 113.8% 79.3% 10.3%
decompress 20s 765.0% 145.0% 80.0% 45.0%
queens 45s 233.3% 60.0% -33.3% -60.0%
(-a 1l)
stanford 104 s 659.6% 430.8% 426.0% 239.4%
(20 itera-
tions)

of guarded program. Using slicing to customize guarding looks very promising; it sub-
sumes customization by deleting output calls. Slicing helped us to reduce the execution
time overhead of guarding for all the test programs we were able to slice. The version of
the slicing tool used to generate the customized guarding programs for the numbers
reported in Table 11 is different from the tool used for other tables in this chapter. This
version of the tool made more aggressive assumptions about the side-effects of library
functions. Consequently, the overhead reduction with customized guarding is more pro-

nounced in Table 11 than in Table 10. Another difference between the two tables is that
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the former presents increase in dynamic instruction counts while the latter presents

increase in (user + system) time.

3.5 Discussion

Calls to operating system kernel routines (system calls) is one source of non-determin-
ism for both sequential and parallel programs. A system call is a well defined entry point
into operating system code. The return value of a system call depends on the state of the
operating system data structures at the time the call was made. If we want the monitored
program to get the exact same return values from the system calls as the original program
then we will have to instrument the original program to record the return values of system
calls. From our experience with SPEC92 benchmarks, the number of values to be recorded
are too few to cause any significant difference in the execution time of the original pro-
gram. We believe that letting the monitored program repeat the system calls is safe —as it
will monitor some feasible run of the original program. It allows us to run a monitored

program independent of the original program.

An interesting question to ask is when to run the monitoring program. There are two
alternatives: 1) Concurrently with the original program, 2) On its own — post/pre execu-

tion.

The first alternative requires extra processors; but can generate monitoring information
concurrently with the results of the original program. An extra processor can be used to

routinely monitor programs in the background. This should work well for sequential pro-
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grams as shared memory multiprocessors are becoming increasingly common. We have

used idle processors in a multiprocessor workstation to perform memory access checking

in the background using a technique called shadow processing. Shadow processing is

described in detail in Chapter 4.

Alternative 2 (pre or post execution) may be more practical for parallel programs since
users typically want to use all the parallelism available. However, the speedup obtained for
most parallel programs is far from linear. The incremental benefit of allocating extra pro-
cessors to a parallel program starts diminishing. At some point it may make sense to dedi-

cate a couple of processors for executing a monitoring program.
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Chapter 4

Shadow Processing

4.1 Introduction

In this chapter we present a technique called shadow processing that uses idle processors
in a multiprocessor workstation to perform concurrent monitoring. We have implemented
a system for concurrent memory access checking using shadow processing. We create two
processes for a user program. One is the main process, executing the user program as
usual, without run-time checking. The other is a shadow process, following the main pro-
cess and verifying the legality of the array and pointer accesses. The shadow process
maintains guards for the pointers and arrays in the main process. The major advantage 1s
that since memory access checking is taken out of the critical execution path of the main

program; the overhead to the main process (which the user sees) is less than 10% in most
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cases. Thus there is no need to turn off run-time memory access checking; every execution

of the main process can be monitored by a shadow process in the background.

4.2 Motivation

Use of multiprocessors is no longer restricted to big corporations and research institutes.
Low-end bus based shared memory multiprocessors are widely available today. Vendors
such as Sun and SGI offer multiprocessor workstations. Dual processor PCs have started
appearing in the market. With rapid advances in microprocessor technology, high-perfor-
mance microprocessors should soon routinely incorporate as many as four general-pur-

pose central processing units on a single chip [8].

The goal, of course, is to use extra processors in a multi processor workstation to solve
problems beyond the scope of a single processor. The reality is that such a workstation
often operates like a single-user time-sharing system. The Computer Sciences Department
of the University of Wisconsin—Madison has more than 60 dual processor workstations.
We monitored 18 of those machines over a period of 24 hours using ‘condor’[21]. We
found that 83% of the dual processor workstations that were active had a load average less
than one. This implies that most of the time a dual processor workstation was busy, one
processor was running an application while the other processor was idle. We plan to use
idle processors in multiprocessor workstations to perform a variety of useful tasks using

shadow processing.
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4.3 Concurrent monitoring using Shadow Processing

The basic idea in shadow processing is to partition an executable program into two run-

time processes as shown in Figure 5. One is the main process, executing as usual. The

Progra
P
N
ain hadow
rogram rosgram

(Mailﬁ/l ll’)rocess> (Shadg\lr)vwl’mcesi

[ Communica'tion]

Figure 5: Shadow Processing

other is a shadow process, following the main process and performing auxiliary tasks
such as run-time checking or profiling. The two processes may communicate and synchro-
nize during execution. The model of shadow processing in Figure 5 is very general; the
input program may be in any language. Further, there are no assumptions about the com-
munication and synchronization mechanisms in the underlying multiprocessor architec-

ture (shared memory or message passing).

A shadow program is an abstract version of the main program, executing only those
statements that are relevant for the activity being monitored. Since the shadow program
executes in the background, not interfering with the user, run-time analyses that normally
seem 00 expensive become attractive with shadow processing. Typical applications

include checking validity of memory accesses, executing user defined assertions, reporting
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side effects of functions, determining coverage of test suites, detecting memory leaks, and

performing tag-free garbage collection of strongly typed languages.

The control flow of the shadow is determined by its own computations and by some cru-
cial values communicated by the main process. Let us look at two extreme ways of deter-
mining the control flow of a shadow process performing some run-time analysis. First,
imagine the shadow program to be an exact copy of the main program with statements
added for the analysis. In this case the two processes need only communicate certain val-
ues that can not be safely recomputed in the shadow (e.g. interactive input, system calls
etc.). Generating the main and the shadow program in this case involves identifying the
points in the input program requiring communication. The extra work to be done by the
main process at run-time is minimal. But the shadow repeats all the computations of the
main process, many of which may not be necessary for the analysis being performed. At
the other extreme, the main process communicates every control decision to the shadow
process. This clearly puts a lot of overhead on the main process. However, the shadow pro-
gram in this case is very easy to generate — it is merely a control ﬂc3w skeleton of the

main program with analysis-specific statements.

The first alternative described above minimizes overhead to the main process but
results of the run-time analysis are delayed. The second alternative tries to speed up the
run-time analysis performed in the shadow process but with increased overhead to the

main process. A continuum exists between these two extremes. The ideal case is when the
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main process is burdened by only the communication of irreproducible values and the
shadow performs only those computations that are necessary for the application at hand.
This approach will truly utilize the benefit of parallelism, optimizing the overall time
required to perform the run-time analysis. The shadow program in this case is obtained
from the main program by extracting all those statements that affect the analysis being
performed. This can be achieved by taking a program slice[33] with the slicing criteria
involving the variables required for the analysis. These slices can be combined to form the
shadow program. The technique of program customization presented in Chapter 3 can be
readily used to generate a shadow program; some extra instrumentation may have to be

added to a customized program if communication of any values is desired.

4.3.1 Shadow run-time checking

The high cost of run-time checks restricts their use to the program development phase.
When programs are fully developed and tested, they are assumed to be correct and run-
time checks are disabled. This is dangerous because errors in heavily-used programs can
be extremely destructive. They may not always manifest themselves a‘s a program crash
but may instead produce a subtly wrong answer. Even if an erroneous program crashes, it
may be difficult to repeat the error inside a debugger. Further, debugging long running pro-
grams can be very time consuming. Undiscovered errors in heavily-used programs may
not be rare; a study [24] has shown that as many as a quarter of the most commonly used

Unix utilities crash or hang when presented with unexpected inputs. Thus there is a strong
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case for running programs with checks routinely enabled. Naturally, these checks should

be as inexpensive as possible.

Envision the shadow process as a copy of the main program with all the desired run-time
checks added. Communication is minimal — it is needed only for those values that cannot
be safely recomputed by the shadow process (e.g. interactive input, return values of sys-
tem calls etc.). A shadow checking process repeating all the computations in the main pro-
gram will definitely run slower than the main process, but this may well be acceptable if
errors need not be detected at the exact microsecond they occur. Furthermore, with a care-
ful analysis, the shadow process need not reproduce the main process’ full computation,
but rather only those values that need to be monitored. Hence a shadow process need not

greatly lag behind the main process; it may be able to detect errors in almost real time.

A major plus in executing a checking program on an extra processor is that an error
report is available concurrently with the results of the original program. However the main
and the shadow processes share the system resources such as memory. It is possible that
for some memory-hungry programs the memory requirement of the Sh;ldOW process may
result in page thrashing, slowing down the main process. Also, if the shadow needs to
exactly follow the execution path of the main process, certain irreproducible values such
as interactive input and return values of system calls need to be read from the main pro-

cess. This communication may further slow down the main process. We have modified our

translator for shadow processing to consult a database to decide whether communication
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is needed on a particular external call. This database needs to be updated manually if new
external calls are encountered. The translator adds code to the main and shadow process to
communicate values using a circular buffer in shared memory (implemented using a sys-
tem call mmap () ). As stated in the section on guarding, we believe that it is safe to let the
guarded program (running on its own or concurrently with the original program) repeat all

the external function calls including the system calls.

Dedicating a processor for a shadow process may not always be feasible on heavily
used multiprocessor workstations. For uniprocessor systems and heavily used multipro-
cessor systems the alternative of running the shadow program in isolation as resources

become available is more practical.

4.4 Performance of Shadow Guarding

Table 12 summarizes the execution time for some SPEC92 benchmarks for concurrent
guarding using shadow processing. The overhead to the main process is mainly due to
memory conflicts with the shadow process. In the case of sc, communication of return val-
ues of library calls also contributes to the overhead; there was no compunication for the
other test cases. The overhead indicates the delay in obtaining results of the original com-

putation in the shadow processing environment. It is below 10% in most of the cases. To
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the average user, the main process will appear almost indistinguishable from the original

un-instrumented program.

Table 12: Concurrent Guarding using Shadow Processing: (user + system) time

Embedded Checking Shadow Guarding
Original Shadow:
Program | (time in Purified Guarded Main without
seconds) (% (% (% output calls
increase) increase) increase) (%
increase)
alvinn 25.6s 774.6% 472.3% <1% 472.3%
(50
epochs)
compress 29s 748.3% 113.8% 10.3% 89.7%
decom- 2.0s 765.0% 145.0% 10.0% 85.0%
press
ear 3054 s 589.1% 642.0% <1% 636.4%
eqntott 18.8s 735.6% 1337.2% 3.2% 1328.2%
espresso 79s 1107.6% 648.1% 1.3% 650.6%
sc 3865 613.5% 173.3% 6.7% 95.1%
(loadc2)
xlisp 1221 988.1% 775.6% 5.6% 787.6%

4.5 Other concurrent dynamic analysis techniques

ANNA (Annotated ADA) is an Ada language extension that allows user defined execut-
able assertions (checking code) about program behavior. An ANNA to ADA transformer
that allows either sequential or concurrent execution of the checking code is described in
[28]. Concurrent run-time monitoring is achieved by defining an ADA task containing a

checking function for each annotation. Calls to the checking function are automatically
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inserted at places where inconsistency with respect to the annotation can arise. Like

shadow processing, the ANNA to ADA transformer uses the idea of executing checking
code concurrently with the underlying program. However, it generates numerous tasks per
annotation, which may lead to excessive overhead. Executing user defined assertions

seems like a good application for shadow processing.

Parasight [1] is a parallel programming environment for shared-memory multiproces-
sors. The system allows creation of observer programs (“parasites”) that run concurrently
with a target program and monitor its behavior. Facilities to define instrumentation points
(“scan-points”) or “hooks” into a running target program and dynamically link user
defined routines at those points are provided. Threads of control that communicate with
the parasites using shared-memory can be spawned. Parasight is an interactive system
geared towards debugging of programs. The overhead incurred in the target program
because of “hooking in” of parasites is not an issue. Shadow processing can use some of
the ideas from Parasight. In certain applications, the shadow process need not be active for
the whole execution of the main program. It could be “hooked in” with an already execut-
ing main process when a processor becomes available, “spot checking” the main program.
The shadow can start executing at certain well defined points, say at the entry of functions.
The main process will have to leave a trail of indicators (in a shared buffer) indicating

those points have been reached.
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One approach to concurrent run-time checking is to use specialized hardware. Tagged

hardware [6] can be used for type-checking at run-time. Watchdog processors [22] are
used to provide control flow checking. The Makbilan architecture [27] has been proposed
for non-intrusive monitoring of parallel programs in parallel. Unfortunately specialized
architectures are not widely available and they may not be able to support the full range of

desirable checks (e.g., pointer validity checking).
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Chapter S

Conclusions

5.1 Summary

In this thesis, two techniques to handle the high run-time costs of software-based pro-
gram monitoring were presented 1) customization and 2) shadow processing. These tech-
niques were mainly tested in the context of memory access checking of C programs using

a technique called guarding.

Customization is a technique that can help speed up any monitoring activity such as
memory access checking or profiling. The basic idea is to obtain a reduced version of a
user program customized to the monitoring activity. We explored two ways to customize a
user program for guarding. First by deleting calls to library routines affecting the external
environment (output calls) and second by using a prototype program slicing tool to throw

away irrelevant computations from the user program. Deleting output calls benefits a class
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of programs performing a lot of graphics or terminal output the most. Slicing is a more
general technique that can benefit a wider range of programs. We also used our prototype
slicing tool to customize programs from the SPLASH benchmarks for monitoring syn-
chronizations and shared memory access. We found that customization can double the

speed of monitoring.

Shadow processing is a technique that uses idle processors in multiprocessor machines
to perform monitoring. We have used shadow processing for concurrent guarding. Current
approaches to pointer access checking work sequentially, typically slowing a computation
3-4 times. Such high overheads make those approaches unsuitable for heavily-used pro-
grams. After programs are fully developed and tested, running them with embedded
checks seems unacceptably slow. Most programmers turn off the checks, trading reliabil-
ity for speed. Shadow guarding offers an excellent way out — a shadow process works
silently in the background watching for run-time errors. Computations in the user program
are performed by a main process. Error-free runs of the main process are only slightly
slower than the original. Occasional erroneous runs lead to an error report (sometimes
slightly delayed) from the shadow process. If the original program crashes, an error report
from the shadow points to the root cause of the crash. Reports on errors that do not crash

the original program can be extremely helpful in uncovering hidden bugs.
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5.2 Future Work
The guarding technique for C programs presented in this thesis can be easily adapted to
languages other than C. It can also be extended to handle a wider range of errors. In [25]
we presented a way to extend guarding for memory leak detection. However in our prelim-
inary experiments we found the overhead of memory leak detection using guarding very
high mainly because we relied solely on source-level instrumentation. Although source-
level instrumentation of our guarding prototype results in better error-coverage for certain
kinds of errors it also limits the applicability of guarding for third party software whose
source code is not available. We believe a checking tool combining source-level instru-

mentation with object code insertion could be extremely powerful.

Customization using slicing in its most general form can be computationally expensive.
However this high cost can be amortized over a large number of runs of the customized
monitoring program. By giving the proper slicing criteria, monitoring only a selected part

of the user program is possible.

One useful application of customization could be in the form of a tool for “bug-isola-
tion.” As programs get bigger debugging them gets harder. If a programmer is able to nar-
row a bug down to say a particular function; an executable slice with respect to that
function could result in a program which manifests the original program but is smaller

hence easier to debug than the original program.
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Shadow processing uses idle processors in multiprocessor workstations to hide the over-
head of monitoring. This amounts to exploiting “task level” parallelism between computa-
tion and monitoring. Another avenue for exploration is to utilize “instruction-level
parallelism” to hide the instrumentation overhead. Many modern microprocessors make it
possible to issue and execute a large number of instructions concurrently. Exploiting this
parallelism effectively is quite a challenge to compiler writers[16]. In the absence of use-
ful instructions to execute, a lot of processor cycles remain unused on many modern
microprocessors. There have been attempts to exploit these unused “delay slots” for some
useful work. Kurlander and Fischer [19] proposed using delay slots for “range-splitting”
to improve code scheduling. Unused delay slots were used by Schnarr and Larus [29] to
hide profiling overhead. Similarly, error-detection overhead could also be hidden by put-

ting the instrumentation in delay slots.

The overhead reduction techniques of customization and shadow processing can be
applied to many important monitoring activities. We believe our techniques show great
potential in reducing the cost of software-based monitoring and hence making routine

monitoring of production programs more affordable.
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Appendix:Bug Report from Guarding

We have used our system for pointer and array access checking to test programs from a
variety of sources including SunOS 4.1.3 utilities, SPEC 92 benchmarks, and the SPLASH
multiprocessor benchmarks. In the following we describe some of the errors we discov-
ered. A utility called fuzz [24] was used to generate random input for the SunOs utilities.
SPEC92 and SPLASH benchmarks were tested with their reference inputs, unless stated
otherwise.

» Benchmark: decompress
» Source: SPEC92
* Error #1: file compress.c
Function getcode () called from decompress ()
1144 /* high order bits */
1145 code = (*bp & rmask[bits]) << r_off;

Pointer bp is used to traverse global character array buf [BITS]. While decompressing
the reference input the number of bits per code changes to 16. (This condition can be
forced by changing #define INIT_BITS to 16). Sometime after this happens, bp
dereferences one location beyond the array buf at line 1145. This error can be verified by
putting ‘assert ( (bp-&buf [0]) <BITS) ;” before line 1145.

The purified program did not report any errors.

* Benchmark: sc
e Source: SPEC92
e Error #1: File sc. ¢, in function update ():
213 /* Now pick up the counts again */
214  for (i = stcol, cols = 0, col = RESCOL;;
215 (col + fwidth[i]) < COLS-1 && i < MAXCOLS; i++) {

An array bound violation occurs in the terminating condition of the for loop.The two

operands of && are in the wrong order. 1 < MAXCOLS must come before indexing
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fwidth[i]. When i becomes MAXCOLS (40) there is an array bound violation.
(Occurs twice for input.ref/loada2)

o Error #2: Found error in file 1ex.c, in function yylex():
114  for (tblp = linelim ? experres : statres; tblp->key; tblp++)
115 if (((tblp->key[0] tokenst[0])&0137)==0
116 && tblp->key[tokenl]==0) {

Array tokenst contains the current token and tokenl is the length of the current
token. The for loop traverses a table of reserved words to see if the current token is a
reserved word. Pointer tblp is used to point to various entries of a table of reserved
words.The first part of the if condition checks if the first letter of the current reserved word
and the current token are the same. (It uses some clever bit manipulation and properties of
the ASCII character set to ignore case differences.) The second part makes sure that the
current reserved word is not longer than the current token. For input token goto, tokenl
is 4. There is a keyword GET in the table statres. The first part of the if condition is
satisfied (((‘G’"~'g’&0137)==0) is TRUE). For the second check, tblp-
skey [tokenl] accesses the Sth element of the current key GET which has length 4
(‘G’,"E’, T',"\0"). Accessing the 5th element of an array of size 4 is clearly illegal.

The purified program misses these two errors. However, it reports 13 errors (uninitial-
ized memory reads) in the libraries libc and libcurses.

+ Benchmark: cholesky

* Source: SPLASH-1

e Error #1: file util.U

Function ReadSparseb5 () defines char typel3];

166 type[3]=0
Only valid indices are 0-2. This error has been fixed in the latest release of the SPLASH

benchmarks (SPLASH-2). The purified program did not report any error.
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¢ Error #2: file util. U
Function ISort ():

350 while (M.row([j-1] > tmp && j > lo){ ...
On some calls to ISort () when the value of 1o is 0, index of M.row[] becomes 1

which is illegal. The statement should have been:

350 while (j > lo && M.row[j-1] > tmp){ ...
This error is still there in the latest release of the SPLASH benchmarks — SPLASH-2.

The purified program did report this error and it also reported 9 uninitialized memory
reads in the library function sscant ().
* Benchmark: locus
e Source: SPLASH-1
« Error #1: file ginput.U
Function ReadSparse5():

201 if (NumberOfTerminals < 2){

203  free(NewWire);
free (NewWire) is followed by a dereference of NewWire:

222 NewWire->NumberOfGroups = IGrouptNumber;
The purified program did report this error.

s Error #2: file timer.U
Function ReportTimes ()

161 for(i=0; i <=Global->NumberOfWires; i++){

162 if(SegmentUsed[i] != 0) && (NetPinDistribution[i] != on{ ...
Valid indices for SegmentUsed (] and NetPinDistribution[] are 0-800. For

one of the reference inputs Global->NumberOfWires is 904 and invalid indices of
the SegmentUsed and NetPinDistribution are accessed. The purified program
did report this error and it also reported one uninitialized memory read.

“locus” is not part of SPLASH-2.
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» Utility: col
e Source: SunOs 4.1.3
e Error #1: file col.c
229  c3 = *line;

Inside the program, there are many places where the pointer 1ine is incremented and
dereferenced without checking its validity.

The purified program does catch this error for some inputs. We have found a random
input for which the purified program does not terminate (neither does the original pro-
gram).

» Utility: ul
» Source: SunOs 4.1.3
» Error #1: file ul.c

There are numerous array bound violations in function £iltex (). Array obuf is
indexed using the variable col. If an input line contains >=512 characters col exceeds
the maximum index (511) allowed for obuf.

The purified program does not catch this error for some inputs. We have constructed a

sample input for which the purified program does not report this error.



