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Abstract

Current image retrieval systems have many important limitations. Many are specialized for a
particular class of images and/or queries. The more general systems support relatively weak querying
by content (e.g., by color, texture or shape, but with no deeper understanding of the structure of
the image). Few (if any) have addressed the issue of truly large collections of images, and how the
underlying techniques scale.

There are many aspects to a DBMS supporting image retrieval by content. In this paper, we
focus on a data model and give an example of a data definition language (DDL) for image data, and
demonstrate the gains to be had by incorporating such a DDL in a general-purpose image DBMS.
Specifically, we make contributions in five areas:

(1) A proposal for a data model for images. (2) The use of DDL definitions for guiding automatic
feature extraction, using a constraint-based scheduling algorithm that calls upon a library of standard
and specialized image analysis routines. (3) The use of extracted features (based on the data model
and DDL definitions) in representing and indexing large sets of images, and in query formulation and
evaluation. (4) A system architecture that supports the use of specialized feature extraction algorithms,
which may be independently developed in various important application domains, and may rely upon
domain-specific image analysis techniques.

To our knowledge, this is the first proposal for the use of a non-trivial data model (coupled with an
image description language) for processing large sets of images in a DBMS. We discuss the impact of
the data model and the DDL on various aspects of the system, and experimentally demonstrate some
major benefits of this approach. In particular, we show how very large image sets can be effectively
queried — using meaningful, domain-specific restrictions on the attributes and relationships of objects
contained in images — with users providing input only on a per-collection, rather than a per-image,
basis. We show that the approach is scalable, and demonstrate that content-based querying of very
large collections of images using a domain-independent image DBMS is a viable goal.

1 Introduction

Large collections of images (and videos!) are becoming an increasingly common part of users’ data, and
the problem of storing and retrieving images by content is becoming a bottleneck in effectively utilizing
this information. As is well known from the experience with image processing in the fields of pattern
matching, computer vision etc., image analysis and classification are very hard problems. Specialized
feature extraction and image understanding algorithms have been developed for specific image domains,



but completely general solutions are not available. Most current image retrieval systems, therefore, are
specialized to a given domain of images.

The few general purpose image retrieval systems support relatively weak querying by content (e.g., by
color, texture or shape, but with no deeper understanding of the structure of the image). In addition,
users are expected to provide considerable input on a per-image basis (e.g., outlining interesting objects),
queries cannot really exploit the structure of images, and the underlying storage and indexing techniques
do not scale well as the number of images increases.

As the number of images increases, the problem becomes even harder since we must now consider
storage on disk or tape and efficient indexing and retrieval; a traditional DBMS problem. Clearly, some
new techniques are required to address the latter concerns, but it is important to be able to apply the
known techniques for image understanding whenever possible.

These observations suggest that in order to support a rich class of content-based queries over large
collections of images, some simplifying restrictions are necessary, and that application specific information
must be exploited. From a database perspective, this suggests that:

o The data should be organized into collections of similarly structured images. For example, a collection
of faces, a collection of airplane profiles, a collection of birds, a collection of satellite photographs
of cloud cover, a collection of fingerprints, etc., all exhibit similarity of structure. (Note that we
refer here to similarity of the images to be stored, rather than similarity of the underlying objects.
For example, the degree of similarity amongst a collection of frontal “passport-style” photos is much
Jarger than amongst a collection of photos of faces that are randomly oriented.)

o The user should be responsible for choosing an appropriate level of abstraction for the prototypical
image in a given collection (e.g., does hair color matter? Does distance between an individual’s eyes
matter?) and for providing guidance to the system in segmentation, classification and indexing of
the images.

o The user’s input should be on a per-collection basis, not on a per-image basis. For each collection, a
user provides a description of a ‘protypical image’.

In this paper, we describe mechanisms that enable users to describe a given image set in terms of a
data-model for images. The DBMS features that support such descriptions are analogous to the data-
definition commands in a conventional DBMS. Given such a description, the system should be able to to
tailor its feature extraction and indexing algorithms for efficient analysis and retrieval of images. Thus,
there is a tension in the image DDL design: it must be sufficiently expressive to cover a broad range of
image domains, yet simple enough that the system can automatically use a description to tailor some of
its basic algorithms.

Our main contribution in this paper is a proposal for a data model and DDL for describing images,
and experimental results based on an actual implementation that demonstrate the benefits to be had.
We demonstrate that very large image sets can be effectively queried using meaningful, domain-specific
restrictions on the attributes and relationships of objects contained in images. The results go significantly
beyond what has been achieved in other image retrieval systems in three important areas: scalability with
respect to the number of images, expressiveness of the queries, and generality with respect to the domain
of images.

To our knowledge, this is the first proposal for the use of a non-trivial image data model (coupled with
an image description language) for processing large sets of images in a DBMS. The specific DDL that we
discuss is an initial design, and we expect that it will be refined as we gain experience working with image
sets from a variety of application domains.




We do not discuss details of how to do color indexing, or shape indering, or edge detection, or other
similar problems that are basic to extracting features from individual images. We assume that a library
of routines is available for such fundamental tasks, and this is orthogonal to our focus, which is how
such “building-block routines” should be used to analyze and organize a large set of images. Indeed, we
have designed our system to be eztensible — if specialized feature extraction algorithms are available of
identifying different kinds of objects in a collection of images, the DDL and our system interfaces support
the use of such algorithms in a clean way, in addition to the built-in library of basic extraction and image
processing algorithms.

It is important to note that we assume the existence of some commonality of logical structure among
images in the same collection. Our approach exploits such commonalities in image analysis and in the
image representation. We believe that many potential applications (such as faces and fingerprints for
police agencies or houses for a real estate agency) have such commonality in their collections. It is our
hope that the basic algorithms in the system will support the definition and extraction of most objects of
interest, but it is likely, especially in complex image domains (e.g., finger prints) that some domain-specific
algorithms will also be required. Even so, as long as there is commonality in the images that is of interest
(ie., the user wants to ask questions about these common aspects), our framework provides valuable
benefits: the need for specialized algorithms is reduced, specialized algorithms from different domains can
be used together, and the extracted information is cleanly organized, stored and indexed by utilizing the
DDL description.

Some examples with no commonality among images can be found (e.g. art collections); we can do little
with such data sets. Various techniques (e.g., color indexing, several transforms) can be used to find similar
objects, and we do support this functionality, as well as storage and indexing of the extracted information,
but it is not clear how queries based on the objects contained in the images, and their relationships, can
be answered effectively.

This work is part of the PIQ query-by-image-content project at UW-Madison, and the overall effort
also includes implementation of other aspects of an image DBMS (e.g., multidimensional indexing), and is
being built on top of the Shore storage manager.

1.1 Overview of Our Approach

It is perhaps easiest to present our approach in terms of the steps that we envisage a user will carry out to
store and query a collection of images.

e Data Definition: The user describes what a typical image is (in a collection of similar images) in
terms of features. The front-end can make this process more natural, but the key technically is the
DDL. DDL definitions give a user the ability to customize the database an application by specifying
what aspects of the image are important, what needs to be extracted and stored, and what may need
to be extracted (but need not be stored and indexed upon) for certain queries.

e Data Entry: The user then loads a collection of images of a defined type, for example a collection
of faces. The system analyzes each face, extracts features using the DDL specification of the face
schema for guidance on what to look for, enters the image into the database, and updates any indexes
on the collection of faces.

e Querying: The user poses a query, in a suitable front-end, using the collection of features in the
definition of the face type and some system-supported idioms for concepts like similar. The system
responds to queries by using indexes to retrieve a minimal number of candidates whenever possible.



e Post-query Image Processing: The basic queries supported by the system will typically produce
a “first~cut” set of answers (hopefully, a small set). A typical application will then analyze the set of
returned images using more sophisticated image analysis.

In the rest of this paper, we discuss several important aspects of our approach in more detail. In
Section 2, we present the data model and an exmaple of a first-cut data definition language. In Section
3, we discuss how DDL definitions can be used to guide image analysis. In Section 4, we consider the
problem of how to represent image data sets and how to index them. In Section 5, we consider some issues
in query formulation and evaluation. In Section 6, we experimentally explore different kinds of similarity
queries. In Section 7, we present experimental results on complex content-based queries. We consider the
scalability of our approach in Section 8. The previous three sections use synthetically generated data in
order to control the complexity of carrying out and analyzing the experiments. In Section 9, we present
experimental results on a real dataset to demonstrate that the approach can be applied in meaningful
application domains. We discuss related work in Section 10, and in Section 11, we discuss the results and
future work.

2 The Data Model and DDL for Images

In this section, we present our data model and DDL for describing a ‘prototypical image’ in a collection of
images. It is natural to ask how the description of a set of images differs from a corresponding abstract data
type definition. For example, how does a DDL description of faces differ from an ADT definition of the
data type face? First, we use the DDL definition to guide feature extraction on an input image. Second,
the DDL definition forms the basis for similarity specification in queries. Third, the result of the extraction
process typically contains many {implementation specific) attributes that are not directly specified in the
DDL description. For example, an attribute of type shape might be represented internally using the first
several moments of an appropriate transform. Clearly, these points differentiate a DDL definition of a
prototype image from an ADT definition.

However, the result of feature extraction on an image can be stored as an ADT object. Whether this is
appropriate depends upon how ADTs are implemented in the underlying DBMS; we will not discuss this
point further, since it is incidental to this paper.

2.1 The Data Model for Images

For each image in a collection (e.g., a face in a collection of faces), our objective is to be able to automatically
generate a summary of the image, guided by the description of the ‘prototypical image’ for the coliection.
The summaries are stored and indexed, and queries are evaluated based on the summaries; only images
whose summaries match the query are retrieved.

The summary of an image has a tree structure. All images in the same collection have summary trees
with a similar structure. Each node in the tree corresponds to an object in the image. An object in an
image (e.g., a nose in a face image) always has a region it corresponds to. Thus, every node in a summary
tree has at least one attribute called primary-region. In addition, each node may contain several attributes
of the following types:

Number: A numeric value that is either a real number or an integer.

String: An array of characters.




Matrix: A matrix of numbers.
Region: A collection of pixels.

Arbitrary: The model does not assume anything about this type. It is used as a mechanism for extending
the basic data model for specific uses.

Set: A set of values from one of the above four types.

For example, a simple representation of an airplane may be a tree whose root corresponds to the entire
airplane. The primary region of the root would be all the pixels in the image that are part of the airplane.
The root may have three childern, the first child for the wings, the second child for the body and the third
for the tail. We may represent the wings as a single object or we may represent them as two objects by
having two children of the wings node coresponding to the left and right wings. Each node in the tree may
have different attributes other than the primary region. For example, the wings’ node may have a numeric
attribute corresponding to the wing-span. There are a few attributes that are always available for each
node because they can be computed from the primary region. These attributes are:

Size: the number of pixels in the primary region.

Position: the center of mass of the primary region (a vector of two components).
Orientation: the angle between the X axis and the diameter of the primary region.
Length: the diameter of the primary region.

Bounding Box: the bounding box of the primary region. This box is parallel to the main axis and is
represented by a 2 x 2 matrix.

We define classes for each type of node in the tree. Continuing with the airplanes example, we may
have the classes plane, body, tail, wings and wing. A node of class plane has three children from classes
body, tail and wings. Nodes of classes body and tad have no children while a node from class wings may
have any number of children of class wing (airplanes may have more than two wings and some of them
may not be seen in the image so the number of wings that are represented may vary).

2.2 Overview of the DDL

A specification of an image is a series of statements in the DDL. We present a textual DDL; in a real system,
a graphical user-interface is likely to be much more effective, even if the same underlying functionality
is supported. The DDL constructs described in this section are a subset of the constructs that we have
currently implemented in the PIQ query-by-image-content system. We expect that the constructs described
here will be refined, and additional constructs added, as we gain experience using the system on data
sets from different application domains. Nonetheless, the constructs presented here already allow us to
demonstrate the major benefits of our approach.

Our DDL for images has several components. Most importantly, we can describe a class of objects by
defining a prototypical object in the class.

2.3 Class Types and Definitions

The DDL uses class types for defining classes. We make a distinction hetween simple class types and
complez class types. The simple class types that we have implemented in the PIQ system are:
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Color: The search algorithm looks for regions with a specific color. The color is defined as an argument
of the specific class of this class type.

Uniform Color: The search algorithm looks for regions with a uniform color within some tolerance that
is an argument of the specific class of this class type.

Shape: The search algorithm looks for regions that have a specific shape defined as an argument of the
specific class of this class type.

Example: The search algorithm looks for regions that are similar to an example region given as an
argument of the specific class of this class type. The example region may is another image of much
smaller size.

The complex class types in the PIQ system are:

Union: The semantics of a union class type is that the primary region of a node of a class of union class
type is the union of the regions of the children of that node. Note that a region is a set of pixels so
a union of regions is a union of sets. When we say that class A is a union of classes B, C and B this
means that each tree of class A has exactly three children, the first and the third are trees of class B
and the second is a tree of class C. The union of the primary regions of the roots of the three trees
is the primary region of the root of the tree of class A.

Difference and intersection: The semantics is the same as the union class type but using difference
and intersection instead of union.

Set: When we say that class A is a set of class B we mean that a summary tree of class A is a tree in
which all the children of the root are trees of class B and the primary region of the root of the tree
of A is the union of the primary regions of its children.

Connected-set: The semantics is the same as the set class type but a further constraint is that the
primary region of the root of a tree is a connected set of pixels.

Or: When we say that class A is B or C or D we mean that the root of a summary tree of class A has
one child which belongs to either class B,C or D. The primary region of the root is the primary
region of its child.

Each simple class type has an associated search algorithm that takes as input an image and specific
arguments of the class type and returns a set of summary tree nodes with no children but with some
attributes. For example, a uniform-color class type has a search algorithm that takes an image and returns
a set of nodes that correspond to regions with a constant color in them (within some tolerance level). The
algorithms are standard image processing algorithms such as pizel classification (for color searches), Hough
transforms (for shape searches) and pattern matching (for example searches).

Similarly, each complex class type has a search algorithm. The result of the search is a set of summary
trees and not a set of nodes. For example, a union class type will use the search algorithms of each of
its chidren as subroutines and will combine their results to obtain a set of summary trees. The search
algorithms are described in Section 3.

The DDL has statements for defining classes:

e “class class-id belongs to class type type-id (arguments)”
This statement defines a new class that can be referred to using class-id. The type of this class is
class-type and the arguments are the specific arguments for the search algorithm associated with this




class type. For example, the statement:

“class round belongs to class type shape (circle)”

defined a new class called round with a search algorithm that looks for circles. We explain how
arguments are used by search algorithms in Section 2.5.

e “class class-id is union of classes C,..,Cr”
This class belongs to the union class type and its children are classes Cy,..,Cn that were defined
earlier. For example:
“class plane is union of classes body, tail, wings”

Similar statements with the obvious meaning are:

o “class class-id is set of class C”
e ‘“class class-id is connected set of class C”

e “class class-id is either Cy,..,Cn_1 or Cy”

2.4 Attributes and Expressions

Every class has the predefined attributes primary-region, size, position, orientation, length and bounding-
bor. Classes that have a simple class type may have other predefined attributes. For exmaple, if class A is
of class type shape it has an attribute called shape-description which is a description of the specific shape
(the description is a vector of some non-centered moments of the shape). Additional attributes can be
defined for a class using the following DDL statement:

“attribute attr-id of class class-id is expression’

This statement means that class class-id has an attribute called attr-id. The value of attr-id can be
calculated using ezpression. The expression may use attributes that are already defined for class class-id
and for any of its children (if it has any).

In addition to being used for calculating attribute values, expressions can be used to restrict the
summary trees allowed for a given class using the following DDL statement:
“class class-id is restricted by expression”
This statement means that any for any summary tree of class class-id the given expression must evaluate
to “true” given the values of the attributes in the summary tree.

Expressions are represented by expression trees in the PIQ system. The leaves (or atoms) of an expres-
sion are either attributes or constants. The internal nodes are functions or operations performed on the
children. The DDL syntax for expressions is similar to other programming languages (e.g. C or Pascal).
For example we can testrict class A by using the statement: “class A is restricted by A.size < 0.05 #
image.size”. This means that the region of class A must be more than 5% of the pixels in the image. The
atoms image.size and image.bbozr can be viewed as constants. The operators we have implemented are
the usual numeric operators, comparisons (which return a boolean value) and some functions. Additional
details about functions are presented in Section 2.5.

2.5 Extending the System

The PIQ system is designed so that new feature extraction algorithms can be inserted to the system with
minimal effort. PIQ is under constant development and such a design makes it easy extend the system.
More importantly, many specialized algorithms for feature extraction have been reported in the image



processing literature. Some of them are for specific domains and others are more general. We want to
make it possible for users to utilize such algorithms with minimal effort.

The set of available search algorithms can be extended in PIQ through the mechanism of defining new
simple class types. A new class type must be registered by giving the system its name, a list of predefined
attribute names with their types and the source code for the following three functions:

Search: This is the feature extraction algorithm. Its input is an image, and the arguments for the class.
It must return values for all the predefined attributes that were listed in the registration process and
the primary region for the node (of the given class in the given image).

Argument-input: This function is used for creating arguments for a specific class of the registered class
type. For example, if the shape class type were not built into PIQ, we might want to add it. If so,
this function would create the arguments for a specific shape class (e.g., circles). The input to this
function is ...

Cost-estimate: This function will estimate the cost of running the feature extraction algorithm given
specific values for the arguments and the image. It is used by the search optimizer (see Section 3).

PIQ also supports the addition of functions to be used in expressions. One can register a new function
by specifying the function name, the return type, the names and types of the arguments and the source
code for evaluating the function given constant values for its arguments. The PIQ extensibility features
are discussed further in Section 9.1.

2.6 Using the Summary Trees

It may not be practical to save all the attributes of a summary tree in the database since the size of a
summary tree (including attribute values) may be very large. Further, some attributes may be used for
computing other attributes of interest, but may not be of interest themselves. The DDL therefore includes
constructs to specify which attributes should be saved in the database. It also contains constructs for
specifying which attributes should be indexed upon. We evaluate queries using only the saved attributes
and specified indexes. Index creation is very similar to index creation in a conventional DBMS, and should
be guided by queries that users expect will be asked frequently.

3 The Image Analysis Algorithm

A major challenge is to utilize information in the DDL description of a prototypical image while processing
a collection of images. Our approach consists of interleaving feature extraction with constraint simplifica-
tion (over constraints derived from the DDL description and prior steps). The feature extraction algorithm
exploits the information in DDL definitions to guide the steps in the extraction, thereby making it poten-
tially much more efficient than a “blind” feature extraction. It also produces a detailed summary of the
image in the form of a tree of objects that “instantiates” the DDL definition, and this summary serves as
the basis for expressing sophisticated queries about the content of an image. This algorithm is one of our
main contributions; our experimental results demonstrate that it is indeed very effective in terms of both
the quality of extraction and the utility of the resulting summary trees.

The feature extraction is based upon a library of fairly conventional image processing routines, which
can be enriched further. The library that we have implemented in PIQ includes support for tasks like
uniform color searching, shape searching, searching for example images etc.




We utilize a standard package (based on Simplex) for constraint simplification. We use it in a way that
gives us bounding intervals for some of the variables. This is very useful for restricting size, position and
other attributes so that image processing searches become less costly.

3.1 Problem Definition

We are given as input a class description in the DDL and a set of images. The output should be one
instantiation of the class for each image in the set. Consequently we need an algorithm that given a class
definition and an image will find an instantiation if one exists.

We can think of the class definition as a tree whose leaves are simple objects, each corresponding to
a search method. The internal nodes correpond to operations that can be done over the image regions
that are found for the leaves. An instantiation is another kind of tree, with leaves that correspond to
image regions found for the class definition tree, and internal nodes that correspond to the (image regions
found to match the) internal nodes of the class definition tree. The shape of the instantiation tree can be
different from the shape of the class definition tree. For example, take the definition: “class A is either
B or C". The root of an instantiation tree of class A would have a single child that corresponds either to
an instantiation of class B or of class C. As another example, consider the definition: “class 4 is set of
class B". If we find three instances of class B in the image then the root of the instantiation tree of class
A would have three children corresponding to these three instances.

Shape B Color
(circle) (blue)
Figure 1: Example of image Figure 2: Example of class  Figure 3: Example of instance

The goal of the analysis algorithm is to find a valid instantiation, given an image and a class definition.
Figure 1 shows an example of a very simple image. In Figure 2 we show an example class definition without
any attributes and restrictions. Figure 3 shows a valid instantiation of this class for the image in Figure 1.

A textual description of the class definition in Figure 2 is:
¢ class 4 belongs to class type shape(circle)

e class B belongs to class type color(blue)

e class ('is set of class 4

e class D is set of class B

e class E 1s union of classes D

Class E is instantiated in Figure 3.
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3.2 Main Algorithm

The algorithm maintains a schedule of tasks. Each task is a partial solution to the problem. A task is
a tree structure corresponding to the class definition tree, where some of the leaves are instantiated to
regions in the image. Every internal node of a task whose children are (all) instantiated is instantiated
as well. An iteration of the algorithm consists of selecting a task from the schedule, and searching the
image for instances of one leaf (of that task tree) that is not already instantiated. (Note that the search
parameters are typically constrained by previously instantiated leaves.) For each such instance of the leaf,
the algorithm creates a new task tree by copying the original task tree and instantiating the leaf node to
the newly found instance.

The new task trees are analyzed to see if they meet all the restrictions in the class definition, and those
that do not contradict the restrictions are inserted into the schedule (if they are not fully instantiated)
or into a list of final results (if they are fully instantiated). The analysis stage following each iteration
evaluates all attributes of instantiated nodes. This means that a fully instantiated tree has all its attributes
evaluated.

The algorithm starts with exactly one task that is a tree with no instantiated nodes. The algorithm is
done when the schedule is empty. Note that any number of results may be returned by the algorithm.

3.2.1 Simple Class Definitions

Suppose the class definition does not have any set or or nodes. For each “simple” leaf, the algorithm
essentially calls the search routine of the class type to which the leaf belongs and that routine searches the
image for instances of the leaf.

3.2.2 Complex Class Definitions

When the class definition has set or or nodes, the algorithm must collect the results for each instantiated
child, rather than create new tasks. We use the algorithm recursively, treating set nodes and or nodes as
if they were leaves. Whereas the search algorithm for “simple” leaves is a call to the appropriate feature
extractino routine the search algorithm for the “complex” leaves is a recursive call to the search algorithm
itself. For example ;suppose we have the following class definition:

class Foo is union of classes Reds, Blue.
class Reds is connected set of class Red.

And Red, Blue are simple classes with red and blue colors respectively. For the purposes of extraction, we
consider this definition as two separate trees. The lower tree has Reds as the root and one leaf : Red. The
upper tree has Foo as the root, and it has the lower tree and Blue as “leaves”. The extraction algorithm
performs the following steps:

1. Choose a leaf of the upper tree for instantiation. Suppose the lower tree 1s chosen (as a leaf).

9 Search for instantiations of the lower tree. This is a recursive call to the extraction algorithm with
the lower tree as a class definition.

3. Take all the results from the instantiation and create partially instantiated trees from them. Each
such tree would be a copy of the upper tree with the lower tree leaf replaced by one of the extracted
instances.
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4. Evaluate attributes and restrictions for each partial result. Put all the successful results in the
schedule of tasks.

5. For each result in the schedule do:

(a) Search for instantiations of the Blue leaf.

(b) For each instance that is found create a copy of the tree while replacing the Blue leaf with the
instance.

(c) Evaluate attributes and restrictions and report all successful results as results of the entire
extraction.

3.2.3 Scheduling a Search

An important issue is how the schedule of tasks is managed, and how the order in which tasks are considered
can be optimized to minimize the overall extraction effort. The schedule is simply a priority queue, and
priorities are assigned based on considerations such as the following:

How low is the time required for the task? It is somewhat hard to estimate the cost of a task since it
involves both one search for a simple node and then the analysis of the results. The one search is estimable
but the analysis depends on the size of the result which is usually unknown in advance.

How restrictive is the time required for the newt instantiation? Determining appropriate scheduling
criteria is one of the open problems in this work, and we have thus far used simple heuristics. We also
want to know how restrictive it would be to instantiate a leaf. The naive metric would be the change in
the size of the schedule as a result of the instantiation. This naive metric could be very useful because the
size of the schedule is a good measure of how much work needs to be done in the next iteration. Some
simple guidelines can be applied here. It is obvious that if we know the color of a uniform colored object
then there are fewer possible instantiations than in the case where we don’t know the color.

In general, the more restrictive the search space (position, orientation, scale, color etc.), the fewer the
instantiations we expect to find in the image. Another point is that the more restrictions we have involving
the attributes of the leaf with attributes of other nodes, the more we expect that an instantiation would
restrict the possibilities for those other nodes. In this sense we can construct some sort of expectation
metric for how restrictive an instantiation of a leaf can be. Therefore, we need to avoid searching for
independent leaves as much as possible.

4 TRepresentation and Indexing of Image Sets

The feature extraction phase produces an instantiated clas-definition tree for each image. We now con-
sider how this information can be stored and indexed in order to support complex content-based queries
efficiently.

In a relational DBMS, a popular indexing technique is the B+ Tree, and a typical index retrieval is
“Find all Employee records where salary is between 40K and 50K”. The user who created the Employee
relation must anticipate such queries and create a B+ Tree index on the salary field. By analogy, we want
to be able to create indexes on a set of images. Typical queries might be “Find all images similar to this
image”, “Find all airplanes (from a collection of airplanes) where the ratio of wingspan to length is less
than 17, “Find all images that contain a spherical object”, etc.

While the analogy to B+ Trees is useful—it suggests that the user must provide input on what features
to index, for example—the problem is clearly much more difficult. Typical query conditions are now based
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on some notion of similarity, not precise arithmetic comparisons. How can we build access methods that
can support retrievals based on such complex conditions? A natural idea is to break the problem into two
parts: first, techniques for extracting sets of “feature vectors” from a given image, and second, techniques
for storing and retrieving sets of such vectors. Intuitively, each vector of k dimensions should capture the
essence of an image object in such a way that two nearby vectors in k-dimensional space correspond to
similar objects. Along with each vector, we store a pointer to the corresponding image and object.

This idea (with only one vector per image) was proposed by Jagadish [14], and is very promising. Our
approach can be seen as a generalization of this idea in which an image is used to generate several vectors.
There are several relations associated with each class definition, and each vector generated from an image in
this class is stored as a tuple in one of those relations, which we call summary relations. Clearly, summary
relations are likely to have many (at least in the tens, possibly more) attributes.

4.1 Generating Vectors from Images

We now examine how summary relations are generated. This is based upon the techniques for feature
extraction discussed in Section 3, and is guided by the DDL description of a given collection of images.
The main idea is to have a relation corresponding to each node in a class definition tree and a tuple for
each instantiation of a node in the appropriate relation for that node. The attributes of a node are the
attributes of its relation, some identifying attributes and pointers to its children (if any).

The identifying attributes consist of image-id and object-id. We need the identifying attributes to be
a key so that we can refer to a specific tuple in the relation. Thus, we implement a pointer as a foreign
key. We get object-id from a numbering of all tuples of this relation for a specific image, so together with
the image-id it becomes a key. For example, suppose that we have a class Reds that is a set of class Red.
Class Red is a simple class defined by the color red. Suppose that for class Red we define an attribute size
and for class Reds we define attributes length, position. The relations corresponding to the classes would
be:

e Reds( iid : image-id, oid : number, children : set-of-number, length : number, position : [num-
ber,number] ).

e Red( iid : image-id, oid : number, size : number ).

Suppose we have an instantiation of this class for image I with three instances of Red then the relations
would have tuples :

Reds(I,1,{1,2,3},57,[30,60])  Red(I,1,20)  Red(I,2,10)  Red(I,3,100)

The attribute values here are chosen at random. The point to note is that the combination of image-id
and object-id creates a key for each relation so we know these three tuples for Red are indeed the children
of the Reds tuple.

All attribute types except region and arbitrary can be represented directly in any of the relations. If
we do choose to save a region attribute we save the region separately as an object and use its object ID as
a relation’s attribute. We can do the same with attributes of arbitrary type.

In order to capture the notion of similarity, several ideas have been proposed. Although many sophis-
ticated techniques have been developed for similarity measurement [24], no attempts have been made to
experimentally evaluate their efficacy in image databases. A very interesting research direction is to explore
the use of DDL descriptions to define similarity. We return to this point in Section 5.
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4.2 Multi-Dimensional Access Methods

An important component of our approach is multi-dimensional indezing. The vectors generated by analysing
an image must be stored, and range queries must be answered efficiently by retrieving only qualifying vec-
tors. One important direction of our research will be to investigate how to improve current multidimensional
indexing techniques, especially for data sets with high dimensions. The design of multi-dimensional ac-
cess methods is outside the scope of this paper, and we only discuss the potential use of such methods
(which we have implemented in PIQ, and are currently evaluating). The fact that our framework allows
us to use such methods on the summary information produced by the feature extraction phase is very
important, since even the summary information is very large. When the class definitions are complex and
involve color histograms and shape summaries the entire summary for a single image may involve dozens or
even hundreds of numbers. As the number of images increases, scalability demands that efficient indexing
techniques should be applicable.

Typically, users want to ask several different queries on a given image set. A single index may be able
to support several kinds of queries, but it is likely that in general we will need to build multiple indexes
on a given image set. For example, on a collection of faces, we may want to support queries like “Find all
people with eyes similar to these”, “Find all people with dark hair”, “Find all people with square faces or
long necks”.

A first step in supporting such queries is to develop DDL descriptions of the images that direct the
system to extract information about the aspects of interest to the user (e.g., the color of the hair, the length
of the neck). The next step is to recognize that in fact there may be several vectors derived from a single
image, each capturing some features of interest. This means we create several indexes on the same set of
images. The problem of how we choose a suitable collection is an important one. Users are expected to
provide this information, but it is clearly necessary to develop good guidelines first, and to understand the
issue in the context of the DDL definitions that generate the “summary” relations that are to be indexed.

5 Query Formulation and Evaluation

After the object extraction phase is complete the database is populated with one instantiation for each
image in a specific class. These instantiations take the form of trees which are represented by several
relations in the way discussed in Section 4.1. A query consists of operations on the extracted instantiations,
ie., the summary relations.

Suppose we have a class Airplanes which is defined as a set of class Plane. Plane would be a complex
class, but for this example we can ignore the details of how Plane is defined in terms of other classes. We
can assume that we have attributes position, orientation, size, length, shape and color for class Plane. An
instance of class Airplanes would be a tree whose root is a node with no attributes and whose children are
instances of class Plane (exactly all the instances that are found in the image). Now we can ask queries of
the following kinds:

o Find all images of class Airplanes in which there are two planes pointing to the same direction (i.e.,
having the same orientation).

o Find all images of class Airplanes in which there 1s a black plane seen above a white and red plane.

e Find all images of class Airplanes in which the largest plane is white.

We would not be able to ask a query of the form: “Find all images of class Airplanes in which a black
airplane is seen on a blue background” since the class definition does not contain any reference to the
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backgroud color distribution.

We see that having semantic information about the content of the image can help to formulate queries
that are beyond the scope of any “pixel-level similarity” query. On the other hand, we can always form
a query of the form “Find all images of class Airplanes that are similar to image I” by first extracting
an instance of the class definition Airplanes from image [ and then comparing the resulting instance to
all other instantiations of that class. The only problem is the meaning of similarity. If the user does not
wish to specify the notion of similarity then the system can use some (necessarily) ad-hoc decisions for
comparing instantiations of the same class. On the other hand a user may wish to elaborate. For example,
the user can state that the number of planes in the image has the most importance or that the color of
planes has more importance than the number of planes, etc. We also want the result of the query to be an
ordered list of results where the order comes from the “amount” of similarity found.

In contrast to other current image retrieval systems, the power of our query facility is evident. We
can utilize spatial relationships among objects, for example, not just colors and shapes. We can define
any notion of similarity that we want as long as the information that we use is included in the extracted
attributes.

6 Similarity Queries

In this section, we present the results of a series of experiments that explore the concept of similarity
between images. The purpose of the similarity experiments is to test whether a similarity query based on
some similarity notion that is internal to the system can generally yield acceptable results. The alternative
is to allow for user-defined similarity queries so that a user has more control over what kind of images
should be retrieved.

The data model that the system uses to represent information about images plays a key role in the
kinds of queries that can be supported. We have designed experiments with the purpose of evaluating the
power of using a rich data model. We use one set of images for all the similarity queries. Each experiment
consists of two stages:

Extraction: The first part is to extract instantiations for a specific class from a set of images. We note
that this part required no user intervention.

Queries: We ask similarity queries by choosing an image from the set and retrieving the most similar
images, using a given notion of similarity based on the image data model, from the set of images.

These experiments are done in a very controlled setting. The images are synthetic and rather simple.
The data set is small (1000 images) so each query can be manually verified. The images are randomly
generated. Each image consists of between 1 to 8 geomtric figures (circles, squares, triangles), with random
colors and a dark background. We included three small sets of images in these 1000 images. One set
consists of images that have a single white circle in them. The second set consists of images with two
adjacent circles (one white and one red). The third set consists of images that have 3 disjoint squares
in them (red, white and blue). These sets are used as controls for the similarity queries. We make the
assumption that the triangles in the images are ignored. This assumption is made so we can stress the
point that in general only parts of the images are important to us and maintaining information about the
rest of the image is not only unnecessary but also a waste of resources.

After the 1000 images were generated we defined 3 different class definitions (using the DDL) that
correspond to different “image data models”. For each such class definition we extracted instantiations for
the images and we asked the same similarity queries. The notion of similarity differs from class to class but
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the general principle is to try to incorporate all the information available in the underlying DDL definition
while computing similarity. The images for the similarity queries were chosen from the three small control
groups, so it is easy to verify how good the answers are.

In the following sections we present a description of the experiments for each data model and an analysis
of some of the results. Section 6.1 uses the data model that comes with the PIQ system. In contrast we tried
two other data models that are similar to what is available in the QBIC [1] system. These are discussed
in Sections 6.2, 6.3 We show the results of the same similarity query for each of the data models. Section
6.4 describes two different similarity metrics that also use the PIQ data model. Its purpose is to show the
advantage of being able to change the similarity metric, even with the same underlying data model. (We
note that we carried out additional experiments using different similarity queries and different data sets,
with very similar results.)

6.1 Class Definition Using the Full PIQ Data Model

The class definition uses the full data model supported by the PIQ system, given the following DDL
definition:

class Blocks is set of class Block.
class Block is connected set of class Shape.
class Shape is either Circle or Square.

Circle and Square are simple classes corresponding to the appropriate shapes. The attributes size, length,
position, orientation, color and shape are extracted for all classes. For the simple classes, we omit the shape
attribute since it is clear from the class definition. The intuition here is that we get all circles and squares
in the image, group them into connected regions (called blocks) and retrieve information about each circle,
square and block. A tree description of this class definition can be seen in Figure 4.

@ After the extraction is finished we have a set of instantiations that
can be viewed as a set of trees. The notion of similarity here has two

Y major parts. The first part tries to match two trees in terms of the
Connected Setl type of objects they contain. This means that two trees match only if

they have the same number of Blocks (or instances correponding to

class Block). There must be a 1-1 matching function between blocks

- of one image and blocks of the other. A Block of two circles can

[ (SCB_"ZE?I only match another Block of two circles, etc. After a match is found
we create a similarity metric that for each attribute matches it with

Figure 4: Class definition for the a corresponding attribute in the other image and we incorporate all

similarity queries with the full i R )
PIQ data model. defining similarity but as will be seen later, there may not be a good

way of defining similarity anyway.

these matches into one number. This is a somewhat ad-hoc way of

The results of the similarity query for the full PIQ data model
are shown in Figure 10. In all queries the results are given in sorted order. The order in the figures is first
from left to right and then from top to bottom, so the best result is in the upper left corner and the worst
(among those that are shown) is in the bottom right corner. Note that the best result is always the image
used for the query, so all images in a figure should be compared to the one in the upper left corner of the
same figure. The similarity query involves an image with two adjacent circles in it and no other objects,
Figure 10 shows the best 16 results (out of 28) for that query. For the PIQ data model, the definition of
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similarity takes into account size, position and color for this query and all of them carry about the same
weight.

Since the query image has two adjacent circles in it then all the results have exactly two adjacent circles
and no squares. Even in this simple case it is already difficult to see why the images are placed in that
order. There are a lot of attributes to consider, such as the color distribution between the two circles, the
orientation of the two circles as a single object, etc. On the other hand, it is hard to know what the user
would consider to be “similar” in this case. Should the position of the objects matter? Should the fact
that the white circle is above the red one matter? It is clearly desirable to find some notion of similarity
that an “average user” may agree upon, but it is equally important to allow users to specify what they
mean by “similar” when they need to do so.

6.2 Class Definition with Only Color

The DDL class definition here is influenced by the data model of the QBIC [1] system. In the QBIC
system all objects have the same type and the features that can be extracted for an object are limited to
color, shape and tezture. There is also a sketch attribute for entire images. The other limitation is that
a user must define the objects in the image for the system. We defined two data models that correspond
to the QBIC data model. This section deals with the case where no user is available to assist in feature
extraction. (Section 6.3 deals with the case where a user is willing to assist in feature extraction.) In this
case we only do feature extraction for the entire image. We do not have texture in our data set and shape
is irrelevant for entire images. Therefore the class definition has one simple class that defines the entire
image and extracts only a color attribute (which is a color histogram of the image).

The only similarity metric we can use is the comparison of color histograms since that is the only
available data. We call this class definition “Control 17.

The results of the similarity query for the “Control 1”7 data model are shown in Figure 11. The figure
shows the best 20 results out of 1000. The reason that there are 1000 results is that we have no data
that allows us to exclude any image in the database from being similar (to some degree) so a similarity
query for this data model just creates an ordering of the entire database. Again, the order in which the
results are retrieved is from left to right and from top to bottom. Some results are grouped together by
a blue outline around the group. The order in each such group is random since the query returned the
same numerical similarity value for all images in that group. For example, in Figure 11 the groups are:
{2,3},{4,5,6,7,8},{9,10}.{14,15,16} and all the other results are not grouped. Within each group the
similarity metric returned the same value. Note that the similarity metric compares only the color of the
entire image and the background is therefore taken into consideration. That is why an image that contains
squares instead of circles can be retrieved as the 11th result. We can see that some images that do not
appear to have a lot in common with the query image are retrieved (e.g., the 11th, 13th, 19th and 20th
results). The fact that some of these images have colors in them that do not appear in the query image is
not an error. The similarity takes into account the fact that the amount of the other colors is low. This
query stresses the point that a general purpose similarity metric cannot always work satisfactorily.

6.3 Class Definition with Color and Objects

The class definition here tries to mimic the QBIC data model assuming that there is a user willing to
identify objects in each image. In this way, we can identify circles and squares and extract their color. (We
assume that the user knows that triangles are not important.) The class definition is:
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class Objects is set of class Object.
class Object is either Circle or Square.

We only extract the color of cirlces and squares, and additionally record the fact that they are circles and
squares. The notion of similarity here is as follows: first match the number of circles and squares in both
images. If they are the same, then compute similarity based on matching the colors of circles to circles and
of squares to squares. We call this class “Control 27.

The result of the similarity query for the “Control 2” data model are shown in Figure 12. The Figure
shows the best 30 results (out of 70). The similarity metric in this case causes the system to retrieve
images with two circles in them without checking the adjacency of the circles. That is why results 26-29
are retrieved although the circles in them are not adjacent. Note that in this case the background color is
not televant since it is not represented in the data.

6.4 Other Similarity Metrics for the PIQ Data Model

The similarity metric that we used for the PIQ data model (Section 6.1) was ad-hoc. We tried two other
similarity metrics in order to contrast them with the result for that ad-hoc similarity metric, and the
“Control 2” data model similarity metric.

The first metric we used ignores all attributes of objects except color. We call this the “Limited PIQ”
similarity since it limits itself to a small part of the available data. This similarity metric first compares
two instances to see if they have the same form (e.g.. if they have two adjacent circles or only a single
circle, etc.) If the two instances have the same form it tries to match colors of all objects. This includes
colors of complex objects (e.g., the union of two circles).

The results of the similarity query using the Limited PIQ similarity metric are given in Figure 13. The
figure shows the best 27 out of 28 results. We clearly see that only images with two adjacent circles are
retrieved. The degree of similarity among the first 25 results depends only on the color distribution in the
union of the circles (i.e., the ratio between the area of the red circle and the area of the white circle).

The second metric we used ignores even more data. It ignores all attributes except the color of simple
objects, and also ignores adjacency of objects. Computing similarity involves counting the numebr of
circles and squares first, and if the numbers match, then we try to match colors of simple objects. This
similarity metric uses the exact same type of data that the “Control 2” similarity metric uses. The results
for all queries with this similarity metric are identical to the “Control 2” queries so they are not shown in
figures. The purpose of this similarity metric was to show that we can define essentially the same similarity
metrics on different data models, and that automatic matching of the class definition tree of objects is not
a required step in similarity queries in PIQ.

7 Complex Content-Based Queries

In section 6 we saw how a data model can help perform similarity queries. The full power of the data
model is best demostrated by posing queries that can not be posed to a system that does not support a
rich data model. We call such queries “Image-Specific Content-Based Queries”, to emphasize that these
queries specify conditions that depend upon the given image or class of images, and not just conditions
(such as color) that are common to all images. The following sections demonstrate the power of the PIQ
data model by posing such queries.
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7.1 Content Based Queries for the Simple Data Set

To demonstrate the power of the PIQ data model we took the same image set discussed in Section 6
and used the instances obtained by the extraction algorithm for the PIQ data model. Once the database
is populated with those instances, we posed three queries and the results for these queries are shown in
Figures 14,15,16 . We verified all those results by doing a manual search in the database (all 1000 images)
and the results for all three queries were accurate.

The first query was: “Find all images in which there are circles and squares and in which all the circles
are to the left of all the squares”. We imposed a constraint that the order in which the results are retrieved
is a decreasing order of the width of the horizontal gap between the set of circles and the set of squares.
Figure 14 shows the best 12 out of 75 results.

The second query was: “Find all images in which there is a pair of adjacent circles such that the ratio
between the size of the large one and the size of the small one (of the same pair) is at least 3”. We imposed
a constraint that the order in which the results are retrieved is a decreasing order of that ratio. Figure 15
shows the best 12 out of 24 results. Due to the dithering of the images during printing some colors that
were very similar are blended into a single color. In the 5th result there is a small bright circle inside the
yellow circle, so that result is not an error. This 5th result demonstrated to us that a user may not be
always able to identify the objects. We needed to look at a magnified version of the image so we could
see that the bright circle is there. For certain real image sets (e.g., in the medical community) automated
feature extraction system are known to be more reliable than a human and not just more efficient. Being
able to perform such sophisticated feature extraction in a general-purpose image DBMS is a challenge
(and perhaps unrealistic to expect to achieve), but nonetheless, there is a significant advantage to doing
automatic extraction whenever possible, from the standpoint of reliability as well as efficiency.

The third query was: “Find all images in which there are circles and squares and in which all circles are
smaller than all the squares”. We imposed a constraint that the order in which the results are retrieved is
a decreasing order of the difference between the size of the smallest square and the size of the largest circle.
Figure 16 shows the best 12 out of 68 results. Note that in the 9th result there is a large dark circle that
is partially occluded by the green square. The search algorithm that we use allows for some occlusion of
objects, but we set a limit to the amount of occlusion that is allowed in a retrieved object and this circle
did not meet that standard. Therefore, from the system’s point of view this image constains only one circle
and one square.

All these queries demonstrate the use of relationships between objects. To the best of our knowledge
none of these queries can be posed to current general-purpose image retrieval systems.

7.2 A More Complex Data Set

All the examples shown in Sections 6,7.1 were designed to be as simple as possible, in order to make the
results easy to analyze. We designed another experiment that still uses a synthetic data set, but a more
complex one, and therefore the class definition and the queries can also be more complex. The data set
contains 1000 images in which there are two squares, one blue triangle and several circles. The position,
size and color of the circles is random, the position and size of the triangle is random, the color and size of
the squares is random, and the position of the squares has some random elements in it. As in the previous
experiments we first defined a class, then automatically extracted instances for each image, and finally
posed queries that use the information in the instances.

The class definition is as follows:

Class Compler is union of classes Left-Square, Right-Square, Blue-Triangle, Circles.
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Class Circles is set of class Circle.

Classes Left-Square and Right-Square are simple classes that have the same definition (square shape). Class
Blue-Triangle is a simple class defined as a blue object that is restricted to have a shape similar to a triangle.
Class Circle is a simple class defined by the circle shape. We imposed some constraints on the main class.
One constraint requires that Left-Square be to the left of Right-Square. The other constraint requires that
Left-Square and Right-Square be at about the same height. (The actual constraint was that they could not
be separated by a horizontal line.)

We extracted the following attributes for each class: size, shape, color, position, etc., as usual, and also
defined three special attributes using the DDL :

attribute A of class Compler is distance(Left-Square. prim-reg, Blue-Triangle. prim-reg).
attribute B of class Complez is distance(Right-Square.prim-reg, Blue-Triangle.prim-reg).
attribute C of class Complez is distance(Circles. prim-reg, Blue-Triangle.prim-reg).

The next step was to pose queries and check the results. The first query was: “Find all images in which
there are at least three circles, all the circles are below the squares and the blue triangle is closer to a
square than to any of the circles”. The results are in increasing order of the difference between the distance
of the triangle to the nearest circle and the distance of the triangle to the nearest square. All eleven results
are shown in Figure 17.

The second query was the same as the first but with a different ordering. The results are in increasing
order of the distance of the triangle to the nearest square. Figure 18 shows all eleven results.

The third query was: “Find all images in which the square that is closest to the blue triangle is green,
the other square is not green and there is at least one red or orange circle”. The order is a descending
order on an approximation of the number and brightness of red and orange circles. (A bright red circle
scores three times as much as any other red or orange circle.) With color histograms, colors and brightness
can be roughly approximated but not accurately evaluated. Figure 19 shows the best 12 results (out of 25
results).

Note that the data model helped us to automatically extract the data from the images. From 1000
images in the database, 444 images did not meet the standard set by the DDL so the database was populated
with 556 instances of Complez objects. Using a DDL can help us determine which images should belong to
a specific class and which should not. Once we have populated the database, we can pose complex queries
that use all that information to further search the extracted instances.

8 PIQ Scalability Testing

An important quality of a DBMS is scalability. The system should be able to handle growth in dataset
size gracefully. We tested the scalability of the PIQ system with several experiments that determine some
of the costs involved in populating and querying a large database.

8.1 A Much Larger Database

The first scalability experiment involves populating the database with 50,000 images, automatically ex-
tracting instances for a specific class definition, and then posing content-based queries. The images were
generated in the same way as the data set discussed in Section 6 The class definition we used for this
experiment is :
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Class Blocks 1s set of Block.
Class Block is connected set of Not-Black.

Where Not-Black is a simple class defined as a uniform patch of color that is not dark.

An example query for this experiment is: “Find all images in which the largest block of objects is
mostly blue”. Results are in increasing order by the number of objects in the image and then in increasing
order by the size of the blue object. The best 16 results (out of 498) are shown in Figure 5. This query
demonstrates that the PIQ system can handle a large data set and pose real content-based queries against
it.

Figure 5: Result of query: Find all images in which the largest object is blue. Order the results first by the
number of objects in the image and then by the size of the blue object. Best 16 results out of 498 results.

8.2 Time Cost Analysis

An important factor that we tested is the time that it takes to extract features from the images. If we
consider a very homogeneous image set we might expect that the extraction time would be linear in the
number of images. To test this we measured the extraction time for sets of 1000 images , 10000 images and
all the 50000 images. The results are shown in figure 6, and clearly show that the extraction cost scales
linearly.

To further test this hypothesis we measured the times it took to

N A do feature extraction for each image separately (for 1000 images) and
e 1e6 seo] took the standard estimates for mean and variance. The result has
i:” estimated mean 3.95 seconds and variance 0.463 seconds, confirming
é 165 soc— that the time taken for extraction is likely to grow linearly with the
£ number of such (uniform) images.
é ™ A DDL description of an image tells us what should
? e sec , : . > be ignored as much as what should be extracted. Sup-
b #i‘::ages‘(‘;gg SC;;‘:) pose that the class definition becomes more restrictive in the
sense that it ignores more parts of the image. Would
Figure 6: Time of feature extrac- the cost of extraction be lower? To answer that, we
tion as a function of the number take the small data set discussed in Section 6 and measure
of images for the large data set. the average extraction time if we are interested in only cir-
cles, only squares or both circles and squares. The result
is;
| image class ” only circles ] only squares ] both circles and squares ]
I average extraction time (sec) ]] 6.44 ] 7.45 l 12.87 ]




This clearly shows that the time cost of extracting both circles and squares together is about the sum of
the cost of extracting circles alone and squares alone. (It is slightly lower than the sum since some image
analysis routines such as edge-detection are run once for both circles and squares.)

9 Using Images from a Real Data Set

In order to test the feasibility of using the PIQ system on meaningful problems, we carried out experiments
with a real data set. The set contains fifty images taken from the NASA Dryden Research Aircraft Photo
1 All the images contain one or more aircraft that can be extracted from the image using an
analysis of foreground and background in the images.

Archive.

We defined a class for those images as follows:
class Adirplanes is set of class Plane.

Class Plane is defined as a connected set of simple classes that describe uniform color patches in the image
with various shape, size and color constraints. The class definition is not intuitive, but it basically performs
an extraction of the foreground objects from the background and then uses restrictions on the obtained
instances to exclude things that obviously do not look like an airplane. For example, Figure 8 shows an
aircraft and the moon. The moon is not extracted as an airplane (although it is indeed extracted as a
foreground object) because its shape does not fit the class definition. Figure 7 shows an image for which
the extraction failed. The failure is due to the busy background; also, a part of the airplane has similar
colors to some background objects. This image was not included in the set we posed queries on.
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Figure 7: An airplane image not Figure 8: An airplane image from
from the queried data set the queried data set

We defined attributes for the Plane class that include color, shape, length, orientation, size and position.
After the feature extraction was completed we posed image-specific content-based queries and similarity
queries.

The first content-based query was: “Find all images with two airplanes in them and order them by how
much the top airplane is black™. The four results for this query are shown in Figure 20. The first three
results had a very small difference the retrieved “blackness™ value but the fourth result had a significantly
lower value.

The second content-based query was: ~“Find all images with at least two airplanes and retrieve in
increasing order of the size of the bottom airplane”. The five results are shown in Figure 21. Notice that

'The NASA Dryden Research Aircraft Photo Archive is accessible on the WIWW at
http://www.dfrf.nasa.gov/PhotoServer/photoServer.html






the first result has three airplanes in it. which were all extracted from the image so it couldn’t appear as
a result of the first query.

We defined a notion of similarity that incorporates only shape, color and size of airplanes. Then we
posed similarity queries. An example is shown in Figure 22. The query image is the SR-T1 airplane in the
upper left corner of the figure. It seems that the first few results are very close to the query image and
from the 7th image onward it becomes less clear that the result is similar. When we see as a contrast the
worst five results (in Figure 23) it is clear that this query was successful. Incidentally, note that images
12 and 13 are identical. The archive happened to contain two copies of the same image. We noticed this
when we saw the result of the query!

9.1 Using Specialized Feature Extraction Algorithms

Consider the problem of dealing with a large
collection of images containing tanks and other

military land vehicles. We want to record infor-
mation about the location, orientation, number
of vehicles, their relative position etc. in the im-
age summary, and must capture this in the DDL
description of a prototypical image in such a col-
lection.

If sophisticated software for detecting tanks
and other military vehicles in an image is avail-
able, we want to be able to use 1t. The first
step in doing this is to register a new simple
class type, say military-vehicles. Next, we de-
fine specific classes, say tanks and armored-cars,
of this new class type. Then, we can define a

prototypical image by defining a corresponding
class, say mulitary-scene. For example, we may
define military-scene as a union of classes air-

Figure 9: An example picture of military vehicles and
airplanes.

planes, which is perhaps defined entirely using
the PIQ DDL without any use of new simple classes, and tanks. As images in the military-scenes collection
are entered into the database, PIQ automatically extracts the summary tree of each image and stores it.

Since we rely upon pre-existing, specialized feature extraction algorithms for recognizing tanks, what
have we gained from our use of PIQ. in particular, the DDL definition? (1) The extensible PIQ framework
allowed us to analyze each image with the specialized extraction code for tanks in conjunction with built-in
PIQ techniques for airplanes: we can obviously use other specialized code for, say, missile-launchers as well.
{2) The query facility can be used for queries involving many objects from different classes and can refer to
relationships among them. Figure 9 is an example for an image in such a collection. It would be retrieved
for the query “Find all images (in the collection) with at least two planes flying above at least one tank™.
[t would not be retrieved for the query ~find all images in which there is only one type of vehicle™. (We
assume that the military vehicle software identifies the type of the vehicle as well as other attributes such
as position etc.) Both queries are examples of queries that to the best of our knowledge can not be posed
in other present image database systems.
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9.2 Discussion

The experiments with the real data set highlighted two important points. The first point is that once we
populate the database with summaries of a collection of images based on the DDL description, we are able
to support a rich class of content-based queries. We demonstrated that using our data model can help us
answer queries that are very difficult or impossible to pose in most other image database systems. We also
illustrated how the data model allows us to define “similarity” in many different ways.

The second point is that our automated extraction using only built-in simple classes in PIQ is not flexible
enough to handle very complex data sets satisfactorily; the extensibility features of PIQ are therefore very
important. For example, we could not handle the entire collection of images from the NASA Dryden source,
since it involves a deep understanding of what an aircraft is. One way of dealing with such difficult cases
is to try automated extraction as much as possible and ask for a user’s help when the extraction fails. The
extensibility features in PIQ allow a user to provide such help by registering domain-specific extraction
algorithms, which can then be used naturally in DDL definitions.

The system design allows for several types of enhancements. If we find some sophisticated algorithm for
identifying objects of some image class, we can easily incorporate it into the system as another “simple”
class. Our main extraction algorithm would invoke the sophisticated extraction algorithm when an instance
of that class is to be searched for. The querying facility doesn’t need to know about the sophisticated
algorithm, but uses the attributes that it extracts.

The system already supports simple class definitions using images as ezamples, although we have not
discussed it here. Exploring how to use and to enhance this feature for defining complex images is an
important direction for future work. We note that even if, in an extreme situation, a user has to assist in
extracting an object, a DDL definition guides us in deciding what feature information to extract and store,
in order to subsequently answer queries of interest.

The PIQ system is in a very early stage of development. We expect to refine it as we gain experience
by working with a variety of data sets. While we have thus far concentrated on a declarative DDL, it may
well be that this must be complemented by a more procedural DDL in certain situations.

10 Related Work

Perhaps the most sophisticated system supporting query by content over general image sets is QBIC [1].
QBIC automatically extracts the following attributes for images and for user-identified objects within
images: color, shape, sketch and tecture.

We have followed QBIC with respect to how we handle color and shape attributes. A sketch in QBIC
is a very reduced resolution edge-map. It is computed only for images and the only query possible is
similarity to some user defined sketch.

Identifying an object in the image is left to the user. It is usually done by using a set of tools that
allow users to identify an image using the mouse. The drawback here is that users have to put in some
effort per image, and this can be a prohibitive limitation for very large collections of images. The second
major limitation is that queries are limited to the extracted information, which consists of just color, shape,
texture and sketches. Thus, queries about the relationships between component objects and their features
cannot be posed. In PIQ, we have sought to address these two limitations of QBIC.

A notable example of a system that is tailored to a specific domain of images is VIMSYS [11]. Although
VIMSYS is specialized to a single domain (faces), a design objective was to collect all the domain-specific
details into one module. The system performs well for the domain of faces. However, it needs a special
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module for each data domain, and the data model for each domain is rigid (i.e., it cannot be changed
after the code is written). Thus, VIMSYS remains essentially a specialized system. The VIMSYS goals
and designs have influenced PIQ. We have tried to provide a higher-level mechanism for customization
to different image domains through the use of a DDL, rather than through the use of a (well-specified)
domain-specific library of routines.

There are many published results on techniques for similarity searches based on color, shape, etc.,
but we do not discuss these since we regard them as largely orthogonal to the DDL itself. These results
essentially provide a richer set of choices for the image procesing library used by our main feature extraction
algorithm.

11 Conclusion

We have described the query by image content facility being developed in the P1Q project, which is still
in an early stage. The main contribution is the observation that the use of an image DDL can assist in
automatic extraction of image features, and, perhaps more importantly, in retrieving and structuring the
information necessary for answering image-specific conten-based queries. We have presented the results of
several experiments designed to test and validate this claim. Future work will be focused on refining the
DDL framework and developing more powerful mechanisms for defining similarity, querying and indexing.
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Figure 14: Result of query: “Images in which all the circles are to the left of all the squares”. Results are
ordered by the width of the gap between circles and squares.

Figure 15: Result of query: “Images in which there is a pair of adjacent circles , the ratio of size between
the large and smaller circle is at least 3”. Results are ordered according to that size ratio.

Figure 16: Result of query: “Images in which there are circles and squares. and all circles are smaller than
all squares”. Results are ordered by the difference in size between the smallest square and the largest circle.
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Figure 17: Result of query: “Images in which there are at least three circles, all of them below the squares
and the blue triangle is closer to a square than it is to any of the circles”. Results are ordered by the
difference between the distance of the triangle to the nearest circle and the nearest square.

Figure 18: Result of the same query as in Figure 17. Results are in reverse order of the distance of the
triangle to the nearest square.
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Figure 19: Result of query: “Images in which the square closest to the triangle is green. the other square
is not green”. Results are ordered by the amount of red and orange circles in the image.
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“Images with two planes ordered by blackness of top plane.”

Result of query:

Figure 20
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