The GLOW Cache Coherence Extensions
for Widely Shared Data

Stefanos Kaxiras
James R. Goodman

Technical Report #1305

October 1996

The GLOW Cache Coherence Extensions for Widely Shared Data

Stefanos Kaxiras and James R. Goodman
Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton St., Madison, WI 53706
{kaxiras, goodman}@cs.wisc.edu

Abstract—Programs that make extensive use of widely shared var-
iables are expected to achieve modest speedups for non-bus-based
cache coherence protocols, particularly as the number of proces-
sors sharing the data grows large. Protocols such as the IEEE Scal-
able Coherent Interface (SCI) are optimized for data that is not
widely shared; the GLOW protocol extensions are specifically
designed to address this limitation. The GLOW extensions take
advantage of physical locality by mapping K-ary logical sharing
trees to the network topology. This results in protocol messages
that travel shorter distances, experiencing lower latency and con-
suming less bandwidth. To build the sharing trees, GLOW caches
directory information at strategic points in the network, allowing
concurrency, and therefore, scalability, of read requests. Scalabil-
ity in writes is achieved by exploiting the sharing tree to invalidate
or update nodes in the sharing tree concurrently. We have defined
the GLOW extensions with respect to SCI and we have implemented
them in the Wisconsin Wind Tunnel (WWT) parallel discrete event
simulator. We studied them on an example topology, the K-ary N-
cube, and explored their scalability with four programs for large
systems (up to 512 processors).

1 INTRODUCTION

Current trends in research for distributed shared-memory paral-
lel machines, favour the use of specialized protocols for different
classes of shared data [6]. By classifying data according to its use,
a compiler or programmer can exploit data sharing patterns to
improve performance. This technique, which is crucial to the suc-
cess of software-based schemes [20,24], can also be exploited to
enhance the performance of hardware-based cache coherence
methods. The Scalable Coherent Interface [13], for example,
optionally implements the QOLB primitive [11] in this way.

Several classes of shared data have been identified, including
migratory, read-only, etc., [6,27]. Widely shared data is a class of
data that imposes increasingly significant overhead as systems
increase in size. Studies have shown that the average degree of

This work was supported in part by NSF Grants CCR-9207971 and
CCR-9509589, funding from the Apple Computer Advanced Technology
Group, an unrestricted grant from the Intel Research Council, and equip-
ment donations from Sun Microsystems. Our Thinking Machines CM-5
was purchased through NSF Institutional Infrastructure Grant No. CDA-
9024618, with matching funding from the University of Wisconsin Gradu-
ate School. This work was also partially supported by the National Center
for Supercomputing Applications and utilized the Thinking Machines CM-
5 at NCSA, University of Illinois at Urbana-Champaign.

sharing (the number of nodes that simultaneously share the same
data) in application programs is low [7]. This is somewhat mis-
leading for two reasons. First, under most non-bus-based proto-
cols, accessing widely shared data is very expensive and even a
small amount of widely shared data can be a serious bottleneck in
large systems. Second, because of the well-known performance
problems, programmers tend to avoid algorithms that make exten-
sive use of widely shared data. Many algorithms exhibit large scale
sharing, albeit for a very small percentage of their dataset. As we
will show, even in cases where less than one percent of the dataset
is widely shared, the performance loss can be substantial.

For many otherwise attractive network topologies, the bisection
bandwidth does not grow linearly with bandwidth needed for ran-
dom communication. Such networks must exploit locality to scale.
Methods that exploit locality are thus highly desirable. In this
respect, widely shared data provides greater opportunity for
exploiting locality than less widely shared data, which must be
carefully mapped to the topology to exploit locality.

The GLOW extensions offer scalable reads and scalable writes
to widely shared data. Scalable reads are achieved by caching
directory information in the network, a technique inspired by the
request combining originally proposed for the NYU Ultracom-
puter [12]. Because the directory information is more long-lived,
however, this technique can be effective even when multiple
requests are not generated simultaneously. Scalable writes are
achieved by exploiting the topology to invalidate or update sharing
nodes in logarithmic time. Previous examples of sharing tree pro-
tocols, such as the STEM Kiloprocessor Extensions to SCI {14] and
others [3,21,22] have largely ignored locality in the network. In
addition, previous work has attempted to treat all shared data in a
uniform manner, even though the overhead for such support limits
the benefit, or even reduces performance, for data that is not
widely shared.

The GLOW cache coherence protocol extensions are specifically
designed to handle accesses to widely shared data. The three main
goals that guided the design of GLOW were:

TO CREATE SHARING TREES THAT MAP WELL ONTO TOPOLOGIES,
thus achieving low latency protocol messages.

TO PROVIDE SCALABLE READS by exploiting request combining
independent of the timing of requests

TO PROVIDE SCALABLE WRITES by using the tree structure to
invalidate or update sharing nodes in parallel.

In this paper the GLOW protocol extensions are presented as
extensions to the SCI cache coherence protocol. The presentation
starts with an abstract overview of GLOW in Section 2. In Section 3
the SCI-specific implementation of GLOW is described along with a
brief discussion of other possible implementations. Section 4 elab-
orates on the GLOW extended SCI protocols. Section 5 defines the

simulation environment and defines parameters used in our study.
Section 6 describes the benchmarks and presents the results of the
simulations. Section 7 reviews some important relevant work.
Finally Section 8 summarizes our work.

2 GLOW PROTOCOL EXTENSIONS

Large-scale systems are likely to be based on topologies where
requests going toward memory—as well as data distributed back to
nodes—follow traffic patterns that naturally form trees. The GLOW
protocol extensions are intended to capture and exploit these trees.
The general structure of GLOW trees is independent of the timing
of the requests (something that is not true for many other tree pro-
tocols). This feature leads to increased locality in the network,
resulting in low latency protocol messages.

Here we assume systems comprising nodes connected in a net-
work. A node can be a processor with a cache, a memory module
with a memory directory, a switch that routes requests from one
network link to another, or any combination of the above. Any
node that includes a switch is called a switch node.

GLOW itself does not provide transactions for reading and writ-
ing shared blocks from scratch. Instead, it works as an enhance-
ment to another cache coherence protocol, borrowing its
mechanisms. The functionality of the GLOW extensions is imple-
mented in selected network switch nodes called GLOW agents.
These agents intercept requests for widely shared data. Other
requests (for non-widely shared data) remain unaffected and pro-
ceed through the switch nodes at full speed. The GLOW agents
keep directory information (and optionally, data). Nodes become
children of a GLOW agent when their requests for widely shared
data are serviced by that agent. The GLOW agents themselves join
the sharing tree when they send their own requests toward the
remote memory in order to service other nodes or other agents.
The sharing tree is thus created recursively, bottom-up. The shar-
ing nodes will be the leaves of the sharing tree and the GLOW
agents will comprise all of the internal nodes. All of the sharing
tree, other than the leaves, represents a form of hierarchical cach-
ing of directory information. In the various implementations of
GLOW it is neither necessary to have a copy of the data in the
GLOW agents nor is it necessary to maintain multilevel inclusion
{2] in the hierarchical caching of the directory information. These
properties are important because they provide attractive implemen-
tation choices for avoiding deadlock and indiscriminate invalida-
tion of descendents in case of replacements.

Since the GLOW agents intercept multiple requests for a cache
line and generate only a new request toward the ‘home node,’ the
same effect as request combining is achieved. The memory direc-
tory receives only the requests of a few agents, in effect eliminat-
ing hot spots [23].

An example of a general K-ary sharing tree that can be formed
using GLOW agents is shown in Figure 1. In this figure the memory
and memory directory in the ‘home node’ are represented by the
square in the top left corner, nodes that have a copy of the data
block by white circles and GLOW agents by black circles. The
GLOW agents can impersonate the remote memory, however far
away it is, on a local cluster of nodes and thus satisfy their requests
locally. In levels of the tree between itself and the root, an agent
itself behaves as if it were an ordinary node sharing the data block.
This behaviour of the agents allows the use of the underlying pro-
tocol mechanisms for accessing the shared data. For example, in
Figure 1, as far as the memory directory is concerned, it points to a
number of sharing nodes, whereas in reality it points to the first
level of agents that hold the rest of the sharing tree. Similarly as far
as the nodes that truly share (the leaves of the sharing tree) are con-
cerned, they have been serviced directly by memory where in fact

they were serviced by the agents impersonating the memory.
GLOW can fall back to the underlying protocol at any time, thus
providing flexibility at handling extraordinary cases.

GLOW invokes in parallel the underlying protocol’s invalidation
or update mechanisms for the writes to widely shared data. On
receipt of an invalidation (or update) message, an agent starts the
invalidation (or update) process on the other agents or nodes it
services. This parallel invalidation or update of the sharing tree
permits fast, scalable writes.

Memory/Dir
(homenode)

FIGURE 1. Logical k-ary sharing tree. Black nodes are
GLOW agents, white nodes are sharing nodes.

In order for the GLOW protocol extensions to be usable the
widely shared data in a program must be identified and a method
provided to generate the specially tagged requests for such data.
We believe that in many programs the programmer is able to iden-
tify in the source code the widely shared structures. We have not
yet investigated whether this can be done automatically by a com-
piler. In cases where discrimination is difficult, profiling tools can
possibly identify such data.

In addition, a method is required to permit the program to con-
vey this information to the hardware. While specific implementa-
tions depend on the opportunities presented by the processor used,
we describe several general techniques.

COLOURED OR FLAVOURED LOADS: This is the first choice if the
processor is capable of tagging load and store operations explic-
itly. The compiler can then directly indicate which memory
operations should be treated as widely shared.

MEMORY MAPPED: Widely shared data can be allocated in certain
regions (or pages) of memory. Any address that falls into these
regions is treated specially. The programmer or compiler identi-
fies the ranges of addresses that are widely shared.

EXTERNAL REGISTERS: A two-instruction sequence is employed.
First a store to an uncached, memory mapped, external register
is issued, followed by the read or write. This special store sets
up external hardware that will tag the following load. Again the
compiler inserts stores to the external registers just before the
desired load instructions. While it is desirable that the two oper-
ations be performed atomically, this is not a requirement for
correctness, so no extraordinary measures need be employed to
handle discontinuities caused by exceptions.

The above methods for generating specially tagged requests are
all static. We are currently examining ways to discover widely
shared data at run-time. The designation as widely shared is made
at the home directories by counting the number of reads between
writes for each data block. However, the methods of building the
sharing trees considered so far for the dynamic GLOW are topology
dependent.

3 GLOW EXTENSIONS TO SCI

In this section we briefly describe the SCI cache coherence pro-
tocol and various GLOW implementations on it. We also discuss a
GLOW implementation for a full map protocol (DIR;X [1]). While

the version described herein is not fully compatible with SCI, such
a compatible version is a proposed component of the IEEE P1596.2
Kiloprocessor Extensions to the SCI standard currently under
development. The details of this implementation are reported else-
where [17].

3.1 BACKGROUND: sCi

The ANSI/IEEE standard 1596 Scalable Coherent Interface [13]
represents a robust hardware solution to the challenge of building
cache-coherent, shared memory multiprocessor systems. It defines
both a network interface and a cache coherence protocol. The net-
work interface provides a 1GByte/sec ring interconnect and a set
of defined transactions. Scott et al. showed [26] that a ring can
accommodate small numbers of high-performance nodes, in the
range of four to eight. For larger systems, more complex topolo-
gies can be constructed from rings (e.g., K-ary N-cubes, multistage
topologies) [15]. In these topologies some or all nodes provide
low-latency switches to connect more than one ring.

SCI defines a distributed, directory-based cache coherence pro-
tocol. Unlike most other directory-based protocols (such as DASH
[19]) that keep all the directory information in memory, SCI dis-
tributes the directory information to the sharing nodes in a doubly-
linked sharing list. The sharing list is stored with the cache lines
throughout the system. The memory directory has a pointer to the
last node that joined the sharing list, which is called head of the
list. A node can join the sharing list by notifying the memory
directory to point to it, and attaching in front of the previous head.
The node that joins the sharing list gets the data either from the
memory or, if memory has no valid copy, from the previous head
of the sharing list. As the head of the sharing list, a node may have
both read and write permission to the cache line; all other nodes in
the sharing list have only read permission. The SCI sharing list is
depicted in Figure 2 where caches, represented by small rectan-
gles, are connected in a doubly-linked list with their backward and
Sforward pointers.

sCi1 cache pointers

Memory BaleW<ard-—J_-_-i_-[Tf;r;v:rd
Directory

Head Mid Mid Tail

FIGURE 2. s¢i Sharing List. The last node connected to the
memory directory is the head of the list. The first node in the
list is the tail and the rest are middle entries.

A node can also leave the sharing list by communicating with
its neighbours. This operation, called Rollout, takes place in two
situations: (1) When there is a conflict in a cache and the cache line
must be replaced, the node rolls out of the sharing list. (2) In order
to write the cache line, a node other than the head of the sharing
list must first rollout, then become the new head.

As the head of a sharing list, a node can invalidate, or purge, the
rest of the sharing list upon writing the cache line. The head sends
invalidation messages serially to the other nodes in the sharing list.
Each of these nodes acknowledges the invalidation by returning its
forward pointer (i.e., the pointer to the next node to be invalidated)
to the head and invalidating its data.

3.2 GLOW ON sCli

The GLOW agents in an SCI network are placed where requests
are switched from one ring to another. They can be stand-alone on
the network or part of another SCI node. We have studied the sec-
ond case as it is likely that agents will be implemented as part of
the ring interface card on a workstation. Our view of this case is
depicted in Figure 3 where we show a GLOW-capable workstation
scI node. The switch is not slowed down by the GLOW agent as far

as normal SCI requests and responses are concerned. These mes-
sages are unaffected by the existence of the agent. Only specially
tagged requests are pulled out of the network and are delivered for
further processing to the GLOW agent,

Our experience in developing the specification for the GLOW
protocol in C-code indicates that an implementation of a GLOW
agent is very similar to that of an SCI cache controller but with less
complexity. The GLOW agent implements a small part of the SCI
cache coherence protocol (just the basic functionality with no
options) and part of the directory controller. Some added complex-
ity stems from the fact that GLOW has to deal with multiple point-
ers per cache line instead of the two and one pointer of the SCI
cache and SCI directory respectively. A GLOW controller also
requires some amount of memory (to be used as a directory cache).
Optionally, data storage memory can be included.

Processor/

Memory/
scCt cache

DiR

,-..._.-

Rings Interface Card

FIGURE 3. cLow agent/sci node: The switch, that connects
the three rings and the node, is augmented with a GLow
agent (directory cache and control). Normal SCi messages
(requests and responses) are unaffected by the existence of
the GLOwW agent. Only specially tagged requests are
delivered to the cLOW agent.

Using caching in the agents the sharing trees are built out of
small, linear SCI sharing lists. In a well formed GLOW sharing tree
each SCI list is confined to one physical ring. Although the sharing
trees are not optimal in the theoretical sense (because some of their
parts are linear) the latency of the protocol operations is low
because messages are generally confined to a single ring where
they travel very fast. In addition, the shorter distances travelled by
these messages can dramatically reduce network traffic under the
appropriate circumstances.

The sci lists are created under the agent when requests from
nodes on a ring are intercepted and satisfied either directly by the
agent or by another close-by node (usually on the same ring).
These lists are called child lists and the agent is their parent. With-
out GLOW, requests would go all the way to the remote memory
and would join a global list. As we have explained the agent has a
dual personality: toward its children it behaves as if it were an SCI
memory directory; toward its parent it behaves as if it were an ordi-
nary SCI cache. The agent impersonating the remote memory on
the local ring links the requesting nodes in the small child lists. In
order to keep the child lists confined to their rings agents can
accommodate multiple child lists per tree tag. Toward the ring the
leads to the memory node the tree tag appears to have a backward
and forward pointer just like any other SCI cache.

The agent itself, along with other nodes in the higher level ring
(the next ring toward the home node), will in turn be serviced by
yet a higher level agent impersonating the remote memory on that
ring. This recursive building of the sharing tree out of small child
lists continues up to the ring containing the true remote memory.
Since there is an overhead in building the tree (i.e., to invoke all the
levels of agents) we use GLOW only for the widely shared data.

3.3 GLOW ON FULL~-MAP CACHE COHERENCE PROTOCOLS
Similarly to the way GLOW is implemented on top of SCI, it can
be implemented on top of other traditional full map cache coher-
ence protocols such as DIR;X or DASH. In this case the directory
information in the agents can be kept as full or partial bitmaps.

When partial bitmaps are used the agents can only point to the
immediate nodes they service or alternatively to all the nodes that
can potentially be their descendents in a sharing tree. In any case,
multilevel inclusion can be ignored as long as the memory direc-
tory has a full map directory (or a LimitLESS directory [7]) that
can accommodate nodes or agents that do not appear in their
proper position in the sharing tree. In this way the absence of an
agent in the sharing tree will only affect performance since the
nodes, or other agents it would service, will be serviced by the
memory directory in the usual manner specified by the underlying
protocol.

3.4 GLOW ON AN EXAMPLE TOPOLOGY

GLOW extensions can be implemented on top of a wide range of
topologies, including hypercubes; meshes; trees; butterfly topolo-
gies [15] and many others. GLOW can also be used in irregular
topologies (e.g., an irregular network of workstations). We chose
to implement and study the GLOW extensions on a popular topol-
ogy we believe is a likely candidate for implementation. It is the K-
ary N-cube topology made of rings. We stress here that the GLOW
extensions do not depend on this topology and can be equaily well
applied to other topologies.

GLOW sharing tree 3-ary 3-cube topology of scl rings

Mem|[j._._._._
Dir | | ~ T e

NN

N

@ © O Topology Nodes

V¥ V¥V cLow agents
W83 D0 sclcaches

FIGURE 4. cLow Tree on 3ary 3-cube. The agents
(triangles) and sci caches (rectangles) of the same shade
reside in the same physical node (circle).

In our example K-ary N-cube topology the routing of messages
is fixed in dimension-order to have deadlock free routing. At the
place where GLOW requests switch to the ring of the next dimen-
sion they are intercepted by the agent and processed. A new GLOW
request is generated and continues in the next dimension. The
response to an intercepted GLOW request travels back one dimen-
sion to the ring from which the request originated.

In Figure 4 the mapping of a k-ary sharing tree on the 3-ary 3-
cube is shown. The GLOW agents are represented by triangles and
the SCI caches by circles. Observe that lists are in hierarchical lev-
els and the agents can have child lists in different levels. The nodes
in the lists are drawn in perfect order which is not the usual case.
The nodes’ positions within a list depend on the timing of their
requests as seen by the GLOW agent. (The general structure of the
tree, however, does not depend on the timing of requests.)

4 GLOW EXTENDED SCI PROTOCOLS

In this section we elaborate on how the GLOW trees are con-
structed on SCI, how they are invalidated and how replacements
are performed in SCI caches and in the directory caches of the
GLOW agents.

4.1 CONSTRUCTION

When a node needs to read a remote cache line designated
widely shared, it initiates a specially tagged request addressed to
the home node of the cache line. At the point where it would
change rings, the message is (optionally) intercepted by an agent.

The request can be completely ignored and passed toward the next
hierarchical level if there is danger of deadlock. This might occur,
for example, when the request requires directory storage (a tree
tag) that is occupied by another tree tag in a transient state. The
agent checks in its directory storage for information relating to this
cache line.

IF THE AGENT DISCOVERS AN ENTRY, it responds to the request
directly, prepending the requesting node to the appropriate child
list. The node will get the data from the previous head of the
child list, or from the head of one of the agent’s other child lists,
or from the agent itself, if it keeps copies of the cache lines.
Agents do not repeat their requests toward the home node to
fetch the data as this would put them in the sharing tree twice
(see also Section 4.2).

IF THE AGENT FINDS NO ENTRY, it sends its own request for the
cache line toward the home node. The requesting node becomes
the first child of the agent. As soon as the agent receives a copy
of the line it passes it to the waiting node(s).

In the time it takes for an agent to get the data, new requests
may arrive. Each of the new requesting nodes is instructed to pre-
pend to the appropriate child list and wait for the data. Three
options have been identified for distributing the data to a child list
where all nodes are waiting for the agent to get the cache line:

TAIL-TO-HEAD: As is currently defined in SCI. The agent instructs
the node to prepend to the child list and request the data from
the old head (exactly as the SCI memory would do). The very
first node to request the data becomes the waiting tail of the
child list. It will eventually get the data from the agent. Note
this scheme requires the agent to maintain two pointers: one to
the tail for providing the data, and one to the head for adding
additional nodes. This scheme is the most compatible with SCI
and its details are discussed elsewhere [17].

HEAD-TO-TAIL: If a requesting node prepends to a child list, where
the old head is waiting for the data, then it assumes responsibil-
ity to forward the data. When the agent gets the data it will pass
it to the waiting heads of its child lists. The heads will then for-
ward the data toward the waiting tails. A characteristic of this
scheme is that it increases the variance of the latency experi-
enced by the requesting nodes.

BROADCAST ON THE RING: This is a broadcast confined within a
single ring. All nodes that are waiting will receive the broadcast
and consequently the data.

When all nodes simultaneously read a cache line (for example,
after a global barrier), construction of the tree is quite fast: All the
child lists can be constructed in parallel. Copies of the cache line
are distributed down the tree concurrently with list construction.

4.2 ROLLOUT

An ordinary node rolls out either because of a cache line
replacement or in order to become head for writing the data. The
standard SCI protocol is applied for rollout. Agents may roll out
because of conflicts in their directory (or data) storage or because
they are left childless. Childless agents are not permitted in the tree
unless they also cache the data—the SCI protocol does not permit
caches already in the sharing list to issue a second request, since
this would put them in the list twice. As soon as the last child rolls
out the agent rolls out too. When an agent finds itself childless it is
only connected to the tree with its forward and backward pointers.
In this case the rollout is the standard SCI rollout.

When an agent with children must roll out because of a conflict
in its directory storage, it must first deal with its child lists, and
then roll out as before. Two approaches for dealing with the child
lists are described below. When the first is used the rollout is called

DESTRUCTIVE because it destroys parts of the tree. When the sec-
ond is used the rollout is called LINEARIZING because it connects
the child lists into extended linear lists.

4.2.1 Destructive Roilout

The simple solution is borrowed from hierarchical caches that
enforce multilevel inclusion. When a node rolls out, it invalidates
all of its descendents using the invalidation algorithm described in
Section 4.2.3. When the invalidation completes, the agent is child-
less and it can rollout as usual. This simple scheme has great
appeal because of its simplicity. However, it can lead to thrashing
behaviour, constantly invalidating nodes which then immediately
repeat their requests for the cache line when the amount of widely
shared data in the system significantly exceeds the directory capac-
ity of the agents. Such behaviour is difficult to avoid because the
node rolling out does not have information about the access fre-
quency of data being referenced by nodes in its child lists. Never-
theless, this scheme may be generally viable because in many
programs the amount of widely shared data (actively accessed at
any point in time) is rather low. In this paper this scheme is used
because of its simplicity.

4.2.2 linearizing Rollout

This scheme attempts to preserve the sharing tree as much as
possible, degrading the structure of the tree gracefully. Note that it
is possible only because GLOW does not require multilevel inclu-
sion. The LINEARIZING rollout is based on concatenating the child
lists and subsequently substituting the concatenated child lists in
place of the agent in tree. The child lists are concatenated, i.e., they
are chained tail-to-head into a single, linear list. The head of the
first child list connects to the tree in the position of the agent’s
backward pointer. The tail of the last list connects to the tree in the
position of the agent’s forward pointer. In order to chain the child
lists efficiently the GLOW agent keeps an extra pointer to the tail of
each child list (as in the case of Tail-to-Head data distribution
scheme). The chaining process involves only the heads and tails of
the child lists. The process is shown graphically in Figure 5.

X R, *

[4 - -

Child List Child List

FIGURE 5. Linearizing roflout. The agent that rolls out (gray
triangle) chains its two child lists into one (tail to head) and
substitutes the resulting list in its place. Notice the two extra
pointers the GLOW agent keeps to the tails of its child fists.

In the LINEARIZING rollout protocol, when an agent rolls out
and later rejoins the tree the relation of the agent and its children is
lost at the point of the rollout. If the agent rejoins the tree it will do
so in another position in the linear list of the appropriate hierarchi-
cal level. New requesting nodes that would otherwise become
heads in the old child lists, will join newly created child lists under
the agent. Although the sharing tree degrades over time as the
agents leave and rejoin, leaving child lists scattered over multiple
rings, this scheme is potentially more effective than the DESTRUC-
TIVE rollout. Two arguments support this claim: First, there is min-
imal interference to other nodes: While in the DESTRUCTIVE
rollout many shared copies that are potentially in use are invali-
dated, this scheme requires only the participation of the heads and
tails in the concatenation of the child lists. Second, the latency of
invalidating a subtree can be a lot higher than the latency of chain-
ing the child Hsts together and substituting the agent. Therefore
replacements in the agent’s directory storage can be much faster.

The LINEARIZING rollout is used in the SCI compatible version of
GLOW and additional details can be found elsewhere [17].

4.2.3 Invalidation

Before a node can modify a cache line, it must first become the
head of the top-level list connected directly to the memory direc-
tory in the home node. In this position the node is the root of the
sharing tree, the only node granted write permission. A node has to
rollout from the sharing tree before becoming root. After the cache
line is written, invalidation messages are forwarded down the tree
in parallel. When the invalidation messages reach the tails of the
lists they invalidate themselves and send an acknowledgment back.
GLOW agents wait for the acknowledgment of all the invalidation
messages they forwarded, invalidate themselves, and return their
own acknowledgment. This two-phase method (invalidation distri-
bution down the tree and then acknowledgement return to the root)
can be used to implement an update protocol where updates are
serialized at the root of the tree, the new values are distributed
down the tree and they are confirmed with acknowledgments all
the way back to the root. In a well-structured tree, invalidation is
fast because all the messages are exchanged locally—between
nodes within the same ring. Note here that, for a scheme that can
exploit broadcast effectively, confining lists to a single ring poten-
tially offers very significant reductions both in message traffic and
invalidation latency.

The IEEE P1596.2 GLOW Kiloprocessor Extensions use SCI’s
invalidation mechanism, as described in Section 3.1, rather than
full request forwarding described in this paper. There, all the
agents in parallel assume a role similar to the head nodes in SCI
and invalidate their child lists in the same manner as the SCI proto-
col [17].

5 SIMULATION METHODOLOGY

To evaluate the performance of GLOW we used four Scientific
benchmarks. We do not claim that these programs are in any way
representative of a real workload. We did not consider programs
without widely shared data because such programs would never
activate the GLOW extensions. Most parallel programs access little
shared data, at least in part because most programmers eschew
such algorithms, believing—not incorrectly for many parallel sys-
tems~—that such algorithms will not perform well. We have simu-
lated K-ary N-cube systems from 16 to 256 nodes in two and three
dimensions. In the following sections we present the speedups that
scI and GLOW achieve with respect to the parallel program run-
ning in one node. In this evaluation we have kept the input size
constant, decreasing the work that each processor must perform as
more processors are added. We aslo show the effect of a larger
input size for GAUSS. In some cases we have explored beyond the
useful limit of the benchmark, where the SCI implementation actu-
ally slows down because the heavy network traffic comes to domi-
nate the execution time of the program. This range shows,
however, that when the network latencies dominate the perform-
ance, GLOW becomes increasingly attractive because of the
reduced average path length.

5.1 IMPLEMENTATION OF GLOW IN THE WWT

The Wisconsin Wind Tunnel [25] is a well-established tool for
evaluating large-scale parallel systems through the use of massive,
detailed simulation. It executes target parallel programs at hard-
ware speeds (without intervention) for the common case when
there is a hit in the simulated coherent cache. In the case of a miss,
the simulator takes control and takes the appropriate actions
defined by the simulated protocol. The WWT keeps track of virtual
time in processor cycles. The Scalable Coherent Interface has pre-

viously been simulated extensively under WWT[16] and the GLOW
extensions have been applied to this simulation environment.

We consistently made conservative choices to establish a lower
bound on the performance of GLOW. We have studied the
DESTRUCTIVE rollout algorithm, which has lower performance than
the LINEARIZING rollout. To date the first two data distribution
schemes, Tail-to-Head and Head-to-Tail have been implemented.
The third scheme, Broadcast-on-the-ring, is more complex and
requires broadcast not easily simulated in the WWT SCIL. The data
distribution scheme for all reported experiments is Head-to-Tail.

5.2 WWT NODE

In this section we describe the models we used for the system
components and the network. We simulated a node comprising a
processor, an SCI cache, memory, memory directory, a GLOW
agent, and a number of ring interfaces. We assumed 200MHz proc-
essors which execute one instruction per cycle in the case of a hit
in their cache. Each processor is serviced by a 256K 4-way set-
associative cache with a cache line size of 64 bytes. Processor,
memory and network interface (including GLOW agents) commu-
nicate through a 66MHz 64-bit bus.

Each GLOW agent is equipped with a 4096-entry directory stor-
age and an optional 256K data storage. The directory storage is
rather small: A directory entry (tree tag) for the K-ary 3-cube needs
approximately 12 bytes (five 16-bit pointers and state) making the
total directory storage (4096x12 bytes) 48 Kilobytes. In order to
minimize conflicts the directory storage is organized as an 8-way
set-associative cache.

In our simulation environment we have used the ‘memory
mapped’ method (see Section 2) to generate special requests.
Again this results in a conservative assessment because a dynamic
scheme could potentially perform much better. Choices of what
data are widely shared were made by one of the authors, after stud-
ying the code. This decision is again conservative: the programmer
who wrote the code could easily do as good a job at identifying
widely shared variables, and possibly might do much better.

5.3 NETWORK SIMULATION

An SCI K-ary N-cube network of rings with a 200MHz clock is
assumed; 16 bits of data can be transferred every clock cycle
through every link. We simulate contention throughout the net-
work. However our model deviates from the SCI specification in
that we did not simulate SCI’s bandwidth allocation algorithms,
nor the appropriate scheduling between ring traffic and outgoing
traffic from the nodes. As it can be seen in Figure 6 the SCI inte-
face specifies three classes of queues: the Input queues, the Output
queues and the Bypass buffer. The Input and Output queues are
actually pairs of queues, distinct for requests and responses. The
Bupass buffer captures the ring traffic while the output link is busy
with outgoing traffic from the Output queue. SCI specifies that
while the Bypass buffer is not empty the Output queue cannot be
drained. SCI guarantees fairness in bandwidth alocation with Go
bits that throttle the outgoing traffic of nodes. Eventually the
Bypass buffer will be empty and the Output queue can transmit. In
our model we do not model the arbitration between the Output
queue and the Bypass buffer. Any messages in these queues are
interleaved with a total FIFO order. We do not model the Go bits
algorithm for bandwidth allocation. However since both the Out-
put queue and the Bypass buffer have equal access to the output

link we do not face possible starvation of the Output queue. Finally
we assumed infinite queues in the network.

Node Node In the standard SCI ring Inter-

face, contents of the Qutput buffer
are not transmitted while the
! Bypass buffer is not empty. Even-
) tually the bypass buffer will
! empty because of the bandwidth
. allocation algorithms of the SCI
Ring.

Output:

Rin

R P

......

In the simplified model the
arbitration between the Bypass
and Output buffer is missing,
hence a single queue for both.

[L .

FIGURE 6. SCI ring Intreface simplification

The queuening in a node is shown in Figure 7. The ring inter-
faces are connected to the processor, cache, memory and directory
through the sysrtem bus. The bus uses split transactions and queue-
ing is implemented for every message. The GLOW agent and the
switch that routes messages from one ring to the other are directly
connected to the rings and do not use the system bus for traffic
between them.

ProceisorlCache Memory/Dir

(=1

GLOW
Otpt.r..---[t‘. 41-1
utput» "Input Output’ 'Input
BYP“SSIHJ P Bypass! e
)) ¥ L]
....... +Ring ‘e ==----=4Ring

FIGURE 7. Queueing in a node

To validate the network simulator we performed comparisons
with a more detailed model [4,5]. This model uses finite queues
and retransmissions. It takes into account the arbitration between
the Output queues and the Bypass buffers but it does not imple-
ment the Go bit algorithm for bandwidth alocation on the rings
(hence it does not guarantee forward progress for the Output
queues). The comparisons show that the two simulators result in a
difference in simulation time of at most 5%.

6 BENCHMARKS

6.1 GAUSSIAN ELIMINATION

The GAUSS program solves a linear system of equations using
the well known method of Gaussian elimination. Details of the
shared memory program can be found in [8]. A coefficient matrix
NxN is filled with random numbers and then the linear system is
solved using a known vector. The work is divided among the proc-
essors by distributing the rows block-wise.

GAUSS consists of two phases: In the first phase, for each col-
umn, a pivot row is chosen between all processors. Subsequently
this pivot row is read by all processors, multiplied by a factor and
subtracted from the rest of the rows. In the second phase (the back-
ward substitution phase) processors compute the vector of the
unknown variables, starting from the last row. As each variable is
computed every processor reads it and the appropriate factor is
subtracted from every row.

The program has three structures that are widely shared: First in
every iteration of the first phase the pivot row is read by all proces-
sors; in subsequent iterations elements of previous pivot rows are
updated. Potentially every row of the coefficient matrix can be
widely shared. Second, the unknown variable vector is widely
shared in the second phase as every variable that is computed is
read by most processors. Third, some variables used in a software
tree for reduction operations are widely shared. To convert this
program to use the GLOW extensions, the coefficient matrix, the
unknown variable vector, and the reduction tree variables are
memory mapped as widely shared data. In this way we have incor-
rectly defined the amount of widely shared data to nearly the total
of the dataset of the program, because at any time only one row is
the widely accessed pivot row (less than 1% of the dataset).
GAUSS represents the case where memory mapping the widely
shared data is not an adequate solution since we apply GLOW to
non-widely data resulting in unnecessary overhead.

In Figure 8 we plot the speedups of SCI, GLOW, and GLOW
WITH DATA STORAGE for a range of systems from 16 to 128
nodes, in 2 and 3 dimensions. SCI is represented by black bars,
GLOW and GLOW WITH DATA STORAGE with grey bars. The extra
white segments on top of the bars represent the additional speedup
when switching from 2 dimensions to 3 dimensions. SCI does not
exhibit any speedup beyond 32 nodes while GLOW continues up to
64 nodes (both in 2 and 3 dimensions) and up to 128 nodes (in 3
dimensions). Higher dimensionality benefits GLOW more than SCI
since the GLOW trees depend on the topology of the network.
GLOW WITH DATA STORAGE is not significantly faster than GLOW
(at most 3% improvement).

s GAUSS

alow
arow +Data (513x512)

rows are the corresponding statistics for write misses. For GAUSS,
the average latency of reads in SCI increases dramatically with sys-
tem size. GLOW average latency for reads grows more slowly but it
actually increases faster for the average write latency. This is the
result of applying GLOW to the whole coefficient matrix: Every
write to this matrix is a GLOW write, though few actually affect
pivot row elements, which are the widely shared elements.

6.2 SPARSE MATRIX SOLVER

This program solves AX=B where A and B are matrices (4
being a sparse matrix) and X is a vector. The main data structures
in the SPARSE program are A, the NxN sparse matrix and X, the
vector that is widely shared. This vector has N elements (the
number of columns in the sparse matrix). We memory-mapped this
vector along with three variables used in software reduction trees
as widely shared data. SPARSE is a good example of a program
where memory mapping the widely shared data is effective.

SPARSE with a 512x512 matrix, as it is depicted in Figure 9,
does not exhibit speedup beyond 32 nodes for either SCI or GLOW,
though the latter is always faster than SCI for any system size.
GLOW also benefits more than SCI when upgrading to a 3-dimen-
sional network. Data storage improves GLOW speedups by at most
5%.

In Table 2, which follows the same format as Table 1, we
present the statistics for SPARSE. Notice that the X vector along
with the three variables that are accessed as widely shared data are
responsible for 43% to 50% of ail the reads (Table 2) of the pro-
gram but their average latency (in SCI) does not increase dramati-
cally as the system size increases. Consequently, the latency
reduction in reads is smaller than the corresponding reduction in
GAUSS and it does not translate in significant performance gains.
In contrast to GAUSS, the percentage of GLOW writes remains at,
or below, 8% across the range of systems and the average latency
of writes decreases, which confirms that GLOW is indeed used only
in widely shared data.

sel
sor Iy o OSE
[lGtow UPDATE

azr

2471

TR

16 32 64 128
System Size
FIGURE 8. gauss in 2-D and 3-D
2D 3D

161321 64 [128) 16| 32 | 64 |128
sCi Cycles (M) 107] 76 82] 147] 1061 71 72] 113
cLoOw Cycles (M) 05| 65 52 591 104{ 62 46 42
GLOW Speedup 1.02) 1.17] 1.58] 2.49] 1.02] 1.14] 1.56] 2.69
Reads (K) 185| 359] 712] 1376] 1851 359§ 725| 1392
GLOW R. (%) 100} 100§ 98] 97{ 100§ 100] 98 97
Lat. R(Cycles) 459] 905| 1744 4049| 450 768] 14231 3057
Lat. Reduction (%) 8l 59 74 82] 42 60 76 85
Writes (K) 63] 84| 154] 267] 63] 84| 154] 266
GLOW W (%) 73] 80} 78 761 73} 80} 77 75
Lat. W (Cycles) 308] 483| 585| 886] 298f 4251 485] 648
Lat, Reduction W (%) 270 131 -31f 230 61 -10] -261 -19

Table 1: causs 2-D and 3-D ,

In Table 1 we present statistics for GAUSS. The first two rows
show the number of cycles for the execution of the program in var-
ious systems. The third row gives the speedup of GLOW relative to
SCI. The next four rows are statistics for read misses: the number
of read misses, the percentage that is converted to special requests
(GLOW reads), the average latency of a read miss in SCI and the
reduction in the average latency when using GLOW. The last four

ar I
§é
076 32 64
System Size
FIGURE 9. sPARSE in 2-D and 3-D .
2D 3D
16 132 | 64 | 128) 16 | 32 | 64 | 128
sc) Cycles (M) 54 55 63 83 54 51 56 65
GLow Cycles (M) 53] 541 60} 78} S3} 50| 53 61
GLOW Speedup 1.02] 1.02] 1.05] 1.06{ 1.02f 1.02] 1.06] 1.07
Reads (K) 2071 305] 667) 1380] 206] 305] 667! 1380
GLOW R. (%) 43} 58 54 52] 43] 58 54 52
Lat, R (Cycles) 273] 463] 630] 1098 265f 384} 500] 729
Lat. Reduction (%) 8 9 19 20 11 18 26 29
Writes (K) 671 73] 81l 108] 671 731 81 107
GLOW W (%) 8 7 6 S 8 7 6 5
Lat. W (Cycles) 378 737] 1348] 27541 368 6211 1056] 1898
Lat. Reduction W (%) 191 27 44 321 20] 39 55 48

Table 2: spARSE 2D and 3D

120409 T Y T T T Y T 4 T T
‘SCL1024x1DES"

Be+08

86+08 |-

Execution Tima {cyctas}

20408 -
a e

Rigg T
S S

0 : i L :)
0 50 100 150

200 250 300 350 400 450 500 550
System size {numbar of nodes)

(a) Datasets on a k-ary 3-cube

180408 |

168409 -

~ 148409 1

1.20408 [

1a+09 -

Execution Time (cyclas|

Ba+08 i

8a+08

X L L i L n

:
400 450 500 550

50 100 150 200 250 300 350
System Size (number of nodes)

(b) Effects of Dimensionality of Network

32 64 128 256 512
2D speedup 1.07 122 | 127 1.72
3D speedup 1.06 1.22 | 149 1.99 | 244
4D speedup 106 | 120 | 1.52 | 205

FIGURE 10. Large data sets for GAUSS and SPARSE

6.3 LARGE DATA SETS FOR GAUSS

These graphs represent data that were collected with an earlier
version of SCI GLOW in the WwT. The specific parameters such as
processor, network, and memory system speeds are different from
other simulations reported in this document. A very important dif-
ference is the simulations for the large inputs did not model net-
work contention, assuming only a latency per message that
depends on the distance the message travels. We do however,
model contention for accessing memory and caches. Because of
this difference we were able to simulate GAUSS with very large
dataset: a 1024x1024 system of linear equations. Despite the dif-
ferences in the simulation models, we can draw valid conclusions
from these results. These results are conservative with respect to
GLOW since it suffers much less than SCI with accurate modeling
of network contention. The vertical axes of these graphs represent
execution time (smaller is better). The horizontal axes represent

system size. Both axes are linear. The first conclusion from these
graphs is that by scaling the dataset of a program GLOW exhibits
better scaling than SCI. In fact in larger numbers of nodes SCI
slows down considerably faster than with the small dataset. Not
surprisingly, the difference between GLOW and SCI becomes much
more pronounced with larger datasets. The second conclusion,
which is in agreement with the micro-benchmark results [17], is
that GLOW benefits more with higher dimensionality networks
than SCI. Since, in this case, we do not model contention in the net-
work, GLOW’s performance benefits come directly from better dis-
tribution of the memory directory contention to more GLOW agents
and faster invalidations.

6.4 ALL-PAIRS SHORTEST PATH AND TRANSITIVE CLOSURE

These two parallel algorithms solve classical graph problems.
The first problem is finding the shortest paths between all pairs of
vertices in a graph. The second is to find the transitive closure of a
graph, (i.e., a new graph where two vertices are connected if there
is a path in the original graph that connects these vertices). For
both programs we used dynamic-programming formulations, that
are special cases of the Floyd-Warshall [9] algorithm.

In the All-Pairs Shortest Path program (APSP), an N vertex
graph is represented by an Nx¥ adjacency matrix. The (i,j} element
of this matrix represents the weight or distance between the i and j
vertices. The Floyd-Warshall algorithm computes a series of N
new matrices, each based on the previous matrix. We have paral-
lelized the algorithm, using row decomposition and optimizing it
by grouping reads, computations, and writes, to reduce the number
of necessary barriers between iterations. The resulting program is
reasonably optimized for SCI. The input graph used for the simula-
tions is a 256 vertex dense graph (most of the vertices are con-
nected). The adjacency matrix is memory-mapped as widely
shared data.

In Figure 11 we show the speedups (with respect to one node)
for GLow and SCI. While SCI stops scaling beyond 32 nodes
GLOW continues up to 128 nodes and in 3 dimensions up to 256
nodes. As in the other benchmarks GLOW benefits more in 3
dimensions than SCI. Again, GLOW WITH DATA STORAGE does
not provide any significant advantage over GLOW (less than 2%).
In Table 3 statistics for APSP are presented. Note the very high
latencies SCI experiences for widely shared data. As in the other
programs the number of reads increases with the number of nodes.
The reduction in the average read latency also increases. The
number of writes to the main data structure of the program how-
ever remains the same (about twelve thousand). This is evident
from the declining percentage of GLOW writes. The rest of the
writes are initialization writes that increase with the number of
processors. The latency reductions for writes are also substantial
mainly because SCI does not perform well with very large sharing
lists.

Transitive Closure (TC), is another application of the Floyd-
Warshall algorithm. In this program an NxN matrix represents the
connectivity of the graph with ones and zeroes. Again the algo-
rithm iterates N times and in each step it updates the matrix based
on what was computed in the previous step. The input is a 256 ver-
tex graph with a 50% chance of two vertices being connected. Sim-
ilarly to APSP the program has also been reasonably optimized for
sClL. The whole matrix is memory-mapped as widely shared data.

TC achieves better speedups than APSP and for SCI the speed-
ups increase up to 64 nodes (both in 2 and 3 dimensions). When
we use GLOW, the speedup continues to increase up to 256 nodes
(Figure 12). A 3 dimensional network helps GLOW significantly.
Data storage, again, has very little to offer (less than 2%). Table 4
presents the statistics for TC. As in APSP, the number of reads
increases with system size, while the number of writes to the main

data structure remains constant (around 8 thousand excluding the
increasing number of initialization writes). As with APSP the
latency of both reads and writes doubles each time the system size
doubles and GLOW does a good job reducing the latenciies.

32

5¢l1
aLow
aLow + Data

64 128 26
System Size

FIGURE 11. ApsP speedups in 2-D and 3-D

2D aD
16132 1641128256 116132164 11281256
SCI Cycles (M) 671 61] 76] 125] 214] 67] 58] 67{ 98] 155
GLOW Cycles(My | 62] 46| 38| 391 39| 61] 43| 34] 30| 29
GLOW Speedup [1.0811.33[2.0013.20] 5.45]1.10}1.35] 1.97}3.27) 5.34
Reads (K) 65] 131] 262] 524] 1049] 65| 131] 262| 524|1049
GLOW R. (%) 100] 100] 100} 100] 100] 100! 100} 100{ 100} 100
Lat, R (Cycles) 4031 686]1150[2400{ 48031 389] 572| 931117353414
Lat, Reduction (%) | 28] 471 61] 701 811 32] 47] 64] 78] 84
Writes (K) 13] 14] 16] 200 29] 13] 14] 16] 20f 29
GLOW W (%) 021 85] 75| 60} 42| 92] 85| 75| 60| 42
Lat, W (Cycles) 801 11639]35337554 113215 783]1445{2913{5579|9188
Lat. Reduct. W(%) | 39] 55| 74} 82] 88| 42| 62| 78] 86] 89
Table 3: APSP 2D and 3D
48] e TC
GLOW
GLOW+DaIB
40T
327 -8
24} a
ol -
siR B B
046 32 _ 64 _ 128
System Size
FIGURE 12. TC speedups in 2-D and 3-D
2D 3D
161321641128{256] 16|32 | 64 128]256
sci Cycles (M) 42 30] 27] 36] 571 421 29 25| 301 46
cLOwW Cycles (M) 40f 26/ 191 19 18] 40| 25| 18 15| 14
GLOW Speedup 1.05] 1.15] 1.42} 1.89] 3.16] 1.05] 1.16] 1.39} 2.00] 3.28
Reads (K) 72| 139} 272] 535[1054] 72| 139] 272 535/ 1054
GLOW R. (%) 100| 100 r00] 100] 100] 100] 100| 100] 100] 100
Lat, R (Cycles) 352] 590}1017]|2145] 3868] 342| 509] 923]|1867| 3802
Lat. Reduction (%) 23| 40| 60] 69] 79] 27} 50| 66f 80| 88
Writes (K) of 10f 12| 16/ 25 9 10} 12| 16} 25
cLOW W (%) 89| 80| 67] 50| 33] 891 80| 67; 50 33
Lat. W (Cycles) 378] 605] 969]1937] 4346] 359] 509] 75611163| 2686
Lat. Reduction W (%)| 8] 261 37] S4f 75| 8] 21f 24| 30 6l

Table 4: T¢ 2D and 3D

64 : : :

L scI Normal CPU
ol B siouibmg oo
R w
481 &4 Giow Slow CPU

08 35 64 58 256
Speedup System Size
64 :

| e—o SCI Normal CPU

56 &2 GLOI\:V I\:cgrgal CPU
-9 scI Fas

481 4 Glow Fast CPU 1

O 33 54 128 556
Speedup System Size
64 ; - :

3 scI Normal NET
56 %awg Nor{jnée_?_l NET
[o—o5CT Slow
481 &—Ac7 ow Slow NET

40}]
32} -
24}
16
LT 32 B4 128 56
System Size

FIGURE 13. Sensitivity analysis for T¢

In the above graphs (Figure 13) we show how the speedup of TC
is affected by changing simulation parameters. The top two graphs
show the effect of speeding up or slowing down the CPU but keep-
ing everything else in the system constant (including the memory
system). As we can see a slow CPU makes the speedups slightly
better but not in any pronounced way. A fast CPU makes the speed-
ups worse for both SCI and GLOW, SCI is affected slightly more
than GLOW. The last graph shows the effect of slowing down the
network five times. The most important observation here is that a
slow network with GLOW is about as good as a five times faster
network.

6.5 RELAXED CONSISTENCY

The benchmarks we have presented all assume a sequentially
consistent view of memory. While our results indicate that GLOW
achieves the bulk of its speedup from scalable reads, relaxing the
memory model provides the opportunity to overlap write opera-
tions, thereby achieving greater concurrency. We relaxed the con-
sistency model for SCI by allowing the processor to continue on
writes after it becomes head of the sharing list, thus overlapping
the invalidation of the sharing list—by far the most expensive part
of the write—with computation or other writes. We studied APSP
because it could easily tolerate a relaxed memory model, permit-
ting concurrent write operations to shared data between barriers. In
Figure 8 we see that the performance of SCI is significantly
improved, but GLOW, even without relaxing consistency, still out-
performs SCI. Of course, relaxing consistency should also benefit
GLOW, though perhaps to a lesser extent, since the cost of sharing
list invalidations on writes is smaller to begin with.

. 3¢t SEQUENTIAL CONSISTENCY APSP
M sci RELAXED CONSISTENCY
L L aLow
24
£y
k] 161
Q
[« %
(5]

at

16 32 Syst 96'% Size1 28 256

FIGURE 14. Relaxed consistency in APSP

6.6 UPDATE PROTOCOL

We have also extended the GLOW protocol to do updates rather
than invalidates. This extension does not assume sequentially con-
sistent memory, but again we have been able to ascertain that there
are no data races in SPARSE. In Figure 9 the solid white bars rep-
resent the GLOW update in three dimensions which is 6-21% faster
than GLOW invalidate. This is an indication that, at least for some
applications, an update protocol can be used successfully with
widely shared data. In preliminary experimentation using update
with the other benchmarks we found that only SPARSE showed
improvement over invalidation.

7 RELATED WORK

7.1 STEM

The STEM extensions to SCI [14] provide a logarithmic-time
algorithm to build, maintain and invalidate a binary sharing tree (in
contrast to GLOW’s K-ary trees) without regard to the topology of
the interconnection network. The complexity of the algorithm,
however, is high, requiring complex transactions that generate
increased traffic. The STEM algorithm was proposed under the
assumption that the latency of any message is unit latency (i.e. all
messages have the same latency, regardless of the distance they
travel). This makes STEM actually an O(1g? N) algorithm since the
longest distance a message must travel is O(lg N). Request com-
bining is used in the network to reduce the bandwidth require-
ments of the STEM algorithm and possibly capture some network
locality. As employed in STEM, request combining does not require
information to be stored in the network.

7.2 OTHER WORK

The Scalable Tree Protocol [22] defines a sharing tree protocol
that speeds up the writing of shared data by invalidating the tree in
logarithmic time. The notable feature of the protocol is that addi-
tions to and deletions (rollouts/replacements) from the tree leave

the tree balanced. Like STEM, the tree does not map to the underly-
ing topology (thus the protocol does not benefit from physical
locality). This is because its structure depends on the timing of the
requests, and deletions from the tree (replacements) change its
structure without respect to the underlying topology. Furthermore
no support has been proposed to speed up reads (e.g. combining).
Simulation [22] shows a 15% speedup over SCI for the GAUSS
algorithm in a 16 node system but also a 35% increase in network
traffic. This may be a serious drawback for larger systems.

The Tree Directory (TD) protocol {21] is based on a K-ary tree
structure that is maintained in the sharing caches. It behaves as a
limited directory in a tree structure. This scheme does not take into
account physical locality and it does not provide for scalable reads.
On the other hand, the Hierarchical Full Map Directory also pro-
posed [21] is similar to our approach and exhibits network locality.
It is based on full-map directories embedded in the network topol-
ogy. Both TD and HFMD are strictly based on the inclusion prop-
erty. In our work we do not impose the inclusion property, thus
having increased flexibility to avoid deadlocks and to use schemes
like the LINEARIZING rollout for replacements. This is important
for performance since the inclusion property imposes destructive
invalidation of the children in the case of a parent replacement and
may result in erratic behaviour in pathological cases. For the
HFMD the authors report a 6% performance improvement over a
full-map scheme and for the TD a decrease of 25% in performance
compared to a chained directory scheme such as SCI.

Eager Combining (EC) [3] uses specified nodes as servers for
widely shared pages or hot pages. These pages are updated in the
server nodes (using eager sharing). Clients request the data from
the servers rather than the actual home node. It is similar to our
work in that the authors only use it for widely shared data. How-
ever EC does note take into account network topology, uses
updates for the servers, and caches the actual data, which in our
case is optional. The authors report speedup over DASH in the
range of 2 to 3 for up to 128 processors.

8 SUMMARY

We have defined GLOW, a new cache coherence scheme that
increases the range of scalability by eliminating hot spots for
widely shared reads. Widely shared variables can be efficiently
accessed, even for very large systems, because the number of
accesses to the home memory and the directory does not grow as
the number of processors grows. We demonstrated this capability
with the specification of an extension to the ANSI/IEEE 1596 Scal-
able Coherent Interface, and implemented the extension on SCI as
simulated under the Wisconsin Wind Tunnel.

Though the method scales, it is less efficient than the base SC1
protocol for accesses to memory that are not widely shared. We
therefore depend on the programmer and/or compiler to identify
accesses to widely shared variables and invoke the GLOW protocol
only for these variables. We used a static allocation strategy, deter-
mining which variables should be accessed via GLOW by the
region of memory to which they are assigned.

We studied the extension using four application programs,
GAUSS, SPARSE, APSP, and TC. For all the programs we showed
that for this implementation of GLOW the optional data storage is
not cost-effective and higher dimensionality networks benefit
GLOW more because of the increased depth and parallelism of the
sharing trees. We demonstrated that for GAUSS consistent
improvements are obtained, and that the improvements become
more dramatic as the number of processors grows. Even greater
speedups would be possible if each time the choice between base
sCI and GLOW were made according to the current degree of shar-
ing for the data in question. Accessing only the pivot row (and

nothing else) through GLOW would then be possible, achieving
still greater speedup. For SPARSE, the static selection of the
access method (memory mapping of widely shared data) is effec-
tive, and GLOW provides improved performance. For APSP and
TC, the SCI read and write latencies increase dramatically with
system size and GLOW effectively keeps the latencies low leading
to impressive speedups. Despite the impressive improvements in
sclI from relaxing the memory consistency model, GLOW still out-
performs without having to relax the memory model.

9 ACKNOWLEDGEMENTS

We wish to thank David V. James, Ross E. Johnson, Stein
Gjessing and David B. Gustavson for their suggestions, contribu-
tions and constructive comments on this work. We are indebted to
Dionisios Pnevmatikatos, Doug Burger, Alain Kigi, and Babak
Falsafi for providing and many useful and constructive comments
on drafts of this paper.

10 REFERENCES

{11 A. Agarwal, M. Horowitz and J. Hennessy, “An evaluation of Direc-
tory schemes for Cache Coherence.” Proceedings of the 15th Interna-
tional Symposium on Computer Architecture, pp. 280-289, June 1988.

[2] J. L. Baer and W. H. Wang, “Architectural Choices for Multi-Level
Cache Hierarchies”” Proceedings 16th International Conference on
Parallel Processing, pp. 258-261, 1987.

{3] R.Bianchini and T.J. LeBlanc, “Eager Combining: A Coherency Pro-
tocol for Increasing Effective Network and Memory Bandwidth in
Shared-Memory Multiprocessors.” Proceedings of the 6th Symposium
on Parallel and Distributed Processing, October 1994,

[4] Douglas C. Burger and James R. Goodman. “Parallel Simulation of
the Scalable Coherent Interface Transport Layer.” University of Wis-
consin-Madison, C.S. Dept., Technical Report 1265, February 1995.

[5] D.C. Burger and D.A. Wood. “Accuracy vs. Performance in Parallel
Simulation of Interconnection Networks,” 9th International Parallel
Processing Symposium (IPPS), April, 1995.

[6] John Carter, John Bennett and Willy Zwaenepoel, “Munin: Distrib-
uted Shared Memory Based on Type-Specific Memory Coherence.”
Proceedings of the Conference on the Principles and Practices of Par-
allel Programming, 1990.

{7] David Chaiken, John Kubiatowicz, Anant Agarwal. “LimitLESS
Directories: A Scalable Cache Coherence Scheme,” Proc. of the 4th
Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-1V), pp. 224-234, April 1991.

[8] Satish Chandra, James R. Larus, Anne Rogers. “Where is Time Spent
in Message-Passing and Shared-Memory Programs?” Proceedings of
the 6th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 61-73, October
1994.

[91 T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms,
MIT Press, Cambridge, MA, 1990

{10] Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hen-
nessy, and Mark D. Hill, “Programming for Different Memory Con-
sistency Models.” Journal of Parallel and Distributed Computing,
15(4), 1992.

[1t] J.R. Goodman, Mary K. Vernon, Philip J. Woest, “Efficient Synchro-
nization Primitives for Large-Scale Cache Coherent Multiprocessors.”
Proc. of the 3rd Int. Conf. on Architectural support for Programming
Languages and Operating Systems (ASPLOS-11I), April 1989.

{12] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph,
M. Snir, “The NYU Ultracomputer Designing a MIMD Shared-Mem-
ory Parallel Computer.” IEEE Transactions on Computers, Vol. C-32,
no 2, pp. 175-189, February 1983.

[13] EEE Standard for Scalable Coherent Interface (SCI) 1596-1992, IEEE
1993.

[14] Ross E. Johnson, “Extending the Scalable Coherent Interface for
Large-Scale Shard-Memory Multiprocessors.” PhD Thesis, University
of Wisconsin-Madison, 1993.

[15] Ross E. Johnson, James R.Goodman, “Interconnect Topologies with
Point-to-Point Rings,” Proc. of the International Conference on Paral-
lel Processing, August 1992.

[16] Alain Kigi, Nagi Aboulenein, Douglas C. Burger, James R. Good-
man, “Techniques for Reducing Overheads of Shared-Memory Multi-
processing.” [International Conference on SuperComputing, July
1995.

[171 S. Kaxiras, “Kiloprocessor Extensions to SCL” Proceedings of the
10th International Parallel Processing Symposium, April 1996.

[18] Leslie Lamport, “How to Make a Multiprocessor Computer that Cor-
rectly Executes Multiprocess Programs.” IEEE Transactions on Com-
puters, C-28(9):690-691, September 1979.

[19] Daniel Lenoski et al., “The Stanford DASH Multiprocessor.” IEEE
Computer, Vol. 25 No. 3, pp. 63-79, March 1992.

[207 Kai Li, Paul Hudak, “Memory Coherence in Shared Virtual Memory
Systems.” ACM Transactions on Computer Systems, Vol. 7, No. 4, pp.
321-359, November 1989.

[21] Yeong-Chang Maa, Dhiraj K. Pradhan, Dominique Thiebaut, “Two
Economical Directory Schemes for Large-Scale Cache-Coherent Mul-
tiprocessors.” Computer Architecture News, Vol 19, No. 5, pp. 10-18,
September 1991.

{22] Hakan Nilsson, Per Stenstrom, “The Scalable Tree Protocol--—a Cache
Coherence Approach for Large-Scale Multiprocessors.” 4th IEEE
Symposium on Parallel and Distributed Processing, pp. 498-506,
1992.

[23] Gregory F. Pfister and V. Alan Norton, “‘Hot Spot’ Contention and
Combining in Muitistage Interconnection Networks.” Proceedings of
the 1985 International Conference on Parallel Processing, pp. 790-
797, August 20-23, 1985.

[24] Steven K. Reinhardt, James R. Larus, David A. Wood, “Tempest and
Typhoon: User-Level Shared Memory.” Proc. of the 21st Annual Inter-
national Symposium on Computer Architecture, pp. 325-336, April
1994.

[25] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck,
James C. Lewis, and David A. Wood, “The Wisconsin Wind Tunnel:
Virtual Prototyping of Parallel Computers.” Proceedings of the 1993
ACM SIGMETRICS Conference on Measurements and Modeling of
Computer Systems, pp. 48—60, May 1993,

[26] Steven L. Scott, James R. Goodman, Mary K. Vernon, “Performance
of the SCI Ring." Proc. of the 19th Annual International Symposium
on Computer Architecture, pp. 403-414, May 1992,

[27] Wolf-Dietrich Weber and Anoop Gupta, “Analysis of Cache Invalida-
tion Patterns in Multiprocessors.” Proc. of the 3rd International Con-
ference on Architectural support for Programming Languages and
Operating Systems, pp. 243-256, April 1989.

