USING CONSTRAINTS TO QUERY
R*-TREES

Jonathan Goldstein
Raghu Ramakrishnan
Uri Shaft

Jie-Bing Yu

Technical Report #1301

February 1996

Using Constraints to Query [2*-Trees
Technical Report No. 1301 (Feb. 1996)

Jonathan Goldstein Raghu Ramakrishnan Uri Shaft
Jie-Bing Yu
Department of Computer Sciences
University of Wisconsin, Madison
Madison, Wisconsin 53706
{(jgoldst, raghu, uri, jiebing) @ cs.wisc.edu}

February 28, 1996

Abstract

The R*-Tree index is a popular multidimensional index used in several extensible and GIS-oriented
database systems. In this paper, we show that a simple refinement of the search algorithm of the
R*-Tree—which is common to all variants of the R-Tree—offers significant speedups in most cases,
with little or no worst-case performance penalty. The idea is essentially to use a conjunction of linear
constraints (rather than a minimum bounding retangle) to approximate the query and to use this
tighter bounding envelope to determine when the query overlaps with an R*-Tree node. This raises an
important question: How can we efficiently check whether the query envelope overlaps the minimum
bounding box for a tree node? Linear Programming (LP) offers one solution, but it is susceptible to
numeric approximation errors. One of the contributions of this paper is a new algorithm for performing
this check check that is more efficient than LP and free from numeric errors. We also present several
theoretical results characterizing this algorithm.

From a practical standpoint, adding the proposed constraint query refinement to existing R*-Tree
implementations is straightforward. Using implementations of R*-Trees on top of the SHORE storage
manager, we present experimental results (using TIGER census data for California and Wisconsin,
and the Sequoia 2000 benchmark data set) that provide strong evidence in support of the proposed
refinement. Our results demonstrate that the CPU overhead of our more complex overlap test, vis-a-vis
the traditional minimum bounding box intersection test, is minor. On the other hand, the (CPU and
[/0) gains can be considerable, especially for queries that are asymmetrically oriented with respect to
the R*-Tree axes. The results are especially surprising given that we make no changes at all to the
insertion and deletion algorithms.

Finally, linear constraints are a very powerful tool for formulating queries, and a very important
application of our results is that we can efficiently support a broad new class of such queries on multidi-
mensional datasets drawn from a variety of domains that go well beyond GIS and spatial applications.
We illustrate this, with experimental results, using queries over a five-dimensional projection of the
widely used Compustat financial database (which contains over 300 dimensions!).

1 Introduction

A rapidly growing number of database applications require the ability to store and access large sets of
multi-dimensional point, line and region data. Such applications include computer-aided design (CAD),

geographic information systems (GIS), On-Line Analytic Processing (OLAP), and image repositories. A key
component of a database management system that aims to support such applications is a multidimensional
access method.

The R*-Tree index [1] is a variant of the R-Tree [9], In this paper, we show that a simple refinement of
the search algorithm of the R*-Tree offers significant speedups in most cases, with little or no worst-case
performance penalty. Since the search algorithm is essentially the same for all variants of R-Trees, our
refinement is equally applicable to variants other than R*-Trees; indeed, it applies to related structures
such as k-d-B trees [23] as well. However, our discussion and performance study is limited to R*-Trees.

Our main contribution is the proposal that we should use a conjunction of linear constraints, rather
than the usual minimum bounding box (MBB), to approximate the query. This conjunction of constraints
identifies a convex region that is always contained in the MBB. Search in the tree involves repeatedly
checking whether the query envelope (conjunction of constraints or MBB) overlaps MBBs representing
regions in the tree, as we go from the root to the leaves. Our approach requires a more expensive overlap
test, but is likely to detect that the query does not overlap certain nodes that do overlap the MBB.

An important question is how to efficiently check whether the query envelope overlaps the MBB for a
tree node. Linear Programming (LP) offers one solution, but it is susceptible to numeric approximation
errors. In particular, it is possible that the LP test says that there is no overlap when indeed there is an
overlap, leading to a failure to retrieve some overlapped objects! (This is possible, though unlikely.) A
second contribution of this paper is a new algorithm to do this check that is more efficient than LP and
safe with respect to numeric errors.

We present the results of several experiments designed to evaluate our approach, using an implemen-
tation of R*-Trees on top of the SHORE storage manager [2]. A wide range of query types and system
parameters are explored, the results provide strong evidence in support of the proposed refinement. We
demonstrate that the approach is not limited to 2 and 3 dimensional datasets, as is common in GIS systems,
but can deal effectively with additional dimensions, and is therefore valuable for general multidimensional

data analysis.

We show that the CPU overhead of the constraint based overlap test (either LP or our new algorithm),
vis-a-vis the traditional MBB intersection test, is usually minor. On the other hand, the (CPU and I/0)
gains can be considerable, especially for queries that are asymmetrically oriented with respect to the R*-
Tree axes. Our test is in fact sufficiently inexpensive that we use it as a filter on all retrieved objects,
including those found in leaf nodes. While testing objects in leaf nodes for overlap with the query does not
reduce the page 1/0 done in R-Tree search, it greatly reduces the number of objects returned as candidate
answers by the R-Tree search, and this can have a major impact on the cost of post-retrieval processing of
the answers.

The improvements due to the constraint search algorithm (using either LP or our new overlap test) are
especially surprising given that we make no changes at all to the insertion and deletion algorithms. Adding
the proposed refinement to existing R*-Tree implementations should therefore be very easy. L Of course,
to the extent that insertion and deletion require searching, our idea can be used to refine insertion and
deletion algorithms as well.

A very important application of our results is due to the observation that linear constraints can serve
as a powerful query language over multidimensional point datasets. We can efficiently support a broad new
class of such queries on multidimensional datasets drawn from a variety of domains that go well beyond
GIS and spatial applications.

The paper is organized as follows. We present some necessary background material in Section 2 to keep

Indeed, we found it straightforward to modify an existing R*-Tree implementation to do so.

the paper self-contained. We describe our constraint based overlap test algorithms in Section 3 and their
application to the R-Tree search refinement in Section 4. Details of the performance study are introduced
in Section 5 and their results are presented and analyzed in two sections; Section 6 covers synthetic queries
in which the query parameters were systematically varied, and Section 7 covers ‘real’ queries. In Section
8, we illustrate the use of linear constraints as a general query facility, with experimental results, using
queries over a five-dimensional projection of the widely used Compustat financial database (which contains
over 300 dimensions!).

2 Background

In this section, we present a brief introduction to R-Trees and the use of linear constraints to approximate
a query.

2.1 The R-Tree Access Method

The R-Tree [9] is a height-balanced tree structure designed specifically for indexing multi-dimensional
spatial objects. As in a B-Tree, each node (a disk page) in the R-Tree is either an internal node or a leaf
node. Entries in internal nodes point to other nodes. Entries in leaf nodes contain the object IDs of the
actual spatial objects (or, optionally, the objects themselves), as well as the minimum bounding bor (MBB)
of the object. Each internal node entry also contains an associated MBB; this is guaranteed to completely
cover all MBBs in the subtree pointed to by the entry. Note that two entries in the same node might have
associated MBBs that overlap. This means that unlike B-Tree searches, an R-Tree search may explore
more than one path from the root to a leaf, even for point queries.

All MBBs are oriented orthogonally with respect to the (fixed) axes for the R-Tree. If the number of
dimensions is greater than two, MBBs with an appropriate number of dimensions are used, but the basic
idea remains the same.

The above description is sufficiently general that it applies to several variants of the R-Tree, including
R*-Trees [24] and R*-Trees [1]. (Note that MBBs in non-leaf nodes of an R*-Tree are non-overlapping,
and therefore point queries search a single path from root to leaf. Nonetheless, region queries must explore
several paths, in general.) These variations were motivated by the goals of improving space utilization,
and therefore also search time (by reducing tree height and minimizing MBB overlaps); we will not discuss
the variations further.

2.2 Linear Constraints As Queries

Boxes that are orthogonal to the axes are the standard approximation for
/ ye=5 4 data objects and queries in R-Tree indexes. However, a box is often a poor

approximation, especially for queries and data that are irregularly shaped
and not suitably oriented with respect to the axes.

An alternative is to use a conjunction of linear constraints to describe
the bounding envelope of data objects and queries. Storing conjunctions of
linear constraints can be expensive in terms of space; we do not consider this
Figure 1: A Convex approach. We do propose, however, that queries be approximated by such

Polygon as a Conjunc-
tion of Constraints

conjunctions; the only overhead is a more complex overlap test, which we demonstrate can be carried out
very efficiently.

As an example of the use of linear constraints, a convex polygon can be represented as a conjunction
of two dimensional linear constraints. Each constraint identifies a half-plane; a conjunction of constraints
can therefore be used to identify any convex region, as illustrated in Figure 1. For instance, the following
is a valid linear constraint:

r4+y<2

but not

r+y<25<e<L7

since the above is actually the conjunction of the following three linear constraints:
r+y<?2 and z>5h and <7

Note that the constraints did not have to form a closed region. For instance, the region defined by using just
one of the constraints above is an entire half plane. Queries defined using these infinite sets are perfectly
legal, and are, in fact, extremely useful for querying point data.

3 Linear Constraints and Box Intersection Algorithms

The results in this section address how we can check whether the areas specified by a conjunction of linear
constraints and a box intersect. Linear programming (LP) can be used to solve this problem. The popular
LP algorithms are “Simplex” and “Karmarkar’s”. For m constraints and n dimensions the complexity of
Karmarkar’s algorithm is @((m + n)*) while the Simplex algorithm has an exponential run-time although
its complexity seems to be O(m?n) in practice (for example, see [6]). In addition to the high complexity,
these algorithms are prone to numerical error, and modifying them to be ‘safe’ would make them even
more expensive.

Results from Computational Geometry all deal with representations of polyhedra as sets of vertices
[21]. This representation for a hyper-box grows exponentially as the dimensionality increases, making the
resulting algorithms hyper-exponential for our problem. Further, specifying high dimensional polyhedra
in terms of vertices is not a natural way for users to pose queries, and converting from a conjunction of
linear constraints representation—which is very natural—to a set of vertices representations is extremely
expensive.

These problems with the known approaches motivate the results in this section.

3.1 Problem Representation and Some Notations

We consider algorithms for the following problem: Given (1) a region bounded by a conjunction of linear
constraints, (2) a bounding box for this region that is orthogonal to the axes, and (3) a region bounded by
a box that is orthogonal to the axes, do these regions overlap?

In more detail, the input to the algorithm consists of a set of m linear constraints in n dimensions,
and two n dimensional hyper-boxes. The linear constraints are given by Al A,eB™and ¢q,..,cm € R.
Constraint P; is defines as

p={fer

.A:‘,'*)?>Ci}

We use the notation A‘i X = }:7:1 Ai;X;. The query region for the problem is P = (-, P;. The boxes
in the input are given as

W, ki, hn€R and Ly, ., Lo, Hi, o, Ho € RU {00, —00}

B =[l;,h1] x - - x [ln, hn] is the box we get from the R-tree. Bp = [L1, H1] x - - x [Ln, Hp] is a box that
bounds the region P. We do not insist on Bp being available or on it being a tight bounding box for P.
If it is not available then we can use Bp = R". Note that B can’t have infinite bounds because it is a box
that denotes a region in an R-tree. We may also use the bounding box of the root of the R-tree instead of
R™ as a conservative estimate for Bp when Bp is not available and avoid infinite bounds for Bp as well.

Although we use the notation IR for the set of values that a number in the input can have, the situation
in practice is that R obviously can’t be represented as input. We assume that the input numbers are IEEE
double precision floating point numbers. Operations on such numbers yield an approximate result and thus
numerical errors can occur.

The output of any algorithm for the overlap problem is either “Yes” or “No”. The answer can contain
two kinds of errors:

False positive: There is no intersection between the box and the linear constraints but the algorithm
says there is.

False negative: There is an intersection between the box and the linear constraints but the algorithm
says there is not.

In the context of selection queries a false positive may cause us to include results that don’t fit the
query. This requires post-processing and is a waste of resources so we want to avoid it as much as possible.
A false negative however, may result in not retrieving answers to the query. An algorithm that does not
allow a false negative answer for any input is called safe. The reason is that we may safely use such an
algorithm knowing that the answer will be a superset of the correct answer. A safe algorithm that may
yield a false positive answer is called conservative. The algorithm that we present is safe.

Finally, Algorithm A; is said to be less conservative or more accurate than Algorithm A, if both are
safe and for any input on which A; gives a false positive answer A, also gives a false positive answer.

3.2 The Bounding Box Test

As an obvious first step, any overlap algorithm should calculate B' = Bn Bp, and if B’ = { then answer
“No’, otherwise continue with B’ instead of B as input. We call this the Bounding Boz algorithm. Note
that:

B =l k] x - x [, k)] = [max{ly, L1}, min{hy, Hi}] % - x [max{ly, L}, min{hn, Hp}]
B’ = { if and only if exists j s.t. h} < I Tt is interesting to observe that the min, max operations and the

<,>,= comparisons done on IEEE standard floating point numbers have no numerical errors in them.

The Bounding Box test is very fast (O(n) complexity) and it is conservative. Currently, queries by
linear constraints are dealt with (if at all) in database systems by assuming that Bp is given and using the
Bounding Box test; the use of P is left for post-processing.

ot

3.3 The Simple Test

We assume that the bounding box test have been performed so the input is B, P. A simple observation is:
If exists i s.t. BN P; = @ then BN P = 0. This is true because P = (/2; Pi so BN P = [~;(BN F).
The algorithm is:

1. Fori=1tomdo
If BN P, = return “No”

2. Return “Yes”

Assuming that we can find if BN P; = @ accurately this algorithm is obviously conservative. How do
we know if BN P =0 ? If exists £ € B s.t. A; - & > ¢; then BN P; # §, otherwise BN P; = 0. Define
7= (21, 2n) as follows: If A;; > 0 then z; = h;. Otherwise z; = l;. Clearly we have that

max{A; Z|f€ B} = 4; - %
This means that BN P; = § iff A 7>

Appendix A deals with the question of how to calculate the dot product of two vectors safely such that
the sign on the dot product is accurate. This means that the simple test does not yield a false negative.
The results show that this calculation can be done in @(n) time. Therefore, the total complexity of the
simple test is @(mn) which is linear in the size of the input.

Claim: If we have only two dimensions (i.e. n = 2) and the tight bounding box Bp is given for the
bounding box test then the algorithm is accurate (i.e. never yields a false negative or a false positive).
Proof: We have already seen that the algorithm does not yield a false negative. For the false positive
part : suppose that Bp overlaps B and that P does not overlap B. We will show that there is a linear
constraint in P such that no vertex of B satisfies it. (This would mean that the simple test return the
answer “No”.)

Since Bp is a minimal MBR, P must intersect each linear constraint in Bp. 2 Con-
sider the side of Bp that is parallel to the X axis and farthest from it. ~Without loss of gen-
erality, let t1 be the point on this side of Bp that intersects with P, and of all such in-
tersection points on this side, is the closest to the Y axis. This is illustrated in Figure 2.
The points t2, r1, 2, b1, b2, [1 and (2 are similarly
defined. (Note that the points are not necessarily
distinct; for example, if P intersects the top of Bp
at only one point, t1 and 2 are the same. Similarly,
if P happens to be a diagonal line from the lower
left to the top right corner, t1, t2, r1 and r2 are the
same, and b1, b2, [1 and {2 are the same.)

t1 t2

Since B overlaps Bp, and both B and Bp are
boxes orthogonal to the axes, if none of the vertices
of B is inside Bp then B and P necessarily overlap.
Let p = (z,,yp) be the vertex of B that is inside Bp.
If p is insided the shaded portion shown in Figure 2,
then B and P clearly overlap.

Figure 2: lustration of Proof Since we have assumed that B and P do not

overlap, the point p must be in one of the unshaded

2The boxes Bp and B can obviously be viewed as conjunctions of linear constraints; in addition, the constraints are such
that these boxes are orthogonal to the axes.

corner regions. Without loss of generality, let this
be the lower left region. If some vertex of B is in this region, and the top right vertex of B is not in this
region, then B and Bp necessarily overlap. By our hypothesis, P does not overlap B. Thus, the top right
vertex of B is also in the unshaded lower left region of Bp. Without loss of generality, let the point p be
the top right vertex of B. (In this case, of course, the points [2 and b1 must be distinct.)

We can expand B upwards (increasing y, while keeping z, constant) such that the expanded B overlaps
P. Let ¢ > 0 be minimal such that the box B’ (obtained by expanding B upward) with top right corner
p' = (zp,yp +¢) intersects P; clearly, the point p' must lie on the boundary of polygon P, by virtue of the
minimality of .

Without loss of generality, we will assume that p’ is a vertex of P. (If it is not a vertex of P we can “split”
the edge it is on into two edges that are defined by the same linear constraint.) Let a1 Y + ;X +¢1 20
and asY + 02X + c2 > 0 be the two constraints of P that define the edges intersecting at p’. Since both
B' and P are convex polygons there is a small circular environment of p’, which we will call C, such that
a point ¢ = (%4,yy) € C belongs to P if and only if it satisfies both constraints, and ¢ € B’ if and only if
zq < zp and yq < yp + €. Furthermore we have a;zp + bi(yp +€) +¢i =0.

We claim that one of the two constraints of P that intersect at p’ is such that no vertex of B satisfies it.
The intuition is that at least one of these constraints has a negative slope (8z/8y) and excludes the lower
half-plane (which contains the vertexes of B). The claim is proven below by a case analysis, completing
the proof of the theorem.

There are several cases :

1. a; > 0 and b; > 0 for either i = 1 or i = 2 : Then for any vertex (z,y) of B, a;y+ bix +¢; < a;zp +
bi(y, +¢€)+ci = 0 holds. So none of the vertices of B satisfy the constraint and the theorem is proved.

2. a; <0 and ay <0 : In this case, consider a point in C' of the form ¢ = (zp,yp +€—0) foréd > 0. ¢
is clearly on B’ and satisfies a;(yp + & — 8) + bizp +ci = —a;6 > 0. This contradicts the fact that
B' N P = {p}. Therefore, this case cannot arise.

3. by <0 and by <0: Asin Case 2, we can examine ¢ = (zp, — 0, yp -+ ¢) and obtain the same contra-
diction.

4. a; <0, b; >0, az >0 and by < 0: There are two sub-cases to consider.

4a. asb; > aiby : Consider a point in C represented by ¢ = (xp ~ day, yp + ¢+ §by). This point is
in B’ and it satisfies both constraints:

ai(yp +€ +0b1) +bi(zp —bar) +c1 = larey + b1 (yp +€) + 1] + Slarby — b1ai] =0

as(yp + €+ 6by) + ba(z, — day) + c2 = [aszy + ba(y, +€) + ca] + 8[byag — baar] > 0
So we obtain a contradiction; this case cannot arise.

4b. ash; < ajbs + In this case, suppose that ¢ = (x, + a, yp + ¢ + b) is any point that satisfies both
constraints. Then we have

ar(yp +€+b)+bi{z, +a)+c1 20 = ~bgarb — babia > 0

as(yp +€+b)+ba(zp +a)+c22>0 = biash + bybra > 0

If we sum them both we see that blasb; — aibs] > 0. Since azby — ajbz > 0 we have b > 0, so
Yp + € is a minimal value for points in P and hence there is no intersection between B and Bp.
This is a contradiction, so this case cannot arise.

5. a5 <0, by >0,a; >0andb; <0: This case is the same as Case 4, differing only in the order of
cons traints.

This completes the proof of the theorem. M

This result means that for the special two dimensional case: whenever any computational geometry
algorithm is aplicable (i.e. P is also known as a polygon represented by edges or vertices) then Bp is known
and the simple test algorithm is accurate and linear in the input and thus it is optimal.

Figure 3 shows an example for n = 2 where if Bp is not given then the algorithm answers with a false
positive. The problem can be written as:

—zy+xy > 0
P= ~T7 > -4 B =10,4] x [0,1]
T4z > 4

Figure 4 shows an example for n = 3 where the algorithm answers with a false positive even when a tight
bounding box Bp is given. The problem can be written as:

T Z -4
Ty Z 0
—I3 > —4
P= = =
ey + 23 > 0 B =(3,4] x [0,1] x [0,4]
T+ Ttz > 4
—T1+Ty—1T3 > —4

We call this algorithm the “Simple Test” because it is the most simple algorithm we could design that
actually uses P to get better results than the bounding box test.

3.4 The Clipping Algorithm

We now present our main algorithm for checking overlap, called the Clipping algorithm. Our presentation
is intended to be intuitive; the formal algorithm is listed in an appendix. We assume that the Bounding
Box test has been performed, and the input to the overlap algorithm is B’, P, where B’ = BN Bp. The
intuition for the Clipping algorithm comes from the following result:

Proposition: For any 1 <:<mif B C Band BN F; C B' then BNP=B"NPFP.

Proof: We can represent B’ as (B' N P;) U (B' N (R" = P;)). Since (BNP)N(B'N(R" - P;)) = 0 we have
that BN P; C B' N P;. Therefore (BN P;)N P C (B'NP;)N P and this is the same as BNP C B'NP.
We also habe B¢ C B so BN P C BN P. We have inclusion in both directions so BNP=BNP. M

This result means that when can look at a specific constraint (say P;) and find some B’ € B s.t.
BN P, C B. Forsuch a B', BN P = BN P holds, and so we can safely replace B with B’ If we also
have B’ # B (i.e. B’ C B) then we have safely “clipped” the query box into a smaller box.

The basic step of the Clipping algorithm consists of taking a constraint P; and box B and finding the
smallest possible B’ s.t. B’ C B and BNP; C B'; the box B is then replaced by B'. By “smallest possible”
we do not mean the actual smallest B', but the smallest B’ we can find using safe numeric calculations.
An iteration of the Clipping algorithm consists of applying this step to each constraint, considering the
constraints in a round-robin order. After each such application, we check to see if the resulting B is empty
or not. If it is empty then we can safely stop with a “No” answer. If it is not empty we continue.

The Clipping algorithm halts if there is no change in box B during an iteration. We also stop the
algorithm after a predetermined number of iterations even if the last iteration has produced some change

-
X;

Figure 3: Example in 2D where the claim doesn’t hold if Bp is not given.

in B. We denote this predetermined number of iterations as /. An exact form of the algorithm is as follows:
The general form of the algorithm is:

1. Repeat [times the following:

(a) For i :=1tomdo
i. Find smallest possible B’ s.t. B C B and BNP; C B'.
ii. If B’ = @ stop with output “No”.
iii. Set B := B’
(b) If B has not changed then stop with output “Yes”.

2. Return “Yes”

The only detail left is how to find B’ for a specific P;. First we look at “clipping” B along one dimension
j. This means that we try to change the values of [;, h; while keeping the values of the other dimensions
the same. There are three different cases to consider:

If A;; > 0: Define a vector Z = (21, .., 2n) as follows: If A > 0 then zx = hy otherwise z; = I, Let
a € R be such that A;ja -+ Zk;éj Aixzr = ¢;. We have that

—

C,'-A,'~5

a=hit Ajj

For every &£ € B s.t. x; < a we have that A F<c¢sof & P;. This means that B’ will differ from
B only in its low value for dimension j, which will be max{l;, a}. For safety purposes we make every

Figure 4: Example in 3D where the claim doesn’t hold.

possible numerical error in the calculation of a on the low side so the safe value of @ may eventually
be lower than the optimal value but not higher. If we deduce that a > h;, then the resulting B’ is 0.

If A;; < 0: Define the vector Z to be the same as in the previous case. Also find the same value for a as
in the previous case but using

A; j

Note that for every £ € B s.t. z; > a we have that fi‘i ¥ < ¢; so & & P;. This means that B will
differ from B only in its higher value for dimension j, which will be min{h;,a}. Note that this time
we safely estimate a on the higher side to get a safe “clip”. If we get a < [; then the result is B =90

If A;; =0: There is no way to clip B in dimension j using P;.

Using these observations we can compute B’ by going through the calculations and clipping B for each
dimension. A step (clipping by constraint i and all dimensions) can be done as follows:

1. Define 7 = (z1, .., z,) as follows: If A;; > 0 then z; = h; else z; = ;.
2. Defined=c; — A4; %
3. For each 1 < j < n define [}, b} as follows:

If A;; =0 then l} =1; and h;, = h;
If A” > 0 then h; - h_] and lf] :n'lazX{lj,hj + "Zd:'}

10

If A;; <0 then = ; and A} = min{h;,[; + 2=}
4. Set B' = [If,hy] x - x [, h1)]

Note that this calculation of B’ may yield an empty box. This happens iff d > 0. To save some of the cost
of the algorithm in this case we can insert a step “If d > 0 return “No intersection”” between steps 2 and
3 of the algorithm.

Note that the only time when a clip of one dimension affects a clip of another dimension is when the
result is @. The result for B’ does not change when we change the order of dimensions in any way. The
complexity of this method for the basic step of clipping a box with a constraint is @(n?), and therefore the
complexity of an iteration is O(mn?). We observe _‘that 7 remains the same when we deal with different

dimensions, and the real cost is re-calculating ¢; — A; - 7 repeatedly. If we do this calculation once and use
the result for each dimension, the cost for a basic clipping step is O(n), and the cost for an iteration is

O(mn).
The reason we use a predetermined number of iterations as an additional stopping criterion is that the
number of iterations is not bounded. The following input demonstrates the problem:

Ty + I
—-T1 — T2
—T1 + T2
1 — L2

P

B = [—4,4] x [-4,4]

IV IV IV IV
M o om oM

For £ > 0 we have that P = 0, and the number of iterations is at least 1/e. A similar example exists in 3
dimensions where we have 1/¢ iterations and P # @. These examples show us that we can’t afford to wait
until the algorithm finishes all the iterations. If we stop the algorithm after as many iterations as we want
we get a conservative algroithm.

We currently do not know if there is a situation for which the algorithm does not stop at all when [1s
infinite. An interesting observation is that the safe version of the algorithm does always stop but remains
conservative. The reason is that after each iteration, B is still represented by IEEE standard floating point
double precision numbers so the “clippings” occur in a discrete space, and thus the number of iterations is
finite. This result does not help much in practice since the number of iterations can still be too large.

3.4.1 Some Properties of the Clipping Algorithm

Note that even if the algorithm does not stop, the result for B converges to some box, which we denote by
B*. The reason for that is that the clipped boxes form a series of boxes By, Bs, .. for which holds Bi+1 C Bi.
The existance fo the limit for this series can be easily verified as a generalization of the convergence fo
series of intervals.

The main result about the Clipping algorithm is the following:

Theorem: The algorithm is safe and, in general, conservative. That is, it sometimes yields false positives
but never yields false negatives.
Proof: We’ve seen that in the description of the algorithm.

The following theorem sheds additional light on the algorithm.

Theorem: For the theoretical algorithm (that uses absolute accuracy in the representation of “real”
numbers) the following hold:

11

1. The clipping algorithm (restricted to one iteration) is less conservative than the simple test. This is
true even for the safe calculation versions of the algorithms.

9. Forn = 2, if P # 0 the algorithm reaches the correct result (i.e., no false positives) after one iteration.
The complexity in this case is linear in the input.

3. For n < 3, the algorithm converges in the limit to the correct answer (i.e. replacing B by B* does
not yield a false positive).

4. For n < 3,if BN P = { the algorithm stops even without imposing a predetermined bound on the
number of iterations.

5. For any n > 2 and any I > 0, we can always find some input on which the algorithm stops after
exactly [+ 1 iterations when the algorithm is not restricted to a predetermined number of iterations.

6. For n > 3, there are cases when the algorithm yields a false positive.

For n > 3 there are cases when the algorithm stops with a false positive even when the algorithm is
not restricted to a predetermined number of iterations.

-1

Proof (part) 1): Note that the added step in the clipping algorithm (that checks whether d > 0 is
exactly the simple test. Therefore the clipping algorithm includes the simple test. W

Proof (part) 2): Let Bp be the tight bounding box of P (although we do not have it as a part of the
input). If we have BN Bp # () then the simple test does not yield a false positive (note that the simple
test does not have to use Bp in this case). Therefore, from part 1 we have that the clipping algorithm does
not yield a false positive. Suppose BN Bp = . WLOG suppose hy < L. Let p = (z, L2) be a vertex of
P. We know such a vertex exists because L, is the low bound of Bp which is a tight bounding box of P.
The possibilities for constraints that form this vertex are grouped into two cases:

Case 1: There is a constraint of the form X, > Ly in P. B is outside that constraint so both the simple
test and the clippig algorithm would yield a “No” output and hence no false positive.

Case 2: There are two constraints in P of the form a;X; + b1 Xs > ajz + b1Ly and aa Xy + b2 X 2>
ant + boLy where a; > 0, b1 > 0, ap < 0 and by > 0. When we clip B using the first of those
constraints we get every point (z',y’) € B that satisfies z’ > 2 (and obviously Yy < L3) holds
a1z’ + b1y’ < arz+b1Ly so this point is outside the first constraint. Therefore B is clipped such that
its upper bound for the X; axis is lower than z. Similarly for the second constraint B is clipped such
that the lower bound of the X; axis is higher than x. Therefore we have that these two constraints
clip B into @ and the algorithm returns a “No” output. This result holds for any order that we apply
the constraints so in all the algorithm will return “No” and hence does not have a false positive.

This completes tha proof. M

Proof (part) 3): Since the algorithm is conservative it gives the correct answer if BN P #{§. Suppose
we have that BN P = 0. A point (z1,z2) is outside a constraint a;X; + a2 Xs > ¢ if ayzy + agzs < c.
The distance of that point from the half-plane defined by the constraint is ¢ — a1z — as@2. Every point
p € B is outside P so for every such point exists a constraint s.t. the point is outside the constraint. Define
d(p) to be the distance of p from the farthest half-plane that defines P. Define ¢ = min{d(p)lp € B}.
Since BN P = 0 we have that for every p € B holds d(p) > 0. Since B is a closed region exists p € B
st. d(p) = ¢ Therefore ¢ > 0. Let a; Xy + a2X» > c be a constraint in P s.t. the center of B (i.e.
((Iy + h1)/2, (Is + h»)/2)) has distance § from the constraint and § > . We can reflect the B and P
around any axis and get the same geometric problem so WLOG we have a; > 0 and ay > 0. We have

12

that the distance of the vertex (l,ls) of B from the constraint is at least §. Define ¢’ to be the distance
of (I1, ha) from the constraint so ayly + azhz > c+ §'. (If the point is in the constraint then ¢’ = 0, hence
the inequality.) Define 6" to be the distance of (hy,l2) from the constraint so a1hy + asxlz > ¢+ 8" We
have that &' + delta” < ay(l; +12) + as(ly +I2) — 2c. The fact that the center of B has distance § from the
constraint yields aj(ly + l2) + aa(ly + 12) = 2¢ + 24 so we have 8" + delta” < 26. Therefore either ¢’ > ¢ or
§" > 4. If 6 > & then B is clipped by increasing [, by at least 6. If 8" > 6 then B is clipped by increasing
I, by at least 6. Therefore in any case at least one of the sides of B is shortened by at least ¢. The result of
the first iteration of clipping is B’. Since B’ C B we have that min{d(p)|p € B’} > min{d(p)|p € B} = € s0
in each iteration we clip at least ¢ from one of the sides or we get § as a result. Since € remains a constant
through all the process we have that after a finite number of clips we end with 0 and do not return a false
positive. B

Proof (part) 4): The proof for part 3 shows that we need a finite number of iterations to converge to
the right answer for this case. Therefore if we do not limit the number of iterations and BN P = 0 the
algorithm stops (with the correct answer).

Proof (part) 5): The example in Section 3.4 is in two dimensions and the number of iterations depends
of a single input parameter ¢. We an create such an example in any number of dimensions by using these
constraints and ignoring the rest of the dimensions. For every [exists some ¢ such that the number of
iterations is some J where J > I. Let B’ be the result after J — I — 1 iterations. The same problem with
B’ instead of B as input will stop after exactly I + 1 iterations. l

Proof (part) 6): Consider the case where B = [-1, 1]® and we have two constraint: X; +Xo+X+3 > 1
and X1+ X2+ X5 < —1. Obviously we have P = (so BNP = §. On the other hand the clipping algorithm
does not perform a single clip in any dimension so after one iteration it stops with a false positive.

Proof (part) 7): The proof of part 6 holds here as well.

4 Improving Search in R-Trees

We now present our refinement to the R-Tree search algorithm. As noted in Section 2.1, each entry in an
internal node of an R-Tree points to another node, and also contains an associated MBB that 1s guaranteed
to completely cover all MBBs in the node (in fact, subtree) pointed to by the entry. Consider a typical
overlap query, where a query shape is given and we are asked to retrieve all objects that overlap the query
shape. The seaich begins at the root node. For each entry, we compare the MBB of that entry with the
MBB for the query, and recursively search the subtree pointed to by the entry if there is an overlap. This
is illustrated in Figure 5. Even if the query is a containment query (ie., we wish to retrieve all objects
contained in the query shape or all objects that contain the query shape), the search must be guided by
overlap. Essentially the same search algorithm must be used; we therefore concentrate on overlap queries.

Note that two entries in the same node might have associated MBBs that overlap. This means that
unlike B-Tree searches, an R-Tree search may explore more than one path from the root to a leaf, even for
point queries. Consequently, search is potentially a much more expensive operation in an R-Tree than in
a B-Tree.

As Figure 5 illustrates, the standard search algorithm may sometimes visit a node (Node 2 in the figure)
because the bounding box for the node intersects the MBB for the query, even though the query itself does
not intersect the node’s MBB. This is the motivation for our refinement, which is essentially the following:

1. Use, as your query shape, a conjunction of a set of linear constraints P.

13

2. In order to determine whether a node must be visited, check the node’s MBB against the set of
constraints P (rather than the query MBB) for overlap.

3. (Optional:) For each object in a leaf node whose MBB overlaps the query bounding box, check if the
MBB also overlaps P.

Clearly (as in the figure), there are cases where
P will not overlap the node MBB even if the query
MBB overlaps it. In such cases, we save the cost
of exploring the subtree rooted at that node. The

price paid for this optimization is the cost of a more
expensive overlap test.

To appreciate the third step, which is optional,
note that the R-Tree in general returns a set of can-

didates, rather than objects that overlap the query.
This is a consequence of the way queries are approx-

ooe imated by a bounding envelope of some sort. Each
candidate must subsequently be processed further to
determine whether it really overlaps the query. The
third step cannot reduce the number of page 1/Os
in the R-Tree search. We can simply use bounding box intersection to return candidate answers, like the
standard search algorithm. However, applying this additional test can filter out several objects (which are
guaranteed not to overlap the query), and thereby reduce the set of objects to be processed subsequently.
We note that if this third step is included, the cost of LP versus our Clipping algorithm becomes significant

Figure 5: Search Path in an R-Tree

for most queries, not just queries in which P has many constraints.

To summarize, our refinement yields two distinct benefits. First, it avoids some unnecessary I/O done
by the standard search algorithm. Second, it reduces the set of objects in the answer set returned by the
R-Tree. The potential gain of the refinement that we propose is considerable, as we demonstrate through
a detailed performance study in the following three sections.

4.1 Reuse of Results using Clipping

Suppose that we run the Clipping algorithm on a box B and constraints P and get the answer “Yes”
(i.e., there is potential for overlap). We denote the clipped box that is the final result of the clipping
algorithm by Beciippea. B is a bounding box of some R-tree node N. Any entry in the R-tree that has
B as an ancestor represents a region that is a subset of B. Any such region overlaps P iff it overlaps
BN P. Since BN P C Beiipped, any such overlap must occur inside Beiipped. Therefore, we can use Beiipped
to screen all such entries, and only those that overlap Bippeq should be tested against P. The easiest
method of doing so is to use Beippea as a new value for Bp for those entries. This method reuses all the
results achieved by earlier applications of the Clipping algorithm during the course of the search, and thus
enhances its accuracy and effectiveness. (Recall that an application of the algorithm may terminate due
to the predetermined bound on the number of iterations.)

5 Introduction to the Performance Study

In this section, we describe the search algorithms that we evaluated, the queries and datasets used, the
parameters that we varied, and our performance metrics.

14

5.1 The Search Algorithms

We compared the standard R-Tree search algo-

\ Leaf optimization effect on LP rithm, which uses MBB overlap tests, with our re-
2 LP without the leaf optimization —— fined search algorithm presented in Section 4. We
= LP with the leaf optimization -+— . ~ .
3 257 1 refer to the standard algorithm as STD in the rest
s ol of this paper. We evaluated two versions of the lat-
E ter, one of which used LP and the other used our
% 5 Clipping algorithm presented in Section 3. As for
E il any overlap algorithm, we use the simple optimiza-
8 tion of applying the Bounding Box test before using
E“J 05 r g LP. The LP version did not apply the overlap test to
- 0 — : : ; the objects in leaf nodes. While such a test usually

0 60 80 100 120

2 umber of points in the query shape reduces the set of objects returned, and therefore re-
duces the post-processing time, the LP version per-
formed poorly in most cases with respect to search
time when applying overlap tests for leaf level ob-
jects. As demonstrated in Figure 6, even though the query shape used was a small percentage of the query
MBB in this case, the cost of LP overlap tests becomes noticeable with queries having about 100 points;
with overlap tests inside leaf nodes, performance degrades even more quickly. We therefore chose to present
only the numbers for LP without overlap tests inside leaf nodes.

Figure 6: Effect of LP Overlap Tests in Leaf Nodes

The version of our Clipping algorithm did apply the test at the leaf nodes as well to filter out objects
that did not overlap the query polygon. The cost of the Clipping overlap test is sufficiently small that it
does not significantly affect the performance of most queries, and we chose to do the tests inside the leaf
nodes as well in order to measure the reduction in objects retrieved. Thus, it should be noted that our
numbers on elapsed time are somewhat biased against the Clipping algorithm, since it does many more
overlap tests than either the STD or the LP algorithm.

5.2 Queries and Datasets

In all experiments, polygon queries were of the type illustrated
T P in Figure 7. Note that d controls the overlap between the query
d shape and the query MBB, while s controls the overall selectivity of
the query, i.e., the fraction of the objects in the database that are
retrieved by the STD algorithm. We chose this query shape because

it is easy for us to systematically vary the size and shape of the query.

Each experiment involved varying one or two parameters. For each
d value of the varied parameters, a query of the shape described above

d was executed using each of the three candidate search algorithms
} ! (STD, LP and Clipping). For some experiments we use datasets
from the “Sequoia 2000 Storage Landmark” [26]. These data contain
thousands of landuse polygons that cover the region of California.
For other experiments the underlying data set was TIGER Type I
data from the U.S. Census Bureau for Orange County, California.
The TIGER dataset contains topological data on spatial features.
The Type I data contains mostly line segments. Queries were generated by randomly selecting an object
from the database and using its lower left corner as the lower left corner of the query. The size and shape
of the query depended upon the individual experiment.

Figure 7: Query shape used in ex-
periments

15

The measurements were then grouped together into several ranges (for the parameter varied along the
X axis), each of which was verified to have at least ten points. The ratios of completion times, page 1/O,
and candidates retrieved for the traditional R-tree search algorithm versus the constraint based search
algorithms were then computed. The actual points displayed in graphs represent the median points for the
measured ratios in a particular range (for the parameter varied along the X axis).

All experiments in this section were run on an HP 715/33 with 32 MEG of memory. The page size was
1KB and the buffer pool contained 100 pages. The database disk buffers were cleared before each query.

5.3 Performance Metrics

We studied the following metrics for each of the constraint based search algorithms as a percentage of the
value for the standard R-Tree search algorithm: completion time, number of pages read, and number of
objects returned by the query. In general, we observed a strong correlation between the number of pages
read and the completion time, indicating that queries are I/O bound, as expected.

6 Performance Evaluation of Synthetic Queries

In this section, we present the results of several experiments in which we systematically varied the following
parameters: selectivity (the fraction of database objects returned by the standard R-Tree search algorithm),
query vs. query MBB overlap percentage, number of points in the query bounding polygon, degree of overlap

in the data and page size. 3

We also varied the data set. First, the experiments were run on several data sets including the Sequoia
2000 benchmark data, and the TIGER data sets for (parts of) California and Wisconsin. There was no
significant change in the results across any of these data sets. Second, several artificial data sets were
generated in which the amount of overlap between objects in the database was varied. This is discussed in

Section 6.4.

Query Shape

Query Shape

o8
08
06t
08
04
04
02

NEW elapsed tme/Standard elapsed ime

02+

LP elapsed time/Standard elapsed time

[

o . . : 0 02 0.4 06 0.8 1
0 02 0.4 06 08 1 Percent of the Query's Bounding Box Overlapped by the Query Shapé
Percent of the Query's Bounding Box Overlapped by the Query Shapg

Figure 9: Varying Query Shape (Clip-

Figure 8: Varying Query Shape (LP .
g ying y Shape (LP) ping)

6.1 Overlap of the Query and the Bounding Box of the Query

In this experiment, the query shape was varied to modify the overlap between the query and the MBB
for the query. This experiment used the TIGER/Line data set mentioned earlier. Note that by modifying

3We also varied the number of buffers, but as expected this made no difference and so we do not report these numbers.

16

d in the query shape, the ratio (query shape area)/(area of query MBB) can be varied between 0 and
1. Geometrically, the query shapes for these two extremes are a diagonal line and a box respectively.
Obviously, there is no advantage to using polygons to bound a query that is a box, and there is maximal
advantage to doing so when the query is a diagonal line. While we varied the query shape, we kept the
size of the MBB within a given range, so that (the standard algorithm) for each query retrieved five to ten
percent of the objects in the database.

As Figure 8 indicates, the query to MBB overlap ratio roughly equals the improvement achieved by the
constraint search algorithm; note that that at no point does the cost of the constraint algorithm exceed
the cost of the standard search algorithm. This is because the overhead of polygon overlap tests is very
small (even using LP) for queries in which the bounding polygon has only a few points. Figure 9 is similar
to 8.

2

1
08
06
04
02

0

LP elapsed tme/Standard elapsed time

Query Selsctivity

0% {Query Shapel(Query BBox) Overap

0 1 2 3 4 5
Percent of the database retrieved by the standard query

6

NEW elapsed time/Standard elapsed tme

2

A Quary Shape)(Query BBox) Overdap

18 Zo%scuery Shapey-Quory BBox; Overdap —~— 18 r 20% (Query Shage%; Query BBox) Overlap ~— 1

16 40% {Query Shape)(Quary BBox) Ovedap -0 18} 40% (Query Shapel(Query BBox) Ovedap o~ |
60% {Query Shape){Query BBox) Overlap - 60% {Query Shape)/{Query BBox) Ovedap -+—

14t 80% {Query Shape)/{Query BBox) Overlap —— 14} B0% (Query Shapey(Query BBox} Ovedap ~—
100% {Query Shape)(Query BBox) Overap ~»- 100% {Query Shape){Query BBox) Overlap ~w-

12} 12} 1

1
08
08
04
02

]

Query Seleclivity

0%

R

0 1 2 3 4 5 [
Percent of the database retrieved by the standard query

Figure 10: Varying Selectivity (LP) Figure 11: Varying Selectivity (Clipping)

100

80

60

40

LP CPU time {percent of total)

20

Query Selectivity

f—

0% sQuery Shapagj-()uery BBox; Overdap
20% {Query Shape)({Query BBox} Ovedap
ég‘:ﬁ, %ery 8l |dpu“ %ery ggox 8vvegap
e S hapatiGuery BB Overlap
100% {Query Sl .u,m,(/ Query BBox) Overap ~w--

B
e

b

8

100

80

80

40

20

NEW CPU time (percent of total)

0

Query Selectivity
0% gQuary Shapel/{Query BBox
20% (Query Shape}(Query BBox
40% (Query Shape)/
§0% {Query Shaps)/|
80% {Query Shape}/|
100% (Query Shape)/

3

Qvedap
Overlap

Query BBox} Overap
Query BBox} Overap
Query BBox) Overlap ~—
Query BBox) Overdap ~w-~

——
a-
e

0

6

1 2 3 4 5
Percent of the database retrieved by the query

1 2 3 4 5
Percent of the database retieved by the query

Figure 13: Varying Selectivity (Clipping)
- CPU

Figure 12: Varying Selectivity (LP) -
CPU

6.2 Selectivity of the Query

Next, we varied the selectivity of the query by varying the query shape variable s. The results are shown
in Figure 10.

Figure 10 has multiple lines. Each line represents the effect of selectivity on a particular query shape.
Small queries are similar in size to individual objects in the database, and all answers are likely to be
clustered close together. As a result, there is less to be gained from a more accurate representation
of such queries. This explains the similarity in performance between the different query shapes for small
selectivities as well as the query shapes’ subsequent divergence. The worst case for the constraint algorithm
is obviously when the query is itself a box (100% overlap); note that even here, the constraint algorithm

17

costs essentially the same as the standard algorithm regardless of the query shape. Figure 11 is similar to
Figure 10.

Observe in Figures 12 and 13 the low CPU usage for both LP and Clipping algorithms. This behavior
was observed in all experiments except in Section 6.3 , where CPU graphs will be provided.

5 Query Shape Complexity 5 Query Shaps Complexily

<
2 0% (Query Shape)Y({Query BBox) Overap —— E 0% (Query Shape)/(Query BBox) Overiap ——
E 45 50% éQJery Shapey Query Ech§ Ovedap —— > 45r 50% sc}uery Shapew(}uary BBoxg Overap ——
'§ 4 100% (Query Shapsey(Query BBox) Overlap -o- a 4t 100% (Query ShapeY{Query BBox) Overdap -o-
Q.]
] @ S
3 35 g a5
FY , 5 of
8 asp - 3 a5
P [-
% 2L . ,.m.'/ k] 2 e e Sl “
E & x/‘/ﬂ“ .5 o -
b 151 - l',—«"/ 2 151 . hu-‘aﬂn —
2 P IR i g . P
k: SN 3 —/M
LS S = ost

]
L L 1. L. L = 0 rs 3. n
0 20 40 60 80 100 120 0 200 400 600 800 1000 1200
Number of points in the query shape Number of points in the query shape

Figure 14: Varying Query Complexity — Figure 15: Varying Query Complexity

(LP) (Clipping)
Query Shape Complexity Query Shape Complexily
100 100
0% (Query Shape)(Query BBox) Overlap -+ 0% (Query Shape){Query BBox) Overdap ~+—
50% {Query Shapew(}uew BBoxg Overlap —— = 50% (Query Shapaysc}usry BBox) Ovedap ~+v
’j 80 b 100% (Quary Shape¥(Query BBox) Overap =~ g 8o - 100% (Query Shape)(Query BBox) Overiap e~
= K
: :
3 60 | g 60
§ &
% o
E o} £ wf
2 5
[&]
5 20 E 20 }
2
0 N . o . . N N .
0 20 40 60 80 100 120 o 200 400 600 800 1000 1200
Number of points in the query shape Number of points in the quety shape

Figure 16: Varying Query Complexity —Figure 17: Varying Query Complexity
(LP) - CPU (Clipping) ~ CPU

6.3 Number of Points in the Query Polygon

The complexity of a query, in terms of the number of points in the bounding polygon, affects the cost of
the constraint overlap test. This experiment uses the same data set as the one that varied query selectivity,
but generates queries a little differently. The same basic query shape is still used, but the number of edges
in the bounding polygon is artificially increased by treating each side of the polygon as a series of line
segments. Each segment adds a linear constraint to the bounding polygon. Although these new segments
are all described by essentially the same constraint, neither LP nor our overlap algorithm exploits this in
any way.

Note from Figure 14 that in the worst recorded case, a 100 point query, the constraint search algorithm
with LP overlap test takes 2 to 3 times as long as the standard MBB approach. With the Clipping overlap
test, a 1000 point query is required before a two-fold slow-down occurs.

Among all our experiments, this is the only one in which the constraint algorithms were seen to perform
worse than the standard algorithm. This experiment also indicates that the constraint algorithm is superior
as long as the number of points is kept under some maximum (about 30 with the LP overlap test, several

18

hundred with the Clipping overlap test); in all the other experiments that we ran, the MBBs computed
for queries—including the ‘real’ queries discussed in Section 7—never had more than about 30 points. In
fact, it is straightforward to impose a maximum limit on the number of sides while generating a bounding
polygon for a query. Using simple heuristics, we can usually compute a bounding polygon that is quite
close to the convex hull even with a limit of about 30 edges. {With a limit of over a hundred edges if
we use Clipping, it is extremely unlikely that even the convex hull will have so many edges, and it seems
unnecessary to incorporate any explicit bound on the number of edges.)

Observe in Figures 16 and 17 the increasing CPU usage as query shape complexity rises. Note, however,
the differences in both scale and shape of the two graphs. These graphs clearly demonstrate the performance

advantage gained by using Clipping over LP.

6.4 Overlap of Objects Within the Database

In this experiment, the underlying data sets were generated by creating a square object at every integral
coordinate in a square region of the X-Y plane. The size of each object was varied to vary the degree of
overlap amongst objects. All queries were diagonal line queries. The metric used in this experiment was
the ratio (sum of the areas of the objects) / (area in the X-Y plane covered by the database). When this
number goes above one, there is some overlap in the database.

The results of this experiment are in Figure 18. As the degree of overlap increases, the relative gains of

the constraint search algorithms decreases. (In the real datasets used in all other experiments, the degree
of overlap was very low. This may be a characteristic of GIS data.)

DataOverap Amongst DB Objects DataOverap Amongst DB Objects

14 } 0-5% of the DB retieved by the standard query - 1

14+ 0-5% of the DB retrieved by the standard query —— -
5-10% of the DB retreved by the standard query ——

5-10% of the DB retrieved by the standard query ——

®
3 E
= A+l
7 X 2
i3 [-%
a. o
i) k2
> i g e —] k!
: e g
E oost e 5
= 4
% / 3
08 / E
5 3
-
3 04t § o 0af o
a L] L
% 02¢F g c2f
% i1}
- z
0 L N o s .
o} 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
{Sum of DB Object Areas)/{Area Covered by objects in DB) (Sum of DB Object Areas)/{Area Covered by objects in DB)

Figure 18: Varying Overlap of Ob- Figure 19: Varying Overlap of Ob-
jects(LP) jects(Clipping)

6.5 Page Size

In this experiment, we kept the (query area)/(MBB area) ratio at 0.5 and varied the selectivity and page
size.

Over the entire selectivity range displayed in Figure 20, the improvement due to the constraint search
algorithms is slightly lower for 4K pages than 1K pages. This is due to a shortening of the tree in the 4K
case. The difference, however, is very slight. Figure 21 is similar to Figure 20.

19

Page Size Page Size

14 F 1024 byte Page Size ~e—

1024 byte Page Size —+— 1
4096 byte Page Size ——

4096 byts Page Size ——

NEW elapsed time/Standard elapsed tme

@
5
-l
3
&
K3
=1
H
"é’ o8 N 08} \ h
b -
Eooer S| o6} N
3 04} o4}
3
® 02t o2}
%
0 . [
0 2 4 6 8 10 0 2 4 6 10
Percent of the datab. d by the dard query Percent of the d: i iby the dard query
Figure 20: Varying Page Size (LP) Figure 21: Varying Page Size (NEW)

7 Performance Study of LP with a GIS

In this section, we describe a set of realistic tests in the context of a GIS system. We show that the
conclusions drawn from the experiments using synthetic queries (Section 6) are borne out in a more
realistic environment. The experiments in this section were run on a SUN SPARC 10/40 with 32Meg
of main memory. The page size was 1KB and the buffer pool contained 100 pages.

7.1 The Data Set and Spatial Object Representation

| S S

o

Figure 22. Example of Chains
in TIGER file

We used the TIGER/Line data for Milwaukee County. The dataset
contains 36,983 chains representing spatial features like streets, high-
ways, railroads, rivers and shore lines. Some non-spatial attributes such
as name, classification code and zip code are also stored. A chain is a
set of straight line segments used to represent (part of) a spatial object.

The TIGER data contains quite detailed information. For example,
a single street spanning different zip code zones is represented as a col-
lection of connected chains separated by the zip code zone boundaries.
Note that we can have two different representations of the same spatial
object: it can be treated either as a single object or a collection of ob-
jects spatially connected together. See Figure 22 for an example. The
street ABCDEF is broken into three chains ABC, CDE and EF due to
the fact that it expands different zip code zones. It is stored as three
separate chains with identical names and classification codes. Since the
end points of the chains match, they can be easily ‘stitched’ together to

form a single object that represents the entire street, if this is desired. Different GIS systems may choose
to either stitch or not stitch the data in this manner.

We used two datasets derived from the TIGER data for Milwaukee County in our tests:

e Unstitched Data: Identical to the original TIGER data, with each chain as a separate object, with

total object count 36,983.

e Stitched Data: Obtained from the TIGER data by stitching all chains that represent (part of) a single

spatial object,

The two datasets and the (separate) R-Trees constructed using them are summarized in Table 1.

20

Data Type # of Entries | # of 1K Pages | Tree Height
Unstitched Data || 36983 2036 4
Stitched Data 10043 580 3

Table 1: R*-Tree Statistics for Milwaukee County TIGER Data

‘1 Real Query on Unstitched Data ; Real Query on Unstitched Dala
Elapsed Time -~ Elapsed Time —o—
! Selectivity ~— 1 09 Fetectuity ~— 1
oo page VO o 08 r page YO o~
s 08 | % 07 B
& 4
&, o7 2 08
°]
3 06+ ‘g 05}
g a
& 05 a o4}
5 o
4 z 03
03 F 02+
02 01}
01 . 0 . L
2 4 6 8 10 12 14 16 [2 4 6 8 10 12 14 16
Percent of database retrieved by standard query Parcent of database retrieved by standard query
Figure 23: Realistic Queries (LP) Figure 24: Realistic Queries (Clipping)

7.2 The Queries

We used two different approaches to generating queries. The first approach was designed to observe general
trends over a large set of randomly generated ‘realistic’ queries. For example, queries like “Find all streets
that intersect Highway 12” are fairly typical in a real GIS system.

To randomly generate such queries, we used stitched data objects as the query seeds (even when
the experiments were run on unstitched datasets). That is, we picked a stitched spatial object (which
corresponds to a feature likely to be of interest to an end-user, e.g., a street or railroad) at random and
treated it as the query. The query was executed using each of the three candidate search algorithms (STD,
LP and Clipping). The measurements were then grouped together into several ranges (for the parameter
varied along the X axis), each of which was verified to have at least ten points. Thus, each data point

summarizes the numbers due to several queries.

The results on these queries (Section 7.3) broadly confirm the results presented in Section 6, but it
is difficult to see the effect of the various parameters involved since the query generation process allows
several parameters to vary simultaneously. To address this shortcoming, we also chose a set of queries
using the Paradise front-end to give us complete end-to-end performance numbers. * These are indeed
queries that an end-user might ask, and we hand-picked the queries to ensure that a range of situations was
covered. These results are analyzed in Section 7.4, and confirm that the results of Section 6 with respect
to the impact of the various parameters are indeed accurate.

7.3 Realistic Queries: General Trends

We now present aggregate results on realistic queries chosen at random as described in Section 7.2.

Figures 23 and 24 show the results for unstitched data. Several points should be noted. First, the
three ratios (for elapsed time, number of objects returned, and pages read) are very closely correlated, as
for synthetic queries (Section5). Second, even when the constraint searches retrieved the same number of
pages, elapsed time never exceeded (by more than a marginal amount) that for the standard algorithm.

4Paradise [4] is a prototype object-relational DBMS for GIS applications developed at University of Wisconsin, it is built
on top of the SHORE storage manager.

21

On the other hand, elapsed time was reduced by 10% to 50% for most queries, and even up to 80% in
some cases. Third, while the time and page I/O behavior of the version with the Clipping overlap test
is essentially the same as that for the version using LP overlap test, the selectivity (number of objects
returned) is always substantially less due to the tests at the leaf nodes. (The additional time cost for these
checks is included in the graphs.) This can yield substantial reductions in the post-processing time, as
we will show in Section 7.4.2. Finally, the reason for the fluctuation in the curves is that parameters like
orientation, query shape, and number of edges in the bounding polygon all vary (in addition to selectivity,
which is shown on the X axis) with randomly selected queries.

: Unstitched Dat Stitched Dat. .
,Neal Query Performance: Unstitohed Dala ve Stiched 22 e To study the effect of the stitched versus the

A fitched Data ~— - ~
09 1/ Unelitched Data | unstitched representations, we ran the same set of

queries on the stitched representation of the data

é

B ool

‘g 07t as well; the results for elapsed time are shown in
g 06} P Figure 25. The results for the other metrics are
% 05 VVING T ‘ ; similar, and we therefore just discuss the elapsed
Eoo04p ; time results. Generally, the comparison between the
E 03 ¢ constraint search algorithms and the standard algo-
ETJni 0.2 r rithm is the same for the stitched case as for the un-
T T T e e i 12 15 16 e stitched case. Significant gains are often obtained,

f standard ! i « -
Percent of standard quary shape overlap the universe and the worst case penalty is marginal. However,

the relative improvement is less when the data is
stitched. There are two reasons. First, the R*-Trees
built on the stitched data has a higher degree of data
overlap than the tree built on unstitched data. As
observed in 6.4, this reduces the improvement due to the constraint search. Second, the height of the tree
on stitched data is one level shorter, which makes queries less expensive overall and leaves less room for

Figure 25: Realistic Queries: Stitched vs Un-
stitched Data

performance enhancements.

7.4 Realistic Queries: Selected Examples

In order to understand the behavior of the constraint search technique on typical queries in some detail,
we used the Paradise GIS system to visualize the data and generate a selection of interesting ueries. A
careful analysis of the performance of the candidate search algorithms on these queries illustrates the effect
of parameters such as query shape and selectivity, and further confirms the results in Section 6.

We generated three kinds of queries, which are of interest to GIS users in areas such as highway planning,

traffic control, urban zoning and real-estate:

1. Line Queries: Pick a single route (consisting of one or more segments of highways and local roads)
and find all other roads that it intersects.

2. Band Queries: Pick a single route, draw a buffer zone, and find all spatial features that overlap the
buffer.

3. Region Queries: Pick a region which is bounded by highways, local roads, or some other features like
rivers or shore lines, and find all spatial objects that overlap the region.

Table 2 describes the line queries, which are shown (using a Paradise view) in Figure 26. The band queries
are derived from the above line queries. We varied the buffer size from 0 (the original line) to 10000 meters
The region queries are described in Table 3, and shown in Figure 27.

22

Query || Label | Name Description Orientation
Q1 L4 National Ave major road 20 degree east/west
Q2 L6 [-43 1 segment of highway 43 near flat, east/west
Q3 L2 1-43 2 segment of highway 43 vertical, north/south
Q4 1-43 142 combination of I-43 1 and 2 L shape
Qb 1-43 3 segment of [-43 1 near flat, east/west
Q6 [-43 4 segment of 1-43 2 vertical, south/north
Q7 1-43 3+4 combination of I-43 3 and 4 L shape
Q8 L5 Forest Home Ave 1 | major road diagonal
Q9 L1 Brown Deer Road | major road flat east/west (sparse)
Q10 L3 1-94 segment of highway 94 flat east/west (dense)
Q11 Forest Home Ave 2 | segment of Forest Home Ave 1 | diagonal
Table 2: Line Query Descriptions
Region | Boundary Shape
Al Appleton Ave, Fond du lac Ave, thin diagonal
Villard Ave and Walnut St
A2 Highway 1-94, National Ave, near rectangular
Highway [-41 and Highway I-43
A3 Brown Deer Road and two Railroads near triangular (sparse)
A4 Lake Michigan shore line complex shape by the lake
Milwaukee River and Kenwood Blvd St
Ab Hand-picked (dense) rectangular (dense)
A6 Silver Spring Dr, Fond du Lac Ave triangular (small)
and Railways
A7 Highway 1-43 and Home Forest Ave triangular (big)

Table 3: Region Query Descriptions

7.4.1 Result Analysis

The performance results for the selected queries are shown in Tables 4, 6 and 7. All ratios are computed
with respect to the standard R-Tree search algorithm.

There are several interesting points to observe in the line query results. First, the orientation of the
line queries has a major impact on the performance gains, as illustrated by queries Q1, Q8 and Q10.
The constraint search improved Q8, which is diagonally oriented, the most. Q10, which is flat, saw the
least improvement, and Q1 was somewhere in between. Second, while the shape of the bounding polygon
versus the MBB is in general a good predictor of the gains to be obtained by using constraint search, the
distribution of objects is significant as well. For example, Q4 has a triangular bounding polygon, yet the
relative improvement is less than that for Q2. This is because the portion of the MBB that is not in the
bounding polygon for Q4 is relatively sparse. Third, sometimes there are significant speed-ups to be had by
partitioning a query into smaller queries. For example, the cost of Q4 is much greater than the combined
cost of Q2 and Q3, although Q4 is just the union of Q2 and Q3. The same point arises when we examine
Q4, Q5 and Q6. In principle, one could look for a collection of polygons that cover the query and whose
combined area is less than the area of the bounding polygon for the original query. This is, however, an
issue that we have not studied in depth.

23

Line LP Clipping Page I/0 | STD Obj | STD Retrieved
Time | Selectivity Time | Selectivity Ratio Count | / Total # Objs
Ratio Ratio Ratio Ratio
Q1 || 46.18% 40.16% || 44.18% 29.16% 42.07% 4715 11.84%
Q2 || 70.80% 72.10% || 69.56% 48.00% 66.00% 1000 2.51%
Q3 il 85.02% 90.52% || 88.90% 71.77% 82.99% 2912 7.31%
Q4 || 73.12% 70.80% || 72.64% 66.37% 70.71% 24635 61.88%
Q5 1 79.51% 85.57% || 80.12% 48.07% 89.47% 104 0.26%
Q6 || 91.23% 86.30% || 86.30% 53.73% 83.63% 482 1.21%
Q7 || 76.34% 74.86% | 75.10% 55.17% 74.00% 1205 3.17%
Q8 || 26.84% 23.72% || 27.19% 13.14% 25.18% 8747 21.97%
Q9 || 95.04% 98.76% || 95.04% 84.36% 95.55% 243 0.61%
Q10 || 73.04% 77.25% || 72.24% 53.17% 68.51% 1811 4.54%
Q11 || 26.09% 21.83% || 24.156% 7.66% 25.09% 3732 9.37%
Table 4: Line Query Performance Result
Line LP Clipping
Elapsed Time | Real Object || Elapsed Time | Real Object
(milli seconds) | Count {milli seconds) | Count
Q24+Q3 || 2723 3637 2844 2570
Q4 10183 17252 101186 16351
Q5+4Q6 || 590 505 614 309
Q7 681 947 703 698
Table 5: ’L’ Shape Line Query Performance Result
Width 0 meter (Line) 100 meters 1000 meters
Time Sell Sel2 Time Sell Sel2 Time Sell Sel2
LP LP Clipping {| LP LP Clipping || LP LP Clipping
Ql 46.18% | 40.16% | 29.16% 46.78% | 39.48% | 28.77% 49.06% | 41.52% | 29.86%
Q2 70.80% | 72.10% | 48.00% 81.97% | 76.08% | 47.83% 78.23% | 78.01% | 52.89%
Q3 85.02% | 90.52% | 71.77% 84.82% | 90.21% | 72.81% 84.48% | 89.96% | 73.75%
Q4 26.84% | 23.72% | 13.74% 27.03% | 23.72% | 13.95% 28.02% | 25.16% | 15.19%
Q5 95.04% | 98.76% | 84.36% 97.52% | 98.80% | 82.80% 90.09% | 97.19% | 87.22%
Q6 73.04% | 77.25% | 53.17% 73.29% | 77.16% | 54.22% 78.18% | 77.96% | 59.13%

Table 6: Band Query Performance Result (LP/STD Query Time)

24

The results from the band queries also demonstrate the effectiveness of the constraint search algorithm,
although the improvement decreases, in general, as the band width increases. This is consistent with the
synthetic query results, which indicate that the relative improvement decreases as the overlap of the query
with its MBB increases. Nonetheless, we still see performance gains between 10% and 70% for band queries.

For region queries, we see performance improvements ranging from 15% to 60% in all cases except in
the MBB query, in which, obviously, no work can be avoided by using a bounding polygon. In this case,
the more expensive overlap tests are an unnecessary overhead, but the cost is seen to be negligible (in fact,
within the ‘noise’ level of a lightly loaded machine). Note that similar shapes tend to have performance
gains in the same range, which is quite predictable. We see this in queries A6 and A7. Query A4 is an
interesting case, similar to the line query Q4. Given the triangular shape, it would seem that performance
gains should be well beyond what we got (18%). However, the potential gain was diluted ® by the fact that
most of the region excluded by the use of a polygon (instead of a MBB) falls in Lake Michigan.

In order to illustrate the merits of the Clipping overlap method, we included results for the constraint
search algorithm using both the LP and Clipping overlap methods. In almost all the cases, the selectivity
ratio is less (fewer retrieved objects from R-Tree) when we use the Clipping overlap method, although the
time ratio is roughly the same. The reduction in selectivity is in the range of 10% to 20%. This could
potentially have a huge impact on post-processing.

Region LP Clipping Page I/O | STD Obj | STD Retrieved
Time | Selectivity Time | Selectivity Ratio Count | / Total # Objs

Ratio Ratio Ratio Ratio
Al 37.30% 34.60% 1| 34.89% 23.43% 35.34% 5360 13.46%
A2 84.89% 93.89% || 84.76% 79.16% 79.06% 835 2.09%
A3 51.53% 50.85% || 52.03% 40.76% 50.64% 3270 8.21%
A4 85.43% 83.49% || 84.36% 72.85% 79.52% 1654 4.15%
Ab 1.009% 100.0% || 99.57% 100.0% 100.0% 2303 5.78%
A6 66.74% 65.14% | 64.79% 50.70% 65.44% 1836 4.61%
AT 61.15% 56.07% || 55.90% 46.77% 56.14% 5375 13.50%

Table 7: Region Query Performance Result

7.4.2 Post-Processing

Overall, we have shown that for the selected ‘realistic’ queries, constraint search runs significantly faster
than the standard search algorithm in most cases, and is never more than marginally worse. This is true
whether we use LP or the Clipping algorithm for overlap tests. Using the Clipping test, we are additionally
able to reduce the number of returned objects substantially.

In a spatial query processing environment, R-Tree search only serves as a filter. The retrieved objects are
typically processed further. This post-processing can be very expensive, e.g., retrieving the spatial object—
note that the R-tree search returns object ids, typically—and verifying whether the object overlaps the
query. Obviously, the fewer the candidates returned by the R-Tree, the fewer the objects to be processed
further.

To measure the impact of this factor on the overall reduction in costs due to the constraint search

algorithms (which return fewer objects than the standard search algorithm), we modified the Paradise
system to use the constraint search code in its R-Tree code, and measured the total elapsed time and I/O

5Pun intended.

25

for the region queries. The performance numbers can be seen in Table 8. Note that the constraint search
algorithm (Clipping) always wins over the standard R-Tree search. In some cases, the speedup is as high
as a factor of 3. In most cases, the query time reduction closely matches the selectivity reduction.

Region || STD Time | Time Ratio Selectivity Index Page I/O | Total Page I/O
(sec) Clipping/STD | Clipping/STD | Clipping/STD | Clipping/STD

Al 12.53 34.31% 23.43% 35.43% 32.61%

A2 3.45 76.23% 79.16% 79.06% 83.62%

A3 8.72 51.72% 40.76% 50.64% 48.95%

A4 5.36 81.90% 71.85% 79.52% 77.92%

Abd 6.32 100.3% 100.0% 100.0% 100.0%

A6 4.40 96.59% 50.70% 65.44% 94.27%

A7 12.27 98.20% 46.77% 56.14% 97.01%

Table 8: End-to-End Region Query in Paradise

However, there are a few cases (A6 and A7) in which such correlated speedup is not observed. For
example, A7 got less than 2% reduction in time, while the selectivity ratio is in the range of 40% to 50%. A
careful study of the total I/O ratio provides us with some insights on this seemingly odd behavior. Reduc-
tion in the number of objects retrieved is not the only factor in determining post-processing performance.
The object size also matters. For both A6 and A7, fewer entries are extracted from the R-Tree, but they
are all big objects. The majority of the time was spent in accessing those large objects.

Even though there were a couple of cases where object size worked against us in the selected queries,
it could equally well have worked for us. In other words, there could have been a query in which one very

complex (large) object was eliminated by using a linear constraint filter.

Note that even with these perturbations, selectivity is still highly correlated with overall time. This is
a consequence of the fact that post-processing in Paradise retrieves all objects whose id is returned by the
R-Tree search. Our performance results suggest a refinement which could greatly reduce post-processing
cost if the standard R-Tree search algorithm is used: Approzimate the query by a polygon and test overlap
with the bounding box of each object returned by the R-Tree search algorithm. Only retrieve those objects
that pass this test. For overlap, the Clipping overlap test or LP could be used. By incorporating our overlap
test into the R-Tree search algorithm, the need for this extra check during post-processing 1s eliminated.

8 Query by Linear Constraint for High Dimensional Queries

Linear constraints are a very powerful tool for formulating queries over multidimensional point datasets,
and can be used in a variety of applications, including business and scientific analysis. In this section, we
present examples of such queries and experimental results concerning their performance. Note that the
region covered by such queries may be ‘open’, i.e., the only possible bounding box would be based on the
MBB for the root of the R-Tree, which is of no use for restricting search. Thus, the constraint search
techniques that we have presented are essential for supporting the queries discussed in this section; the
standard R-Tree search algorithms, and even techniques that view queries as polyhedra (in terms of vertex
representations), are of limited use.

For our data set, we use a synthetically extended version of the Compustat stock and business data set.
The portion of the data set we are concerned with includes 5 fields, forming a five dimensional point data
set. The five fields we are concerned with are year number, earnings per share, stock low, stock high, and

26

stock value at year close. The data set originally contained 20 years worth of data on approximately 4000
companies. Unfortunately, approximately half the tuples were null values (the company didn’t exist yet), 6
so we synthetically generated enough data to account

r | #rounds | %CPU | matches | page reads | for 100 years of information. The last 20 years contain
0-1 ! 15 16 2396 the information directly from the database (minus null
0.1 2 19 16 2396 | The dat d . i di
o1 3 19 16 2396 va ues.). he data was generate using a uniform dis-
0.9 1 16 51 4149 tribution between the high and low values for a field
0.2 2 20 51 4149 for each company. In addition, all integrity constraints
8‘;23 i’ :112 15017 ;égi such as stockiow < stockp;gn were maintained by se-
03 5 21 107 5604 lec.ting the appropriate range in random number gener-
0.3 3 21 107 5604 ation. The resulting R*-tree contained 37466 pages.
0.4 1 17 207 6942 . L
04 2 21 207 6942 Ff)l‘ this data set, W(? explo;e variations of two
0.4 3 21 207 6942 queries. The first query is: Retrieve all tuples which
0.5 1 16 313 8114 have a price-earnings (P/E) ratio less than some con-
0.5 2 20 313 8114 stant. Investors frequently use the P/E ratio as a mea-
0.5 3 20 313 8114 .
sure of how undervalued or overvalued a company is.

Table 8: P/E query results. i ,
In linear constraint terms, the above query can be ex-

pressed as: priceyear—end = T * €Arnings < 0 (where r
is the ratio value). The second query that we consider is: Retrieve all tuples that correspond to companies
whose value didn’t vary by more than some percent of the price at year’s end. In terms of linear constraints:
pricenigh — Pricelow — P * Priceyear—end < 0 (Where p is the percentage above). This measure is indicative
of a stock’s volat:lity.

8.1 Query 1: A Single Linear Constraint

For this query, we used the P/E constraint dicussed above. The ratio r was varied to generate different
selectivities. In addition, we examined the effect of the maximum number of clipping rounds on both page
reads and CPU time.

Note from the results in Table 8 that additional rounds of clipping had no effect on the number of page
reads or matches. In addition, observe the jump in CPU cost from one round of clipping to two, but none
after. These results are explained by the need for only one round of clipping. In theory, one round of
clipping may not be enough to determine overlap. In practice, we have yet to observe a situation in which
more than one round of clipping is necessary. The CPU costs of the query rose from one to two rounds of
maximum clipping since one extra round of clipping must be done to determine algorithm completion.

8.2 Query 2: A Combination of Linear Constraints

This query consists of selecting all tuples such that the P/E ratio is less than .5, the value of the company
hasn’t changed by more than some percent p and the tuple belongs to a measurement from the last 50
years. In terms of linear constraints:

Priceycar—end — 0.5 * earnings <0
Pricepigh — PriCeloy = P * PTiCyear—end < 0

year > 50

8More extensive versions of the Compustat dataset are available, for a price!

27

P %CPU matches | page reads
STo0600 10 556087 3 155 Table.Q shov&.rs the p.erformance of the .abc.)ve
0.200000 | 0.257674 13 8113 query while varying p. Since one round of clipping
0.300000 | 0.257023 16 8113 was sufficient for all experiments (as in Query 1),
0400000 | 0.257004 20 8114 only the results for one round of clipping are dis-
0.500000 | 0.249743 26 8114

played in Table 9. Note that the slightly higher CPU

Table 9: Complex Query. ,) ’
cost is a result of adding more constraints.

8.2.1 The Degree of Overlap In High-Dimensional R*-Trees

We observe that there is a surprising amount of 1/O in the above queries given the overall selectivity. This
is due to a large amount of overlap in the R*-tree generated by our data set. To better illustrate this, the
results in the following table give the average, low, and high number of page reads generated by 100 point
queries. These point queries correspond to 100 points from the Compustat data set. Thus, the selectivity
of each data set is 1 tuple.

The large number of page reads performed to
Min I/O | Max I/O | Avg I/O retrieve a single point seems to be caused by the
2 15770 4089 inability of the split algorithm (used in R*-Tree in-
sertion) to function well in high numbers of dimen-
sions. This is, however, a deficiency of the R*-Tree and is not caused by or related to query by linear
constraint. (On the particular data set that we studied, the degree of overlap could possibly have been
reduced by applying a good bulk-loading algorithm; this would have greatly reduced the I/O for the exam-
ple queries.) It is interesting to note that query by linear constraint can be applied with equal efficiency
to many multidimensional indexing structures. Some of these include grid files, buddy trees, P-trees, and
TV trees (using an L1 distance metric). Thus the value of query by linear constraint is in not tied to the
use of the R-Tree as a high dimensional indexing structure.

9 Related Work

We’'ve made two main contributions: an algorithm to test overlap of an MBB and a conjunction of con-
straints in an arbitrary number of dimensions, and a search algorithm in tree-structured multidimensional
index that bounds queries by linear constraints.

The overlap algorithm is an important part of the search algorithm. There are Computational Geometry
algorithms for detecting polyhedron—box overlap or polyhedron—polyhedron overlap (e.g. see [21]); why
can’t these be used instead? The input to these algorithms is usually the vertices of the polyhedra and
not the tight representation of the conjunction of linear constraints. Since the number of vertices of a
polyhedron is exponential in the number of constraints (for arbitrary dimensionality), converting the input
to fit those algorithms will be prohibitively expensive.

Several variants of the R-Tree [9] have been proposed, including the R*-Tree [24] and the R*-Tree [1].
Other closely related structures are the k-d-B Tree [23] and the Buddy-Tree [14, 15]; they all use boxes
(MBBs) to bound the space represented by a tree node. While they have different insertion and deletion
algorithms, they use essentially the same search algorithm (although, for point queries, the Buddy-Tree,
k-d-B Tree and R*-Tree have the property that only a single path from root to a leaf is searched).

Popular access methods for point data include the Grid File [18]. The performance study in [1] suggests
that the R*-Tree is superior to the other variants of the R-Tree, and indeed even the Grid File for point

28

data. Consequently, the R*-Tree was implemented as the spatial access method for the Paradise GIS on top
of the Shore data manager. For the same reasons, we chose to evaluate the performance of our refinement
with respect to the R*-Tree variant.

The other proposals (that we are aware of) that do not use MBBs to bound objects and/or queries are
the Sphere tree [27], the Cell tree [7, 8] and the P-tree [11].

The Sphere tree uses spheres instead of boxes to bound both queries and data in the tree. Storing spheres
has the advantage that the orientation of the axes does not affect performance. The major disadvantage
is that “narrow” objects (such as lines) are very poorly approximated by spheres.

The Cell tree uses convex polyhedra (which can be thought of as a special case of a conjunction of
linear constraints) to store data in the tree as well as to query it. The space overhead for describing each
polyhedron is considerable even if the tightest description possible (i.e., linear constraints) is used. The
methods used by Giinther and Wong [8] for polyhedron—polyhedron overlap detection for the cell-tree do
not seem feasible in more than three dimensions. (A 4-dimensional test of two polyhedra with 16 vertices in
each takes about 107 terabytes of space and about 102° operations for preprocessing!) Even if we consider
using algorithms such as Simplex or Karmarkar’s algorithm [6] instead of the overlap checks proposed for
the Cell tree, the CPU overhead is likely to be too high.

The P-tree [11] has a structure close to the R-tree and uses high dimensional boxes as representations
for lower dimensional polyhedra. If we take, say, a 2-D object and bound it with a 2-D MBB as in an
R-Tree, the approximation may be poor if the object is not oriented nicely w.r.t the two axes. If we
consider & additional axes and use k + 2 dimensional MBBs to bound objects and queries, we get a better
approximation. This is the essential idea behind the P-Tree, but there are some important drawbacks.
First, R-Trees are very sensitive to increases in dimensionality of the data (see [20]). If it is intended that
point data be stored in the R-Tree, the only advantage gained from use of the P-Tree is a more precise
query form (at the cost of added dimensions in the tree itself). In addition, any advantage derived from
more precise querying is limited by the accuracy with which the query can be expressed in terms of the
(predetermined) set of axes. Finally, determination of conservative (slightly overlarge) polyhedral bounds
of arbitrary polyhedra is not discussed in the paper. This is a very difficult problem and is central to the
use of the P-Tree as a general purpose structure.

Our technique of bounding the query by constraints can be used to improve the search performance
of any of the proposed tree index structures (e.g., R-Tree variants, K-d-B Trees, P-Trees) that use MBBs.
Even if the P-Tree is used, our technique can provide better approximations for the query since we are not
limited by a predetermined set of axes.

A summary of several kinds of approximations that can be used to represent a spatial object is presented
in [13]. One of the suggested techniques is decomposition of a complex spatial object into a collection of
smaller objects. Each of the smaller objects is then approximated by a MBB. The decomposition idea
is discussed in the context of spatial join queries to filter out pairs of objects that do not overlap, but
not in the context of search queries. The idea of decomposing a large query into smaller queries can
certainly provide improvements in search performance (e.g., consider a diagonal query object, w.r.t. the
axes). However, even if the decomposition produces non-overlapping objects, the queries corresponding to
these objects may involved repeated traversal of parts of the tree. Clearly, a similar idea could be used in
conjunction with our use of constraints to bound queries: we could look for a collection of convex polygons
that together cover the query. As indicated in Section 7, such an approach holds the potential for dramatic
speed-ups 1n some cases.

Several other spatial access methods have been proposed, e.g., [17, 19], but these are not directly related
to our work. Other query types that have been proposed are polygon queries [13] and spline and Bézier
curve queries [12]. Both methods look promising. However, it is not clear how the polygon queries scale to

29

higher dimensions and the only applications that use splines or Bézier curves seem to be in CAD/CAM. In
both cases, the evaluation methods are not directly related to our work because our input for the queries
is different.

10 Conclusions and Future Work

We have proposed a simple refinement to the R*-Tree search algorithm and demonstrated that it offers the
potential for significantly enhanced performance over a wide range of queries, with little or no penalty even
in the worst case. It is straightforward to add such a refinement to an existing R*-Tree implementation. An
important contribution of this work is the efficient and safe polygon-box overlap test presented in Section

3.

As a next step in the application of constraint techniques to R*-Trees, we intend to explore the use
of MBBs that are rotated with respect to the axes to store data in the tree. Our search algorithm would
of course work without change in such a structure. However, new insertion and deletion algorithms are
required.

References

[1] Beckmann, N., Kriegel, H.P,, Schneider, R., Seeger, B. “The R*—Tree: An Efficient and Robust Access Method for
Points and Rectangles”. Proc. ACM SIGMOD Int, Conf. on Management of Data, 1990, pp. 322-331.

[2] Carey, M., DeWitt, D., Franklin, M., Hall, N., McAuliffe, M., Naughton, J., Schuh, D., Solomon, M., Tan, C., Tsatalos,O.,
White, S., Zwilling, M. “Shoring up Persistent Objects”. Proc. ACM SIGMOD Int. Conf. on Management of Data, 1994,
pp. 383-394.

[3] Dantzig, G.B. “Linear Programming and Extensions”. Princeton University Press, Princeton, N.J. 1963.

[4] DeWitt, D., Kabra, N., Luo, J., Patel, J., Yu, J. “Client-Server Paradise". Proc. 20th Int. Conf. on VLDB, 1994.
pp-558-569.

[5] Faloutsos, C., Roseman, S. “Fractals for Secondary Key Retrieval,” Proc. 8th ACM SIGACT-SIGMOD-SIGART Sym-
posium on PODS, 1989, pp. 247-252.

[6] Fang S. C., Puthenpura S. “Linear Optimization and Extensions: Theory and Algorithms”. Prentice Hall 1993.

[7] Giinther, O. “The Design of the Cell Tree: An Object-Oriented Index Structure for Geometric Databases”. Proc. 5th
Int. Conf. on Data Engineering, 1989, pp. 508-605.

[8] Giinther O., Wong E. “A Dual Approach to Detect Polyhedral Intersection in Arbitrary Dimensions”. Proc. 25th Annual
Allerton Conf. on Comm., Control and Comp., Oct 1987, pp. 859-868.

[9] Guttman, A. “R—Trees: A Dynamic Index Structure for Spatial Searching,” Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 1984, pp. 47-57.

[10] Jagadish, H.V. “Linear Clustering of Objects with Multiple Attributes,” Proc. ACM SIGMOD Int. Conf. on Management
of Data, 1990, pp.332-342.

[11] Jagadish, H. V. “Spatial Search with Polyhedra”. Proc. IEEE 6th Int. Conf. on Data Engineering 1990, pp- 311-319.

[12] Kriegel, H.P., Heep S., Fahldiek A, Mysliwitz N. “Query Processing of Geometric Objects with Free Form Boundaries
in Spatial Databases”. Proc. 4th Int. Conf. DEXA 1993, pp. 349-360.

[13] Kriegel, H.P., Horn, H., Schiwietz, M. “The Performance of Object Decomposition Techniques for Spatial Query Process-
ing”. Proc. 2nd Symposium on Large Spatial Databases, Lecture Notes in Computer Science, Vol 525, Springer, 1991,
pp- 257-276.

[14] Kriegel, H.P., Schiwietz M., Schneider R., Seeger, B. “Performance Comparison of Point and Spatial Access Methods”.
SSD 1989, pp. 89-113.

[15] Kriegel, H.P., Schiwietz M., Schneider R., Seeger, B. “The Buddy-Tree: An Efficient and Robust Method for Spatial
Data Base Systems”. Proc. 16th VLDB Conf. 1990, pp. 590-601.

[16] Kuenzi, H.P,, G.B., Tzschach, H.G., Zehnder., C.A. “Numerical Methods of Mathematical Programming”. New York
Academic Press, 1971.

30

[17] Lomet, D. and Salzberg, B. "The hB-Tree: A Multi-attribute Access Method with Good Guaranteed Performance,”
ACM TODS Vol. 15, No. 4, Dec. 1990.

[18] Nievergelt, J., Hinterberger, H., Sevcik, S.C. “The Grid File: An Adaptable, Symmetric Multikey File Structure,”
Readings in Database Systems, Morgan Kaufmann, 1988.

[19] Orenstein J.A. and Merrett, T. "A Class of Data Structures for Associative Searching,” Proc. 3rd ACM SIGACT-
SIGMOD-SIGART Symposium on PODS, 1984, pp. 181-190.

[20] Otterman M., “Approximate Matching with High Dimensionality R-trees”. M.Sc. Scholarly paper, Dept. of Computer
Science, Univ. of Maryland, College Park, MD, 1992. Supervised by Faloutsos C.

[21] Preparata F. P., Shamos M. L. “Computational Geometry: An Introduction”. Springer-Verlag 1990 (3rd printing).

[22] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. “Numerical Recipes in C,” Cambridge University Press,
Cambridge. 1988.

[23] Robinson,J. “The k-d-B Tree: A Search Structure for Large Multi-dimensional Dynamic Indexes,” Proc. ACM SIGMOD
Int. Conf. on Management of Data, 1981, pp. 10-18.

[24] Sellis, T, Roussopoulos, N., Faloutsos, C., “The Rt —Tree: A Dynamic Index for Multi—Dimensional Objects,” Proc.
13th Inf. Conf. on VLDB, 1987, pp. 507-518.

[25] Seeger, B., Kriegel, H.P. “Techniques for Design and Implementation of Efficient Spatial Access Methods,” Proc. 14th
VLDB Conf., 1988.

[26] Stonebraker, M., Frew, J., Gardels, K., Meredith, J. “The Sequoia 2000 Storage Benchmark”. Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1993, pp. 2-11.

[27] Van Oosterom, P., Claasen, E. “Orientation Insensitive Index Methods for Geometric Objects,” Proc. 4th International
Symposium on Spatial Data Handling, 1990,

A Some Algorithms for Numerically Safe Arithmetic

The discussion in this paper is restricted to representations of numbers in the binary base although the
results can be trivially extended to any base (other than unary).

A.1 Floating Point Representation

The general representation of a floating point number is by three components (s, e, m) where s is the sign,
¢ is the exponent and m is the mantisa. s can be represented by one bit, € is viewd as an integer and m
is a string of bits. The value of the number is s - 2° - (1.m). Note that the number 0 can’t be represented
in this way so we take the symbol 0 as a special represetation (with no components) of the number 0. We
always assume that the size of e (and m) is finite (although unrestricted). We say that the representation
size of (s, e, m) is the numebr of bits in the representation.

If we do not place any other restrictions then the set of numbers that we get is denoted by Rg (For
general “real” numbers). Note that Rg is closed under addition, subtraction and multiplication but not
under division.

If we restrict m to at most & bits and e to at most { bits we have a set denoted by Ry ;. For example
R,3 5 corresponds to IEEE standard floating point numbers, Rsy 11 to IEEE double precision and Riy2,15
to IEEE quads (long double precision). Note that any Ry set in not closed under addition, subtraction,
multiplication and division.

All those sets Rg and Ry are well ordered. This means that that they are linearly ordered and that
any number that is not minimal in the set has a predecessor. Also, any number that is not maximal in the
set has a successor. If a set is closed under some operation then that operation is well defined. If it is not
closed under the operation then we take the result to be the closest representable number (of that set). A
high estimation of the result would be the successor of the result and a low estimation of the result would
be the predecessor of the result.

31

A.2 The Sum of n Numbers

Suppose we have numbers z;, .., ¢, (i.e. &; = (s1,e;,m;)) from some set and we want to find Z?:l z; from
the same set (i.e. the closest possible number in that set). Consider the “normal” way of doing this:

e Set z :=0.

e Fori:=1tondo
T =4

Where z is a variable over the set and the result is z. If the set is Rg then the result is correct. However,
for any Ry ; one can find examples where n > 3 and the result is not correct.

Suppose the input is in the set Rx ;. One way of correcting the problem is: Convert the numbers to Rg
representations, calculate the result in the R¢ set and round it to the nearest result in R . This method
guarantees the correct result. The complexity of this algorithm is O(n(k +) + 2Y). The n(k +[) part
comes from the input size and 2! + k + |log, n| is the maximal mantisa size. If we fix k,[then we get an
algorithm that is linear in the input but may have a large additive cost. For example for IEEE doubles we
may need about 300 bytes of space and the time to utilize that space. For IEEE quads we’ll need about
4K space and the time to utilize it.

We can reduce the complexity to linear in the input by considering the same algorithm with a different
number representation. In general, for small n, if we encounter a large mantissa it will be very sparse
(i.e. either be almost all 0’s or almost all 1’s). We can compress the representation of the mantisa by
representing it as a series of integers 71, .., i, where 7; is the number of 1’s on the left side of the mantisa
(could be iy = 0). i3 is the number of 0’s that follow the #; 1’s, i3 is the number of 1’s that follow the iy
0’s etc until 4, is the number of 1’s in the end of the mantisa. Using this representation may be tricky but
yields an algorithm that is linear in the input.

Another algorithm that is efficient uses a different strategy. Assume S is a data structure that holds a
set of numbers (with repetitions). The algorithm works as follows:

o Set S:={x1,..,Tn}
e While there are at least 2 numbers in S do

— Remove numbers z,y from S s.t. z,y have the highest exponents in S. Let « be the one with
the highest exponent. (Note that there may be several possible choises. Any one of them will

do.)
— If e(z) > e(y) + |m(z)| + [log, |S|] + 1 then return .
~ Insert z+y to S.

e Return the number in S.

This algorithm returns the correct answer. Without considering the operations on S the complexity is
linear in the input. The operations on S can be done with complexity O(nlogn). The value of the last
algorithm is that with some modifications it can be used to compute the dot product of two vectors of
IEEE doubles for n < 256 using operations on IEEE quads. The result we get is the closest IEEE double
to the true value of the dot product. This means that we do not need to implement special representations
for numbers. An empirical test we performed showed that the cost of using that algorithm was only slightly
higher than using the “normal” algorithm with IEEE quads (which yields wrong results).

32

B Paradise Screens for the Real Queries

Figure 26: Line Queries Overview

33

" PARADISE MAP <Milwaukee County>

Figure 27: Region Queries Overview

34

