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Abstract

This paper discusses the design and implementation of SEQ, a database system with support for persistent
sequence data as well as relational data. Sequence data is common in a variety of application domains, and
complex queries over such data arise frequently. SEQ models a sequence as an ordered collection of records.
The system supports a declarative sequence query language based on an algebra of query operators, thereby
permitting algebraic query optimization and evaluation. This is a fundamental aspect of the SEQ system
design and implementation, and is similar in spirit to the support for relational queries in a RDBMS. An
alternative approach implemented in some current database systems is to provide a sequence Abstract Data
Type (ADT), with a collection of methods that can be composed to express queries over sequences. We show
that this approach can lead to queries that are difficult to express and to optimize, and consequently inefficient
to execute.

There are four distinct contributions made in this paper. (1) We compare the algebraic and ADT-method
approaches to sequence queries using qualitative as well as experimental comparisons. (2) We describe the
specification of sequence queries using the SEQUIN query language, and their execution in the SEQ system.
(3) We quantitatively demonstrate the importance of various optimization techniques by studying their effect
on performance. (4) We present a novel nested design paradigm used in SEQ to combine sequence and
relational data. The system design uses a complex object model to freely mix relational and sequence data,
while the language design permits declarative queries over both kinds of data. Based on SEQ, we suggest a
pragmatic way for existing database systems to incorporate efficient support for sequence data.

1 Introduction

Much real-life information contains logical inter-relationships between data items. One particular class of logical
relationships imparts order to the data items. We use the term “sequence data” to refer to data that is ordered due
to such a relationship. While traditional relational databases provide no abstraction of ordering in the data model,
there has been increasing interest in providing database support for queries based on the logical sequentiality in
the data. In earlier work, we described a data model that could describe a wide variety of sequence data. and
a query algebra that could be used to represent and optimize queries over sequences [SLR95]. In particular. we
observed that the execution of queries over sequences could benefit greatly from algebraic optimizations that
exploited the order information [SLR94]. In this paper, we address the issues that had to be addressed when
building the SEQ sequence database system based on these ideas.

SEQ is a multi-threaded, client-server database system with support for sequence data as well as relational
data. The design of sequence database support is based primarily on the thesis that algebraic query optimization
is essential for sequence queries. SEQ therefore provides the SEQUIN language to specify declarative queries,



and an optimization and execution engine to process the queries. This is similar in spirit to the support for
relational queries in an RDBMS. An alternative approach that is implemented in some current database systems,
is to provide a sequence Abstract Data Type (ADT), with a collection of methods that can be composed to
express queries over sequences. We show that this approach makes it difficult to express complex queries, to
optimize them, and to evaluate them efficiently. In addition, the design and implementation of SEQ use a novel
paradigm to provide support for both sequences and relations.

The implementation of SEQ has been in progress for more than a year. The system uses the SHORE storage
manager library [CDF+94] for low-level database functionality like buffer management, concurrency control and
recovery. The higher levels provide query processing support for relations and sequences. The system is currently
at approximately 35,000 lines of C++ code (excluding SHORE) and will eventually be available in the public
domain.

In Section 2, we describe the current state-of-the-art in sequence database support, and the motivation for the
design and implementation of SEQ. We describe the high-level system design in Section 3, and the specific support
for sequences in Section 4. SEQ is compared with other current systems that support time-series data on issues of
performance in Section 4.6. We discuss the integration of sequences and relations in Section 5. Section 6 suggests
a pragmatic approach that existing systems can take to improve their sequence query processing functionality and
performance. Finally, we present a discussion on related research and future work in Section 7, and concluding
remarks in Section 8.

2 Motivation

Many diverse application areas generate large volumes of sequence data; these include financial and business
transactions and scientific experiments. Much of this data is ordered temporally, and is called “time-series” data.
However, some important sequence data is ordered by other domains like linear positions, physical locations or
integer rankings. We wish to efficiently support complex queries over all these kinds of sequence data.

2.1 The State Of The Art

Current database systems provide limited support for sequence data. Most existing support for such data deals
with temporal sequences. While SQL-92 provides a timestamp data type, there are few constructs that can
exploit sequentiality. The Order-By clause in SQL only specifies the order in which answers are presented to
the user. Much research in the temporal database community has focused on enhancing relational data models
with temporal semantics [TCG+93], but there have been few publicly available implementations. Financial
management products like MIM [MIM94] have created a niche market by building special purpose systems for
analyzing stock market data. Main-memory based systems like S-Plus [Sta91] perform statistical analysis of
sequences, but these systems are not equipped to handle large quantities of data. Most commercial database
systems will allow a sequence to be represented as a ‘blob’ which is managed by the system, but interpreted solely
by the application program.

Some object-oriented systems like 02 [BDK92] provide array and list constructs that allow collections of data
to be ordered. The object-relational database system Illustra [[1194a] provides database support for time-series
data along with relational data. A time-series is an ADT value implemented as a large array on disk. A number
of ADT methods are implemented to provide primitive query functionality on a time-series. The methods may
be composed to form more complex queries. The “ADT-method” based approach to time-series support in this
system represents the state-of-the-art in commercial database support for sequence data.



2.2 Desired Functionality in SEQ

To motivate our design decisions, we briefly discuss some of the functionality requirements set forth for SEQ. The
abstract model of a data sequence is shown in Figure 1. An ordering domain is a data type which has a total
order and a successor relation defined over its elements (also referred to as ‘positions’). Examples of ordering
domains are the integers, days, seconds, etc. A seguence is a mapping between a collection of structured records
and the positions of an ordering domain.
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Figure 1: Data Sequence

There. are many application domains which deal with sequences of complex values. For instance, satellites
produce sequences of images. It is important for the database type system to be capable of extensions to handle
such data. Further, despite the fact that we are dealing primarily with sequence data, most applications must
also handle a large amount of relational data. After studying some real-world examples, we realized that typically
there is some data that is sequential, while there is other “static” data associated with it that is stored in tables.
For example, a sequence of bank transactions may record the time, the account number and the transaction
details, but the details of the account are maintained in a separate relation whose key is the account number.
There are often entire sequences logically associated with individual relational tuples. Trading data from a stock
exchange, for example, is often represented as a relation of the stocks traded, and each stock is associated with
a specific price history. Entire relations can be associated with a single position in a sequence. As an example of
this, consider the information from a hospital on patient visits. There are a large number of visits on any given
day, which are recorded in no specific order. However, this data is sequential across days. Administrators might
look for seasonality of variations of various kinds of patient visits; this example is based on a real-life application
which is described in Appendix A.

In [SLR95], we proposed an algebra of query operators that can be used to specify a certain expressive class of
sequence queries. Every operator is compositional; it takes sequences as inputs and produces a sequence as the
output. The operators are classified into two distinct categories. The Record-Oriented operators treat a sequence
as a relation with an extra field in each record to represent the order mapping. In terms of the Figure 1, these
operators “view” the sequence mapping from the right (records) to the left (positions). These operators can be
directly implemented in a relational database, and several efficient techniques have been proposed for evaluating
them in the temporal relational database context [GS89b, LM90G]. Of greater interest to us, is the other category
of Positional operators that concentrate on the relationship between the data records due to their mapping to an
ordered domain. Thése operators “view” the sequence mapping from the left (positions) to the right (records).
In the design of SEQ, the algebra of Positional operators defined the sequence query functionality requirements.
However, extensibility in the operator algebra was desired, so that new Positional operators can be added. While
we do not describe the operators in detail in this paper, the SE QUIN query language is based on this algebra,
and its functionality is discussed in a later section.

The most basic implementation requirement was that the system should efficiently process queries over large



disk-based sequences. We are primarily concerned with supporting queries, though our implementation should
also permit updates. Our earlier qualitative observation [SLR94] that motivated this entire research should be
reiterated here: algebraic query optimization is important for efficiently processing queries over complex collections
like sequences. As we demonstrate quantitatively in this paper, this observation is indeed valid. As practical
guidelines, we also required that our design for adding sequence functionality should allow other kinds of interesting
collection types (like trees [SLVZ95] and multi-dimensional arrays [MV93]) to be similarly incorporated. Further,
the approach we use to support sequence data should ideally be also applicable to other existing database systems
(including commercial systems).

3 High-Level System Design

We can categorize the design contributions of SEQ into three components. In this section, we describe two of
them: the overall data model design, and its instantiation in the system architecture. The specific design for
sequence data support is presented in the next section.

3.1 Data Model Design

Object-relational systems like Illustra [I1194a], Paradise [DKLPY94], and Postgres [SRH92] allow an attribute of
a relational record to belong to an Abstract Data Type (ADT). Each ADT defines methods that may be invoked
on values of that type. An ADT can itself be a structured complex type, with other ADTs nested inside it.
Relations are the top-level type, and all queries are posed in the relational query language.

The SEQ design enhances the ADT notion by supporting “Enhanced Abstract Data Types”(E-ADTs ). The
enhancements, which are described in this section, belong to two categories: one category improves the perfor-
mance of queries involving data of the E-ADT |, while the other category improves usability by providing the
same status to all the types in the system (including relations). Both sequences and relations are modelled as
E-ADTs . Consequently, this is a nested model in which a complex object like a sequence can be a field within a
relational record, and vice versa.

In the first category of enhancements, each E-ADT may provide support for one or more of the following:

e Query Language: An E-ADT can provide a query language with which expressions over values of that
E-ADT can be specified (for example, the relation E-ADT may provide SQL as the query language, and
the sequence E-ADT may provide SEQUIN).

e Query Operators and Optimization: If a declarative query language is specified, the E-ADT must provide
optimization capabilities that will translate a language expression into a query evaluation plan in some
evaluation algebra.

e Query Evaluation: If a declarative language is specified, the E-ADT must provide capabilities to execute
the optimized plan.

This design is driven by the need to support sequences as well as relations with declarative query languages and al-
gebraic optimization. The E-ADT paradigm differentiates SEQ from the traditional ADT-method based approach
to providing support for collection types in databases. The difference is crucial to the usability, functionality and
performance of queries over collection types like sequences. This is a novel contribution of the SEQ system. We
believe that the E-ADT paradigm can be applied to provide database support for any complex collection type. At
least in the context of sequence data, the merits of this approach over the ADT-method approach can be clearly
demonstrated, as we do in this paper.
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Figure 2: System Architecture

The second category of enhancements allows any E-ADT to be the top-level type. Relations are modeled on
par with sequences and other E-ADTs . Consequently, even if the entire relation E-ADT were not implemented
or not compiled in, the database system would still be able to provide the functionality supported by the other
E-ADTs . This allows users who are primarily interested in sequence data, for example, to directly query named
sequences without having to embed the sequences inside relational tuples. In order for an E-ADT to be treated
as a top-level type, it must provide catalog and storage management features in addition to the language and
optimization enhancements:

e Catalog Management: Fach E-ADT can provide catalog capabilities that permit certain values to be named,
to have statistics maintained and to have schema information stored.

o Storage Management: Each E-ADT can provide multiple physical implementations of values of that tvpe.
The particular implementation used for a specific value may be specified by the user when the value is
created, or determined automatically by the system.

3.2 System Implementation

The design philosophy of E-ADTs is carried directly over into the system architecture. SEQ is a client-server
database in which the server is a loosely-coupled system of E-ADTs . The high-level picture of the system is
shown in Figure 2. The server is built on top of a layer of common database utilities that all E-ADTs can use.
Code to handle arithmetic and boolean expressions, constant values and functions is part of this layer. The
primary portion of the utility layer is the SHORE Storage Manager [CDF+94]. SHORE provides facilities for
concurrency control, recovery and buffer management for large volumes of data. It also provides a threads package
that interacts with the rest of the storage management layers; SEQ uses this package to build a multi-threaded
server., Multiple clients can connect to the server and have their requests serviced.

The core of the system is an extensible table in which E-ADTs are registered. Each E-ADT may support and
provide code for a query language, an optimizer, a query evaluation engine, and storage and catalog management



for data belonging to that type. As shown in the figure, some of the basic types like integers do not support any
enhancements (though one could argue that a ‘language’ like integer arithmetic is itself a declarative language
over the integers). The figure shows two E-ADTs that do support enhancements: sequences and relations.

With this high-level system design, the important question to ask is: how do interactions between the F-
ADTs occur? A specific instance of this question that is pertinent to this paper is: how does the interaction
between sequences and relations occur? The answer is difficult to explain with meaningful examples at this stage
because the sequence E-ADT has not yet been described. Instead, we first provide an isolated discussion of the
sequence E-ADT . We then return to the issue of how sequences and relations interact in Section 5.

4 The Sequence E-ADT

In this section, we describe how sequences are modeled, the SEQUIN query language and optimization and
implementation techniques.

4.1 Sequence Abstraction

As shown in Figure 1, a sequence models a one-to-many mapping between positions in the ordering domain and
a set of records. While every record must be mapped to at least one position, there is no requirement that there
be a record mapped to every position. The ‘empty’ positions correspond intuitively to ‘holes’ in the sequence.

In our implementation, the position mapping is maintained as an explicit field of each record. Further, as
a simplifying assumption, we restrict each record to be mapped to a single position (the one-to-many model is
achieved by making copies of the record with different position fields). While this implementation adequately
models much real-world sequence data (like time-series data), we expect to provide support in the future for an
interval-based representation of the position mapping (see Section 7).

Figure 3: Sample Ordering Hierarchy

An important component of the model of a sequence is the ordering domain. Each ordering domain is modeled
as simply another data type with some additional methods that make it an ordered type. LessThan(Posl. Pus2),
Equal(Pos1, Pos2) and GreaterThan(Posl, Pos2) allow comparisons to be made among positions. NumPosi-
tions(Posl, Pos2) counts the number of positions between the two specified end points. Nezt(StartPos, N) and
Prev(StartPos, N) compute the Nth successor and predecessor of the starting position. All ordering domains
are registered in an extensible table maintained by the sequence E-ADT . Additionally, we need to capture the
hierarchical relationship between various ordering domains. For instance, Figure 3 shows one set of hierarchical
relationships between common temporal ordering domains. In order to describe such hierarchical relationships,
a table of Collapses is maintained by the sequence E-ADT . Each Collapse represents an edge in the hierarchy
and provides methods that map a position in one ordering domain to a position or set of positions in the other
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domain. For example, a Collapse involving ‘days’ and ‘weeks’ maps each day to the week it belongs in, and each
week to the set of days of that week.

Although there are different implementations of sequences in the system, they all provide certain common
methods as part of a uniform interface:

o OpenScan(Cursor), GetNext(Cursor), CloseScan(Cursor). These methods provide a scan of the sequence
in the forward order of the ordering domain. Any positions in the domain which are not mapped to a record
are ignored in the scan.

e GetElem(Pos). This finds the record at the specified position in the sequence (or fails if none exists at that
position).

The underlying theme in the implementation of most components of the system is to allow for extensibility by
specifying uniform interfaces (using C++ virtual member functions).

4.2 SEQUIN query language

In this section, we present some important features of the SEQUIN ! declarative language for sequence queries.
The language is similar in flavor to SQL, an intentional decision aimed at making the language easy for SQL users
to adopt. The result of a SEQUIN query is always a sequence. The overall structure of a SEQUIN query is:

PROJECT <project-list>

FROM <sequences-to-be-merged-on-position>
[WHERE <selection-conditions>]

[OVER <start-window> TO <end-window>]
[ZOOM <zoom-info>];

We now explain the various constructs using simple examples based on the following sample database. Consider
the sequences Stockl and Stock2 representing the hourly price information on two stocks. Both sequences have
the same schema: {time:hour, high:double, low:double, volume:integer}, where the ‘time’ field defines the order.

The first query estimates the monetary value of Stockl traded in each hour when the low price fell below 50.
The answer is a sequence with the monetary value computed for each such hour.

PROJECT ((A.high+A.low)/2)*A.volume // Desired output per hour.
FROM Stockl A // Input sequence.
WHERE A.low < 50; // Condition on input record.

The query demonstrates the use of the PROJECT and WHERE clauses. The PROJECT clause with a target
list of expressions is similar to the SELECT clause of SQL?. There is no output record for positions at which the
WHERE clause condition fails; these are empty positions in the output sequence. Since the result is a sequence
of the desired values, it should have an ordering attribute; however none exists in the PROJECT list. In such
cases, the ordering attribute from the input sequence is automatically added to the output schema.

We now consider finding the 24-hour moving average of the difference between the high prices of the two stocks.

LSEQUIN is the Sequence Query Interface.
2In fact, since this simple query does not really utilize sequentiality, it can be similarly expressed in SQL if each sequence is
modeled as a relation.



PROJECT avg(A.high - B.high) // Moving average per hour.
FROM Stockl A, Stock2 B // Positional join of A and B.
OVER $P-23 TO $P // Window for aggregate.

This query demonstrates the use of the FROM clause, and the OVER clause for moving window aggregates. When
there is more than one sequence specified in the FROM clause, there is an implicit join between them on the
position attribute (in this case, on ‘time’). Intuitively, the FROM clause merges the sequences by position. Since
this is a declarative query, the textual order of the sequences in the FROM clause does not matter. Note that
the PROJECT clause uses the avg aggregate function. The set of records over which the aggregate is computed
is defined by the moving window of the OVER clause. In this case, the window spans the last 24 hours, but in
general, the bounds of the window can use any arithmetic expression involving addition, subtraction, constant
integers and the special 3P symbol representing the ‘current’ position for which the record is being generated.
Empty positions in the input sequence are ignored as long as there is at least one valid input record in the
aggregation window.

Next, we show a rather complex query that demonstrates the possible variations in the FROM clause. The
desired answer is a sequence containing for every hour, the difference between the 24-hour moving average of the
high price of Stockl, and the high price of Stock2 at the most recent hour when the volume of Stock2 traded was
greater than 25,000. The answer sequence is only of interest to the user after hour 2000.

// first define the moving average as a sequence view

CREATE VIEW MovAvgStockl AS ( // View creation.
PROJECT avg(C.high) as avghigh // average renamed as ‘‘avghigh’’
FROM Stocki C // Input sequence.
OVER $P-23 TO $P); // Window for aggregate.
// then use the view in the query
PROJECT A.avghigh - B.high // Desired output every hour.
FROM MovAvgStockl A, // View in FROM clause.
Previous(PROJECT D.high // Previous() makes a ‘‘most-recent’’ sequence
FROM Stock2 D // Sequence expressiomn.
WHERE D.volume > 25,000) B
WHERE $P > 2000; // desired range of answers.

Note that the sequences in the FROM clause may themselves be defined using another SEQUIN query block.
This may be effected using a view (as is the MovAvgStockl sequence A), or a nested query block defining a
sequence expression (as is the sequence B). Three special modifiers with functional syntax are allowed in the
FROM clause: Nezt, Previous and Offset. Previous (as in this example) defines a sequence which associates with
every position the record at the most recent non-empty position in the input sequence. Remember that sequences
need not be regular, and consequently there can be positions which are not associated with any records. The
Previous modifier fills these ‘holes’ with the most recent record. Similarly, Next defines a sequence in which the
holes are filled with the most-imminent record. Both these modifiers can take a second optional argument which
specifies how many such steps to take (which is 1 by default); for example, Previous(S, 2) defines a sequence
of the second-most recent input record at each position. The Offset modifier defines a sequence in which the
position-to-record mapping of the input sequence is shifted by a specified number of positions. Finally, note that
the WHERE clause can also use the $P notation to access the ‘current’ position attribute. This is important in
cases like this one where the position attribute is implicitly added to the FROM clause sequences, and hence does
not have a field name.



The next query demonstrates the use of the ZOOM clause to exploit the heirarchical relationship between
ordering domains®. Here is the SEQUTIN query to compute the daily minimum of the volume of Stock]l traded
every hour.

PROJECT min(A.volume) // Min aggregate.
FROM Stockl A // Input sequence.
Z0OM days // Collapse from hours to days.

We assume that ‘days’ is the name of an ordering domain known to the system, and that there is a Collapse
registered with the system from ‘hours’ (the ordering domain of the input) to ‘days’. The answer sequence has
an implicit attribute of type ‘days’ that provides the ordering. If the resulting ordering domain is at a coarser
granularity in the hierarchy than the source ordering domain, as in this example, then the PROJECT clause must
be composed of aggregate expressions.

Our final example shows how the ZOOM clause can perform conditional collapses. Suppose that just as in
the previous query, we want to compute the minimum volume of Stockl traded over consecutive periods of time.
However, these periods are not well-defined like ‘days’ or ‘weeks’. Instead, they depend on the data. Specifically,
the periods may be bounded by those times when the high and low values were very close (implying an hour of
stability for the stock). This can be expressed as follows:

PROJECT min(A.volume) // Aggregate to perform.
FROM Stockl A // Input sequence.
Z00M BEFORE (A.high - A.low < 0.1); // Conditional collapse clause.

The query states that the aggregation windew includes records upto but not including the record which satisfies
the stability condition. If the last record is also to be included in the aggregation window, the word BEFORE
is replaced by AFTER. As a final variant, the ZOOM clause could simply be ‘Z00M ALL’, specifying that the
aggregation is to be performed on the entire sequence. These versions of the ZOOM operator generate sequences
that are ordered by an implicit integer field that starts at value 1 and increases in increments of 1 (since this is
the only meaningful sequence ordering for the result).

In this paper, we have omitted discussion of some other features of S QUIN including a construct to re-define
the ordering field of a sequence, update constructs and DDL features. While many of the examples presented here
are intentionally simple, it is very easy to build complex sequence queries using the view mechanism. Complex
sequence queries map to a large graph of operators, and optimization techniques like inter-operator pipelining
described in Section 4.5 are crucial for efficiently query processing.

4.3 Running Example

While describing the implementation of the sequence data type, we wish to quantitatively demonstrate the
importance of various optimization techniques using performance numbers from the SEQ implementation. It
is convenient to use a running example for this purpose. The sequences used in the example were generated
synthetically. While we could have used a real-life data set instead, it would have been more difficult to control
various properties of each sequence. The properties of interest in each sequence are: (1) the cardinality, i.e., the
number of records in the sequence, (2) the record width, i.e., the number of bytes in each record, (3) the density,
i.e. the percentage of the positions in the underlying ordering domain that are non-empty. All the sequences
have an hourly ordering domain and start at midnight on 0100/01/01 (i.e. January 1st in the year 100 AD). We

3The word “zoom” is used because the action of moving down or moving up through the ordering hierarchy is quite similar to
zooming in and out with a lens.



considered sequences with two different densities: 100% and 20%. For each density, we generated the sequences
whose final time-points are shown in Table 14

Density 100% Density 20%
Cardinality Cardinality
Fields 1K | 10K | 100K Fields 1K | 10K [ 100K
1 ]| 0100/02/15 | 0101/04/02 | 0112/07/16 1 |1 0100/08/16 | 0106/05/09 | 0163/01/18
5 || 0100/02/15 | 0101/04/02 | 0112/07/16 5 || 0100/08/17 | 0106/05/09 | 0162/12/10
10 || 0100/02/15 | 0101/04/02 | 0112/07/16 10 || 0100/08/09 | 0106/05/03 | 0162/11/15
20 || 0100/02/15 | 0101/04/02 | 0112/07/16 20 || 0100/08/17 | 0106/04/17 | 0162/10/06

Table 1: Synthetic Data Upper Bounds

Notice that because of empty positions, the 20% density sequences span about 5 times as many positions as
the 100% density sequences. The empty positions were chosen randomly so that the overall density was 20%. The
first field of every sequence record is an SQL time-stamp value. The Fields value indicates the number of 4-byte
integer fields in addition to the timestamp. The values in the fields were integers generated randomly between
0 and 1000. The cardinality of each sequence was either 1000 (1K), 10000(10K) or 100000(100K) records. All
experiments were performed on a SUN-Sparc 10 workstation equipped with 24MB of physical memory. The data
was loaded into a SHORE storage volume implemented on top of the Unix file system. The SHORE storage
manager buffer pool was set at 200 8K pages, which is smaller than the available physical memory, but is realistic
for this small sample database. Logging and recovery was turned off to mimic a query-only environment. In all
the experiments, the queries used contain a final aggregate over the entire sequence, thereby minimizing any time
spent in printing answers. Each query was executed four times in succession and the average of the third and
fourth execution time was measured as the performance metric.

4.4 Storage Implementation

SEQ supports two repositories for sequence data, the Unix file system and the SHORE storage manager. A
sequence can-be stored as an ascii file on the Unix file system. Much real-world sequence data currently exists
in this format. It may be more expedient to directly run queries off this data, instead of first loading it into
the database. Of course, this repository does not provide any of the database properties of concurrency control,
recovery, etc, and is useful only when those properties are not required.

The second (and default) sequence data repository is built using the SHORE storage manager library, which
supports concurrency control, recovery and buffer management. Data volumes maintained by SHORE can reside
either directly on raw disk, or on the file system; our experiments used the latter approach. We studied thiee
alternative implementations of a sequence using SHORE:

1. File: SHORE provides the abstraction of a ‘file’ into which records can be inserted. A scan of the file
returns the records in the order of insertion; this enabled us to implement a sequence as a SHORE file.
One advantage of this implementation was that we could code it with minimal effort. Further, record-level
concurrency is supported by the system. One drawback was that inserts in the middle of a sequence would
be difficult. (This problem can be avoided by building a SHORE-supported index over the file on the
ordering attribute. Ordered access is now provided by scanning the index, but there is inefficiency due to
this level of indirection). Another drawback is that the path length through the file handling code is a
large overhead incurred each time the next record needs to be read in a sequence scan. Finally, the storage

“The entries in the table are approximate since they only show the last day, not the last hour.
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manager imposes several bytes (at least 24) of storage overhead for every record, in addition to a large space
overhead for creating a file.

2. IdList: In order to eliminate the space overhead, we tried implementing a sequence as an array of record-
ids. Each such array is a SHORE large object, which can grow arbitrarily large. Each record-id occupies 4
bytes, and identifies the appropriate record. All records are created in a single “super” file. Concurrency
control is now at the level of the entire sequence. Inserts are easier because SHORE allows new data to be
inserted into the middle of a large object. While the space overhead for each file in the File implementation
is eliminated, the other drawbacks still remain (primarily, the lack of locality and the storage overhead
for records). Further, since the record-id is a logical identifier in SHORE, this needs to be mapped to an
internal physical identifier when the record needs to be retrieved. This problem could be avoided by using
the less portable solution of actually storing the list of physical identifiers instead.

3. Array: In this implementation, a sequence is an array of records. The array is implemented using a single
SHORE large object which contains all the records. Since we expect many sequences to be irregular (i.e.,
have empty positions), we chose a compressed array representation in which no space is wasted for an empty
position. This can dramatically reduce space utilization for data sets of very low density. However, this
makes the various operations within a sequence (like positional lookup, insert and delete) more difficult
to implement. Variable length records require additional complex code. However, there are two important
benefits to this implementation: the per-record space overhead disappears and there is physical sequentiality
for the records of a sequence. With fixed-size records in a mostly-query environment, this should be the
implementation of choice.

Experiment 1: We measured the time taken to scan each of the example sequences stored using each of the four
implementation techniques just described. A scan is the most basic sequence operation that is used in almost
every query. Consequently, the time taken to scan a sequence is a suitable indicator of the efficiency of the storage
implementation. The results for the sequences with density 100% are shown (there was no significant difference
with the 20% density sequences, hence they have been omitted). The actual SEQUIN query run was:

PROJECT count (*) // Aggregate to eliminate answer printing time
FROM <data_sequence> // Source data sequence.
ZOoM  ALL; // Perform aggr over entire sequence.

Figures 4, 5, and 6 show the results for the sequences of cardinality 100K, 10K and 1K respectively. In all the
graphs, the number of fields in each record varies along the X-axis, while the runtime is plotted on the Y-axis.
For all the implementations, the scan cost grows with the width of the records. Note that the SHORE Airay
implementation is the most efficient whatever the cardinality or width of the sequence. Therefore, in all the
remaining experiments, this was the storage implementation used. The SHORE File implementation is worse
than SHORE Array because of the file handling overhead. IdList is the worst SHORE implementation primarily
because of the added cost of converting from logical to physical identifiers. The Unix ascii file implementarion
is the most sensitive to the width of the data records because each attribute needs to be parsed at run-time to

convert it from ascii to binary format.

4.5 Query Optimizations

A SEQUIN query is parsed into a directed acyclic graph of operators, which is then optimized by the guery
optimizer. The algebra implementation is extensible, and the query optimizer interacts with the operators through
various abstract methods. We have described the algebra operators and the optimization techniques in [SLRO4].
The query optimizer uses statistics maintained on the sequences to perform some of the optimizations: the
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statistics include the density of the sequence and the range of valid positions. This section describes the effects
of four categories of implemented optimizations. FEach optimization is first explained in principle, and then
demonstrated by means of a performance experiment. We have tried to keep the queries in the experiments as
simple as possible, in order to isolate the effects of each optimization. However, all the experimental queries used
are components of meaningful queries posed by users who are currently working with SEQ.

4.5.1 Operator Pipelining

An important optimization principle in SEQ [SLR94] is to try and ensure stream access to the stored sequence
data as well as intermediate data; i.e., the sequences are read in a single continuous stream. This is accomplished
by associating buffers with each operator, to cache some relevant portion of the most recent data from its inputs.
In our example of the hourly sequences, a 24-hour moving aggregate would need a buffer of no more than the 24
most recent input records. This ‘window’ of recent data is called the scope of the operator. All the operators in
the algebra have fixed size scopes in a particular query. This allows intermediate results in the evaluation to be
pipelined between operators, as against being materialized. Consider the simple query below:

PROJECT count (*) // Aggregate to prevent printing many answers
FROM <data_sequence> // Source data sequence.
Z0OM ALL; // Perform aggr over entire sequence.

This query scans a sequence and performs an aggregate over the entire data to minimize the answer printing costs.
This is a portion of a real-life query that looks for a pattern (for example, the value of a field is unchanged on two
consecutive days), and counts the total number of occurrences of such a pattern in the sequence. Experiment 2
will show that there is a tremendous penalty to pay for failing to pipeline even such a simple query. Experiment 3
shows that when the query becomes complex, with several nested functions, the relative importance of pipelining
becomes even more clearly defined.

Experiment 2: We ran the query shown above over all the sequences in the sample database. The results with
the pipelining optimization (Pipelined) and without it (Materialized) are shown in the 3-D graph of Figure 7. The
number of columns in each record varies along the X-axis, while the sequence cardinality varies on a logarithmic
scale on the Y-axis. The Z-axis shows the query execution time on a logarithmic scale. Once again, we only
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show the results for the 100% density sequences (the 20% density results are similar). Notice that materialization
increases the cost by almost an order of magnitude!

Experiment 3: In this experiment, we want to show the effects of increased query complexity on materialized
execution. Section 4.2 had several examples of non-trivial queries. By using the view mechanism, many more
complex queries can be generated. It is difficult to choose a single representative for all complex queries. Instead,
since the purpose of this experiment is to isolate and study the performance of pipelining and materialization,
we use a query that, though not intuitively meaningful, can be varied in a controlled manner. We consider one
particular data sequence (100K _10flds-100%dens) and vary the number of levels of operators in the query from 2
to 10. For instance, with 4 levels, the corresponding SE QUIN query is

PROJECT count (*) // Aggr to avoid printing answers
FROM (PROJECT * // Subquery block
FROM (PROJECT =* // Another subquery block.
FROM 100K_10flds_100%dens)) S; // Source data sequence.
Z00M ALL; // Perform aggr over entire sequence.

Such a query with several levels is an extremely simplified version of a real-life query that steps up an ordering
hierarchy (seconds, minutes, hours, days, etc) with an aggregate computed at every level. We disabled the SEQ
optimization that merges consecutive scans which would otherwise reduce all these queries to a common form.
The results with and without the pipelining optimization are shown in Figure 8. The X-axis shows the number
of levels of nesting in each query, while the Y-axis shows the query execution time. Notice that while the cost
of the default SEQ execution with pipelining grows moderately (due to the presence of more operators on the
query execution path), the cost of the materialized execution grows dramatically with the complexity of the query
expression.

4.5.2 Propagating Ranges of Interest

This class of optimizations deals with the use of information that limits the range of positions of interest in the
query answer. There are two sources of such information: one is from selection predicates in the query that use
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the position attribute. Experiment 4 demonstrates the benefits of propagating such selections into the sequence
scans. The other source is from statistics on the valid ranges of positions in each sequence. These valid ranges can
be propagated through the entire query as described in [SLR94J°. Experiment 5 demonstrates how the valid-range
can be used for optimization.

Experiment 4:

PROJECT count (%) // Aggregate to avoid printing answers.

FROM 100K_10flds_100%dens S // Input: 10 fields, 100K records,100% density
WHERE S.time > ‘‘<timestampl>’’ // Selection on the order attribute.

ZOOM ALL; // Perform aggregate over entire sequence.

This query is a variant of the query used earlier to measure the performance of a sequence scan. In this case,
the scan is over only a portion of the sequence. SEQ can optimize the query by pushing the selection predicate
into the scan of the sequence. Since the default implementation of sequences in SEQ expects irregular sequences
and uses a compressed Array implementation, there is no simple way to directly access a specific position. If the
selection range is from Posl to Pos2, the first record within the range (at Posl) is difficult to locate exactly. Based
on the density of the sequence, the valid range of the sequence, and the desired selection range, SEQ performs a
weighted binary search to get close to the correct starting position. However, if the query is modified so that the
> is replaced by a < (i.e. the desired range is at the beginning of the sequence), then the binary positioning is
not needed.

We studied the effect of varying the predicate selectivity from 1% to 100%. We ran the experiment twice, once
with the selection windows at the start of the valid-range (at_start), and once with the selection windows at the
end(at_end). Three algorithms were considered: no selection push-down (NO_PD), simple push-down with no
binary-positioning (ORD_PD), and selection push-down with binary positioning (BP.PD).
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Figure 9: Range Selections At Start: Expmt. 4 Figure 10: Range Selections At End: Expmt. 4

The results for at_start are shown in Figure 9. The predicate selectivity is shown on the X-axis, and the
query execution time is on the Y-axis. While there is no difference between BP.PD and ORD_PD (since the
predicate is at the start of the window), NO_PD performs much worse because the entire sequence is scanned. As
the selectivity increases, all the algorithms become more expensive because there is additional work being done
in the final count aggregate.

SNote that this is an important special case of constraint propagation (e.g. [SR93]) and the predicate move-around optimiza-
tion [LMS94] that have been proposed for relational query optimization
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The results for at_end are shown in Figure 10. The performance of NO_PD is the same as in the at_start
experiment. The performance of BP_PD is almost the same as in the at_start experiment, because it is able to
use the selection information to position the scan at the appropriate start position. On the other hand, ORD_PD
cannot do this, and therefore scans the entire sequence. However, ORD_PD can apply the selection predicate at
a lower level in the system and therefore performs better than NO_PD. Note that the BP_PD algorithm, which
performs best, can only be applied if the valid range and density statistics are maintained for the sequences.

Experiment 5:

// Define a view sequence which applies a selection to the base sequence
CREATE VIEW ViewSeq AS (PROJECT A.fld2

FROM al0O0K_10_100 A

WHERE A.fld1 > 900);
// Merge the sequence 33 with the ViewSeq shifted by a specified offset
PROJECT count (*)
FROM 100K_5f1ds_100%dens B, Offset(ViewSeq, <offset_distance>) C;

This query joins two sequences on position; however, one of the sequences is first shifted by some specified
number of positions. Such a query might arise when looking for similarity between two sequences with a phase
lag (for instance, in a soil study experiment that looks for cause-effect relationships among readings from different
monitors). Each of the base sequences in this query has 100K records spanning an identical range (see Table 1).
However, since one of them is shifted, neither of the sequences needs to be scanned in its entirety; only the
mutually overlapping region needs to be scanned. This is shown intuitively in Figure 11. The valid-range
propagation optimization is able to recognize such optimization opportunities in all SEQ queries.
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Figure 11: Range Propagation: Intuition Figure 12: Range Propagation: Expmt. 5

We varied the overlap from 90% of the valid-range to 10% of the valid-range, and executed the query with
(RNG.PROP) and without (NO_PROP) the valid-range optimization. The results are shown in Figure 12.
The smaller the overlap between the two sequences, the better is the relative performance of RNG_PROP. The
difference between the two lines is a measure of the work saved in scanning the sequence.
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4.5.3 Moving Window Aggregates

All aggregate functions in SEQ (used in both relational and sequence query processing) are implemented in an ex-
tensible manner. Each aggregate function provides three methods: Initialize(), Accumulate(record), Terminate().
This abstract interface allows the aggregation operator to compute its result incrementally, independent of the
specific aggregate function computed.

The presence of moving window aggregates in SEQ creates new opportunities for optimization. Note that in
relational aggregates, the input data is partitioned into disjoint portions over which the aggregation is performed.
Contrast this with the moving window sequence aggregates in which there is an overlap between successive
aggregation windows. For example, consider the 3-position moving average of a sequence 1,2,3,4,5. Once the sum
1+ 2+ 3 has been computed as 6, this computation can be used to reduce the work done for the next aggregate.
Instead of adding 2 + 3 + 4, one could instead compute 6 — 1 + 4. Due to the small aggregation window in this
example, there is little benefit. However, when the windows become larger and the operations are more expensive,
there can be significant improvements due to this approach. Importantly, the time required for aggregation is
independent of the size of the window.

While some aggregates like Count, Sum, Avg and Product are amenable to this optimization, others like Min,
Max, Median and Mode are not. We call this the symmetry property of an aggregate function. In order to exploit
the symmetry property in an extensible manner, we require each aggregate function to provide two more methods:
IsSymmetric() and Drop(record). Experiment 6 demonstrates the importance of exploiting symmetric aggregates.

Experiment 6: We considered queries of the form

// Define the moving aggregate for the chosen aggr_ function over
// the sequence specified in the FROM clause.
CREATE VIEW MovAggr AS

(PROJECT <aggr _function>(S.fld1l)

FROM <data_sequence> S

OVER $P-<window_size> TO $P);

// Perform a scan over the view sequence, with a count aggregate
// to minimize time for printing answers.

PROJECT count (*)

FROM MovAggr

ZO0OM ALL;

Moving window aggregates are among the most important sequence queries posed in stock market analysis applica-
tions. Our example query is the simplest form of a moving aggregate (with a final count operator thrown in as nsual
to eliminate the time for printing answers). This experiment was restricted to only the 100K_10cols_ 100% dens
and 100K _10cols.20%dens sequences. The window size was varied from 5 to 100, while the aggregate functions
tried were MIN (non-symmetric) and AVG(symmetric).

The results for the 100% density sequence are shown in Figure 13. Notice that the performance of MIN100
grows linearly with the size of the aggregation window. This is because the entire aggregation window has to be
processed for each MIN aggregate computed. In comparison, the performance of AVG100 is almost independent
of the size of the aggregation window. The slight dependence of AV(G100 on the window size has an inferesting
reason. Remember that the sequences are ordered using hourly timestamps. Given a particular timestamp. it is
more expensive to compute the 100th previous timestamp, than the 10th previous timestamp. Simple arithmetic
cannot be applied to temporal ordering domains because the variable number of days in a month has to be
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accounted for. Further, since all interaction with the ordering domains occurs through virtual member functions,
the overhead for window computation becomes more significant. This overhead could be avoided if this were a
special-purpose system for temporal sequences only.

The results for the 20% density sequence are shown in Figure 14. Note that a moving aggregate over a sequence
with holes generates many more records than exist in the input sequence. For example, assume that there is an
input record at hour 100 and the next record is at hour 102. A 3-hour moving aggregate sequence has a value
at hour 101 as well, because there is at least one record in its aggregation window from hour 99 to hour 101.
This explains why the cost of both aggregates increases with window size. Since the density is low (20%), there
are also fewer records in each aggregation window, and the relative difference between the AVG20 and MIN20
grows more slowly with the size of the aggregation window. The relative difference between AVG20 and MIN20
at window size 100 is about the same as the relative difference between AVG100 and MIN100 at window size 20.
This is to be expected, because the ratio of the densities of the two sequences is also 100:20.

4.5.4 Common Sub-Expressions

The same sequence may be accessed repeatedly in different parts of a query. For example, the following query
compares the values of a moving average at successive positions looking for stability in the stock prices.

// Define the view for the moving average of a stock over the last 24 hours
CREATE VIEW MovAvgStockl AS

(PROJECT avg(S.high) as avghigh

FROM Stockl S

OVER $P-23 to $P);

// Ensure that the moving average has not changed much
// from the value in the previous hour.

PROJECT =

FROM MovAvgStockl T1, Offset(MovAvgStockl, 1) T2
WHERE T1.avghigh - T2.avghigh < 10.

Figures 15 and 16 show two possible query graphs that can be constructed from this query. The query graphs
use operators from the ‘Positional’ sequence algebra described in [SLR95]. The meaning of each query graph'is
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obvious. The difference between the two query graphs is that one uses a common sub-expression, while the other
doesnt. Common sub-expressions occur frequently in sequence queries, so this is an important issue.

When a query graph with a common sub-expression is constructed for a relational query, the query optimizer
chooses one of two options. One option is to repeatedly evaluate the common sub-expression; this is equivalent
to using the version of the query graph without a common sub-expression(Figure 15). The other option is to
compute the sub-expression once, store the result, and repeatedly access the stored result. For sequence queries,
we have shown that materializing intermediate results is not a desirable option.

By an analysis of the query graph and the scopes of the various operators involved, SEQ can determine exactly
how much of the common sub-expression result should be cached, so that the entire query can be evaluated
with a single stream access of the common sub-expression. In other words, neither is the common-subexpression
evaluated multiple times, nor is it materialized; this is a novel optimization! While we do not have the space to
describe the logic of the analysis technique in this paper, we instead demonstrate its effects.

Experiment 7: We ran the very same query shown above (except that the Stockl sequence was replaced
by 100K_10fids_.100%dens). We varied the size of the aggregation window from 10 to 100; as the window size
increases, so does the cost of the common sub-expression. The query execution time was measured with the
SEQ optimization (Common-Subexp) and with repeated evaluation (Re-Computed). The results are shown in
Figure 17. The common sub-expression optimization used by SEQ obviously performs much better than repeated
evaluation. As the cost of the common sub-expression increases (i.e., as the window size grows), this optimization
becomes extremely important.

4.6 Comparison with the ADT-Method Approach

Some current systems like Iliustra [I1194a] support sequences (more specifically, time-series) as ADTs with a
collection of methods providing query primitives. We call this the “ADT-method” approach to sequence database
support. When a query expression involves the composition of more than one of these methods, little or no
inter-function optimization is performed, and each individual method is evaluated separately. We discuss some
recent research [CS93] that relates to this subject in Section 6.2. We now compare this approach with SEQ,
based on the performance comparisons presented in Section 4.5. Note that the queries used in the comparison are
designed to make the experiments easy to understand, and are not intended as a benchmark, although we believe
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that they are representative of a large class of meaningful sequence queries. All of them are simple abstractions
of queries that were generated by SEQ users in the domains of medicine, soil sciences and stock analysis.

The pipelining optimization (Experiments 2 and 3) coupled with stream access is a very important algebraic
optimization in SEQ. In the ADT-method approach, pipelining is not possible without inter-function optimiza-
tion. The simple query of Experiment 2 is expressed in a form similar to Count(Scan(S)). Since methods are
independently evaluated, the result of the-scan is materialized, and then the count of this materialized result
is computed. Experiments 2 and 3 showed that materialization can perform an order of magnitude worse than
pipelining.

The optimizations that propagate valid ranges and selection predicates (Experiments 4 and 5) once again require
the ability to push range selections from one function to another. Consequently, ADT-method based systems do
not exploit these optimizations. In Experiment 4, the NO.PD algorithm corresponds to the performance of an
ADT-method based query where the user has not explicitly pushed the selection predicate into the scan of the
sequence.

Note that an ADT-method approach cannot identify common sub-expressions without inter-function opti-
mization, let alone take advantage of them to optimize query execution. Experiment 7 showed that the common
sub-expression optimization could reduce query execution time by almost a factor of two. An ADT-method based
system could store the results of all method invocations (i.e., perform function caching), thereby avoiding the cost
of repeatedly executing the sub-expression. On the other hand, the materialization costs could be significant.

The optimization of symmetric moving window aggregates could be incorporated into an ADT-method system.
This does not require any optimization across function boundaries. The table below summarizes these points of
comparison.

Ideally, we would have liked to present a performance comparison with an ADT-method based system to
quantitatively demonstrate the effects of the underlying design differences. We chose Ilustra [I1194a] for this
comparison because it is a commercial database system that provides time-series support using the ADT-method
approach, and it uses a time-series model that is similar to our sequence data model. While we did carry
out this performance study comparing SEQ and Illustra, our license agreement does not allow us to publish
performance numbers without their permission; Itlustra did not give us the necessary permission. Consequently,
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Optimization Category Implemented in SEQ | ADT-Method Systems
Pipelined Operators Yes Not Implemented
Range Propagation Yes Not Implemented

Common Sub-Expressions Yes Not Implemented
Moving Window Aggregates Yes Can Be Implemented

Table 2: Summary of Optimization Comparison

to get a quantitative feel for the magnitude of the performance differences between the algebraic and ADT-method
approaches, we have had to rely upon the “internal” performance results presented in Section 4.5.

5 Combining Sequences and Relations

We now return to the issue of how sequences and relations interact in SEQ. The important questions are: how
does a query access both relational and sequence data, how does optimization of this query occur, and how is the
query evaluated? In order to discuss these questions, we slightly extend the example that we used to explain the
SEQUIN language in Section 4.2. Consider a relation Stocks of securities that are traded on a stock exchange,
with the schema (name:string, stock.history:sequence) . The stock_history is a sequence of hourly information on
the high and low prices, and the volume of the stock traded in each hour.

5.1 Nested Language Expressions

In this example, since the sequence data is nested within the relational data, it is appropriate for the user to think
of the relational E-ADT as the top-level type. A query will therefore be posed in the relational query language
(SQL)® with nested query expressions in the sequence query language (SEQUIN). Appendix A contains a
real-life example of the opposite case: a query over relational data embedded within a sequence.

Let us consider the SQL query to find for each stock, the number of hours when the 24-hour moving average
of the high price was greater than 100.

SELECT S.name,
SEQUIN(‘ ‘PROJECT count (*)
FROM  (PROJECT avg(H.high) as avghigh
FROM $1 H
QVER $P-23 TO $P ) A
WHERE A.avghigh > 100
Z00M ALL’?,
S.stock_history)
FROM Stocks S;

The SQL query has the usual SELECT clause target list of expressions. One of these expressionsis a S€QUI\ query,
whose syntax is functional. There is one such implicit function for every E-ADT language registered in the svsren.
The first argument to the SEQUIN function is a query string in that language. Any parameters to be passed
from SQL (the calling language) to the embedded query in SEQUIN are provided as additional argunients.
These parameters are referenced inside the embedded query using the positional notation $1, $§2, etc. In rhis
particular query, the passed parameter (S.stock. history) is a sequence. Note that the SQL language parser does
not know about the grammar of the embedded language, and merely treats the SEQUZN subquery as a function

6We have implemented a version of SQL as the query language of the relational E-ADTs. Qur SQL version allows functions
registered with the DBMS to appear in the SELECT and WHERE clause.
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call whose first argument is some string. For the SQL parser, this query is treated in the same manner as the
following query would be:

SELECT S.name, Foo(‘‘hello world’’, S.stock_history)
FROM Stocks S;

However, this nested query language paradigm requires enhancements to the implementation of three relational
system components: type checking, optimization and evaluation.

As part of the type-check of the SQL query, the type of the SEQUZN function is also checked. This causes the
embedded SEQUIN query to be parsed by the parser of the sequence E-ADT . It is no longer sufficient to identify
the type of every parameter passed. In this example, the parameter is of a sequence type, but this is not sufficient
to type-check the embedded query. The schema information for the sequence must also be specified along with
the type. This implies that throughout the system code that handles values and expressions, meta-information
like the schema must be maintained as part of the type information. The return type of the SEQUIN query
expression is a sequence as usual. Expressions of a particular type may be cast to another type using cast functions
that are registered with the system. The cast mechanism is also used to convert sequences into relations. The
cast from relations to sequences additionally requires the specification of the order attribute.

When optimizing a nested query, each E-ADT is responsible for optimizing its own query blocks. Since the
nested languages are introduced in the guise of functions, each optimizer must be sure to ‘plan’ any function
invoked. Planning a function like SEQUIN causes the optimization of the embedded query to be performed.
In this example, the SQL optimizer is called on the outer query block, and the SEQUIAN optimizer operates on
the nested query block. There is currently no optimization performed across query blocks belonging to different
E-ADTs .

The evaluation of the query can involve many nested evaluations of the embedded query plan. This is similar
to the usual evaluation of functions in a language like SQL, and to the nested evaluation of correlated sub-
queries in SQL. There are many optimizations like function caching [Hel95] and magic decorrelation [SPL94] that
have been proposed in those contexts and similar optimizations could be performed in SEQ too. The current
implementation, however, uses a simple value-at-a-time nested evaluation.

Another issue that arises in the nested design is the granularity at which statistics are maintained. Since a
declarative query is expressed over the nested data, its optimization could depend on the meta-data available. In
the example, the question is: should individual statistics be maintained for each nested stock_history sequence?
Our solution was to maintain aggregate statistics for all nested instances of each data field, instead of individual
statistics. In this example, all the stock history sequences for the different stocks would have common statistics
maintained. This design represents a compromise between the need to maintain statistics and the overhead to
do so. Other implementations may choose to maintain either more or less statistics. We do not have sufficient,
experience yet with SEQ to decide exactly what the ideal compromise is.

5.2 Discussion of the Nested Design Paradigm

To the best of our knowledge, our nested design paradigm based on E-ADTs is a novel contribution. It allows
query languages to interact in an extensible manner, while insulating the changes in one language from the other
languages in the system. We should emphasize that the nested paradigm is not merely a proposal; all the fearures
described in this paper have been implemented”. We now discuss some of the possible arguments against rhe
nested paradigm.

"The only exceptions are the cast functions between sequences and relations which are being implemented at the time of this
submission.

21



With respect to the language design, some researchers consider it undesirable to have multiple languages used
within the same query. We would however invite comparison with the existing solution, which uses the composition
of ADT methods instead. As we have seen, this is a bad idea from the point of view of query optimization and
execution efficiency. Further, in terms of ease of use, function composition is merely an expression language that
is not well-suited to query expressions over collection types.

It has also been suggested that we might have devised some extension of SQL that provided sequence function-
ality while staying within one language. While we did indeed attempt this initially, we were quickly dissuaded
because many changes were needed. Not only is this approach unlikely to be incorporated in existing systems,
it is also a solution that cannot be extended beyond sequences to other complex data types that may need such
functionality. We believe therefore that it is most practical to leave SQL relatively unchanged, and introduce the
sequence functionality in the manner that we have proposed.

One other concern is that some opportunities for optimization across query blocks may not be exploited
because they cross E-ADT boundaries. Although optimizations like function caching and magic decorrelation
may help {as discussed in Section 5), there is no denying that there is some truth in this concern. Some systems
like Starburst [PHH92] perform a number of heuristic query transformations that modify the blocks of a query
expressed entirely in SQL. However, it is a fact that even for relational queries in SQL, there is little if any
cost-based optimization performed across query blocks. Consequently, we felt that this was an acceptable price
to pay for the other benefits of the nested design paradigm. If our future experience with SEQ indicates that
important opportunities for cross-E-ADT optimization exist, we might need to augment the interaction between
the different E-ADT optimizers (possibly using techniques similar to those of [PHH92]).

6 Comparison with Existing Systems
An important goal of our work is to find ways to incorporate efficient sequence data support into existing database

systems. In this section:

e We show a real example of how sequence queries are phrased in an existing ADT-method based system
(lustra [I1194a]). While queries in SEQUIN are declarative, queries based on the functional composition
of methods have a more procedural flavor and are often harder to express.

¢ We suggest practical improvements that existing database systems can make to improve their support for
sequence data.

6.1 Sample Query Using ADT-Methods

The basic model of a time-series in Illustra is similar to the model in the SEQ implementation. Consider a simple
sequence query which finds the moving average of a sequence S after first excluding some of the records. Expressed
in SEQUIN , the query looks like:

PROJECT avg(S.field3) // Find the average.

FROM S // Input sequence S.

WHERE S.field2 > S.fieldl // Condition on records.
OVER $P-23 TO $P; // Moving window for average.

Here is how it would need to be written using ADT methods {II195]:

-~ the Filter function gives the filtered time-series, with only those records
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~-- that satisfy the qualification, other positions will be null
CREATE function Filter(TimeSeriesOf (ts))
RETURN TimeSeries(f (one_float)
as
RETURN PutSet(TimeSeriesCreate(‘hours’),
(SELECT t, field3
FROM Transpose(ts)
WHERE field2 > fieldl));

-~ compute the 24-hour moving average over the modified time-series
AggregateBy (’ TimeSeriesRunningAvg($1l, 24)7,

‘hours’,

Filter(S))

The time-series is converted to a relation (using the Transpose function) to perform the desired selections, and
the result is converted back to a time-series. Notice that an entire copy of the time-series is made in order to
perform the selection. This switch to SQL is needed because the selection condition cannot be expressed directly
using the time-series functions. Finally, the moving average of the result is performed. The user needs to write
part of the query using SQL and part using time-series functions.

This example query is difficult to comprehend, and it reflects the point that a procedural query language based
on function composition can be more awkward to use than a declarative language like SEQUIN'. In just the
same way, it is usually easier to express a complex query in SQL than in relational algebra.

6.2 Adapting Existing Database Systems

We have noted repeatedly in this paper that current ADT-based database systems do not perform inter-function
optimizations (and thereby miss out on a number of optimizations that SEQ can perform). Further, there
is usually only one implementation for each function, corresponding to only one evaluation strategy for each
operation. SEQ on the other hand can consider various alternatives implementations for algebraic operators.

Let us consider how a traditional system with ADT-methods could overcome these problems. A recent re-
search proposal suggests that rewrite rules could be specified to consider semantics associated with “foriegn
functions” [CS93]. The paper proposes that queries involving relations stored outside the DBMS can be op-
timized using declarative rules that specify how the query can be rewritten into equivalent forms. A similar
approach can perhaps be used to rewrite functional expressions into equivalent expressions. It is not clear that
such an approach would be feasible to implement, or that it would be efficient to optimize and execute. In the
OQL language design [Cat94], methods are allowed to have multiple implementations, and the system has the
right to choose the best one. If these two research proposals are combined and implemented together, a functional
expression could be recognized by the system as a composition of algebraic operators that can subsequently be
transformed and optimized. Indeed, our performance results indicate that such optimizations can significantly
increase execution efficiency. We note that this approach effectively makes a functional expression a declarative
language expression (because the system is free to execute it in any way that produces the desired result). This
is not very different from the SEQ approach, and primarily differs in that the declarative language syntax takes a
functional form, instead of looking like S€ QUZN . This approach requires more research before it can be widely
implemented, and parts of it (especially, the rewrite rules for function commutativity and associativity) may
require substantial development effort.

An alternative is to try to incorporate some of the SEQ techniques into existing systems. The SEQ design
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for sequence data support has three components: the SEQUIN query language, the E-ADT paradigm, and the
loosely-coupled architecture of E-ADTs in the SEQ implementation. It is, of course, unrealistic to require existing
database systems to completely redesign their code in order to support sequences in exactly the same fashion.
Therefore, we now consider ways in which such systems could adopt some aspects of the SEQ approach.

If issues like usability and performance are important, our conclusion is that relying upon methods of a
sequence ADT for queries is not sufficiently expressive or efficient; a sequence language must be supported, and
carefully optimized. At the very least, our performance results strongly suggest that a system that relies upon
ADT-methods for querying sequences must make an effort to perform inter-function optimizations.

However, it is important to recognize that a sequence (sub)language can be embedded in SQL without placing
relations and sequences on par as collection data types (as is done in SEQ). For example, the interaction between
SQL and the sequence query language can take place using a special function call that interprets a sequence query
string passed as its argument (just as the SEQ implementation does using the implicit SE QUIN function). The
optimization of sequence query strings, of course, can be carried out using the techniques presented in [SLR94]
and in this paper (it may well be that further improvements or variations are possible, but at the least, we
believe that our results provide a sound basis for further work). Implementing this proposal in a system with
good support for ADTs is a matter of a few man-months of work, and our results indicate that the resulting
performance difference may be measured in orders of magnitude. Since many current DBMS products provide
some notion of abstract data types (with support for complex composite structures as in Illustra, or simply binary
large objects interpreted by user-level code, as in several other systems), we think this is a viable approach for
current systems to take.

7 Related Research and Future Work

In this section, we discuss related research, and some topics of ongoing activity and planned future work on SEQ.

7.1 Related Research

In Section 2.1, we surveyed the sequence processing capabilities of existing database systems. We now review some
research related to this area. Research work directed at modelling time-series data [SS87, CS92] provided initial
direction to our efforts. The model of a time-series in [SS87] is similar to ours, and an SQL-like language was also
proposed; implementation issues were discussed in the context of how the model could be mapped to a relational
data model [SS88]. The dual nature of sequences (Positional versus Record-Oriented) is also recognized by the
temporal query language of [WJS93). The extensive work on temporal database modelling, query languages, and
query processing [TCG+93] is mostly complementary to our work, because it involves changes to relations and
to SQL [TSQLY4], not to the sequence E-ADT . However, it would be interesting to study how time-ordered
sequences can be efficiently converted into relations with time-stamps, and vice-versa. We intend to eventually
support the temporal relational functionality described in the temporal database benchmark [Jen-+93].

While most object-oriented database proposals include constructors for complex types like lists and arrays [VD91,
BDK92], they can either be treated as collections, or manipulated using a primitive set of methods; no facilities
for sequence queries are provided. The work described in [Ric92] is an exception, and proposes an algebra based
on temporal logic to ask complex queries over lists. There have also been languages proposed to match regular
patterns over sequence data [GW89b, GJS92], and the proposal of [GJS92] has been implemented as an event
recognition system. This work is complementary to ours, since SEQ is oriented to more traditional database
queries, and currently does not have meaningful pattern-matching capabilties, though we plan to address this
shortcoming soon (see Section 7.2).
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The AQUA algebra [SLVZ95] can model a variety of “pattern-match” queries over different collection types
including lists. The idea is to map any query over complex and possibly nested data into a uniform algebra.
The algebraic expression can then be optimized using transformation-based techniques. This is an interesting
alternative to the loosely-coupled design used in SEQ, and we would like to explore whether the AQUA approach
can yield better optimization of sequence queries.

Sequences are also of interest to the data mining and on-line analytical processing (OLAP) communities.
There has been some work on mining sequential patterns in databases [AS95], and finding similarity between
sequences [FRM94]. In OLAP queries [CCS93], time is often an important dimension of the data, and moving
window queries are common. These areas represent possible application domains to which SEQ could perhaps be
adapted in the future.

There is much research work related to the E-ADT paradigm. The issues regarding support for ADTs in
database systems were explored in [Sto86]. There has been extensive work on nested data models (especially
nested relational models [Hul87]), and there is even a commercial database system, UniData [Uni93], based on
such a model. Object-oriented systems like 02 [BDK92] also support a nested model with composite objects. The
recently proposed OQL query language [Cat94] for OO databases allows collection types to be nested, and permits
nested queries over them. The entire query is expressed in OQL, and there are few special query constructs for
lists. However, the idea of enhancing ADTs with query language and query processing capabilities seems to
be unique to SEQ. The loosely-coupled architecture with multiple top-level collection types with different query
languages also appears to be novel.

7.2 Future Work

The SEQ implementation is being constantly expanded with new functionality. In the current implementation,
every record in the sequence maps to a single position. We plan to allow each record to map to an interval of
positions instead. This can be viewed as a compressed storage representation, and the query evaluation need not
be modified. On the other hand, queries can be evaluated more efficiently if this interval information is used. We
plan to explore this issue of sequence storage techniques, along with lightweight indexing techniques to efficiently
access a specific position in a sequence.

There are many sources of sequence data that pose special challenges to the system implementation. The most
exciting of these are real-time sequences (where the implementation of query evaluation may have to be modified
to use one thread to read each real-time sequence), sequences stored on tape (where stream access becomes
absolutely critical for performance) and multi-dimensional sequences (where the zooming features may have to
be enhanced to allow queries that drill down and up the dimensions).

With respect to the query language and algebra operators, we expect to add further functionality as our
experience with applications grows. We have identified the need for and are currently implementing a generic
operator that performs linear recursion on the positions of a sequence (note that currently implemented operators
for Previous and Next are specific examples of such a generic operator). This is useful for computing decay
functions over a sequence, and can also be used for recursive pattern match queries (expressing regular patterns).

At the level of generic nested E-ADT queries, we believe that there are opportunities for set-oriented opti-
mization using techniques recently proposed for relation query optimization [SPL94, Hel95]. This work also has
relevance independent of sequence data, because it can be applied to query processing in all languages that sup-
port nesting, and to query processing in heterogenous databases. The importance of cross-E-ADT optimizations
also needs to be determined.
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8 Conclusions

We have presented the design and implementation details of the support for sequences in SEQ. The primary
contribution of this research is to underscore the importance of algebraic optimization for sequence queries along
with a declarative language in which to express them. We demonstrate the effects of algebraic optimization
by means of performance comparisons on the system implementation. Further, we compare the merits of our
approach with the alternative approach based on ADT-methods, that some current systems use.

The SEQ system supports sequence data as well as relational data. To take advantage of our algebraic
approach to sequence database support, the system uses a novel design paradigm of enhanced abstract data types
(E-ADTs ). The system implementation based on this paradigm allows sequence and relational queries to interact
in a clean and extensible fashion. Based on our implementation, we suggest a pragmatic way for existing database
systems to incorporate efficient support for sequence data.
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A Clinic Visit Data Example

The Family Medicine Department at the UW-Madison collects patient visit information from 18 clinics around Wisconsin.
The operating information from each clinic is available as a flat-file with records of the form < day, patient_id, diagnosis.id,
treatment.id, auxiliary.info>. There are separate tables that map the patient_id/diagnosis.id/treatment.id into the actual
information on the patient/diagnosis/treatment. A sample query compares the seasonality of cases of gastro-enteritis
during the last 5 years, with the seasonal patterns of appendicitis. SEQ would model the data as follows:

CREATE SEQUENCE Visit_Info AS
{ date day,
visits table {patient_id integer,
diagnosis_id integer,
treatment_id integer}
}
In other words, the VisitInfo sequence contains a nested relation for every day, which in turn holds the visit records for
that day. There are various possible definitions of ’seasonality’ query. One definition of the query is as follows: find the
7-day moving average of the number of visits per day of gastro-enteritis and appendicitis. Now compute the sequence of
differences between the two averages every day and find the average of these values every month over the last 5 years.
Following the nesting of the data, SEQUIN is the top-level E-ADT query language to be used, and there can be nested
SQL expressions. Here is the SEQUIN query to perform this query:

// 7-day moving average of the gastro-enteritis records per day
CREATE VIEW GE_Visit_Avg as
(PROJECT avg($SQL(‘ ‘SELECT count (*)
FROM $1 R, DIAGNOSIS D
WHERE R.diagnosis_id = D.id
AND D.name = ’gastro-enteritis’’’,
V.visit)) as avg_val
FROM Visit_Info V
OVER $P-6 TO $P);
// T-day moving average of the appendicitis records per day
CREATE VIEW AP _Visit_Avg as
(PROJECT avg($SQL(‘ ‘SELECT count (%)
FROM $1 R, DIAGNOSIS D
WHERE R.diagnosis_id = D.id
AND D.name = ’appendicitis’’’,
V.visit)) as avg_val
FROM Visit_Info V
OVER $P-6 TO $P);
// define the desired monthly aggregate sequence query
CREATE VIEW Query_Seq as
(PROJECT avg(AP.avg_sal - GE.avg_sal)
FROM AP Visit_Avg AP, GE_Visit_Avg GE
Z0OM month);
// select the desired range from the sequence
PROJECT =
FROM Query_Seq
WHERE $P > €€01/01/1990°’ and $P < ¢¢12/31/1995’’;

The query formulation has been broken into a number of views so as to be easily comprehended. Note the use of a nested
relational query, within a sequence query. While this query may appear extremely complex, the sequentiality in the query
allows it to be executed in a single scan of the sequence.
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