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Abstract

The question of which views may be inferred from a set of basis images is addressed. Under certain
conditions, a discrete set of images implicitly describes scene appearance for a continuous range of
viewpoints. In particular, it is demonstrated that two basis views of a static scene determine the set of
all views on the line between their optical centers. Additional basis views further extend the range of
predictable views to a two- or three-dimensional region of viewspace. These results are shown to apply
under perspective projection subject to a generic visibility constraint called monotonicity. In addition,
a simple scanline algorithm is presented for actually generating these views from a set of basis images.
The technique, called view morphing may be applied to both calibrated and uncalibrated images.
At a minimum, two basis views and their fundamental matriz are needed. Experimental results are
presented on real images. This work provides a theoretical foundation for image-based representations
of 3D scenes by demonstrating that perspective view synthesis is a theoretically well-posed problem.
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1 Introduction

Image-based representations of 3D scenes are currently being developed by many researchers in the
computer vision and computer graphics communities (see, for example, [12, 17, 26, 3, 11, 28]). These
representations encode scene appearance with a set of images that may be adaptively combined to
produce new views of a scene. Image-based techniques are especially attractive because they provide
photometric information which has proven very valuable for recognition tasks [27, 18]. In addition, these
representations are readily acquired from a set of basis views, avoiding the need for automatic or manual
techniques for acquiring 3D object models.

At the heart of this new area lies a fundamental question: to what extent may scene appearance be
modeled with a sparse set of images? Clearly, the images provide scene appearance at a discrete set of
viewpoints. It is not clear, however, that a more complete coverage of viewspace is theoretically possible.
A number of “view synthesis” techniques have been developed recently (12, 4, 2, 16, 29, 8, 15] to extend
the range of predictable views. However, those methods require solving ill-posed correspondence tasks,
suggesting that the view synthesis problem is inherently ill-posed.

As a foundation for work in this area, we feel it is necessary to answer the following two questions:
given two perspective views of a static scene, under what conditions may new views be predicted? Second,
which views are determined from a set of basis images? In this paper, we show that a specific range
of perspective views is theoretically determined from two or more basis views, under a generic visibility
assumption called monotonicity. This result applies when either the relative camera configurations are
known or when only the fundamental matrix is available. In addition, we present a simple technique for
generating this particular range of views using image interpolation. Importantly, the method relies only
on measurable image information, avoiding ill-posed correspondence problems entirely. Furthermore, all
processing occurs at the scanline level, effectively reducing the original 3D synthesis problem to a set of
simple 1D transformations that may be implemented efficiently on existing graphics workstations. The
work presented here extends to perspective projection previous results on the orthographic case [22]. In
addition, this paper discusses extensions to three or more basis views, an important generalization not
considered in [22].

We begin by introducing the monotonicity constraint and describing its implications for view synthesis
in Section 2. Section 3 considers how views may be synthesized, and describes a simple and efficient
method called view morphing for synthesizing new views by interpolating images, under the assumption
that the relative geometry of the two cameras is known. Section 4 investigates the case where the images
are uncalibrated, i.e., the camera geometry is unknown. Section 5 presents extensions when three or more
basis views are available. Section 6 presents some results on real images.

2 View Synthesis and Monotonicity

Can the appearance from new viewpoints of a static three-dimensional scene be predicted from a set
of basis views of the same scene? One way of addressing this question is to consider view synthesis
as a two-step process—reconstruct the scene from the basis views using stereo or structure-from-motion
methods and then reproject to form the new view. The problem with this paradigm is that view synthesis
becomes at least as difficult as 3D scene reconstruction. This conclusion is especially unfortunate in light
of the fact that 3D reconstruction from sparse images is generally ambiguous—a number of different
scenes may be consistent with a given set of images; it is an ill-posed problem [20]. This suggests that
view synthesis is also ill-posed.

In this section we present an alternate paradigm for view synthesis that avoids 3D reconstruction and
dense correspondence as intermediate steps, instead relying only on measurable quantities, computable



from a set of basis images. We first consider the conditions under which reconstruction is ill-posed and
then describe why these conditions do not impede view synthesis. Ambiguity arises within regions of
uniform intensity in the images. Uniform image regions provide shape and correspondence information
only at boundaries. Consequently, 3D reconstruction of these regions is not possible without additional
assumptions. Note however that boundary information is sufficient to predict the appearance of these
regions in new views, since the region’s interior is assumed to be uniform. This argument hinges on the
notion that uniform regions are “preserved” in different views, a constraint formalized by the condition
of monotonicity which we introduce next.

2.1 Notation

We write vectors and matrices in bold face and scalars in roman. Scene and image quantities are written
in capitals and lowercase respectively. When possible, we also write corresponding image and scene
quantities using the same letter. Images, Z, and 3D shapes or scenes, S, are expressed as point sets.
For example, an image point (z,y) = p € T is the projection of a scene point (X,Y,Z) =P € 6.
Following convention, we represent image and scene quantities using homogeneous coordinates: a scene
point with Euclidean coordinates (X,Y, Z) is expressed by the column vector P=[XYZ 1T and a
Fuclidean image point (z,y) by p = [y 1]T. We reserve the notation P and p for points expressed in
Euclidean coordinates, i.e., whose last coordinate is 1. Scalar multiples of these points will be written
with a tilde, as P and p. A camera is represented by a 3 x 4 homogeneous projection matrix of the form
II = [H| — HC]. The vector C gives the Euclidean position of the camera’s optical center and the 3 x 3
matrix H specifies the position and orientation of its image plane with respect to the world coordinate
system. The perspective projection equation is

p=TIP (1)

The term view will henceforth refer to the tuple (Z,TI) comprised of an image and its associated projection
matrix.

2.2 The Monotonicity Constraint

Consider two views, Vp and Vi, with respective optical centers Cp and Cy, and images Zp and Z;. Denote
C,C1 as the line segment connecting the two optical centers. Any point P in the scene determines an
epipolar plane containing P, Cyp, and C; that intersects the two images in conjugate epipolar lines. The
monotonicity constraint dictates that all visible scene points appear in the same order along conjugate
epipolar lines of Zp and Z;. This constraint is used commonly in stereo matching [1, 19] because the
fixed relative ordering of points along epipolar lines simplifies the correspondence problem. Despite its
usual definition with respect to epipolar lines and images, monotonicity constrains only the location of
the optical centers with respect to points in the scene—the image planes may be chosen arbitrarily. An
alternate definition that isolates this dependence more clearly is shown in Fig. 1. Any two scene points
P and Q in the same epipolar plane determine angles 6 and 6; with the optical centers Cg and Cy. The
monotonicity constraint dictates that for all such points 8y and #; must be nonzero and of equal sign. The
fact that no constraint is made on the image planes is of primary importance for view synthesis because
it means that monotonicity is preserved under homographies, i.e., under image reprojection. This fact
will be essential in the next section for developing an algorithm for view synthesis.

A useful consequence of monotonicity is that it extends to cover a continuous range of views between
V, and V;. We say that a third view V; is in-between Vy and Vp if its optical center C; is on CyCs.
Observe that monotonicity is violated only when there exist two scene points, P and Q, in the same
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Figure 1: The Monotonicity Constraint. Any two points P and Q in the same epipolar plane determine
angles 6y and 1 with the respective camera optical centers, Co and C;. For monotonicity to apply, these
angles must satisfy 661 > 0. If satisfied for Cg and C;, monotonicity applies as well for any other view
with optical center along CyCs.

epipolar plane such that the infinite line PQ through P and Q intersects CoC1. But PQ intersects CoC;
if and only if it intersects either CoC, or C,C;. Therefore monotonicity applies to in-between views as
well, i.e., signs of angles are preserved and visible scene points appear in the same order along conjugate
epipolar lines of all views along CyC;. We therefore refer to the range of views with centers on CoC1
as a monotonic range of viewspace. Notice that this range gives a lower bound on the range of views
for which monotonicity is satisfied in the sense that the latter set contains the former. For instance, in
Fig. 1 monotonicity is satisfied for all views on the open ray from the point CoC1 N PQ through both
camera centers. However, without a priori knowledge of the geometry of the scene, we may infer only
that monotonicity is satisfied for the range CyCh.

The property that monotonicity applies to in-between views is quite powerful and is sufficient to
completely predict the appearance of the visible scene from all viewpoints along CoC;. Consider the
projections of a set of uniform Lambertian surfaces (each surface has uniform radiance, but any two
surfaces may have different radiances) into views Vp and V;. Fig. 2 shows cross sections Sp, Sz, and S3
of three such surfaces projecting into conjugate epipolar lines Iy and ;. Each connected cross section
projects to a uniform interval (ie., an interval of uniform intensity) of lo and [;. The monotonicity
constraint induces a correspondence between the endpoints of the intervals in [y and [;, determined by
their relative ordering. The points on S1, S2, and S3 projecting to the interval endpoints are determined
from this correspondence by triangulation. We will refer to these scene points as visible endpoints of S1,
SQ, and 453.

Now consider an in-between view, Vs, with image Z; and corresponding epipolar line [;. As a con-
sequence of monotonicity, S1, S2, and 83 project to three uniform intervals along [s, delimited by the
projections of their visible endpoints. Notice that the intermediate image does not depend on the spe-
cific shapes of surfaces in the scene, only on the positions of their visible endpoints. Any number of
distinct scenes could have produced 7 and I, but each one would also produce the same
set of intermediate images. Hence, all views along C,C, are determined from Zg and Z;. This
result demonstrates that view synthesis under monotonicity is an inherently well-posed problem—and
is therefore much easier than 3D reconstruction and related motion analysis tasks requiring smoothness
conditions and regularization techniques [20].

The monotonicity constraint is closely related to aspect graphs and visual events [9, 10]. The constraint
dictates that no changes in visibility may occur within a monotonic range of viewspace. In other words,
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Figure 2: Correspondence Under Monotonicity. Cross-sectional view of three surfaces projecting into
conjugate epipolar lines of three images. Although the projected intervals in lp and [; do not provide
enough information to reconstruct S, Sz, and S, they are sufficient to predict the appearance of Is.

all views within a monotonic range are topologically equivalent; the same scene points are visible in
every view. This condition of photometric topological equivalence is somewhat stronger than the notion
of topological equivalence of image contour structure used to define an aspect. Consequently, a monotonic
range of viewspace always occurs within an aspect.

A final question concerns the measurability of monotonicity. Under the monotonicity assumption we
have established that view synthesis is feasible and relies only on measurable image correspondence
information. However we have not yet considered whether or not monotonicity itself is measurable—can
we determine if two images satisfy monotonicity by inspecting the images themselves or must we know
the answer a priori? Strictly speaking, monotonicity is not measurable, in the sense that two images may
be consistent with multiple scenes, some of which satisfy monotonicity and others that do not. However,
we may determine whether or not two images are consistent with a scene for which monotonicity applies,
by checking that each epipolar line in the first image is a monotonic warp of its conjugate in the second
image. That is, if lp and [; are conjugate epipolar lines, expressed as functions mapping position to
intensity, there exists a monotonic function o such that lp = l; o 0. If we denote by M the class of all
monotonic scenes consistent with two basis images, this consistency property says that we may determine
from the basis images whether or not M is empty. If M is nonempty, the result of view synthesis is a
set of images that are consistent with every scene in M.

For example, consider the scene S shown in Fig. 2. Strictly speaking, this scene does not satisfy
monotonicity for all interior points on &1, S, S3. However, observe that S’, the set of scene points
visible in the two basis views, does satisfy monotonicity and therefore S’ € M. Furthermore, the visible
region of S coincides with &' for all views along CyC;. By the previous discussion, the appearance of S’
and therefore S may be predicted for this range of views. In conclusion, even when monotonicity is not
known to be satisfied, we may still synthesize views, providing the second basis image is a monotonic
warp of the first.
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Figure 3: Morphing Parallel Views. Linear interpolation of corresponding pixels in parallel views with
w of the same scene.

image planes o and 7, creates image Zy.5, representing another parallel vie

3 View Morphing

The previous section established that certain views are determined from two basis views under an as-
sumption of monotonicity. In this section we present a simple approach for synthesizing these views

polation. The procedure takes as input two images, Zo and 7, their respective

and a third projection matrix I, representing the configuration of a
how the visible scene appears from

based on image inter
projection matrices, IIp and Ili,
third view along CoCi. The result is a new image T, representing

the third viewpoint.

3.1 Parallel Views
n which linear interpolation of images produces new views of a
f an object, move the object in a direction parallel to the

a second picture Z;, as shown in Fig. 3. Alternatively,
we could produce the same two images by moving the camera instead of the object. Chen and Williams
[4] previously considered this special case, arguing that linear image interpolation should produce new
perspective views when the camera moves parallel to the image plane. Indeed, suppose that the camera
‘s moved from the world origin to position (Cx,Cy,0) and the focal length changes from fo to fi. We

write the respective projection matrices, Ilo and I1,, as:

We begin by considering situations i
scene. Suppose we take a photograph Zp o
image plane of the camera, zoom out, and take

[ fo 0 0 0
My, = | 0 fo 00

(0 0 10

fi 00 —fiCx
Im = 0 fi 0 —fiCy

001 0



We refer to cameras or views with projection matrices in this form as parallel cameras or parallel views,
respectively. Let po € Zo and p1 € 7, be projections of a scene point P = XY Z l]T. Linear
interpolation of po and p1 yields

1 1
(1—s)po+sp1 = (1- S)-ZH()P + S—Z—HlP

1
= ZILP (2)
where
T, = (1 — s)Ip + sIy (3)

Image interpolation therefore produces a new view whose projection matrix, IL;, is a linear interpolation
of TIy and IT;, representing a camera with center C, and focal length f, given by:

C, = (sCx,sCy,0) (4)
fs = (1=8)fotsh (5)

Consequently, interpolating images from parallel cameras produces the illusion of simultaneously moving
the camera on the line CoC; between the two optical centers and zooming continuously.

In fact, the above derivation relies only on the equality of the third rows of TIy and IT;. Views satisfying
this more general criterion represent a broader class of parallel views for which linear image interpolation
generates new views of the scene. An interesting special case is the class of orthographic projections, i.e.,
projections ITy and II; whose last row is [0 0 0 1]. Linear interpolation of any two orthographic views of
a scene therefore produces a new orthographic view of the same scene [22].

3.2 Non-Parallel Views

Using stereo rectification techniques, the problem of computing in-between views from two arbitrary
perspective views can be reduced to the case treated in Section 3.1. To this end, let Zp and I; be two
perspective views with projection matrices Il = [Ho | — HoGCg and II) = H; | —H,Cy] Itis
convenient to choose the world coordinate system so that both Cp and C; lie on the world X-axis, ie.,
Co=1[00 07 and C; = [Cx 0 0]7. The two remaining axes should be chosen in a way that reduces the
distortion incurred by image reprojection. A simple choice that works well in practice is to choose the
Y axis in the direction of the cross product of the two image plane normals.

In between perspective views on the line CoC,; may be synthesized by first applying homographies
Hy Land Hl‘1 to convert Zp and 7 to a parallel configuration. This procedure is identical to rectification
techniques used in stereo vision [6]. Given a projection matrix IT; = [Hy | — H;Cs], with Cs fixed by
Eq. (4), the following sequence of operations, depicted in Fig. 4, produces an image Zs corresponding to
a view with projection matrix II;:

1. Prewarp: apply homographies Hy ! to Iy and Hl"l to T;, producing prewarped images 7o and T,

2. Morph: form 7, by linearly interpolating positions and colors of corresponding points in Ty and
T

3. Postwarp: apply H; to I, yielding image Z;

Prewarping brings the image planes into alignment without changing the optical centers of the two
cameras. Morphing the prewarped images moves the optical center to Cs. Postwarping transforms the
image plane of the new view to its desired position and orientation.
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Figure 4: View Morphing in Three Steps. (1) Original images Zy and Z; are prewarped (rectified) to
form parallel views o and I;. (2) Z; is produced by morphing (interpolating) the prewarped images.
(3) Zs is postwarped to form Zs.

Notice that the prewarped images 7o and T represent views with projection matrices I, = [I] —Cy]
and I, = [I]| — C,], where I is the 3 x 3 identity matrix. Due to the special form of these projection
matrices, 7, and 7, have the property that corresponding points in the two images appear in the same
scanline. Therefore, the interpolation 7, may be computed one scanline at a time using only 1D warping
and resampling operations. We say that two parallel views satisfying this scanline property are in
canonical configuration. Whereas parallelism requires that the third rows of ITy and II; be equal, the
scanline property requires equality of the second rows as well. Given projection matrices Iy, = [1]0]
and II; = [H; | — H,Cy] in canonical configuration, it follows that H; and C; have the form:

b ¢
H, = 10 (6)
0 1

C, = [Cx00] (7)
for arbitrary constants a, b, ¢, and Cx.

The prewarping and postwarping operations, combined with the intermediate morph, require multiple
image resampling operations that may contribute to a noticeable blurring in the in-between images.
Resampling effects can be reduced by supersampling the input images [30] or by composing the prewarp,
morph, and postwarp transformations into one aggregate warp for each image. A disadvantage of the
latter approach is that the scanline property no longer applies.

Rectification is possible providing that the epipoles are outside of the respective image borders. If this
condition is not satisfied, it is still possible to apply the procedure if the prewarped images are never
explicitly constructed, i.e., if aggregate warps are used. The prewarp step implicitly requires selection
of a particular epipolar plane on which to reproject the basis images. Although the particular plane
can be chosen arbitrarily, certain planes may be more suitable due to image sampling considerations.



Methods of choosing the rectification parameters that minimize image distortion with uniform sampling
are discussed in [21].

By varying s from 0 to 1, the three-step method provides a way of generating any new view on
CC1—the range of views theoretically determined by the monotonicity assumption. Notice, however,
that the interpolation argument does not seem to depend on the condition that s € [0,1], suggesting that
additional views could be synthesized by choosing other values of s. Certainly, choosing any value of
s € R will result in a new image. This image will represent a valid view of the scene only if monotonicity
is preserved for C,. In short, for values of s € [0,1] the resulting image is guaranteed to be valid. For
values of s outside this range, the resulting image may or may not be valid, depending upon the structure
of the scene.

4 Uncalibrated View Morphing

So far, we have assumed that the Euclidean camera configurations for the two basis views and the
synthesized view are known. In this section we consider the case where only the basis images and the
fundamental matriz are provided. The fundamental matrix of two views is the 3 x 3, rank-two matrix F
satisfying the following relation [13, 14]:

piFpo =0

for any pair of points pp and pi in the two images corresponding to the same scene point. F is defined up
to a scale factor and can be computed from the images themselves when at least 8 point correspondences
are known (see [14, 7] for methods of computing F from point correspondences).

4.1 Rectifying Uncalibrated Images

In order to use the three-step algorithm presented in Section 3, we must find a way to rectify the images
without knowing the projection matrices. Towards this end, we first consider what form F takes when
the views are in canonical configuration and then rectify the views in such a way so that F achieves this
form.

Let Zo and Z; be two views with projection matrices ITp = [I | 0} and II; = [H; | — H;C,]. Without
loss of generality, we have assumed the first camera to be centered at the world origin and have set the
world X and Y axes to coincide with the image coordinate axes of Zp. The epipoles are the projections
of C; into Zp and Cy into Zy:

e = C (8)
e; = —-ch1 (9)

Given a vector p = [z ¥ z]T, we introduce the notation

0 -2 vy
plx = z 0 -z
-y z 0

Following [14], the fundamental matrix may be expressed as

F = [e1]xHi



If the two views are in canonical configuration, we may assume without loss of generality that Hy
and C; are given by Eqgs. (6) and (7) respectively, and therefore e; = [e; 0 O]T for some constant ez.
Consequently, the fundamental matrix is given, up to scalar multiplication, by

) 00 0
F=|00 -1 (10)
01 0

Conversely, suppose F is given by Eq. (10) and the unknown projection matrices are Iy = [I | 0] and
I, = [H; | —H;Cy]. The epipoles e and e; span the null spaces of ¥ and FT, respectively [21]. In
particular,

e = [eg 007

for some unknown constant e;. From Eq. (8) it follows that Ci=lez 0 O]T. For rectification, it therefore
sufficies to transform Z; to H;'Z,. This image transformation induces a corresponding change in the
fundamental matrix, to HF{F By the preceding argument, however, the rectified fundamental matrix is
fixed, up to scalar multiple, by Eq. (10). Therefore, we have the following constraint on H;

HTF = F

It follows that H; has the following structure:

H1=

o O R
O O
OO0

Because H; and C; agree with Egs. (6) and (7), it follows that the two views are in canonical configu-
ration.

In summary, Eq. (10) provides a necessary and sufficient condition for testing whether two views are
in canonical configuration from their fundamenta] matrix. In order to make use of this test, we seek a
pair of homographies Ho and H; such that the rectified images 7o = Hy 17, and I = Hl"lIl have the
fundamental matrix given by Eq. (10). In terms of F the condition on Hy and H is

H,TFHy =F (11)

4.2 Choosing the Homographies

There is in fact a range of homographies Hy and H; satisfying Eq. (11), corresponding to different
choices of the rectification plane. As in the calibrated case, the particular choice of homographies is
not important, except in regard to sampling considerations (see Section 3.2). What follows is a simple
technique that rectifies both images with two rotations. A nice property of this method is that the
rectification process reduces to that in [22] when the images are orthographic. First the rectification
plane is chosen indirectly by selecting its intersection with Zo. In homogeneous coordinates, points in
the image at infinity are represented by vectors of the form [z y O]T. Any such point do = [dz dy O]T in
T, represents the projection of a point P such that the vector D = P — Cy is parallel to Zo. Let E be
the vector C; — Cp. Providing D and E are not parallel, they span a unique epipolar rectification plane.
The first step towards rectification is to bring 7T, into alignment with this plane by rotating the image
about D so that it is parallel with E. This step may be performed indirectly by rotating T by an angle
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8, about dg so that the epipole, ey = lez ey ez]T, goes to infinity. In other words, we seek a rotation
matrix R‘gg so that €y = Rgg eg has the form &y = [é; & O]T. The rotation matrix is given by

d2 + (1 — d%)cos Oy dgdy(1 — cos o) dysin o
RYY = | dody(1 —cos ) dj+ (1 —d)cos p —dzsin 6o (12)
—dysin Oy dgsin 8 cos 9y

Using Eq. (12), the desired angle of rotation p is determined to be
)

At this point, epipolar lines in the image Iy = Rggl’a are parallel. The next step is to rotate the image
so that epipolar lines are horizontal. The angle of rotation and rotation matrix are:

™

1, dyeq — dze

€z

P = —~tan"1§—y—
€x
cos ¢y —sin ¢p 0
Ry, = sin ¢y cos ¢o 0
0 0 1

The analogous operations are performed on Iy; denote d; as the intersection with Z; of the epipolar
plane spanned by D and E. d; may be computed as follows: if [z y z]T = Fdy thend; = [~y z 0%,
0, and ¢1, the rotations about d; and [0 0 l]T, are found as before. At this point, if we denote Hq =

(RggR(;,o)_l and H;, = (R‘gl1 R,,;l)—l, the fundamental matrix is given by
o 0 00
F=HIFH;=|0 0 a
0 b c

Finally, to get F into the form of Eq. (10), the second image is translated and vertically scaled by the
matrix

1 0 0
T1 = 0 —a =-c
0o 0 b
In summary, two images Zp and I are rectified by the following sequence of transformations:
Iy = RgpRyP I, = Ho'I
7 = T1Rs RY' T = Hi™'T

The entire rectification process is determined by selecting do. The only constraint on dp is that D and
E should not be parallel. Therefore, a suitable choice is to select dg so that it is orthogonal to ey, i.e.,
do = [—ey e 0]

In fact, the rotations in depth jo are sufficient to make the image planes parallel. Although this is
technically sufficient for prewarping, it is useful to add the additional warps to align the scanlines. This
simplifies the morph step to a scanline interpolation and also avoids bottleneck problems that arise as a
result of image plane rotations [30]

Note that when Zy and Z; are orthographic or weak perspective projections, the epipoles are already at
infinity [25]. Therefore, 6y and 6; are both zero and the rectification procedure reduces to a 2D rotation
of both images and a shear of the second. This is precisely the rectification process needed to interpolate
orthographic images in [22]. As a result, the three-step algorithm reduces to the version described in [22]
in the orthographic case. Other methods of rectification for uncalibrated images are explored in [21, 6].
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Figure 5: The View Triangle. The optical centers Cp, C1, and C3 of three basis views determine a
triangle. If monotonicity is satisfied pairwise, any view along an edge may be synthesized. If strong
monotonicity applies, views in the interior may be synthesized as well. For example, a view I with
optical center C is synthesized by interpolating the second and third basis views. An interior view at K
is produced by a second interpolation of I and the first basis view.

4.3 Interpolating Uncalibrated Images

We have established that two images can be rectified, and therefore interpolated, without knowing their
projection matrices. As in Section 3, interpolation of the prewarped images results in new views along
CoC;. In contrast to the calibrated case however, the postwarp step is underspecified; there is no obvious
choice for the homography that transforms I, to Z;. One method is to simply interpolate the components
of Hy 1 and I—Il‘1 (¢, 0;, d; and T;), resulting in a continuous transition from Zy to Z;. We have found
that a more reliable approach is to choose the postwarps so that the corners of the postwarped images
linearly interpolate the corresponding corners of the original images. Whereas the first method can
produce images of arbitrary size and shape, the in-between images generated by the second approach are
always rectangular and interpolate the sizes of the original images. For the latter method, the postwarps
are computed by determining the positions of corners points in Z, and Z,. The corners of Z, are found
by linearly interpolating the upper-left, upper-right, lower-left, and lower-right corners of Zg and Z;. The
corresponding corners in 7, are found by prewarping corresponding corners of 7y and Z; and linearly
interpolating the resulting points. Given the positions of these four points in 7, and Z,, the required
homography is found by solving a system of linear equations [30].

An alternate solution is to have the user provide the homography directly or indirectly by specification
of a small number of image points [12, 24]. All three methods for choosing the postwarp transforms
generally result in the synthesis of projective views. A projective view is a perspective view warped by a
2D affine transformation.

In conclusion, view synthesis is feasible for both calibrated and uncalibrated images using the same
mechanism of rectification followed by image interpolation. When applied to calibrated images, the
three-step algorithm produces new calibrated perspective views. If the basis images are uncalibrated, the
algorithm produces projective views. In either case, the optical centers of the synthesized views are on
the line segment between the optical centers of the basis views.

5 Three Views and Beyond

The paper up to this point has focused on image synthesis from exactly two basis views. The extension
to more views is straightforward. Suppose for instance that we have three basis views that satisfy
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monotonicity pairwise ((Zo,Z1), (Zo,Z2), and (Z,,7,) each satisfy monotonicity). Three basis views
permit synthesis of a triangular region of viewspace, delimited by the three optical centers. As shown in
Fig. 5, each pair of basis images determines the views along one side of the triangle, spanned by CoCy,
C]_CQ, and CQCQ.

What about interior views, i.e., views with optical centers in the interior of the triangle? Indeed, any
interior view can be synthesized by a second interpolation, between a corner and a side view of the trian-
gle. However, the assumption that monotonicity applies pairwise between corner views is not sufficient
to infer monotonicity between interior views in the closed triangle ACyCCy; monotonicity is not tran-
sitive. In order to predict interior views, a slightly stronger constraint is needed. Strong monotonicity
dictates that for every pair of scene points P and Q, the line PQ does not intersect ACoC;Cy. Strong
monotonicity is a direct generalization of monotonicity; in particular, strong monotonicity of ACC1C2
implies that monotonicity is satisfied between every pair of views centered in this triangle, and vice-versa.
Consequently, strong monotonicity permits synthesis of any view in ACC;Cs.

Now suppose we have n basis views with optical centers Cp,...,Cn-1 and that strong monotonicity
applies between each triplet of basis views!. By the preceding argument, any triplet of basis views deter-
mines the triangle of views between them. In particular, any view on the convex hull # of Cq,...,Cn-1
is determined, as H is comprised of a subset of these triangles. Furthermore, the interior views are also
determined: let C be a point in the interior of H and choose a corner C; on H. The line through C
and C; intersects H in a point K. Since K lies on the convex hull, it represents the optical center of a
set of views produced by two or fewer interpolations. Because C lies on C;K, all views centered at C
are determined as well by one additional interpolation, providing monotonicity is satisfied between C;
and K. To establish this last condition, observe that for monotonicity to be violated there must exist
two scene points P and Q such that PQ intersects C,K, implying that PQ also intersects H. Thus,
PQ intersects at least one triangle AC;C;Cy, on H, violating the assumption of strong monotonicity.
In conclusion, n basis views determine the 3D range of viewspace contained in the convex hull of their
optical centers.

This constructive argument suggests that arbitrarily large regions of viewspace may be constructed by
adding more basis views. However, the prediction of any range of view-space depends on the assumption
that all possible pairs of views within that space satisfy monotonicity. As noted in Section 2, a monotonic
range may span no more than a single aspect of an aspect graph [23], thus limiting the range of views
that may be predicted. Nevertheless, it is clear that a discrete set of views implicitly describes scene
appearance from a continuous range of viewpoints. Based on this observation, a set of basis views is seen
to constitute a scene representation, describing scene appearance as a function of viewpoint. Given an
arbitrary set of basis views, the range of views that may be represented is found by partitioning the basis
views into sets that obey monotonicity pairwise or strong monotonicity three at a time. Each monotonic
set determines the range of views contained in its convex hull.

6 Experiments

We applied the view morphing algorithm to different pairs of basis images, two of which are shown in
Fig. 6. Each pair of basis images was uncalibrated. In each case the fundamental matrix was computed
from several manually-specified point correspondences. The synthesized images shown in the figure
represent views halfway between the basis views.

The first pair of images represent two views of a person’s face. For the most part monotonicity is sat-
isfied, except in the region of the right ear, nose, and far sides of the face. A sparse set of user-specified

1In fact, strong monotonicity for each triangle on the convex hull of Co, ..., C., .1 is sufficient.
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Figure 6: Morphed Views. Basis views of a face (Top) and mannequin (Bottom) are shown with halfway
interpolations. The basis views appear at left and right and morphed (synthesized) images appear in the
center. The morphed images use 2D image transforms to synthesize a 3D scene rotation.
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feature correspondences was used to determine the correspondence map, using an image morphing tech-
nique [24]. The synthesized image represents a view from a camera viewpoint halfway between the two
basis views. The image gives the convincing impression that the subject has turned his head, despite the
fact that only 2D image operations have been performed. Some visible artifacts occur in regions where
monotonicity has been violated, near the right ear for instance.

The second pair of images show a wooden mannequin from two viewpoints. The mannequin is an
example of an object for which it is difficult to reconstruct but relatively easy to synthesize views due to
lack of texture. In this example, image correspondences were automatically determined using a dynamic
programming technique [19] that exploits monotonicity. Even with the monotonicity constraint, obtaining
reliable correspondences with large baselines is a formidable challenge. However, incorporating limited
user interaction [24] or domain knowledge [5] can significantly improve the results and is a promising line
of future research.

As in the previous example, some artifacts occur where monotonicity is violated, such as near the
left foot and the left thigh. Also, the synthesized view is noticeably more blurry than the basis views.
Blurring is in fact evident in both synthesized views in Fig. 6, and is a direct result of image resampling. In
our implementation of the view morphing algorithm, the synthesized image—a product of two projective
warps and an image interpolation—is resampled three times, causing a noticeable blurring effect. The
problem may be ameliorated by super-sampling the intermediate images or by concatenating the multiple
image transforms into two aggregate warps and resampling only once [24].

7 Conclusion

In this paper we considered the question of which views of a static scene may be predicted from a set of
two or more basis views, under perspective projection. The following results were shown:

o Under monotonicity, two perspective views determine scene appearance from the set of all view-
points on the line between their optical centers

e Under strong monotonicity, a volume of viewspace is determined, corresponding to the convex hull
of the optical centers of the basis views

e New perspective views may been synthesized by rectifying a pair of images and then interpolating
corresponding pixels, one scanline at a time

e View synthesis is possible even when the views are uncalibrated, providing the fundamental matriz
is known. In the uncalibrated case, the synthesized images represent projective views of the scene

These results provide a theoretical foundation for image-based representations of three-dimensional
scenes, demonstrating that a discrete set of images implicitly models scene appearance for a potentially
wide range of viewpoints.
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