APPROACHES TO INTERPROCEDURAL
REGISTER ALLOCATION

Steven M. Kurlander
Technical Report #1294

January 1996



APPROACHES TO INTERPROCEDURAL
REGISTER ALLOCATION

By
Steven M. Kurlander

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN - MADISON
1996



Abstract

The goal of interprocedural register allocation is to minimize execution time by selecting
the registers to assign to each procedure and the registers to spill across calls. To generate
an allocation, an interprocedural register allocator may consider the frequency of procedure
calls and the register needs of each procedure.

Past interprocedural register allocators have applied heuristics to generate an interpro-
cedural register allocation. This thesis presents models of interprocedural register allocation
and algorithms to find a minimum cost allocation. We model both the benefit of allocating
registers to procedures and the cost of register loads and stores across calls.

This thesis presents two approaches for finding an interprocedural register allocation of
locals. The first approach models the benefit of allocating registers to procedures. To find
an allocation, the interprocedural register allocator recursively simplifies a call graph. We
add a heuristic that spills registers across calls to assign additional registers to procedures.

Our next approach solves a network flow problem to find an interprocedural register
allocation of locals. With this approach we model both the benefit of allocating registers
to procedures and the cost of spilling registers across calls. This interprocedural register
allocator finds minimum cost allocations in polynomial time. Also, this allocator is fast in
practice and can generate significant improvements in execution-time.

We extend our network flow approach to interprocedural register allocation to allocate
registers to globals. Two models are presented for interprocedural register allocation of
globals. The first model assumes globals are allocated registers across all procedures in the
call graph, and the second divides the call graph into regions, in which globals can be spilled

from registers within each region.
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Chapter 1

Introduction

An intraprocedural register allocator performs register allocation individually on each pro-
cedure. Common policy in current compilers using only intraprocedural register allocation
is to spill a register at a call site if the register might be used by both the caller and callee.
To avoid spilling a register around a call, an intraprocedural register allocator may choose
not to allocate a register across a call.

An interprocedural register allocator, given the register needs of each procedure and
the frequency of each call, can improve upon an intraprocedural register allocation. For
example, an interprocedural register allocation can allocate different registers to a caller
and callee to try to avoid register spilling across the call. Also, given an estimate of the
procedure call frequencies, an interprocedural register allocator can try to spill registers
across infrequent calls.

To estimate the register needs of each procedure, we generate an intraprocedural register
allocation. An intraprocedural register allocator may assign registers to live ranges, whose
interference relation can be non-transitive[Cha82]. The interference relation for interproce-
dural register allocation is transitive. When finding an interprocedural register allocation
with no register spilling across calls, if procedure P calls @, then we assign different registers

to P and Q. If procedure @ calls R, then we assign different registers to P, @, and R.



1.1 Contributions

This thesis presents two approaches for finding a minimum cost interprocedural register
allocation. In both approaches we model the benefit associated with allocating varying
numbers of registers to each procedure. In the second approach we also model the cost of

spilling registers across calls.

1.1.1 A DAG-Based Approach to Interprocedural Register Allocation

We refer to the first technique as a DAG-based approach to finding an interprocedural
register allocation. Computing a minimum cost allocation involves recursively simplifying
a DAG, while searching the solution space. This approach, which is discussed in Chapter 3,
models only a save-free allocation (no register spilling along the call edges). By not spilling
registers around calls, some locals that are frequently referenced may not be allocated
registers. We choose to add a simple heuristic as a postpass to introduce register spilling.
Though this algorithm is interesting, the worst-case time complexity of our DAG-based
approach is exponential. We are able to find interprocedural register allocations for only a

few of the SPEC92 benchmarks.

1.1.2 A Network Flow Approach to Interprocedural Register Allocation

Our next approach, which we discuss in Chapter 4, computes an interprocedural register
allocation using network flows. This approach is more general than our DAG-based ap-
proach, as it allows us to model more aspects of interprocedural register allocation and can
be solved in polynomial time. First, we present a dual network flow problem that finds a
minimum cost save-free interprocedural register allocation. Next, we extend our model of
interprocedural register allocation to include register spilling, and revise our network flow
formulation.

Our last addition to the network flow-based approach involves modeling register alloca-
tion of globals. Wall[Wal86] proposes allocating registers to globals throughout the entire
call graph. Wall’s model is simple to add to our existing solution for interprocedural register

allocation of locals with spilling. Santhanam and Odnert[SO90] propose allocating registers
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Figure 1.1: Call graph with an intraprocedural register allocation with 4 available registers.

to globals over an entire subgraph of the call graph. We further refine their approach by
allowing register-allocated globals to be spilled within a subgraph. This allows sharing of

registers between locals and globals in a subgraph.

1.2 A Comparison of Intraprocedural and Interprocedural

Register Allocation

By convention some compilers, using intraprocedural register allocation, designate certain
registers to be saved by either the caller or callee in a procedure call [CHKWS6]. Often
callee-save registers contain variables that are live across a procedure call. Callee-save
registers are saved only once on entrance to a procedure and reloaded upon return from the
procedure, instead of spilling the register around each call. Caller-save registers are spilled
if they are live across calls. These registers usually contain values not live across calls to
avoid a store before a call and a reload after the call.

Figure 1.1 presents a call graph in which there are four available registers. Registers



rl and r2 are callee-save registers and r3 and 74 are caller-save registers. The registers
referenced by a procedure are shown to the procedure’s right. In the call from procedure
Main to procedure Q, Main, the caller, does not have any caller-save registers live across the
call. However, @, the callee, references two callee-save registers, r1 and r2 and, therefore,
saves these registers on entrance to ) and reloads them upon returning from @. In the call
from procedure @ to procedure S, caller-save register r3 is live across the call to S. This
register is saved and restored around the call. If @ called S multiple times, then a calling
convention in which 73 is a callee-save register would result in a better register allocation.
In this case 3 would be saved on entrance to @ and reloaded upon returning from .
Thus, a compiler restricted by a fixed spilling convention may find it has too few caller or
callee-save registers.

In the call from @ to S, S is the callee and references 3, which is a caller-save register.
Thus, r3 is not spilled on entry to S. In the call from procedure Main to procedure I, R,
the callee, references callee-save register r1. Thus, R saves 1 on entry to R and restores
71 upon return.

Figure 1.2 shows an interprocedural register allocation on the call graph of Figure 1.1.
Next to each procedure is a table showing the benefit of allocating each additional register
to a procedure. For example, procedure ) can productively use three registers. The benefit
of allocating the first register is 35. The additional benefit of allocating a second register is
only 30. Allocating a third register to @ adds a benefit of 25. A benefit can be an estimate
on the number of dynamic loads and stores removed by allocating an additional register to
a procedure. To estimate the register needs of each procedure, an intraprocedural register
allocation can be performed on each procedure before an interprocedural register allocation.

The number next to each call edge is the frequency of the call. We model register spilling
along the call edges. The cost of spilling a register around a call is a function of the call’s
frequency.

Assume each procedure is given its desired number of registers. The registers assigned
to each procedure are shown below the benefits. With an intraprocedural register alloca-

tion, there can be a path through the program’s execution where some registers are never
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Figure 1.2: Call graph with an interprocedural register allocation with four available reg-
isters. The additional benefit for allocating each register to a procedure is shown. The
number next to a call edge represents the frequency of the call.



referenced, while others are referenced and spilled multiple times. With an interproce-
dural register allocation, in some cases we can avoid these spills by allocating one of the
unreferenced registers.

In an interprocedural register allocation, a register must be spilled only if there is a call
path between two procedures and both procedures are assigned that register. By assigning
register r1 in procedure Main and registers r2, r3, and 74 in @, as shown in Figure 1.2,
we can avoid the save and restore of r1 and r2 present in the intraprocedural register
allocation of Q. Similarly, by assigning 72 to procedure R, the save and restore of 1 in R
can be avoided.

If there is no call path between two procedures, these procedures can be assigned the
same register. For example, both @ and R are assigned register 2.

An interprocedural register allocator can consider call frequency to determine where to
spill a register. For example, five registers are needed along the path from Main to @ to
S in the call graph, but there are only four available registers. An Interprocedural register
allocator can choose to spill a register along the call edge from @ to S, which has a frequency
of 10, instead of the call from Main to @, which has a frequency of 30.

Assume the cost of spilling a register around a call is twice the frequency of the call
(one for a store and one for a load). In this case, an interprocedural register allocator could
choose to avoid spilling the register around the call from @ to S, and not allocate a register
to procedure Main. The benefit of this allocation is an improvement of 5 over the previous
allocation, since the cost of the save/restore is 20 and the benefit of allocating a register to
Main is only 15. We assume each procedure may always access a few temporary registers.
The variable in Main that would have been assigned the extra register could be assigned a

temporary register instead.

1.3 Context for Interprocedural Register Allocation

To perform interprocedural register allocation, our approach requires a measure of the regis-

ter needs of each procedure and the cost of spilling registers across calls. The register needs
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of a procedure can be estimated by the number of register references from an intraproce-
dural register allocation. A profile can be used to compute the number of dynamic register
references in a procedure and the frequency of each call. We assume the cost of spilling a
register across a call is twice the frequency of the call (one for a load and one for a store).

Given the information of the register usage and call frequency, we generate an inter-
procedural register allocation. In our approach, we recompile the code with this additional
information. However, one could also perform interprocedural register allocation at link
time [Wal86].

Since library routines are pre-compiled, we assume a fixed calling convention across calls
to these routines. In this thesis, we examine the benefit of including library routines in the
interprocedural register allocation. We also assume a fixed calling convention across indirect

calls, since we do not know the frequency in which the caller invokes the callee.

1.4 Thesis Overview

In Chapter 2 we present architectural and software approaches to interprocedural register
allocation. Chapter 3 presents our DAG-based approach to solving the interprocedural
register allocation problem. With this approach we recursively simplify the call graph.
Our second approach, which is discussed in Chapter 4, finds an interprocedural register
allocation by solving a dual network flow problem. In Chapter 5, we prove the correctness
of our network flow approach. To solve the dual network flow problem, we transform it
into a primal network flow problem. Chapter 6 discusses this transformation. We extend
our network flow-based interprocedural register allocator to include register allocation of

globals in Chapter 7.



Chapter 2

Related Work

In this chapter, we present previous work related to interprocedural register allocation.

First, we present architectural solutions and then we present software solutions.

2.1 Architectural Support to Avoid Saving and Restoring
Registers Across Calls

Architectural solutions have been proposed to reduce or eliminate saving and restoring of
registers across procedures calls [Moo85] [BDM87] [Hen84]. However, there are drawbacks
to each of these approaches.

The architecture of the Symbolics 3600 is a modern implementation of a stack-based
architecture[Moo85]. The instruction set includes 0-address instructions, in which an in-
struction pops all of its operands from the top of the stack, and 1l-address instructions,
in which one operand can be accessed from within the stack, but the other operands are
accessed from the top of the stack. The few virtual-memory pages corresponding to the
top of the stack are kept in a stack buffer, a fast-access memory. If at a procedure call,
there is insufficient space for the next stack frame, pages containing older frames are spilled
to memory, allowing the next frame to be added. Since operands are referenced off of the
stack, interprocedural register allocation is not applicable.

A register-based machine has advantages over this stack-based approach. For example,



the operands in a stack-based machine can be less easily accessible than in a register-based
machine. If an instruction in a stack-based machine references two operands, neither of
which are at the top of the stack, an instruction is needed to move an operand to the top
of the stack. A register-based machine can be more flexible, as an instruction can usually
access its operands from among several registers.

A motivation in the design of the CRISP architecture [BDMS87] [DM82] was to avoid
register saves and restores around procedure calls. CRISP uses a stack cache, which is a set
of registers containing the top elements of the stack, which can be accessed efficiently. The
stack cache is addressable like memory. This means that aliased variables that cannot be
kept in registers can be kept in the stack cache.

Instruction operands of the form “stack pointer plus offset” are computed before the
instruction is stored in the instruction cache, saving a pipeline stage. One drawback of this
approach is that a context switch causes the stack cache to be flushed to memory. A large
stack cache can lead to a longer context switch.

Register windows [Hen84] [HP90] [Pat85] is an approach that tries to avoid saving reg-
isters across procedure calls. At each procedure invocation, the callee receives a bank
(window) of registers. To allow for parameter passing, the caller’s window can overlap with
the callee’s window. Register windows can be implemented as a circular buffer to give the
perception of an unlimited number of register banks. Window overflow occurs when the
buffer is full at a procedure call. The registers in a window are spilled to make room for the
caller’s registers. A drawback of implementing register windows is the additional cost and
complexity. In addition, procedures need different numbers of registers. Wall found that a

fixed-size register window can be inappropriate [Wal88].

2.2 Software Support for Interprocedural Allocation

In this section we examine software solutions to interprocedural register allocation. This
research is motivated by Wall’s seminal work on global register allocation at link time

[Walg6].
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2.2.1 Wall’s Approach

Link time allocation allows for information to be used for interprocedural register allocation
that otherwise is unavailable under separate compilation. First, the frequently referenced
variables can be allocated registers, since the frequency of variable references in all proce-
dures can be estimated at link time. Second, variables that are simultaneously live can be
determined from the call graph (which can be constructed when all procedures are avail-
able). Assume procedure A calls B. Locals in A that ave live across the call to B must have
their registers saved if their registers are to be assigned to the locals in B.

To support register allocation at link time, the compiler annotates the object code in
each module. For each procedure, the compiler generates a list of locals, the procedure
call frequency, and frequency of variable references. To estimate the frequency a variable is
referenced, the number of times in which a variable is referenced in a procedure is multiplied
times the estimated frequency in which the procedure is called. To compute the estimated
frequency in which a procedure is called, Wall adds the number of calls of the procedure,
weighting calls in loops by a factor of 10.

Once an estimate on the number of references for each variable is known, Wall assigns
each variable to a group, such that all the variables in a group can be assigned the same
register. Each global variable is allocated to a singleton group. A frequency is computed for
each group based on the frequencies of its elements. The groups with the largest frequencies
are assigned registers.

Wall found substantial improvements in the execution of six benchmarks, as shown
in Figure 2.1. Each improvement is over an intraprocedural register allocation. Wall’s
machine had 64 registers of which 52 were available to his allocator. The first column
(register allocation) refers to interprocedural register allocation with compile-time estimates.
A procedure can allocate at most one local variable to each group, which is comprised of
variables that will be assigned the same register. The second column (with coloring) refers to
allowing a group entry to include multiple variables with non-intersecting live ranges from
a single procedure—these candidates in a procedure can be assigned the same register.

Graph coloring is used to select candidates with non-intersecting live ranges. The third
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Benchmarks | register with with | with

allocation | coloring | profile | both
Livermore 18% 18% 19% | 19%
Whetstone 10% 10% 10% | 10%
Linpack 13% 13% 13% | 13%
Stanford 25% 25% 27% | 28%
Simulator 12% 14% 15% | 16%
Verifier 10% 15% 16% | 19%

Figure 2.1: Percentage improvement in speed with 52 registers al located to variables

column (with profile) refers to global register allocation using estimates from a profile of the
program. The last column (with both) refers to using profiling and graph coloring.

Wall allows register spilling only across indirect and recursive calls. Our model of
interprocedural register allocation with spilling subsumes Wall’s model, as we allow register
spills across all calls. Walls’ allocator may not find the best allocation with respect to his
model, since he allows infrequently referenced locals to be grouped together with frequently
referenced locals. Our interprocedural register allocator with spilling finds allocations of
minimum cost.

Wall [Wal88] compares the performance of register windows to link time allocation. For
the register window approach, global variables were not kept in registers. A motivation for
register windows is to avoid the interprocedural analysis needed to keep globals in registers.
At link time the non-aliased global variables are known and can safely be allocated registers.
Profile-based link time allocation performed better than register windows by approximately
5.4%, assuming that register windows does not increase the cycle time of a processor.
The link time allocator uses procedure-call frequencies as well as frequencies of variable
references. Register-windows can benefit from knowledge of the latter, as it uses the profile
only to determine the most frequently referenced locals. Wall found the main advantage of

the link time scheme is its ability to keep globals in registers.

2.2.2 Steenkiste and Hennessy’s Approach

Steenkiste and Hennessy [SH89] designed an interprocedural register allocator for LISP

programs. Their algorithm allocates registers to locals in a bottom-up fashion over the call



graph. They found that LISP programs spend a large amount of time in procedures near
the bottom of the call graph (leaf procedures). Since these procedures are executed most
often, they are allocated registers first. Also, since they observed that the call graph is
wider near the bottom, a local near the bottom of the call graph may tend to have fewer
conflicts with other variables and, therefore, be easier to keep in a register than one near
the top. When possible a procedure is allocated registers not used by descendants of the
procedure in the call graph. Otherwise, registers are spilled across a call if they are used
by both the caller and a descendant of the caller in the call graph.

Unlike Wall’s algorithm, Steenkiste’s algorithm allows locals that are not live during a
procedure call to be assigned registers used by procedures invoked during the call. Steenkiste
finds that his interprocedural register allocation algorithm shows a 10% reduction in the
number of executed instructions. Reasons given for a worse performance than Wall’s al-
gorithm include the fact that Wall had more registers available, allocated global variables
to registers, and his test programs were not as recursive. Recursion makes interprocedural
register allocation less effective because the registers used in a recursive procedure must
be spilled to avoid being overwritten in the next invocation of the procedure. In fact, in
Steenkiste’s work, most of the remaining stack accesses after the register allocation were
due to recursion rather than due to lack of registers.

Steenkiste and Hennessy’s approach may spill registers across frequently executed rou-
tines in the internal part of the call graph. The approach to interprocedural register pro-
posed in this thesis considers call frequencies. We are able to avoid spilling registers across

frequently executed calls.

2.2.3 Chow’s Approach

Chow [Cho88] presents a one-pass algorithm for interprocedural register allocation. Similar
to Steenkiste’s algorithm, Chow’s algorithm uses a bottom-up traversal over the call graph.
However, Chow’s algorithm deals with incomplete procedure information, which can result
from separate compilation.

Chow divides registers into two sets, callee-save registers and caller-save registers. When

allocating registers to a procedures whose caller (parent in the call graph) has been processed
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or is unknown, Chow saves all callee-saved registers used by the current procedure and its
descendants in the call graph. This allows the procedure’s caller to use the callee-save
registers without conflict. The caller in this case assumes that caller-saved registers are in
use. Thus, it is better to use the caller-save registers before the callee-save registers near
the bottom of the call graph, which is a common optimization for leaf procedures.

Chow’s results, which are not as good as those of Steenkiste, range from an improve-
ment of 0% to 12% over intraprocedural register allocation. Chow found that some of the
save/restore overhead is minimized in intraprocedural register allocation because the allo-
cator has the choice of which variables to put in caller and callee-save registers. He also felt
20 general-purpose registers is insufficient to allocate registers to variables to avoid spilling.
His algorithm does not use profile information, which can be helpful in choosing where to

spill registers.

2.2.4 Santhanam and Odnert’s Approach

Santhanam and Odnert’s approach to interprocedural register allocation [SO90] keeps global
variables in registers throughout regions of the call graph. This improves upon Wall’s
approach in which once a global variable is assigned a register, the global variable keeps
the register throughout the entire program. Santhanam and Odnert divide the references
of each global variable into webs. A web is a minimal subgraph of the call graph such that
neither an ancestor nor a descendant of a node in the subgraph references the global. The
procedures covered by the web reference the global variable from a common register, thus
avoiding loads and stores of the global within each procedure.

In this thesis, we generalize their notion of webs by allowing a register assigned to a
global to be spilled within a web. The register may then be allocated to a local.

They also do interprocedural register allocation in clusters of frequently called proce-
dures. The procedures in a cluster are dominated by a single procedure within the cluster,
called the root node of the cluster. We refer to the root node of the current cluster as
C. A cluster, however, can include the root nodes of other clusters, but no other nodes in
those clusters. We refer to other cluster root nodes that are in the current cluster as O. A

non-root node, therefore, is in the cluster that immediately dominates it.
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The algorithm tries to place spill code for registers only at the entrance to a cluster (C),
if the procedures represented by the nodes in the cluster are called more frequently than C'.
The algorithm visits each cluster using a bottom-up ordering, trying to allocate registers
that have not been spilled by clusters O. This can allow spill code from cluster roots O in
the current cluster to be moved to C, if the register is not referenced along paths between
C and O (this idea is similar to moving code in a loop to the loop header). They add spill
code at the root of the cluster for registers used in the current cluster.

Santhanam and Odnert find that spill code motion using clusters is not as effective as
using webs to allocate registers to globals. Using a profiler they found that the combined
benefit of spill code motion and allocating registers to globals is between 2% to 9% over
interprocedural register allocation in their compiler.

The approach we propose in this thesis examines the entire call graph to generate a

minimum cost allocation that spills registers as inexpensively as possible.

2.2.5 Conclusions

As shown by Wall and suggested by Chow, a profile of a program can improve the allocation
of an interprocedural register allocator. Comparing the impact of a real and estimated
profile will be investigated in this thesis.

Wall’s allocator spills registers only in the case of recursion and indirect calls. Since
Steenkiste and Hennessy perform a bottom-up allocation of the call graph, their approach
may introduce register spilling around frequently executed calls near the top of a call graph.
Only Santhanam and Odnert considers call-frequency when choosing where to spill registers.
However, they limit spill code motion to cluster roots. In this thesis, we present an allocator
that examines the entire call graph to select the placement of spill code.

Work by Wall and Santhanam and Odnert reveals the importance of allocating registers
to globals. In Wall’s approach, globals allocated registers remain in those registers through-
out the entire execution. Santhanam and Odnert allow globals to be allocated registers in
procedures where they are not referenced, which can sometimes be profitable, as this would
avoid reloading the value of the global into a register. However they do not consider the

potential benefit of spilling a register-allocated global and allocating that register to a local.



This refinement will be investigated in this thesis.
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Chapter 3

A DAG-Based Approach

In this chapter, we present an algorithm for finding a save-free minimum cost interprocedural
register allocation of local candidates. A save-free allocation does not spill registers across
calls. First, we present our model for interprocedural register allocation. Then, we propose
an algorithm for finding a save-free minimum cost interprocedural register allocation for
call trees, which are call graphs whose structure is a tree. Next, we use the algorithm for
call trees to find a save-free interprocedural‘ register allocation for call graphs with shared
procedures, which are procedures with more than one parent, only at the leaves. We then
generalize our approach to allow for arbitrary acyclic call graphs. Recursive procedures,
which represent cycles in the call graph, can be handled by replacing strongly connected
components with a single node[SH89]. We also incorporate a heuristic for register spilling

around calls to increase the number of candidates that are allocated registers.

3.1 Modeling Interprocedural Register Allocation

In the call graph each procedure P; is represented by a node. Assume FP; has n children.

The children of P; are represented as P;,, ...,P,. Calls between procedure P; and F;
are represented as an edge between these nodes. The edge has a frequency Freq(P;, B,
representing the number of times P; calls P, in the execution. Freq[F;] is the total number
of times P; is called over the entire execution.

The algorithms discussed in this chapter assume a “cost” of executing instructions in



17

a procedure at varying register levels. We choose to represent this cost as the number of
memory references, since the number of memory references varies directly with the number
of available registers. Mem[F;,r] is the expected number of dynamic memory references of
procedure F; given r registers to the procedure.

Function values for Mem have two interesting properties. The first is that Mem[P;,r] >
Mem[P;,r + 1]. This means that the cost of a procedure’s execution does not increase as
more registers are available to the procedure. We also assume that Mem[P;,r — 1] —
Mem[P;,v] > Mem[P;,r] — Mem[P;,r + 1]; that is, the benefit of allocating registers to a
procedure is monotonically non-increasing. This means that allocating the r** register does
not result in a bigger benefit than allocating the r — 1%t register (any reasonable register
allocator will use each additional register to its best advantage).

The total cost of allocating r registers to procedure P; and all of its descendants in the
call graph is represented as Cost[P;,r]. In our case, Cost[P;, 7] represents the total number

of memory references, distributing r registers among P; and all its descendants.

3.2 Minimum Cost Allocation for Call Trees

This section presents an algorithm for finding a minimum cost allocation of procedures’
local variables in a call tree. Since we are dealing with call trees each callee has only one
caller. For each procedure in a call tree an equal number of registers will be allocated to the
subtrees rooted at each of its children, since the procedures in one of its children’s subtrees
can never be simultaneously active with the procedures in another. Given R registers, no

more than R registers can be allocated along any path from the root to a leaf in a call tree.

3.2.1 Measuring Cost

Given a call tree with a frequency along each edge as determined by function Freq, a
maximum number of available registers R, and a function Mem for each procedure at each
register level, a Cost function will be defined and computed for the subtree rooted at each
procedure for each register level. Based on this function a distribution of registers, n, and

ne, will be computed for each procedure and its subtrees rooted at the children, respectively.
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Apportioning r registers among Py and its descendants, and assuming P, has n children,

we represent Cost as:

Cost[Py, 7] = MIN
Np+Ne=T; Np,Nc>0

n
Freq[Py) * Mem[Pg,np] + Y Cost[Py,,nc).

=1

The cost of P, when allocated ny, registers (Mem/[Py,np]) is multiplied by the frequency
in which Py is invoked (Freq[P:]) to give the cost of allocating n, registers to Py for the
entire execution. We add this cost to the total cost of allocating n. registers to the subtrees
rooted at each child Py, of Pj.

This function defines the least cost of distributing r registers to the subtree rooted at
Py, by considering all possible partitions of r registers to P, and the subtrees rooted at its
children. Inductively, we have computed a minimum cost allocation at each register level
for subtrees rooted at Fj,. If necessary, by trying all partitions of r registers between Py
and the subtrees rooted at its children, we can determine the minimum cost allocation of r

registers for the subtree rooted at P.

3.2.2 Generating an allocation

An allocation can be computed using dynamic programming. The algorithm maintains the
least cost distribution of r registers, 0 < r < R, between each procedure and its subtrees
rooted at the children. We assign the value of n, to a table entry indexed by {Fy,r} when
Cost[Pyg,r] is computed. This entry tells us how to distribute r registers between procedure
P, and its subtrees. Once the table entries have been determined at all register levels
between 0 and R for all procedures, it is easy to find the number of registers to assign to
each procedure. Given the number of registers available for a subtree whose root is Fj.,
we can determine, using the table, the number of registers to give to Py and its subtrees.
We can recursively walk down the call tree applying this information to each subtree. The
recursion begins by using the table entry indexed by {Fy, R}, where Py is the root of the

call tree, to determine the number of registers to give to Fy and its subtrees.
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3.2.3 Complexity

This algorithm has a complexity of O(P), where P is the number of procedures. A naive
implementation has a a constant term of R?, where R is the number of registers, since there
are at most R+1 way of distributing r registers, where np,+n. = r and 0 < r < R. However,
because of the monotonicity property we can compute the distribution of r registers given
the distribution of r — 1 registers. We give the additional register to either the parent or its
children, depending on which results in a greater benefit. Thus, the constant of R? can be

reduced to R.

3.2.4 Example

Figure 3.1 gives an example call tree. Assume there are only two registers available. The
values of function Mem for each procedure at each register level are shown inside the
nodes. Procedures A, C, and F have only one register candidate—there is no extra benefit
for allocating a second register; that is, for each of these procedures Mem|[l] = Mem/|2]—
whereas all other procedures have two register candidates. The frequencies, which are all 1,
are shown along the edges of the call tree. The values of the cost function for each procedure
at each register level is shown in Figure 3.2. Next to each entry Cost[Py, j], we display np, p
and n. ¢, which are the distribution of the j registers—the parent is given n, registers and
the subtrees rooted at the children are given n. registers.

Since the frequency along each incoming edge to a leaf is 1, the values of the cost func-
tions for the leaves, shown in the uppermost table of Figure 3.2, correspond to the values
of function Mem for each node. In the lower table, we have the cost functions and register
distribution for the other nodes. For example, Cost[B, 1], the cost of allocating 1 register
to the subtree rooted at B, allocates the 1 register to B, because of the greater benefit,
Freq|B]*(Mem|B,0] — Mem[B,1]) (= 10) > Cost[D,0] — Cost[D,1] (= 4). Cost[B,2],
however, allocates the second register to D, since Freq[B] *x (Mem|[B,1] — Mem[B,2]) = 2
and Cost[D,0] — Cost[D,1] = 4. Cost|C,1] allocates its first register to £ and F, since
(Cost[E,0] — Cost[E,1]) + (Cost[F,0] — Cost[F,1]) (= 14) > Freq[C] * (Mem[C,0] —

Mem|C,1]) (= 8). C is allocated the second register. The final allocation assigns one



Mem([0]=13
Mem[1]23
Mem[2]=1

Mem{0}=9
Mem{1}=1
Mem{2]=1

E
Mem[0}=10
Merm{1]=6
Mem(2}=2

Figure 3.1: Example call tree to illustrate register allocation of locals.
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H Cost Tables | Alloc || Cost Tables | Alloc || Cost Tables | Alloc |
Cost[D,0] = 10 | Op, Oc |} Cost[E,0] = 10 | Op, Oc || Cost[F,0] = 11 | Op, Oc
Cost[D,1] =6 | 1p, Oc || Cost[E,1] =6 | lp, Oc || Cost[F,1] =1 | Ip, Oc
Cost[D,2] =2 | 2p, Oc || Cost[E,2] =2 | 2p, Oc | Cost[F,2] =1 | 1p, Oc

“ Cost Tables I Alloc H Cost Tables l Alloc H

Cost[B,0] = 13 + 10 = 23 Op, Oc || Cost{C,0] =9 + (10 + 11) = 30 | Op, Oc
Cost[B,1] =3 + 10 = 13 1p, Oc || Cost[C,1] =9 + (6 + 1) = 16 Op, lc
Cost[B,2] = 3 +6=9 Ip, lc || Cost[C,2] =1+ (6 + 1) =8 1p, lc
Cost[A,0] =4 + (23 + 30) = 57 | Op, Oc
Cost[A,1] =4 + (13 + 16) = 33 | Op, Ic
Cost[A,2] =4+ (9 +8) =21 Op, 2¢

Figure 3.2: Example call tree and cost tables for each procedure.
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Figure 3.3: Children of a node can be allocated a different number of registers in a minimum
cost register allocation of a DAG.

register to B, C, D, E, and F.

3.3 Minimum Cost Interprocedural Register Allocation for

DAGs

Given R registers, an allocation for a DAG allows no more than R registers to be allocated
along any path from the root to a leaf. Unlike in the call tree case, the number of registers
allocated to each child of a procedure can differ in a minimum cost allocation of a DAG. For
example, in Figure 3.3, the benefit of allocating two registers to B, C, or F is 20, since for
each of these procedures, 1 * (Mem[0] — Mem[2]) = 20 (each of these procedures is called
once). However, the benefit of allocating two registers to E is 3 * (Mem[0] — Mem[2]) = 6
(E is called three times). Assuming two registers are available, a minimum cost allocation
of the DAG in Figure 3.3 assigns two registers to nodes B, C, and F', and 0 registers to the
remaining nodes. D’s child E is allocated 0 registers, but child F' is allocated two registers.
If neither B nor C called E, then this call graph would be a tree, and E, like its sibling F,

would be allocated two registers.
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To find an minimum cost solution for a DAG, the DAG is first simplified by collapsing
subtrees into a singleton node using the register allocation algorithm described in Sec-
tion 3.2.2. The Cost functions in the root nodes of these subtrees become Mem functions
for the singleton nodes. After collapsing subtrees, the DAG can have shared nodes (more
than one incident edge) at the leaves and possibly at the internal nodes. We call a shared
leaf node a “level-1” node, and a shared node internal to the DAG a “level-i” node, if there
are at most i shared nodes (including itself) along a path from it to a leaf.

Assume that after collapsing subtrees, a DAG’s shared nodes are only at level-1 (shared
nodes appear only as leaves of the DAG). We can split these shared nodes such that each
parent has an edge incident on its own copy of the node. The DAG is now a tree. Assigning,
in turn, each possible combination of register values to these copies, such that the copies of
a shared node are allocated the same number of registers, we can find a solution using the
allocation algorithm for trees.

To ensure that each copy of a shared node is allocated the same number of registers, r,
0 <r < R, we can assign to each copy a cost of infinity below register level r, and a cost
of b at register level r and above, where b is the cost of allocating r registers in the shared
node. Each copy will allocate at least r registers, as there is an infinite decrease in cost
between allocating 7 — 1 and r registers. It is possible that more than r registers will be
allocated to each copy if the registers beyond r cannot be profitably used elsewhere (there
is no benefit, decrease in cost, in allocating more than r registers to each copy). However,
a pass over the DAG after the allocation can limit the number of registers allocated to 7.

If a DAG has 7 shared nodes at level-1, and there are R registers available, we would
check no more than O((R + 1)?) combinations of register assignments. The allocation with

the minimal cost is the best solution.

3.4 Shortening the Search Space

Rather than checking all possible register values for each shared node (a potentially explosive

process), we can shorten the search space using a branch and bound technique.
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An important optimization involves tightening the bounds on the maximum and mini-
mum number of registers that a shared node can have in a minimum cost solution for a DAG.
Before computing the maximum and minimum bounds on the number of registers available

to a shared node at level-1, we first precompute for each procedure P the expression

Mem/[Py, 7] = i Freg|P;, P] * Mem|Py, 7]
i=1
for 0 < j < R, where P; is a parent of Py, F'req[P;, Py] is the frequency along the edge
between P; and Py, and n is the number of Py’s parents. Mem/[Py, 7] is the cost of executing
P, throughout the entire execution, assuming j registers are allocated in Pg. This has the
effect of folding the call frequency of Py into its cost function Mem'.

A call graph may contain transitive edges. A transitive edge connects two nodes, which
are connected by a path that does not include this edge. Transitive edges affect the call
frequency of a node, but do not further constrain the solution by affecting which registers
can be shared among procedures. Since the call frequencies have been folded into the cost
of allocating registers for each node, we can simply remove transitive edges from the call

graph.

3.4.1 Finding the Maximum Bound

To find the maximum bound for a shared node at level-1, we split the shared node, such
that each parent has its own copy (see Figure 3.4). We let each new leaf, D; and D,
in Figure 3.4, have the same Mem' function as D in the original DAG. Using the register
allocation algorithm for trees (using Mem/' instead of Freq*Mem), we compute the number
of registers allocated to Dy and Dy (they need not be equal). Without loss of generality,
assume D)y is allocated less than or equal to the number of registers allocated to Dy. Let r
be the number of registers allocated to D;. We now show that r is a maximum bound on
the number of registers allocated to D in a minimum cost allocation.

We can add an edge between C' and D1, as shown in Figure 3.5(a). Since D5 is allocated
at least as many registers as D;, there are no more than R registers allocated along the

path A-C-D;. Because the edge does not affect the number of registers allocated to each



Figure 3.4: Splitting a shared leaf node.

Figure 3.5: Adding an edge between nodes C and Dy, and decreasing the number of registers
allocated to Dy produces a DAG in which D; has at least as many registers as D of the
original DAG.
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node, a minimum cost allocation of the tree before the edge is added is still a minimum cost
allocation after the edge is added.

Now we decrease the benefit of allocating registers to Dy. Registers previously available
to Dy may now be allocated to Dy’s ancestors. Since D; was allocated less than or equal
to the number of registers allocated to D, additional registers allocated to Ds’s ancestors
may lead to fewer registers allocated to D; (the number of registers allocated along each
path from .the root to a leaf cannot ‘exceed R). The total number of registers allocated to
D1, however, will not exceed its original value of r. Decreasing the benefit of allocating
registers to Dy has the effect of removing Dy from the DAG (Figure 3.5(b)). The DAG in
Figure 3.5(b) now has the same structure as the DAG in Figure 3.4(a). The total number
of registers allocated to D; in Figure 3.4(a), r, is a maximum bound on the number of

registers allocated to the shared node D.

3.4.2 Finding the Minimum Bound

To compute the minimum bound for a shared node at level-1, we compute Mem' and split
the shared node, such that each parent has its own copy, as was done for computing the
maximum bound (Figure 3.4). However, the Mem/ function for each copy is the function
Mem' of D divided by p, where p is the number of parents of the shared node D. In our
example, p is 2. Next, we find a solution for the tree in Figure 3.4(b). Without loss of
generality, assume D, has less than or equal to the number of registers available to Do. Let
the current number of registers allocated to D; be r. We now show that r is a minimum
bound on the number of registers allocated to D in a minimum cost allocation.

As in the case for finding the maximum solution, we add an edge between C and D;
(see Figure 3.6(a)). In our next step, we add an edge between B and D (see Figure 3.6(b)).
The path 4A-B-Dy may allocate more than R registers, since Dy is allocated at least as
many registers as Dj. If we remove registers from A or B, then D; can be allocated more
than r registers, bringing the number of registers allocated to D; up to Da’s level. If we
remove registers from Do, the number of registers available to Dy will not drop below Dy's
count; D; and D, have the same constraints with the other nodes, they will have the same

number of registers. We can combine D; and Dj into a single node transforming the DAG
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Figure 3.6: Adding constraints between nodes C' and D;, and B and Ds.

Figure 3.7: We can combine nodes D; and D, to transform the DAG into the original DAG.

of Figure 3.6(b) into the original DAG of Figure 3.7. The sum of the Mem’ functions of
D, and D, equals that of D. Since the Mem' function of D is greater than that of D; and
the number of registers now allocated to D; is greater than or equal to r, r is a minimum

bound on the number of registers allocated to D.

3.5 Level-n Shared Nodes

We can recursively apply the register allocation algorithm for DAGs with level-1 shared
nodes to generate an allocation for DAGs with level-n shared nodes. Assume, for exam-
ple, that we want to find an allocation for the DAG with the level-2 shared node (D) in
Figure 3.8(a). We apply our algorithm for level-1 shared nodes to split the shared node F
at level-1 into F; and Fy (Figure 3.8(b)) to find minimum and maximum bounds on the

number of registers to be allocated to F'. Treating the level-2 shared node D as the root of
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(a)

Figure 3.8: To find an allocation for the level-1 shared nodes we first split the level-1 shared
nodes.

Figure 3.9: We collapse the subtree rooted at D into a new node D’. We then find the
allocation for the new DAG, in which D' is a level-1 shared node.

a subtree, our allocator computes a cost function and allocation for the subtree rooted at
D. We collapse the subtree rooted at D to form a new node D’ (Figure 3.9).

If we can determine the minimum cost allocation for D', we can determine the allocation
for each node within the corresponding subtree. D’ can be treated as a level-1 shared node.
We now have a new level-1 DAG for which we know how to generate its register allocation
and, thus, we can determine the number of registers allocated to D’. Once we know the
allocation for D', we can compute the allocation at the split nodes F} and F5.

Computing the cost of allocating registers within the minimum and maximum bounds

is identical to the process outlined above.
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3.6 Complexity

The complexity of our algorithm is exponential in the worst case. As the height of the call
graph increases by one, we may double the amount of work needed to find an allocation.

This leads to an exponential worse case time complexity.

3.7 Register Spilling

By using a save-free allocation we have avoided adding spill code around calls. Procedures,
however, may need more registers than are allocated by a save-free register allocation. Our
approach for adding register spilling allows procedures that can use additional registers
to spill registers used by an ancestor or descendant in the call graph. Registers allocated
save-free to an ancestor of a procedure p can be saved and restored on entrance and exit to
p (treated as a callee-save register), and save-free registers used by a descendant of p can
be saved and restored around calls in p (treated as a caller-save register). We choose to
spill registers in which the least cost is incurred and only if it is profitable—the cost of the
added spill to a procedure is less than the benefit of an additional register.

To choose between allocating a caller-save or callee-save register, we provide our algo-
rithm with a function Live[Py,r], which equals one if the rt* register is live across a call in
Py, and zero otherwise. We compute the cost of spilling a callee-save register in procedure
Py as 2+ Freq[Py], where the value 2 represents the store and load added to spill the register
upon entering and exiting the routine, and Freq[Py] is the frequency in which Py is called.
Letting P, be one of the n children of P, we compute the cost of a caller-save register r
as 2 * Live[Py,,7] * Y11 Freq[Py, Py;]. The benefit of an additional register for procedure

Py over the current register level r is simply Mem[Py,r] — Mem[Py,r + 1].

3.8 Implementation

We implemented our algorithm using gec [Sta93] on a DECstation 5000/125 with a MIPS
R3000 processor. To generate a call graph and cost functions for performing interprocedural

register allocation, we modified gec to write information for each procedure on register
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speedup over gcc -02

benchmark | save-free | with spilling
compress 0.1% 0.5%
decompress -0.4% 1.2%
ear -0.4% 0.3%
eqntott -0.2% 0.1%
ora, 0.3% 1.0%

Figure 3.10: Speedups of interprocedural register allocations with and without register
spilling over gec at optimization level 2.

usage. In addition, Gee was modified to assume that all live ranges are not spilled (split)
because of calls, rather than using the usual caller-save/callee-save convention of the MIPS
architecture. This gives our interprocedural register allocator a better estimate of the benefit
of allocating save-free registers, which are not spilled across calls.

We weight register references in loops by 10¢, where d is the loop’s nesting level. To
compute function Mem[FPy,r], the number of memory references for procedure Py given r
registers, we compute the total number of references of the r most referenced registers, as
determined by gce, and subtract this from the total number of references for the procedure.
To compute Live[Pg,r], we simply check whether the r** most referenced register is live
across a call. The interprocedural register allocator also reads a dynamic profile of the
program. The allocator uses the profile to compute the frequency along the edges as well as
to improve upon our estimation of function Mem. If procedure Py’s execution represents
p% of the total number of cycles ¢, we let Mem[Py,0] * Freq[Fy] = p% * t, where Freq[Py]
is the number of times Py is called.

The interprocedural register allocator generates information on the registers that are
save-free and spilled. Gcee then reads this information to produce the corresponding inter-
procedural allocation. Our interprocedural register allocator could be included as part of a
link time allocation as, for example, implemented by Wall [Wal86].

Figure 3.10 gives speedups from a few SPEC92 benchmarks[[Sp] of our save-free allo-

cation and our save-free allocation followed by register spilling. As we have not performed
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benchmark | time spent computing allocation
as a percentage of total compilation time
compress 13.8%
decompress 12.0%
ear 12.2%
eqntott 22.1%
ora 29.5%

Figure 3.11: Times for computing a minimum cost allocation with register spilling and
allocation of globals as a percentage of the total compilation time.

interprocedural register allocation on library routines, each allocation (including gec’s) spills
caller-save registers around library calls.

Adding register spilling to our approach generates only a small improvement over gec’s
intraprocedural register allocation. A weakness of our approach is that we may have an
insufficient number of callee-save registers or caller-save registers. We may have too few
caller-save registers in a leaf routine, where we can avoid spilling a caller-save register.
For a routine near the top of the call graph, spilling caller-save registers can be much more
expensive then spilling a callee-save register. A caller-save register will be saved and restored
around each call, whereas a callee-save register is saved and restored only upon calling and
returning from the routine.

Our results indicate that a save-free allocation can be competitive with a gcc allocation.
In addition, using our approach for spilling registers around calls, only a small benefit is
achieved from register spilling.

Figure 3.11 presents the time finding an interprocedural register allocation as a per-
centage of the total compilation time without interprocedural register allocation. Our in-
terprocedural register allocation represents a significant percentage of the total compilation
time.

As mentioned in Section 3.4, our algorithm removes transitive edges to simplify a call
graph. After removing transitive edges, the call graph for each of these benchmarks has a
maximum shared level, the largest number of shared nodes along a path from the root of

the call graph to a leaf, of three or less. On benchmarks with a shared level greater than
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three, our algorithm required too much space on our machine.
In the next chapter, we present an interprocedural register allocator that applies a
network flow approach. Applying network flows yields a much faster interprocedural register

allocator that can efficiently find allocations for large call graphs.

3.9 Conclusions

This chapter presents a DAG-based minimum cost interprocedural register allocation al-
gorithm. This algorithm has been extended to perform register spilling around calls. We
found that for a sample of the SPEC92 benchmarks, a save-free approach is comparable
with gec’s intraprocedural allocation, which may spill registers around calls. Unfortunately,
due to the space required by this algorithm, we are able to run it only on a subset of the

SPEC92 benchmarks.
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Chapter 4

A Network Flow Approach

This chapter presents both a save-free interprocedural register allocator (which never spills
registers across calls), and an interprocedural register allocator that spills registers as neces-
sary across calls. Our save-free allocator models the cost of allocating registers to procedures
and finds a minimum cost allocation. A profile is used to estimate the benefit of allocating
different levels of registers to each procedure.

Qur interprocedural register allocator that spills registers across calls minimizes the cost
of allocating registers to procedures as well as spill cost. The cost of spilling a register across
a call is a function of the call’s frequency. Register spilling allows registers to be reassigned
along a path in the call graph when profitable.

To generate a save-free interprocedural register allocation of a call graph, we utilize
Cameron’s algorithm for finding a maximum weight k-antichain in a partially ordered set
[Cam85]). To find a maximum weight k-antichain, Cameron maps solutions from a dual
minimum cost flow problem!. A dual minimum cost flow problem can be transformed into
a minimum cost flow problem and solved in polynomial time. In Section 4.2, we generalize
our allocation model to allow for register spilling across calls.

Our approach can be used with conventional compilers that translate one procedure

!Cameron refers to the dual minimum cost flow problem as a dual transportation system of linear in-
equalities. When we transform this dual problem into the primal problem, the network flow graph is not
bipartite and, thus, the primal problem is not a transportation problem. However, the primal problem is a
minimum cost flow problem. We, therefore, refer to the dual as a dual minimum cost flow problem.
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at a time. Each procedure may be translated using any of the well-known, high-quality,
intraprocedural register allocatorsiBCKT89][CK91][PF92]. Then using profile information
our minimum cost interprocedural register allocator determines how many registers each
procedure will be given and where spills will be placed. A minimum cost interprocedural
register allocation may not allocate registers to all locals in a procedure. For each of these
procedures, an intraprocedural register allocator will generate a revised allocation using the
procedure’s interprocedurally allocated registers and the temporary registers available to

each procedure.

4.1 Save-free Interprocedural Register Allocation

In this section, we describe a save-free interprocedural register allocator that determines
the number of registers to allocate to the locals of each procedure for acyclic call graphs
(cycles in call graphs normally force saves across recursive calls). Our solution is based on
Cameron’s algorithm for finding a maximum weight k-antichain in a partially ordered set
[Cam85]. In Section 4.2, we generalize our allocation model to compute a minimum cost
allocation that may include register spilling across calls in (possibly cyclic) call graphs.

For each procedure, we assume an intraprocedural register allocator has already grouped
locals that can be assigned the same register. We refer to each group as a register candidate.
An interprocedural register allocator selects which candidates are allocated registers. Each
procedure has a few temporary registers available. Locals assigned these registers do not
require interprocedurally allocated registers. These locals are correctly allocated at register
allocation time.

Initially, we assume that a register candidates is live across all calls in a procedure. How-
ever, in Section 4.4 we distinguish between candidates not live across calls and candidates
live across one or more calls.

Our interprocedural register allocator may give fewer registers to a procedure than
the number of candidates it has. An intraprocedural register allocator can produce a valid
allocation when given fewer registers. The intraprocedural register allocator will spill values

internally as necessary.
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We assume there is a positive benefit associated with allocating a register to a register
candidate. As more candidates are allocated registers the benefit of the allocation increases
(and, equivalently, the cost associated with the allocation decreases). In our interprocedural
register allocation, a benefit estimates the decrease in loads and stores from allocating a
register to a candidate. Given k registers, our save-free interprocedural register allocator
selects an allocation in which the benefits of register allocated candidates sum to a maximum

(across all procedures). That is, registers are given to procedures that benefit the most.

4.1.1 Defining a partial ordering on the candidates of a call graph

Let G = (P, E) be an acyclic call graph, where P is a set of procedures and E is a set of
call edges. We represent the set of calls from procedure P, € P to P, € P as a single edge
in the call graph. Let S be the set of register candidates in P. For procedure P, € P, let
C(P,) be the set of register candidates in P,.

We define the following partial order (C) on candidates in an acyclic call graph such
that there is an ordering between two candidates if and only if they cannot be assigned the

same register in a save-free interprocedural register allocation:

1. In the partial order, assume the relation between candidates in a procedure is an
arbitrary chain; that is, there is an ordering between every two candidates in the

same procedure.

2. Let ¢, € C(R,), ¢y € C(Py), and P, # P,. If there is a path from procedure P, to

P, then ¢y C ¢y

For ¢;,c; € S, ¢; T ¢j is defined as ¢; C ¢; and ¢; # ¢;. Given (1) and (2), there is
an ordering only between two candidates of the same procedure or between candidates in
separate procedures connected along a path in the acyclic call graph. Thus, either ¢, ¢y
or ¢, [ ¢y for candidates ¢y, c, € S if and only if ¢, and ¢, cannot be assigned the same
register in the call graph.

In Figure 4.1(a), procedure P, has two candidates, p and ¢, and procedure P, has two

candidates ¢t and v. A partial order on the candidates in the call graph appears in (b). We
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Candidates in G
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Figure 4.1: An example call graph, allowing for multiple candidates in a procedure, and a
partial order on the candidates of the call graph.

assume the ordering between p and ¢ is ¢ C p and the ordering between ¢t and v is v [ ¢.
Since P, calls P,, ¢ C m and p " m, and since P, calls Py, v C m and ¢t C m.

Throughout Section 4.1, we assume (C) refers to the partial order defined by (1) and

(2).

4.1.2 Interference Graph

Let T be a set on which there is some partial order. Define a comparability digraph D(T)
as having an edge from u to v when u is less than v in the partial order [Cam85]. If S is the
set, of candidates of a call graph G and the partial order is (C), then D(S) is the interference
graph for a save-free interprocedural register allocation of G. If there is an edge between ¢,
and ¢, in D(S), then either ¢, and ¢, are candidates in the same procedure, or ¢, and ¢,
are candidates in procedures along a path in the call graph. Candidates ¢, and ¢, cannot
be assigned the same register.

Since a partial order defines the interference relation between candidates in a save-free
interprocedural register allocation, the interference graph is transitive. The interference
graph for intraprocedural register allocation, however, can be non-transitive[Cha82]. In

an intraprocedural register allocation, two live ranges that interfere are assigned different
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Figure 4.2: A call graph G, a partial order on the candidates in G, and the comparability
digraph of the candidates in G.

registers. Assume live ranges [, and I, interfere and live ranges [, and [ interfere. Live range
I, does not necessarily interfere with l.. In a save-free interprocedural register allocation, if
procedure P, calls P, and P, calls Py, then execution will normally return to F,. To avoid
overwriting the registers live across a call, candidates in P,, P, and P, are all assigned
different registers.

Figure 4.2 displays a call graph G, the partial order (Z) on the set of candidates, .S, of
G, and the comparability digraph D(S). The number below a candidate is the benefit of
allocating a register to that candidate. Since ¢ C p and p T m, there is an edge in D(S5)
between ¢ and p, p and m, and ¢ and m. These three candidates can never be assigned the
same register. Candidate ¢t can be assigned the same register as p or g, as there is no edge

joining either ¢t and p or ¢ and gq.

4.1.3 Antichains

We call a set of nodes in a digraph independent if none of the nodes in the set are joined
by an edge. Let S be a set and assume some partial order on S. An antichain in S is
an independent set of nodes in D(S). In Figure 4.2(c), {p,t}, {p,v}, {g,v}, and {q,t}

are examples of antichains, as the candidates in each set are not joined by an edge in the
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comparability digraph. A k-antichain is the union of at most k& antichains [Cam85]. Both
{p,t,q,v} and {p,t,v} are 2-antichains.

Let S be the set of candidates of a call graph G and assume partial order (C) on S.
D(S) represents an interference graph for a save-free interprocedural register allocation of
G and, thus, the candidates of an antichain in D(S) can be assigned the same register. A
k-antichain in D(S) is a set of candidates that can be allocated using at most k registers in
G.

Assume each register candidate c; € S has a positive integer weighting, w;. Let () be
a partial order on S. If w; is the benefit of allocating a register to candidate c¢;, then a
maximum weight k-antichain in S corresponds to a k-register save-free interprocedural reg-
ister allocation whose elements sum to the maximum benefit; that is, a save-free minimum
cost interprocedural register allocation using at most k registers.

In Figure 4.2(c), assume k£ = 2 antichains. Among the possible allocations of candidates
to antichains, the choice with the greatest benefit allocates candidate m to an antichain
(A2), and candidates ¢ and ¢ to an antichain (A4;). Each antichain maps to an arbitrary,
but different register. In Figure 4.2(a), m is assigned register ry, and ¢ and ¢ are assigned
register r. Since candidates p and v are not allocated registers, an intraprocedural register
allocator will spill registers as necessary in procedures P, and P, to generate a valid register

allocation.

4.1.4 Finding a maximum weight k-antichain sequence

A k-antichain can be partitioned into a k-antichain sequence. A k-antichain sequence 4 =
(A1,...,Ag), where 4; C S, and if ¢; € Ap, ¢; € 44, and ¢; T ¢, then p < ¢ [Cam85]. Each
A;, 1 <1 < k, corresponds to an antichain—if ¢; T ¢j, then ¢; and ¢; cannot be members
of the same antichain. Given the 2-antichain {g¢,¢,m}, and the partial order ¢  m and
q T m, then antichain 4, = {¢,t} and A, = {m}, as shown in Figure 4.2(c).

Given partial order (C) on a set of candidates in a call graph G, we can view each
antichain A;, as an abstract register R;. An abstract register is an equivalence class of
candidates that can be assigned the same register. Each abstract register maps to a different

hardware register.
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Let ¢, € C(Py), cw € C(Py), and assume ¢,, T ¢,—there is a call path from P, to P,
or P, = P,. Assume we assign registers to candidates in a topological ordering over the
partial order—if ¢, C ¢y, then we visit ¢, before c,. If we assign register R, to c,, then c,
can only be assigned register R,, such that 0 < p < ¢g. This register ordering models the
sequence in which antichains are assigned to candidates.

To find a maximum weight k-antichain sequence in a partially ordered set, we solve the

following dual minimum cost flow problem|[Cam85].

Dual Variables
zj, y;j for j such that ¢; € §
Constraints
A.l forc; €5,0<z;, y; <k
A.2 ifc,cj € Sand ¢ Ccj, then z; +y; < k.
A3 forc;e S, z;+y; <k+1
Objective Function

A.4 Maximize ches wj * (T + Y5)-

For each candidate in c¢; € S, there is a pair of integer dual variables, z; and y;, and
an integer objective coefficient (weight) w; > 0 in the dual minimum cost flow problem.
A sélution to this dual minimum cost flow problem maximizes the objective function A.4,
given the constraints A.1-A.3 on the dual variables. Whereas a minimum cost flow problem
minimizes an objective function, a dual minimum cost flow problem maximizes an objective
function. If a candidate c; is allocated to an antichain, the variable z; will specify the
antichain that c; is assigned. The variable y; constrains the value of z; for ¢; C ¢; to
prevent both candidates ¢; and c¢; from being assigned to the same antichain.

Figure 4.3(a) shows a call graph G. Let S be the set of candidates in G. A representation
of the partial order on S appears in (b). Based on this partial order, a representation of
the dual minimum cost flow problem appears in (¢). Each node represents a dual variable.
Solid edges represent constraint A.2. Dashed edges represent constraint A.3.

Intuitively, a correspondence exists between a maximum weight k-antichain sequence

and assignments to the dual variables of the dual minimum cost flow problem. In solutions
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Call graph G Partial Order on Dual Mincost Flow Problem
Candidates in G based on the Partial Order
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Figure 4.3: Example call graph G, graph of a partial order on the candidates in G, and
the dual minimum cost flow problem with respect to the partial order. Each node in the
dual minimum cost flow problem represents an integer-valued dual variable, and each edge
represents a constraint between two dual variables. The constant above an edge is the
integer upper bound in the corresponding constraint.

to the dual minimum cost flow problem, one can prove that for ¢c; € S, z; +y; =k + 1 or
z; +y; =k [Cam85]. If z; +y; = k + 1, then we map c; to the antichain whose number
in the sequence equals the value of z;. Otherwise, if z; + y; = K, ¢; is not mapped to an
antichain.

Assume that (a) z; +y; = k+ 1, and let ¢; T ¢;. By constraint A.2, (b) z; +y; < k.
Equations (a) and (b) imply that z; < z;. Assume z; = h. We map ¢; to antichain 4. All
candidates ¢; T ¢; can only map to antichains A, 0 <m < h.

There exists a 1-1 and onto mapping (a bijection) from maximum weight k-antichain
sequences to solutions of the dual minimum cost flow problem above. A solution to the

dual minimum cost flow problem is represented by a sequence of tuples

z=((z1,91)s- - (T3, Y)5)))-

Let Q*(k, S) be the maximum weight k-antichain sequences in S, and let P*(k, S) be the
solutions to the dual minimum cost flow problem. For A € Q*(k, S) there is a bijection z(4)
onto z € P*(k,S), and for z € P*(k,S), there is an inverse function A(z)[Cam85]. A(z)

maps z € P*(k,S) onto a maximum weight k-antichain sequence (A1,..., ). Mapping
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Partial Order on Dual Mincost Flow Problem
Candidates in G

(D

Figure 4.4: Partial order on candidates in G, and graph of dual minimum cost flow problem
for G.

A(z) is defined as (A1(z),...,Ak(2)). For 1 < p < k, A,(z), which maps candidates to

antichain A4,, is defined as
Ap(z) ={ci|zi=p; zi +yi =k + 1}

If the dual variables z; and y; sum to & + 1, then candidate ¢; is mapped to the antichain
whose number in the sequence equals the value of z;.

Assume z € P*(k,S) and A(z) = A € Q*(k, S). The objective function A.4 maximizes
ches wj * (z; +y;). If z; +y; = k+ 1, then ¢; is mapped to an antichain; otherwise,
zj+y; = k and ¢; is not mapped to an antichain. Thus, z; +y; — k = 1 if ¢; is mapped to
an antichain; otherwise, z; +y; — k = 0. The value of the objective function for solution =z,

therefore, differs from the weight of maximum weight k-antichain sequence A by a constant.

4.1.5 Example

Figure 4.4(a) shows the partial order on the candidates of call graph G of Figure 4.3.
Candidates along a path must be assigned to distinct abstract registers. Let R, and R, be

abstract registers. If ¢; T ¢j, ¢; € Rp, and ¢j € Ry, then p < ¢.
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A register allocation and assignment using two registers appears in Figure 4.4(a). Candi-
date m is assigned register Ry, and g and ¢ are assigned register R;. This register allocation
has the maximum benefit.

Figure 4.4(b) shows the the graph of the dual minimum cost flow problem based on the
partial order (a) for k = 2 registers. The solution in (b) can be mapped to the solution in
(a). Since Ty +ym = k+1, and =, = 2, candidate m maps to register Rp. As x4y, = k+1
and z4 = 1, ¢ maps to R;. Similarly, candidate ¢ maps to Ry, since zy + 1y = k + 1 and

z¢ = 1. Since v C t, z, = 0. As z, + y, = k, candidate v is not mapped to a register.

4.2 Interprocedural Register Allocation with Spilling

In this section, we consider an interprocedural register allocation that allows for register
spilling across calls. The call graph can now be cyclic (save-free allocations are generally
not possible for cyclic call graphs). As in the save-free approach, we assume a benefit
associated with allocating registers to procedures, but now we also assume a cost associated
with spilling registers across calls. The cost of spilling a register is two (for a load and a
store) times the frequency of the calls represented by the edge. To find an allocation with
maximum benefit, we again map solutions from a dual minimum cost flow problem.

Let call graph G = (P, E), where P is a set of procedures and E is a set of call edges.
For P, € P, let C(P,) represent the set of local register candidates in P,, and let C(P)
represent the set of local candidates in all procedures in the call graph. For a procedure P,
let IN(P,) be the set of call edges incident on P,, and let OUT(P,) be the set of outgoing
call edges from P,.

In the save-free approach, if there is an ordering between two candidates, then they
cannot be assigned the same register. However, since registers are now spilled as necessary
around calls, if ¢, € C(P,), ¢y, € C(Py) and P, calls P, then ¢,, may be assigned the same
register as c,. We, therefore, now assume a partial order that only relates candidates in the
same procedure, as these candidates can never be assigned the same register. The ordering
among the candidates in a procedure is a chain, as in (1) of Section 4.1.1. We refer to this

partial order as (C) throughout Section 4.2.
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Figure 4.5: Example call graph . A partial order exists only among candidates in each
procedure.

Since partial order (C) only relates candidates in the same procedure, there is an ordering
between ¢ and m in Figure 4.5. Let ¢ T m. We represent this ordering by an undirected
edge between ¢ and m. For t € C(P), t Et.

Let an abstract register Ry, 1 < h < k, be a set composed of candidates assigned
that register. Each abstract register is mapped to a hardware register after interprocedural
register allocation. Let R be the sequence (Ry, ..., Ry).

To model spills along the edges of a call graph, two integer variables are introduced for
each edge. For e; € F, the variable free.in; represents the number of unallocated registers
on entrance to edge ej, and the variable free.out; represents the number of unallocated
registers on exit from edge e;. The number of registers spilled along edge ¢; is, therefore,
free.out; — freein;. Let freein be the sequence (free.iny,..., freeiinjg) and free-out
be the sequence (free_outy, ..., free.outg).

Assume k registers are available for an interprocedural register allocation. Allowing
for register spilling along the call edges, an interprocedural register allocation I for a call
graph G is represented by I = (R, free.in, free_out), and has the following constraints

and maximization function:
Constraints
I.1 for e; € E, free.in; < free out;.

1.2 for e; € B, 0 < freeanj, freeoutj < k.
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1.3 if ¢; € Rp, c; € C(P,), and e; € IN(P,), then p < free out;.
1.4 if ¢; € Ry, ¢; € C(P,), and ¢; € OUT(P,), then p > free.in;.
1.5 ife; € IN(P,) and e; € OUT(F,), then free.out; > freein;.
1.6 let ¢;,¢cj € C(R,). if ¢; € Ry, ¢j € Ry, and ¢; C ¢j, then p < gq.
Mazimization Function

1.7 maximize cheuk r Wi~ Le;ep 8 * (freeout; — free.in;)
7 i=1""

Constraints I.1 - 1.6 define how registers are spilled along the call edges and consumed
within procedures. Constraint I.1 states that the number of free registers on exit from a
call edge is greater than or equal to the number of free registers on entry to that edge
(the difference is the number of registers spilled along the edge). Constraint 1.2 bounds the
number of free registers on entrance to and exit from an edge by the number of registers
available for allocation. Constraint 1.3 asserts that if candidate ¢; is assigned to register I,
then there must be at least p registers free on entry to the procedure from each incoming
edge (c; is assigned one of the free registers). Similarly, I.4 asserts that if ¢; is assigned to
register R, then there must be fewer than p registers free upon exit from the procedure along
each outgoing call edge. By L.5, there cannot be more registers upon exiting a procedure
than there are upon entering it (all saving is done on the edges).

Two candidates ¢;,¢; € C(P,) cannot be assigned the same register. By 1.6, registers
are assigned in a decreasing sequence within a procedure. If candidates ¢; and c; are both
allocated registers in procedure P, and ¢; T ¢;, then the register assigned to c; occurs before
the register assigned to c; in the sequence. As in the case for save-free interprocedural
register allocation, if there is no register spilling, registers are assigned in a decreasing
sequence across calls. Assume ¢, € C(P,), ¢y € C(Py), and P, calls P, (we model the call
as edge e; in the call graph). If ¢, is assigned register Ry, then by constraint L4, there are
fewer than p registers free on entry to e; (free.in; < p). Assume no registers are spilled
around the call. Thus, freeout; = freein; in L.1. If ¢, is assigned register R, then by
constraint 1.3, ¢ < free.out;. Therefore, since freeout; = free.in; and freeiin; < p,

then ¢ < p.
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Figure 4.6: Interprocedural register allocation of call graph G.

Each candidate ¢; € C(P) has a positive integer objective coefficient, w;, which rep-
resents the benefit of allocating a register to the candidate. Each call edge e; € E has
a positive integer objective coefficient, s;, which represents the cost of spilling a register
across ej, and spills free_out; — free.in; registers. Assume e; is the call edge from P, to
P,. Abstract register R;, i < free.in;j, is available on exit from P,. By constraint .3,
register R;, i < free-out; is available to candidates in P,. Our algorithm spills register R;
along edge e; if freein; <1i < free-out;.

We want to find a k-register interprocedural register allocation that maximizes function
1.7. Since spilling decreases the value of 1.7, candidates are assigned a spilled register only
if the sum of their weights is at least as large as the cost of spilling that register.

Figure 4.6 presents an interprocedural register allocation assuming one available register.
The number below each candidate is the benefit of allocating that candidate a register. The
number below a call edge is the cost of spilling a register on that edge. Candidate m is
assigned register R;. Since the benefit of allocating a register to p is less than the spill cost
along edge ey, p is not allocated a register. However, the benefit of allocating a register to
q exceeds the spill cost along edge e; (but not the spill cost along edge e2). Thus, register
R; is spilled along edge e;, and R; is assigned to g. Since the cost of spilling a register

along edge e is less than the benefit of allocating a register to n, R is spilled along ez and



Dual Variables
(zi, y; for i such that ¢; € C(P)),(r;, t; for j such that e; € E)
Constraints
D.1 forc; € C(P),0< z;, y; < k.
D.2 if ¢;,¢; € C(Py) and ¢; C ¢j, then z; + y; < k.
D.3 forc;j € C(P), zj+y; <k+1.
D.4 fore; EE,0<r; t; <k.
D.5 for ¢; € C(P,) and e; € IN(Py), z; +t; < k.
D.6 for e; € OUT(P,) and ¢; € C(Py), i +y; < k.
D.7 for e; € OUT(P,) and e; € IN(PR,), r; +t; < k.
D.8 fore; € E,rj+1t; <k.
Objective Function
D.9 Maximize Y. copyWs * (T + Yj) + Le;em 55 * (rj +1t5).

Figure 4.7: Dual minimum cost flow problem whose solutions are mapped to an interpro-
cedural register allocation with spilling.

assigned to n.

4.2.1 Finding a Minimum Cost Allocation

To find a minimum cost interprocedural register allocation for a call graph, we solve the
dual minimum cost flow problem of Figure 4.7.

In this dual minimum cost flow problem, there is a pair of integer dual variables (x;,
y;) for each candidate ¢; € C(P) and a pair of integer dual variables (r;, t;) for each edge
ej € E. As before, for ¢; € C(P), integer w; > 0 represents the benefit of allocating a
register to a candidate. For e; € E, integer s; > 0 represents the cost of spilling a register
on edge e; in the call graph. As in the save-free approach if z; +y; = k+ 1, then candidate
¢; will be assigned the register whose value is z;. For e; € E, r; represents the number of
free registers on entry to edge e;, and t; represents the number of registers allocated on exit

from ej. For e; € IN(P,), t; constrains the registers that can be allocated to candidates
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in procedure P, (constraint D.5), the number of free registers on outgoing edges from P,
(constraint D.7), and the number of free registers on entry to e; (constraint D.8). Also,
candidates in P, constrain the number of free registers on outgoing edges from F, (constraint
D.6).

We define zy to be the sequence of tuples

(z1,91)s - (@) YioE)))s

and rt to be the sequence of tuples

((Tlvtl)v R (T‘}E|at]E§))

A solution to the dual minimum cost flow problem is represented by tuple z = (zy, rt). For
a call graph G on which we define partial order (C), and given k registers, let P*(k,G) be
solutions to the dual minimum cost flow problem of Figure 4.7. Let Q*(k, G) be solutions
to interprocedural register allocation with spilling. In chapter 5, we prove that there exists
a bijection z(I), from I € Q*(k,G) onto z € P*(k,G), and an inverse function I(z) for
z € P*(k,G). I(2) is defined below.

o I(z) = (R(2), freein(z), free.out(z)).

eforl <h<k,
Rp(z) ={cjlzj+y; =k+1,z; = h,¢c; € C(P)};
R(z) = (Ry(z),...,Rg(2)).

o for e € E, freeiinj(z) = ry;
freein(z) = (freesini(2),..., freeiin g (2)).

o for e; € E, freeout;(z) =k —tj;

free_out(z) = (free_outi(z),..., free.out|g(2)).

For z € P*(k,G), function I(z) maps z to an interprocedural register allocation defined
as (R, free.in, free-out). Functions R(z), free.in(z), and free_.out(z) map to sequences
R, free_in, and free_out, respectively. Rp(z) maps candidate c; to register Ry if z; +y; =

k+1and zj = h. For e; € E, freein;(z) maps the value of variable r; to free-in;. For



47

e; € E, free.out;j(z) maps k —t; to free.out;. The variable t;, therefore, represents the
number of unavailable registers on exit from edge e;. The number of register spills along
edge e; is free_out; — free.inj = k —t; — ;. The number of registers spilled along an edge
includes those not free on entry to the edge (k — r;) but made available on exit from the
the edge (k —rj — t;). Thus, r; + t; is the number of registers not spilled along edge e;.

Constraints D.1 — D.3 of Figure 4.7 are similar to constraints A.1 — A.3 of the dual
minimum cost flow problem for a save-free allocation. As in the dual minimum cost flow
problem of Section 4.1, if z € P*(k,S), then for ¢; € C(P), zj+yj=korz;+y; =k+1.
Assume (a) zj+y; =k +1and ¢; T ¢j. If ¢; T ¢j, then by constraint D.2, (b) z; +y; < k.
Equations (a) and (b) imply z; < z; and, thus, ¢; and ¢; can never be assigned the same
register.

Constraint D.4 bounds the value of r; and t; for e; € E by the number of available
registers. By constraint D.5, for e; € IN(F,), k — t; bounds the number of registers
available to candidates in C(P,). For ¢; € C(P,), assume z; +y; = k+ 1 and 2; = p.
Candidate c¢; is mapped to register R,. By constraint D.5, z; < k —t;. Mapping I(z)
assigns free_out; the value k — ¢;. Thus, p < free.out;, which is constraint 1.3 in our
definition of an interprocedural register allocation.

By constraint D.6, the value of k — y; for ¢; € C(P,) bounds the value of r; for e; €
OUT(P,). Mapping I(z) assigns free_in; the value of r;. Thus, k£ —y; bounds the number
of free registers on entrance to e;. Assume z; +y; = k+ 1 and x; = p. Candidate ¢; is
mapped to register Rp. By D.6, rj +y; < k. Thus, r; < z;. Since I(z) maps the value of
r; to freesn; and z; = p; therefore, freein; < p, which is constraint L.4.

By constraint D.7, k — t; bounds r; for e; € IN(P,) and ¢; € OUT(P,). By D.7,
r; < k —tj. By mapping I(z), free.in; < free.out;j, which is constraint L.5.

By constraint D.8, for ¢; € E, r; + t; < k. As mentioned above, r; +t; is the number
of registers not spilled along e;. Asr; +¢; < k, then r; < k —t;. Applying mapping I(z),

free_in; < free_out;, which is constraint I.1.
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The objective function D.9 is

S owix(zmityy) + Y si*(rj+ ),

c;EC(P) e;eF

and the maximization function 1.7 is

Z wj — Z s * (free_out; — freein;).

k .
CjeUizl R; e;eE

The value of the objective function for z € P*(k,G) (D.9) and the value of the maximization
function for I(z) = I € Q*(k,G) (1.7) differ by a constant. As in Section 4.1, by subtracting
the constant Y. cc(py k * wj from 3. co(p) wj * (zj +y;) in D.9 yields (a) 3 ecpy wy *
(zj+y;—k). Since z;+y;—k = 1if ¢; is mapped to a register and, otherwise, z;+y; —k = 0,
equation (a) is equal in value to ch U, B W in L.7.

Moreover, for e; € E, (b) rj +t; in D.9 is the number of registers not spilled along
ej, and (c) —(free-out; — free.in;) in 1.7 is the negative of the number of registers spilled
along e;. Thus, rj+t; —k = —(free_out; — freesin;). As (b) and (c) differ by the constant
k) Yejen Si* (rj +t;) in D.9 differs from — ¢ cp 5; * (free.out; — free_in;) in 1.7 by the

constant 3 .. cp S; * k.

4.2.2 Example

Figure 4.8(a) shows call graph G of Figure 4.6 with the same interprocedural register allo-
cation. Variable alloc; represents the register that ¢; may be assigned. Only one register is
available. Register Ry is assigned to m, ¢, and n and spilled along edges e; and e3.

Figure 4.8(b) displays the graph of the dual minimum cost flow problem for ;. There
is a pair of nodes for each candidate and call edge in G. For clarity, variable z; is renamed
alloc; for ¢; € C(P). Since mapping I(z) for e; € E assigns free_in; the value of r;, we
rename 7; in (b) as free.in;.

The dashed edges in Figure 4.8(b) represent constraints between pairs of nodes and solid
edges represent constraints between nodes from separate pairs. The £ or &k + 1 along an

edge represents the bound in the corresponding constraint.
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Call graph G Dual Mincost Flow Problem
1 register available k = 1 register
allocm =1
@A) P
free_in =0 free_inq=0
(spill Ry) €4 €3 (spill Ry)
free_outy=1 2 1 free_out 4= 1

allocp =1 allocn =1

free_in ,= 1 ep

free_out 9= 1 4

i =
a ;Cq 1 q

(@)

Figure 4.8: Example call graph G and graph representation of the dual minimum cost flow
problem for G.

Assume k = 1 in Figure 4.8(b). Since allocy, + ym = k + 1, and by constraint D.5,
free_in, +ym < k, then free.iny < allocy,. Since the number of available registers decreases
from 1 to 0, we assign candidate m to register Ry (allocy, = 1). As there are 0 free registers
on entrance to e, (free.in; = 0) and 0 unavailable registers on exit from e; (t; = 0), then
the number of register spills along e is k — t; — free4n; = 1. Therefore, candidate p may
be assigned register R, as alloc, = 1. Since alloc, +y, = k, p is not allocated a register.

Since p is not allocated a register, there is a register free on entry to ey (freeing = 1).
By constraint D.8, free-ing + to < k. Thus, to = O—there are 0 unavailable registers out
of e5. Candidate q is allocated a register, as allocq + yq = k + 1.

A register is spilled along es, since k — free_inz —t3 = 1. This register is assigned to n.
The register allocation and assignment of (b) correctly corresponds to the allocation and

assignment described in (a).

4.3 Complexity

For p candidates and edges in a call graph, the number of dual variables in the dual minimum

cost flow problem of Section 4.2 is O(p). However, the number of constraints between dual
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variables is O(p?), as a dual variable for a candidate or edge can have constraints with O(p)
other dual variables. Our dual minimum cost flow problem can be transformed into an
unconstrained minimum cost flow problem, in which there are O(p) nodes and O(p?) arcs.

Letting n be the number of nodes and m be the number of arcs, an unconstrained mini-
mum cost flow problem can be solved in O(n log n(m+nlogn) [Orl93], which is independent
of k, wj, and s; in our dual minimum cost flow problem. The complexity of solving our

minimum cost flow problem is, therefore, O((plogp (p? + plogp)), which is O(p®log p).

4.4 Liveness

Before performing interprocedural register allocation, we can modify the call graph to avoid
spilling registers assigned to candidates not live across any call. Our interprocedural register
allocation model assumes that a candidate live across a call is live across all calls.

In a procedure, let L be the set of candidates that are live across a call, and let NL be
the set of candidates not live across any call. In each procedure, we move the candidates
in NL below the candidates L in the partial order. Constraints are not added between the
candidates in NL and the outgoing edges of the procedure. All candidates in the procedure
compete for registers as before, but as there are no constraints between the outgoing edges
from the procedure and the candidates in NL, the registers assigned to these candidates are
not spilled.

In Figure 4.9, we assume candidates m and n are not live across the call to P». In (b),
m and n are moved below ¢ in the partial order. By moving m and n below ¢, ¢ is now
assigned R3, and m and n are assigned Ry and R;. Since we also remove the constraints
between candidates m and n and edge e, we can assign v and v in P, the same registers as

m and n, without spilling registers across the call.

4.5 Library Routines

We assume that library routines have been pre-compiled using a caller-save/callee-save

convention for spilling registers across callsfCHKW86]. Any caller-save register live across
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Figure 4.9: By distinguishing between candidates live and not live across calls, fewer regis-
ters are spilled.

a call to a library routine must be spilled across the call.

To allow for pre-compiled library routines, we create a pseudo library routine that
allocates the abstract registers that we will map to the pre-defined caller-save registers. All
procedures that call library routines have a call edge to this pseudo library routine. As all
caller-save registers are allocated in this pseudo routine, a caller-save register live across a
call to this routine will be spilled.

Assume there are n caller-save registers and k total registers. Since abstract registers
are assigned in a decreasing sequence, we let abstract registers Ry, ..., R, map to the caller-
save registers. Only if more than k —n registers are live across the call to the pseudo library
routine will a caller-save register be spilled. To ensure that the n candidates in the library
routine are assigned abstract registers Ry, ..., R,, we modify the dual minimum cost flow
problem in Figure 4.7 such that z; = i;z; +y; = k+1 for candidates c;, 1 <1 < n, allocated

in the pseudo library routine.

4.6 Indirect Calls

Indirect calls use the same caller-save/callee-save convention followed by library routines.
When building a call graph, we assume that each procedure that can perform an indirect

call can invoke any aliased procedure. The number of call edges representing indirect calls
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would, therefore, be the product of the number of routines that can make an indirect call
and the number of aliased routines.

Since we assume a fixed calling convention it is not necessary to include these call edges.
Instead, we add a call edge from a routine making an indirect call to the pseudo library
routine. Caller-save registers allocated by the procedure making an indirect call must be
spilled around the call. We remove the call edges incident on the aliased routines (for
simplicity all indirect and non-indirect calls to aliased routines will use the fixed calling
convention), and add one call edge e; from a newly generated pseudo procedure to the
aliased routine. We assign the number of caller-save registers, n, to dual variable r;, the
number of registers free on entry to edge e; as defined by the dual minimum cost flow
problem of Figure 4.7. Registers can be spilled along e; (spilled on entry to the aliased

routine), as the number of register spills, & —r; — t;, along e; can be positive.

4.7 Implementation

We generate code for a DECstation 5000/125, with MIPS R3000/R3010 processors. We
assume that three general purpose integer registers, two general purpose floating-point
registers, and the pre-defined parameter registers are work registers that are not allocated
interprocedurally and hence are available to each routine.

We use profile information to compute the number of calls between each procedure and
the number of instructions executed in each procedure. Profile information is gathered using
qpt[BL92]. When profiling, benchmarks are run on input yielding short execution times,
except for benchmarks nasa7 and swm256, in which we have only one input file. Since the
profiled code is compiled using only an intraprocedural register allocator, some variables live
across calls may not be allocated a register because of an insufficient number of callee-save
registers. To determine the number of references to registers that can be live across a call,
we modified gee[Sta93] to return the number of register references assuming the non-work
registers are callee-save. We let the general-purpose registers that are non-work registers
represent candidates in our interprocedural register allocation algorithm, and their number

of register references scaled using profile information represents the candidates’ benefit.
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After generating an interprocedural register allocation, the registers available to each
procedure and the spills across each call are written to a file. Gece reads this file to generate
a register allocation.

In some benchmarks, a procedure that is not called when profiling with one input is called
when using another. If a procedure is not called, we have no information on the frequency in
which its candidates are referenced. We optimistically allocate registers to these procedures’
candidates as follows. We increase all zero edge frequencies to one. Assume the total spill
cost along incoming and outgoing edges is j. Register candidates are assigned a benefit of
1+ 7. Since the cost of spilling a register on entry to and exit from a procedure is less than
the benefit of allocating a register to a candidate,.candidates are always allocated a register.

Column two of Figure 4.10 shows the execution-time improvement from adding our
interprocedural register allocator to gcc. The benchmarks are compiled at optimization
level O2 with loop-unrolling enabled. We assume that library routines have been pre-
compiled using a caller-save/callee-save convention for spilling registers around calls. Our
interprocedural register allocator finds a significant improvement on benchmark doduc, as
this benchmark has procedures with many registers live across calls. An interprocedural
register allocator can generate an allocation that spills fewer registers across calls than an
intraprocedural register allocator. Benchmark egntott shows no improvement, as most of
its execution is in a leaf procedure. Benchmark zlisp shows a large improvement for our
allocator as it has small, frequently called routines, in which our allocator avoids spilling
registers.

On benchmark suZcor our allocator performs worse than simply running gec’s intrapro-
cedural register allocator. A drawback of our algorithm is that a candidate live across calls
may not be allocated a register because of the cost of a register spill, but there still may
be a benefit of allocating that candidate a register that is not live across calls and does not
require a register spill. We can add to our allocator a postpass that can allocate additional
registers not live across calls. Let call edge e; € OUT(P,). If freeinj = r, then there are
r registers that are free on exit from procedure P,. We can treat these r registers in P, as
caller-save registers and allocate them to P,. The improvement of our interprocedural reg-

ister allocator with this optimization over gec is shown in column three (Minimum Cost+)



54

Performance Improvements
benchmark | Min Cost | Min Cost+ | Steenkiste and Hennessy | Min Cost+ w/Static Prof
compress 1% 2% (+1%) 0% 0%
doduc 5% 5% (+0%) 4% 1%
ear 0% 0% (+0%) 0% 0%
eqntott 0% 0% (+0%) 0% 0%
espresso 9% 9% (+0%) ™% %
fpppp 4% 4% (+0%) 3% 2%
gee 8% 8% (+0%) 1% 3%
hydro2d 0% 0% (+0%) 0% 0%
mdljdp2 1% 1% (+0%) 1% 0%
mdljsp2 0% 0% (+0%) 0% 0%
nasa7 0% 1% (+1%) 0% 0%
ora 1% 1% (+0%) 1% 1%
sC 11% 11% (+0%) 7% 2%
spice 3% 3% (+0%) 2% 3%
su2cor -1% 0% (+1%) -1% -1%
swm256 0% 0% (+0%) 0% 0%
xlisp 11% 11% (+0%) -3% 5%

Figure 4.10: Column two shows the execution-time improvement from adding our minimum
cost interprocedural register allocator with spills to gcc. Column three shows the improve-
ment of our interprocedural register allocator with a postpass optimization, which allocates

additional registers to each procedure. Column four shows the performance improvement

from adding Steenkiste and Hennessy’s bottom-up interprocedural register allocator to gec.
The last column shows the execution-time improvement from adding our minimum cost
interprocedural register allocator with static profiling and the postpass optimization to gce.



in Figure 4.10. The numbers in parentheses are the performance increase over our interpro-
cedural register allocator without this optimization. Overall, this optimization yields only
a slight improvement.

Column four shows the results from adding Steenkiste and Hennessy’s bottom-up inter-
procedural register allocator[SH89] to gcc. Running Steenkiste and Hennessy’s bottom-up
register allocator on zlisp results in a worse allocation than an intraprocedural register al-
location. Benchmark zlisp has many routines at the bottom of the call graph called less
frequently than routines higher in the call graph. With a bottom-up allocation, registers
are spilled across the more frequently executed calls.

The final column shows the performance of our minimum cost interprocedural register
allocator with the postpass and static profiling. We use the call+1-loop(10) estimate pro-
posed by Wall[Wal91]. For a procedure invocation an instruction contributes 10¢ to the
execution count, in which d is the instruction’s loop-nesting level within the procedure.
Each procedure is called one plus the static number of calls to the procedure. Among the
static profile estimates tested by Wall, he found this one to be among the best.

On benchmarks doduc and sc, our interprocedural register allocator with static profil-
ing performs worse than Steenkiste and Hennessy’s allocator. Steenkiste and Hennessy’s
bottom-up allocator may spill registers at points higher in the call graph than our allocator
with static profiling. This effect leads to a better performance by Steenkiste and Hennessy’s
allocator on these benchmarks, but results in a better performance by our allocator with
static profiling on zlisp.

With a static profile, our allocator’s overall performance is competitive with Santhanam
and Odnert’s allocator. Using the static profiling heuristics of Ball and Larus [BL93], we
would expect better results.

Steenkiste and Hennessy’s allocator is faster (runs in linear-time in the size of the input).
Given only static profile information, their allocator seems preferable.

Figure 4.11 shows the improvement over gcc from profiling and measuring a benchmark’s
performance on the standard input. The numbers in parentheses represent the increase in
performance with respect to training on a short execution-time input and measuring perfor-

mance on the standard input. Interestingly, the largest improvements are on benchmarks



Profiling the Standard Input
benchmark | improvement
compress 1% (+0%)
doduc 5% (+0%)
ear 0% (+0%)
eqntott 0% (+0%)
espresso 11% (+2%)
fpppp 4% (+0%)
gee 10% (+2%)
hydro2d 0% (+0%)
mdljdp2 1% (+0%)
mdljsp2 1% (+1%)
ora 1% (+0%)
sC 11% (+0%)
spice 3% (+0%)
su2cor -1% (+0%)
xlisp 11% (+0%)

Figure 4.11: Improvement over gcc from using the same input to both profile and measure
a benchmark’s performance.

espresso and gec. Both of these benchmarks have multiple input files. These benchmarks
are trained on a dynamic profile that is a combination of profiles from their different input
files. For other benchmarks, profiling the short execution-time input is a good predictor of
the standard input.

Figure 4.12 shows the performance improvement over gcc from running our interproce-
dural register allocator on both the library and user routines. The numbers in parentheses
represent the increase in performance with respect to running our interprocedural register
allocator only on user routines. The C source code was available for many of the library
routines. Since some system calls overwrite the caller-save registers, we still follow the caller-
save/callee-save convention around system calls. Also, we follow the caller-save/callee-save
convention around library routines written in assembly code. Overall, we found only a
small improvement from interprocedural register allocation of library routines. Since many
library calls lead to system calls, in many cases registers live across calls to library routines
will still be spilled.

Since the user code in benchmark ora does not reference all the general-purpose registers,

our interprocedural register allocator avoids some register spilling when allocating registers
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Interprocedural Register Allocation
of Library and User Routines

benchmark improvement
compress 1% (+0%)
doduc 5% (+0%)
ear 1% (+1%)
eqntott 0% (+0%)
espresso 9% (+0%)
fpppp 5% (+1%)
gee 10% (+2%)
hydro2d 1% (+1%)
mdljdp2 1% (+0%)
mdljsp2 0% (+0%)
nasa’ 0% (+0%)
ora, 2% (+1%)
sc 11% (+0%)
spice 3% (+0%)
su2cor -1% (+0%)
swm256 0% (+0%)
xlisp 11% (+0%)

Figure 4.12: Performance improvement over gcc from interprocedural register allocation on
library routines and user code.
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to library routines. In benchmarks gcc and fpppp, register spills in frequently called library
routines are moved to less frequently called routines. Interprocedural register allocation of
library routines also allows yylez in benchmark gcc to avoid spills across some library calls.

To solve the dual minimum cost flow problem for interprocedural register allocation
with spills, the problem is transformed into a minimum cost flow problem. Solutions to the
minimum cost flow problem are found using the primal network simplex method[Zak95].
Though the primal network simplex method is exponential in the worst case, we found it
faster in practice than a polynomial time dual network simplex algorithm available to us.
Figure 4.13 shows the time running the network simplex method as a percentage of the
total compilation time without interprocedural register allocation. For each benchmark, we
solve two minimum cost flow problems, one with integer candidates and one with floating-
point candidates. We assume library routines are pre-compiled. The number of procedures
in each benchmark appears in column two. Columns three and four show the number
of available candidates for interprocedural register allocation. As mentioned earlier, work
registers are not included as candidates. Interestingly, espresso, gcc, and zlisp have few
floating-point candidates, but since they have a larger call graph than benchmarks, doduc,
fpppp, and spice, all of which have more floating-point candidates, more time is spent finding
a solution as a percentage of the total compilation time.

Figure 4.14 shows results from running our interprocedural register allocator on both
user and library routines. The number of procedures, the number of candidates, and the
time spent running the network simplex method as a percentage of the total compila-
tion time are shown. The numbers in parentheses represent the percentage increase from
not including library routines in the interprocedural register allocation. The absence of
a percentage increase in the columns under candidates indicates there were no candidates
allocated registers when library routines were pre-compiled. The absence of a percentage
increase in the columns % of compilation time indicates that the percentage was less than
0.1% when library routines were pre-compiled.

Including library routines in the interprocedural register allocation represents a sig-
nificant increase in the number of routines for the smaller benchmarks. These smaller

benchmarks also show a large increase in the number of candidates and the time running



benchmark | procedures candidates % of compilation time
floating-point | integer | floating-point | integer
compress 16 0 31 < 0.1% 0.3%
doduc 42 170 274 < 0.1% 0.2%
ear 107 88 220 0.2% 0.7%
eqntott 62 0 178 0.1% 0.8%
espresso 361 1 1,604 0.6% 2.9%
fpppp 13 36 52 < 0.1% < 0.1%
gee 1,451 4 3,204 0.7% 4.3%
hydro2d 44 15 175 < 0.1% 0.2%
mdljdp2 55 35 138 0.1% 0.5%
mdljsp2 52 43 165 0.2% 0.6%
nasa7 23 23 168 < 0.1% < 0.1%
ora 2 10 7 0.1% 0.2%
sc 154 18 344 0.2% 1.2%
spice 142 158 626 0.1% 0.2%
su2cor 41 41 239 < 0.1% 0.4%
swm256 9 14 114 0.1% 0.3%
xlisp 357 5 507 1.2% 2.3%

Figure 4.13: The time for solving the minimum cost flow problem for the floating-point
and integer candidates as a percentage of the program’s compilation time without inter-
procedural register allocation. The number of procedures and the number of integer and
floating-point candidates are also shown.
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benchmark procedures candidates % of compilation time
floating-point integer floating-point integer
compress 39 (+143%) 1 102 (+229%) |0.1% 0.7% (+133%)
doduc 163 (+288%) [180 (+6%) 570 (+108%) |0.2% 0.8% (+300%)
ear 195 (+82%) 1135 (+53%) 349 (+59%) |0.4% (+100%)| 0.6% (-14%)
eqntott 84 (+35%) 1 242 (+36%) [0.1% (+0%) | 0.9% (+13%)
espresso 400 (+11%) 2 (+100%) 1,713 (+7%) 0.5% (-17%) | 2.6% (-10%)
fpppp 149 (+1046%)| 49 (+36%) 354 (+580%) |0.1% 0.2%
gee 1,512 (+4%) 5 (+25%) |3,351 (+5%) 0.5% (-29%) 5.0% (+16%)
hydro2d 189 (+329%) | 28 (+87% 498 (+185%) |0.2% 0.9% (+350%)
mdljdp2 222 (+303%) | 48 (+37% 484 (+151%) 10.3% (+200%)| 0.7% (+40%)
mdljsp2 220 (+323%) | 56 (+30% 511 (+209%) |0.3% (+50%) | 0.8% (+33%)

ora 126 (+6200%)] 15 303 (+4228%)]0.2% (+100%)| 1.0% (+500%)
sc 240 (+56%) | 34 517 (+50%) |0.3% (+50%) | 1.4% (+17%)
spice 295 (+107%) |207 968 (+55%) |0.2% (+100%)| 0.3% (+50%)
su2cor 916 (+426%) | 61 598 (+150%) |0.2% 0.6% (+50%)
(
(

swm256 136 (+1411%)| 21 +217%) 10.2% (+100%)| 0.7% (4+133%)
+15%) [0.9% (-25%) 1.2% (-48%)

+50%) | 361
+280%)| 583

( (
( (
( ( )
( ( )
£ s ioe
nasa’? 184 (+700%) | 37 (+61%) 514 (4+205%) |0.2% 0.8%
( ( )
( ( )
( ( )
( ( )
( (
( (

xlisp 399 (+12%) 19

Figure 4.14: The time spent solving the minimum cost flow problem for the floating-point
and integer candidates as a percentage of the program’s compilation time without interpro-
cedural register allocation. Interprocedural register allocation is performed on both user
and library routines.
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the network simplex method. Despite these large increases, the time running the network
simplex method is still small. In fact, by compiling library routines, the time solving the
network flow problem as a percentage of the total compilation time can decrease, since

compiling library routines adds to the total compilation time.

4.8 Conclusions

Past interprocedural register allocators have used heuristics to determine the registers to
allocate to each procedure and to spill around each call. We have presented a polynomial
time interprocedural register allocator that uses a model of cost to represent possible al-
locations. Our allocator finds a minimum cost allocation for allocating registers to each
procedure and spilling registers around each call.

We found our allocator to be fast in practice and yield significant run-time improvements
for some benchmarks. Our interprocedural register allocator performs much better with a
dynamic profile. In addition, profiling benchmarks on input leading to short execution
times is sufficient for generating good results. With a static profile, our allocator yields
improvements that are competitive with Steenkiste and Hennessy’s interprocedural register
allocator. Performing interprocedural register allocation on library routines generates only

a small improvement in execution-time.
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Chapter 5

Proof of Correctness

In this chapter we prove that there is a bijection from solutions of the problem of inter-
procedural register allocation of locals with spilling (I.1 - I.7) in Section 4.2 to solutions of
the dual minimum cost flow problem (D.1 — D.9) in Section 4.2.1. To find an interproce-
dural register allocation we can solve the dual minimum cost flow problem and apply the
inverse function. Our proof is sfructured similar to Cameron’s for proving a bijection from
maximum weight k-antichain sequences to a network flow problem [Cam85].

For convenience we reproduce the interprocedural register allocation problem (I.1 -
1.7) in Figure 5.1 and the corresponding dual minimum cost flow problem (D.1 - D.9) in
Figure 5.2.

Given k registers and a call graph G, let Q(k, G) represent the set of valid interprocedural
register allocations following constraints I.1 - I.6, which excludes the maximization function
found in I.7. Also, let P(k, G) represent solutions to D.1 - D.8, which excludes the objective
function in D.9. Both P(k,G) and Q(k,G) contains solutions that are not optimal with
respect to their maximization functions.

For z € P(k,G), function I(z) shown in Figure 5.3 (same mapping as in Section 4.2.1)
maps solutions to I € Q(k,G). For I € Q(k,G), function z(I) shown in Figure 5.4 maps
solutions to z € P(k,G).

In this paper, we first prove that if z € P(k,G), then I(z) € Q(k,G) and if I € Q(k, &)
then z(I) € P(k,G). Next, we restrict z € P(k,G) and I € Q(k,G) to maximal solutions
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Interprocedural Register Allocation with Spilling
Constraints

1.1 forej € E, freeiin; < free_out;.

1.2 for e; € E, 0 < freeiinj, freeout; < k.

1.3 if ¢; € Ry, ¢; € C(P,), and ej € IN(P,), then p < free_out;.

1.4 if ¢; € Ry, ¢; € C(P,), and ej € OUT(P,), then p > free.in;.

1.5 if e; € IN(P,) and e; € QUT(P,), then free.out; > free.in;.

1.6 let ¢;,c; € C(Py). if ¢; € Ry, ¢j € Ry, and ¢; C ¢y, then p < g.
Mazimization Function

1.7 maximize ZC'EUA- R Wi™ YieeE S * (free_out; — free_in;)
7 i=1""

Figure 5.1: Defining an interprocedural register allocation of locals with spilling

Dual Minimum Cost Flow Problem
Dual Variables
(z;, y; for 4 such that ¢; € C(P)), (rj, t; for j such that e; inE)
Constraints
D.1 forc; € C(P),0<z;, y; < k.
D.2 if ¢;,¢; € C(Py) and ¢; ¢y, then z; +y; < k.
D.3 forc; € C(P), zj+y; <k+1.
D.4 fore; € E,0< 1y, t; < k.
D.5 for ¢; € C(P,) and ej € IN(R,), =; +t; < k.
D.6 for e; € OUT(P,) and ¢; € C(Py), ri +y; < k.
D.7 for e; € OUT(P,) and e; € IN(F,), mi +1; < k.
D.8 fore; € B, rj +1t; < k.
Objective Function
D.9 Maximize Y. cc(py w; * (zj +yj) + Leep S5 * (1 +15).

Figure 5.2: Dual minimum cost flow problem whose solutions map to interprocedural reg-
ister allocations with spilling.
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1z.1 I(z) = (R(z), free.in(z), free_out(z)).

12.2 for 1 < h <k, Rp(z) ={¢j|zj +y; =k +1,2; = h,c; € C(P)};
R(z) = (R1(2),..., Ri(2)).

1z.3 for ¢; € E, free.in;j(z) = rj; freein(z) = (freeini(z),..., freesinig/(z)).

1z.4 for ej € E, free.out;(z) =k — tj; free-out(z) = (free-outy(2),..., free.out|g (z)).

Figure 5.3: Maps solutions from P(k,G) to Q(k, G).

z1.1 Ve; € E,r; = free.in;, t; =k — free.out;
zl.2 V¢; € Ry, zj = hyy; =k+1~- h
zI.3"v’cJ‘ & Ule R;, if ¢j T ¢, ¢k € Ry, for some h, 1 < h <k, then

zI1.3a 1; is one less than the smallest value of m such that ¢; T ¢; and ¢ € Ry,.
y; =k — xj.

otherwise assume c¢; € C(P,),

zI1.3b for all edges e; € IN(P,),z; equals the smallest value of free.out;.
yj =k —zj.

zI1.3c if P, has no incident edge, then z; =k and y; = (k —z;) = 0.

Figure 5.4: Mapping from Q(k,G) to P(k,G).



65

in P(k,G) and Q(k,G), respectively. A solution in P(k,G) is maximal if z; and y; for
c; € C(P) and r; and t; for e; € E cannot be increased. We denote the set of maximal
solutions in P(k, G) as P(k,G). A solution in Q(k, G) is maximal if no additional candidates
can be allocated registers and the number of registers spilled along any call edge cannot
be decreased. We denote maximal solutions in Q(k, G) as Q(k,G). For both P(k,G) and
Q(k, () maximal solutions are not necessarily optimal with respect to their maximization
functions D.9 and .7, respectively. We prove that I(z) maps z € P(k,G) to I € Q(k, G),
and z(I) is its inverse.

Let maximal weighted solutions of P(k,G) be denoted P*(k,G). Solutions to P*(k,G)
maximize the objective function D.9, 3> . cc(p) wy* (z; +95) + Le;em ¢ * (rj +15). Since w;
and c; are positive values, P*(k,G) C P(k,G). Let maximal weighted solutions (optimal
solutions) of Q(k, G) be denoted Q*(k, G). These solutions maximize .7, ch N
YeeESi ¥ (freeout; — free.inj). Since wj is positive and the value of (free.out; —
freezin;) * s; for e; € E cannot be decreased in a maximal solution, Q*(k,G) C Qk,G).
We prove that I(z) maps solutions from P*(k,G) to Q*(k, G) and z(I) is its inverse.

Mappings I(z) and z(I) can be computed in linear time with respect to the size of the

call graph G.

5.1 Mapping Solutions between P(k,G) and Q(k,G)
Theorem 1 For any z € P(k,G), I(z) € Q(k,G).

Prove that conditions I.1 - .6 hold for I(z) € Q(k,G).

Prove (I.1) for alle; € E, freeiin; < free out;.
Proof: Let ej € E. By (D.8), (1) rj +t; < k. By ({2.8) and (lz.4), (2) freean; =1,
and free-out; = k — t;, which is equivalent to (3) t; = k — freeout;. Substituting r;
and t; in (1) by r; in (2) and t; in (3), yields freein; +k — free.out; < k and, thus.
freein; < freeout;. O

Prove (1.2) for ej; € E, 0 < free.in;, free.out; < k.

Proof: By (D.4), for ej € E, 0 <rj,t; < k. By (I2.8), freeiin; =rj, 50 0 < freeun; < k.
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Multiplying the constraint 0 < ¢; < k, by —1 yields —k < —£; < 0. Adding %k yields
0<k-—tj<k. By (Iz4), free.out; = k —t; and, thus, 0 < freeout; < k. O

Prove (1.8) if ¢; € Ry, ¢; € C(P,) and ej € IN(P,), then p < free.out;.
Proof: By assumption e; € IN(P,), ¢; € C(P,), and R(z) assigns ¢; to R,. By (D.5),
z; +t; < k, which is equivalent to (1) z; <k —t;. By (I2.2) and (1z.4), (2) p = z; and (3)
free.out; = k — t;. By substituting (2) and (3) into (1), p < free-out;. O

Prove (1.4) if ¢i € Ry, ¢; € C(Py), and e; € OUT(P,), then p > free.in;.
Proof: Assume e; € OUT(P,), ¢; € C(P,), and R(2) assigns ¢; to R,. By (D.6), (1)
ri +y; < k and by ([z.2), z; + y; = k + 1, which is equivalent to (2) y; = k + 1 — ;.
Substituting (2) in (1) yields r; + k +1 — z; < k, which is equivalent to r; + 1 < z; and,
thus, r; < z;. By (I2.3), free.inj = r; and by ([2.2), p = z;; therefore, free.in; <p. O

Prove (1.5) if e; € IN(P,) and e; € OUT(P,), then free-out; > free.in;.
Proof: Let e; € OUT(P,) and e; € IN(P,). Then by (D.7) r; +t; < k, which is equivalent
to (1) r; < k —tj. By (Iz.9) and (Iz.4), (2) free.in; = r; and (3) freeout; = k —i;.
Substituting (2) and (3) into (1) yields freein; < freeout;. (1

Prove (1.6) let ¢;,c; € C(Py). If c; € Rp, ¢cj € Ry, ¢; T ¢y, thenp <gq.
Proof: Let ¢; C cj, and assume R(z) assigns ¢; to R, and ¢; to Rq. Since ¢; is assigned to
Ry, by (I2.2), z; +y; = k+ 1 and, therefore, (1) y; = k+1—z;. Since ¢; T ¢;, by (D.2) (2)
z; +y; < k. Replacing y; in (2) by y; in (1) yields z; +k +1 —2; <k, which is equivalent

to z; + 1 < z; and, thus, z; < zj. By (2.2), p = x;, ¢ = z; and, therefore, p < ¢. O
Theorem 2 For any I € Q(k,G), z(I) € P(k,G).

Prove that conditions D.1 - D.8 hold for z(I) € Q(k, G).

Prove (D.1) for ¢j € C(P), 0 < zj,y; < k.
Proof: Let ¢; € C(P). If ¢; € Ry, for any p, 1 < p < k, then by (z1.2), ; = p and
yj =k +1—p. Because 1 < p <k, then 1 < zj,y; < E. Ifc; & Uf:[ R;, then by (21.3),
0 <z; < k. Since yj=k-1;,0<y; <k 0O

Prove (D.2) if ¢;,¢; € C(P) and ¢; C ¢j, then z; +y; < k.
Proof: Let ¢; T c;j.
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(a) Assume ¢j € Ry, 1 < h < k. By (21.2), zj = h. If ¢; € Ry, 1 < p < K, then by
(21.2), z; = p. Since ¢; T ¢j, by (I.6) p < h and, thus, (1) z; < x;. By (21.2), (2)
zj +y; = k+ 1. Equations (1) and (2) imply z; +y; < k. If ¢; & Uk_| Ry, then
z; < zj by (21.8a). Again, z; +y; < k.

(b) Otherwise, assume c; & UE_, Ry. Now, z; +y; < k by (2.8). If we can show x; < zj,

then z; +y; < k. Assume z; =h, 0 <h <k, and ¢j € C(Py).

(b.l)’Suppose there exists an element cm € Ry, 1 < q <k, such that ¢; C ¢y As
z; = h, by (z[.3a) there must exist ¢, € Rp41 such that ¢; C c,. By assumption
¢; T cj. If ¢; € Ry, then by (L.6), p < h+1. By (21.2), zi(= p) < za(=h + 1).
Thus, z; < z;(=h). fe; & U/5=1 R, then by (2.8a), z; < z,(= h +1). Thus,
T; < Zj.
(b.2) Suppose there does not exist an element ¢, € Ry such that ¢j T cm. Assume
ciyc5 € C(Py).
(b.2a) If IN(P,) is not empty, then by (zI.3b), for e; € IN(F,) such that
free_outy is minimum, (1) z; = free-out,.
(b.2al) If there is no ¢, € U§=1 R, such that ¢; C ¢, T ¢ (¢; can be ¢,),
then by (z[.3b), x; = z; and, thus, z; < z;.
(b.2a2) Otherwise, let ¢; C ¢, T ¢j and let ¢, € Ry, 1 <p < k. By (I.3),
(2) p < free-out, for every eg € IN(P,). Equations (1) and (2) imply
that (3) p < .
(b.2a2a) If ¢; is ¢, then by (21.2) x; = p and then by (3), xi(=p) < ;.
(b.2a2b) Otherwise, ¢; T c,. If element ¢; € Ry, 1 < ¢ < k, then by
(I.6), ¢ < p. By (21.2), &; = q. Since ¢ < p and by (3), p < z;, then
z; < xj. Otherwise, ¢; & U’;zl R,. By (zI.8a), =; < p and by (3),
Ty < Tj.
(b.2b) Otherwise, IN(P,) is empty. By (2I.30) x; = k. Since 0 < w; < K,

$i§.7:j. O

Prove (D.3) forc; € C(P), zj+y; < k+1.
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Proof: Assume c¢; € Ry, 1 < p < k. Then by (21.2), zj = pand y; = k+1 —p. So,
z; +y; <k+ 1. Assume c; & U, Ry. By (21.3), yj =k —xj. Thus, z; +y; <k O
Prove (D.4) for e; € E,0<rj,t; < k.
Proof: For ej € E, 0 < free.inj, free.out; < k. By (2I.1), r; = free.in; and, thus,
0 <rj; <k. Also, by (zI.1), freeout; =k —t;. So 0 < k —¢; < k. Subtracting k, we have
—k < —t; < 0. Multiplying by —1 yields k > ¢; > 0. O
Prove (D.5) for ¢; € C(P,) and e; € IN(P,), z; +t; < k.
Proof

(a) Assume ¢; € Ry, 1 < q < k, and ¢; € C(PR,). Let e; € IN(P,). By (1.3), (1)
q < free.outj. By (21.2), (2) z; = ¢, and by (2I.1), t; = k — free_out;, which is
equivalent to (3) free-out; = k—t;. Substituting (2) and (3) in (1) yields, z; < k —t;
and, thus, z; +1; < k.

(b) Assurpe c; & Uljzl R,.

(b.1) If there exists a ¢y, € Ry such that ¢; T ¢, then by (1.8) ¢ < free.out; for
ej € IN(P,). Since ¢; C cm, by (21.8a), z; < q and, therefore, (1) z; < free-out;.
By (2.1}, (2) free-out; = k—t;. Replacing free.out; in (1) by free.out; in (2)
yields z; < k —t; and, thus, z; +¢; <k.

(b.2) Assume ¢; € C(P,). If there does not exist a ¢, € U5=1 R, such that ¢;
Cm, then by (21.8b), z; = free.outy for e, € IN(P,) such that freeout, is
a minimum. Therefore, for e; € IN(F,), (1) z; < free.out;. By (2I.1), (2)
freeout; = k — t;. Replacing free_out; in (1) by free.out; in (2) yields, z; <
k —t; and, thus, z; +¢; < k. O

Prove (D.6) for e; € OUT(P,) and ¢j € C(Py), r; +y; < k.
Proof:

(a) Assume ¢; € R, and ¢; € C(P,). Let ¢; € OUT(P,). By (I.4), ¢ > free.in;, and
by (21.2), z; = ¢. Thus, z; > free.in;. By (2I.1), r; = free.in; and, therefore, (1)
z; > 1. By (21.2), (2) z; +y; = k + 1. Solving for z; in (2) and substituting this

equation for z; in (1) yields k + 1 — y; > r; and, thus, & > r; + ;.
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(b) Assume ¢; & U¥_; R, and z(I) assigns z; = h, 0 < h < k. By (2I.9), yj=k—h.

(b.1) Assume there exists ¢, € Ry, 1 < p < k, such that ¢; T ¢,. By (zl.3a),
there must exist ¢y, € Rp41, as 3 = h. By (1.4), (1) h+1 > free.in;. Since
yj =k —h, h = k—yj; and, thus, (2) h +1 =k —y; + 1. Substituting (2) into
(1) yields k —y; + 1 > free.in;. By (2I.1), r; = free-in;. Thus, k —y; +1 > ry,

which is equivalent to k + 1 > r; + y; and, thus, £ > r; + y;.
(b.2) Assume there does not exist ¢, € R, such that ¢; T ¢,. Let ¢; € C(P,).

(b.2a) If IN(P,) is not empty, then by (21.3b), (1) z; = free.out, for e, €
IN(P,) such that free.outy is minimum. By (I.1), free_out, > free.in;.
Since by (zl.1), r; = free.in;, then (2) free.out, > r;. Equations (1) and
(2) imply (3) z; > r;. Since by assumption z; = h, and y; = k — h, (4)
z; = k —y;. Equations (3) and (4) imply k —y; > r;. Thus, k > 7 +y;.

(b.2b) If IN(P,) is empty, then z; = k, and y; = 0. Since 0 < free.n; < k,
then free.in; +y; < k. By (2l.1), r; = freeun;. Thus, r; +y; < k. O

Prove (D.7) for e; € OUT(P,) and ej € IN(P,), r; +t; < k.
Proof: Assume e; € IN(P,) and e; € OUT(P,). By (L.5), (1) free.in; < free-out;. By
(2I.1), (2) 7y = free.in; and (3) k —t; = free_out;. Substituting (2) and (3) in (1), yields
r; <.k —t; and, thus, r; +¢; < k. O

Prove (D.8) for e; € E, rj+t; < k.
Proof: Let e; € E. By (I.1), (1) freein; < freeout;. By (2I.1), (2) freein; = r;
and (3) freeout; = k — t;. Substituting (2) and (3) in (1) yields r; < k — ¢; and, thus.

rr]-+tj§k;.[:}

5.2 Maximal Solutions in P(k,G) and Q(k,G)

A solution in P(k,G) is maximal if for ¢; € C(P) and e; € E, neither x;, y;, rj nor ¢; can
be increased. Let P(k,G) be the set of maximal solutions of P(k,G). P(k,G) C P(k,G).
Some solutions in P(k,G) may not be optimal, as they do not necessarily maximize the

objective function D.7.
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Let Q(k,G) represent the set of maximal allocations in Q(k, G). In Q(k,G), additional
candidates cannot be allocated registers given both the current set of candidates already
allocated registers and the registers spilled along the edges in the call graph. Also, in a
maximal allocation, fewer registers cannot be spilled along an edge given both the registers
spilled along other edges in the call graph and the candidates allocated registers in each
procedure. Some solutions in Q(k,G) may not be maximum weighted allocations.

More formally, a solution I in Q(k,G) is maximal if:
o Ve; & Ule R;,c; cannot be allocated to any Ry, 1<h<k.
e free.out; cannot be decreased and free_in; cannot be increased for any edge ¢; € £.

We now prove a few properties of P(k, G) before proving that if z € P(k,G) then I(z)
is a bijection onto Q(k,G) and z(I), for I € Q(k, @), is its inverse.

Theorem 3 Let z € P(k,G). Let c; € C(P). Thenzi+y; =k orz;+y; =k + 1.

Proof: Let ¢; € C(P,). Assume (1) z; + y; < k. Since z is maximal, x; and y; cannot be
increased. Therefore, there exist constraints on z; and y;. For ¢ T ¢iy Tm +y; = k or for
edge e, € OUT(P,), rg +y; = k. Let g be the value of z,, or ry constraining y;. Hence, (2)
q+vy; = k. There is also a dual variable s for an edge ey € IN(P,) or candidate cp, ¢; T ¢y,
that constraints z;, such that (3) z; + s = k. We also have the constraint (4) ¢ +s < k.
Solving for y; in (2) and replacing y; in (1) yields (5) z; + k — ¢ < k. Solving for w; in
(3) and replacing z; in (5) yields, k — s + k — ¢ < k and, thus, k¥ < s + ¢. This leads to a

contradiction, since by (4), ¢+ s < k. O
Theorem 4 Let z € P(k,G), ci,c; € C(P). Ifc; T ¢j, then z; < ;.

Proof: Since z is maximal, by Theorem 3 either z; + y; = k, which is equivalent to (1)
y;j = k — xj, or z; +y; = k+ 1, which is equivalent to (2) y; = k+1 —z;. Since ¢; T ¢, by
(D.2), (3) z; +y; < k. Substituting (1) into (3) yields z; + k£ — z; < k and, thus, x; < rj.
Substituting (2) into (3) yields z; + k + 1 — zj < k, which is equivalent to z; + 1 < 2 and,

thus, z; < ;. O
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Corollary 1 Let z € Pk, @), ¢i,¢j € C(P). If ¢; T cj and ¢j € Ry(z) for some 1 < v <k,

then z; < xj.
Proof: If ¢; € U’lf:l R,(z), then z; +y; = k + 1. From the proof of Theorem 4, z; < z;. O

Theorem 5 Assume ¢; € C(P,) and ¢; € Rp(z) for some 1 < h < k. Let z; = h. If
z € P(k‘,G), then

1. if there emists a ¢y € Ry(2) from some 1 < v < k, ¢; T cm, then there exists a

¢q € Rpq1(2), ¢ T g

2. Otherwise, assume there does not exist a cm € Ry(2), ¢; T cm. If IN(Py) is not
empty, then z; = k — tm for some ey € IN(Py).

3. Otherwise, if there does not ezist an e; € IN(P,), z; = k.

Proof of (1)
Let z; = h. By Theorem 4, for ¢, T ¢, zy < ;, and for ¢; T ¢y, 7; < 2. By assumption,
¢m € Ry(z) and ¢; T ¢y By Corollary 1, x; < . Let c; be the candidate such that z, < h

for all ¢, C ¢j and z,, > h for all ¢; T ¢y. Since zy, < h for all ¢, C cj, then z; =ua; = h.

(1a) Assume for all ¢, such that ¢; C cu, we have (1) z, > h + 2. By Theorem 3,
Ty +yu=kork+1 Hfa,+y, =k thenzy, =k —yy, and by (1), k —yy > h + 2
and, thus, k —h —2>yy. Ifzy+y, =k+1,thenk —h ~12> y,. In both cases,

zi(= h) + yu < k. Thus, z is not maximal, as z; can be increased by 1 by D.2.

(1b) Otherwise, assume for each cy, such that ¢; C ¢, and z, = h + 1 that ¢, & Rp41(2).
Since zy + yu = k, yu = k — h — 1. Again, z; can be increased. Therefore, there must

be an element c,, ¢; C ¢; T ¢, such that ¢, € Rpy1(2).

Proof of (2)
Let z; = z; = h. Let ¢; be the candidate such that for all 2, < h, ¢, T ¢;. Since
Cm & U'lle R,(2) for all ¢; C cm, then from the proof of (1), there is no candidate greater

than ¢; in the partial order. The only constraint on x; is ¢, for eg € IN(Py).
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By assumption, IN(FP,) is not empty. Since z; = h and z is maximal, there must be an
edge ey € IN(Py) such that t, = k — h to constrain the value of z;. Thus, z; = z; =k —t,.
Proof of (3)
As in the proof of (2) above, let ¢; be the candidate such that for all z, < h, ¢, E ¢;j. Again
there can be no ¢, such that ¢; T cp. If z; = h, b <k, then y; > 0, as z; +y; = k. If
there does not exist an incident edge on P,, then z; can be increased. Since z is maximal,

m]-:k'andyj:(k-xj)=0. O
Theorem 6 Assume c; € C(P,), z; =h, ¢; € Rp(2), and 0 < h < k. Ifz € P(k,G), then

1. if there exists a candidate ¢; € C(P,), such that ¢; T ¢; and ¢; € Uﬁ:l Ry(z), then

there is a candidate ¢y T ¢; such that cm € Rp(2)

2. Otherwise, assume there is no candidate c; T c¢; such that c; € US_, Ry(2). If

OUT(P,) is not empty, then ry = z; for some eg € OUT(P,).

3. Otherwise, if there does not ezist an eg € OUT(P,), then z; = 0.

Proof of (1)

Let z; = h, and ¢, T ¢;. Let ¢; be the candidate such that for all z, < h, ¢y T ¢ and
xy > hfor all ¢; © ¢y. Thus, z; = h, and ¢; € ¢;.

If there exists a candidate ¢, € Rp(z), then (1) is true. Otherwise, assume there
does not exist ¢;; € Rp(2). Then since z; = h, by (12.2), ¢; € Rp(z). As z is maximal,
Yy =y =k —zj(= h). If for all ¢, such that ¢, C cj, we have x, < h, then y; can be
increased since y; = k—h and 2, +y; < k by D.2. But this is impossible since z is maximal.

Proof of (2)

Let z; = h. As in the proof of (1), let ¢; be the candidate such that for all @, > h, ¢; & ey
Since by assumption there does not exist a candidate ¢y, € Uf,’__:l Ry(z), such that ¢, C ¢,
then from the proof of (1), there cannot be a candidate c, such that z, < h and, thus,
there is no candidate ¢, such that ¢, T ¢j. By assumption OUT(P,) is not empty. Since
cj & U’i‘,’:1 R,(z), there must be a candidate e, € OUT(P,) such that r, constrains the value

of yj to k —h. Thus ry = z; = z; = h.
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As in the proof of (2), let c; be the candidate such that for all 2, > k, ¢; C ¢,. For z; = h,
h > 0, then y; < k. If there is no outgoing edge in P, then the value of y; can be increased

to k. But, then z is not maximal. Hence z; = z; = 0. O
Theorem 7 If I € Q(k,G), z(I) € P(k,G).

Proof: Let 2/ = z(I) for I € Q(k,G). Assume candidate c; is assigned to Rp,1 < h < k, in
I.In 2, z; = h and y; = k+ 1 — h. For candidates not assigned a register in I, z; +1y; = k
in z/. I(2'), in turn, assigns ¢; to Ry if z; = h and y; = k+ 1 — h. In addition, in 2/
rj = freein;j and t; = k — freeout; for e; € E. I(2') maps rj to free.in; and k —t; to
free_out;j. Thus, I is equivalent to I(z').

Assume 2’ = z(I) is not maximal in P(k, G). Then we can increase z; +y; for ¢; € C(P),
or either r; or t; for e; € E. If we can increase z; + y; then its value increases to k + 1.
However, then I would not be maximal, since ¢; would be allocated a register in I(z') and,
therefore, can be allocated a register in I. Similarly, since r; = free.in;, if the value of
r; can be increased then free.in; in I can also be increased. If {; can be increased then

freeout; can also be decreased since free.out; = k —t;. In either case, the values of

free.in; and free_out; are then not part of a maximal solution in I(2') and, therefore, I.
Theorem 8 If z € P(k,G), then I(z) € Q(k,G).

Proof:
Let z € P(k,G). For I(z) € Q(k,G), we prove the following: (1) if ¢; ¢ U*_, R, (=),
then ¢; cannot be added to Ry(z), 1 < h < k; (2) the value of free_in; cannot be increased

for e; € E; and (3) the value of free_out; cannot be decreased for e; € E.

(1) Let ¢; € C(P,) and ¢; & Ule Ry. Assume z; = h, 0 < h <k.

(1a) We first prove that ¢; cannot be assigned to R,,p > h. By Theorem 5, if there
exists an element ¢, € Ule R,(z), such that ¢; T ¢, then there is an element cp,
¢; T cp such that ¢, € Rpy1(2). By (L.6), p < h+ 1, so ¢; cannot be assigned to

Rp,p > h. Otherwise, if IN(P,) is non-empty, then by Theorem 5, there exists an
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edge eq € IN(P,) such that z; = (k~1ty) = h. By (zI.1), free.out, = (k—t,) = h. If
c; is added to Ry, p > h, then p > free.outy, but by (1.3), p < free_out,. Otherwise,
there is no incident edge on P,. Again, by Theorem 5, z; = h = k. Since there is no

Rp,p > k, then ¢; cannot be assigned Rp,p > h.

(1b) We now prove that ¢; cannot be added to Rp,p < h. If there exists a candidate
Cn € U§=1 R,(z), such that ¢, T c¢;, then by Theorem 6, there is a candidate c;,
¢j T ¢, such that ¢; € Ru(z). By (1.6), if ¢; € Rp, then p > h, which leads to a
contradiction. Otherwise, if there is no candidate ¢, € Ule R,(2), ¢n T ¢, then
by Theorem 6, if there exists an e, € OUT(P,), then ry = x; = h. By (1.4), if
ci € Ry(2), e € OUT(P,), then p > free.ing, By I2.3, freesing = rg = h and,

therefore, ¢; cannot be added to register R,, p < h. If there is no outgoing edge from

P,, then by Theorem 6, z; = h = 0. Again, ¢; cannot be added to a group R, such
that p < h.
(2) We now show that for e; € E, free.in; is maximal if z is maximal. Let r; = h,

e; € OUT(P,). I(z) maps the value of r; to free_in; and k —t; to free.out;. There
are three constraints on r; in z: (a) r; < k ~t;; (b) if ey € IN(P,), then r; <k — 1,
and, (c) if ¢; € C(Fy), then r; <k — y;. Since z is maximal, r; must be equal to one
or more of these upper bounds. I(z) maps these constraints to the three constraints

“on freein; in Q(k,G).

Case(a) Assume r; = k — t;. By I(z), freesin; = r; and freeout; = k — ;. Thus,
free_in; = free.out;. By (I.1), free_out; is an upper bound on free.in; and.
thus, free.in; is maximal.

Case(b) Assume r; = k — t, for e, € IN(P,). Then by ([2.8) and (Iz.4), free.in; =
freeout;. By (1.5), free out; is an upper bound on free.in; and, thus, free.in;

is maximal.
Case(c) Assume r;(= h) +y; =k for ¢; € C(P,), e; € OUT(P,).

(1) Assume c; € U¥_, Ry(2). Then (1) z; +y; = k+ 1. Since ri(= h) = k — y;.
then (2) y; = k—h. Equations (1) and (2) imply z; = h+1, and ¢; € Rj41(2).
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Since r; = h, then free.in; = h by ([2.3). By (I.4), h+ 1 > free_in; and,

thus, free.in; is maximal.
(2) Otherwise, assume ¢; ¢ U¥_; R,(z). Let z; = v. One of three cases hold.

(a) If there exists a candidate ¢, € U’;:l Rs(z) such that ¢; T ¢, then by

Theorem 5, there is a candidate ¢, € Ry4+1(2) and, thus, z, = v + L.

Since ¢ € Rys1(2), yn =k +1 -z, =k —v. Since z; = v and ¢; is not

mapped to a register (zj+y; = k), then y; = k—v. Thus, y; = yn. Since

there is already a constraint, r;+y, < k (D.6), the constraint r;+y; < k

does not further limit the value of r;.

(b) If there does not exist a candidate ¢, € U, Rs(2) such that ¢; T
¢m, then if IN(P,) is not empty, by Theorem 5, x; = k — t, for some
eqg € IN(Py). Then y; = k —zj = tg. As there is already a constraint
ri +ty < k (D.7), the constraint r; +y; < k does not further limit the
value of ;.

(c) If IN(P,) is empty, then z; = k and, since z is maximal and ¢; ¢
Ule Rs(z), yj = 0. The constraint r;+y; < k does not further constrain

the value of r;. O

(3) We now show that for e; € E, free.out; cannot be decreased, if z is maximal. Let
t; =k—h, e; € IN(P,). I(z) maps the value of r; to free.in; and k —#; to free-out;.
There are three constraints on t; in z: (a) t; < k—r; (b) if 5 € OUT(P,), then
t; < k—rj; and, (c) if ¢; € C(P,), then t; < k — z;. Since z is maximal, ¢; must be
equal to one or more of these upper bounds. I{z) maps these constraints to the three

constraints on free_out; in Q(k,G).

Case(a) Let t; = k —r;. Equivalently, k —¢; = r;. Since z is maximal, ¢; is maximal.
Thus, k—t; is minimal. By (Iz.8) and (Iz.4), free.out; = k—t; and free.in; = r;
and, thus, free.in; = free-out;. By (I.1), free_in; is a lower bound on free_out;

and, thus, free_out; is minimal.

Case(b) Assume r; = k—t; for e; € OUT(P,). Then by (Iz.3) and (Iz.4), free.in; =
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free_out;. By (I.5), free.in; is a lower bound on free_out; and, thus, free.-out;

is minimal.
Case(c) Assume (cl) x; =k — t; for ¢; € C(B).

(1) Assume ¢; € Ru(2), 1 < h < k. Since ¢; € Rp(2), (¢2) z; = h. By
(21.8), (c3) free-out; = k — t;. Substituting (c2) and (c3) into (cl) yields
h = free.out;. By (I.3), h is a lower bound on free_out; and, therefore,
free_out; is minimal.

(2) Otherwise, assume ¢; & Rp(z), 1 < h <k, z; = h. One of the following
three cases hold.
(a) Let ¢m € U¥_; Ry(2) and ¢m T c;j. By Theorem 6, there exists a cp €
Ry (z) such that ¢, T ¢;. By ([z.2), x, = h. As there exists constraints
zo(=h)+t; < kand zj(=h) +t; <k (D.5), z; does not further constraint
the value of ¢;.
(b) Assume there does not exist a ¢y € U¥_, Ry(2) such that ¢, T cj. If
IN(P,) is not empty, then by Theorem 6, z; = 7, for some e; € IN(F,).
Since by (D.7) there is already the constraint ry + ¢; < k, the constraint
xj+t; <k (D.5), does not further limit the value of ¢;.
(c) If IN(P,) is empty, then by Theorem 6, z; = 0. Since the constraint
between c¢; and e; € IN(P,) is z; +t; < k, z; does not limit the value of

t;. O
Theorem 9 IfI € Q(k,G),z € P(k,G), and I(z) = I, then = = z(I).

Let e; € E. For rj and t;, I(z) maps r; to free.inj and k — ¢; to free_out;. Mapping
z(I) simply inverts the mapping. Thus, z = z(I).

Assume ¢; € Rp(2), 1 < h <k, z; =h,and y; = k+1— h, then I(z) = I maps ¢; to
Ry,. If ¢; € Ry, then z(I) assigns z; = h and y; = k + 1 — h. Thus, z = z(I).

Otherwise, ¢; & Ry, (z). Let z; = h and, therefore, y; = k — h since z is maximal.

(a) Assume ¢; CC ¢ such that ¢, € U’,j:l R,(2). By Theorem 3, there exists a c;, ¢; C ¢j,

such that I(z) maps ¢; to Rp41 (x; = h+1). Therefore, by Corollary 1, there cannot
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exist a ¢y € Rp(2) such that ¢; T ¢y, since by assumption z; = h. Since ¢; C ¢; and

¢j € Rpq1, by (21.8a), z(I) maps z; to h and y; to k — h.

(b) Otherwise, there does not exist a ¢; C ¢, such that ¢y, € Ui—“zl R,(z). Let ¢; € C(R).

(b.1) If IN(P,) is not empty, then by Theorem 5, (1) z; = k — t, for some e, €
IN(P,). As z is maximal, (2) y; =k — z; = t,.
Since ¢; has a constraint z; +t, < k for every e, € IN(F,), and z; + t;, = k, this
implies t, > t, for every e, € IN(F,). Thus, t4 is maximal. Since t, is maximal,
and I(z) maps k—t4 to free.outy in I, then free.out, is minimal for all edges in
IN(P,). Since free_outy is minimal, by (2I.3b), x; is assigned free.out; = k—tg,
and y; is assigned t,. Thus, z; and y; match their values in (1) and (2).

(b.2) Otherwise, assume P, has no incident edges. In this case, by Theorem 5, z; = k

and y; = 0. By (zl.3¢), z(I) assigns k to z; and O to y;. O
Theorem 10 If z € P(k,G),I € Q(k,G), and z(I) = z, then I = I(z).

Assume I # I(z). Let I’ = I(z). By Theorem 10, z(I') = z. Since z(I) = z by assumption,
2(I') = z = z(I). By mapping zI.1 - z1.3, if I # I', then 2(I) # z(I'). Hence, I = I' and
I'=1I(z). O

Corollary 2 For I € Q(k,G), z(I) is a bijection onto P(k,G) and I(z) is its inverse.

This follows from Theorems 9 and 10. O

5.3 Mapping solutions between P*(k,G) and Q*(k,G)

Corollary 3 Let z € P*(k,G) and I € Q*(k,G). I(z) is a bijection onto Q"(k.G) and

z(I) s its tnverse.

Proof: Since w; > 0 for ¢; € C(P) and s; > 0 for e; € E, P*(k,G) C Pk, G).
Since w; > 0 and —s; * (free_out; — free.in;) cannot be decreased in a maximal solution,

Q*(k,G) C Q(k,G). For z € P*(k,G), function (D.9):
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Seiecpy Wi * (T +yi) + Leep i * (15 +Yj) (1)

is maximized. Since 3 . cc(pywi * k and Y., cp cj * k are constants, equation (2) below is

maximal if and only if equation (1) is maximal.

Yeieop) Wi * (Ti + Ui) — Leecpy wi * k
+ ZGjEE Sj * (7’] + t]) - ZC_]‘EE §j * k (2)

= DleieC(P) Wi * (zi +yi — k)

+ e epsi* (rj +t — k) (3)
= el r +Yeem i x (rj +t5 — k) (4)
= el Wi Yeer Syt (k —t5 —rj) (5)
= ZCiGULI R, Wi~ ZejeE sj * (free_out; — free.in;) (6)

Equation (4) follows from (3) since for z € P(k,G), zi+y; =k+1forc; € Ut_, Ry, and
T, +y; =k for ¢; & U§:1 R,. Equation (5) follows from (4), since r; + t; — k is equivalent
to —(k —t; — ;). Equation (6) follows from (5) since k — ¢; equals free-out; and r; equals
free.in; for e; € E. Equation (6) is the maximization function for interprocedural register
allocation with spilling (1.7).

By Corollary 2, I(z) is a bijection from maximal solutions in z € P(k,G) to Q(k,G),
and z(I) is its inverse. For each z € P(k,@), we can compute a weight using D.9 which
differs from the weight of I € I(z) (1.7) by only a constant that is independent of z, as
shown above. Thus, I(z) restricted to z € P*(k,G) is a bijection onto I € Q*(k,G), and

z(I) is its inverse function. O



Chapter 6

Mapping to Minimum Cost Flow
Problem

In this section we present a transformation of the dual minimum cost flow problem for
finding a save-free allocation from Section 4.1 to a minimum cost flow problem. For ease of
reference, the dual minimum cost flow problem is shown in Figure 6.1. The transformation
from the dual minimum cost flow problem for finding an interprocedural register allocation
with spills is a simple extension and will be discussed later.

In a minimum cost flow problem, let N be a set of nodes and 4 be a set of arcs, which
are pairs of nodes from N. Let f;; represent a flow from node ¢ € N to node j € N along arc

(i,7) € 4, and let a;; be the cost of the flow f;; [Ber91]. The minimum cost flow problem

Dual Variables
xj, yj for j such that ¢; € §
Constraints
Al forc; €5,0<xj, y; <k
A.2 if¢,cj € S and ¢; C¢j, then z; +y; < k.
A3 forc; €8, zj+y; <k+1
Objective Function
A.4 Maximize }_; c5w; * (T + y;)-

Figure 6.1: Dual minimum cost flow problem for finding a save-free interprocedural register
allocation.



80

Dual Variables
Partial Order Dual Minimum Cost Tp, Yp, Tqs Yg
on Candidates Flow Problem
Constraints
1) 0 < xp,yp, Tq,Yg < k
2)xp+yp <k+1
3)Tgty, <k+1
4) Tqg+Yp <k

Objective Function
maximize wy * Tp + Wy * T4+
Wp * Yp + Wq * Yg.

O <=Xp’Xq’Yp, yq<= k

Figure 6.2: Partial order and dual minimum cost flow problem based on partial order.

minimizes > (; jyea a;j fij subject to

S fy— Y, fi=g,VieN.
{jlG.5)eA} {il(7)eA}

The flow on arcs incident on node ¢ minus the flow on outgoing arcs from node i is a
constant, g;. The value g; is called the divergence of node i.

Figure 6.2 presents a partial order on the candidates of a call graph, in which ¢ C p,
a graph of the dual minimum cost flow problem for the partial order, in which there are
two dual variables for each candidate, and a formal definition of the dual problem. The
relationship between a minimum cost flow problem and a dual minimum cost flow problem
can be represented by a table. In Table 6.1 the dual variables of the dual minimum cost
flow problem shown in Figure 6.2 appear in column 1. Each dual variable corresponds to a
node in the minimum cost flow problem. The objective coefficients of the dual variables are
shown in the last column. The objective function is the dot product of the entries in the
first and last column. The remaining columns show the constraints on the dual variables.
For example, column 2 represents the constraint z, +yp, < k + 1 (there is a 1 in rows
and yp; empty blocks represent the value 0).

The minimum cost flow problem’s primal variables, which represent the flow along each
arc in the minimum cost flow problem, appear in row 1. For example, fz,,, in row 2

represents the flow from node z, to yp. There is a primal variable for each constraint in the
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1 2 3 4 5 6 7 8 9 10 11 12 13
fz,,y,, fquv fIqu fzp?l fxv?'-? lez?ﬁ f:z:,,?.; f!/p?s fy,,?g f}/q?'f fy,,?g
z,| 1 1| -1 = w,
Zq 1 1 1 -1 =,
Yp 1 1 1 -1 = Wy
Yq 1 ! 1=
<E+1| <k [<k+t1| <k | <0|<k|<0|<k|<0|<k|[<0

Table 6.1: First step in finding a minimum cost flow problem.

dual minimum cost flow problem. For example, fz,y,, in column 2, is the primal variable for
the constraint z, +yp < k+1. Variable fz,2,, in column 5, represents the constraint z, < k,
and fz,7,, In column 6, represents the constraint =, > 0. Since flows exist between pairs
of nodes and there is only one node represented in columns fz,7, and fg,7,, we represent
the second node as “?;” and “75”, respectively. Through a series of transformations on the
table, we will have two entries in each column.

In the minimum cost flow problem, the entry under each flow f in the last row of the
table represents the cost of the flow along f. The function we are trying to minimize in
the minimum cost flow problem is the dot product of the first and last row. The remaining
rows represent the flow divergence for each node. For example, fz,y, + fep10 + fz,70 = Wps
that is wy is the flow divergence of node zp.

The equations given in Table 6.1 do not conform to a minimum cost flow problem. Two
nodes are needed to represent flow along an arc. In columns 5 through 12, there is a single
non-zero value, representing a single node. Each column should have a single 1 and a single
-1, since each flow adds to the divergence of one node and subtracts from the divergence
of another. For a node, a -1 in a row represents an incident edge (incoming flow) on that
node and a positive 1 represents an outgoing edge (outgoing flow) from that node.

We transform the equations represented by Table 6.1 into an equivalent set of equations
that describes the minimum cost flow problem given above [Zak95]. We perform three
transformations. As a flow adds to the divergence of one node and subtracts from the
divergence of another, we want each column to have a single 1 and a single -1. We can
multiply rows y, and y, by -1. Columns 2 through 4 now have a 1 and a -1, since arcs

only join nodes z, and z, with nodes y, and y,. To generate an additional 1 in columns 5
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1 2 3 4 5 6 7 8 9 10 11 12 13
fiEpyv fzrl?/n fqu'l fm,,D sz:,, fqu fqu f?/pD fDLlj,, fy,,D ny,,

7, 1 1 [ -1 = w,

Tq 1 1 1 -1 = w,

yp ..]_ -1 "'1 ]. = "“u)p

Yq -1 -1 1 = —wWy

D 1 -1 1 -1 -1 1 -1 1 =
SET1 <k <R+ <k | <0<k |<0|<k|<0|<k|<O

Table 6.2: Next step in finding a minimum cost flow problem.

1 2 3 4 5 6 7 8 9 10 11 12 13
fa:,,y,, fzqy,, fa:,,y,, fz,,D sz,, fz,,D fD:c,, fy,,D ny,, fy,,D ny,,
Tp 1 1 -1 = Wp
Tq 1 1 1 -1 = W,
Yp -1 -1 -1 1 = =Wy,
Yo 1 T 1 =,
D -1 1 -1 1 1 -1 1 -1 =0
<E+1| <k |<k+1|<k| <0 |<k|<0|<k|<0|<k|<0

Table 6.3: Next step in finding a minimum cost flow problem.

through 12, we add a row D whose entry in column i, ¢ > 1, is the sum of columns ¢ in rows
2 through 5. D represents an additional node in the minimum cost flow problem. Since
row D is a linear combination of other rows in the table, adding row D does not change the
solution of the minimum cost flow problem. Table 6.2 shows the current table.

The final transformation is to multiply the entries in row D by -1. There is now a 1 and
-1 in each column. Table 6.3 gives the final solution.

We can read the the minimum cost flow problem from Table 6.3. For example, for node
z, (row 2), there are two outgoing arcs from z,, one that is incident on y, and the other
that is incident on D, and there is one incoming arc from node D. The divergence of node
z, is wy. The divergence of node y, is —wy,. For fz,y, (column 2), the cost of the flow is
k + 1 (column 2, last row).

As we know the dual minimum cost flow problem has an optimal solution provided it is
feasible and bounded, which is true; hence, so does the minimum cost flow problem [Ber91].
In fact, the objective functions for each problem are equal.

For the dual minimum cost flow problem for interprocedural register allocations with
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spilling, we can treat the dual variables for the edges as we treat the dual variables for the

candidates above.
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Chapter 7

Allocating Registers to Globals

Global register candidates include global variables, procedure addresses, and global array
and record addresses [Wal88]. Allocating registers to global candidates is less straight-
forward than allocating registers to local ones. Let procedures P and () reference global
variable ¢ (see Figure 7.1). Assume an intraprocedural register allocator assigns g a register
in P and Q. As P modifies the value of g, P saves the value of g before the call. When
we return to P, the value of g will be reloaded, assuming it will referenced again in P. We
refer to the store of g preceding the call and the load upon return as a store/load of g. The
value of g is similarly loaded in Q. If @ modifies g, it will save its value so P can reload the
correct value of g. We refer to this load and store of g across the call to @ as a load/store of
g. If we can somehow allocate global variable g a common register along that path between
P and @ in the call graph, we can avoid these extra loads and stores.

Whether to allocate a register to g along a call path is not a simple decision. There
may be local candidates in the procedures along the call path. As a result of allocating g a
register along the path, these local candidates may not be allocated registers. Also, there
may be additional register spilling of local candidates if fewer registers are available.

In the next section, we show that finding an assignment of registers to globals is NP-
Complete. In the following sections, we present two algorithms that avoid loads and stores
of selected globals by keeping them in registers across procedures. We assume that aliased

globals are not allocated registers.



85

Figure 7.1: A global can be allocated a regfster along a path in the call graph.

7.1 NP-Complete

We prove that the decision problem, “find an assignment of registers to globals using at
most R registers,” is NP-Complete. We will reduce Graph k-Colorability to the problem of
Interprocedural Register Assignment of Globals (IRG). Let G. = (V¢, E;) be an undirected
graph. The graph is k-colorable if each node can be assigned one of k£ colors such that no
edge joins two nodes assigned the same color [GJ79].

In the IRG problem, let call graph G = (P, E), in which P is the set of procedures and
E is the set of call edges. If procedure P, € P, references global g, we refer to the instance
of g in P, as g,. Let Glob be the set of instances of globals referenced in each procedure
P, € P, and let C(P) be the set of locals referenced in each procedure P, € P. Let R be a
sequence of registers. We assume instances of the same global must be assigned the same
register.

We map solutions from the k-Colorability problem to the IRG problem, in which there
are k registers available. For each solution to the colorability problem, we add a main routine
to the IRG problem. Each node i € N, in the graph colorability problem maps in IRG to
a unique procedure p(i) that references an instance of a unique global g(i). For i € V..
procedure p(i) is called only by routine main. Edge e € E;, which joins nodes ¢ and j in the

graph colorability problem, maps to a unique procedure p(e) that references an instance of
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Graph K~Colorability Register Assignment of Giobals

K=2) (K = 2 registers)

main
(color 1)

B (o4
(color 2) ‘ gp (r1) hc (r2) o ip (r1)

N\

9 hg Fl ne ir
(rl) (r2) (r2) (r1)

(color 1)

(@) (b)

Figure 7.2: An example of a restricted call graph.

globals g(i) and g(j). Procedure p(e) is called only by procedures p(z) and p(j). Figure 7.2
shows an undirected graph (a) in the graph colorability problem and the corresponding
call graph (b). Node g in the undirected graph maps to procedure B, which references
global gp (gp is an instance of global g) in the call graph; node h maps to procedure C,
which references global h¢; and, node ¢ maps to procedure D, which references global ip.
For the edge between g and h in (a) we create procedure E, which references global gz
and hg and for the edge between h and ¢ we create procedure F, which references globals
hr and ip. The interference relation between globals g(i) and g(j) in procedure p(e) for
e € E, represents the interference relation between ¢ € N, and j € N, in the k-Colorability
problem.

We refer to procedure p(i) such that ¢ € N as a levell procedure (B, C, and D are levell
procedures in Figure 7.2(b)). Let e € E, be an edge in the k-Colorability problem. Then
procedure p(e) is a level2 procedure (procedures E and F in (b) are level2 procedures). In
the level2 procedures, we assume the live ranges of the globals interfere and, therefore, these
globals must be assigned different registers. We assume instances of each global must be
assigned the same register. For example in (b), global gg in E must be assigned the same

register as gp in B.



Theorem 11 Interprocedural Register Assignment of Globals (IRG) is NP-Complete.

Proof. 1) IRG € NP.

Assume there are R registers. Given a register assignment, we can check if all interfering
globals are assigned different registers in polynomial time in the number of globals.

2) Graph k-Colorability reduces to IRG.

Each node i in Graph k-Colorability is assigned a level! procedure, p(7), and is assigned
an instance of global g() referenced in procedure p(i). Assume node i is assigned color m,
1 < m < k. We assign instances of global g(%) register r,. If there is an edge e between
node i and j then there is a level2 procedure p(e) called by p(i) and p(j). Both g(i) and g(j)
are referenced in p(e) and assigned different registers since ¢ and j are assigned separate
colors.

Assume we have a register assignment of globals. The register assigned to an instance
of a global in a level! procedure is also assigned to another instance of that global in level2
procedures called by the levell procedure. As each level2 procedure represents an edge e
between nodes i and j in the colorability problem, and globals g(i) and g(j) are assigned
different registers in IRG, then we can use their register numbers to assign different colors to
nodes i and j. For example in Figure 7.2(b), globals gg and hg in E are assigned registers
r, and 7y, respectively. In (a), we assign node g color 1 and node h color 2. In procedure
F, we assign global hp register r, and assign ir register r;. Therefore, we assign node ¢ in

(a) color 1. O

7.2 Wall’s Model of Interprocedural Allocation of Globals

In the next two sections we present models for interprocedural register allocation of globals.
An intraprocedural register allocator generates initial loads and terminal stores of a global
even if it allocates a register to the global throughout a procedure. To avoid these loads and
stores, a global can be assigned the same register across procedures. An interprocedural
register allocator can keep a global in a register without loads and stores at procedure
boundaries.

Wall[Wal86] proposes allocating a register to a global throughout the entire execution
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of a program. Wall assigns locals and globals to groups and assigns registers to the groups
whose members are most frequently referenced. All the members of a group can be assigned
the same register. Since a global is allocated a register throughout the entire program, at

most one global can be assigned to a group.

7.2.1 Incorporating Wall’s Approach

Wall’s approach to register allocation of globals can be easily incorporated into our minimum
cost interprocedural register allocator. Assume k registers are available for interprocedural
register allocation. Let Glob be the set of the most frequently referenced globals in a
program, such that |Glob| < k. We define a partial order whose structure is a chain on the
candidates in Glob. Two candidates related in a partial order are assigned different registers.
As before a partial order has a structure that is a chain on the local candidates in each
procedure. Since the local candidates cannot be assigned the same register as the global
candidates, we extend the partial order such that each local candidate is less than the global
candidates!. For example, in Figure 7.3, there is a partial order whose structure is a chain
relating the two global candidates, g1 and g2, with the local candidates of each procedure.
In the partial order, local candidates m, g, and t are less than the global candidates.

Figure 7.4 presents a dual minimum cost flow problem that allocates registers to globals
throughout the entire program, and only registers allocated to local candidates can be
spilled. In the dual minimum cost flow problem, we add a pair of dual variables (z;,y;)
for each global g; € Glob. If z; +y; = k + 1 for g; € Glob, then g; is assigned register z;;
otherwise, g; is not allocated a register. As is the case for local candidates, associated with
each global g; is an integer weight w; > 0. Let C(P) be the set of local candidates in the
call graph and C(P,) be the set of local candidates in procedure P,.

The dual minimum cost flow problem in Figure 7.4 is nearly identical to the dual min-
imum cost flow problem for interprocedural register allocation of locals with spilling. As
mentioned above, each local candidate, ¢; € C(P), is less than each global candidate,

g; € Glob, in the partial order. Constraints D.1, D.2, D.3, and D.6, which applied only

1We choose not to treat each global candidate as a separate procedure that can call each local procedure,
since registers allocated to global candidates are not spilled across calls in Wall’s approach.
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Call Graph G

Globals

=]

©

Figure 7.3: Example call graph, in which m, ¢, and ¢ are local candidates and g; and g,
are global candidates. A partial order relates globals g1 and g2. Each local candidate is less
than the global candidates in the partial order.

to local candidates when computing an interprocedural register allocation of locals with
spilling, now apply to global candidates as well. By D.1, the bounds on the dual variables
for global candidates is the same as for local candidates. For c; € Glob, let z; +y; =k + 1.
Constraints D.2 and D.3 imply that if ¢; is assigned register z;, than that register is not
available for candidates less than ¢; in the partial order. For example, let ¢; T ¢j. Then by
D.2, z;+y; < k. This implies that z; < z;. By constraint D.6, r;+y; < kfore; € OUT(Py)
and c; € GlobJC(P,). If ¢; € Glob is allocated a register (z; +y; = k + 1), then r;, the
number of free registers on entrance to call edge e;, is less than z;, the register number
assigned to c;.

A register allocation and assignment of the call graph G in Figure 7.3 is shown in
Figure 7.5(a). We assume three registers are available. Registers are allocated to global
candidates g; and go and local candidates m and t. A register is spilled along edge e;.
Figure 7.5(b) shows the graph of a dual minimum cost flow problem whose solution corre-

sponds to the register allocation and assignment in (a). For candidate g;, dual variables
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Dual Variables
(x;, y; for @ such that ¢; € C(P)UGlob), (r;, t; for j such that e; € E)
Constraints
D.1 for ¢; € C(P)UGlob, 0 < x5, y; < k.
D.2 if ¢;,¢; € C(P,) U Glob and ¢; [C ¢j, then z; +y; < k.
D.3 for ¢; € C(P)UGlob, zj +y; <k + 1.
D.4 fore; € E,0<r;, t; <k
D.5 for ¢; € C(P,) and e; € IN(P,), z; + t; < k.
D.6 for e; € OUT(P,) and ¢; € C(P,) U Glob, ri +y; < k.
D.7 for e; € OUT(P,) and e; € IN(R,), r; +t; < k.

D.8 fore; € E, r; +t; < k.

Objective Function
D.9 Maximize EcjeC(P)UGlab wj * (25 +Yj) + Lejem 55 * (15 + 15)-
Figure 7.4: Dual minimum cost flow problem whose solutions are mapped to interprocedural

register allocations of globals and locals. Only local candidates allocated registers are spilled
across calls.
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Call Graph G Graph of Dual Minimum Cost
Flow Problem

k = 3 registers

e1 spill R1

Jot

(@)

Figure 7.5: (a) shows an example call graph referencing two global candidates g; and
g2. A register allocation and assignment are also shown with the two global candidates
assigned registers R3 and Ry. (b) presents a dual minimum cost flow problem whose solution
corresponds to the allocation and assignment in (a). Nodes represent dual variables and
edges represent constraints on the dual variables. Two dual variables joined by a dashed
edge may sum to at most k + 1, and two dual variables joined by a solid edge may sum to
at most k.



92

Tg, +Yg = k+1and zy = 3. We, therefore, assign register R3 to g;. Since zy, +yq, = k+1,
and zg, +yg, = k, Ty, < Ty,. Since dual variables z4, (= 2) +yg,(= 2) = k+1, g2 is assigned
register Ry. One register is available to candidates m and ¢g. Candidate m is allocated a
register, leaving 0 registers free on entry to edge e; (r; = 0). Since k —r; — ¢; = 1, one

register is spilled on edge e;. This register is allocated to ¢ since zy(= 1) + y:(=3) = k + 1.

7.2.2 Implementation

We implemented the interprocedural register allocator discussed in the previous section on
a DECstation 5000/125. SPEC92 benchmarks were optimized at level -O2. These bench-
marks were not optimized with loop-unrolling since gcc does not unroll loops whose bounds
reference register-allocated globals. Interprocedural register allocation was performed on
both user code and library routines. To estimate the number of register and global refer-
ences, we summed the number of global references and register references in each procedure.
We scaled these numbers using profile information of the number of instructions executed
in each procedure. We profiled input generating shorter execution times than the standard
input for all benchmarks except nasa7 and swm256, in which we have only one input file.

Figure 7.6 presents the performance improvement from allocating registers to global
candidates. Column without globals refers to the benefit of interprocedural register allocation
of locals with spilling over gec. Column with globals is the benefit of interprocedural register
allocation of locals and globals, in which only locals can be spilled across calls. The last
two columns show the number of globals promoted to registers. Dashes indicates that no
globals were allocated registers.

No globals were allocated registers in a few benchmarks. For these benchmarks, allocat-
ing registers to globals throughout the entire call graph represents too large of a granularity.
On benchmark hydro2d, our allocator performs worse when allocating registers to globals.
For this benchmark the allocator allocates registers to globals used in I/O library routines.
These routines represent a much smaller percentage of the total compilation time for the
standard input than for the profiler input. In benchmark mdljdp2, we are able to remove

a significant number of loads and stores of globals in procedures jloopu and jloopb. These
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Performance I'mprovement
benchmark | without globals | with globals globals
integer | floating-point

compress 1% 5% 7 0
doduc 3% 2% 1 0
ear 0% 0% 0 2
eqntott 0% 1% 1 0
espresso — — — —
fpppp — — — —
gee — - — —
hydro2d 0% -2% 4 0
mdljdp2 0% 8% 1 5
mdljsp2 1% 1% 2 3
nasar’ — — — —
ora 1% 6% 5 5
sc 8% 8% 2 1
spice — - — —
su2cor — — — —
swm256 1% 2% 1 4
xlisp 11% 14% 5 0

Figure 7.6: Performance improvement of interprocedural register allocation with and with-
out allocating registers to global candidates. Dashes indicate that no global candidates are
allocated registers.
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benchmark % of compilation time
floating-point integer

compress | 0.1% {(+0%) 1.3% (+86%)
doduc 0.8% (+50%) | 1.3% (+63%)
ear 0.5% (+25%) | 1.5% (+88%)
eqntott 0.1% (+0%) 2.3%  (+155%)
espresso 0.6% (+20%) | 4.7% (+81%)
fpppp 02% (+100%) | 0.4% (4-100%)
gee 0.8% (+33%) | 7.6% (4+52%)
hydro2d 0.3% (+50%) | 2.3% (4+156%)
mdldp2 | 0.7%  (+133%) | 1.8% (+125%)
mdljsp2 0.3% (+0%) 1.0%  (+25%)
nasa? 0.2% (+0%) 1.0%  (+25%)
ora 0.4% (+100%) | 1.5% (+50%)
sC 0.4% (+33%) |22% (+57%)
spice 0.3% (+50%) | 0.9% (+125%)
su2cor 0.2% (+0%) 0.7% (+17%)
swm256 | 0.5% (+150%) | 1.3% (+86%)
xlisp 1.2% (+33%) | 2.2% (+83%)

Figure 7.7: Time solving the network flow problem as a percentage of the total compilation
time without interprocedural register allocation.

procedures represent 90% of the execution time. We are able to achieve additional im-
provement on benchmark alisp. Global variables referencing the stack and free memory are
allocated registers.

Benchmark doduc allocates a register to global candidate errno, which appears frequently
within library routines, but dynamically is infrequently referenced. Assigning a register to
errno leads to a decrease in performance.

Figure 7.7 presents the time solving the network flow problem as a percentage of the total
compilation time without interprocedural register allocation. The numbers in parentheses
represents the increase in the percentage with respect to interprocedural register allocation
of only locals. Though solving the network flow problem is expensive for gce, solutions can

be found quickly for the smaller benchmarks.



Figure 7.8: Call graph in which the circled nodes are webs of global g. We refer to an
instance of global g in a procedure P, € P as gy.

7.3 A More Precise Model

In this section, we present a model that allocates registers to globals over a smaller section of
the call graph than in Wall’s approach. Our approach is hased on Santhanam and Odnert’s

register allocation of globals [SO90].

7.3.1 Webs

For each global Santhanam and Odnert [SO90] partition the call graph into webs. A web for
a global g is a minimal subgraph of a program call graph such that g is not referenced in a
procedure that is either an ancestor or a descendant of the subgraph?. To models loads and
stores of globals in procedures, a procedure that is part of a web has either all predecessors
in the web or no predecessors in the web. There can be several disjoint webs that reference
a particular global. A register assigned to a web is assigned to the corresponding global in
all procedures of the web. In Figure 7.8 the circled procedures represent two webs for global
g. Both of these webs can be assigned different registers. For a procedure P, in a web, we
refer to an instance of global g as g,. Procedures that are ancestors and descendants of
each web in Figure 7.8 do not reference global g.

Globals are only allocated callee-save registers to avoid spilling registers around library

routines (which have been compiled using an intraprocedural register allocation). Define

2Webs generated by their algorithm are not necessarily minimal.
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load/store 11, g /P4 load/store r1, h

b Pe| e

P. p4 store/load r1, temp

Figure 7.9: Two webs are shown. One web is for global g and the other is for global h.
Instructions for loading the globals into registers and saving them back into registers upon
return are shown. We assume that each web’s global is assigned the same register 71, and
r1 is also assigned to a local in procedure FPy.

a web entry procedure as a procedure having no predecessors in the web. At an entry
procedure, a global is loaded from its home location into a callee-save register. When
execution returns from a web entry procedure, the global is stored into its home location.
When execution leaves a web through a non-entry procedure (as a result of a call), the
global is spilled into a temporary when its register is needed for another register candidate.
The global is spilled into a temporary instead of its home location, since outside of a web,
a register may be allocated to one of several globals. The global will be reloaded into a
register before execution reenters the web.

Figure 7.9 displays two webs, one web for global g and the other for global h. Since
procedure Py is in neither web, it does not reference globals g or h. At each web’s entry
procedures, its global is loaded into register r1 from the global’s home location. Upon
returning from an entry procedure, the global is stored back into its home location. Assume
procedure P, assigns rl to a local candidate. P saves 71 on entry to P, into a temporary,
and reloads the value from the temporary upon returning from Py. In an invocation of Py,

the temporary has the value of global g or /.

7.3.2 Refining Webs

A drawback with Santhanam and Odnert’s approach is that a global is allocated a register
throughout an entire web. Allowing the register to be spilled and allocated to a local within

a web may lead to a better interprocedural register allocation.
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As proved in Section 7.1, the problem of finding a mapping of registers to global can-
didates is NP-Complete. In our approach, we fix the register assignment and have the
interprocedural register allocator select the procedures in which a global is allocated a
register.

Two webs interfere (are not assigned the same register) if they overlap. We partition
non-interfering webs into sets. Each register can be assigned to only one set of webs. Given
a register assignment, our interprocedural register allocator will select the procedures within
the webs where a global is register allocated. If we spill a global within a web, then the
global is spilled into its home location.

The construction of our webs differ from that of Santhanam and Odnert. Santhanam
and Odnert’s approach allows either all callers of a procedure or no callers of a procedure to
be in the same web as the callee. Our approach models register loads and stores of globals
across calls, thereby allowing only some callers of a procedure to be in the same web as the
callee. Our interprocedural register allocator generates webs that can never be larger than

those in Santhanam and Odnert’s algorithm.

7.3.3 Generating an Allocation with Global Candidates

Figure 7.10 outlines our approach to register allocation of local and global candidates.
Let k be the number of available registers (line 1). First, our allocator forms a set of webs
for each global. Next, a web interference graph is generated. Two webs interfere if they
have a procedure in common. Interfering webs must be assigned different registers.

In lines 7 to 26 of Figure 7.10, we loop through the set of k registers. In iteration
i, 1 < i < k, there are k — ¢ + 1 registers available for allocation. In each iteration,
there is a single set of non-overlapping webs whose globals can be allocated a register
(lines 8 to 12). Thus, in a given iteration there is at most one global candidate that can
be allocated a register in each procedure. We also add a global candidate for procedures
that are descendants of webs in the call graph, but are themselves not members of a web,
since a global can remain in a register upon leaving a web through the leaves. Fach global
candidate can only be assigned abstract register Ry (line 14). Local candidates can be

assigned any abstract register.
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procedure GenerateAllocation

Ut o W D

[ |

10
11
12
13
14

15

17

24
25
26

Let k be the number of registers.

Let cand be the local candidates in all procedures.
Let web_set be the set of webs for each global.
Build web_interference graph from web_set.

1= 1.

while (1 <= k) do
Remove a single set of non-overlapping webs from web_interference graph.
Let WebProc be the procedures in the set.
Let BelowW ebProc be the procedures that are
descendants of WebProc in the call graph.
Add a global candidate to cand for procedures in WebProc and
BelowW ebProc.
Perform interprocedural allocation on local and global candidates in cand.
There are k — 4 + 1 registers available.
Register Ry can be assigned to global and local candidates.
All other registers can be assigned only to local candidates.

if a global is allocated a register then
Map R; to a hardware register.
Remove all global candidates from cand and local candidates assigned ;.
Mark loads and stores of Ry.
141+ 1

else
Map abstract registers to hardware registers.
Mark loads and stores of registers.
break from loop.

end if

end while

end procedure

Figure 7.10: Outline of our algorithm to allocate registers to local and global candidates.
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At the end of an iteration, if a global candidate is allocated a register, then we remove
the local and global candidates assigned R; and save information of the loads and stores of
Ry along the call edges (lines 16 to lines 20). Each instance of Ry in a loop iteration maps
to a distinct hardware register. In the next iteration of the loop, there is one less available
register. If a global is not allocated a register in the current iteration (lines 22 to 24), then
this last allocation in conjunction with the previous allocations of R represent the final

allocation, and execution exits the loop.

7.3.4 Choosing a Set of Disjoint Webs for each Iteration

In iteration 4, 1 < ¢ < k, we choose a set of disjoint webs that can be assigned the same
register (lines 8 to 12 of Figure 7.10). We follow a similar approach as [SO90] for selecting
a set of disjoint webs. Given a web interference graph, we select webs in an ordering based
on a priority function.

Our approach has a different priority function than [SO90]. Santhanam and Odnert’s
priority function measures the benefit of allocating registers to globals, but subtracts the
cost of loads and stores of these globals at the web entry nodes.

Our priority function includes additional costs. Register allocating a global in a pro-
cedure has a benefit of removing loads and stores, but if the procedure could allocate all
k— i+ 1 registers to its locals, there is a cost of one less register available to the procedure’s
local candidates. We include this cost in our priority function. In addition, we include the
cost of saving and restoring a register-allocated global around setjmp and saving a register-
allocated global before a longimp. Let the benefit minus the costs be ¢4 for web s. To favor
small webs over large ones, we divide ¢, by the number of procedures in the web. As we are
interested in a single set of disjoint webs in each iteration, we traverse through the list of
webs ordered by our priority function. We select a web if it does not interfere with other
webs selected in the current iteration of our algorithm.

A register may remain allocated to a global upon (temporarily) exiting a web through
the leaves. For each procedure P, that is not in a web and is a descendant of a web
procedure, we add a dummy global candidate. If a dummy global candidate is allocated a

register, then a global in an ancestor of P, in the call graph has its value in a register in P,.
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7.3.5 Modeling Interprocedural Register Allocation of Globals

In this section we define the constraints and maximization function for an interprocedural
register allocation of globals. We assume Ry can be shared between local and global candi-
dates, while all other registers can be allocated only to local candidates. First, we describe

our model for inserting loads and stores of globals along call edges.

Modeling Loads and Stores of Globals

We differentiate between three types of call edges for inserting loads and stores of globals: (1)
calls between procedures of the same web (set WebEdge); (2) calls to a non-web procedure,
which is also a descendant of a web procedure in the call graph (set BelowW ebEdge); and,
(3) calls to a web procedure such that the caller is not in the callee’s web (set WebEnitry).
We identify the loads and stores of a global needed around a call based on the type of call

edge and whether a global is allocated a register in the caller or callee.

1. Let edge e; € WebEdge if the caller and callee of call e; are in the same web. Loads
and stores of a global along edge e; reference the global’s home location. The global’s
home location has the global’s current value immediately before a load. Given these
call edges, if a global is assigned register R; in the caller, but not in the callee, then a
store/load of the global is needed around the call. If a global is assigned register [ty

in the callee, but not the caller, then a load/store is needed around the call.

[\]

. Let edge e; € BelowWebEdge if there is a path to e; from a procedure in a web and
e; is not incident on a procedure in a web. The only loads and stores of a global along
these edges is a store before a call and a load upon returning from the call. These
loads and stores reference temporary locations. For example, in Figure 7.11, call edge
ej is incident on procedure Py, which is not in a web. There is a path that leads to e;

from procedures Py and P, both of which are in webs. Thus, ¢; € BelowW ebEdge.

In Figure 7.11, assume g and h are assigned the same register ;. Based on the
construction of a web, globals g and h are not referenced in procedures reachable

from e;, though they still may be in a register across e;. If we choose to spill R; along



101

load/store r1, h

P{-]
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€
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Figure 7.11: Assume g and h are assigned the same register. Either global g or h could be
in that register across the call edge e;.

ej, then the register must be spilled into a temporary (because at e; we do not know

which global Ry currently holds).

For a set of webs in which e; € BelowW ebEdge, their globals can be spilled into a
temporary along e;, but their globals will not be loaded into a register along e;. In
Figure 7.11, assume global g is not allocated a register in procedure Py, but global h
is in a register in P, and Py. A load of global h is not needed along the call edge e;
from P, to P,;. Along call edges incident on non-web procedures, there can only be a
cost of storing a register-allocated global into a temporary before a call and loading

from the temporary after the call.

3. Let set WebEntry be the call edges in which the callee is in a web, but the caller is
cither in a different web or not in any web at all. If a different global in the callee
is allocated a register, then a load/store of the global is added along the edge. This
load and store reference the global’s home location. If a global is allocated a register
in the caller, then a store/load is added along the edge. This load and store reference

a temporary location.

Indirect Calls

Indirect calls pose a problem since the caller and callee may be in the same web, may be in

different webs, or the callee may not be in a web. As was done for interprocedural register
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allocation of locals, we assume each indirectly called routine is called by a single dummy
procedure. In addition, we assume that either all callers or no callers of an indirectly called
procedure are in the same web as the callee. The call edge from the single dummy node will
be a member of WebEdge if all callers are in the same web as the callee, will be a member
of WebEntry if the callee is in a web different than its callers, and will be a member of
BelowW ebEdge if the callee is not in a web, but is a descendant of a procedure in a web.
Loads and stores along these edges are placed in the callee.

We want to avoid load/stores of globals along indirect calls, as the callee is unknown.
Loading a global into a register before an indirect call and storing the register into the
global’s home location upon return can yield a run-time error if the callee does not allocate
a register to that global. We assume that a global is either allocated a register across all calls
or no calls to an indirect procedure. We, therefore, can model loads and stores as occuring
in procedures instead of along call edges. We can fix the values of the dual variables to

achieve this result. The dual minimum cost flow problem is discussed in Section 7.3.6.

Constraints and Maximization Function

As in interprocedural register allocation of locals with spilling, a partial order restricts
which candidates can be assigned the same register. The partial order on the global and local
candidates in a procedure is slightly different than the partial order on local candidates in our
interprocedural register allocation of locals with spilling. We assume the global candidate
and local candidates in a procedure form a partial order whose structure is a chain, in which
the global candidate is the least-most element in the ordering. In Figure 7.12, procedures P,
and P, are both in a web referencing global g. P, references instance gy and P, references
instance gy, of global g. Both g, and g,, are the least-most elements in the ordering among
candidates in a procedure.

An interprocedural register allocation of globals is represented by tuple

I = (R, free.in, free_out).

R is a sequence of abstract registers (Ry, ..., Ry), where k is the number of registers. Entry
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Call Graph G

Figure 7.12: Call graph in which instances ot global g are the least elements in the ordering
among candidates in each procedure.

freesn is the sequence (freesny,..., freesing)), where freean;, 1 < j < |E|, is the
number of unallocated registers on entry to edge e; € E. Entry freeout is the sequence
(free-outy,..., free.outp), where free-outj, 1 < j < |E|, is the number of unallocated
registers on exit from edge ej € E.

For e; € E, free.out; — freein; is the number of register-allocated local candidates
spilled across the call e;. Let e; be the call edge from procedure P, to P,. A register
allocated to a global candidate in P, is treated by free-in; and free-out; as not allocated
across the call e;. Hence, freein; and free.out; consider the register as available to
candidates in P,. In Figure 7.12, global g, does not constrain the number of free registers
on entry to edge e;. Both the global candidate and local candidates in P, must compete
for the same registers. If a global candidate is allocated a register in the caller and callee,
then there are no register loads and stores of the global around the call e;.

In each iteration of the interprocedural register allocation there is at most one global
candidate that can be allocated a register in each procedure. Each procedure in a web
has a single global candidate. A procedure that is not in a web, but is a descendant of a
procedure in a web, has a single dummy global candidate. We allow an abstract register
R; to be assigned to either a global candidate or local candidates in a procedure. All other

abstract registers can only be assigned to local candidates.
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Define the following sets:
e WebProc is the set of procedures in a web.

e BelowWebProc is the set of procedures not in a web and are reachable from a pro-
cedure in a web. Call edges in BelowWebEdge are incident only on procedures in

BelowWebProc.

o WebGlobal(P,) = {gy} if procedure P, € WebProc for global g; WebGlobal(P,) =
{dummy,} if procedure P, € BelowW ebProc; otherwise, W ebGlobal(P,) is the empty

set.

o WebGlobal(P) = Up,cp WebGlobal(Py) (WebGlobal (P) includes dummy global can-
didates).

Set C(P,) is the set of local candidates in procedure P,. The constraints on an inter-
procedural register allocation of locals and globals are given in Figures 7.13 and 7.14.

The list of constraints I.1 — 1.6 in Figure 7.13 are identical to the list of constraints
for interprocedural register of locals in Section 4.2. We add the constraints J1-J3in
Figure 7.14 for the global candidates. Constraint J.1 implies that a global candidate can
only be assigned to abstract register R;. By constraint J.2, if both a local and global
candidate are allocated registers in the same procedure, then the register number of the
global candidate (R;) must be less than the register number of the local candidate. In the
partial ordering on candidates in a procedure, a global candidate is less than all the local
candidates. By constraint J.3 there must be at least one register free on entry to procedure
P, for the global candidate in P, to be assigned R;.

Given the above constraints we want to maximize a function which represents the benefit

of an allocation. The function uses the following terms:

e integer s; > 0 is the cost at call edge ¢; of a register store/load of a global or local.

The store and load reference a temporary location.

e integer hs; > 0 is the cost at call edge e; of inserting a store/load or a load /store of

a global. The load and store reference a global’s home location.



Constraints
1.1 For e; € E, freein; < free.out;.
1.2 For e; € E, 0 < freeany, free-out; < k.
1.3 If ¢; € Ry, ¢; € C(P,), and ¢; € IN(F,), then p < free-out;.

1.4 If ¢; € Rp, ¢ € O(Pu>, and e; € OUT(PU),
then p > free_in;.

1.5 Ife; € IN(P,) and ¢; € OUT(P,), then free.out; > free.in;.

1.6 Let ¢; € C(P,) and ¢; € C(Py). If ¢; € Rp, ¢j € Ry, and ¢; C ¢j, then p < gq.

Figure 7.13: Constraints between local candidates for interprocedural register allocation.

J.1 Let P, € WebProclJ BelowWebProc. If g, € WebGlobal(Py) and g, € R, then
g; € Ry.

J.2 Let P, € WebProcl) BelowWebProc, gy € WebGlobal(P,) and ¢; € C(P,). if g, € Ry,
¢j € Ry, and gy C ¢, then 1 < g.

J.3 Let P, € WebProcJ BelowWebProc. If g, € WebGlobal(Py,), g, € Ri, and e; €
IN(P,), then 1 < free_out;.

Figure 7.14: Constraints involving global candidates.
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mazimize (a) Y..eg wi— (D) Yeer Sj * (freeout; — freein;)—
(©) Te,ccrobrempst i~ (d) Lie;eGrobHomeLast 18-

Figure 7.15: Maximization function for interprocedural register allocation of globals.

e integer w; > 0 for local candidate ¢; € C(P) is the benefit of allocating a register
to a local candidate. We assume a positive benefit of allocating a register to each

candidate. This benefit is a function of the number of references to the candidate.

e integer w, > 0 for global candidate g, € W ebGlobal(P,) is the benefit of allocating a

register to instance g, in Fy.

e GlobTempSt is the set of call edges in which there is a store/load of a register-
allocated global, such that the load and store reference a temporary location. This
set includes register saves and restores of globals around call edges in BelowWebEdge

and WebEntry.

o GlobHomeLdSt is the set of call edges in WebEdge and WebEntry in which there is
a register load/store or store/load of a global around a call, such that the load and

store reference the global’s home location.

The function that we maximize is shown in Figure 7.15. Expression (a) in Figure 7.15
refers to the benefit of register-allocated local and global candidates; (b) is the cost of
spilling register-allocated local candidates around calls; (c) represents the cost of loads and
stores of a global that reference a temporary location; and, (d) is the cost of loads and
stores of a global that reference the global’s home location.

Figure 7.16 presents a register allocation and assignment of the call graph in Figure 7.12.
We assume two registers are available. Globals g, and gy, are instances of global g. Proce-
dures P, and P, are in the same web for global g. In procedure P, local candidate £ and
global candidate g, are allocated registers. We assume global ¢ is not allocated a register
in the caller of P,. Since g is allocated a register in P,, we load the global into a register
from its home location upon calling P, and store the global’s value upon return.

Since allocating a register to g, in P, does not decrease the value of free.inj, there is



Call Graph G

k = 2 registers

load/store R1, g

Pv
store/load R2, temp

Py GD (R2)
> (R1)

free_inj =1

free_out j = 2 store/load R1, g

Figure 7.16: A register allocation and assignment of global and local candidates in a call

graph.
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no constraint between g, and e;. Hence, free.in; = 1 and Ry is free on entry to Py. As
free_out; = 2 and free.out; — freean; =1, the register allocated to the local candidate ¢
is spilled around call e;. In procedure Py, local candidates m and ¢ are allocated registers.
Since global gy, is not allocated a register in Py, Ri, the register assigned to g,, is spilled

around the call e;.

7.3.6 Dual Minimum Cost Flow Problem for Interprocedural Register

Allocation of Globals

In this section we present a dual minimum cost flow problem that models the cost of loads
and stores of globals around calls. A load and store of a global can occur along the call

edges in sets WebEdge, BelowW ebEdge and W ebEntry.

Modeling Spill Cost in WebEdge

Let procedure P, and P, be in the same web. Let edge ej represent the call from procedure
P, to P,. To model the cost of register loads and stores of globals around e;, we add integer
dual variables and constraints shown in Figure 7.17(a). Nodes represent dual variables and
arcs represent constraints.

The value of each dual variable in (a) is either 0 or 1. The constraints represented by
the arcs limit the sum of two dual variables to be at most 1. For edge ej, Figure 7.17(b)
shows the maximum values of dual variables a;; and ajo for each possible combination of
values of dual variables bj; and bjo. Nodes a;; and ajo have the same constraints and,
therefore, are equal in each case. As shown in (b), if bj1 = bja, then two dual variables
equal 1; otherwise, only one dual variable equals 1. Assume that if a global is allocated a
register in P,, then b;j; = 0; otherwise, bj; = 1. Similarly, if a global is allocated a register
in Py, then bjy = 0; otherwise, bjs = L. Thus, if there are no register loads and stores of a
global along call edge ej, then bj; = bjo. For ej € E, define hs; to be the cost of a register
store/load or load/store, such that the load and store reference a global’s home location.
We let hs; be the weight associated with each dual variable in (a). Then an allocation in
which there are no register loads and stores of a global along e; (bj1 = bj») has an additional

benefit of hsj, since two dual variables equal 1. Using the variables and constraints of a dual
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(@) (b)

Figure 7.17: Dual variables and constraints to model loads and stores along call edges in
set WebEdge. The maximum values of aj; and ajz are shown for each possible combination
of values of b;; and bjo.

minimum cost flow problem, we have accurately modeled the additional cost of load/stores
and store/loads of globals in a web.

Figure 7.18 shows the dual variables and constraints for a global g referenced in both P,
and P,, such that P, calls P, along edge e;. Variable pairs (dy, fv) are the dual variables
representing ¢ in P, and (dy, fw) are the dual variables representing g in P,. Dual variables
aj1,bj1, aje, bjo model the cost of loads and stores for call edge e;. Assume there are k
registers available. We let f, = fi, = k and 0 < dy,dw < 1. I dy + f, = k + 1, then global
gin P, is assigned register Ry. Otherwise d, + fy = k and ¢ is not allocated a register in
P,. In our example, we assume that both dy and d,, are assigned the value 1. Since f, =k,
then d, = 1 implies that g is assigned register R; in P,. Since we also have a constraint
that d, + bj1 = 1, then bj; =0 implies ¢ is allocated a register in P,. Similarly, bj2 =0
implies ¢ is allocated a register in Py,. Let the weight of dual variables a1, a;2, bj1, bj2 be
the cost of a register store/load or load/store. If bj; = bjo, then two of these dual variables

equal one; otherwise; only one dual variable equals one. The decrease in benefit from a
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Figure 7.18: Variables d, and f, are the dual integer variables for global g in procedure %
and d,, and f,, are the dual variables for global g in procedure P,,. The values of f, and fu
are assigned k. The values of d, and d,, are either 0 or 1.

register load and store of global g is accurately modeled.

Modeling Spill Cost in BelowWebEdge

A call edge e; is in BelowWebEdge if there is a path from a procedure in a web leading to
ej and e; is incident on a procedure not in any web. To model the cost of a store/load of a
global into a temporary along e;, we add the dual variables and constraints in Figure 7.19(a).
The constraints are similar to those in Figure 7.17(a), but there is no constraint between
ajo and bji. Now only when bj; = 0 and bjo = 1 is there only one dual variable equal to
1. Since bj; = 0, a global in the caller is allocated a register. Since bjs = 1, a global in the
callee is not allocated a register. This dual variable assignment represents a store/load of
a register-allocated global along call e;. By letting the weight of each dual variable be the
cost of a spilling a global into a temporary, we are able to model the decrease in benefit

from spilling a register-allocated global along a call edge in set BelowWebEdge.
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Figure 7.19: Dual variables and constraints to represent the cost of spilling register-allocated
globals along call edges not incident on a web.

Modeling Spill Cost in WebEntry

Assume we are given a call edge ej, such that the callee is in a web, and the caller is in
either a different web than the callee or is not in a web.

If a global g is allocated a register in the caller, then there is a register store/load of
global g into a temporary around the call. If a global h is allocated a register in the callee,
then there is a register load/store of k around the call. We can model the cost of these loads
and stores by assigning aj1 = ajo = 0 in Figure 7.17(a). If bj; = 1, then a global is not
allocated a register in the caller; otherwise, bj1 =0 and the global is allocated a register in
the caller, in which case the global is saved and restored into a temporary around the call.
Similarly, if bjo = 1, then a global is not allocated a register in the callee; otherwise, bj2 =0
and the global is loaded into a register from its home location in the callee and stored upon
return. The weight of bj; is the cost of a store/load of a global in the caller and the weight
of bjp is the cost of a load /store of a global in the callee. With these weights, we are able

to model the decrease in benefit from the loads and stores along call edge e; € WebEntry.
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—

(x;, y;) for i such that ¢; € C(P),

o

rj, t;) for j such that e; € E,

&~ oW

-
. (aj1, bj1), (ajo, bjz) for j such that e; € WebEntry U WebEdge|J BelowW ebEdge.
-

dy, fv) for v such that P, € WebProclJ) BelowWebProc

Figure 7.20: Dual variables of the dual minimum cost flow problem for allocating registers
to globals.

Dual Minimum Cost Flow Problem

We present a dual minimum cost flow problem that generates an allocation allowing register
R, to be shared between global and local candidates and the remaining registers to be
allocated only to local candidates.

Figure 7.20 presents the dual variables of the dual minimum cost flow problem. As in
the dual minimum cost flow problem for interprocedural register allocation without globals,
there are a pair of dual variables (1) (z;, y;) for each local candidate ¢; € C(P) and
a pair of dual variables (2) (rj,t;) for each edge e; € E. To model spilling of globals
along call edges there are dual variables (3) (aj1, bj1) and (ajo, bj2) for each edge e; €
WebEntry |y WebEdge|J BelowW ebEdge. Since a global can be allocated a register in any
procedure of a web or descendant of a web, we have a pair of dual variables (4) (dy, fy) for
P, € WebProc|J BelowW ebProc.

Figure 7.21 shows the constraints G on the dual variables for the global candidates.
Figure 7.22 shows the constraints D on the local candidates. Constraints G.1 and G.2, which
model the cost of load/stores and store/loads of globals, are as described in Section 7.3.6.
If a global is allocated a register in the callee of an edge e¢; € WebEntry, then a register
load/store of the global is added along the edge. If a global is allocated a register in the
caller of an edge e; € WebEntry, then a save/restore is added along the edge. As discussed
in Section 7.3.6, by assigning aj1 = aj2 = 0 for edge e; € WebEniry (constraint G.3), if
the global is allocated a register in the callee (or caller), there is a loss of a benefit equal to

the cost of a load/store or (store/load).
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Constraints

G.1 For e; € WebEdgelJ WebEntry,
0 < aji,ajo,bj1,b52 €1, aj1 + b <1, ajp+bja <1, aju+bj2 <1, app b =1

G.2 For ej € BelowWebEdge,
0 < aj1, a0, b1, 052 <1, a1 +bj1 < 1, ajp +bja <1, ajy +bjp < 1.

G.3 For e¢; € WebEntry, aj1 = ajz = 0
G.4 For P, € WebProc|) BelowWebProc, 0 <dy <1, fy =k

G.5 For P, € WebProcJ BelowWebProc, g, € WebGlobal(F,), and ¢; € C(Py), dy+yi <
k

IA

G.6 For P, € WebProcl] BelowWebProc, g, € WebGlobal(P,), and e; € IN(P,), dy+t;
k

G.7 For ¢j € IN(P,),P, € WebProc|) BelowWebProc, and g, € WebGlobal(Py), dy +
bjo = 1.

G.8 For ej € OUT(Py), Py € WebProc|J BelowW ebProc, and gy, € WebGlobal(Py), dy +
bjy =1,

Figure 7.21: The constraints on the global candidates.
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D.1 For¢; € C(P),0 <, y; <k.

D.2 If ¢;,¢c; € C(P,) and ¢; C ¢j, then w; +y; < k.
D.3 For¢; € C(P), zj+y; <k+1 |
D.4 Fore; € E,0< 7y, t; <k.

D.5 For ¢; € C(P,) and ¢; € IN(PR,), z; +t; < k.

D.6 For ¢; € OUT(P,) and ¢j € C(Py),
ri+y; <k

D.7 For e; € OUT(P,) and e; € IN(P,),
T +1; < k.

D.8 Forej € B, rj+1; < k.

Figure 7.22: The constraints on the local candidates.

In each procedure P, € WebProcl) BelowWebProc, there is a pair of dual variables
(dy, fo) for a global that can be allocated a register in the procedure. Constraint G.4
specifies the bounds on these dual variables. If dy + fo = k +1 (dy = 1), then the global
is allocated a register; otherwise, d, + f, = k (d, = 0) and the global is not allocated a
register. Constraints G.5 and G.6 limit the value of d, by the number of registers allocated
to the candidates in P, (G.5) and the number of registers allocated on entrance to P, (G.6).

If a global is allocated a register in procedure P, then dual variable d, = 1; otherwise,
d, = 0. The dual variables in G.1 and G.2 model the cost of register loads and stores
of globals around calls. Constraints G.7 and G.8 relate the dual variables for each global
candidate with the dual variables in G.1 and G.2.

Constraints D.1 — D.8 in Figure 7.22 are identical to the constraints for interprocedural
register allocation of local candidates with spilling.

Figure 7.23 shows the objective function of our dual minimum cost flow problem for
allocating registers to globals and locals. The spill costs are positive, since spilling fewer

registers increases the value of the objective function. Parts 1 and 2 are identical to the
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Objective Function
1. Maximize 3. corpy W) * (5 + ¥j)
2. +Ze,~eE 55 % (7",j+tj>

3.+ e ewesndge 18 * (a51 + bjy + ajo +bj2)

-

+ ZCiE"VEl)E‘n,M'y 8j * (a’jl + bﬂ)

[

-+ Zey;EWebEntry ]7,37' * (0‘72 + bj?)
6. +Xe;cBelowwebBdge 5i * (a1 +bj1 +ajz+ bj2)

7.+ pewenGlobai(p) Wo * (dv + fo)

Figure 7.23: Objective function of the dual minimum cost flow problem.

objective function for allocating registers to local candidates. The value s; is the cost of
saving a register into a temporary before call e; and loading the value back into a register
after the call. The value hs; for call edge e; is the cost of a load/store or store/load of a
global that references the global’s home location.

Parts 3 through 7 represents the decrease in benefit from loads and stores of register-
allocated globals. Part 3 measures the cost of a store/load or load/store of a global along an
edge in a web. Globals are spilled into their home location within a web. Part 4 measures
the cost of a store of a global into a temporary before entering a web and a load upon
returning from it. Part 5 measures the cost of a load of a global from its home location
upon entering a web and a store upon returning from the web. Part 6 measures the cost of
storing a global into a temporary before a call and reloading it into a register after the call.
The call is not incident on a procedure in a web. Part 7 represents the benefit associated
with allocating a register to a global in a procedure. If dy + fo = k + 1, then a global is
allocated a register in P,; otherwise, dy + fo = k and a global is not allocated a register
in P,. Allocating a register to global g, in procedure P, increases the benefit by w,, the
benefit of the global. For a procedure in BelowWebProc, the benefit of allocating a register
to a global is 0.

We define solutions to the dual minimum cost flow problem as follows. Let web =

WebProc|) BelowW ebProc be the set of procedures in which there is a global register
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candidate. Let w_edges = WebEdge ) BelowW ebEdge|) WebEntry be the set of edges in
which there can be register loads and stores of globals. We partition the dual variables in

Figure 7.20 as follows. Let xy be the sequence of tuples

(w9 @o@y ey

let ¢ be the sequence of tuples

((Tlatl)a ) (“E]aflEl))a

let df be the sequence of tuples

((dh .fl)v RS (d|web|7 f]web[));

and, let ab be the sequence of tuple pairs

(((a117 bll)a (a127 bm)) R ((a‘|w,.edges| 1s b]w_e(lgesl 1)7 (a‘l’w_edgesl 29 b|w_eclgesi 2)))

A solution to the dual minimum cost flow problem is represented by the tuple
uw = (zy,rt, df, ab).

7.3.7 Mapping between the dual minimum cost flow problem and inter-

procedural register allocation of globals

For a call graph G on which we define a partial order (C), and given k registers, let u be an
assignment to the dual variables of the dual minimum cost flow problem in Section 7.3.6,
but which does not necessarily maximize the objective function in Figure 7.23. Represent
this set of solutions as S(k, G). Let H be a solution to the interprocedural register allocation
of local and global candidates in Section 7.3.5, but which does not necessarily maximize the
function in Figure 7.15. Represent this set of solutions as T(k,G). We define the mapping

H(u) from u € S(k,G) to H € T(k,G) in Figure 7.24.



Hu.l H(u) = (R(u), freesin(u), free_out(u)).

Hu.2 For 1 < h <k, Ry(u) = {cjlzj +y; =k+1,2; =h,¢c; € C(P)}U
{goldy + fo =k + 1,dy = h, gy € WebGlobal(P)}.
R(u) = (R (u),-., Ri(w)).

Hu.3 For e; € E, freeing(u) =r1;.
freesin = (freesini(u), ..., freeding(u)).

Hu.4 For e; € E, freeoutj(u) =k —t;.
freeout = (free-outi(u), ..., free_out g (u)).

Figure 7.24: Mapping from solutions in S(k, G ) to solutions in T'(k, G).

The mapping in Figure 7.24 is similar to the mapping for interprocedural register allo-
cation of locals with spilling except that now global candidates are also allocated registers.
As mentioned earlier, we can determine where the loads and stores of globals should appear
based on which procedures allocate a register to the globals.

Figure 7.25 defines the mapping u(H) from H € T'(k, @) tou € S(k,G). Mappings uH.1,
uH.2, and uH.3 define the values of the dual variables representing local register candidates
and the dual variables representing the number of register-allocated locals spilled along
each edge. uH.1 - uH.3 are identical to the mapping of solutions of interprocedural register
allocation of locals with spilling to solutions of the dual minimum cost flow problem in
Section 5.3. In uH.4, we assign values to the global candidates’ dual variables. In uH.5,
uH.6, and uH.7, we define the dual variables used to model the cost of register loads and
stores of globals around calls.

We first prove that for v € S(k,G), H(u) € T(k,G) and for H € Tk, G), u(H) €
S(k,G). Let S(k, G) represent maximal solutions in 5(k, &). Let T'(k, G) represent maximal
solutions in T(k,G). We will prove that there is a bijection u(H) from H € T(k,G)
to u € S(k,G), and H(u) is its inverse. Let T"(k, ) be maximum weighted solutions
in T(k,G), and let S*(k,@) be maximum weighted solutions in S(k,G). We show that
T*(k,G) € T(k,G) and S*(k,G) C S(k,@). Next, we prove that for H € T*(k, G), u(H)

is a bijection to S*(k, @), and H(u) is its inverse.
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uH.1 For ¢; € E, rj = freean, tj = kE — free_out;.
uH.2 For ¢; € C(P), if ¢; € Ry, thenzj =h;yj =k +1—w; (z;+y; =k+1).
uH.3 For ¢; € C(P),c; € R,

uH.3a If ¢; T ¢, for some ¢, € Ry, then x; = m — 1, where m is the smallest value
such that ¢; C ¢ and ¢ € R yj = kE— ;.

otherwise, assume ¢; € P,

uH.3b For all edges e; € IN(P,), z; equals the smallest value of free-out;.
yj =k —j.
uH.3c If P, has no incident edges, then x; = k and y; = k —z; = 0.

uH.4 For P, € WebProc|J BelowWebProc, let g, € WebGlob(P,). if g, € Ry, then
dy =1, fo = k; else (9o & R)dy, =0, fy =k.

uH.5 For P, € WebProclJ BelowWebProc,

uH.5a For ¢; € IN(P,), if d, =1 then bjz =0 else bjo = 1.
uH.5b For e; € OUT(Py), if d, =1 then bj; = 0 else bj1 = 1.

uH.6 For e; € WebEdge, aj1 =ajp=1— MAX (bj1,b52).
uH.7 For e; € WebEntry, aji = ajz2 = 0.

uH.8 For ¢; € BelowWebEdge, aj1 =1 — MAX (bj1,b52), ajo =1 — bja.

Figure 7.25: Mapping from T'(k, G) to S(k, G).
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Mapping solutions between S(k, &) and T'(k, G)

Theorem 12 For any u € S(k,G), H(u) € T(k,G)

Solutions in S(k,G) are constrained by D.1 - D.8 and G.1 - G.8. Solutions in T'(k, G)
are constrained by 1.1 — 1.6 and J.1 - J.3. In Section 5.1, we proved constraints I1-16
follow from constraints D.1 — D.8. We now prove that constraints J.1 - J.3 follow from
constraints D.1 - D.8 and G.1 - G.8.

Prove (J.1) Assume P, € WebProc|) BelowWebProc. 1f global g, € WebGlobal(Py)
and g, € R, then g, € R;.

Proof: Let P, € WebProc|) BelowWebProc, gy € WebGlobal(P,), and g, € R. In S(k, G),
0<d, <1and f, =k By mapping Hu.2, if R(u) maps g, to a register, then d, = 1 and
gy is mapped to Ry. O

Prove (J.2) Assume P, € WebProclJ) BelowWebProc. Let g, € WebGlobal(P,) and

¢j € C(Py). If gy € R1, ¢j € Ry, and gy T ¢y, then 1 < g.
Proof: Let P, € WebProclJ BelowWebProc, g, € WebGlobal(P,), and ¢; € C(F,). As-
sume R(u) map g, to Ry and ¢; to Rg. By Hu.2, (1) dy =1, 2 = ¢, and z; +y; = k+ L.
Thus, (2) y; =k +1—¢q. By G.5, (3) dy +y; < k. Substituting (1) and (2) into (3) yields
1+ k+1—gq <k, which implies 2 < g and, thus, 1 <¢. U

Prove (J.3) Assume P, € WebProclJ BelowW ebProc. If g, € WebGlobal(P,), gy € Ry,
and e; € IN(P,), then 1 < free-out;.

Proof: Let P, € WebProcl)BelowWebProc, g, € WebGlobal(P,), e; € IN(F,), and
R(u) maps g, to Ri. By Hu2, (1) d, = 1. By Hud, k—1t; = free_out; and, thus, (2)
t; = k — freeout;. By G.6, (3) dy +1; < k. Substituting (1) and (2) into (3) yields

14k — free.out; <k and, thus, 1 < freeout;. O
Theorem 13 For any H € T(k,G), u(H) € S(k,G)

As mentioned above, solutions in S(k, G) are constrained by D.1 - D.8 and G.1 - G.§,
and solutions in T'(k, G) are constrained by I.1 - 1.6 and J.1 - J.3. In Section 5.1, we proved
constraints D.1 — D.8 follow from constraints I.1 — 1.6. We now prove that constraints G.1

—~ (3.8 follow from constraints I.1 — 1.6 and J.1 — J.3.
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Prove (G.1) For e; € WebEdge|JWebEntry, 0 < aj1, 52,051,052 < 1, aj1 + b1 <1,
ajo+bja <1, aji+bj2 <1, ajp+bj <1
Proof: By uH.5, 0 < bj1,bjo < 1. By ulH.6 and ulH.7, 0 < aj1, a5 < 1. Also, by uH.6 and
uH.7, aj1 +bj1 <1, aj2 +bjo <1, aj + bjo < 1,and aj +bj; < 1.0

Prove (G.2) For e; € BelowWebEdge, 0 < aji,aj2,bj1,052 < 1, aj1+bj1 < 1, ajo+bip <
1, aji +bjr < 1.
Proof: By uH.5, 0 < bj1,bjo < 1. By ul.8, 0 < aji,aj2 < 1. Also by uH.8, aj1 + bj; < 1,
ajo+bj2 <1, and a;; +bjp < 1.0

Prove (G.3) For ¢; € WebEntry, aji = ajo = 0.
Proof: True by uH.7. O

Prove (G.4) For P, € WebProcl) BelowWebProc, 0 < d, <1, fy = k.
Proof: By uH.4,0<d, <1, fy =k O

Prove (G.5) For P, € WebProc|) BelowWebProc, gy € WebGlobal(P,), and ¢; €
C(Py), dy +yi < k.
Proof: Assume P, € WebProclJ BelowWebProc, gy € WebGlobal(P,), and ¢; € C(P,).

1. Assume gy € R. Then by uH4, d, = 0. By uH.2 and ul.3, 0 < y; < k. Thus,
dy + vy < k.

2. Otherwise, let g, € Ry, 1 < ¢ <k. By uH4, d, = 1.

(a) Assumec; € Ry, 1 < ¢ < k. ByJ.2, (1) dy(=1) < ¢. By ul.2, y; = k+1—w;(= q)
and, thus, (2) ¢ = k+ 1 —y;. Substituting (2) into (1) yields d, < k41 —1y; and,
thus, dy + y; < k.

(b) Assume ¢; € Rq, 1 < ¢ < k. Only if y; =k, does dy +ys £ k. Ity =k,
then z; = 0 by uH.3. Also by uH.3, either (A) there exists some ¢y, € C(Py),
¢; T em, such that ¢, € Ry (uH.3a), or (B) there exist an ¢; € IN(P,) such that
free_out; =0 (uH.3b).

Case A: By J.2, since g, € R and ¢y, € Ry, we have 1 < 1, which is false. Thus,
cm & Ri. Hence, z; # 0, and dy +yi < k.

Case B: By J.3, since g, € R, 1 < free-outj, for all e; € IN(P,). Hence
free_out; # 0. O
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Prove (G.6) For P, € WebProcJ BelowWebProc, g, € WebGlobal(Fy), and e; €
IN(Py), dy +t; < k.
Proof: We assume that P, € W ebProc|J BelowWebProc, g, € WebGlobal(P,), and e; €
IN(Py).

1. If g, € R, then by uH 4, d, = 0. By 1.2 and uH.1, t; < k. Thus, d, +t; < k.

2. If g € R, then by uH.4, d, = 1. We must show that t; < k — 1 and, thus, 1 <k —1;.

Assume 1 > k —#;. By uH.1, 1 > free-out;. But by J.3, 1 < free_out;. U

Prove (G.7) For P, € WebProclJ BelowWebProc, g, € WebGlobal(P,), and e; €
IN(Py), dy +bjo = 1.
Proof: We assume that P, € W ebProc|) BelowWebProc, g, € W ebGlobal(Py), and e; €
IN(P,). By uH.4 and uH.5a, dy + bjo =1. 0

Prove (G.8) For P, € WebProc|) BelowWebProc, and gy € WebGlobal(P,), and e; €
OUT(PR,), dy +bj1 = 1.
Proof: We assume that P, € W ebProc|) BelowWebProc, g, € WebGlobal(F,), and ¢j €
OUT(P,). By uH.4 and uH.5b, dy + b1 = 1. O

Maximal Solutions in T(k, &) and S(k, G)

A solution in S(k,G) is maximal if the values of the dual variables cannot be increased.
We represent the maximal solutions in S(k,G) as S(k,G). A maximal solution does not
necessarily maximize the objective function in Figure 7.23.

We define T'(k, @) to be the maximal solutions in T'(k, G). In T'(k, @), additional local
candidates cannot be allocated registers given the local and global candidates allocated
registers and the register spills of local candidates across the call edges. In addition, a
register spill of a local cannot be removed from a call edge given the local and global
candidates allocated registers in each procedure and the other register spills of locals in the
call graph.

Whether an allocation in T'(k, @) is maximal is independent of the global candidates
that are allocated registers. Based on our model of interprocedural register allocation

of globals in Section 7.3.5, we cannot assign a register to a global candidate without
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changing the loads and stores of that global along the call edges. Each procedure P, €
WebProc|) BelowW ebProc may allocate its global candidate to a register. Each possible
register allocation of global candidates, in which global candidates can only be assigned
register Ry, occurs as part of an allocation in T(k,G).

Theorems 3, 4, 5, and 6 and Corollary 1 of Section 5.2 still hold in the presence of

global candidates; that is, for z € S(k,G). We list the theorems below.

Theorem 3 Let z € P(k,G). Let ¢; € C(P). Then z; +y; = kora;+y =k+1.

The proof of Theorem 3 can easily be updated for z € S(k,@). In the proof, either
dual variable z; of candidate ¢j, ¢j T ¢, or dual variable 7; for edge e; € OUT(P,) may
constrain the value of ;. In the presence of global candidates, a dual variable d, of a global
candidate g, may also constrain the value of y;. No other changes to the proof need to be

made. O

Theorem 4 Let z € P(k,G), ¢i,¢; € C(P). If ¢; T ¢j, then z; < ;.
This proof can easily be generalized to allow local candidate ¢; to be replaced by a global
candidate g,. A global candidate is a least-most element in a partial order. In the proof,

replace z; and y; with dy and fy. U

Corollary 1 Let z € P(k,G), ciyc; € C(P). If ¢; C¢j and ¢j € R,(z) for some 1 < v <k,
then z; < z;.
Given the change to Theorem 4, this corollary holds if ¢; is replaced by a global candidate

Gy B

Theorem 5 Assume ¢; € C(P,) and ¢; € Rp(z) for some 1 < h < k. Let m; = h. If
z € P(k,G), then

1. if there exists a ¢y € Ry(z) from some 1 < v < k, ¢i T Cm, then there exists a

¢q € Rp11(2), ¢i T cq-

2. Otherwise, assume there does not exist a ¢, € Ry(2), ¢; T ¢m. If IN(P,) is nof

empty, then z; = k — t,, for some ey € 1 N(Py).



3. Otherwise, if there does not exist an e¢; € IN(P,), x; = k.

No changes need to be made to the proof of Theorem 5. O

Theorem 6 Assume ¢; € C(P,), x; = h, ¢; € Rp(z), and 0 <h < k. If z € P(k,G), then

1. if there exists a candidate ¢; € C(P,), such that ¢; C ¢; and ¢; € Uk_; Ry(2), then

there is a candidate ¢, T ¢; such that ¢, € Rp(2)

2. Otherwise, assume there is no candidate ¢; T ¢; such that ¢; € Ub_ Ry(2). Tf

OUT(P,) is not empty, then 7y = z; for some e4 € OUT(Py).
3. Otherwise, if there does not exist an e, € QUT (%), then z; = 0.

For z € S(k,G), Theorem 6 part (1) also holds if ¢; is a global candidate, in which case

¢m may also be a global candidate. Parts (2) and (3) still hold. O

We now prove that for H € T(k,G), u(H) is a bijection onto S(k,G), and H(u) is its

inverse.
Theorem 14 If H € T(k,G), then u(H) € Sk, Q).

Proof: Let «' = u(H) for H € T(k,G). Assume local candidate c; is assigned to Ry,
1<h<k inH Inv,zi=handy;=k+1-h Assume global candidate g, is assigned
to register Ry in H. Then d, = 1 in v'. Mapping H (v') € T(k,G) assigns candidate ¢; to
register R, and global candidate g, to register Ry. For local candidates ¢; not assigned a
register in H, z; +y; = k in v’ and for global candidates g, not assigned a register in H,
d, = 0 in v/. These candidates are not mapped to registers in H(v'). In addition, in ',
r; = freesn; and t; =k — free_out; for e; € E. Mapping H (u') assigns ry to free-in;
and k —t; to freeout;. Thus, H is equivalent to H(u).

If v = w(H) is not maximal, then we can increase the value of a dual variable to make the
solution maximal. If we increase the value of dual variables z; or y; for candidate ¢; € C(P)
then the allocation of H(u') will allocate a register to an additional local candidate. We

cannot increase the value of dual variable d,, for global candidate g, € WebGlobal(Py), since
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d, is constrained by bj; for e; € IN(P,) (G.7) and by bjs for e; € OUT(P,) (G.8). Dual
variable f, always equals k (G.4). Increasing r;j and t; for e; € E in v’ results in fewer
registers spilled in H(u'). If we can increase dual variables in o', then H(u') is maximal,

and H is not maximal, and H and H (') are not equivalent, which is a contradiction. O
Theorem 15 Ifu € S(k,G), then H(u) € T(k,G).

Let w € S(k,G). For H(u) € T(k, @), we prove the following: (1) if ¢; & Uk_, Ry(u),
then ¢; cannot be added to Rp(u), 1 < h < k; (2) the value of freesn; cannot be increased
for e; € E; and, (3) the value of free_out; cannot be decreased for ¢; € E.

(1) Let ¢; € C(P,) and ¢; & Uk_, Ry(u). Follow the same steps of (1) in Theorem 8,
Section 5.2.

(2) We prove that for e; € E, the value of free.in; cannot be increased in H (u).

Again, we can prove (2) by following the same steps of (2) in Theorem 8, Section 5.2.

(3) We prove that for e; € E, free_out; cannot be decreased, if u is maximal. Let
t; =k —h, e; € IN(P,). H(u) maps the value of r; to freein; and k — t; to free_out;.
There are four constraints on ¢; in u: (a) t; <k —r1y; (b) ife; € OUT(P,), then t; <k —1rjy;
(c) if ¢; € C(Py), then ¢; < k — zj; and, (d) if g, € WebGlobal(P,), then dy +t; < k.
Since w is maximal, #; must be equal to one or more of these constraints. H (u) maps these
constraints to the four constraints on free.out; in H € T'(k, G).

To prove 3(a-c), we can follow the proof of 3(a-c) in Theorem 8 of Section 5.2. We prove
3(d) below.

3(d) Assume that d, +t; = k. By G4,0<d, <1. Ifd, =0, then t; = k. Since
0 <t; <k, d, does not constrain t;. If d, = 1, then ¢; = k — 1 and, thus, k —t; = 1. By

Hu.4, free-out; = 1. By J.3, 1 < free.out; and, thus, free_out; cannot be decreased. O
Theorem 16 If H € T(k, @), u € S(k,G) and H(u) = H, then u = u(H).

We can follow the same steps in the proof of Theorem 9 in Section 5.2 to show that
the dual variables @; and y; for ¢; € C(P) and r; and ¢; for ¢; € E are preserved
across the mappings. We still must show that the values of the remaining dual vari-
ables, aj1, ajo, bj1, bj2 for e; € WebEdge|) BelowW ebEdge|) WebEntry and dy, f, for

P, € WebProclJ BelowW ebProc are also preserved.
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Let P, € WebProc|J BelowWebProc. Let g, € WebGlobal(P,). Assume that in u €
S(k,@), dy = 1 and f, = k. Then by Hu.2, g, € Ry in H. By ul.4, u(H) assigns d, = 1
and f, = k, which are their values in u. Assume d, = 0 and f, = k. Then by Hu.2, g, € Ry
in H. By uH.4, u(H) assigns d, = 0 and f, = k, which are their values in w.

Assume e; € WebEdge. Let ej be the call edge from procedure P, to P, (e; € OUT(F,)
and e; € IN(P,)). Let g, be the global candidate in P, and g, be the global candidate in
P,. Also, let d, and f, be the dual variables for g, and dy, and f,, be the dual variables
for gu. By G.7, dy +bjo = 1 inwu. In uw(H) dy, is assigned its original value as discussed
above. By uH.5a, bjo is assigned its original value in w. Similarly by G.8 and uH.5b, bj; is
assigned its original value in u. By G.1, aj; and ajo have the same constraints on bj; and
bjo in u. The constraints aj; +bj; <1 and a1 + bjs < 1imply aj3 =1-M AX(bj1,bj2) in
a maximal solution. Since the values of bj; and bjs are maintained across the mapping and
by uH.6, so are aj; and ajo.

We can follow a similar argument to prove that the value of dual variables a;1, aj2, bj1,

and bjz are maintained across mappings for edges e; € WebEntry ) BelowWebEdge. U
Theorem 17 Ifu e S(k,G), H € T(k, @), and w(H) = u, then H = H(u).

Assume H # H(u). Let H' = H(u). By Theorem 16, w(H') = u. Since uw(H) = u by
assumption, w(H') = u = u(H). By mapping uHL.1 -~ uH.8, if H # H', then u(H) # u(H').
Hence, H = H' and H = H(u). O

Maximum Weight Solutions in T'(k,G) and S(k,G)

We now prove there exists a bijection between maximum weight solutions in T'(k, @) and

Sk, Q).
Corollary 4 For H € T*(k,G), u(H) is a bijection onto S*(k,G) and H(u) is its inverse.

Proof: For solutions in $(k, @) the values of the dual variables cannot be increased. T he
objective function is shown in (1) below. The value of dual variable d, for global g, is
dependent on bjo for e; € IN(P,), since dy + bjo = 1. Thus, even though w, can equal 0

for d, in a maximum weighted solution, the value of dual variable d, cannot be decreased.
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Since the weights of the dual variables other than the global candidates are always positive,
the maximum weighted solution is also a maximal solution.

The maximization function for a solution to the interprocedural register allocation prob-
lem is shown in (6). A maximum weighted solution T*(k, &) is also a maximal solution.
Since w; > 0 for ¢; € C(P), additional local candidates cannot be allocated registers in a
maximum weighted solution. The expression —s; * (free-out; — free-in;) decreases for each
register spill along edge e;. Both a maximum weighted solution and a maximal solution will
not spill registers unnecessarily along an edge. We defined a maximal solution to be inde-
pendent of the global candidates allocated registers. The placement of the loads and stores
of globals is dependent on the global candidates allocated registers. Hence, the placement
of loads and stores of globals in parts (¢) and (d) of (6) ave also part of a maximal solution.

Thus, T*(k,G) C T(k, G).

(a) Yesecp) Wi * (x5 + ;)

(b) +Ye,ep 85 % (rj +1))

(c) + T ewebage 157 * (a1 + bj + aj2 + bj2)

(d) + 2e;eWebEntry 53 * (a1 +bj1)

() + e, ewebBniry 155 * (aj2 + bj2)

(f + 2 e;eBelowW ebEdge Sj * (aji +bj1 + aj2 + bj2)

(2) + 3 goewebGlobal(P) Wo * (dv + fo) (1)

We now show that expression (1) differs from expression (6) by a constant through a
series of transformations. First, to generate expression (2) from (1) we subtract constants

from parts (a) — (g) of (1).

(a) e ey Wi * (%5 Y5) = Lejecp) Wi+ k

(b) +Xeensi* (1 +1) = Lejensj*k

(c + Do etenidge 157 * (@ji + i1 + aga +bjz = 1) = T ewenpage 2 * 15
(d) + Ve, eWebEniry 53 * (@1 T 0j1) = 2e;ewebEniry 5

(e) + Yo ewebBniry 155 * (@52 + bi2) = LejewebBniry 155



(f) + Ze;éBelowVVebEdge S5 * (a’ﬂ + bjl +ajo + bj2) - ZejeBelowI/Vchdge 2% 5

(8) + 3 peewebGlobal(P) Wo * (dv + fu) = Lg,ewenGiovai(p) Wo * K (2)

To arrive at expression (3), we simplify each part.

(a) Yo, ccp) Wi * (25 +y; = F)

(b) + Y eeE Sj (rj +tj—k)

(c) + Yoo ewebBdge 187 * (a1 + bj1 + a2 + bjz — 2)

(d) + Yo ewebBntry i * (a1 +0j1 = 1)

(e) + 2 e;eWebEntry hsj* (ajo + bjz — 1)

(1) + + To. e BetowWebBdge 57 * (aj1 + bj1 + @j2 +bj2 = 2)

(8) + 3 guewebGlobal(P) Wo * (dv + fo — k) (3)

Expression (4) follows from (3) since local candidates in part (a) and global candidates
in part (g) are allocated registers if their dual variables sum to k + 1; otherwise, their dual

variables sum to k and these candidates are not allocated registers.

(a) ch crRWj

(b) + e eE i * (rj +t; — k)

(c) + Ve ewebBdge 55 * (@1 + bji + aj2 + bjz — 2)

(d) + e, ewebBniry 55 * (@1 + bj1 = 1)

(e) + e, ewebEniry 155 * (aj2 +bjz — 1)

(f) + ¥e,eBetowebdge i * (aj1 + bj1 + aja + bjz — 2) (4)

Tn parts (b), (c), (d), (e), and (f) of (4), we multiply both the left hand side of the
summation and right hand-side by —1 to form expression (5). By Hu.3 and Hud, k—7;—1;
equals free_outj — freesin; in part (b). In part (c) aji + bj1 + ajo + bjo equals 1 if there
is a load and store of a global along e; and 2 otherwise, as shown in Section 7.3.6. Thus,

—hs;j* (2 — (aj1 +bj1 +ajz +bj2)) equals 0 if there is no load and store and —hs; otherwise.
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Similarly, in part (), if there is a load and store along an edge, then that edge contributes
—s;; otherwise, the edge contributes 0. In parts (d) and (e), an edge with a load and store

contributes —s; and —hsj, respectively.

a) ZCfeij
b) ~ Ye;en 8j * (freeout; — free.in;)
c) —Ye;ewebBdge 185 * (2 — (@1 +bj1 +aze + biz))
d) — Te,eWebmntry 5j * (1 = (@1 +bj1))

€ - Ze‘,’EVVebEntry ]7’3]' * (1 - (a’jg + bJIQ))

(
(
(
(
(e)
()

— e, eBetowwebEdge i * (2 = (aji +bj1 +azz + bja)) (5)

If there are loads and stores along an edge in (d) and (f) of (5), then these edges are
members of set GlobTempSt in the maximization function (6) of our interprocedural register
allocation problem. If there are loads and stores along edges in (c) and (e) of (5), then these
edges are members of the set GlobH omeLdSt in our maximization function. Since there
is a cost of —s; for loads and stores along edges in (d) and (f) of (5), and —hs; for loads
and stores along edges in (c) and (e), the value of our maximization function (6) equals the

value of expression (5).

(a) 2icieR Wi

(b) = Ye;eB Si ¥ (free-outj — freein;)

(c) — Ye;€GlobTempSt 5

(d) ~ >e;€GlobHomeLdst 'Sj- (6)

Thus, our objective function (1) differs from our maximization function (6) by a constant
for maximal solutions in S(k,G) and T(k,G). Since by Theorems 16 and 17 we have a
bijection from maximal solutions between both of these sets, the same mapping applies to
maximum weight solutions in S(k, @) and T'(k,G). Thus, for H € T(k,G), w(H) is a

bijection onto S*(k, @) and H(u) is its inverse.
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Call Graph G Graph of Dual Minimum Cost Flow Problem for G

k = 2 registers 0 1

foad/store R1, g

Pv
store/load R2, temp

8j
store/load R1, g

Pw G“) (R2)

(a) (b)

Figure 7.26: (a) shows a call graph with a register allocation and assignment to the candi-
dates. Procedures P, references an instance of global g (gw) and Py, references an instance
of global g (gy). Candidates t, m, and ¢ are local. A web for global g includes procedures P,
and P,. (b) shows an assignment to the dual minimum cost flow problem that represents
the register allocation and assignment in (a).
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7.3.8 Example

Figure 7.26(a) presents a call graph G. There are two registers available for allocation.
Procedures P, and P, are in the same web that reference global g. Let edge e, represent
the call to procedure P,. Local candidate ¢ and global candidate g are allocated registers
in procedure P,. We assume that the caller of P, does not allocate a register to global g.
We add a register load/store of global g along the call edge e. Local candidates m and g
are allocated register in P,,. Register Ry, assigned to g in P, and register Ry, assigned to
t in P,, are spilled around the call to Py.

Figure 7.26(b) shows the graph of a dual minimum cost flow problem based on G.
The assignments to the dual variables in (b) corresponds to the allocation in (a). For
t € C(P,), xi(=2) + y(= 1) = k + 1. Thus, we assign register Ry to t. For g, € Glob(F,),
dy(= 1) + fo(=2) = k + 1. Candidate g, is assigned Ry. Along edge ¢j, 7j = 1 and ¢; = 0.
Based on the mapping in Figure 7.24, free.in; =1 (candidate g, does not constrain the
free registers available on entry to e;) and free-out; = 2. As in interprocedural register
allocation with spilling, we spill a register R; along edge e; if freedn; < i < free-outy.
Thus, we spill register Ry along e;.

Dual variables 2 +vym = k+ 1 and 2y +y, = k+1, so candidates m and ¢ are allocated
registers in P,. As there are no remaining registers, g is not allocated a register in Py
(du + fuw = k).

Now we examine the set of dual variables modeling the spill cost of globals along edge
en—I(an1, bn1, apa, bpo)—and along edge ej— (aj1,bj1,a40,b52). Each set has a single dual
variable equal to 1, as bp1 # bpa and bjy # bja. Thus, there are loads and stores along each
edge. Since byy # bpo and g is allocated a register in P, a load/store of g is needed along
edge ep,. Since bj; # bjz and g is allocated a register in P,, the register assigned to g is

spilled along edge e;.

7.3.9 Implementation

We implemented the interprocedural register allocator discussed in the previous section on a

DECstation 5000/125. Interprocedural register allocation was performed on both user and
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library routines. Dynamic profile information was provided to our interprocedural register
allocator. We profiled input generating shorter execution times than the standard input for
all benchmarks except nasa7 and swm256, in which we have only one input file. We assume
the cost of spilling a register into a temporary is two (one for a load and one for a store),
but the cost of spilling a register-allocated global into its home location is four-—an extra
instruction is needed for both the load and store to form the 32-bit address of its home
location [KH92].

Calls to setjmp and longjmp require special attention. After executing a longymp, ex-
ecution resumes after a previous setymp. After a sefymp, we load the values of a web’s
register-allocated globals from their home locations. To be sure that we load the globals’
current values, we store the globals’ values into their home locations before executing the
setymp and longjmp.

We want to avoid executing a setjmp or longjmp in a procedure in BelowWebProc,
since in general we do not know which global may be register-allocated in the procedure.
To generate correct code, we extend webs downwards in the call graph to include occurrences
of setymp and longjmp.

Figure 7.27 presents the performance improvement of interprocedural register allocation
of globals partitioned into webs. Numbers in parentheses represent the improvement over
allocating registers to globals throughout the entire call graph (Section 7.2.2). Dashes
indicate that no globals are allocated registers.

For smaller benchmarks, allocating registers to globals in webs can generate an allocation
similar to allocating registers to globals throughout the entire call graph. Both approaches
promote the same global candidates to registers in compress. In both allocations of com-
press, globals are register-allocated in the two most-frequently referenced procedures, which
represent over 95% of the dynamic execution.

Benchmark doduc allocates registers to many global candidates, but most of these globals
are referenced in infrequently called routines. An interprocedural register allocator that sets
aside registers to be allocated only to globals would generate a poor allocation on doduc.
Allocating registers to webs in benchmark egntott does shows an improvement. In egniott,

a register is allocated to global gsz, which is referenced in routines gsort and gst.



Performance Improvement
benchmark | without globals | with globals webs
integer | floating-point

compress 1% 5% (+0%) 7 0
doduc 3% 4%  (+2%) 14 10
ear 0% 0% (+0%) 3 4
eqntott 0% 1% (+0%) 4 0
espresso 7% 5% (-2%) 5 0
fpppp — — — —
gee 8% 8% (+0%) 11 0
hydro2d 0% 0% (+2%) 2 13
mdljdp2 0% 12%  (+4%) 7 8
mdljsp2 1% 2%  (+1%) 4 3
nasa7 0% 0% (+0%) 6 0
ora 1% 6% (+0%) 3 5
sC 8% 8% (+0%) 1 1
spice 2% 1% (-1%) 2 4
su2cor -1% 1% (+0%) 3 2
swm256 1% 2% (+1%) 2 4
xlisp 11% 13%  (-1%) 6 0

Figure 7.27: Performance improvement of interprocedural register allocation with and with-
out allocating registers to globals in webs. Dashes indicate that no global candidates are
allocated registers. Numbers in parentheses represent the improvement of interprocedural
register allocation of globals in webs over allocating registers to globals throughout the
entire call graph.
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The fine-grained approach of allocating registers to globals in webs improves the per-
formance of benchmark mdljdp2 more than our other approach. Additional globals are
allocated registers in frequently called routines in mdljdp?2.

Allocating registers to globals in webs improves the performance of zlisp by only 2%;
however, allocating registers to globals throughout the entire call graph improves perfor-
mance by 3%. A reason for the performance difference is that global zlstack is allocated a
register in the latter approach, but not the former. When evaluating which webs to include
in an allocation, the fine-grained allocator divides the number of global references in a web
by the number of procedures in the web. Since global zlstack is referenced in many rou-
tines, it has a relatively low benefit. Instead of allocating a register to global zlstack’s web,
a register is allocated to webs with fewer procedures. The total number of global references
in these webs does not equal the number of references to zlstack.

On benchmarks espresso and spice our interprocedural register allocator performs worse
than an interprocedural register allocation without allocation of globals. For these bench-
marks, we incorrectly estimate the number of global references. To estimate the number of
global and register references in a procedure, we statically count the number of global and
register references and scale these numbers by the dynamic instruction count of the proce-
dure. Some globals appear frequently, but are infrequently referenced. The assignment of
registers to locals is more uniform, since a register can be assigned to multiple locals in a
procedure and, hence, can be better estimated by our approach.

Figure 7.28 presents the time solving the network flow problem for allocating registers
to webs as a percentage of the total compilation time without interprocedural register
allocation. As shown in Figure 7.28, our approach is slow, especially for integer benchmarks.
The lengthy allocation time is due to both iterating through the set of registers and the

variables and constraints for register allocation of globals.

7.4 Conclusions

In this chapter, we have presented two models of interprocedural register allocation of

globals. The first model assumes registers are allocated to globals throughout the entire call
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benchmark | % of compilation time

floating-point | integer
compress 0.2% 6.4%
doduc 3.1% 5.1%
ear 1.9% 1.7%
eqntott 0.1% 7.3%
espresso 3.5% 14.8%
fpppP 0.4% 1.5%
gee 4.3% 87.0%
hydro2d 0.6% 15.1%
mdljdp2 2.7% 11.6%
mdljsp2 1.9% 12.2%
nasa’ 1.2% 9.3%
ora 3.3% 1.7%
sC 1.7% 8.1%
spice 2.5% 5.9%
su2cor 2.2% 14.2%
swm256 3.0% 4.4%
xlisp 2.8% 20.3%

Figure 7.28: Time solving the network flow problem as a percentage of the total compilation
time without interprocedural register allocation.

graph. This model is easily implemented as part of our network flow approach for finding a
minimum cost interprocedural register allocation of locals with spilling. Allocating registers
to global candidates over the entire call graph yields significant performance improvements
on a couple of benchmarks. On other henchmarks, partitioning globals over the entire call
graph is too large of a granularity to improve performance.

The second model of interprocedural register allocation allows a single register to be
shared between a global candidate and local candidates and allows all other registers to
be allocated only to local candidates. Running this allocator multiple times, mapping
the shared register to different hardware registers, enables globals referenced in the same
procedure to be allocated registers. This approach to interprocedural register allocation
is added to our network flow-based interprocedural register allocator. Overall, this model
yields better performance improvements than the first model, but is significantly slower. An
intermediate approach that is more fine-grained than the first model, but can simultaneously

allocate registers to globals referenced in the same procedure, is worthy of investigation.
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Chapter 8

Future Work

This thesis raises interesting issues for further investigation. For example, we assume that
local candidates are live across all calls or no calls. A more context-sensitive interprocedural
register allocator could generate a better allocation. Currently, we use a number to represent
the registers free in a procedure. If there are n registers free, then Ry, ..., Ry are the free
registers. Modeling registers as live across only some calls suggests that a single number is
insufficient to represent the set of free registers. For example, five registers may be free in
two procedures, but they may not be the same five registers.

A solution may involve having k copies of each candidate, where k is the number of
registers. Constraints would prevent a candidate from being assigned to more than one
register.

Finding a better interprocedural register allocation for local candidates may lead to
a better solution for global candidates. Our model of interprocedural register allocation
that allows spilling of register-allocated globals assumes at most one global candidate in
each procedure. If we have multiple global candidates in a procedure, in which each global
candidate can be assigned a pre-defined register, then an arbitrary set of registers may be
allocated within a procedure.

Another area of future research involves parameters passing. There is a tradeofl in using
registers to pass parameters. If a caller passes a parameter in a register to a callee then

that register cannot hold values live across the call in the caller. However, passing values
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in parameters can save instructions, since the caller may execute one less instruction by
not saving the parameter’s value on the stack and the callee may then avoid loading the
parameter into a register from memory. A model that can accurately represent this cost

would allow for a better allocation.
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