USER-DEFINED REDUCTIONS FOR
COMMUNICATION IN DATA-PARALLEL
LANGUAGES

Guhan Viswanathan
James R. Larus

Technical Report #1293

January 1996

User-defined Reductions for Communication in Data-Parallel
Languages*

Guhan Viswanathan James R. Larus
Computer Sciences Department
University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706 USA
Telephone: (608) 262-2542
{gviswana,larus}@cs.wisc.edu

January 12, 1996

1 Introduction

Parallel programming and parallel computers, have been a gleam in the eye of computer science for three
or four decades. Rapid advances in semiconductor technology have led to high-performance, low-cost mi-
croprocessors that are appropriate components for a parallel machine. Unfortunately, this progress has left
parallel software far behind. The difficulty of programming parallel computers is now, by far, the largest
obstacle to their widespread use.

Improved parallel programming languages could reduce the difficulty of programming parallel computers
by making programs less error prone and less machine specific. One promising approach is data-parallel
languages, such as HPF [9], C* [18], or NESL [2], which provide high-level abstractions for the three key
facets of parallel programming: concurrency, synchronization, and communication. In these languages,
programmers express parallelism by invoking a parallel operation simultaneously on a collection of data.
Synchronization is implicit in the division of a program into sequential and data-parallel phases.

The widest divergence among these languages is among their features for parallel communication. These
languages pass values between sequential and parallel phases through arguments to parallel functions and,
in most languages, by permitting these functions to reference data in a global address space. More inter-
esting and varied are the mechanisms for passing values from the parallel to the sequential computations.
Vector-based languages, such as Connection Machine Lisp [23] or NESL [2], provide vector permutation and

mapping operations that rearrange a vector’s data. Point-based languages, such as HPF [9] and C* [18],

“This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF, un-
der grant #F33615-94-1-1525 and ARPA order no. B550, NSF PYI/NYI Awards CCR-9157366, MIPS-8957278, and CCR-
9357779, NSF Grant MIP-9225097, DOE Grant DE-FG02-93ER25176, University of Wisconsin Graduate School Grant, Wiscon-
sin Alumni Research Foundation Fellowship and donations from A.T.&T. Bell Laboratories, Digital Equipment Corporation,
Sun Microsystems, Thinking Machines Corporation, and Xerox Corporation. Qur Thinking Machines CM-5 was purchased
through NSF Institutional Infrastructure Grant No. CDA-9024618 with matching funding from the University of Wisconsin
Graduate School. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Wright
Laboratory Avionics Directorate or the U.S. Government.

use assignments in a global namespace to communicate values. Although widely used, assigning a value to
a location only suffices for one-to-one or one-to-many communication. Many-to-one communication results
in data conflicts or collisions, when multiple values are stored in a location. Many data parallel languages
leave the semantics of these conflicts undefined [14].

Other languages try to avoid potential errors due to data races by defining a semantics for these collisions
[13, 22]. These languages typically use a binary reduction operator to combine colliding values into a single
value that can be stored in a location. Reductions are also common in parallel applications, even those
written in languages that do not provide first-class support for these operations. Unfortunately, in most
data-parallel languages, this support consists of a limited set of predefined reduction functions—typically,
the associative arithmetic and logical operations.

In this paper, we demonstrate that parallel languages need not and should not arbitrarily limit reduc-
tions in this way. User-defined reductions permit a programmer to extend these operations by defining new
reduction functions on both scalar and compound data types. User-defined reductions are a natural gener-
alization that subsumes the limited reductions offered by most languages. They permit a programmer to
extend reductions in two dimensions: by formulating new operations for combining values, such as building
a list from colliding values, and by extending reductions to user-defined data types. In addition, user-defined
reductions offer a natural way to express many message-passing optimizations, such as update protocols and
bulk data transfer, in a shared-memory program.

Some languages include user-defined reductions, such as Connection Machine Lisp [23], Paralation Lisp
[19], and Fortran D [7]. We are unaware of published descriptions of implementations on MIMD machines.
This paper describes an efficient implementation for user-defined reductions and contains experiments that
demonstrate that user-defined reductions both simplify writing parallel programs and improve the perfor-
mance of programs written in a high-level parallel language. With user-defined reductions, our high-level
parallel programs ran at comparable or faster speeds than hand-coded parallel programs.

We performed this work in the context of the data-parallel language C**, although the results are
applicable to other data-parallel languages. C** is a data-parallel language that extends C++ with a
parallel aggregate data type and data-parallel operations. Section 2 describes C**’s large-grain data parallel
execution model. In an imperative language, such as C**, many-to-one communication operations arises
from assignment statements, which C** generalizes to reduction assignments that allow a programmer to
specify a combining function for collisions. Extending reduction assignments to allow user-defined functions
requires only a small syntax change, but the semantics require more careful consideration. In particular,
user-defined reduction functions differ from primitive arithmetic operations because they may have side-
effects and need not be associative or commutative. In addition, a data-parallel language must specify if
and when intermediate results of a reduction assignment are visible to the program. Section 3 explains our
deferred reduction model, in which the results of a reduction is only visible at the end of the parallel phase.

C**'s basic implementation of reductions uses messages to send values to a home processor. The de-
ferred reduction model enables the C** runtime system to combine messages to the same destination and
perform reductions locally, which reduces the message overhead. These simple techniques apply equally well
to predefined reductions and permit standard arithmetic reductions to be efficiently implemented in the
same framework. The compiler also uses processor combining trees to implement reductions on a parallel
operation’s return values. Section 4 describes the implementation in more detail.

We evaluated our implementation by comparing C** versions of five benchmarks (one small and four

medium-size applications) against well optimized versions of the programs on a 32 processor CM-5. All of

Program | Compared against C** | SPMD | (SPMD/C*¥)
DSMC Hybrid SM-MP 74.2 82.7 0.90
EM3D Hybrid SM-MP 10.7 5.0 2.14
Water Shared memory (SM) | 13.0 13.6 0.96
Moldyn Hybrid SM-MP 27.0 26.7 1.01
FFT Shared memory (SM) 2.0 8.5 0.11

Table 1: Comparative benchmark execution times (in seconds on 32-processor CM-5)

class Grid(float) [J[1) { /* Member functions */ +s
Figure 1: Aggregate definition syntax in C**

these programs’ communication patterns were fully captured by reduction assignments (both user-defined
and primitive). Table 1 summarizes our results. Section 5 describes the benchmarks in more detail and

presents complete performance results.

2 User-defined Reductions in C**

Hillis and Steele popularized the data-parallel programming model for programming massively parallel pro-
cessors [10]. The high-level features of this model, such as a global namespace and nearly deterministic
execution, prompted the design of many other data-parallel programming languages. Our language, C**
provides coarse-grain data-parallelism, but enforces independent execution of coarse-grain tasks. Section 2.1
briefly describes the data-parallel execution model in C**, a detailed description of C** can be found else-
where [13]. Section 2.2 describes the syntax of reduction assignments in C** and shows how user-defined

extensions can be added with minor syntax extensions.

2.1 Data-parallelism in C**

Data-parallel programs express parallelism by invoking a data-parallel operation on a data collection. An
invocation simultaneously executes data-parallel tasks for each element of the collection. The compiler and
run-time system map tasks to physical processors in a machine.

Data collections are specified using aggregate types (e.g., arrays in HPF [9], vectors in NESL [2], special
class constructs in PC++ [14]). C** overloads the class definition mechanism of C++ to define data
collections that are called Aggregates. For example, Figure 1 declares a two-dimensional collection of floating
point values whose size is specified when Grid objects are created.

Data-parallel operations in C** are specified using the parallel keyword. A parallel function operates
on its data collection argument, which is also denoted by a parallel keyword. For example, Figure 2

void stencil(parallel Grid &A) parallel

AT#OT[#1] = (A[#0 - 11[#1] + A[#01[#1 - 1] + A[#0 + 1][#1] + AL#0I[#1 + 11) / 4.0;

Figure 2: Stencil in C¥*

float g;

void sum(parallel Grid &A) parallel

{
}

g =h+ AL#0][#1];

Figure 3: Sum reduction assignment

describes the stencil operation in C**. The pseudo variables #0 and #1 identify row and column positions
within the collection and allow access to neighboring elements.

C** provides large-grain data-parallelism [13]. It allows coarse-grain parallel tasks, but enforces task
independence by providing local copies for global updates (i.e., copy-in, copy-out semantics). In the stencil

function (Figure 2), each point in the grid receives the average of the old values of neighboring elements.

2.2 Reduction Assignment Syntax

Reduction assignments augment assignment statements with a combining or reduction operator. When an
assignment statement executes, the statement’s combining operator reduces the value in the location specified
by the left-hand-side and the value from the right-hand-side into a new value, which is stored in the target
location. For example, Figure 3 uses a reduction assignment to sum the values of a data collection.

In C**, user-defined reduction assignments required a minor syntax extension to allow function names
as reduction operations. For example, Figure 4 shows a location reduction from the C** implementation
of Dijkstra’s algorithm to compute the shortest paths from a single source to all other nodes in a graph.
Given an array of numbers, the location reduction identifies the minimum value in the collection, along
with its position in the array. In Dijkstra’s algorithm, this step finds the next node with the shortest path.
The min parallel function pairs the node’s distance and its position and applies the user-defined loc_reduce
combining function to compute the location and the minimum value.

Note that the reduction function loc_reduce is not a symmetric binary operator with type Loc x Loc —
Loc. The current C¥* compiler requires that the first parameter of a user-defined reduction serve as both

input and output (following C syntax, it is a pointer).

3 Semantics of User-Defined Reductions

This section explores four language design issues associated with user-defined reductions. Two issues arise
from the increased generality of the user-defined functions interfering with the well-defined behavior guaran-
tees of a data-parallel language. The third issue identifies program points at which the results of a reduction

can be made available. The fourth issue generalizes reductions into two separate components.

3.1 Semantic Problems

In most data parallel languages, the built-in, primitive reduction functions are side-effect free and cause
no data access conflicts. However, user-defined reduction functions do not share this property. Conflicts
hetween user-defined reduction functions can undermine a data-parallel language’s semantic guarantees.

/* User-defined data type for Loc reduction */
struct Loc {
int distance, node;

/% User-defined location reduction function */
void loc_reduce(Loc #*1lhs, Loc rhs)

if (lhs->distance > rhs.distance)

(#*1hs) = rhs;
1
/* Aggregate storing the shortest paths */
struct Dijkstra (int) NI { ... };

/* Find the next node with the shortest path */
void min (parallel Dijkstra &d, Loc *result) parallel

struct Loc temp;
temp.node = #0;
temp.distance = d.distance;
*result =}loc_reduce temp;

Figure 4: Location reduction in Dijkstra’s algorithm

We see three possible approaches to preserving a language’s semantics, such as C**'s guarantee of nearly
deterministic execution. First, user-defined reductions can be restricted to use only well-behaved functions
that a compiler ensures are side-effect free. Although plausible, this rule is too restrictive because of limited
compiler analyses in languages that support pointers and aliasing. Second, a language may permit compiler
directives, such as HPF’s INTENT directive, that assert properties of user-defined reductions that a compiler
is unable to prove. This approach opens the door to difficult-to-find errors if a directive is incorrect. Third,
a language may allow general functions, but require a run-time system to identify data access conflicts, as
in Steele’s Parallel Scheme [22]. Run-time conflict identification can be expensive and complex. The CH**
compiler relies on user guarantees that user-defined functions are safe.

Another issue is that user-defined reductions may not be commutative or associative, so that different
combining orders lead to non-deterministic results. This is not a problem for two reasons. First, user-defined
reductions are typically effectively associative [19] functions in which the absence of associativity does not
affect a program’s result. For example, the combining function append collects values into a list. In many
cases, the list is a set so that the order of elements is unimportant. Second, a programmer can force a specific
combining order by collecting all values into a list, sort them, and then combining. Mandating a combining
order for all reductions unnecessarily restricts language implementors and imposes overhead on applications

that do not require it.

3.2 Reduction result availability

In coarse-grain data-parallel languages, a task may continue after executing a reduction assignment. If
a variable target is the target of a reduction assignment, the language must specify the value seen by
subsequent accesses to target by the task. Three approaches are possible:

1. The language may prohibit accesses to target, except as a reduction target, as does Fortran D [7].
Erroneous accesses can be identified syntactically. This approach allows the runtime system to defer
updating the target. However, syntactic analysis may not identify all erroneous accesses, particularly

those involving arrays or pointers.

2. The language may retain the old value of target after a reduction. When the data-parallel operation
completes, the colliding values can be combined and used to update reduction targets. We call this
approach deferred reductions.

3. The language may defer combining, but update the local copy of target by merging contribution from
the local task. This approach is suitable for a language like C**, which mandates local copies to enforce
independence. However, other data-parallel languages do not make such a clear distinction between

local and global values and are better off using deferred reductions.

3.3 User-Defined Updates

A reduction assignment is actually two actions, combining conflicting values and updating the target location
with the new value. For example, in C**, the reduction assignment g =%+ A[#0] [#1]; from Figure 3 adds
the sum of elements of A to g. Suppose that each element of A is a 3-element array of floating point values
(representing a force vector). To sum these vectors, the programmer can use an array.sum function thus: g
=Yarray.sum A[#0] [#1];.

A user-defined update is syntactic sugar for updates to a target location of a different type than the
combined value. To continue the example, if g is not a vector but a list of vectors representing sums of A
at different points in the program, the programmer can append the current sum the list with g =/append

array.sum A[#0][#1];. Without user-defined updates, the programmer must store the sum in a tem-
porary and append to g later. To prevent non-deterministic results, update functions must follow the same
restrictions as reductions (Section 3.1).

C** also permits a programmer to omit the combining function entirely and specify only an update
function. In this case, the update function is invoked on each value separately. For example, to collect all
reduced values in a list, the programmer provides an update function that inserts a single element into the
list. This approach is also useful when combining values is more expensive than merging values one-by-one,

as when each value modifies distinct parts of a large data structure [26].

4 Implementation

The C** compiler implements user-defined reductions with a small amount of runtime support. This section
describes how the compiler and runtime system implement basic and update reductions (Section 4.1), exploit
the deferred reduction model to vectorize messages (Section 4.2), and combine values locally to reduce
message traffic (Section 4.3). In some cases, the compiler also uses a combining tree to reduce values
(Section 4.4).

4.1 Basic and Update Reductions

A reduction assignment updates its target with the combined value of colliding right-hand-side values.
The C** implementation involves two processors: the processor that executes the reduction assignment
(processor A) and the processor that owns the target location (processor B). Processor A, which executes
the reduction, sends processor B a message containing three items: the right-hand-side value, the combining
function descriptor, and the target location pointer. At the end of the parallel phase, Processor B collects
incoming reduction messages, combines colliding values and updates target locations. To implement update
reductions (Section 3.3), processor B replaces the combining function with an update function.

The “owner-updates” model is simple to implement and requires minimal runtime system support. It
depends on the runtime system to support target location queries, which is usually available in languages

that provide a global name space.

4.2 Bulk reductions

During a data-parallel operation, a processor may execute multiple reductions for two reasons. First, the
number of data-parallel tasks is usually much larger than the number of processors, so each processor runs
multiple tasks. Second, each coarse-grain data-parallel task may execute multiple reduction assignments.
The deferred reduction model allows the compiler to defer sending reduction messages until the end of the
parallel phase. This permits several messages to the same destination processor to be bundled into a single
message, which is typically far more efficient to send and receive.

This optimization is essential when the application program uses reductions to communicate large
amounts of data. As the graphs in Section 5 show, this optimization improved program performance between
1.06x (Tiled FFT) and 6.76x (EM3D).

4.3 Local Combining

If a processor executes multiple reductions to the same target, the values can be combined locally before
being sent for global combining. Local combining requires the runtime system to identity common targets
locally, for which the C** system uses a hash table of target addresses. Probing this table increases the
overhead of the reduction, but allows for a decrease in communications cost. This is a good example of an
optimization that trades off worse sequential performance for better communication (and therefore parallel)
performance.

On Water and Moldyn (two benchmarks that benefited from local combining), (Section 5), this optimiza-
tion improved performance by 1.21x and 2.32x respectively. Figure 6 also demonstrates the tradeoff between
sequential and parallel performance for Water. The Splash version is consistently faster (as much as 1.6x on
one processor) up to 16 processors, but the C** version is 1.06x faster on 32 processors.

4.4 Tree Combining

C** also allows reductions to combine values returned by parallel tasks [13]. The combined return value is
returned to the sequential phase as the result of a data-parallel operation. C** executes return reductions
using processor combining trees for efficiency, much like combining tree barriers for synchronization [15).
The processors are organized as a tree. Results move up the tree, bounding the communication latency by
O(logP), where P is the total number of processors.

Program | Scientific Domain | Input data set | SPMD size | C** size |

DSMC Particle-in-cell 9720 cells, 400 iterations 5,000 2,258
initially 48600 particles
finally 72500 particles
EM3D Electromagnetics 32000 nodes, 20% remote edges 3,175 254
degree 5, 100 iterations
Water Molecular dynamics 512 molecules, 30 iterations 2,278 1,231
Moldyn Molecular dynamics 16384 molecules, 30 iterations 3,226 758
FET Signal processing 262144 complex numbers 964 499

Table 2: High-level benchmark description and program sizes (in lines)

5 Performance

This section evaluates the performance of C** optimizations on five benchmark programs and compares
them against highly optimized alternatives written in SPMD style. Our C** compiler targets a Thinking
Machines CM-5 [11], a message-passing multiprocessor. The run-time system builds on a portable parallel
substrate called Tempest [17], which provides mechanisms for shared memory and message passing on a
wide range of parallel machines. The compiler uses the Tempest shared-memory mechanisms to implement
a global namespace and its message-passing primitives to implement reductions. Table 2 gives a high-level
description of the benchmarks, including the input data sets.

For three applications, DSMC, Moldyn, and EM3D, we compared against the best optimized programs
previously written (by others) using a hybrid of shared-memory and message-passing techniques [5, 16].
These programs use transparent shared memory as a basis, but communicate select data structures through
custom shared-memory or message-passing protocols. For three programs, including DSMC and Moldyn,
Mukherjee et al. demonstrated that this approach compares favorably with the well-known Maryland CHAOS
library [4] for irregular applications. Falsafi et al. showed that the best optimized version of EM3D ran faster
than a comparable message-passing program [5].

The other two applications (Water and FFT) are transparent shared memory programs from the Stanford
SPLASH suite [24]. We ran these programs on Blizzard, a fine-grain distributed shared memory system that
runs on the CM-5 [20].

Table 2 also compares the program size (number of lines) of the C** version of each benchmark against
the optimized versions. In all cases, the C** programs are significantly smaller. The difference is more
pronounced for the Hybrid codes (e.g., EM3D) that contain custom code to improve communication perfor-

mance.

51 DSMC

DSMC simulates particle movement and collision in a three dimensional domain using a Discrete Simulation
Monte Carlo method [21]. DSMC divides the domain into cells in a static Cartesian grid and distributes
molecules among cells. At each time step, the algorithm moves molecules under the influence of forces from
interactions with other molecules, adds new molecules from a jet stream, and collides molecules in the same
cell. The data-parallel implementation of DSMC exploits parallelism on cells.

The move phase updates the positions of each cell’s molecules from their current velocities. In the
process, molecules may move from one cell to another (usually neighboring) cell. Inter-cell molecule transfer
is many-to-many communication since a cell may export molecules to different destinations and a cell may

receive multiple molecules. The C** implementation uses an update reduction function to collect entering

DSMC EM3D

122.0
1.0 B, s = S ©18.8 2.0 m\/
e o _A169 s——>a Hybrid i
o 08 6/ 014.5 | hw)]6 o R C**,b“lk
8 8 F—— C:i::{:
= =S
o 0.6 212
2z 2 & = = = 2 £10.4
3 : - o] \
T 0.4 “o——o C**,bulk 5 0.8 | |
= ‘o o Hybrid ~
0.2 o-—-a CFF 0.4 | '\
R 415
0.0 0.0
1 2 4 8 16 32 I 2 4 8 16 32
Number of Processors Number of Processors

Figure 5: Execution speeds of 3 versions of DSMC and EM3D, normalized to the optimized C** version
(with bulk reductions). Speeds greater than 1.0 are faster than the C** version. The numbers adjoining the
curves are speedups relative to a sequential version.

molecules and add them to the cell’s list. The Hybrid implementation uses bulk messages for molecules
moving to neighboring processors and single messages for other molecules.

Figure 5 compares the relative speeds of the Hybrid version against C**’s unoptimized and bulk reduction
versions. The bulk reduction improves significantly over the simple reduction (1.3x) and is 1.11x faster than

the optimized Hybrid version.

5.2 EM3D

EM3D models the propagation of electromagnetic waves through objects in three dimensions [3]. The
problem is formulated a bipartite graph of H nodes representing magnetic fields and E nodes representing
electric fields, with directed edges between H nodes and E nodes. Each time step consists of two parts: first,
each H node accumulates the effects of neighboring E nodes, and then each E node accumulates the effects
of neighboring H nodes.

In C**, the effects are accumulated with addition reductions. In the first part of a time step, E nodes send
their values (using reductions) to H nodes, where they are collected and combined. The defered reduction
implementation mimics the producer-consumer data movement pattern of the program, which is essential to
good performance [5]. The Hybrid version of EM3D uses a custom update protocol to transfer data in the
producer-consumer pattern.

Figures 5 compares the relative speeds of the Hybrid version with the simple and bulk-reduction CH*
versions. The bulk-reduction optimization improves the execution time by 6.76x. However, the Hybrid
version is still 2.11x faster than the best C** version. The primary reason for this is the overhead of
collecting reductions into bulk messages (and testing for buffer overflow) compared to the computation itselt
(one double-precision addition). This difference is magnified on a single processor: a uniprocessor version of
the C** code was 3x slower than its sequential counterpart. The Hybrid version also exploits the repetitive

B—a gplash/Hybrid
oo C¥** bulk,local

Water =5 C** bulk Moldyn
ra—— C:l::}:
1.6 E .
\S\ _ (:j// \n23’9
1.4 N 1.0 e s ° ° 23.6
9 1.2 Su 2 03
Q \ 13.1 L
& 1.0 S © " 3125 &
208 e a e am109 206
E ;\'A‘\»‘ . . E /\~\\\\
&) 06 T s oo 8.1 & 04 T ¥ { |]
0.4
0.2 0.2 .
T e e x1.7
0.0 0.0
1 2 4 8 16 32 2 4 8 16 32

Number of Processors

Number of Processors

Figure 6: Execution speeds of 4 versions of Water and Moldyn’s force computation phase relative to the
optimized C** version (with bulk reductions and local combining). Speeds greater than 1.0 are faster than
the C** version. The numbers adjoining the curves are speedups relative to a sequential version.

communication pattern to utilize message-passing channels which are faster than bulk messages on the CM-5.

This difference accounts for 17.5% of C**’s execution time slowdown compared to Hybrid.

5.3 Water and Moldyn

Water and Moldyn are well-known molecular dynamics code used to model macromolecular systems [16].
Molecules are initially distributed uniformly in a cuboidal region with a Maxwellian distribution of initial
velocities. A molecule moves under the influence of forces exerted on it by other molecules. In Moldyn, the
force computation limits interactions to molecules within a cut-off radius by maintaining an interaction list
that is updated infrequently. Water [24] computes interactions between all pairs of molecules.

Evaluating an interaction involves reading the positions of two molecules, computing the resulting force,
and updating each molecule with the resultant force. Force update involves many-to-one communication;
each molecule receives force increments from many interacting molecules. In C**, the force increments are
combined using a reduction function (with local combining). The Hybrid implementation of Moldyn stores
local copies of force increments for all molecules on each processor. The local copies are combined in an
efficient ring reduction using messages. These local copies add significantly to the memory requirements,
especially when the number of processors is large and each processor is responsible for a small fraction of the
molecules. By contrast, C** allocates space only for the reductions actually executed on a processor, which
saves significant amounts of memory. Water also uses local copies, but uses locks to synchronize combining.

Figure 6 compares the relative speeds of the Hybrid (and Splash respectively) version of Water and
Moldyn’s force computation phase with C** versions at three levels of optimization (simple reductions, bulk
reductions and bulk reductions with local combining). We compared only the force computation phase in
Moldyn because the C** version used a faster algorithm for building the interaction list.

In Moldyn, bulk reduction provides a 6.04x improvement in execution time and local combining improves

10

FFT

1.2
= 1.0
D
Q
2 0.8
£ 5o Tiled C¥* bull
= 0.6 . l ¢ yhu
i) ‘5-0 Tiled C##
~ 0.4 & -0 C*¥ bulk

» Splash
02 I C:’;::E:
0.0

1 2 4 8 16 32
Number of Processors

Figure 7: BExecution speeds of 5 versions of FFT relative to the optimized Tiled C** version with bulk
reductions. Speeds greater than 1.0 are faster than the C** version. The numbers adjoining the curves are
speedups relative to a sequential version.

further by 2.32x. On 32 processors, the highly optimized Hybrid implementation is only 1% faster than the
best C** version.

Water simulates fewer molecules, and, as a result, communicates less data. The improvements from bulk
optimization (1.34x) and local combining (1.21x) are impressive, but not as large as in Moldyn.

The sequential overhead of local combining is demonstrated by Water. Between 1 and 16 processors,
the sequential overhead dominates, but at 32 processors, the lower cost of communication overshadows the

sequential overhead. As a result, the best C** version is 1.05x faster than the Splash version.

54 FFT

The FFT kernel, from the SPLASH suite [24], implements a complex 1-D version of the radix-v/N six-step
algorithm that minimizes interprocessor communication [1]. The input 1-D vector of size N is organized as
a VN x /N square matrix. The most expensive phases of the algorithm are the three matrix transpose
phases, each of which involve all-to-all interprocessor communication.

We compared two versions of the C** code against the SPLASH version running on Blizzard. The first
C** version uses null reductions to move each point in the matrix to its transposed position. The second C**
version partitions the matrix into 4 x 4 tiles at the source level to increase cache reuse [25]. The user-defined
reduction function transfers a tile at a time and transposes the tile at the receiving end in an update function.

Figure 7 compares the relative speeds of the Hybrid version with the simple and bulk-reduction versions
of both C** programs. The tiled C** version is 1.3x faster than the simple C** version because of cache reuse
and because the larger tiles amortize the reduction overhead (target pointer, combining function descriptor)
over larger data blocks. The bulk reduction optimization improves the speed of the simple and tiled C**
programs by 3.94x and 1.33x respectively.

The best C** version is also significantly faster than the Splash shared-memory version, but this difference

11

is due in a large part to the high overhead of the Blizzard shared-memory implementation.

6 Related work

Many previous papers have recognized the need for powerful reduction operators. For example, Dataparallel
C adds a tournament operator [8] to carry along an extra value in max-reductions. Also, in comparing
the message-passing and data-parallel paradigms, Klaiber et al. [12] noted the inefficiency in expressing
many-to-many communication in C*. To remedy the problem, they introduced the sendToQueue reduction
operator that is similar to append. Sharma et al. [21] used the intrinsic 1ist operator to efficiently execute
the particle-in-cell application DSMC. Several applications in the HPF-2 motivating applications suite [6]
note their requirement for user-defined reductions.

This paper describes a general mechanism supporting powerful reduction operators. Reductions are a
feature in most, if not all, data-parallel languages. A few of these languages allow user-defined functions for
reduction operations (e.g., Connection Machine Lisp [23], Paralation Lisp [19], and Fortran D [7]). However,

we are unaware of papers describing implementations of user-defined reductions on parallel machines.

7 Conclusion

Data-parallel languages mitigate the difficulty of parallel programming by providing high-level abstractions
for concurrency, synchronization and communication. In data-parallel languages, reductions express many-
to-one communication patterns by combining multiple colliding values using a binary reduction operator.
This paper demonstrates that user-defined reductions are a useful addition to a data-parallel language in two
respects: they allow the programmer to express powerful combining operators, and they can be implemented
efficiently with minimal runtime support.

User-defined reductions are useful because they generalize reductions in two dimensions. First, they
support powerful combining operations (e.g., location reductions and list building) in a familiar framework.
Second, they generalize reductions to user-defined data types. Unconstrained user-defined reductions, how-
ever, can violate a language’s safety guarantees. In this paper, we identify language design issues that a
language designer must consider, and explore possible options for these issues.

We also describe the implementation of user-defined reductions in the data-parallel language C**. The ba-
sic implementation uses messages to communicate reduction data. Two simple and well-known optimizations
— message vectorization and local combining — significantly improve the execution speed of applications
using reductions.

C** versions of 5 benchmarks using reductions performed well compared to equivalent, optimized hand-
coded SPMD programs running on a 32-processor CM-5. In the worse case, the JF* version was 2x slower
than a message-passing code. It was between 1% slower and 10% faster on 3 other codes, and 4.25x faster on
a communication intensive shared memory program. Given the complexity and effort in tuning the SPMD

codes, the C** programs are far more attractive.

References

(1] David H. Bailey. FFTs in External or Hierarchical Memory. The Journal of Supercomputing, 4(1):20-77, March 1990.

12

(1]
(12]

(13]

Guy E. Blelloch. NESL: A Nested Data-Parallel Language (Version 2.6). Technical Report CMU-CS-93-129, Department
of Computer Science, Carnegie Mellon University, April 1993.

D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick. Parallel
Programming in Split-C. In Proceedings of Supercompuling ’93, pages 262-273, November 1993.

Raja Das, Mustafa Uysal, Joel Saltz, and Yuan-Shin Hwang. Communication Optimizations for Irregular Scientific Compu-
tations on Distributed Memory Architectures. Journal of Parallel and Distributed Computing, 22(3):462-479, September
1994.

Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis Schoinas, Mark D. Hill, James Larus, Anne Rogers, and David
Wood. Application-Specific Protocols for User-Level Shared Memory. In Proceedings of Supercomputing '94, pages 380-389,
November 1994.

High Performance Fortran Forum. HPF-2 Scope of Activities and Motivating Applications, November 1994. Available at
ftp://hpsl.cs.umd.edu/pub/hpf_bench/hpf2.ps.

Geoffrey Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich Kremer, Chau-Wen Tseng, and Min-You Wu.

Fortran D language specification. Technical Report CRPC-TR900749, Centre for Research on Parallel Computation, Rice
University, December 1990.

Philip J. Hatcher and Michael J. Quinn. Date-Parallel Programming on MIMD Compuiers. MIT Press, 1991.
High Performance Fortran Forum. High Performance Fortran Language Specification. Version 1.0, May 1993.

W. Daniel Hillis and Guy L. Steele, Jr. Data Parallel Algorithms. Communications of the ACM, 29(12):1170-1183,
December 1986.

W. Daniel Hillis and Lewis W. Tucker. The CM-5 Connection Machine: A Scalable Supercomputer. Communicalions of
the ACM, 36(11):31-40, Novemnber 1993.

Alexander C. Klaiber and James L. Frankel. Comparing Data-Parallel and Message-Passing Paradigms. In Proceedings of
the International Conference on Parallel Processing, pages 11-11-11-20, August 1993.

James R. Larus. C**: a Large-Grain, Object-Oriented, Data-Parallel Programming Language. In Utpal Banerjee, David
Gelernter, Alexandru Nicolau, and David Padua, editors, Laenguages And Compilers Jor Parallel Compulting (5th Interna-

tional Workshop), pages 326-341. Springer-Verlag, August 1993.

Jeng Kuen Lee and Dennis Gannon. Object Oriented Parallel Programming, Experiments and Results. In Proceedings of
Supercomputing '91, pages 273-282, Albuquerque, NM, November 1991.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchronization on Shared-Memory Multipro-
cessors. ACM Transactions on Computer Systems, 9(1):21-65, February 1991.

Shubhendu S. Mukherjee, Shamik D. Sharma, Mark D. Hill, James R. Larus, Anne Rogers, and Joel Saltz. Efficient
Support for Irregular Applications on Distributed-Memory Machines. In Fifth ACM SIGPLAN Symposium on Principles
€ Practice of Parallel Programming (PPOPP), pages 68-79, July 1995.

Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level Shared Memory. In
Proceedings of the 21st Annual International Symposium on Compuler Architecture, pages 325-337, April 1994,

John R. Rose and Guy L. Steele Jr. C*: An Extended C Language for Data Paraliel Programming. In Proceedings of the
Second International Conference on Supercomputing, pages 2-16, Santa Clara, California, May 1987.

Gary W. Sabot. The Paralation Model: Architecture-Independent Parallel Programming. MIT Press, 1988.

Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus, and David A. Wood. Fine-grain
Access Control for Distributed Shared Memory. In Proceedings of the Sizth Internalional Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS VI), pages 297-307, October 1994.

Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon, Yuan-Shin Hwang, Raja Das, and Joel Saltz. Run-time and Compile-
time Support for Adaptive Irregular Problems. In Proceedings of Supercompuling 94, pages 97-106, November 1994.

Guy L. Steele Jr. Making Asynchronous Parallelism Safe for the World. In Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages, pages 218-231, January 1990.

Guy L. Steele Jr. and W. Daniel Hillis. Connection Machine LISP: Fine-Grained Parallel Symbolic Processing. In
Proceedings of the 1986 ACM Conference on LISP and Functional Programming, pages 279-297, August 1986.

13

(24]

Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations. In Proceedings of the 22nd Annual Inlernational Symposium on
Computer Architecture, pages 24-36, Santa Margherita Ligure, Italy, June 1995.

Steven Cameron Woo, Jaswinder Pal Singh, and John L. Hennessy. The Performance Advantages of Integrating Block
Data Transfer in Cache-Coherent Multiprocessors. In Proceedings of the Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 219-229, San Jose, Calilornia, 1994.

Bwolen Yang, Jon Webb, James M. Stichnoth, David R. O’Halloran, and Thomas Gross. Do&Merge: Integrating Parallel
Loops and Reductions. In Utpal Bannerjee, David Gelernter, Alex Nicolau, and David Padua, editors, Languages and
Compilers for Parallel Computing (Proceedings of the Sizth Internationa Workshop), pages 169-183, Portland, Oregon,
August 1993. Springer-Verlag.

14

