EEEBE@@

s EE @ e BEEEGEHRESEEEEB BB

2 2 0 B R @8 B O BB BB

B P EECEEEEEEEEOCONDEESE0ENEDBEEE 8@

Goal-Oriented Memory Allocations in
Database Management Systems

Kurt P. Brown
Technical Report #1288

September 1995

>

GOAL-ORIENTED MEMORY ALLOCATION
IN DATABASE MANAGEMENT SYSTEMS

By
Kurt Patrick Brown

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

(COMPUTER SCIENCES)

at the
UNIVERSITY OF WISCONSIN - MADISON
1995

Abstract

In order to meet the individual performance goals of each class in a complex multiclass database workload,
today’s database management systems require the adjustment of a number of low-level performance “knobs,”
such as buffer pool sizes, multiprogramming levels, data placement, dispatching priorities, etc. As the
complexity of database systems is increasing, while their cost is declining at the same time, manually adjusting
low-level DBMS performance knobs will become increasingly impractical. Ideally, the DBMS should simply
accept per-class performance goals as inputs, and it should adjust its own low-level knobs in order to achieve
them; this self-tuning capability is called goal-oriented resource allocation.

This thesis makes three contributions in the area of goal-oriented resource allocation for database man-
agement systems. First, it defines an overall architecture for goal-oriented resource allocation that includes
techniques to insure a stable and responsive system and to accurately gather performance measurement statis-
tics. Second, it presents an algorithm that can adjust per-class disk buffer allocation knobs in order to achieve
performance goals for those classes whose performance is primarily affected by their disk buiffer hit rates.
Finally, it presents an algorithm for controﬂing the memory allocation and multiprogramming level for those
classes primarily affected by their use of sort and join work areas; this algorithm is designed to work in con-
junction with the disk buffer memory allocation algorithm in order to provide a comprehensive goal-oriented

memory management solution.

Acknowledgements

Now I know why the Academy Awards are so boring. There are so many people who helped me get this thesis
finished, that I'm tempted to just say something like “thanks to all of you beautiful little people out there.”
Instead, I’ve decided that everyone who helped me get to this point deserves their full name mentioned - and
spelled correctly, to boot. Here goes...

First billing in the professor category goes to my advisor, Mike Carey. To me, Mike sets the gold standard
in research. While I may not have mastered the use of the semi-colon or the transitional sentence as much
as he would have liked, I hope that I’ve picked up some of his amazing dedication to thoroughness, proper
scientific method, and tireless energy in getting to really understand a problem. Mike’s legendary inability to
get upset (except for the occasional editorial exclamation points) is another standard I'll be trying to achieve
for a long time. I have also been fortunate to have Miron Livny as my co-advisor, sounding board, assumption-
questioner, intellectual sparing partner, and free-lance performance expert. When they didn’t end up with me
in a Half Nelson, my discussions with Miron always helped to break through some barrier I was struggling
with, and always resulted in better papers. In addition to running the “best database research group in the
known universe,” David DeWitt was a great source of advice, energy, inspiration, fun, motivation, money,
and industry scuttlebutt. Yannis Ioannidis can take credit for getting me past the database qualifying exam,
and is one of the top teachers I've ever had. In addition to begin a great instructor and research mentor,
Jeff Naughton deserves recognition for having the best sense of humor on the seventh floor (and contrary to
prevailing opinion, he writes very good code, as well). Mary Vernon deserves an award for teaching someone
as probabilistically challenged as myself as much as she did about analytical performance modelling. Stephen
Robinson deftly shepherded me through my Industrial Engineering minor, and graciously agreed to sit on my
defense committee.

First prize in the fellow database grad student category goes to Manish Mehta, who collaborated with me
on most of my research, and can take equal credit for the work presented in Chapter 5. Not only did I learn a
lot about databases from Manish, but a lot about how to live life in general. Mike Franklin, Joey Hellerstein,
Renee Miller, Hwee-Hwa Pang, Jignesh Patel, Praveen Seshadri, Valery Soloviev, and Odysseas Tsatalos

deserve special mention for hours and hours of great collaboration, both geek-related and life-related. I am

i
also indebted to fellow UW databasers Paul Bober, Shaul Dar, Craig Freedman, Eben Haber, Mark McAuliffe,
Jussi Myllymaki, Brad Rubin, S. Seshadri, John Shafer, V. Srinivasan, S. Sudarshan, Manolis Tsangaris, Scott
Vandenberg, Shivakumar Venkataraman, Seth White, Janet Wiener, Markos Zaharioudakis, and Mike Zwilling.

Kathleen Comerford, Susan Dinan, and Sheryl Pomraning deserve all the credit for shielding me and other
unsuspecting database students from various evil bureaucratic tentacles, in addition to their considerable skills
in taming the wild beasts of the seventh floor. Lorene Webber and Marie Johnson handle all the other university
and grad school details with great skill and even better attitudes. Paul Beebe and his team in the Computer
Systems Lab, especially Jim Luttinen and Mitali Lebek, provide the best computing services I've ever had the
pleasure to use. Miron and his condor team made the experiments in this, and many other Wisconsin theses
possible.

My IBM Poughkeepsie management gets credit for the extra years of my life that were added as a result of
returning to grad school. First prize goes to Ross Mauri, for getting me into the awesome (and now defunct)
Resident Study Program. Virginia Banks ties with Ross for first prize, since she helped my career just as much
— and without me even noticing. Dick Mauceri and Judy Lauch carried me in their headcount for years in the
hope that some day I might amount to something. Guy Lohman, John McPherson, and Pat Selinger were kind
enough to fund my stay at Almaden for 10 very valuable months. I am also grateful to Ambuj Goyal at IBM
Yorktown for the Research Initiation Grant that partially supported the work in this thesis.

Other IBMers to whom I owe include: Chamond Liu from IBM Corporate Technical Institutes and Ashok
Malhotra from IBM Yorktown for writing two of my grad school letters (at great risk to their own reputations);
Don Ferguson from IBM Yorktown for great advice and counsel on all things goal-oriented and otherwise;
Manish Arya, Toby Lehman, Bruce Lindsay, Beau Shekita, Bob Yost, and especially Honesty Young from
IBM Almaden for valuable aid, assistance, advice, and fun; Peter Gassner and Dave Simmen from DBTI, and
Pat Gainer and Steve Schmidt from IBM Toronto for advice, counsel, and assorted goofiness.

Gerhard Weikum and Axel Moenkeberg influenced the work in this thesis from our interesting discussions
at ETH in Zurich.

Other geek and non-geek friends are responsible for making my time in Madison (and San Jose) one of
the best episodes in my life so far. It’s hard to single out anyone in this list because everyone on it is equally
important. They are: Lui Chan, Ritu Chander, Mark Craven, Susan Goral, Susan Hert, Christina Margeli, Tia

Newhall, Janice Ng, P.S. Rajesh, Ranjani Ramamurthy, Brad Richards, Bill Roth, Adene Sacks, Todd Stern,

iv

Cheryl Thompson, Mary Tork Roth, and Martha Townsend.
Finally, I'd like to dedicate this thesis to my parents, Gwen and Richard, and to my sister Heidi. They

deserve the real credit for getting me this far, and no words can ever repay them.

Contents

Abstract i
Acknowledgements ii
1 Introduction 1
1.1 Backgroundand Motivation o oo 1

1.2 Defining Workload Classes v o v v i ittt e e e e e 2

1.3 Criteria forSUCCESS . . o v v v v o et e e e e e e e e e 3

1.4 Thesis Contributions/Organization oo oo 5

2 Goal-Oriented Resource Allocation 7
2.1 Specifying and Achieving Performance Goals L. 7
2.1.1 ObservationIntervals i e e e 8

2.1.2 Degraded Versus Non-DegradedModes 9

2.1.3 Achieving PerformanceGoals oo 10

2.2 A Goal-Oriented Resource Allocation Architecture i1
2.2.1 Per-Class Versus System-Wide Orientation 12

2.2.2 Statistics Measurement L e e e e e e e 13

223 CheckingGoals e e 16

2.2.4 Determining WhichKnobtoTurn o000 18

2.2.5 Architecture SUIMMATY« . © v v v v v e e e e e e e e 19

23 Related Work o o e e e e e e e e e 19
2.3.1 TheMVSOperating System i e 19

2.3.2 Goal-Oriented DBMSResearch 20

2.33 OtherRelated Work e 21

234 Today'sStateofthe Art e 23

3 Simulation Model

3.1
3.2
3.3

System ConfigurationModel L Lo oo
Database Model o o i e e e

Workload Model o o o e

4 Disk Buffer Memory

4.1

4.2

4.3

44

4.5

Previous Approaches v v i
4.1.1 Dynamic Tuning Description oo
4.1.2 Dynamic TuningIssues oo v o v bt
4,1.3 TFragmentFencing Description oo
414 TFragmentFencingIssueso
ClassFenCing o v o v v i i e e e e e e e
42.1 The Hit Rate Concavity Assumption
4.2.2 Estimating Hit Rates Using the Concavity Assumption
4.2.3 Class Fencing’s Memory Allocation Mechanism
424 ClassFencingDetails o o
4.2.5 Class Fencing State Transitions
Experimental Multiclass Workloads o oo
4.3.1 DatabaseModel o e e
432 WorkloadModel e
Experimentsand Resultso o
44.1 TPC-CandDBMINQ2 i ittt e e e e
442 DBMINQ2andDBMINQ3 it e
SUMIMATY « « « « v v v v e e e e e e e e e e e e e e

5 MPL and Working Storage

5.1

5.2

Disk Buffer and Working Storage Coexistence oo
5.1.1 Integrating Working Storage and Disk Buffer Memory
5.1.2 Resolving Interclass Dependencies. oo

The Effect of MPL, and Memory onResponse Times

vi

24
24
26
26

28
28
29
29
31
32
33
34
36
38
40
41
42
42
44

46

50 -

53

5.3 M&M: A Working Storage Class Controller oo
5.3.1 M&M Controller HEUISHCS . . « - o v v v v v v v v v v e e e e e e e
5.3.2 Determining a New <MPL, Memory> Setting
5.3.3 Non-Integral MPL Limits and MPL. Reductions
5.3.4 M&M Initialization and State Transitions oo

5.4 Experimental Multiclass Workloads e
54.1 DatabaseModel
54.2 WorkloadModel oo e e e e e e e e e

5.5 ExperimentsandResults oL
5.5.1 Three-Class Workloads v e
552 AMoreComplexWorkload oo

5.5.3 Scale-up Experiment

56 Summary.

6 Conclusions

6.1 ThesiSSUMMATY« « « o o v i e vt e e e e et e et e e e e e
6.2 Future Work o o i e e e e e e e e e
6.2.1 M&M Delay Mechanism Enhancementso
6.2.2 Disk Buffer and No-Goal Class Improvements o oot
6.2.3 Other Resources BesidesMemory oo c oo e
624 Bottleneck Analysis oL e
6.2.5 UserlInterfacelIssues o v v i it i e

Bibliography

vii
63
64
66
67
68
70
71
72
73
75
80
81
82

83
83
85
85
85
86
87
88

90

Chapter 1

Introduction

In the beginning, there was nothing. And God said ‘Let there be light.’
And there was still nothing. But, you could see it.

~ Dave Weinstein

1.1 Background and Motivation

As database management systems continue to increase in function and to expand into new application ar-
eas, the diversity of database workloads is increasing as well. In addition to the classic relational DBMS
“problem workload” consisting of short transactions running concurrently with long decision support queries
[Pirahesh 90, Brown 92, DeWitt 92], we can expect to see workloads comprising an even wider range of
resource demands and execution times in the future. New data types (e.g. image, audio, video) and more
complex query processing requirements (rules, recursion, user defined operations, etc.) will result in widely
varying memory, processor, and disk demands. The performance goals for each workload class will vary
widely as well, and may or may not be related to their resource demands. For example, two classes that execute
the exact same application and DBMS code could have differing performance goals simply because they were
submitted from different departments in an organization. Conversely, even though two classes have similar
performance objectives, they may have very different resource demands.

As an example, consider a three-class workload that consists of TPC-A-like transactions, critical decision
support queries, and non-critical data mining queries. The performance goals for this workload might specify
an average response time of one second for the transactions, one minute for the decision support queries, and
no specific goal for the data mining queries (i.e. “best effort”). Because a typical DBMS is tuned to optimize
system-wide throughput or response time, the performance of each individual class in this example workload

will be hard to predict. On the one hand, if the DBMS is designed or configured to allocate the maximum

possible memory to sort and join work areas, then the decision support class may perform near its optimum
and the TPC-A will likely suffer. One the other hand, if the DBMS favors disk buffer memory over the sort
and join work areas, then the TPC-A class will perform near its optimum and the decision support class will
be penalized.

In today’s database systems, the goals for such a workload would be achieved by manually tuning various
Jlow-level “knobs” provided by the DBMS, possibly including buffer pool sizes, multiprogramming levels,
data placement, dispatching priorities, prefetch block sizes, commit group sizes, etc. As the complexity of
database systems is increasing, while their cost is declining at the same time, manually adjusting low-level
DBMS performance knobs will become increasingly impractical, as has been argued previously [Nikolaou 92,
Brown 93b, Selinger 93, Weikum 93]. Ideally, the DBMS should simply accept per-class performance goals
as inputs, and it should adjust its own low-level knobs in order to achieve them; this self-tuning capability is
called goal-oriented resource allocation [Nikolaou 92].

Given a performance objective for each class in a multiclass workload, there are a number of mechanisms
that a goal-oriented DBMS can use to achieve them: load control, transaction routing, CPU and disk scheduling,
memory management, data placement, processor allocation, query optimization, etc. Each of these could be
driven by performance objectives. A complete solution to the problem of automatically satisfying multiclass
performance goals must employ more than one mechanism; each class can have different resource consumption
patterns, so the most effective knob for controlling performance may be different for each class. The task for a
goal-oriented DBMS is to determine the knob settings for each class that will enable it to achieve its goal, while
at the same time providing the maximum amount of “left-over” resources for any class that has no specified

goal (i.e. for “best effort” or no-goal classes).

1.2 Defining Workload Classes

As defined in this thesis, goal-oriented resource allocation is concerned not with the allocation of resources
within a class, but between competing classes that represent different types of work. In order to allocate
resources on a per-class basis, some mechanism must exist to map individual queries and transactions onto
a set of workload classes. The processes of defining classes and mapping transactions to classes are critical

enough to warrant a brief discussion here, although a detailed treatment is outside the scope of the thesis.

Taking the individual components of an aggregate workload and assigning them to classes is a well-known
problem in the field of computer system performance analysis. It is normally performed manually by someone
familiar with the workload and the computing system, i.e. a database or system administrator. While there are
a wide variety of criteria that can be used in defining classes, Lazowska et al have provided a good summary

[Lazowska 84]. They suggest that:

o Classes should consist of transactions that have similar service demands at each system resource. For

example, /O bound transactions should not ordinarily be in the same class as CPU bound transactions.

e Classes must distinguish workload components for which independent performance requirements must
be satisfied. For example, if the response time of a particular transaction type is of concern, then it

should not be grouped in a single class with other transaction types.

e Classes might be made to correspond to accounting groups or organizational units (e.g. by department

or division).

Once the workload classes have been defined, some mechanism must exist to assign a class identifier to
each individual database transaction. This process involves defining some function that takes one or more
inputs and uses a set of installation-defined rules to generate the class identifier. Example inputs might be
the userid or authorization id that submitted the transaction, some user profile information (department id,
for example), the network node identifier that submitted the transaction, or a specific transaction or query
plan identifier (for precompiled or stored queries). The major difficulty with mapping transactions to classes
results from the fact that multiple subsystems need to share information that traditionally has been privately
held (i.e. network data, TP monitor data, DBMS data, and operating system data). However, IBM’s MVS
operating system has provided goal-oriented resource allocation facilities for some time, and its interfaces for
specifying goals and mapping transactions to classes serves as an existence proof that this problem can be

solved [IBM 93¢, IBM 95]. This thesis assumes the existence of similar mechanisms.

1.3 Criteria for Success

Before presenting new mechanisms for achieving multiclass performance goals, it will be helpful to define

(abstractly) how these mechanisms should be evaluated. Simply meeting the performance targets for each

class is not the only criteria with which to judge a goal-oriented resource allocation algorithm. The following
criteria should be satisfied by any goal-oriented resource allocation algorithm before it can be considered for

implementation in a real DBMS:

Accuracy: The observed performance for goal classes should be close to their stated goals. A convenient way
to quantify accuracy is the performance index [Nikolaou 92], which is simply the observed performance
metric divided by the performance goal. A performance index of one is ideal, while an index that is

greater than or less than one indicates a violated or exceeded goal.

Responsiveness: The number of knob adjustments required to bring a class to its goal should be as small
as possible, especially if the interval required between each knob adjustment is relatively long. A
responsiveness criteria rules out simplistic exhaustive search strategies that can score high in accuracy,

but that may require lots of time to search for the solution.

Stability: The variance in the response times of goal classes should not increase significantly relative to a
system without goal-oriented allocation mechanisms. Thus, for a stable workload, all knobs should be

left alone once the goals are achieved.

Overhead: A goal-oriented resource manager should minimize the extent to which it reduces overall system
efficiency (i.e. its system-wide throughput rating, which is a measure of the system’s total capacity for
work). Overhead can be tested by taking the observed class response times for a particular workload
running on a non-goal-oriented system and using them as goals for the same workload running on a
goal-oriented system. One of the classes can be chosen arbitrarily as a no-goal class; any response time
degradation in this class will then indicate the degree of reduction in system capacity (assuming the

goals for the other classes can be met).

Robustness: The system should handle as wide a range of workloads as possible, avoiding any knob adjust-
ments for a class that cannot be controlled by the given knob. For example, if a class is dominated by
large file scans and the DBMS has an effective prefetching strategy, then the response time for such a
class will not be directly controllable via the buffer allocation knob because the prefetcher will guarantee
a very high hit rate with very little memory. As another example, any increase in the multiprogramming
Jevel knob for a class that only rarely queues for admission into the DBMS is not likely to affect the

response time for the class.

Practicality: A viable algorithm should not make unrealistic assumptions about the workload or the DBMS
in general. For example, it would be unreasonable to assume that all workloads are static and therefore
amenable to off-line analysis. Likewise, the algorithm should not place too many restrictions on the
behavior of the basic resource allocation mechanisms of the DBMS and/or OS, nor should it assume that

it has full control over all aspects of those mechanisms.

It should be noted that these criteria will normally be in conflict (stability versus responsiveness, responsive-
ness versus overhead, etc.), and therefore a goal-oriented resource allocation algorithm necessarily represents

a careful balance between them.

1.4 Thesis Contributions/Organization

As mentioned earlier, a DBMS has many knobs that can be adjusted to achieve the performance goals for
each workload class. Of these knobs, memory allocation is one of the most critical, even when memory is not
the bottleneck resource, because it also the affects service demands at the processors and disks. This thesis
therefore concentrates on three memory-related knobs: disk buffer allocation, working storage allocation and
the multiprogramming level for working storage.

Memory is used for two main purposes in a DBMS: as disk buffer memory and as working storage memory.
Disk buffer memory holds copies of disk pages in the hope that subsequent references to the same disk page
in the future will be satisfied from the buffer pool instead of incurring additional disk I/Os. Working storage
memory is defined as any memory used for query processing that does not hold copies of (permanent) disk
pages. The two primary examples of working storage memory are sort and join work areas — the more memory
allocated to these areas, the fewer the number of I/Os required by the sort or join algorithm.

Closely related to memory allocation is the choice of a multiprogramming level. The multiprogramming
level (MPL) knob sets a limit on the number of transactions allowed to compete for memory (and other
resources as well). An MPL limit is more critical for controlling the allocation of working storage memory
than it is for controlling disk buffer memory; this is because disk buffer memory is usually sh;:tred among
many concurrently executing transactions, while working storage memory is normally only utilized by a
single transaction. Admitting an additional transaction that uses working storage memory therefore implies an

increase in total memory consumption, while admitting additional transactions that primarily use disk buffer

memory may only increase the utilization of existing disk buffer memory pages.

This thesis makes three contributions in the area of goal-oriented resource allocation for database man-
agement systems. First, it defines an overall architecture for goal-oriented resource allocation that includes
techniques to insure a stable and responsive system and to accurately gather performance measurement statis-
tics. Second, it presents an algorithm that can adjust per-class disk buffer allocation knobs in order to achieve
performance goals for those classes whose performance is primarily affected by their disk buffer hit rates.
Finally, it presents an algorithm for controlling the working storage allocation and multiprogramming level
for those classes primarily affected by their use of working storage memory; this algorithm is designed to
work in conjunction with the disk buffer memory allocation algorithm in order to provide a comprehensive
goal-oriented memory marnagement solution.

The remainder of this thesis is organized as follows: Chapter 2 describes the overall architecture for
goal-oriented resource allocation. Then, a short detour is taken in Chapter 3 to describe the detailed simulation
model used to evaluate the algorithms presented in subsequent chapters. Chapter 4 presents an algorithm,
called Class Fencing, that controls disk buffer allocation; the performance of Class Fencing is evaluated using
the simulation model described in Chapter 3. Chapter 5 then describes and evaluates the performance of an
algorithm, called M&M, for controlling the memory allocation and multiprogramming levels related to working

storage. Finally, Chapter 6 summarizes the thesis and points to areas where additional work is needed.

Chapter 2

Goal-Oriented Resource Allocation

Actually, my goal is to have a sandwich named after me.

— Unknown

This chapter presents an overall architecture for goal-oriented resource allocation in database management
systems. First, it defines clearly what is meant here by specifying and achieving a performance goal. The
components of the architecture are then described, and several techniques that are essential to providing a
stable and responsive system are discussed. Finally, the chapter closes with a survey of related work. The
architecture presented in this chapter will be used to develop techniques to control the memory allocation and

multiprogramming level knobs in Chapters 4 and 5.

2.1 Specifying and Achieving Performance Goals

There are many possible ways to specify database system performance goals. A goal for a transaction class
with very short (sub-second) response times is usually expressed in terms of average throughput (measured in
transactions per second). On the other hand, performance goals for longer-running transactions, with response
times in the tens of seconds or minutes, may be more naturally expressed in terms of an average response
time. Response time metrics can be specified as average, maximum, or percentile values. Combinations of
multiple metrics are also common, such as a target throughput that is subject to a maximum or a 90th percentile
response time constraint. Following other work in this area [Nikolaou 92, Ferg 93], this thesis will adopt an
average response time metric. Average response times are not only a commonly used performance metric in
themselves, but they are also easily converted into average throughput metrics, given the number of attached
terminals (clients) and their average think times.

Not all classes are important enough to justify a performance goal, however. Some work may be of a low

enough priority that it should be performed only if excess resources are available after the goals are achieved

for goal classes. This type of low-priority work is called, appropriately enough, a no-goal class. This thesis
assumes that all such low-priority work is collected into a single no-goal class.

The remainder of this section discusses two additional issues related to goal specification. First, it defines
the notion of an observation interval over which the average response time measurements are taken, then it
discusses what should be done in the case when there are not enough resources in the system configuration
to satisfy the goals. Finally, it closes by presenting a practical, “‘additive” approach for achieving per-class

response time goals.

2.1.1 Observation Intervals

For any average or percentile metric, it is critical to specify the observation interval over which that metric
is defined. That is, any such is meaningless unless it also specifies either the number of transactions that
contribute to the metric or a time period over which the metric is computed. The desired observation interval is
important because it determines the trade-off between stability and responsiveness. With too long an interval,
the system will never react to workload changes, and with too short an interval, the system will react to natural
statistical fluctuations between the transactions in a class.

In addition to specifying the desired trade-off between stability and responsiveness, another critical factor
in choosing the observation interval is the amount of variance between transactions of a class. The greater
the variance, the larger the observation interval should be in order to ensure a statistically valid measurement.
Obviously, as more diverse types of transactions are included in a class, the response time variance within
that class will increase. Ideally, the system should provide a high level “sensitivity” knob to allow the
administrator to choose the appropriate balance between stability and responsiveness; the sensitivity setting
would be combined with the observed variance in class response times in order to determine the appropriate
observation interval. This thesis, however, will treat the observation interval as an input, ignoring the question
of whether it is specified manually or with some higher-level mechanism.

Note that in the extreme case of a maximum response time goal (i.e. a “100th percentile” goal), the
observation interval is equal to one transaction. An observation interval of one essentially implies that the system
is to behave as if it were a real-time DBMS, where each individual transaction of a class has a performance
goal, as opposed to having a longer-term goal for a class of transactions. Mechanisms very different from the

ones presented in this thesis are required for real-time database systems [Abbott 91, Pang 94b]. Perhaps the

key difference between goal-oriented and real-time systems is that goal-oriented systems have an observation
interval greater than one transaction; this allows goal-oriented systems to violate goals on individual transactions
and still meet their performance targets because they can always “make up” for violations by exceeding the
goals on subsequent transactions within a single observation interval. In this thesis, observation intervals will

normally be no smaller than the number of transactions required to achieve a statistically significant sample.

2.1.2 Degraded Versus Non-Degraded Modes

If the system configuration is not powerful enough to satisfy the performance goals for all classes in steady
state, then it is said to be operating in degraded mode [Nikolaou 92]. This thesis concentrates primarily on
non-degraded modes of operation, and it does so for two reasons. First, if the specified goals are not realistic
for the configuration, then either the configuration should be upgraded or the goals should be relaxed; it makes
no sense to persistently demand performance objectives that are impossible to achieve. Second, the problem
of resource allocation in degraded mode is, in reality, quite different from that of non-degraded mode. The
research literature on multiclass resource allocation has proposed methods for distribution of scarce resources
that are based on the notion of uniform performance degradation across all classes, either relative to some
theoretical optimal performance [Carey 85, Mehta 93, Davison 95] or relative to explicitly stated performance
goals [Nikolaou 92, Ferg 93, Chung 94]. However, it is likely that administrators will want much more control
in determining how much each class suffers in a degraded mode of operation [Pang 95]. For example, they may
want to order classes by their perceived importance so that more important classes receive whatever resources
are available and only the less important classes suffer [Nikolaou 92]. More well-understood priority-based
allocation techniques can be used to solve this problem (e.g. [Carey 89, Jauhari 90a, Jauhari 90b]).

Even if one assumes a non-degraded steady-state mode of operation, of course it is still important to be
able to detect unachievable goals. It is not uncommon for a system’s workload demands to increase slowly
over a period of weeks or months, and it would be valuable warn the administrator when this has occurred (or
appears likely). In addition, if the administrator is not very familiar with the workload, it would be helpful
to provide some feedback from the DBMS about whether the goals can be achieved or not, as otherwise
it would be difficult to determine who was at fault (the administrator, for setting unrealistic goals, or the
system, for failing to achieve perfectly reasonable goals). In summary, this thesis takes the approach that there

are normally enough resources available to satisfy the goals, but that the system should identify those cases

10

where they cannot be met. Beyond notification, no provisions are made for degraded mode operation (though
an industrial-strength implementation of a goal-oriented DBMS should include some priority-based resource

allocation mechanism to handle this case).

2.1.3 Achieving Performance Goals

As the following section will make clear, developing resource allocation mechanisms that can achieve per-class
average response time goals is a very difficult problem. In order to simplify the problem, this thesis adopts
the following practical approach. Rather than developing new resource allocation mechanisms from scratch,
the approach taken here is to develop techniques that are additions to existing DBMS allocation mechanisms
(which are primarily concerned with the efficient management of each resource). If the existing allocation
mechanisms cause a class to violate its goal, then the goal-oriented algorithms will kick in and increase the
class’s allocation until its performance index reaches one. Any class whose allocation has been increased in
this manner is not allowed to exceed its performance goal, since this may place the goals for other classes
in jeopardy and/or unnecessarily degrade the response time of any no-goal class. Thus, if the performance
index ever drops below one for a class whose allocation has been increased in this manner, its allocation will
be reduced until its performance index returns to one. On the other hand, if the existing DBMS allocation
mechanisms allow a class to “naturally” meet or exeed its goal, then nothing is done to modify its allocation. If
all classes are meeting or exceeding their goals, then the goal-oriented algorithms will never try to redistribute
resources to achieve some secondary objective (such as insuring that all classes are exceeding their goals by
the same percentage, for example). Such an “additive” approach allows a goal-oriented DBMS to be built with
a minimal amount of effort.

An additive approach implies that the definition of achieving performance goals means only that all goal
classes experience average response times that are less than or equal to their goal (i.e. their performance
indexes are less than or equal to one). The no-goal class response time may or not be minimized under such a
definition. While a reasonable effort is made to prevent unnecessary degredation of the no-goal class response
time — by insuring that violating classes never be given more resources than they need to achieve their goal -
no extra effort is expended to reassign resources from a naturally exceeing class to the no-goal class. If the
no-goal class response time under the additive approach is truly perceived to be inadequate, it can always be

assigned a goal; it will then become eligible to receive any excess resources that may be owned by classes that

11

are exceeding their goals.

2.2 A Goal-Oriented Resource Allocation Architecture

The objective of a goal-oriented DBMS is to find the combination of n resource allocation knob settings
< k1, k2, k3, ...kn, > for each class ¢ that will allow every class to achieve its goal. Finding such a set of
knob settings is a difficult task for a number of reasons, with the foremost being the interdependence between
classes. Classes are interdependent because their response times are determined not only by their own knob
settings, but also by the amount of competition that they experience at shared resources (processors, memory,
disks, locks, etc.). The amount of competition experienced by a class is determined by the knob settings of all
other classes. Thus, the response time of any given class is determined both by the setting of its own knobs

and by the settings of all other classes as well. More formally,

B T —
respe = f.(k1, k2, k3, ... kn)

—t
where ki is a vector that represents the setings of the ith knob for every class. Note that since each class has

unique resource consumption patterns, each class has its own unique response time function Jes

Ideally, it would be possible to derive the response time functions (the f’s) for each class and then use
these functions together with established mathematical optimization techniques in order to determine the E
vectors that will satisfy the goals for all classes and minimize the no-goal response times. Unfortunately,
deriving f, for each class is beyond the current state of the art. While cost-based query optimizers have
formulas that can be used to estimate processor and disk service times, these formulas offer no insight into the
queuing delays that occur at the system entry point, the CPU, and the disks. Techniques from queuing theory
could be applied to account for these delays, but predicting such delays even for a single hash join running
alone on a centralized DBMS turns out to be non-trivial due to complexities such as caching disk controllers
and intra-operator concurrency [Patel 93]. At best, the application of queuing theory to complex database
workloads is a difficult open research challenge. "

Because of the difficulty of accurately predicting class response times as a function of resources allocated,
the only feasible approach is based on feedback. The general idea is to use the difference between the observed

and target response time for a class as input to controllers that estimate the knob settings that are needed to

bring the class closer to its response time goal. These estimates are repeated again and again until the class

12

is either brought to its goal or it can be determined that the goal is impossible to achieve. One simplistic
technique that a controller could use is to exhaustively search the entire solution space, trying every possible
knob combination. An exhaustive approach may actually be feasible if the search space is small, but quickly
becomes too time consuming in the case of multiple knobs (where there can be hundreds or thousands of
possible combinations of settings). The trick is to design controllers that can bring a class close to its goal as
quickly as possible while still behaving in a stable manner. Chapter 4 is devoted to developing such a controller
for the buffer memory allocation knob, and Chapter 5 presents a controller that handles memory allocation and
multiprogramming levels for working storage. The remainder of this chapter describes the design principles

and features that are common to both of these controllers.

2.2.1 Per-Class Versus System-Wide Orientation

There are two possible ways to structure a feedback-based goal-oriented resource allocator: either with a
system-wide orientation and or with a per-class orientation. A system-wide orientation means that a controller
is activated on a global basis (e.g. every minute or so, or in response to some system-wide event) and, once
activated, takes actions based on an analysis across all classes. The advantage of such an approach is that
it provides the potential for dealing with the interdependence of classes; changes can be made to the system
“as a whole.” The disadvantage of a system-wide orientation is that it requires, after any resource allocation
change, a sufficient waiting period to elapse in order to let the entire system “settle” to a new steady state. This
requirement effectively ties the responsiveness of a system-wide algorithm to the slowest-moving class in the
system (i.e. the one with the lowest throughput).

In contrast, a per-class orientation means that the algorithm is activated for each class on a time frame that
is specific to that class (e.g. the specified observation interval for the class). Once activated, its actions are
oriented toward a specific class and are based largely on an analysis of that class in isolation. The advantage
of a per-class orientation is that it treats each class independently, allowing fast moving classes to respond
quickly without being tied to the behavior of slower classes. Decoupling classes from each other by using a
per-class orientation is especially important for complex database workloads, where response times can easily
vary by three or four orders of magnitude across classes. The disadvantage of a per-class orientation is that it
completely ignores the interdependence between classes.

Despite its disadvantages, this thesis adopts a per-class orientation because of its superior responsiveness.

13

Additional heuristics are used to compensate for the insensitivity of this approach to inter-class dependencies.
Because it ignores inter-class dependencies, a per-class approach greatly simplifies the controller design
problem; instead of having to find the -l;z-) vectors that achieve the goals for all classes in the system, we can
independently search for each class’s solution (i.e. a < kl¢, k2, k3, ...kn. > set that achieves its goal).

To summarize the architecture so far, we advocate an independent feedback controller working on behalf
of each goal class. This controller compares the observed average response time for the class against the
response time goal after every observation interval. If the class is in violation, it will adjust one or more
resource allocation knobs for the class in order to bring it closer to its goal. If the class is meeting its goal,
or is exceeding its goal “naturally” using only the underlying DBMS resource allocation policies, nothing is
done. If a class is exceeding its goal and its resource allocations have been adjusted, then its allocations are
reduced in order to bring the class closer to its goal. Finally, because of the interdependence of classes that
share resources, a class’s allocation may have to be adjusted to ensure that another class is able to achieve its
goal as well (as will be seen in Chapter 5).

Implicit in this architecture are four basic tasks that must be performed for any class. The first is measuring
observed response times and any other statistics (e.g. buffer hit rates, queue lengths, device utilizations, etc.)
that are required by the controllers; the second is determining when goals are being met, exceeded, or violated;
the third is determining which knob(s) should be turned to control the performance of the class; and the forth
is determining exactly how to turn the specific knob or knobs. The last task (turning the knob) is specific to
the particular resource being controlled, while the first three tasks are common to any controller regardless of

what resource it is controlling. These three common tasks will now be described in the following subsections.

2.2.2 Statistics Measurement

The key challenge in statistics measurement is determining when to measure them. Because multiclass database
workloads are extremely dynamic, measuring them at the wrong time can result in a biased measurement for
two reasons: as a result of state transitions caused by a change in resource allocation, and as a result of natural
statistical fluctuations between the individual transactions of a class (that would occur even if all resource
allocation knobs remained untouched). One example of a state transition would be the change in average
queue lengths at the system entry point, processors, or disks when multiprogramming levels are changed — in

this case, no measurements should be taken until the queue lengths stabilize once again.

14

To avoid measuring state transitions, each class can be treated as a finite state automata (FSA) with well-
defined states and transitions between them. The FSA for each class will depend on the particular knobs used
to control its performance, but many states are common to all classes regardless of how they are controlled.
We discuss some typical states and transitions here, postponing detailed descriptions of the specific FSAs until

the controllers for disk buffer and working storage memory are described in Chapters 4 and 5.

o Warmup: In this state, the class is waiting for warm-up transients to dissipate either after a cold start
or a reset of the goal-oriented allocation mechanism. All classes enter the warmup state on system
initialization or reset. After either a fixed time period or some system-defined event that signifies the
end of warmup (e.g. the disk buffer becomes full and/or some threshold of files and indexes have been
opened), all classes leave the warmup state simultaneously and move to the history build state. No action

is taken on this transition except to reset all class statistics.

o History Build: A class enters this state from the warmup, transition up, or transition down states.
Movement to the history build state is required in order to achieve a statistically significant sample of the
newly obtained system state (e.g., due to a recently changed resource allocation knob). Class statistics
are reset on entry to this state and then accumulated until the next state transition. The time spent in
the history build state is equal to the length of one observation interval; if response time goals are being
met at the end of the interval (or are being exceeded “naturally”), then the class is moved to the steady
state, otherwise the class’s resource allocations will be adjusted, statistics are reset, and the class moves

to either the transition up or transition down states.

e Transition Up: A class enters the transition up state if any resource allocation was increased in order
to satisfy its goal. This state represents the point in time between when a resource allocation target has
increased and when the class has actually adjusted to the new allocation. For example, when a buffer
memory allocation target increases, some number of buffer faunlts must occur in order for a class to
accumulate the newly allowed memory. Similarly, when a multiprogramming level is increased, it will
take some time for system entry point queue lengths to decrease to a new mean length. A class is moved

to the history build state upon exit from transition up; no action is taken except to reset all statistics.

o Transition Down: This state is similar to transition up, but is entered when resources are decreased.

Transition to this state is not necessary in all such cases, however. For example, disk buffer or working

15

storage memory frames can be immediately removed from a class without any time lag. As was the case
for transition up, a class is moved to the history build state upon exit from transition down; no action is

taken except to reset all statistics.

o Steady State: A class enters this state when its response time goals are being met (or exceeded
“naturally”). The goals are checked again after one observation interval; if they are still being met,
then this state is entered again for another observation interval. If the goals are not being met, resource
allocations are adjusted, statistics are reset, and the class moves to the transition up or transition down

states.

=T 5 = 5 zZ
=3 = oo 1
- 3 § 3 5 3
> =2 > = > > >
£ s 2 g 2 9 3 S
© 7] o @ o o 9 ko]
| = . T = I r T » n
[
I |
5 = B s B = = Statlstlcs_
] 0] B @ 0 7 accumulation
D D D O D o o)
@ r c o o [o
S~ S S .
[0}] [0)]] [0
N N N N
- Y . T
(1 [[[
e E & E
£ £ & £
3 3 - -
75} %) D 73]

Figure 1: Example state change sequence

Figure 1 shows a possible sequence of state changes for a class over time (moving from left to right). The
class starts in warmup state and passes through two knob increases (transition up states) and then meets its goal.
In this example, the class spends less time in the transition states than than it does in the history build state. A
relatively short transition time is common in the case of disk buffer classes; it may take only a few transactions
to fault in enough disk buffer pages to exit the transition up state, whereas the time required in history build
state depends on the length of the observation interval (which may require tens or hundreds of transaction
completions). The horizontal bars underneath the timeline show when statistics are being accumulated (i.e.
when individual transaction response times are being added to running totals used to compute averages, disk

queue lengths are being sampled, etc.). At the points marked “reset,” all of these accumulated statistics are

16

thrown away and reset. The points marked “summarize/reset” are those points where summary statistics for
the observation interval just ending are rolled up, resource allocations may be adjusted, and the statistics are
then reset to start off the next observation interval.

While an FSA mechanism can be used to filter out unwanted state transitions from measurements, selective
exponential weighting can be used to filter out statistical fluctuations. When statistics are summarized at the

end of an observation interval, they are combined with past history as follows:
Snew o (1 - a)Sprev + agourT

Here, SP™¢? is the value of a system statistic from the previous observation interval, S€*'" is the new value
as computed at the end of the current observation interval, « represents the percentage value of the present
relative to the past, and S™¢" is the resulting weighted value. Based on a sensitivity analysis for a wide range
of workloads and controller algorithms in later chapters, a value of .25 for a shows good performance across
a wide range of workloads and therefore is adopted as a constant in this thesis. This is the same value that was
used in the goal-oriented transaction routing algorithm of [Ferg 93].

Exponential weighting is ideal when a class is in steady state; in this case it is desirable to avoid resource
allocation changes in response to the natural statistical fluctuations of a class. However, exponential weighting
is not ideal once it is determined that a transition in resource allocation is actually called for. Because the
burden of history can never be shaken off with exponential weighting, the measurement of a class that just
changed its resource allocation may be skewed too much towards its behavior under the previous allocation.
To deal with this problem, all history is dropped (i.e. reset) on entry to the history build state. The history build
state thus signifies that a class has just completed some resource allocation transition and is now entering a
new region of operation, rendering its previous history of no consequence. This type of “selective” exponential

weighting gives a good combination of stability in the steady state and responsiveness in transition periods.

2.2.3 Checking Goals

After accurately measuring statistics, the second task common to any resource allocation controller is deter-
mining whether a class’s goals are being satisfied or not. Due to the natural statistical variance in the response
times of transactions within a class, the goals should not be considered satisfied only when the average response

time exactly equals the goal, as this is unlikely to ever be achieved. Instead, goals are considered satisfied if

17

the observed average response time for a class ¢ is within plus or minus some percentage of the user-specified
response time goal for ¢ (i.e. within some tolerance band T of the goal). As is typical of any feedback
mechanism, 7% turns out to be a sensitive parameter. If there is a large amount of natural statistical variance
in the class’s response times, T, must be wide enough to prevent the algorithm from attempting to manage
natural statistical fluctuations. However, a narrow 7T should be used with lower variances in order to reduce
the number of interval response times that violate the goals. Figures 2 and 3 show how the tolerance for a
class should be adjusted to account for the variance in class response times. Figure 2 shows a smaller tolerance
band for a class with a moderate response time variance, and Figure 3 shows how this tolerance band must be

widened to deal with a larger response time variance.

Interval average response times

Interval average response times

Time Time

Figure 2: Moderate response time variance Figure 3: Larger response time variance

Because the value of T}, depends on the workload and the dynamic state of the system, it must be computed
dynamically based on the observed standard deviation in response times across multiple intervals. Given a
sufficient number of samples, the distribution of average interval response times can be approximated by a
normal distribution. T is therefore set such that it includes 90% of the area under a normal distribution curve
(i.e. T, is plus or minus 1.65 times the observed standard deviation). However, care must be taken in the
standard deviation calculation to avoid including any observations that occur during state transitions, as these
observations would act to inflate the algorithm’s estimation of the natural variance in the workload; T, would
otherwise become excessively large (loose). Therefore, observations are only added to the running computation
of the standard deviation if a class has observed some consecutive number of steady state intervals. A default
tolerance band of plus or minus 5% of the response time goal is used until T, can be computed from actual

response time observations. Like any other statistic, T, is subject to selective exponential weighting.

18

In addition to ensuring that only the “natural” statistical variance is recorded in the standard deviation
calculation, the standard deviation must also be recomputed after a class undergoes a resource allocation
transition. This is because the existing sums and sums of squares used to compute the standard deviation are
all relative to the previous resource allocation, and are therefore all relative to a different mean response time as
well. Combining observations previous to the transition with observations after the transition would resultina
higher estimation of variance than is occurring naturally in the workload. Thus, on any transition, the running
sums and sums of squares used to compute the standard deviation are reset, and the previous T value is used
temporarily until there have been enough consecutive steady state intervals under the new resource allocation

to allow the standard deviation and T, to be recomputed.

2.2.4 Determining Which Knob to Turn

The final common controller task is determining which knob to turn if a class is not meeting its goal. Since this
thesis is concerned only with memory management knobs, it suffices to place each of the workload’s classes
into one of two categories: disk buffer classes or working storage classes. If a class uses any working storage
memory at all, it is considered a working storage class, and the working storage controller is responsible for its
performance; otherwise it is considered a disk buffer class, and the disk buffer controller is responsible for its
performance. This rudimentary approach obviously ignores those classes in the “grey area” where either the
disk buffer or the working storage knobs could be used to control their performance. Ideally, the knob with the
“biggest bang for the buck” should be preferred for controlling the class. The techniques used to detect such a
knob can be classified under the title of bortleneck analysis.

While bottleneck analysis is a challenging area for future work, this thesis is concerned with a much more
basic question: can memory knobs be used to control the performance of multiclass database workloads in a
way that satisfies the criteria laid out in Chapter 1? Only if this question is answered in the affirmative does it
then make sense to delve into the more detailed issue of bottleneck analysis. Therefore, this thesis will adopt
the simplistic method for the classification of workload classes as described above; issues related to bottleneck

analysis will be discussed in the Future Work section of Chapter 6.

19
2.2.5 Architecture Summary

At this point, we review the major points of the goal-oriented resource allocation architecture that has just been
laid out. Each class is treated independently in order to increase responsiveness and to simplify the problem
of determining how to set each knob. Each class operates in a continuous feedback loop with well-defined
states, and running statistics (response time, number of I/Os, etc.) are accumulated upon every transaction
completion for a class. These statistics are accumulated until the class makes a transition to another state. At
appropriate state changes, summary statistics are computed from the running statistics accumulated over the
last observation interval, and they are selectively exponentially weighted with summary statistics from previous
intervals. A dynamically varying tolerance band around the goal is used to determine if a class is meeting its
goal or not. If the class is not meeting its goal, one of two controller algorithms (the disk buffer or working
storage controller) is called to make a knob adjustment. The class is placed in a transition state if knobs have
been adjusted, and is placed in steady state if its goals are being met. Occasionally, a class may be called
upon to adjust its resource allocation in order to allow another class to achieve its goal - such adjustments are
required because of the interdependence of classes that share common resources. The entire process just as

described repeats indefinitely for every class.

2.3 Related Work

In this section we review the limited amount of previous work in the area of goal-oriented resource management.

2.3.1 The MVS Operating System

The earliest known attempt at goal-oriented resource management for multiclass workloads is IBM’s MVS
operating system [Lorin 81, Pierce 83, IBM 93c]. The System Resources Manager (SRM) is the component
of MVS that is responsible for achieving goals, and like all other proposed algorithms, it is feedback-based.
Unlike the architecture presented here, however, it uses a system-wide approach, analyzing all classes at once
either on a timer basis or in response to certain system events. The responsiveness problems caused by a
system-wide approach are mitigated by the fact that (until the latest MVS release) goals are specified in terms
of desired service rates (i.e. a class should be able to consume some amount of memory, processor, and

disk per unit time). The use of service rate goals frees the SRM from having to wait until a certain number

20

of transactions complete in order to determine whether or not their goals are being satisfied. Unfortunately,
service rate goals are much more difficult for an administrator to specify, as it is not at all clear how to translate
a response time requirement into a specific set of service rates.

As of the latest MVS release, in addition to service rates (which are now called velocity goals [IBM 95]),
average and percentile response time goals are now supported. Response time goals are recommended for
those classes with a throughput high enough to insure at least 20 completions during the observation interval,
and velocity goals are recommended for classes with lower throughputs. In addition, the concept of no-goal
classes is now supported (in the form of discretionary goals), as is the specification of the relative importance
of each class for use in allocating resources in degraded mode.

The MVS SRM has four primary knobs that it controls for each class: multiprogramming level, memory
allocation (i.e. working set size), processor scheduling, and /O subsystem scheduling. It uses a set of fairly
simple heuristics to guide the controllers for these knobs [Pierce 83] — unfortunately, detailed information on
the heuristics is not available since MVS is a commercial product.

Although it represents a significant example of related work, the MVS SRM is not the answer to the goal-
oriented resource allocation problem for mixed database workloads. One of the primary tools that the SRM
uses to control resource allocation is swapping processes (along with their virtual address spaces) into and out
of memory. Swapping out an active transaction is an action that may not be desirable (or even possible) in the
context of a DBMS, as transactions may need to be aborted in order to actually free up their resources. Since
it is embedded in the operating system, the SRM does not understand database disk buffer or working storage
memory, but instead uses memory allocation as a mechanism to control virtual memory paging rates. While it
does not address DBMS knobs, the SRM has been evolving for nearly 20 years, and as such, it represents the

most complete solution to goal-oriented resource allocation that exists today.

2.3.2 Goal-Oriented DBMS Research

The earliest published research paper on goal-oriented resource management in a database context was a
pioneering paper from Christos Nikolaou’s group at IBM Yorktown [Nikolaou 92]. This paper defined the
problem of goal-oriented resource allocation, described alternative ways to specify goals, introduced the notion
of performance indices, and described work in progress on the problem of goal-oriented resource management

for distributed transaction processing systems. The work from this group spawned several algorithms that we

21

review in this section and that influenced subsequent releases of MVS as well as IBM’s CICS TP Monitor.

The first offshoot of [Nikolaou 92] was a pair of algorithms for goal-oriented transaction routing in
distributed transaction processing systems [Ferg 93]. These two algorithms are feedback-based and use a
system-wide orientation. Both algorithms attempt to predict the effect of a transaction routing decision on
the response times of each transaction class. The inputs to the algorithms include the average processor, disk,
and communication demands for transactions of each class, the number of transactions of each class running
on each node, and the observed per-class response times on each node. These inputs are used to estimate the
CPU queuing delays and response times that would result from a particular routing decision. A routing is then
selected that minimizes the maximum performance index (observed response time divided by response time
goal) for any class The objective of minimizing the maximum performance index implies that the algorithms
do not have to predict specific response times very accurately. Rather, they need only determine the correct
relative response times when comparing between different routing possibilities.

The second offshoot from [Nikolaou 92] was an algorithm, called Dynamic Tuning [Chung 94], for goal-
oriented multi-class disk buffer allocation. Dynamic Tuning is also a feedback-based algorithm with a
system-wide orientation (their system-wide observation interval is called a tuning interval). It operates by
comparing the performance indices of each class, and it continuously shifts buffer frames from “rich” classes
(those with the lowest performance index) to “poor” classes (those with the highest performance index). This
type of “Robin Hood” resource transfer requires a system-wide orientation, as the measurements for all classes
must be synchronized in order to insure an accurate system-wide assessment of the relative performance of
each class. Dynamic Tuning avoids the aforementioned responsiveness problems of a system-wide orientation
because its goals are specified with respect to individual buffer manager get/read page requests (as opposed
to end-to-end transaction response times). Thus, the “response times” of all classes are of similar magnitudes
(less than or equal to the time required to retrieve a page from disk). The specifics of Dynamic Tuning’s

controller design will be discussed further in Chapter 4.

2.3.3 Other Related Work

While it does not specifically accept response time goals, the adaptive memory allocation and MPL adjustment
algorithm described in [Mehta 93] is relevant here because its objective of maximizing fairness is very close to

the objective of the goal-oriented transaction routing algorithms described in [Ferg 93]. The adaptive algorithm

22

computes a performance metric for each class which is the ratio of its observed average response time to its
best possible response time (as would be obtained by running single queries of that class alone in the system);
this is similar to a performance index. Fairness is then defined as the absence of variance in this metric across
the set of all classes, so the adaptive algorithm’s objective of maximizing fairness is similar to minimizing the
maximum performance index?. The adaptive algorithm accomplishes its objective by dynamically determining
the MPL limit for each class using simple heuristics that guide a feedback mechanism. A memory allocation
for each class is then derived from the class’s multiprogramming level using another set of heuristics. While
the adaptive algorithm addresses memory allocation for purposes such as join hash tables and sort merge work
areas, it assumes that all data is disk-resident and thus does not control the allocation of memory for longer-term
buffering of disk pages. The adaptive algorithm is also feedback based and uses a system-wide orientation.

Another technique for allocating memory and controlling admission for multi-user query workloads is the
dynamic resource broker approach of [Davison 95]. [Davison 95] describes two algorithms, Brokers, and
Broker s D, that allocate resources to the highest bidding query operator (Brokery, allocates memory only,
and Broker s D allocates both memory and disk bandwidth). Both algorithms assign an amount of currency
to each operator that directly reflects its ability to improve whatever system-wide performance objective is of
interest. Not only are the admission and initial allocation of query operators determined by a bidding process,
but their allocations may also be dynamically adjusted “in-flight” in order to insure that resources are always
being used by the highest bidder (i.e. adaptive query processing algorithms [Pang 93a, Pang 93b, Davison 94]
are exploited in this scheme). While both Brokerys and Broker D were shown to outperform the adaptive
algorithm of [Mehta 93}, it is not clear how such an approach could be used for goal-oriented allocation.
Because of the difficulty of accurately characterizing response time functions, it would seem difficult to
develop a bidding currency that would be able to achieve per-class response time goals.

Finally, the COMFORT project at ETH Zurich deserves mention since it was directed toward automated
DBMS performance tuning [Weikum 93]. However, its emphasis was on self-tuning algorithms that optimized
system-wide objectives, and it did not specifically address the problem of achieving per-class performance

goals.

1 A similar objective function was actually introduced much earlier, in [Carey 85], in the context of work related to load balancing for
distributed database queries.

23

2.3.4 Today’s State of the Art

In summary, we note that very few examples of goal-oriented resource management algorithms exist in the
literature. Moreover, with the exception of the MVS SRM, the few existing examples all primarily control a
single knob. In addition, they all use either prediction or heuristics to guide a feedback mechanism which sets
the particular knob that the algorithm manages. The most comprehensive approach (the MVS SRM) is not
directed toward a DBMS environment, and because it is part of a commercial product, detailed implementation
information is not readily available. Clearly, if automated goal-driven performance tuning for database
management systems is to become a reality, comprehensive algorithms need to be developed and evaluated.
The goal-oriented memory and MPL management algorithms presented in [Brown 93a], [Brown 94], and
[Brown 95] represent a step in the direction of goal-oriented DBMS resource allocation. These papers form

the basis for this thesis and will be presented in Chapters 4 and 5.

24

Chapter 3

Simulation Model

sim.u.la.tion n sim-y*-'la-sh*n
1 : the act or process of simulating : FEIGNING
2 : a sham object : COUNTERFEIT

-- The Webster On-line Dictionary

This chapter provides a description of the simulation model that will be used for evaluating the goal-oriented
resource allocation algorithms presented in the following chapters. Because the workloads and configurations
required to evaluate the two algorithms are different from each other, this section will concentrate on those
features of the simulated DBMS (and its underlying simulated hardware platform) that are common to both
algorithms. A detailed specification of the workload and configuration parameters that are unique to each

algorithm will be presented later, prior to the performance evaluation sections of Chapters 4 and 5.

3.1 System Configuration Model

The simulated DBMS used in this thesis models a multiple disk, PC-based or workstation-based uniprocessor
server. The external workload source for the system is modeled by a fixed set of simulated terminals, so the
simulator models a closed queueing system [Lazowska 84]. Each terminal submits a stream of transactions of
a particular class, one after another. In between submissions, each terminal “thinks” (i.e. waits) for a random,
exponentially distributed amount of simulated time. In all cases, the number of terminals is chosen to provide
average disk utilizations in the range of 50 to 60%.

The simulated hardware configuration contains eight disks that are modeled after the Fujitsu Model M2266
(1 GB, 5.25”) disk drive [Fujitsu 90]. While the simulated disks include a model of the actual Fujitsu disk
cache, the simulated disk caches are disabled in this thesis as a result of our prior experience in prototyping

goal-oriented algorithms in DB2/6000 (IBM’s relational database for Unix (IBM 93b]). This prototyping work

25

showed that the simulator’s disk cache hit rates were much higher than those observed in the real system. The
reason for this difference is that the simulator assumed that random, single-page disk accesses would bypass
the cache and thus not pollute it with pages that are unlikely to be reaccessed, instead allowing the cache to be
mostly dedicated to the prefetching of sequential disk scans. Unfortunately, protecting sequential scans from
concurrent random accesses in this manner requires the cooperation of the DBMS, O/S, disk driver software,
and disk controller firmware. This degree of cooperation does not always occur in the real world, especially
with products built to be portable across a wide range of hardware and software platforms. Given this situation,
it is safer to assume the worst-case disk cache behavior and disable the caches on all simulated disks.

The system’s simulated 30 MIPS CPU is scheduled using a round-robin policy with a 5 millisecond
time slice, while the disk queue is managed using an elevator algorithm. The buffer pool consists of a set
of main memory page frames of 8K bytes each. The buffer manager is modeled after that of DB2/MVS
[Teng 84, IBM 93a). Thus, it utilizes separate LRU chains for sequential and random accesses, and it includes
an asynchronous prefetcher which operates as follows: At the initiation of a file or index leaf page scan,
the prefetcher asynchronously orders the next block of (four or eight) 8K pages to be prefetched. When the
penultimate page in the prefetéh block is referenced, an I/O for the next block of pages is asynchronously
scheduled. This approach enables the prefetcher to stay just ahead of the scanning process while using a
minimal amount of memory. The disk I/O subsystem supports blocked I/O for prefetch requests, i.e. it can
concatenate physically adjacent disk blocks and treat them as one disk request (saving both disk seeks and /O
initiation overhead). Only consecutive blocking is supported, however, there is no support for “scatter/gather”
/O in which the pages of an /O block are not physically adjacent (which DB2/MVS does support).

A memory reservation mechanism allows query execution operators to reserve memory for their working
storage needs, preventing such reserved frames from being stolen while the reservation is in effect. This
function is used by hash join operators to reserve memory for their hash tables. Note that the same memory
pool is used for both disk buffer and working storage memory here; this design choice will be discussed at
some length in Section 5.1.1 of Chapter 5.

Table 1 summarizes the parameters of the simulated configuration that are common to both Chapters 4 and
5. The disk parameters were chosen to approximate those of the Fujitsu Model M2266 disk drive, as stated

earlier.

26

| Parameter Value |
Number of CPUs 1
CPU speed 30 MIPS
Number of disks 8
Page size 8 KB
Memory size 24 MB (chap 4), 8 or 64 MB (chap 5)
Prefetch block size (# pages) 8 (chap 4), 4 or 8 (chap 5)
Disk cylinder size 83 pages
Disk seek factor 0.617
Disk rotation time 16.667 msec
Disk settle time 2.0 msec
Disk transfer rate 3.1 MB/sec

Table 1: Simulated instruction counts

3.2 Database Model

The database is modeled as a set of data files (relations), some of which have associated B+ tree indices. These
files and indices are modeled at the page level; an extent-based disk storage allocation scheme is assumed, and
the B+ tree index pages can be laid out to represent either a clustered or non-clustered index. All database
files are fully declustered [Livny 87] over all disks in the configuration (except for those files with fewer pages
than there are disks). Detailed descriptions of the file sizes and the types used in subsequent performance

experiments will be presented in the performance evaluation sections of Chapters 4 and 5.

3.3 Workload Model

The simulated workloads used in the performance evaluation sections of Chapters 4 and 5 are various combi-
nations of single-tuple index selects, full file scans, index scans, index nested-loop joins and hybrid hash joins
[DeWitt 84]. Since the simulator used in this thesis was originally built to model a parallel shared-nothing
database system, all operators in a query tree run in parallel within their own lightweight processes and com-
municate with each other using a message passing paradigm. In this thesis, however, only a single node system
is used, so all inter-process messages are bypassed by copying them directly from the sending buifer into the
receiving buffer. Table 2 shows the simulated instruction counts used in experiments throughout this thesis;

they are based on measurements taken from the Gamma parallel database system prototype [DeWitt 90].

| Function | #Instructions |
read a record from buffer page 300
write a record to buffer page 100
insert an entry in hash table 100
probe a hash table 200
test an index entry 50
copy an 8K msg 10000
start an /O 5000
apply a predicate 100
initiate a select/scan 20000
terminate a select/scan 5000
initiate a join 40000
terminate a join 10000

Table 2: Simulated instruction counts

27

28

Chapter 4

Disk Buffer Memory

If you want to eat hippopotamus, you’ve got to pay the freight.

— anonymous IBMer on why IBM softwares uses so much memory

In this chapter, a disk-buffer memory controller algorithm called Class Fencing is presented. First, Section
4.1 reviews two previous goal-oriented disk buffer memory allocation algorithms, Dynamic Tuning [Chung 94]
and Fragment Fencing [Brown 93a], highlighting both their features and their limitations. Section 4.2 then
presents the Class Fencing algorithm. Class Fencing is based on a concept called hit rate concavity, which
allows it to be more responsive, stable, and robust (as compared to the previous algorithms), while remaining
relatively simple to implement. Section 4.3 describes the simulated workload that is used to evaluate the

performance of Class Fencing, and the evaluation itself is presented in Section 4.4.

4.1 Previous Approaches

Goal-oriented buffer allocation algorithms can be described abstractly in terms of three components: a respornse
time estimator that estimates response time as a function of buffer hit rate, a hit rate estimator that estimates
buffer hit rate as a function of memory allocation, and a buffer allocation mechanism that is used to divide
up memory between the competing workload classes. The basic idea behind existing goal-oriented buffer
allocation algorithms is to first use the response time estimator (in the inverse) to determine a target buffer hit
rate that can achieve the response time goal. Next, the hit rate estimator is used (in the inverse) to determine
a buffer allocation that can achieve this target hit rate. Finally, the buffer allocation mechanism is used to
give each class its target allocation of buffer memory. These steps are repeated continuously for each class in
the hope that each successive estimate will bring the classes closer to their response time goals. This abstract
framework will be used in the remainder of this section to describe the Dynamic Tuning and Fragment Fencing

algorithms, and it will be used again in Section 4.2 to explain the new Class Fencing algorithm.

29
4.1.1 Dynamic Tuning Description

The Dynamic Tuning algorithm [Chung 94] differs from other goal-oriented algorithms ([Ferg 93, Brown 93a,
Brown 94]) in one important respect: response time goals are specified with respect to low-level buffer
management requests (i.e., in terms of target service times for individual “get page” requests) as opposed
to overall transaction response times. Dynamic Tuning’s low level of goal specification allows it to use the

following simple linear estimate to predict buffer request response times:
R = (1.0 — HIT***(M)) x D

HIT®est(M) is the estimated hit rate for the class that will result from a memory allocation 3/, and D is the
average time required for moving a page from disk to memory.

To estimate hit rate as a function of memory, the Dynamic Tuning algorithm adopts observations from
Belady’s virtual memory study [Belady 66], modeling the hit rate function as 1 — a/M?®, where M is the
memory allocation and the constants a and b are specific to a particular combination of workload and buffer
page replacement policy. To compute a and b, Dynamic Tuning observes the hit rates that result from the two
most recent memory allocations, plugs these observations into the model, and solves the two simultaneous
equations that result. With a specific a and b in hand, Dynamic Tuning can then use the inverse of the Belady
equation to estimate the memory required to achieve a particular target hit rate.

Once a target memory allocation for a class has been determined, Dynamic Tuning uses this allocation as
the size of a buffer pool partition that is dedicated to the class. The entire buffer pool is essentially partitioned
into separate pools, with one for each class, that are managed by completely autonomous buffer managers.

The size of each pool is allowed to vary dynamically in response to changing system loads.

4.1.2 Dynamic Tuning Issues

While the Belady equation used by Dynamic Tuning’s hit rate estimator is a good approximation to the general
shape of most hit rate functions, it is not always a good fit for any particular function. To illustrate how well
the curve-fitting approach used by Dynamic Tuning’s hit rate estimator works with an actual hit rate function,
Figure 4 shows a simulated hit rate function for a multi-user index nested loop join workload (solid line). This
line was derived by running such a workload over a range of different memory allocations using the detailed

DBMS simulation model described in Chapter 3. Also shown in Figure 4 are two different “fittings” (the

30

dashed lines) that were derived by taking a pair of points from the simulated hit rate curve and feeding them

into the Belady equation as described in the previous section.

1

0.8

0.6

Hit Rate

0.4

0 ;] i i L
0 5 10 15 20 25
Memory (MB)

Figure 4: Curves from 1 — a/M®

Figure 4 shows that using the Belady equation to predict hit rates at larger memory allocations from
observations made at smaller allocations can result in pessimistic estimates, i.e. the predicted hit rate can be
much lower than what would actually be achieved. Normally, pessimistic estimates are safer than optimistic
ones, but this is not the case for goal-oriented buffer allocation — a pessimistic hit rate estimate will result in
a memory allocation that may be much larger than what is actually needed. This will cause the algorithm to
“overshoot” its target goal, and can create unstable oscillations in a class’s performance. Instead, a goal-oriented
memory allocator should err on the side of a smaller allocation in order to maximize stability. Dynamic Tuning
overcomes this problem (as does Fragment Fencing, discussed next) by only changing memory allocations in
small chunks®; this policy prevents unstable behavior, but can result in poor responsiveness because it takes
many knob turns to achieve a high memory allocation when such an allocation is necessary to achieve a tight
response time goal. ~

While the model equation used by Dynamic Tuning is a reasonable choice, there are inherent problems
with any curve-fitting approach. Whatever the model equation, any real curve that doesn’t fit the model will

be estimated with low accuracy. It is also difficult to determine if a curve-fitting estimate will be optimistic or

12.59% of the total buffer pool was the chunk size used in {Chung 94]. Similarly, Fragment Fencing caps its per-step changes in memory
allocation at 10% of the buffer pool [Brown 93al.

31

pessimistic. More complex, higher order functions have the same problem; the model equation will only give
a good estimate for those hit rate curves that “look similar” to the model equation. Real hit rate curves have a
wide range of shapes and are difficult to capture accurately with a single analytical model.

Dynamic Tuning’s approach to memory allocation is to partition the buffer pool and assign each class to
a partition managed by its own buffer manger, as described earlier. This approach is simple and effective for
classes that do not share data, but some provision needs to be made for classes that do share buffer pages.

Sharing is not discussed in [Chung 94].

4.1.3 Fragment Fencing Description

Fragment Fencing’s response time estimator makes the simplifying assumption that response time and buffer
miss rate are directly proportional. Using this relationship, the target hit rate estimated to achieve the response

time goals is computed as:
H’[Ttarget =1.0-— (Mobsv % (Rgoal/Robsv))

where R°%Y and R9°% are the observed response time and response time goals, respectively, and M obsv g the
observed miss rate that occurs with the observed response time. While real response times are functions of
many other variables besides the buffer hit rate (including disk/CPU/network queueing and service times, lock
waits, MPL waits, etc.), assuming a linear relationship is reasonable in the case of a disk-bound class.

Rather than estimating the overall hit rate function for each class, Fragment Fencing estimates it in a
piecemeal fashion for each fragment of the database that is referenced by the class. A fragment is defined
as all of the pages within a relatively uniform reference unit, e.g. a single relation or a single level of a
tree-structured index. A uniform reference probability is assumed across the pages of a fragment, and the
hit rate of a fragment is therefore estimated to be equal to the percentage of the fragment that is memory
resident. Fragment Fencing’s goal is to determine, for each fragment, the minimum number of pages that must
be memory-resident in order to achieve an overall target hit rate for the class. These minimum amounts are
called target residencies and are analogous to a working set size for each fragment.

When a class’s hit rate needs to be increased by some amount, all of the fragments referenced by the class
are sorted in order of decreasing class temperature [Copeland 88, Brown 93a], which is their size-normalized

access frequency (in references per page per second). Using the uniform reference-based assumption that the

32

hit rate on a particular fragment is identical to its fractional target residency, the fragments referenced by a
class are processed in order from hottest to coldest by increasing the target residency for each one in turn
until the hit rates for all fragments add up to the overall hit rate required by the class. The hit rate (and target
residency) for a higher temperature fragment is increased to 100% before increasing the target residency of
any lower-temperature fragment, thus at most one fragment referenced by a class will be partially memory
resident. This entire process is reversed when a class’s hit rate needs to be decreased: in this case fragments
are processed from coldest to hottest, and target residencies are decreased rather than increased.

Once Fragment Fencing’s hit rate estimator has determined a target residency for each database fragment
referenced by a class, some mechanism is needed to enforce these target residencies. This is done by modifying
the existing DBMS’s buffer replacement policy to first ask the Fragment Fencing component if removing a page
from memory would violate the associated fragment’s minimum residency target; if so, the page is not replaced.
This type of “passive” allocation allows Fragment Fencing to co-exist with any type of buffer replacement
policy, be it global or local. It is passive in the sense that it does not explicitly direct the appropriate pages into

the buffer pool; it only prevents their ejection from the pool by the DBMS’s native replacement policy.

4.1.4 Fragment Fencing Issues

A potential Problem with a fragment-oriented approach, as noted in [Brown 93a], is what happens when
references within a fragment are not uniform. Since Fragment Fencing measures the actual hit rates of each
fragment, it can easily test for violations of the uniform reference assumption by comparing the estimated hit
rate to the actual hit rate. If they are significantly different, it is clear that the fragment is being referenced
non-uniformly. However, once confronted with the knowledge that a fragment’s references are indeed non-
uniform, it is not clear what the fragment’s memory allocation should be. Additionally, it is not clear what an
average per-page reference frequency means when references are non-uniform within a fragment. The more
frequently referenced pages of a fragment will certainly have a higher temperature than the average for the
fragment, and therefore sorting fragments by a fragment-wide metric is not very meaningful.

Another problem with Fragment Fencing has to do with its “passive” memory allocation mechanism.
Keeping the DBMS’s replacement policy “in the dark” with regard to which buffer frames are fenced or not
provides a high degree of independence from the underlying replacement policy [Brown 93a]; unfortunately, it

also has the potential for significant overhead. Because the replacement policy is unaware of which frames are

33

fenced, it is forced to waste time inspecting frames that seem like good candidates — only to be overruled by
Fragment Fencing. For example, if 80% of the buffer pool is fenced off in order to achieve aggressive response
time goals, then 80% of the candidate pages for replacement will be overruled. This problem is particularly
troublesome for clock-based replacement policies (like that of DB2/6000 [IBM 93b]) because fenced frames
may cluster together physically in the buffer table; when the clock hand moves into such a cluster, it may have
to inspect a large number of consecutive frames before finding one that can be replaced. In order to eliminate

this overhead, all fenced frames must somehow be removed from consideration for replacement.

4.2 Class Fencing

This section describes Class Fencing, an improved goal-oriented buffer management algorithm. Class Fencing
adopts the same response time predictor as Fragment Fencing (see Section 4.1.3), i.e. Class Fencing also
assumes that miss rate and response time are proportional. Apart from using the same response time predictor,
however, Class Fencing differs greatly from Fragment Fencing. The key difference is that, instead of building
multiple fences to protect the individual database fragments referenced by a class, Class Fencing builds a
single fence to protect a class’s buffer pages — regardless of which fragment they belong to. In addition,
Class Fencing uses a more general hit rate prediction technique based on a notion called hif rate concavity.
Class Fencing’s memory allocation mechanism provides for data sharing between classes, and represents a
compromise between the rigid partitions of Dynamic Tuning and the passive fences of Fragment Fencing. The
remainder of this section describes the concept of hit rate concavity and then explains how this concept is used
by Class Fencing to predict buffer hit rates. Class Fencing’s memory allocation mechanism is then described,
with a separate discussion of two more detailed aspects of the algorithm: estimating memory allocations in
the presence of data sharing and computing memory usage statistics. Finally, this section closes with a state
transition diagram to summarize the states that a disk buffer class goes through under the control of Class

Fencing.

34
4.2.1 The Hit Rate Concavity Assumption

Class Fencing estimates the buffer hit rate that will result from a particular buffer allocation by exploiting the

following concavity theorem?:

Regardless of the database reference pattern, hit rate as a function of buffer memory allocation

is a concave function under an optimal replacement policy.

The concavity theorem says that the slope of the hit rate curve never increases as more memory is added
to an optimal buffer replacement policy, where an optimal buffer replacement policy is defined as one that
always chooses the least valuable page to replace (e.g. Belady’s MIN algorithm [Belady 66]). While optimal
replacement policies are not realizable in practice because they require knowledge of future reference patterns,
it will be argued shortly that the behavior of industrial-strength DBMS replacement policies are “optimal
enough” that hit rate concavity applies to them as well.

An informal proof of the concavity theorem can be stated as follows: The slope of the hit rate curve
represents the marginal increase in hit rate obtained by adding an additional page of memory. The steeper
the slope, the higher the “value” of a particular page (as measured by its ability to increase the hit rate).? An
optimal buffer replacement policy must choose pages for memory residency in decreasing order of their value
in order to achieve the highest hit rate for a given amount of memory. Thus, since the slope measures value,
and value cannot increase as more memory is added, neither can the slope. Note that concavity also implies
that there are no “knees”, such as the one shown in Figure 5, in an optimal hit rate function. Any knee indicates
a “mistake” in page replacement, i.e. it implies that lower-valued pages (to the left of the knee) were made
memory resident before higher-valued pages (to the right of the knee).

In order to make use of the concavity theorem in a real DBMS, one needs to know how close today’s
commercial DBMS replacement policies are to an optimal policy —i.e. when do they make mistakes? A DBMS
should certainly make fewer page replacement mistakes than an operating system (where hit rate knees are
common) for two reasons: knowledge of future page reference behavior, and the presence of indexes. A DBMS
knows when accesses are going to be sequential versus random. It can therefore prefetch sequentially accessed

pages just before they are referenced, and once they are referenced, it can toss or retain these pages based on

2 A similar theorem has been proven by van den Berg and Towsley [van den Berg 93] for the case of an IRM reference pattern coupled
with an LRU replacement policy. To our knowledge, no one has explicitly stated it in the form we do here, although some previous work
has exploited the notion of concavity in any case [Dan 95].

3This notion of page value is synonymous with the concept of marginal gain defined in [Ng 91].

35

1.0

/
/ Hit rate "knee"

Hit Rate

00 ¢

Memory

Figure 5: A hit rate function knee

knowledge of the total number of pages that will be scanned [Stone 81]. Random accesses to pages are generally
made via indexes,? and there are a number of techniques available to insure that more valuable index pages are
not replaced by less valuable data pages [Haas 90, O’Neil 93, Johnson 94]. For index pages themselves, it is
possible to use reference frequency statistics or information about the last few references to insure that more
valuable index pages are not replaced by less valuable index pages [Copeland 88, O’Neil 93, Brown 93al.
While it would be impossible to offer any definitive statement about the likelihood of hit rate knees in
real-world buffer managers, we conducted a small empirical study of two simulated buffer managers, one
modeled after DB2/MVS [Cheng 84, Teng 84, IBM 93a] and the other modeled after DB2/6000 [IBM 93b].
For both of these buffer managers, the hit rate functions were mapped for both the TPC A/B and C benchmarks,
as well as for all of the canonical database reference patterns documented in the DBMIN Query Locality Set
Model [Chou 85]. None of the observed hit rate functions showed a knee. Additional empirical evidence for
concavity is provided by Dan et al [Dan 95], where hit rate functions derived from actual traces of DB2/MVS

customers were also seen to be free of knees.

“This is certainly true for relational systems, but less so for object-oriented systems that support navigational access.

36

While acknowledging that hit rate function knees are possible in the real world, the evidence discussed
above indicates that they represent pathological cases. Therefore, Class Fencing adopts the assumption that
hit rate concavity holds for the most commonly occuring workloads running on a typical commercial DBMS.
Of course, it must also be prepared to accept the failure of this assumption; the impact of non-concave hit rate
functions will be addressed after explaining how the concavity assumption is used by Class Fencing to estimate

hit rates, which is the topic of the following section.

4.2.2 Estimating Hit Rates Using the Concavity Assumption

The hit rate concavity assumption is useful because it enables a simple straight line approximation to be used to
predict the memory required to achieve a particular hit rate.’ Only the last two hit rate observations are needed,
and the accuracy of the estimate improves with each new hit rate observation at larger memory allocations.
Moreover, unlike a curve-fitting estimator, a straight line approximation always predicts a conservative lower
bound for its memory allocation. Figure 6 illustrates how the required buffer allocation for a class can be
predicted with this approach.

The dashed curve in Figure 6 represents a hypothetical hit rate function for a class, over the range from
zero pages up to some maximum memory allocation M™%* (some large percentage of the total buffer pool).
The horizontal line labeled HT represents a target hit rate that the hit rate estimator receives as input (from the
response time estimator). The idea is to move the class as quickly as possible to the “X”, which represents the
memory allocation MT that results in the target hit rate HT. The point labeled O1 indicates the initial observed
hit rate H1 of the class with its “naturally occuring” memory allocation M1 — this allocation is what the existing
non-goal-oriented DBMS memory allocation policy would “naturally” give to the class in the context of the
current workload. To estimate the memory required to achieve the target hit rate HT, a line extending from the
origin through O1 is computed; the point at which this line intersects the target hit rate (E1) represents a lower
bound (M2) on the memory allocation that can achieve the target hit rate HT. If the actual memory allocation
required to achieve HT was less than M2, this would mean that the concavity assumption had been violated.
After increasing the class’s memory allocation to M2 and waiting long enough to insure statistical stability,
a second observation O2 occurs and another estimate E2 is computed using points O1 and O2. Estimate E2

predicts a required memory allocation of M3. With one more estimate using points O2 and 03, the target hit

5 A straight line approximation of buffer hit rate functions was also used in [Chen 93] to predict a memory allocation that maximizes
marginal gain [Ng 91].

37

1.0
/"//”
E1/ E2 gl
o HT Z
o
& H3 —— v’ 03
:}: H2———- 02
V4
L s
Hi — # 01
| l L
0.0 1
0 M1 M2 M3 MT Mmax

Memory

Figure 6: Estimating a concave hit rate function

rate is achieved. If any estimate’s line were to cross the M™% limit instead of the target hit rate, then the
target hit rate is unachievable.

Assuming that concavity holds, Class Fencing’s hit rate predictor allows it to ag gressively allocate memory
in large increments because it can be confident that it will not “overshoot” or be mislead by unachievable
hit rate targets. Large memory allocation increments mean that Class Fencing can be extremely responsive,
especially in the case of very tight goals. If the concavity assumption does not hold, however, then there may
be knees in the hit rate curve. The actual effect of a hit rate knee on Class Fencing’s hit rate predictor depends
on where the observation points lie relative to the knee. If they are straddling the knee (with one point on
either side of it), then the slope computed across the two points will still be fairly accurate. In the worst case,
one of the observations will lie directly in the knee. Such a worst case scenario is illustrated in Figure 7. In
this case, the computed slope will be too low, the estimated memory allocation (M 3) no longer represents a
lower bound, and Class Fencing will overshoot the ideal memory allocation for the class. In order to correct
for these (hopefully rare) cases, Class Fencing must therefore incorporate code to estimate in the downward

as well as upward direction. In Figure 7, for example, the next estimate after £2 would extrapolate between

38

1.0
03 _m———"
E1 S
o M7 o
— Vs E2
o /
s /
= /
T et /&
el
H1 — & O1
p
ar
]
| | | |
0.0 T]
0 MI M2 MT M3 Mmax

Memory

Figure 7: Overshooting a non-concave hit rate function

points O3 and O2. One more estimate would likely be required to achieve the goal.

4.2.3 Class Fencing’s Memory Allocation Mechanism

Class Fencing’s memory allocation mechanism represents a compromise between the rigid partitions of Dy-
namic Tuning and the passive fences of Fragment Fencing. Instead of building individual fences around each
database fragment referenced by a class, a single fence is built to protect all of the pages referenced by the
class, regardless of which fragment they belong to. The choice of which pages belong inside versus outside the
fence is made by a buffer manager that is local to the class. A separate global buffer manager manages pages
for no-goal classes as well as any “less valuable” unfenced pages that belong to goal classes. The global buffer
manager is the source for all “victim” frames necessary to satisfy any page miss. Note that since the global
buffer manager contains no fenced frames, no additional overhead is required on a page replacement decision in
order to deal with fenced frames. Finally, a single buffer frame table and associated disk-page-to-buffer-frame
mapping table is shared by all buffer managers, both global and local.

For each goal class that cannot meet its goal “naturally” by competing for frames in the global buffer

39

manager (called a violating class), a separate and identical instance of the existing DBMS replacement policy
is cloned to manage a set of frames that are then protected from replacement by other competing classes. The
particular replacement policy used is irrelevant to the Class Fencing algorithm; it is simply replicated when a
goal class is in violation. Each violating class C has a limit determined by Class Fencing’s hit rate predictor,
poolSize[C], that represents the maximum number of buffer frames that can be managed by class C’s local
buffer manager. The global buffer manager also has a pool size, poolSize/ GLOBAL], and the sum of the local
and global pool sizes equals the total amount of DBMS buffer pool memory. Any pool size increase for a goal
class implies a corresponding decrease in the pool size for the global buffer manager, and any local pool size
decrease implies a global pool size increase of identical size. Like Dynamic Tuning, Class Fencing’s goal is to
set a pool size for each violating class so that it can meet its goal. U nlike Dynamic Tuning, however, only the
replacement policy is replicated for each class; the common frame table and mapping table enables buffered
pages to be shared across classes.®

Class Fencing’s buffer allocation mechanism operates as follows. On a buffer miss by a violating class,
a free frame is stolen from the global buffer manager and then reassigned to the local buffer manager for the
violating class. If the local buffer manager now exceeds its poolSize limit, then its replacement policy is called
upon to choose a frame to donate back to the global buffer manager, where it is treated as recently referenced.”
On a buffer miss by a no-goal class, or by a goal class that “naturally” meets its goal with the existing buffer
allocation mechanism, one of the frames managed by the global buffer manager is chosen for replacement;
the referenced page is read into that frame and assigned to the global buffer manager. The page then stays in
memory until the global buffer manager’s replacement policy decides to eject it. If all classes can meet their
goals with the existing allocation mechanism, then no local buffer managers exist and the system’s behavior is

indistinguishable from that of a non-goal-oriented system.

6 A similar sharing technique was used by the DBMIN algorithm [Chou 85]. Class Fencing differs from that approach in that DBMIN
partitioned memory on the basis of file instances and used a different replacement policy for each instance. Class Fencing partitions on
the basis of classes and uses an identical replacement policy (the existing DBMS replacement policy) for each one.

7 Actually, if the page chosen for replacement by a local buffer manager comes from a database fragment that is not shared by any other
classes, it can be safely tossed out of the buffer pool immediately. This is because there is no chance of harming the buffer hit rate of any
other class by doing so. Shared pages must remain resident in the global buffer before they are ejected though, since they are likely to be
referenced by (and perhaps reassigned to the buffer manager for) another class.

40
4.2.4 Class Fencing Details

There are two additional details that need to be addressed to complete the description of Class Fencing. The
first stems from the fact that a class that shares data with other classes can use buffer frames that are controlled
either by its local buffer manager or by some other buffer manager. Any page referenced by a class while it
is still in memory is considered “in use” by the referencing class, regardless of which buffer manager controls
the page. Thus, the pool size for a class only represents a lower bound on the number of frames used by the
class; it does not necessarily represent the total number of frames in use by the class. On the other hand,
Class Fencing’s hit rate estimator is based on the fotal number of frames used by a class, regardless of which
buffer manager they reside in. For sharing classes, this means that some mechanism is needed to translate the
hit rate estimator’s proposed memory allocation into a (necessarily smaller) pool size value for the class. For
non-sharing classes, this translation is not needed because the pool size is the same as the number of frames in
use for these classes.

Predicting the number of frames in use by a sharing class given a particular pool size is relatively simple.
Whenever a class C is observed, the percentage p of non-local buffer frames that it is using can be computed
as follows:

nonLocal[C] = bufSize — poolSize[C]
p = (inUse[C] — numLocal[C]) / nonLocal[C]

Here, inU se[C] is a running count of the total number of frames used (referenced) by the class at any moment
(regardless of which buffer manager controls them), num Local [C] is the number of frames currently managed
by the class’s local buffer pool, and bufSize is the total number of DBMS buffer pool frames. Maintaining
inUse[C] can be accomplished by using a bit map for each buffer frame (with one bit per class); if class C’s
bit is off when a buffer frame is referenced, then inU se[C] is increased by one. When the page residing in a
buffer frame is removed, then the in se counts for any class whose bit was on for that frame are decreased by
one.

The percentage p of non-local buffer frames is used to translate total memory usage into pool size as
follows. When the pool size is increased for the class, the miss rate of the class decreases, and therefore the
rate at which the class asks for frames from the global buffer manager also decreases. The currently observed

percentage p thus represents an upper bound on the percentage of frames that this class will utilize outside of

41

its local buffer pool after its pool size is increased. Using p as an upper bound, the estimated number of frames
utilized by a class C, given its current poolSize[C] and a local pool size increase of Apool Size (which causes

a decrease in nonLocal[C]), can be computed as
inUse[C)*t = poolSize[C] + ApoolSize + p - (nonLocal[C] — ApoolSize)

Solving this equation for ApoolSize allows Class Fencing to determine the new local pool size that is likely
to result in the targeted overall buffer allocation for a class.

The final algorithmic detail addresses the fact that the count of frames used by a given class can vary
dramatically over time. As just explained, the current value of inUse[C] represents the (transient) amount of
memory used by a class C at a particular time. Therefore, instead of using in Use[C] directly, a time-weighted
frame count is actually used instead. This means that the x-axes of Figures 6 and 7 should actually be interpreted
as the time-weighted count of frames in use during the current observation interval; the time-weighted frame
count for a class is reset at the end of every observation interval. The cost of maintaining a time-weighted
frame count for each class is low, as a single floating-point multiply is all that is needed on each page-in or

page-out of a frame used by a class.

4.2.5 Class Fencing State Transitions

Figure 8 shows the states that a disk buffer class moves through under the control of the Class Fencing
algorithm. Ideally, the transition down state never occurs except when there is a reduction in overall system
load. If it occurs during the initial search for a solution, then this means that Class Fencing overshot the
memory allocation, perhaps because of a convexity in the hit rate function or some other estimation error (e.g.
an error in estimating a target hit rate from observed response times, or in estimating a pool size that will result
in a target memory allocation).

Note that if Class Fencing determines that goals are unachievable, a transition is made to steady state (as
opposed to some specific “unachievable” state). This is done to insure that the goals are continuously checked,
in case the system dynamics eventually change such that the goals can be achieved. Thus, when a disk buffer

class is in steady state, it may actually be meeting, exceeding, or violating its goals.

42

Initialization
Warmup
period expired,
goals being
violated

Goal
violated

ransition
Up

Transition

Transition
complete

complete

Goal
Warmup violated

Goals met or
unachievable,
or exceeded
without a fence

f

Figure 8: Class Fencing states

4.3 Experimental Multiclass Workloads

This section describes the simulated workloads used to evaluate Class Fencing. These workloads were chosen to
exhibit behaviors that represent challenges for previous goal-oriented buffer management algorithms, including
complex and highly skewed page reference patterns and data sharing between classes. The individual classes
differ greatly in their sensitivities to buffer hit rate, their degree of response time variance, and in their ranges
of achievable response times (by up to two orders of magnitude). All the workloads in this section are
formed using various combinations of three workload classes that have been previously defined elsewhere: the
TPC-C benchmark from the Transaction Processing Council [TPC 941, and two query types from a previously
published performance study of the DBMIN buffer management algorithm [Chou 85). A 24 MB, eight disk
version of the simulated DBMS described in Chapter 3 is used to run the workloads. Detailed descriptions of

the database and workload classes are presented in the next two sections.

4.3.1 Database Model

43

File Tuple #of | #8K | % Buf | % of | Access
Name Bytes | Tuples | Pages Pool | Refs Type
customer file 655 30K | 2500 81.4 2.2 U/H
customer index (ID) 12 30K 89 2.9 1.5 U/H
customer index (name) 24 30K 45 1.5 2.9 8]
district file 95 10 1 0.0 1.5 -
history file 46 33K 186 6.1 0.6 A
history index 12 33K 50 1.6 1.3 A
item file 82 100K | 1011 32.9 7.4 u/C
item index 16 100K 197 64| 149 u/c
new order file 8 9K 10 0.3 0.8 | 90/10
new order index 12 9K 15 0.5 1.6 | 90/10
order file 24 30K 88 2.9 0.8 | 90/10
order index 16 30K 60 2.0 1.7 7 90/10
order line 54 | 300K | 1987 64.7 8.6 | 90/10
order line index 16 300K 589 19.3 | 25.6 90/10
stock file 306 100K | 3847 1252 | 117 U
stock index 16 100K 197 64| 152 U
warehouse file 89 1 1 0.0 1.5 -
DBMIN file A 182 100K | 2223 72.3 - U
DBMIN unclustered idx A 12 100K | 147 4.8 - U
DBMIN clustered idx A 12 100K 147 4.8 - U
DBMIN file B 182 100K | 2223 72.3 - U
DBMIN unclustered idx B 12 100K 147 4.8 - U
DBMIN clustered idx B 12 100K 147 4.8 - U

Table 3: Database characteristics

The database model consists of a two-part database, with one part taken directly from the TPC-C benchmark
[TPC 94] using a scale factor of one (one warehouse), and the other drawn from a previously published
performance study of the DBMIN buffer management algorithm [Chou 85]. The DBMIN portion of the
database is a subset of the original Wisconsin Benchmark Database [Bitton 83}, except that here we scale up
the number of tuples in each relation by a factor of ten.

The TPC-C benchmark represents an order-entry application for a wholesale distribution company. Its
files and associated B+ tree indexes are summarized in Table 3. While the choice of indexes is not specified
in the benchmark, those listed in Table 3 represent a typical implementation. For indexes, the Tuple Bytes
column indicates the size of a key/pointer pair. The % Buf Pool column expresses the size of each file as a
percentage of the 24MB buffer pool that we use throughout the experiments in Section 5.5. The % of Refs
column indicates the percentage of the database references that are directed at a particular file by the TPC-C

benchmark transactions. Note that over half of the references are directed at the stock, stock index, and order

44

line index files. Finally, the Access Type column indicates the type of page reference pattern that occurs on
a file: U implies a uniformly random page reference probability, 90/10 means that 90% of the references are
directed at 10% of the file, and A stands for append-only access. U/H and U/C are special distributions defined
in the TPC-C benchmark that can be roughly described as uniform with hot spots and uniform with cold spots,
respectively (see [TPC 94] for a detailed description).

All the database files are fully declustered over the eight disks in the configuration (except for those files

with fewer than eight pages).

4.3.2 Workload Model

The simulated workloads used in the experiments of Section 5.5 are composed of different combinations of
the TPC-C workload together with several DBMIN query classes. Because we are primarily interested in the
page reference patterns of these classes, all of the workload classes are read-only. The specific behavior of the
classes is described in the following paragraphs.

TPC-C: This simulated workload class faithfully duplicates the reference patterns of the TPC-C benchmark
as specified in [TPC 94]. TPC-C models an order-entry business and is composed of a mix of five different
transaction types. These queries are mostly index scans of varying selectivities that produce the reference
frequencies and patterns shown in Table 3 (a detailed description is provided in [TPC 94]). As stated earlier,
TPC-C exhibits a high degree of locality. The order line and order line index files receive over one third of
the references, and the access to both is highly skewed, giving this workload a relatively high hit rate at a low
cost in memory. As a result, its response times can only be varied over a relatively narrow range without a
huge investment in memory. Note that because of its skewed references within database fragments, TPC-C
violates Fragment Fencing’s uniform reference assumption, and therefore its performance cannot be controlled
by Fragment Fencing.

The TPC-C class is set up to exhibit a relatively high degree of response time variance: one of its five
transaction types takes four times as long to execute as the other three, but only comprises 4% of the TPC-C
mix. These heavier transactions will cause occasional spikes in the TPC-C class response times. In addition,
the TPC-C class is configured with a relatively large number of terminals for this configuration (50), therefore
it exhibits a fairly bursty arrival pattern due to its exponentially distributed inter-arrival times (think times).

DBMIN Query 2 (Q2): The Q2 class is a non-clustered index scan of DBMIN file A with a 1% selectivity

45

[Chou 85]. Because file A and its index can fit entirely in memory, this class is very sensitive to its buffer hit
rate and is therefore more easily controlled than the TPC-C class. The Q2 class is configured with a relatively
small number of terminals (10) and exhibits a low degree of response time variance.

DBMIN Query 3 (Q3): The Q3 class is an index nested loops join of DBMIN files A and B [Chou 85].
File A is scanned using a clustered index with a 2% selectivity, and file B is scanned directly. When Q2 and
Q3 are running together in the same workload, they share the common file A, causing their performance to
be somewhat linked. The total number of database pages referenced by a Q3 query is about 50% larger than
the buffer pool, so Q3’s performance is slightly less sensitive to its buffer hit rate than Q2. On the other hand,
Q3 represents the class with the largest execution times (multiple tens of seconds, as compared to sub-second
execution times for TPC-C). The Q3 class is also configured with 10 terminals and exhibits a low degree of
response time variance.

The specific number of terminals and think times for each class are summarized in Table 4. These values
were chosen to insure that the TPC-C class is the most aggressive consumer of disk buffer memory (i.e. that it

has the highest page reference rate), while maintaining average utilizations of 50-60% across the eight disks.

[Parameter | Value |
TPC-C terminals 50
Mean TPC-C think time | 5 sec
Q2 terminals 10
Mean Q2 think time 10 sec
Q3 terminals 10
Mean Q3 think time 10 sec

Table 4: Workload parameter settings

4.4 Experiments and Results

In this section, the database and workload classes just described are used to examine how well Class Fencing
can achieve a variety of goals for several different multiclass workloads, paying particular attention to its
accuracy, stability, responsiveness, and robustness. The performance metrics used for judging Class Fencing’s
behavior are the performance index of each goal class and the number of knob turns (i.e. different memory

allocations) that it takes to reach a point where the class’s goal is achieved for three consecutive observation

46

intervals. The performance index of a class is defined as the average response time of the class (over the
hour-long statistics collection period) divided by its response time goal, as described in Section 1.3, and is
a measure of accuracy. The number of knob turns is a measure of responsiveness. The response times of a
no-goal class are also shown in order to roughly indicate the amount of “excess” resources left over after the
goal classes have been given what they need to meet their goals; the larger the amount of left-over resources,
the lower the average no-goal class response time. Selected transient analyses of response times are included
to indicate how stable the algorithm is as a function of time.

In order to obtain statistically meaningful simulation results, the simulations in this section are run for 90
simulated minutes. Response time statistics are collected only for the last hour of the simulation in order to
factor out the solution searching time from the averages, as the averages are meant to indicate steady-state

behavior.

4.4.1 TPC-C and DBMIN Q2

The first set of Class Fencing experiments pairs the TPC-C and DBMIN Q2 classes together. Three variants

of this workload are used: goals for Q2 only, goals for TPC-C only, and goals for both classes.

Goals for Q2 Only

The first TPC-C/Q2 experiment sets a range of goals for the Q2 class, allowing the TPC-C class’s response
time to “float” as a no-goal class. Table 5 shows the results of this experiment. Each row in Table 5 represents
a separate simulation run using a different goal for the Q2 class. The columns show the input goal for the
Q2 class, the resulting average response time for Q2, Q2’s performance index, the average TPC-C (no-goal)
class response time, the number of knob turns (intervals) that it took to achieve Q2’s goal, and the memory
allocation chosen by Class Fencing for the Q2 goal class (out of a total of 3072 8K buffer frames). The interval
length used for the Q2 class is 100 completions, which (depending upon the goal and resulting throughput for
the class) translates to anywhere from about 150 to 225 seconds.

The performance indexes in Table 5 show that Class Fencing can achieve the goals fairly accurately for the
Q2 class — to within four percent at most. The last row in the table represents a goal that is satisfied “naturally”
by the system’s buffer manager. An interesting aspect of this workload is how insensitive the TPC-C response

times are to the different levels of Q2 performance (and memory allocation). Because the TPC-C class has

47

Q2 Q2| Q2| TPC-C #of | Q2 Mem
Goal | Resp P1 Resp | Knob Alloc
(sec) | (sec) (sec) | Turns (pages)
0.150 | 0.153 | 1.01 0.436 7 2336
0.250 | 0.259 | 1.04 0.426 4 2293
0.500 | 0.494 | 0.99 0.421 3 2249
0.700 | 0.705 | 1.01 0.425 5 2220
1.000 | 0.981 | 0.98 0.421 4 2193
2.000 | 1.957 | 0.98 0.423 3 2102
5.000 | 4.820 | 0.96 0.437 6 1919
10.000 | 5.770 | 0.58 0.436 0 0
Table 5: TPC-C/Q2, with goals for Q2
. . . 3000 : "
350 H obsv resp —+— 1| frames fenced —~—
goal —— frames in use ——
300 2500 © 1
250 n 1 2000 |
g 200 g
8 E 1500 -
= 150 AN SARR PN AN e =
Ty v T TE T
1000 |
100 {
0 500 t
0 s . . : . 0 . ‘ . . .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Simulated seconds Simulated seconds
Figure 9: Q2 interval response times Figure 10: Q2 interval memory allocation

such high locality, large changes in its memory allocation have a minimal effect on its performance.

Note that Table 5°s tightest achievable goal, 150 msecs, takes more knob turns to achieve than do the other
goals (7 knob turns versus an average of 4). The reason for this is that when hit rates are very high, very small
changes in memory allocation can bring about large relative differences in miss rates (since so few I/Os are
occurring). When hit rates are very high, Class Fencing is forced to take smaller steps in order to prevent an
overshoot, and this is why very tight goals may require more knob turns than looser ones. This behavior can
be seen in Figures 9 and 10, which show the Q2 class response time and number of buffer frames allocated as
function of time for the 150 msec goal experiment.

Figure 10 shows that while the first memory allocation brought the class very close to its goal, six more very
small adjustments were required to achieve a stable solution. From a responsiveness standpoint, the “number

of knob turns” measure is imperfect since it does not recognize the magnitude of each knob adjustment. In this

48

case, the goal was reached for the most part after four adjustments, with the remainder providing additional

fine tuning. Figures 9 and 10 also show that Class Fencing behaves in a very stable manner for this workload

— it is clear that once the solution is found, the memory knob is left untouched.

TPCC | TPCC | TPCC Q2 #of | TPCC Mem
Goal | Resp PI | Resp | Knob Alloc
(sec) (sec) (sec) | Turns (pages)
0.300 | 0.301 1.00 | 24.0 5 2816
0.350 | 0.345 0.99 | 16.7 5 2305
0.375 | 0.374 1.00 [142 4 1731
0.400 { 0.399 1.00] 11.6 3 1378
0.425 | 0425 1.00 5.1 0 0
Table 6: TPC-C/Q2, with goals for TPC-C
. : 3000 . .
900 1 obsv resp —~— | frames fenced —+—
800 + goal —— 2500 | frames inuse —+— |
700 }
600 | 2000 | J/"“““"“’“‘”’\/\.....M
§ 00] § 1500 | .
= 400 ‘M A VA.AVR AVA‘MV"A'A/\- B
300 } W 1000
200 [
500 }
100 ©
0 . . . : . 0 . : : . .
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Simulated seconds Simulated seconds
Figure 11: TPC-C interval response times Figure 12: TPC-C interval memory allocation
Goals for TPC-C Only

The second experiment in this set uses the same workload as the previous experiment, but reverses the roles of

the two classes. Here, goals are set for the TPC-C class, while the Q2 acts as a no-goal class. The observation

interval for the TPC-C class is set to 1000 completions, which translates to about 160 seconds at the throughputs

exhibited in these experiments.

Table 6 shows the results of a series of simulations for this workload. As before, each row represents a

simulation run with a different goal for the TPC-C class. Because of its high locality, TPC-C has a much

narrower range of possible response times, so there are fewer rows in this table. As before, Class Fencing

49

achieves the goals to within a few percent using only a few knob adjustments. In contrast with the no-goal
class behavior of the previous example, Table 6 shows that the Q2 no-goal class response time is extremely
sensitive to the memory allocation given to TPC-C. As the TPC-C class’s goals are loosened, the Q2 class is
able to achieve better performance using the additional leftover buffer memory.

Figures 11 and 12 show the transient behavior for the middle (375 msec) goal of Table 6. For this goal, it
only takes four intervals to find a solution, but because of the high variance of TPC-C (both in transactions’
service demands and arrival rates), continuing adjustments need to be made in order to maintain the average

response time. These adjustments are relatively stable, however, and do not cause any oscillating behavior.

Goals for Both Q2 and TPC-C

The last experiment involving this workload provides goals for both the TPC-C and Q2 classes. A third class
is added as a no-goal class to consume any left-over resources in the case where both classes have a loose goal.
This is necessary because otherwise the goals would have to be set such that all of memory is exactly consumed
by both TPC-C and Q2; if some memory was left over, then one class would always naturally exceed its goal
and the experiment would behave as if there only one class with a goal (i.e. the problem would be “too easy” to
solve, in a sense). The no-goal class for this experiment is another Q2-like class that references a distinct file
from the Q2 goal class. To maintain the same aggregate system load, the original ten Q2 class terminals are
split into two groups: four belong to the Q2 goal class, and six are assigned to the Q2-like no-goal class. More
terminals are assigned to the no-goal class to make it a slightly more aggressive competitor for buffer frames.
One consequence of the reduced number of Q2 goal class terminals is a lower throughput for the Q2 goal class
(0.2 versus 0.6 queries per second for a 700 msec goal). A lower throughput increases the time required to
gather statistically valid measurements, and therefore implies a longer time interval between knob turns; the
longer the interval between knob turns, the more critical it is to find a solution in as few turns as possible.
Table 7 shows the results of this experiment, including columns for both the TPC-C and Q2 class response
time goals, their resulting performance indexes, the number of knob turns it took to find the solutions, and
the resulting no-goal class response time. The performances indexes are mostly within a few percent of the
goals for this workload as well, indicating that Class Fencing is successfully doing its job. Three exceptions
are the tightest goal combinations, that are starred in Table 7: 0.300/20.0, 0.400/15.0, and 0.500/5.0. These

three goal pairs together consume most of the available memory, leaving very little for the no-goal class (as

50

TPCC Q2 | TPCC | Q2| #TPCC | #Q2 | No-goal
Goal | Goal Pl P1 Knob | Knob Resp
(sec) | (sec) Turns | Turns (sec)

0.300 | 25.0 1.03 | 0.97 4 0 214
*(.300 | 20.0 1.03 | 1.10 4 1 27.1
0.400 | 20.0 1.00 | 1.04 3 1 17.2
*0.400-| 15.0 1.05 | 0.99 5 2 29.2
0.500 | 10.0 1.01 | 1.02 2 3 23.2
*(.500 5.0 1.06 | 0.99 4 3 27.6
0.700 5.0 0.99 | 1.01 0 3 22.8
0.700 2.0 1.03 | 0.96 1 5 23.5

Table 7: TPC-C/Q2, with goals for both

can be seen by the poor no-goal class performance in these cases). The performance indexes for these tight
goal combinations show some goals being violated by as much as ten percent because of the shortage of buffer
memory. These are cases where the system is operating in degraded mode because the goals are too aggressive
for the configuration. Recall from Chapter 1 that the approach adopted in this thesis is to avoid attempts to
reallocate memory in order to minimize the maximum performance index in degraded mode. As a result, the
performance index for one class may remain higher than that for another class when the system is operating in

degraded mode.®

4.4.2 DBMIN Q2 and DBMIN Q3

The second group of Class Fencing experiments pairs the Q2 and Q3 DBMIN classes together. These two
classes share a common file, so their performance is somewhat linked. As a result, this workload is more
challenging than the TPC-C/Q2 workload because Class Fencing must use a third estimate when there is
sharing between classes. In addition to the response time and hit rate estimates, it must now estimate the
total memory utilized per class for a given fence size, as the pages used by a class can reside both inside and
outside its local buffer pool (this estimate was described in Section 4.2.4). As before, we experiment with

three variants of this workload: goals for Q2 only, goals for Q3 only, and goals for both Q2 and Q3.

80ne action that Class Fencing could take in degraded mode, however, is to prevent the execution of no-goal transactions altogether.
This option is attractive because it is much less likely to harm overall system efficiency than any resource redistribution among executing
classes. The Future Work Section of Chapter 6 will revisit this option in the context of other no-goal class enhancements.

51

Q2 Q2| Q2 Q3 #of | Q2 Mem
Goal | Resp PI Resp | Knob Alloc
(sec) (sec) (sec) | Turns (pages)

0.110 | 0.110 | 1.00 | 34.689 4 2342
0.300 | 0.296 | 0.97 | 33.108 8 2268
0.500 | 0.496 | 0.99 | 32.497 5 2224
1.000 | 1.000 | 1.00 | 32.256 10 2135
2.500 | 2.498 | 1.00 { 31.151 13 1935
5.000 | 4.982 | 1.05 | 31.202 6 1667
10.000 | 9.596 | 0.96 | 27.604 3 1138
15.000 | 13.956 | 0.96 | 8.393 0 0

Table 8: Q2/Q3, with goals for Q2

" v 3000 : : :
6000 obsv resp —— | frames fenced ——
so00 | goal — 2500 frames in use —— |
4000 + 2000 +
g é 1500
8 3000 | A . g i
= /\W)’\vr‘\ ‘»MVA 7\» e
2000 b ! \/ 4 1000 |
1000 H 4 500 ¢
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Simulated seconds Simulated seconds
Figure 13: Q2 interval response times Figure 14: Q2 interval memory allocation
Goals for Q2 Only

Table 8 shows the steady-state results for this workload when goals are set only for the Q2 class, with the Q3
class acting as a no-goal class. Class Fencing is fairly accurate for this workload as well, holding the Q2 class
to within five percent of its goal. However, Class Fencing is not as responsive here as it was for the TPC-C/Q2
workload; it takes over 10 knob turns to find a solution in some cases. Figures 13 and 14 show the transient
response times and memory allocations, respectively, for the 2.5 second goal experiment, which is the least
responsive case. The reason that Class Fencing took so long to find a solution is that the memory allocation
initially overshot the final solution by about 12%, and it then took 12 more knob adjustments to correct it.
The over-allocation was not due to a lack of concavity in the hit rate function, but rather to a combination of
errors from all three of Class Fencing’s estimates. The long correction time is due to a phenomenon discussed

earlier. In the region where hit rates are very high (> 93% in this case), Class Fencing tends to make very small

52

adjustments because its estimators assume (correctly so) that small memory allocation changes may cause
very large fluctuations in hit rate and response time at high hit rates. Figures 13 and 14 also show that the 13
knob-turn measure sounds much worse than it is; after only the fourth knob adjustment, the class is within five

percent of the final solution.

Goals for Q3 Only

Table 9 shows the steady-state results for this workload when goals are set instead for the Q3 class, with the Q2
class now acting as a no-goal class. Here too, response times are held to within a few percent of the the goals
(with at most a five percent error). As was the case when goals were set for the Q2 class, it takes more knob
turns for this workload than it did for the TPC-C/Q2 workload. This occurs for the reasons just described; the
cumulative errors from all three of Class Fencing’s estimates can lead to an initial overshoot followed by a

slow correction in the goal class’s memory allocation.

Q3 Q3| Q3 Q2 #of | Q3 Mem
Goal | Resp PI | Resp | Knob Alloc
(sec) | (sec) (sec) | Turns (pages)

01.00 1 099 | 099 | 16.0 9 2764
0125 1251 1.00} 157 4 2552
0150 | 146 [097 | 159 6 2505
01.75 | 1.80 | 1.03 | 15.8 8 2366
02.00 | 198 099 | 16.1 11 2358
03.00 | 3.02 | 1.01 | 16.1 8 2124
04.00 | 398 | 1.00 | 16.1 3 1891
05.00 | 523 | 1.05] 16.1 8 1511
10.00 | 8.39 | 0.84 | 144 0 0

Table 9: Q2/Q3, with goals for Q3

Goals for Q2 and Q3

Table 10 shows the results of the final Class Fencing experiment, where goals are set for both the Q2 and Q3
classes. As before, another Q2-like class is added as a no-goal class in order to consume any resources left
over when the combined goals for the Q2 and Q3 classes do not require the entire buffer pool. Instead of ten
Q2 and ten Q3 terminals, there are six Q2, six Q3, and seven no-goal terminals for this experiment (which

lowers the Q2 and Q3 class throughputs and makes them more difficult to control). Except for the starred

53

unachievable goal pairs, Class Fencing is reasonably accurate for this workload. The biggest error is that the
10 second goal for the Q3 class is violated for the 20/10 goal pair by 11%. The reason for this violation is
as follows: A solution is first found (slowly) for the Q2 class’s 20 second goal. Initially the ten second Q3
goal is loose enough to be satisfied without any fence. Once the Q3 class is affected by the increase in Q2’s
memory allocation, however, it too begins to search for its solution. Although it only took two knob turns to
(slowly) find Q3’s solution, the search for this solution was started late enough that it did not complete before
the steady-state statistics collection period had begun. On the other hand, the five second Q3 goal (of the 20/5
goal pair) was sufficiently tight that the search for its solution began simultaneously with that for Q2; a five
second goal also increased the throughput of the Q3 class, so it moved much more quickly (even though it

required six knob turns to find its solution).

Q2 Q3] Q2| Q3] #Q2 | #Q3 | No-Goal
Goal | Goal PI PI | Knob | Knob Resp
(sec) | (sec) Tarns | Turns (sec)

1.0 | 50.0 1.00 | 0.94 4 0 234
*50 | 30.0 1.21] 1.17 2 3 28.3

5.0 40.0| 098 | 0.85 2 0 23.8

*10.0 ! 300 1.10 | 1.12 3 2 26.5
10.0 | 40.0 | 099 | 1.00 3 0 24.2
15.0 | 250 1.08 | 1.00 3 4 25.7
150 | 20.0 | 1.06 | 1.08 3 7 30.2
20.0 | 20.0 | 1.03 | 0.99 2 2 20.7
200 | 100 | 1.06 | 1.11 2 2 22.7
20.0 5.0 1.04 | 1.01 1 6 239

Table 10: Q2/Q3, with goals for both

4.5 Summary

This Chapter has presented an algorithm for goal-oriented buffer management called Class Fencing. It
introduced the concept of hit rate concavity and showed how this concept can be used to develop a simple,
robust hit rate predictor that can deal with arbitrary page reference patterns and page replacement policies.
A memory allocation mechanism was presented that exhibits low overhead, does not unnecessarily harm the
overall system-wide hit rate, and can deal with data sharing between classes. Class Fencing was then evaluated

over a range of workloads and goals and was shown to be accurate, stable, and highly responsive for these

54

workloads. The key advantage of Class Fencing is a hit rate predictor that always predicts a conservative
memory allocation; this allows Class Fencing to bring a class to its target response time very quickly by

allocating memory in very large chunks without the fear of overshooting the goal.

55

Chapter 5

MPL and Working Storage

Fail not for sorrow, falter not for sin,
But onward, upward, till the goal ye win.

- Frances Anne Kemble

This chapter describes M&M, a goal-oriented controller for working storage multiprogramming level
(MPL) and memory management. Before describing M&M in detail, two preliminary sections are presented.
The first describes how classes controlled by M&M (working storage classes) can be made to coexist with
disk buffer classes (i.e. classes controlled by Class Fencing) and with no-goal classes. The second preliminary
section studies the effect of the working storage MPL and memory allocation knobs on response time; this study
provides the background needed to develop the heuristics upon which M&M is based. Next, the heuristics
and the M&M algorithm that uses them to set the memory and MPL knobs are presented, along with a novel
technique that is used to set non-integral MPL limits. Finally, a simulated mixed workload of disk buffer

transactions and working storage queries is used to evaluate M&M’s performance!.

5.1 Disk Buffer and Working Storage Coexistence

This section discusses the issues involved in integrating the two types of memory explored in this thesis, namely
disk buffer and working storage, either of which can be used by goal and/or no-goal classes. The first issue
discussed is how to divide up memory between disk buffers and working storage. Section 4.2.3 of Chapter 4
described an allocation scheme that divided up memory between different disk buffer classes using a global
buffer manager to manage a global pool of memory frames together with class-based local buffer managers

to manage local pools. Both goal and no-goal classes were allowed to use disk buffer frames from the global

1 An earlier version of M&M that was paired with the Fragment Fencing controller {Brown 93a] for disk buffer classes was described
and analyzed in both [Brown 94] and [Mehta 94].

56

pool, but if a goal class could not meet its goal simply by competing for frames in the global pool, a local pool
was set aside for its private use in addition to any global frames it managed to obtain. Goal classes were also
allowed to share disk buffer frames residing in the local pools of other classes. The next section describes how
this scheme is extended to include working storage as well as disk buffer memory.

After explaining how working storage is integrated into the allocation scheme of Chapter 4, a mechanism
for dealing with the interdependence between classes that arises from their competition for shared resources
is then described. In particular, the mechanism concentrates on memory and disk resources, as this thesis is
implicitly concerned with memory or disk constrained systems (since if the system is processor bottlenecked,

memory allocation knobs will not be very effective).

5.1.1 Integrating Working Storage and Disk Buffer Memory

A key assumption of this thesis is that both working storage and disk buffer memory are allocated out of a
single shared memory pool. Without this unification, it would be very difficult to manage the trade-off between
the two types of memory usage. It should be noted that most commercial database management systems use
separate disk buffer and working storage pools; in some cases the database administrator is provided with
knobs for statically setting the size of both pools, while in other cases the DBMS simply allocates additional
virtual memory for each individual working storage query. Static knobs provide some flexibility in controlling
the relative performance of disk buffer and working storage classes, but like any static partitioning scheme, they
can result in the underutilization of memory in an environment where the system load changes dynamically.
Allocating virtual memory on demand for each individual working storage query is attractive because of its
simplicity, but it essentially sweeps the problem of controlling the relative performance of disk buffer and
working storage classes under the rug — the operating system’s virtual memory page replacement policy will
make an arbitrary (and perhaps unfortunate) trade-off between the two.

Like Class Fencing, M&M also associates a memory pool (of size poolSize[C]) with each goal class.
However, in M&M’s case, the size of this pool represents the amount of working storage memory required by
the class to meet its goal (as opposed to Class Fencing’s pool of disk buffer memory). The pool size varies
dynamically in response to changing system loads and as each class compensates for interference caused by
changes in other classes. Any memory remaining after subtracting all goal class (working storage or disk

buffer) pools from the total available memory represents the global pool. Any increase in the pool size for a

57

goal class, be it for working storage or disk buffer memory, is taken from the global pool, and any decrease is
given back to the global pool. If the global pool is empty, no pool increases are allowed.

Unlike the local disk buffer pools for goal classes, working storage pools are not managed by a local buffer
manager. Instead, frames for working storage are simply taken from the global pool (i.e. from the global
buffer manager) and given? directly to the query operators that require them. Once they are given to a query
operator, working storage memory frames are in an unqueued and reserved state, and do not belong to any
buffer manager. When the operator is finished, it returns its working storage frames back to the global buffer
manager. The global buffer manager is therefore the source for all newly allocated memory, be it working
storage or disk buffers, for both goal and no-goal classes.

It is important to note that the pool boundaries for both disk buffer and working storage classes represent
the memory required by an average transaction of a class in order to meet the class’s goal, and that the actual
number of frames used by a class at any particular point in time will vary randomly around the average (i.e.
around its pool Size[C]). Disk buffer transactions can use frames managed by the global buffer manager and
other local buffer managers, so disk buffer classes may actually have more frames in use than their pool size
would indicate. Likewise, individual working storage transactions may have memory requirements that are
either larger or smaller than the average for the class (upon which the pool size is based), and therefore the
number of working storage frames used by a class at any particular time may be larger or smaller than its pool
size as well. Because of the variance between the pool size and the actual number of frames owned by a class,
there may be rare cases when the global buffer manager has no free (unfixed) frames available ~ in these cases,
frames are stolen from local buffer managers in a round-robin fashion.

Memory for no-goal class transactions, for both disk buffer and working storage purposes, is allocated from
the global pool on a first-come, first-served basis. A very simple working storage allocation policy is used for
no-goal class transactions: If enough memory is available in the global pool to run a no- goal transaction at its
maximum demanded working storage memory, then it is allocated its maximum. Otherwise, it takes whatever
is available (down to its minimum requirement).

There are two problems with the approach described above. The first problem occurs when the goals
are aggressive enough that the goal classes end up consuming most of the global pool. If the global pool

drops below the minimum requirements of no-goal transactions, then they may be indefinitely postponed.

2The memory reservation mechanism described in Chapter 3 is used for this purpose.

58

This problem is solved by allocating a small portion of memory to insure that the minimum requirements
of concurrently executing transactions can be met under normal operating conditions. This set-aside area is
necessary to insure that MPL limits are the primary admission criteria, and not memory availability.?

The second problem is in some sense the “flip side” of the first: Allowing the no-goal class to consume the
entire global pool can cause excessive memory waits for goal class transactions. Memory waits for goal class
transactions should be avoided at all costs because they can dramatically increase the response time variance
of a class, making it much more difficult to control. Consider the following scenario: Suppose that at a certain
point, the global pool represents 50% of the available memory. An arriving no-goal query is admitted and
allowed to consume the entire global pool to satisfy its working storage requirement. A goal class then decides
to increase its pool size, and is allowed to do so immediately because, in theory, 50% of memory is available
for this purpose. However, until the no-goal transaction finishes execution, the actual memory frames required
to support the increase in the goal-class pool size will not be available. Thus, goal class queries admitted
based on the increased pool size may be forced into memory waits until the no-goal transaction completes
(which may be quite a while). The problem is that, unlike disk buffer memory, working storage memory can
be “locked up” for the entire duration of a query operator; this phenomenon, combined with the variance in
memory demands from transaction to transaction, can cause frequent over-commitment of memory.

One way to address the problem of goal-class memory waits is to implement memory adaptive query
operators, such as those described in [Zeller 90, Pang 93a, Pang 93b, Davison 941, that can dynamically adjust
their working storage requirements during the execution of the operation. Using these algorithms, the no-goal
class can be “throttled back” to the new, smaller global pool size. However, because these memory adaptive
mechanisms are not common in commercial systems as yet, this thesis will not assume their existence, and will
adopt a more rudimentary solution in their place. Instead of allowing no-goal class queries to consume 100%
of the global pool for working storage, they are instead limited to only 90% of the global pool. The no-goal
class is still allowed to consume 100% of the global pool for disk buffer memory however, since disk buffer
memory can normally be stolen back from the no-goal class immediately if required. While such a scheme will
not prevent memory waits in all cases, it takes enough pressure off of memory demand that goal-class waits

are significantly reduced. In addition, a new class state is defined, called physical memory wait, that prevents

3The actual size of the set-aside area is workload dependent. For example, each disk buffer transaction might require one or two
pages and each working storage transaction might require 20-30 pages. These per-transaction minimums would then be multiplied by the
estimated maximum MPL for each class to derive the total size of the set-aside area.

59

statistics collection during transient situations when there are not enough free memory frames to supporta pool
size increase. A complete state transition diagram for working storage classes is presented in Section 5.3.4 of

this chapter.

5.1.2 Resolving Interclass Dependencies

While Class Fencing is an effective mechanism for meeting disk buffer class performance goals, there is a
subtle problem with its approach when it operates concurrently with controllers for working storage classes.
The basic premise of Class Fencing is that memory is the bottleneck resource, so it always tries to lower
a class’s pool size to the minimum possible amount that can achieve its response time goals (i.e. it favors
“low memory allocation/high disk utilization” approaches to achieving goals). If the disks are the bottieneck
resource, however, the high disk utilizations that result from this approach may prevent working storage classes
from meeting their goals, regardless of what their own MPL and memory settings are. This situation is a classic
example of an inter-class dependency.

Inter-class dependencies are accounted for in M&M by allowing the algorithm to modify Class Fencing’s
assumption that memory consumption must be minimized. M&M does this by requesting that one or more
disk buffer classes enter an exceed mode. A disk buffer class in exceed mode will increase its pool size in order
to increase its buffer hit rates and will therefore decrease its disk utilization. The class’s pool size will continue
increasing in small increments (5% of configuration memory) at each interval until one of two events occur:
either disk utilizations are reduced to a point where they are no longer the primary reason for the goal violation
of the working storage class (i.e. memory or MPL once again becomes the primary factor), or the global pool
is exhausted (i.e. the request for a disk utilization reduction failed). As long as a disk buffer class is in exceed
mode, Class Fencing will not force it to shed the “excess” memory that is causing its response time goal to be
exceeded. If there are multiple disk buffer classes present in the workload, then they will all respond to the
request for disk utilization reduction in parallel. Allowing multiple disk buffer classes to assist in lowering
disk utilizations not only increases responsiveness, but acts to equalize performance indexes across the disk

buffer classes as well (i.e. one disk buffer class will not be singled out to exceed its goal more than others).

60

5.2 The Effect of MPL and Memory on Response Times

This section explores the effect of MPL and memory allocation on the response time of working storage
transactions. It assumes that an MPL knob exists for each workload class, as opposed to a single system-wide
MPL knob that is set statically (where the latter is what most commercial database management systems
provide today). Whereas the objective for setting a system-wide MPL knob is to find the “ideal” point between
under-utilizing and over-utilizing DBMS resources, the objective for setting the per-class MPL knobs is not
only to prevent over-utilization of resources, but also to achieve each class’s response time goal as well.

Developing a controller that uses two knobs (memory and MPL) to control a class is much more difficult
than developing one that adjusts only a single knob (such as those in [Brown 93a], [Mehta 93], and [Chung 94]).
The search space for a single-knob controller is one dimensional; the only decision required is whether to turn
the knob “up” or “down.” With two knobs, the controller is faced with a two-dimensional search space. In
order to move efficiently through this space toward a class’s goal, the controller needs to have some idea of
how the different points on a two dimensional <MPL, memory>> grid relate to the class’s response time. The
remainder of this section explores this relationship empirically using a simulated multiclass workload. These
simulations will provide some of the background information needed to understand the principles underlying
M&M’s two-dimensional <MPL, memory>> controller.

The simulated workload used here, and throughout this chapter, is explained in greater detail in Section
5.4. For the purposes of this section, a brief overview will be sufficient. The configuration consists of a single
30 MIP processor, 8 MB of memory, and eight disks.* The workload consists of three classes: “queries,”
“transactions,” and “big queries.” The query class is a consumer of working storage memory. It consists of
hybrid hash join queries [DeWitt 84] whose performance is related to the amount of memory allocated for their
in-memory join hash tables. The sizes of the files referenced by the query class are chosen such that their join
hash tables consume 20% of the configuration’s memory at their maximum allocation.® The transaction class
performs random single-record lookups on four files via B+ tree indices, and is therefore classified as a disk
buffer class. Finally, the big query class is similar to the query class except that its file sizes yield hash tables

capable of consuming 80% of the configuration’s memory at the maximum allocation. Each class references

4The 8 megabytes of configuration memory is scaled up in later experiments.

5The maximum memory allocation for a hash join is defined as enough memory to hold a hash table representing the entire (smaller)
“build” relation; this is approximately 1.2 times the size of the build relation, including data structure overheads. The minimum memory
allocation is the square root of the maximum allocation.

61

its own unique set of database files, and all files are horizontally partitioned (i.e. fully declustered) across the

eight disks.
600 T 300 T T
sample goal —— sample goal —
11— MPL 1 ——
- 500 r MPL 2 —— 1 . 250 | MPL 2 —— 1
§ MP%Z; e § MPL 3 -o—
1) MP. e b MPL 4 ——
e 400 1 MPL 5 —— 1 g 200 | MPL 5 —~— 1
E g MPL. 6 -~
g 300 f . 2 1s0t .
é; \ g ~
& B
& 200} \\ 1 = 100
0 . . . : : 7 - 0 . ; .
0 02 04 06 08 1 12 14 16 0 1 2 3 4 5
mem/query {(megabytes) mem/class {megabytes)
Figure 15: MPL and memory per query Figure 16: MPL and memory per class

Following a per-class approach, the experiments in this section will examine the effects of a range of MPL
and memory combinations for the query class only, while ignoring the effect of these combinations on the
transaction and big query classes. The big query class is set at an MPL limit of one query, which is allocated its
minimum memory requirement, while the transaction class has no MPL limit and receives whatever memory
is left over after the big query and query classes have been allocated their memory reservation requirements.
Figures 15 and 16 show two different representations of the query class response times that result from various
MPL and memory combinations. Figure 15 shows the average query class response time as a function of
memory per query (with each query receiving the same allocation), while Figure 16 shows the average query
class response time as a function of memory per class (i.e. of class MPL times memory per query). Query
response times are shown on the y-axes (in seconds) and memory allocations are shown on the x-axes (in
megabytes). Each sloping line in the graphs corresponds to a different MPL limit, and the straight horizontal
lines represent a 130 second response time goal for the query class.

The most significant phenomenon shown by Figures 15 and 16 is the existence of multiple solutions to a
particular response time goal. Each of the five points where the 130 second goal line intersects an MPL line
represents a possible solution. Table 11 lists the characteristics of each of these solutions. While all of the
solutions are equivalent as far as the query class is concerned (since they all achieve its 130 second goal), each
one represents a different trade-off between memory and disk consumption by the query class. For example,

the first solution in Table 11 (with an MPL limit of one) consumes 1.64 megabytes of memory and results in

62

a 49% average system disk utilization, while the last solution (with an MPL limit of four) consumes only half

as much memory but results in a significantly higher disk utilization of 75%.

Memory | Query class
MPL | per query memory Disk
limit (MB) (MB) | utilization
1 1.64 1.64 49%
2 0.82 1.64 63%
3 049 1.47 69%
4 0.20 0.80 75%

Table 11: 130 sec goal solution characteristics

How should a controller decide which of these solutions is the “best” one? This is an important decision, as
the choice of a solution for any one class will determine the level of competition seen by other classes at shared
resources; thus, it will also indirectly determine their set of feasible solutions. Among those listed in Table
11, the solutions with MPL limits of two and three are poor choices because the others consume either less
memory or less disk. Which of the remaining solutions is “best” depends upon what resources are needed by
the other classes in the system. Unfortunately, the other classes in the system will also have multiple solutions
to choose from, and each of their solutions will represent a different trade-off between resources. Thus, itis
extremely difficult to anticipate the best solution for a particular class without determining the solutions for
every class simultaneously.

Even if only a single solution existed for any particular response time goal, the controller must still
understand how the memory and MPL knobs effect response times in order to use these knobs to move a
class toward its response time goal. Figures 15 and 16 illustrate this relationship between MPL, memory, and
response times. Figure 15 shows that if memory per query is held constant (i.e. for any vertical line drawn
through the graph), an MPL increase will result in a response time improvement for this workload. However,
this improvement diminishes as the MPL increases because the benefits of increased concurrency eventually
reach a point of diminishing returns. Increasing the MPL is not the only way to improve response time and
throughput, however. Increasing memory per query will also allow queries to flow through the system faster.
We can see this effect by looking at the right hand side of Figure 15 (larger memory allocations). There,
MPL increases beyond two or three have less of an effect on response times than do MPL increases at smaller

memory allocations. This is because execution times are improved enough by the greater memory allocation

63

that higher degrees of concurrency are less effective in that region of operation.

The relationship between MPL and memory per class is more complex. Figure 16 shows that if the query
class memory is held constant (i.e. for any vertical line), higher MPLs do not necessarily result in Jower
response times. For example, if we draw a vertical line at three megabytes of memory in Figure 16, we can see
that running two queries concurrently provides the best performance (because those queries will be operating
at close to their maximum memory requirement). Similarly, for 4.5 megabytes, an MPL of three produces
the best response times because there is enough memory to run three queries at their maximum requirement.
While it is not shown in Figure 16, this behavior repeats itself for higher MPLs: when there is enough memory
to run N queries at their maximum requirement, then an MPL of N provides the best query performance. On
the other hand, the best performance for only one megabyte of query class memory is obtained with an MPL
of six. In this region of operation, the reduction in MPL queuing provided by a higher MPL outweighs the
penalty of a reduced memory allocation per query. These observations support the conclusions of Cornell and
Yu [Yu 93], who showed that the best query performance is obtained when queries are allocated either their
minimum or maximum memory requirements. M&M exploits the Cornell and Yu results, as will be explained
in Section 5.3.

In addition to the workload just described, hundreds of additional workloads were simulated prior to
designing the M&M heuristics. The findings from these simulations can be summarized as follows. First,
multiple solutions exist to a class’s response time goal in nearly all cases. Second, the relationship between
MPL, memory per class, memory per query, and CPU/disk utilizations is a complex function of the memory
demand of the class, its arrival rate, its goal, and the degree of competition faced by the class from others
classes in the system. As a result, a controller cannot easily predict the response time that will result from a
particular <MPL, memory> knob setting. In fact, it may not even be able to predict with certainty whether

response times will increase or decrease in response to a particular adjustment.

5.3 M&M: A Working Storage Class Controller

As the previous has shown, the huge number of possible <MPL, memory> combinations, the complex
relationship of MPL and memory to response times, and the existence of multiple solutions to a single goal

make the design of an effective working storage controller very challenging. However, Section 5.2 has also

64

provided some insight for developing heuristics to efficiently prune the search space of possible <MPL,
memory> combinations. This section will first explain these heuristics and then show how they are used by
M&M to determine MPL and memory knob settings. It will then describe the concept of non-integral MPL

limits, which allow response times to be “fine-tuned” using the MPL knob.

5.3.1 M&M Controller Heuristics

The most important heuristic for controlling the performance of working storage classes was suggested by
the discussion of Figure 16: If there is enough memory available to run N queries at or near their maximum
requirement, then the best response time is obtained with an MPL of N because those queries can execute with
optimal performance. At the other end of the spectrum, for small available memory amounts, the best response
time is obtained with high MPLs and a per-query memory allocation close to the minimum requirement. These
results confirm the memory allocation heuristic derived by Cornell and Yu [Yu 93], which states that the best
return on consumption is obtained by allocating only the minimum or the maximum memory requirement of
any individual query. Return on consumption is a measure of response time improvement versus the space-
time cost of memory. In addition, Cornell and Yu also showed that the return on consumption for a maximum

allocation is much higher than for a minimum allocation.® These results form the basis for the first heuristic:

Heuristic 1 Allocate the maximum memory required by each individual query if possible; otherwise allocate
the minimum requirement. Allocate an amount in between min and max to only one query of a class at any

moment, and only if there is no other alternative.

The next heuristic sets an upper limit on the total MPL for a class, and is based on the behavior of the
MPL knob that was observed in Figure 15: As queuing delays decrease, the potential response time benefits of
increasing the MPL decrease as well. Clearly, the total MPL limit of the class should not be increased beyond
the point at which nearly all MPL queuing delays are eliminated; memory would be underutilized as a result.
M&M defines this threshold as being the point were the average MPL wait queue length is less than 0.5. In

other words:

6Both the min/max heuristic and the conclusion that a join query’s return on consumption is largest for a maximum allocation were
shown to hold for hash-based, sort-merge, and nested loops join methods [Yu 93].

65

Heuristic 2 Do not increase the MPL of a class if there are fewer than 0.5 waiters in its MPL queue, on

average.

M&M’s next MPL-limiting heuristic recognizes that an MPL increase implies a cost for the other classes
in the system, and that this cost comes in the form of increased competition at shared resources. MPLs should
therefore not be allowed to rise so high that resource utilizations become “unreasonable.” M&M translates
the notion of “reasonable utilization™ to “disk queue lengths that are less than or equal to one, on average.” In
some cases, however, the only possible way to achieve a set of goals will be to run the system with average

queue lengths above one. Thus, the third heuristic is:

Heuristic 3 Do not increase the MPL of a class if average disk queue lengths are greater than one, unless

there is no other alternative.

Given that only minimum or maximum memory requirements are allocated to individual working storage
queries, M&M sets the MPL limit for a class by determining how many of its queries should execute at min
(minMPL) and how many should execute at max (maxMPL). The final heuristic deals specifically with one
effect of an increase in minMPL, namely, a corresponding increase in the probability that an arriving query
will indeed be allocated its minimum memory requirement. Because a min query requires many more I/Os
than one running at its maximum memory requirement (roughly three times as many in the case of a hash
join [DeWitt 84]), any increase in the probability of a minimum allocation for the queries of a given class will
necessarily increase the class’s average execution time (i.e. response time minus waiting time). Unfortunately,
predicting whether the admission of an additional min query will increase or decrease the class’s average
response time is extremely difficult. However, in all of our exploratory simulations, we have observed that any
increase in the number of min queries always resulted in a response time increase when the number of max
queries was two or greater. While this observation may not apply under all conditions, its value in pruning
non-productive combinations of min and max allocations far outweighs the risk that it will dismiss a possible

solution. Thus, the final M&M heuristic is:

66

Heuristic 4 Never increase the number of queries allowed to run at min if two or more queries are allowed to

run at max.

5.3.2 Determining a New <MPL, Memory> Setting

Depending on the current state of the system, the M&M working storage class controller will take one of four

actions in order to reduce the average response time of a class:

max++ Increase the number of queries allowed to run at max.

The pool size for the class is increased enough to allow one more query to execute at max (based on
the average maximum requirement of the class). If the number of queries allowed to execute at min
(minMPL) is non-zero, then minMPL is reduced by one and the total MPL limit for the class remains
unchanged. If one query of the class had been permitted to execute in between min and max, then this

is no longer allowed.

min++ Increase the number of queries allowed to run at min.

The pool size for the class is increased enough to allow one more query to execute at min (based on the
average minimum requirement of the class). If one query of the class had been permitted to execute in
between min and max, then this is no longer allowed.

disk-~- Request a reduction in disk utilizations from disk buffer classes.

This action is accomplished as described in Section 5.1.2.

mem++ Increase the memory allocation for the class, allowing one query to execute between min and max.

This action is only taken as a last resort, and is only possible if at least one query is already allowed
to execute at min. The pool size for the class is increased by a fixed step size, which is set at 5% of

configuration memory.

Using the heuristics just derived, Figure 17 shows how M&M decides what action to take and highlights

the rationale behind these decisions.

67

int GlobPool; I/ current size of the global pool
int avgMax; // avg maximum memory demand of the class
int maxMPL; /! # of max queries allowed for the class

bool disksFull = (avg disk queue lengths > 1.0);
if (there are no disk buffer classes OR

a previous request failed to reduced disk queue lengths) then
disksFull = FALSE; !/ to ignore heuristic # 3

endif
if (disksFull) then
disk--; // heuristic 3 prevents min++ or max++,

/fand heuristic 1 says mem++ is a last resort
elseif (there are fewer than 0.5 waiters in the MPL. queue) then
mem++; // heuristic 2 prevents min++ or max++,
/land no disk problem exists (so disk-- won’t help)
elseif (avgMax < GlobPool) then
max++; // heuristic 1 says try to maximize return on memory consumption
elseif (maxMPL < 2) then
min++; // heuristic 1 says min++ if max won’t fit,
//and heuristic 4 says min++ may help
else
mem++; // max won't fit, and heuristic 4 says min++ may hurt
endif

Figure 17: Algorithm to determine a new <MPL, memory>> setting.

5.3.3 Non-Integral MPL Limits and MPL Reductions

As we saw in Table 11, solutions to a particular response time goal normally exist at multiple MPL limits.
The amount of memory required to achieve the goal will be different for each MPL, and the exact amount
will be difficult to predict. It would therefore seem that unless a search strategy explores a large range of
memory knob settings at each integer MPL limit, it will very likely miss these solutions. Unfortunately, M&M
only allocates memory in very coarse discrete steps, i.e. based on the average minimum or average maximum
memory requirements of a class. If we could somehow set the MPL knob at non-integral settings, however,
then we could fine-tune response times and find solutions for a wide range of memory knob settings. Given
that there can be only an integral number of queries present in the system at any moment, of course, such a

non-integral MPL limit would have to apply to the average number of concurrent queries allowed in the system

68

over time.

M&M produces non-integral MPL limits by first locating the lowest integer MPL limit at which the goal
for a class is exceeded, and then delaying the admission of the next query by an amount of time that is equal
to the amount of time by which the previous query exceeded its goal. No delay is introduced if the previous
query violated its goal. By delaying the admission of a new query, the average actual MPL is forced to be
some fraction lower than the integer MPL limit. In effect, the delay makes the system behave as ifeach query’s
response time exactly equals the goal for the class. This delay mechanism is used as follows: The search
strategy of Figure 17 is invoked to find the first <MPL, memory> setting that exceeds the response time goal
for a class; this setting is called the home setting for the class. During a home search, the delay mechanism
is turned off. Once a home is found, the delay mechanism is then turned on in order to fractionally reduce
the MPL to a point at which the goals are no longer exceeded. If the goals are violated again at any point
(for example, due to a change in system load), then the delay mechanism is shut off and a new home search is
initiated.

One problem with this delay technique is that the MPL limit for a class could be set too high. For example,
if the MPL and memory of a class were set during a period of heavy system load, and then the load drops, the
delay would simply be increased to make up for any improvement in response times. As a result, the MPL
and pool size for the class might be set too high, and memory would be underutilized. We thus need a way to
detect that it has become possible to reduce a class’s MPL limit and still exceed its goals. M&M does this by
continuously observing the average number of executing queries for each class (execMPL). If execMPL drops
to more than one below the current integer MPL limit (execMPL < MPLLimit —1), then the delay is greater
than that which would be produced by a lower maximum MPL; the current MPL limit is therefore reduced by

one.”

5.3.4 M&M Initialization and State Transitions

Because of the initial lack of statistical data, M&M cannot decide what the MPL limits for each class should be
during the system’s warm-up period. A system administrator must therefore supply initial MPL limits to M&M

on a cold start. For the simulated workloads in this chapter, a cold-start MPL limit of two is used for working

7In actual practice, an MPL reduction trigger of execMPL < MPLLimit —1 is a bit too sensitive, especially for those classes runping
at a point where execMPL is very close to MPLLimit —1. After experimenting with different fractions, we settled on a somewhat more
conservative MPL reduction trigger of execeMPL < MPLLimit —1.5.

69

storage classes, and an infinite MPL limit is used for disk buffer classes (i.e. no load control). Queries from
working storage classes are allocated their minimum memory requirements during warmup, and transactions
from disk buffer classes compete freely for any remaining physical memory. Note that the MPL limit for
disk buffer queries always remains at infinity, because MPL limiting is a much less effective mechanism for
controlling disk buffer allocation than it is for working storage (as was mentioned in Section 1.4).

In general, controlling no-goal class multiprogramming levels is required as well, as the additional com-
petition for shared resources that they provide represents a possible threat to the goal classes. However, it is
difficult to decide on a “proper” MPL for the no-goal class since there is no real basis for selecting appropriate
resource allocations in the absence of a goal. The initial version of M&M described in this thesis simply limits

the no-goal class working storage queries to an MPL of one at all times (no-goal disk buffer queries have no

MPL limit).
Initialization
v Warmup
period expired,
goals being Goals being
violated violated

T

change

Transient
memory
overcommit

Physical
Mem wait

Transition

complete Memory

frees up

Warmup
period expired,
goals being met

execMPL < MPLLimit -1 | metor
17 exceeded

nsient
memory
overcommit

Goals being vio{ted, or | Goals

Goals being
achieved.
Delay mode
active.

<

Figure 18: Working Storage class states

Figure 18 shows the states that a working storage class moves through under the control of M&M. There

are a number of differences between these states and those of a disk buffer class (as described in Section 4.2.5).

70

First, note that the transition up and transition down states have been combined into a single transition state
that occurs whenever there is any MPL or memory change. There is really no difference between an MPL
increase or decrease in terms of its system effects, as both will cause a period of adjustment during which
mean queue lengths settle to a new equilibrium (e.g. for queues at the DBMS entry point, i.e.MPL queues, or
at the processors or disks). The key in both cases is to wait until the queue lengths stabilize. A sophisticated
statistical method could be used to detect when a new stable point has been reached, but in practice, simply
waiting for one observation interval to expire works reasonably well and is therefore what M&M does.

The other significant difference between the M&M and Class Fencing transitions is the replacement of the
history build state by the home search state for working storage classes. Both serve the same purpose, which is
to build up a statistically valid statistical sample of the class’s performance after resource allocation changes.
However, the home search state also implies that the delay mechanism described in the previous section has
been turned off, and that, instead of trying to achieve an exact response time goal, M&M is looking for the
new home setting (i.e. the lowest possible MPL at which the goal is being exceeded). Once a new home has
been found, a transition to steady state is made, and the delay mechanism is turned on to fractionally reduce
the MPL until the actual response time goal is being met.

The final difference is the new physical memory wait state that was was discussed in Section 5.1.1. A
working storage class enters this state in the case of a pool increase that cannot immediately be supported by
available memory frames. The point of this state is to hold off collecting statistics until the actual memory
utilized by a class is in line with its newly increased pool size. In order to support a transition into this state,
the underlying buffer manager must keep a count of the frames that are in either a fixed or reserved state. If
there are too few unfixed, unreserved frames available when a working storage class’s pool size is increased, it
is placed in this state until enough fixed or reserved frames are freed up (most likely by a no-goal class query

that was executing with an outstanding working storage reservation at the time of the pool size increase).

5.4 Experimental Multiclass Workloads

This section describes the simulated workloads that will be used to evaluate M&M in conjunction with Class
Fencing. Because these two controllers together represent an algorithm capable of satisfying goals for either

disk buffer or working storage classes, all of the workloads used here contain some combination of disk buffer

71

and working storage goal classes; each also includes a no-goal class that consumes working storage. The
response times for these classes differ by as much as three orders of magnitude, which is one of the challenging
aspects of successfully handling multiclass workloads.

While different flavors of disk buffer classes were used in the evaluation of Class Fencing in Chapter 4, the
performance evaluation here will use the same disk buffer class for all experiments and instead will explore
different variants of the working storage class (called the “query” class). Three versions of the query class
are used: one that can consume an average of 20% of the configuration memory at its maximum memory
requirement, a second version whose average maximum requirement is 80% of the configuration memory, and
a third whose average maximum is twice the size of the available memory. In all cases, the maximum memory
requirements of individual queries will vary uniformly £50% around the average for the class. These three
versions of the query class present M&M with very different options for controlling performance. Whereas
running multiple queries at their maximum allocation is an option for the 20% queries, only one 80% query can
execute at a maximum allocation. The options for the 200% queries are even more limited since the maximum
memory demand is greater than the available memory.

An eight MB, eight disk version of the simulated DBMS configuration described in Chapter 3 will be used
to run the workloads. While this configuration is obviously underconfigured at eight megabytes of memory,
a small amount of memory was necessary in order to keep simulation times tolerable. In addition, the key
parameter of interest here is the size of the working storage memory demands in relation to the available
memory, not the actual memory size. In fact, M&M’s job becomes easier for larger memory sizes, as the
option of running queries at their maximum memory requirement becomes more likely in this case. For smaller
memories, M&M'’s options are more limited. A 64 MB scale-up experiment is included, however, to insure
that M&M and Class Fencing can function properly with a larger configuration. The specific database and

workload classes used in the subsequent performance analysis are described in the following two sections.

5.4.1 Database Model

As before, the database is modeled as a set of files, some of which have associated B+ tree indices. Index key
sizes are 12 bytes, and key/pointer pairs are 16 bytes long. Table 12 lists the files and indices used for all of the
experiments in this Chapter. The large, medium, small, and tiny files and indices are used by the “transaction”

class (described in the next section). The various “query” files are actually sets of 50 identical files, two of

72

which are randomly chosen for use as inputs for the execution of any particular “query” class transaction.

File #recs | rec
name size
big file 1,600,000 | 100
big index 1,600,000 | 16
medium file 640,000 | 100
medium index 640,000 16
small file 320,000 | 100
small index 320,000 16
tiny file 8,000 | 100
tiny index 8,000 16
40% query files 10,240 | 200
80% query files 40,960 | 200
200% query files 102,400 | 200

Table 12: Database characteristics

The sizes of the files and indices used by the transaction class were chosen to result in a wide variety of
possible hit rates. The sizes of the query files were chosen primarily to determine the average memory demand
of these classes; the 20%, 80%, and 200% files result in average per-query memory demands of 20%, 80%, and
200% of configuration memory, respectively. All files and indices are horizontally partitioned (declustered)

across all five disks.

5.4.2 Workload Model

2

The simulated workload for this study consists of combinations of three classes: “transactions,” “queries,” and
“no-goal queries.” As in Chapter 4, the “transactions” represent a disk buffer class with short (sub-second)
execution times, although here the transactions are modeled on the TPC-A benchmark [TPC 94] instead of
TPC-C. The transaction class performs single-record index selects on 4 files: big, medium, small, and tiny
(see Table 12). The file indices range from 1 to 3 levels deep, and accounting for some index nodes with less
than full fanout, this implies between 12 and 16 random page references per transaction (with a mean of 13).
The number of transaction terminals is fixed at 100, with exponentially distributed think times having a mean
value of 10 seconds. Like the TPC-C class of the previous chapter, the transaction class used in this chapter is
relatively insensitive to buffer hit rates. Except for the “tiny” file, which is small enough to fit in memory, all

of its files are referenced uniformly and are much larger than memory. Thus, the transaction class’s files are

fairly cold (in terms of their average per-page reference frequencies), and a significant memory investment is

73

required in order to improve the transaction class’s response time.

The “query” class models a working storage class with longer execution times (tens of seconds or minutes).
The individual queries consist of binary hybrid hash joins of two randomly chosen query files (see Table
12). The hybrid hash join algorithm [DeWitt 84] is used here because it is generally accepted as a good
ad hoc join method. Allocating the maximum amount of memory to a join query will allow it to execute
with the minimum number of I/Os, i.e. with a single scan of each relation. Allocating less memory (down
to a minimum of approximately the square root of the number of file pages) increases the number of I/0s
required in a linear fashion. The queries scan the query files with uniformly distributed random selectivities
ranging from 33% to 100%, which (after accounting for a hash table overhead expansion factor of 1.2)
results in uniformly distributed maximum memory demands ranging from 10-30%, 40-120%, or 100-300% of
configuration memory, depending on the particular set of files chosen (see Table 12). The query class terminal
population is set at 75, and each terminal has an exponentially distributed think time whose mean depends on
the file size assigned to the class: 150 seconds for the 10-30% files, 1300 seconds for the 40-120% files, and
3200 seconds for the 100-300% files. Note that the randomness in both the arrival process and the memory
demand for queries results in a high degree of variance in resource demands within the query class.

The last class, the “no-goal query” class, is identical to the query class that references the 40-120% query
files. The no-goal query class is used to measure the “goodness” of solutions chosen for the transaction and
query classes (which are both goal classes) ~ as explained in Chapter 4, the more resources that are left available
for no-goal queries, the lower their response times and the better the solution. Because no-goal queries are
used to evaluate the solutions chosen for the other two goal classes, we simply require that one no-goal query
be present in the system at all times. Thus, the terminal population for no-goal queries is fixed at two®, with no
think time; recall that their MPL limit is fixed at one by M&M. Table 13 summarizes the number of terminals

and the think times for each class.

5.5 Experiments and Results

In this section, the DBMS simulation model described in Chapter 3 is used to examine how well M&M and

Class Fencing together can achieve a variety of goals for several variations of a simulated multiclass workload.

8Because startup, termination, and occasional memory queueing delay times can sometimes create a time lag between the completion
of a query and the start of the next, even with a zero think time, a terminal population of two insures that there is always a no-goal query
present in the system.

74

| Parameter | Value |
Transaction terminals 100
Mean transaction think time 10 sec
Query terminals 75
Mean query think time 150/1300/3200 sec
No-Goal Query terminals 2
No-Goal Query think time 0 sec

Table 13: Workload parameter settings

Bach version consists of transactions, queries, and no-goal query classes, as described in Section 5.4. The
difference between each variation is in the average memory demanded by the query class (20%, 80%, and
200% of configuration memory). In all variants, the actual per-query memory demand varies uniformly £50%
about the mean.

In order to obtain statistically meaningful simulation results, the 20% and 80% memory demand versions
of the workload are executed for eight simulated hours, and the 200% version is executed for sixteen hours.
Response time statistics are collected and reported for only for the last half of the simulation in order to factor
out the solution searching time from the averages, as the averages are meant to indicate steady-state behavior.
A transient analysis of response times is also included to indicate how the algorithm operates over the entire
range of simulated time.

The performance metrics used for judging the combined behavior of M&M and Class Fencing are the
performance index of each class and the average response time of the no-goal query class. The no-goal class
response times are used to roughly indicate the amount of “excess” resources left over after the goal classes
have been allocated what they need to meet their goals; the larger the amount of left-over resources, the lower
the no-goal response times, as before.

The goals used for the experiments in this section were chosen after exploring a wide range of possible
response time combinations for the workloads. From this large set, many of the goal combinations were
eliminated because they were either too tight or too loose for the configuration used here. Of the remaining
simulations, preference was given to those that showed interesting phenomena. As a result, the reader should

not expect to see any “rigorous” pattern in the set of goals for each experiment.

75

5.5.1 Three-Class Workloads

Table 14 shows the results from the base case experiment with one no-goal class, one transaction goal class,
and one query goal class whose per-query memory demands range from 10-30% of the configuration memory.

Each row represents a different combination of goals for the transaction and query classes.

Query | Tran Query | Tran | No-goal
goal goal perf perf resp
(secs) | (msecs) || index | index (secs)
100 350 0.96 0.80 49
100 250 0.96 1.01 63

50 300 0.96 0.99 77
50 250 0.95 0.99 82
15 300 0.98 0.99 96
15 250 0.98 1.01 117
8 350 0.99 1.02 108
8 250 1.03 1.01 117

Table 14: 10-30% query memory demand workload

The performance indices in Table 14 show that both the transaction and query classes are kept to within
a few percent of their goals, and that the no-goal class’s response times degrade progressively as the goals
tighten, as would be expected. Thus, M&M and Class Fencing are working together successfully for this
workload. In fact, the first row shows a case where the transaction goal is being overachieved. This is because
the first row represents a very loose goal for the transactions (350 msecs). The disk buffer controller (Class
Fencing) initially decided that no memory was required to achieve this goal, but the resulting low memory/high
disk solution created disk response times that were too high to meet the goal for the query class. M&M then
requested that the transaction class enter exceed mode in order to lower the average disk response time fo a
point that allowed the query class to meet its goal.

To examine M&M’s transient behavior for this workload, the exponentially-weighted average observation
interval response times from the (100 sec, 250 msec) goal pair experiment of Table 14 are graphed as a function
of time; Figures 19 and 20 show these graphs for the query and transaction classes, respectively. The most
obvious feature of the query response time graph in Figure 19 is the presence of multiple sharp downward
spikes that appear immediately after shorter upward spikes. The upward spikes are transients in arrivals or
memory demand that temporarily increased the system load enough to trigger an increase in the MPL for the

query class. During this adjustment, M&M'’s delay mechanism was turned off while a new home setting was

76

300 T T v T T 500 —
450 ¢
250 400 +
g 200 Sg 350 t
E e 300 H
S 150 } E a0
g QO
g g 200¢
& oo | TN B g,
& \// e L\/VV\/N g 1o
50 & 100 f
50 t
0 , . N , . 0 . ; . . .
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Simulated time (secs) Simulated time (secs)

Figure 19: Query response times, 10-30% queries, Figure 20: Transaction response times, 10-30%
(100 sec, 250 msec) goal queries, (100 sec, 250 msec) goal
being searched for. The downward spikes reflect the fact that queries can temporarily exceed their goals any
time the delay mechanism is turned off due to a knob adjustment.

An examination of the transaction class response times for this workload in Figure 20 shows upward spikes
appearing at the same points where the query class temporarily increased its MPL. These MPL increases
caused a temporary increase in disk response times for the transaction class. Although the Class Fencing
controller compensated for these increases almost immediately, the transient upward spikes in the transaction
class response times were unavoidable. On average, however, Figures 19 and 20 both indicate that M&M and

Class Fencing operate in a very stable manner for this workload.

Query | Tran Query | Tran | No-goal
goal goal perf | perf resp
(secs) | (msecs) || index | index (secs)

300 250 0.99 1.01 113

200 350 0.96 0.78 137
200 275 0.91 0.99 124

160 275 1.10 1.01 148
100 250 1.01 1.02 91
75 350 0.96 0.80 162
75 275 1.11 1.03 156

Table 15: 40-120% query memory demand workload

Table 15 shows the results of the base workload when the per-query memory demands are significantly
larger, ranging from 40-120% of the configuration memory. The results are similar to the previous experiment,

with most of the goals being held to within a few percent. The transaction class exceeds by approximately

71

20% for the (200 sec, 350 msec) goal pair because it was placed in exceed mode in order to allow the
query class to meet its goal. The last goal pair of (75 sec, 275 msec) represents an unachievable goal;
in this case, the transaction class’s pool size is too large to allow the queries to run with an MPL of five
(mazMPL = 1,minM PL = 4), which is what they need to achieve their goal. As before, the no-goal
response class times degrade as the goals get tighter. Table 15 shows an unusual result, however; query goals
are violated by 10% for the (100 sec, 275 msec) goal pair, while the tighter (100 sec, 250 msec) goal pair is
achieved. To explain this violation, the transient query class response times for the (100 sec, 275 msec) goal
case are graphed in Figure 21. The points in Figure 21 represent the actual interval average response times,

and the wobbly line represents the selective exponentially-weighted average of those averages (as explained in

Section 2.2.2).
300 T T T T T 300 T T T v :
250 - 250 + E
7 n
g 200 . g 2001 1
g . g .
= 150 N e T = 150 * E
% . . ' 2 . '
] . + g A - A
g 100 - e : g 100 AN e,
=4 M v - . e, + ~ 1 - T P
50 | . ; sof ;
0 L L 1 1. 1. O] L 1. 1]
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Simulated time (secs) Simulated time (secs)

Figure 21: Query response times, 40-120% queries, ~Figure 22: Query response times, 40-120% queries,
(100 sec, 275 msec) goal (100 sec, 250 msec) goal

Since the average maximum memory demand for this query class is 80% of the configuration memory, the
chances of an individual query (admitted at max) having to wait for such a large amount of memory to free up
are significant. These frequent memory waits combine with an already large variation in the per-query memory
demand to produce a large response time variance for this class, as is shown in Figure 21. This high variance
in response times for the 40-120% queries has two effects: The first is that M&M computed a much larger
tolerance band for these queries (up to £30%) than it did for the 10-30% queries (5% at most). Recall from
Section 2.2.3 that the tolerance band is used to decide if a class is meeting its goal (i.e. goals are being met
if the observed average response time falls within plus or minus some percentage of the goal), and its width

is a function of the class’s response time variance. The +30% tolerance band computed for this workload

78

means that even if the goals are being violated by 10%, M&M considers this “close enough” to avoid taking
any action. The same £30% tolerance band is in effect for the tighter (100 sec, 250 msec) goal pair, but the
system state in this case just happened to place the query class’s mean response time much closer to the center
of its tolerance band, as Figure 22 shows.

While a +30% tolerance band may seem excessive, it is the key reason that M&M is able to do as well
as it does for this workload. Without this wide tolerance, M&M would be forced to act on transient increases
and decreases in query response times by adjusting the MPL and/or memory knobs. These knob adjustments
would increase the variance of the class even more, creating a system too unstable to control. Instead, M&M
only occasionally asks for a reduction in disk response times; this action is sufficient to address the worst
upward spikes in the average query response time, leaving the query class MPL untouched. In addition, it
should be noted that over the long term, even the (100 sec, 275 msec) goal’s average query response times will
eventually much closer than 10% from the goal. This is because any long term goal violation will increase
the sensitivity of the controller to short term goal violations (because exponential weighting considers the past
value of a statistic as well as its current value); as soon as one of these short term violations occurs, an MPL
and/or memory adjustment will be made and the class will enter a new region of operation much closer to its

actual goal.

500 | | | |]
7 400)]
. L
;é 300 o /'Mﬁ MM« J)\A W\ M/\f"\l"\/‘)\\ﬁ
2 4 \\’]"W WYV
g 200 }]
&

100)

0
0 5000 10000 15000 20000 25000
Simulated time (secs)

Figure 23: Transaction response times, 40-120% queries, (100 sec, 275 msec) goal

Another effect of the increased variance in the query class memory demand can be seen by examining the
transaction class response times for the (100 sec, 275 msec) goal pair in Figure 23. Comparing this graph

to that of the previous (20% query memory demand) workload (Figure 20), we can see that the transaction

79

response times have a much higher variance for this workload as well. This is because the fluctuations in
the physical memory demand of the query class also cause fluctuations in the amount of buffer pool memory
available to the transaction class. Thus, an increase in the variance in one class can be “transmitted” to another

class via interactions at shared resources.

Query | Tran Query | Tran | No-goal
goal goal perf perf resp
(secs) | (msecs) || index | index | (secs)

700 250 0.50 0.98 135
600 350 0.96 0.69 151
600 250 1.02 0.93 160
500 300 1.00 0.92 130
500 250 0.95 1.04 132
400 350 0.90 0.73 154
400 250 0.95 1.05 163

Table 16: 100-300% memory demand workload

1200 700

1000 } 600 1
% ® 500 -
§ sof é
g o 400 E
S 600 £ hd
& - 2 300 +
3 st e §_ ¢‘ 4 J
@ 400 * 0 3 1
K > N g 200t |

200 + + b 100 + 4

0 : 0 . , . A .
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Simulated time (secs) Simulated time (secs)

Figure 24: Query response times, 100-300% queries, Figure 25: Transaction response times, 100-300%
(400 sec, 350 msec) goal queries, (400 sec, 350 msec) goal

Table 16 shows that similar results are obtained for the 100-300% memory demand queries. All goals are
achieved to within a few percent except for the 350 msec transaction class goals, which are exceeded by up to
30%. In the 350 msec transaction goal cases, the transactions are running in exceed mode in order to allow
the query class to increase its multiprogramming level high enough to achieve its goal. For this workload, the
(400 sec, 350 msec) goal pair is selected for an examination of M&M’s transient behavior, which is shown
in Figures 24 and 25. Looking at the transaction response times in Figure 25, one can clearly see the point

(about 15,000 seconds into the simulation) at which M&M requested that the transactions enter exceed mode.

80

Once the transactions were able to decrease their disk utilizations, the query class was able to raise its MPL
from five to seven, which then allowed it to achieve its 400 second goal. Here again, we see the transaction
class response times exhibiting an even higher variance than was the case for the 80% query memory demand
workload. Here, however, the reason for the variance is not the random fluctuations in the memory demands of
the query class (as all of the 200% queries run at a minimum allocation here, and the query class only consumes
about 20% of the available memory). Instead, the transaction class’s response time variance is the result of
a high variance in their disk response times. With a multiprogramming level of seven, the query class’s disk

utilization is fairly bursty, and this effect is transmitted to the transaction class via the shared disks.

5.5.2 A More Complex Workload

The next experiment tests how well M&M can satisfy goals for a more complex mixed workload consisting
of two working storage classes, two disk buffer classes, and a no-goal class. The two (essentially identical)
query classes are replicas of the query class used in the previous experiments, and consist of 30 terminals each.
Similarly, the two transaction classes are replicas of the transaction class used previously, and consist of 50
terminals each. The think times used in the three-class workloads are retained here. The transaction class files
are replicated so that each of the two transaction classes accesses its own files. The set of query files is shared
by the two query classes, and they result in an average memory demand of 20% of the configuration memory

(with individual query demands ranging from 10-30%).

Goal | Qryl | Qry2 | Trn1 Tn2 [Qryl [Qry2 | Trnl | Trn2 | No-goal
set goal goal goal goal perf | perf | perf | perf resp
(secs) | (secs) | (msecs) | (msecs) || index | index | index index (secs)

150 175 300 400 092 [094 | 093 | 1.00 164
150 175 250 400 092 | 094 1.11 1.00 181
50 175 300 400 0.88 | 093 | 099 | 0.99 95
50 100 275 350 0.98 0.99 1.13 | 1.08 96
10 200 350 400 0.88 0.90 1.01 | 0.99 130
10 100 400 400 099 | 091 1.01 | 099 145

[o QU TN SR PO (S R Y -

Table 17: More complex workload (10-30% memory demand)

Table 17 shows various combinations of goals for this more complex workload. It shows one case where
goals are violated by more than 10%: in goal set #4, transaction class #1’s 275 msec goal is violated by 13%.

This goal is violated because disk response times are too high there to achieve such a tight goal with five

81

classes executing concurrently. However, M&M does achieve the goals for the other three classes fairly well
in this case.

There are two cases in Table 17 where query goals are exceeded by more than 10%. This occurs in goal
sets #3 and #5, where the performance indices are 0.88. The reason that these goals were exceeded is due to
the same phenomenon that was shown in Figure 19. Both of the exceeding query classes are operating very
close to their MPL reduction trigger (execMPL < MPLLimit —1.5); this operating region is unstable because
their MPLs tend to “wobble” up and down. Every time a new MPL is chosen, the delay mechanism is shut
off and the same sharp drop in response times that was displayed in Figure 19 occurs here. (Clearly, the MPL

reduction mechanism should be tuned further to reduce the probability of such “MPL wobbling.”)

5.5.3 Scale-up Experiment

The final experiment in this chapter verifies that the favorable results for the combination of M&M and Class
Fencing can scale up to larger memory and query file sizes. For this experiment, the configuration memory and
query file sizes are both increased by a factor of eight (increasing memory to 64 MB). The base case workload
is then rerun with queries that demand an average of 20% of the configuration memory. Table 18 shows that
M&M and Class Fencing achieved the goals for this workload and configuration as well as they did for the

smaller configuration.

Query | Tran Query | Tran | No-goal
goal goal perf | perf resp
(secs) | (msecs) || index | index (secs)

500 300 0.96 0.87 299
300 350 0.97 0.75 334
200 350 0.99 0.79 105
200 250 0.97 0.98 251
100 350 0.93 0.92 363
100 300 1.03 0.97 312
100 250 091 0.99 430

Table 18: Scaled-up workload (10-30% memory demand)

82

5.6 Summary

This Chapter has presented M&M, an algorithm for goal-oriented working storage allocation and MPL man-
agement. Section 5.1 first explained how working storage and disk buffer memory management can coexist
with each other, and introduced the notion of an exceed mode to resolve the interclass dependencies that arise
because of competition between classes at shared disks. Section 5.2 then explored the effect of the working
storage allocation and MPL knobs on the response times of working storage classes, showing how multiple
solutions to a single response time goal can exist when more than one knob is used to control performance.
This background information was then used to derive the heuristics upon which M&M is based. Section 5.3
then described the M&M algorithm, showing how it uses its heuristics to help prune the large search space of
possible MPL and memory allocation combinations. A novel technique for fine tuning response times using
non-integral MPL settings was also described. Finally, Section 5.5 explored the steady state and transient
performance of the M&M and Class Fencing algorithms when combined to handle multi-class workloads. The
results of these initial studies showed that M&M appears to be quite accurate, stable, and robust in the presence

of differing workloads, configurations, and query memory demands.

83

Chapter 6

Conclusions

I have made good judgements in the Past.
1 have made good judgements in the Future.”

~ Vice President Dan Quayle

This chapter first reviews the material presented in this thesis, summarizing the general architecture
presented in Chapter 2, the Class Fencing disk buffer controller presented in Chapter 4, and the M&M working

storage controller presented in Chapter 5. It then closes with a discussion of a number of areas for future work.

6.1 Thesis Summary

Motivated by the challenge presented by multiclass database workloads, this thesis has advocated the adoption
of goal-oriented resource allocation mechanisms within a DBMS in order to satisfy user-specified per-class
performance goals for these workloads. Chapter 1 defined a set of criteria with which to judge such mechanisms
— namely: accuracy, responsiveness, stability, overhead, robustness, and practicality. Chapter 2 then presented
an architectural foundation that can be used to build individual controllers for specific DBMS resources.
This architecture features a class-based, feedback-oriented approach that greatly simplifies the problem of
multiclass resource allocation while providing the appropriate responsiveness for high-throughput classes. It
exploits well-defined states and transitions for each class to prevent statistics collection from being biased
by transitions in a class’s resource allocation, and employs selective exponential weighting of statistics to
prevent a controller from managing the natural statistical fluctuations of a class. Also, it includes a method for
dynamically computing a folerance band around a class’s goal to allow a controller to tightly manage classes
with low response time variance while exhibiting less sensitivity for classes with high response time variance.
While individual resource controllers are responsible for correctly setting the allocation knobs for a class at

particular points in time, the general mechanisms just described are responsible for insuring that a class’s

84

resource allocation knobs are adjusted in a stable and responsive fashion continuously over time, regardless of
what resource is being controlled.

Chapter 3 explained the behavior of the detailed DBMS simulation model used to evaluate the performance
of the two algorithms presented in subsequent chapters. The simulator includes realistic models of page
reference patterns, buffer management mechanisms (including prefetch), disk behavior, and query operator
implementations.

Chapter 4 presented a goal-oriented controller for the disk buffer memory knob called Class Fencing. Class
Fencing is based on the notion of hit rate concavity, which uses a simple straight line approximation to predict
a class’s buffer hit rate as a function of memory while at the same time providing a conservative memory
estimate. Using Chapter 3’s detailed simulation model, the steady-state and transient performance of Class
Fencing was investigated for various multiclass workloads and goal combinations. These experiments have
shown that Class Fencing is able to hold most classes to within a few percent of their goals, and to dosoina
stable manner. Class Fencing was also shown to be very responsive because its hit rate estimator does not have
to be restricted to allocating memory in small chunks. Responsiveness is a key advantage of Class Fencing,
allowing it to find solutions with very few knob turns. Class Fencing is also fairly robust because its primary
assumption, hit rate concavity, applies to a wide range of workloads. Finally, Class Fencing is able to handle
arbitrary page reference skew and can detect unachievable hit rates, both of which were stumbling blocks for
the earlier Fragment Fencing algorithm.

Finally, Chapter 5 presented a second goal-oriented controller, called M&M, that manages allocations
and multiprogramming levels for working storage memory. M&M works in conjunction with the Class
Fencing controller for managing disk buffer classes in order to provide a comprehensive goal-oriented memory
allocation solution for multiclass database workloads. Section 5.3.1 developed a set of heuristics that allow
M&M to prune unproductive MPL/memory combinations in its search for a home setting that comes closest
to meeting or exceeding the goal for a working storage class. M&M uses a novel admission delay mechanism
that allows it to lower the home MPL to a non-integral limit in order to fine tune the class’s response time at
its home setting, thereby bringing it closer to its goal. In addition, M&M’s exceed mode mechanism for disk
buffer classes allows it to deal with the interdependence between classes that results from their interactions at
shared disks. Using Chapter 3’s detailed simulation model, the steady state and transient performance of M&M

was explored in Section 5.5. These experiments showed that the combination of M&M and Class Fencing can

85

achieve goals for a variety of different workloads, configurations, memory demands, and degrees of variance

within each goal class.

6.2 Future Work

The general architecture and the specific controllers for disk buffer and working storage memory described
in this thesis provide a firm foundation for a general solution to the goal-oriented DBMS resource allocation
problem. However, plenty of work still remains. This section will discuss some of this work, including
improvements to M&M’s admission delay mechanism, more advanced management of no-goal and disk buffer

classes, controllers for other resource allocation knobs, bottleneck analysis, and user interface issues.

6.2.1 M&M Delay Mechanism Enhancements

As was shown in the performance analysis section of Chapter 5 (Section 5.5), M&M's admission delay
mechanism provides an effective way to exploit the normally coarse-grained MPL knob in order to fine tune
working storage class response times. However, Section 5.5 also showed a problem with the delay mechanism:
When the delay is shut off at the beginning of a search for a new home MPL for a given class, the class exceeds
its response time goal. In fact, if a class is running with any non-zero delay, then it seems premature to increase
memory and/or MPL to compensate for a transient response time spike before decreasing (or eliminating)
the delay time; decreasing the delay could be just as effective (and much less disruptive) a mechanism for
responding to transients. Currently, M&M does not treat admission delay as a “first class” knob; it is either on
or off, and its length is pre-determined on a query-by-query basis. Instead, the delay could be set based on a

running deficit for the class that accumulates over the entire observation interval.

6.2.2 Disk Buffer and No-Goal Class Improvements

In this thesis, disk buffer classes (both goal and no-goal varieties) are assigned a static MPL limit of infinity,
while no-goal classes that consume working storage are assigned a static MPL limit of one. Clearly, these
static settings are inadequate. While the MPL limit for disk buffer classes is not likely to be an effective
knob for controlling their performance, it may very well be an effective knob for controlling the performance

of other classes because it can act to limit competition at the processors and disks. For example, instead of

86

allowing disk buffer classes to exceed their goals with an increased memory allocation in order to reduce disk
utilizations, another option that might make sense is to limit their MPL,, especially if they are already exceeding
their goals. Controlling disk buffer class MPL limits is a challenging problem, however, since it turns the
existing one-dimensional disk buffer controller into a two-dimensional controller with a much larger solution
space (and more than one possible solution).

Limiting no-goal transactions that consume working storage memory to an MPL of one is another M&M
restriction that needs to be removed. No-goal class working storage MPLs should be allowed to increase as
long as they do not represent a threat to the goal classes. Finding the point at which they become a threat is
the challenge here. Similarly, there is no reason to assume that the MPL of the no-goal class always should
always be non-zero. As was pointed out in Section 4.4, one option that would make sense when the system
enters a degraded mode of operation is to prevent the execution of any no-goal transactions. Thus, the MPL
limit for no-goal classes should really be allowed to vary from zero to N.

A final area for no-goal class improvement stems from the “additive” approach to building a goal-oriented
DBMS that was defined in Chapter 2 and adopted throughout the thesis. While the additive approach simplifies
the problem of designing a goal-oriented DBMS, it does not necessarily result in the best response times for
the no-goal class. If the existing DBMS resource allocation mechanisms allow a goal class to “naturally”
exceed its goal, then the additive approach dictates that no action should be taken. However, it may be possible
to reduce the no-goal class response times if excess resources are taken from an exceeding goal class and
reassigned to the no-goal class. Of course, because of the interdependence of classes that share resources, it
is difficult to determine if the no-goal class performance would actually be improved by such a reassignment.
More sophisticated mechanisms are needed to determine what, if anything, can be done to insure the miminim

no-goal response time (subject to meeting the goals for all goal classes).

6.2.3 Other Resources Besides Memory

While effective MPL and memory management will likely be the critical point of control for most workload
classes, processor and disk management must be addressed as well. Two key questions for processor and
disk management are how performance goals should be translated into scheduling parameters (for example,
dynamic priorities or percentages of resource utilizations) and how much control should be exerted at the load

controller versus the scheduling of the resource itself. Load control is probably more critical, but goal-oriented

87

scheduling will likely be required to “mop up” after any poor load control decisions, or to deal with short-term
load transients. Another challenge in the area of goal-oriented processor and disk scheduling algorithms is
insuring that efficient resource utilization is not adversely affected by the goal-oriented scheduling policies.
For example, in disk-bound systems, minimizing disk head motion is critical to maximizing throughput at the
disk. A goal-oriented disk scheduling algorithm must therefore take care to avoid unnecessarily increasing
head motion; if the allocation process itself consumes too much bandwidth, then deciding how much disk
bandwidth to allocate to each class will become a non-issue. While there are other resources that could also
be used to control DBMS performance, the memory, MPL, processor, and disk knobs together will likely
represent an adequate solution for most workloads.

In addition to managing the DBMS resources, the resource demands of individual transactions could be
manipulated by a goal-oriented query optimizer. While there has been no published work to date on query
optimization techniques for satisfying multiclass performance goals, some early work has been done on run-
time selection of query plans based on resource availability [Hong 91, Toannidis 92]. Given an optimizer that
can generate more than one plan to execute a particular query, how should these plans be chosen at run time in
order to satisfy class-based response time goals? What kind of plans should be generated? Could an optimizer
instead generate a single plan that attempts to achieve a particular farget response time (as opposed to one that
minimizes response time)? While optimizers have sophisticated cost models to predict query execution times,
they only need to be correct when comparing the relative performance of two plans. It is not clear if these cost
models can be used for the much more difficult problem of accurately predicting the actual response time of
a particular plan. While the issues involved in goal-oriented query optimization seem daunting, the fact that
the optimizer has so much control over the resource demands of individual queries is enough to justify their

exploration.

6.2.4 Bottleneck Analysis

Given a choice of knobs to turn for each class, the knob that controls the bottleneck resource of the class should
be used first. Determining which resource is the bottleneck for a class is called bottleneck analysis. One
approach to this problem is simply to sum up the times spent at various resources and pick the resource with
the largest sum as the bottleneck. This solution is unattractive for two reasons: first, the overhead involved in

collecting resource utilization statistics at such a detailed level may be prohibitive, and second, it ignores the

88

fact that resources are likely to be utilized in parallel. A sampling approach is probably a better alternative,
although detecting the state of a class during a particular sampling probe would require a non-trivial amount
of engineering. For example, individual processes/threads have to be mapped to the classes they are working
on behalf of, and some easy way to identify the state of each process/thread must exist (e.g. waiting for locks,
processors, disks, network connections, executing on a processor, etc.).

Assuming that the engineering issues associated with sampling can be solved, memory usage still presents
a knotty problem. While memory waits and memory allocations can be sampled, the relative value of the two
different memory types to a class (disk buffers or working storage) is more difficult to evaluate. Here, the
value of an additional memory page is measured by its ability to decrease the number of disk I/Os for a class.
One possible way to detect the relative values of disk buffer versus working storage might be to compare the
average number of buffer faults to the average number of disk I/Os for each class; whichever is greater could
indicate the more important memory type. Unfortunately, the fact that a class experiences more buffer misses
than other types of I/Os (or vice-versa) says nothing about how the class’s I/O rate would be affected by an
increased disk buffer (or working storage) memory allocation. For example, if a class references very cold
files, then an increase in disk buffer allocation will not be a very effective control, regardless of the number of
buffer faults experienced by the class. More research is needed to develop a better predictor that can judge the

relative value of the working storage and buffer memory knobs.

6.2.5 User Interface Issues

In some sense, the whole point of this thesis is to raise the level of abstraction of a DBMS’s performance
tuning interface. The idea is not to eliminate all knobs in order to develop a self-tuning DBMS that always
“knows what’s best” in any situation (an elusive goal, to be sure), but rather to hide the low-level knobs behind
an autopilot [Brown 93b] that can translate high-level performance requirements into low-level knob settings.
Because this thesis concentrates on the mechanisms needed to achieve this objective for three specific knobs,
the user-interface it presents leaves something to be desired. For example, requiring an administrator to specify
an observation interval for each class is clearly inadequate, as it is difficult to determine a proper setting for
this parameter by hand. As mentioned in Chapter 2, the observation interval should really be determined
automatically from a class’s response time variance, perhaps combined with a higher-level sensitivity knob

(although even the sensitivity knob should provide a reasonable default behavior).

89

Given the objective of a high-level performance tuning interface, one can justifiably ask whether per-class
response time goals themselves represent a high-level or a Jow-level knob. While response time goals are
certainly higher level than the memory or MPL knobs, less sophisticated users may not even be able to define
their workload classes, let alone specify goals for them. Unsophisticated users do not necessarily imply that
response time goals and goal-oriented resource allocation methods are worthless at the low end of the DBMS
market, however. Default class definitions based on observed response times or resource consumption, the
ability to specify relative response times (i.e. one class should be twice as fast as another), and innovative
graphical interfaces all represent possible ways to increase the ease-of-use of a performance tuning “auto-
pilot.” While more work certainly remains on additional resource allocation mechanisms, perhaps the “real
money” to be made in goal-oriented DBMS research lies in innovative approaches to the performance tuning

user-interface.

90

Bibliography

[Abbott 91] R. K. Abbott, Scheduling Real-Time Transactions: A Performance Evaluation, PhD Thesis,
Princeton University, 1991 (Princeton CS TR-331-91).

[Belady 66] “A Study of Replacement Algorithms for a Virtual Storage Computer,” IBM Systems Journal,
5(2), 1966.

[Boral 90] H. Boral et al, "Prototyping Bubba: A Highly Parallel Database System," IEEE Trans. on Knowl-
edge and Data Engineering, 2(1), March 1990.

[Bitton 83] D. Bitton, D. DeWitt, C. Turbyfill, “Benchmarking Database Systems — A Systematic Approach,”
Proc. 9th Int’l VLDB Conf, Florence, Italy, October 1983.

[Brown 92] K.Brown, M. Carey, D. Dewitt, M. Mehta, J. Naughton, “Resource Allocation and Scheduling for
Mixed Database Workloads,” Computer Sciences Technical Report #1095, Department of Computer
Sciences, University of Wisconsin, Madison, July 1992.

[Brown 93a] K. Brown, M. Carey, M. Livny, “Managing Memory to Meet Multiclass Workload Response
Time Goals.” Proc. 19th Int’l VLDB Conf, Dublin, Ireland, August 1993.

[Brown 93b] K. Brown, M. Carey, M. Livny, “Towards an Autopilot in the DBMS Performance Cockpit,”
Proc. 5th Int’l High Performance Transaction Processing Workshop, Asilomar, CA, September 1993.

[Brown 94] K.Brown, M. Mehta, M. Carey, M. Livny, “Towards Automated Performance Tuning for Complex
Workloads,” Proc. 20th Int’l VLDB Conf, Santiago, Chile, September 1994.

[Brown 95} K. Brown, M. Carey, M. Livny, “Goal-Oriented Buffer Management Revisited,” submitted for
publication, July, 1994.

[Chen 93] C. Chen, N. Roussopoulos, “Adaptive Database Buffer Allocation Using Query Feedback,” Proc.
19th Int’l VLDB Conf, Dublin, Ireland, August 1993.

[Carey 85] M. Carey, M. Livny, and H. Lu, "Dynamic Task Allocation in a Distributed Database System,"
Proc. of the Fifth Int’l. Conf. on Distributed Computing Systems, Denver, CO, May 1985.

[Carey 89] M. Carey, R. Jauhari, M. Livny, “Priority in DBMS Resource Scheduling,” Proc. 15th Int’l. VLDB
Conf,, Amsterdam, The Netherlands, August 1989.

[Cheng 84] J.Cheng et al, “IBM Database 2 Performance: Design, Implementation, and Tuning,” IBM Systems
Journal, 23(2), 1984.

[Chou 851 H. Chou and D. DeWitt, “An Evaluation of Buffer Management Strategies for Relational Database
Systems,” Proc. 11th Int’l VLDB Conf., Stockholm, Sweden, August 1985.

[Chou 85b] H. Chou, Buffer Management of Database Systems, PhD Thesis, University of Wisconsin, Madi-
son, 1985.

[Chu 72] W. Chu and H. Opderbeck, “The Page Fault Frequency Replacement Algorithm,” Proc. 1972 AFIPS
Fall Joint Computer Conf., Vol 41, AFIPS Press, Montvale, NJ, Dec. 1972.

[Chung 94] J. Chung, D. Ferguson, G. Wang, C. Nikolaou, J. Teng, “Goal Oriented Dynamic Buffer Pool
Management for Database Systems,” IBM Research Report RC19807, October, 1994,

91

[Coffman 73] E. Coffman and P. Denning, Operating Systems Theory, Prentice-Hall, Englewood Cliffs NJ,
1973.

[Copeland 88] G. Copeland, W. Alexander, E. Boughter, T. Keller, “Data Placement in Bubba,” Proc. ACM
SIGMOD ’88 Conf., Chicago, IL, June 1988.

[Cornell 89] D. Cornell and P. Yu, “Integration of Buffer Management and Query Optimization in a Relational
Database Environment,” Proc. 15th Int’l VLDB Conf., Amsterdam, The Netherlands, August 1989.

[Dan 95] A. Dan, P.S. Yu, J.-Y. Chung, “Characterization of Database Access Pattern for Analytic Prediction
of Buffer Hit Probability,” VLDB Journal, 4(1), January 1995.

[Davison 94] D. Davison, G. Graefe, “Memory-Contention Responsive Hash Joins,” Proc. 20th Int’l VLDB
Conf, Santiago, Chile, September 1994.

[Davison 95] D. Davison, G. Graefe, “Dynamic Resource Brokering for Multi-User Query Execution,” Proc.
ACM SIGMOD Conf, San Jose, CA, May 1995.

[DeWitt 84] D. DeWitt et al, "Implementation Techniques for Main Memory Database Systems," Proc. ACM
SIGMOD Conf., Boston, MA, June 1984.

[DeWitt 90] D. DeWitt et al, "The Gamma Database Machine Project,” IEEE Trans. on Knowledge and Data
Engineering, 2(1), March 1990.

[DeWitt 92] D. DeWitt and J. Gray, “Paralle]l Database Systems: The Future of High Performance Database
Processing,” CACM, 35(6), June, 1992.

[Denning 80] P. Denning, “Working Sets Past and Present,” IEEE Transactions on Software Engineering,
SE-6(1), January 1980.

[Easton 75] W. Easton, “Model for Interactive Data Base Reference String,” IBM Journal of Research and
Development, 19(6), November 1975.

[Easton 79] M. Easton, P. Franaszek, “Use Bit Scanning in Replacement Decisions,” IEEE Transactions on
Computing, 28(2), February 1979.

[Effel 84] W. Effelsberg and T. Haerder, “Principles of Database Buffer Management,” ACM TODS, 9(4), Dec.
1984.

[Falou 91] C.Faloutsos, R. Ng, T. Sellis, “Predictive Load Control for Flexible Buffer Allocation,” Proc. 17th
Int’l VLDB Conf., Barcelona, Spain, September 1991.

[Ferg 93] D. Ferguson, C. Nikolaou, L. Geargiadis, “Goal Oriented, Adaptive Transaction Routing for High
Performance Transaction Processing Systems,” Proc. 2nd Int’l Conf. on Parallel and Distributed
Systems, San Diego CA, January 1993.

[Fujitsu 90] Fujistsu America, Inc. M2265 Technical Manual, part number 41FH5048E-01, Fujistsu America
Technical Assistance Center, San Jose, CA, 1-800-826-6112.

[Graefe 89] G. Graefe and K. Ward, “Dynamic Query Evaluation Plans,” Proc. ACM SIGMOD ’'89 Conf.,
Portland, OR, May 1989.

[Gray 87] J. Gray and F. Putzolu, “The 5 Minute Rule for Trading Memory for Disk Access and the 10 Byte
Rule for Trading Memory for CPU Time,” Proc. ACM SIGMOD 87 Conf., San Francisco, CA, 1987.

[Gray 91] J. Gray ed., The Benchmark Handbook, Morgan Kaufmann, San Mateo CA, 1991.

92

[Haas 90] L. Haas et al, “Starburst Mid-Flight: As the Dust Clears,” IEEE Trans. on Knowledge and Data
Eng.,2(1), March 1990.

[Hong 91] W. Hong and M. Stonebraker, “Optimization of Parallel Query Execution Plans in XPRS,” Proc.
1st Int’l PDIS Conf., Miami, FL, Dec. 1991.

[IBM 93a] IBM Corporation, IBM Database 2 Version 3 Performance Monitoring and Tuning SC26-4888,
IBM Corporation, San Jose CA, December 1993.

[IBM 93b] IBM Corporation, Database 2 AIX/6000 Administration Guide SC09-1571, IBM Corporation,
North York, Ontario, Canada, October 1993.

[IBM 93c] IBM Corporation, MVS/ESA Version 4.3 Initialization and Tuning Guide G(C28-1643, IBM Cor-
poration, Poughkeepsie N'Y, March 1993.

[IBM 95] IBM Corporation, MVS/ESA Version 5 Planning: Workload Management G(C28-1493,1BM Corpo-
ration, Poughkeepsie NY, March 1995.

[Johnson 94] T. Johnson, D. Shasha, “2Q: A Low Overhead High Performance Buffer Management Replace-
ment Algorithm,” Proc. 20th Int’l VLDB Conf, Santiago, Chile, September 1994.

[Ioannidis 92] Y. Ioannidis, R. Ng, K. Shim, T. Sellis, “Parametric Query Optimization,” Proc. 18th Int’l
VLDB Conf., Vancouver, B.C., August 1992.

[Jauhari 90a] R. Jauhari, M. Carey, M. Livny, “Priority-Hints: An Algorithm for Priority-Based Buffer
Management,” Proc. 16th Int’l VLDB Conf., Brisbane, Austrailia, August 1990.

[Jauhari 90b] R. Jauhari, Priority Scheduling in Database Management Systems, PhD Thesis, University of
Wisconsin, Madison, 1990 (available as UW Madison CS Technical Report CS-TR-90-959).

[Kaplan 80] J. Kaplan, “Buffer Management Policies in a Database Environment,”, Masters Thesis, UC
Berkeley, 1980.

[Lazowska 84] E. Lazowska, J. Zahoran, G.S. Graham, K. Sevcik, Quantitative System Performance: Com-
puter System Analysis Using Queueing Network Models, Prentice Hall, Englewood Cliffs, NJ, 1984.

{Livny 87] M. Livny, S. Koshafian, H. Boral, “Multi-Disk Management Algorithms,” Proc. ACM SIGMET-
RICS Conf., Alberta, Canada, May 1987.

[Lorin 81] H. Lorin and H. Deitel, Operating Systems (chapter 9: Resource Management), Addison Wesley,
Reading MA, 1981.

[Mehta 93] M. Mehta and D. DeWitt, “Dynamic Memory Allocation for Multiple-Query Workloads,” Proc.
19 Int’l VLDB Conf., Dublin, Ireland, August 1993.

[Mehta 94] M. Mehta, Resource Allocation in Parallel Shared-Nothing Database Systems, PhD Thesis, Uni-
versity of Wisconsin, Madison, 1994.

[Ng91] R. Ng, C. Faloutsos, T. Sellis, “Flexible Buffer Allocation Based on Marginal Gains,” Proc. ACM
SIGMOD ’91 Conf., Denver, CO, May 1991.

[Nikolaou 92] C. Nikolaou, D. Ferguson, P. Constantopoulos, “Towards Goal Oriented Resource Manage-
ment,” IBM Research Report RC17919, April 1992.

[O’Neil 93] E. O’Neil, P. O’Neil, G. Weikum, “The LRU-K Page Replacement Al gorithm For Database Disk
Buffering,” Proc. ACM SIGMOD 93 Conf., Washington D.C., May 1993.

93

[Pang 93a] H. Pang, M. Carey, M. Livny, “Partially Preemptible Hash Joins,” Proc. ACM SIGMOD '93 Conf.,
Washington D.C., May 1993.

[Pang 93b] H. Pang, M. Carey, M. Livny, “Memory Adaptive External Sorts and Sort-Merge Joins,” Proc. 19
Int’l VLDB Conf., Dublin, Ireland, August 1993.

[Pang 94a] H. Pang, M. Carey, M. Livny, “Managing Memory for Real-Time Queries,” Proc. ACM SIGMOD
'94 Conf., Minneapolis MN, May 1994.

[Pang 94b] H. Pang, Query Processing in Firm Real-Time Database Systems, PhD Thesis, University of
Wisconsin, Madison, 1994.

[Pang 95] H. Pang, M. Carey, M. Livny, “Query Scheduling in Real-Time Database Systems", to appear in
Trans. of Knowledge and Data Engineering, August 1995.

[Patel 93] J. Patel, M. Carey, M. Vernon, “Accurate Modeling of the Hybrid Hash Join Algorithm,” Proc. ACM
SIGMETRICS '94, Nashville, TN, May 1994.

[Pierce 83] B. Pierce, “The Most Misunderstood Parts of the SRM,” Proc. SHARE 61 (IBM users group), New
York NY, August 1983,

[Pirahesh 90] H. Pirahesh, et al, "Parallelism in Relational Database Systems: Architectural Issues and Design
Approaches," IEEE 2nd Int’l Symposium on Databases in Parallel and Distributed Systems, Dublin,
Ireland, July 1990.

[Reiter 76] A. Reiter, “A Study of Buffer Management Policies For Data Management Systems,” MRC
Technical Summary Report #1619, Mathematics Research Center, University of Wisconsin, Madison,
March 1976.

[Robinson 90] J. Robinson and M. Devarakonda, “Data Cache Management Using Frequency-Based Replace-
ment,” Proc. SIGMETRICS '90 Conf., Boulder, CO, May 1990.

[Sacco 82] G. Sacco and M. Schkolnick, “A Mechanism for Managing the Buffer Pool in a Relational Database
System Using the Hot Set Model” Proc. 8th Int’l VLDB Conf., Mexico City, September 1982.

[Sacco 86] G. Sacco and M. Schkolnick, “Buffer Management in Relational Database Systems,” ACM TODS,
11(4), December 1986.

[Selinger 93] P. Selinger, “Predictions and Challenges for Database Systems in the Year 2000, Proc. 19th
Int’l VLDB Conf, Dublin, Ireland, August 1993.

[Stone 81] M. Stonebraker, “Operating System Support for Database Management,” CACM, 24(7). July 1981.

[Teng 84] J. Teng and R. Gumaer, “Managing IBM Database 2 Buffers to Maximize Performance,” IBM
Systems Journal, 23(2), 1984.

[TPC 94] Transaction Processing Performance Council, TPC Benchmark C, Revision 2.0, 20 October 1993,
and TPC Benchmark D, Working Draft 7.0, 6 May 1994, C/O Shanley Public Relations, 777 N. First
St, San Jose, CA.

[van den Berg 93] J. van den Berg, D. Towsley, “Properties of the Miss Ratio for a 2-Level Storage Model
with LRU or FIFO Replacement Strategy and Independent Reference,” IEEE Trans. on Computers,
42(4), April 1993.

[Weikum 93] G. Weikum et al, “The COMFORT Project — Project Synopsis,” Proc. 2nd Int’l Conf. on Parallel
and Distributed Information Systems, San Diego CA, January 1993.

94

[Yu93] P. Yu and D. Cornell, “Buffer Management Based on Return on Consumption in a Multi-Query
Environment,” VLDB Journal, 2(1), Jan 1993.

[Zeller 90] H. Zeller, J. Gray, “An Adaptive Hash Join Algorithm for Multiuser Environments” Proc. 16th
Int’l VLDB Conf,, Melbourne, Australia, August 1990.

