lEﬂEﬁEEHEEEEEEEEEEEﬂEEEEEE@EEEEEEEEE%EﬁEEEEEEEEW@EEEWEE@EEE@EEEEHGWEHEWE

Precise Interprocedural Dataflow Analysis
with Applications to Constant Propagation

Mooly Sagiv
Thomas Reps
Susan Horwitz

Technical Report #1284

August 1995

UNIVERSITY OF







Precise Interprocedural Dataflow Analysis
with Applications to Constant Propagation?

Mooly Sagiv,®> Thomas Reps, and Susan Horwitz
Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison, WI 53706 USA
Electronic mail: {sagiv, reps, horwitz}@cs.wisc.edu

Abstract

This paper concerns interprocedural dataflow-analysis problems in which the dataflow in-
formation at a program point is represented by an environment (i.e., a mapping from symbols
to values), and the effect of a program operation is represented by a distributive environment
transformer. We present two efficient algorithms that produce precise solutions: an exhaustive
algorithm that finds values for all symbols at all program points, and a demand algorithm that
finds the value for an individual symbol at a particular program point.

Two interesting problems that can be handled by our algorithms are (decidable) variants
of the interprocedural constant-propagation problem: copy-constant propagation and linear-
constant propagation. The former interprets program statements of the form z :=7 and z :=y.
The latter also interprets statements of the form z := 5 x y + 17.

Experimental results on C programs have shown that

s Although solving constant-propagation problems precisely (i.e., finding the meet-over-all-

valid-paths solution, rather than the meet-over-all-paths solution) resulted in a slowdown
by a factor ranging from 2.2 to 4.5, the precise algorithm found additional constants in 7
of 38 test programs.

e In contrast to previous results for numeric Fortran programs, linear-constant propagation

found more constants than copy-constant propagation in 6 of 38 test programs.

e The demand algorithm, when used to demand values for all uses of scalar integer variables,

was faster than the exhaustive algorithm by a factor ranging from 1.14 to about 6.

1 Introduction

This paper concerns how to find precise solutions to a large class of interprocedural dataflow-analysis
problems in polynomial time. Of the problems to which our techniques apply, several variants of the
interprocedural constant-propagation problem stand out as being of particular importance.

In contrast with intraprocedural dataflow analysis, where “precise” means “meet-over-all-paths”
[Kil73], a precise interprocedural dataflow-analysis algorithm must provide the “meet-over-all-valid-
paths” solution. (A path is valid if it respects the fact that when a procedure finishes it returns to the
site of the most recent call [SP81, Cal88, LR91, KS92, Rep94b, RSH94, RHS95, DGS95, HRS95].) In
this paper, we show how to find the meet-over-all-valid-paths solution for a certain class of dataflow
problems in which the dataflow facts are maps (“environments”) from some finite set of symbols D
to some (possibly infinite) set of values L (i.e., the dataflow facts are members of Env(D, L)), and

the dataflow functions (“environment transformers” in Env(D, L) 4 Env(D, L)) distribute over the
‘meet operator of Env(D, L). We call this set of dataflow problems the Interprocedural Distributive
Environment problems (or IDE problems, for short).
The contributions of this paper can be summarized as follows:
e We introduce a compact graph representation of distributive environment transform-
ers.
e We present an algorithm for finding meet-over-all-valid-paths solutions. For general
IDE problems the algorithm will not necessarily terminate. However, we identify a subset of
IDE problems for which the algorithm does terminate and runs in time O(ED3), where E is
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the number of edges in the program’s control-flow graph and D is the number of symbols in
an environment.

o We study two natural variants of the constant-propagation problem: copy-constant propa-
gation [FL88] and linear-constant propagation, which extends copy-constant propagation by
interpreting statements of the form z = a * y + b, where a and b are literals or user-defined
constants. The IDE problems that correspond to both of these variants fall into the above-
mentioned subset; consequently, our techniques solve all instances of these constant-
propagation problems in time O(E MaxVisible®), where “MaxVisible” is the maximum
number of variables visible in any procedure of the program. The algorithms obtained in this
way improve on the well-known constant-propagation work from Rice [CCKT86, GT93] in two
ways:

1. The Rice algorithm is not precise for recursive programs. (In fact, it may fall into an
infinite loop when applied to recursive programs).
2. Because of limitations in the way “return jump functions” are generated, the Rice algo-
rithm does not even yield precise answers for all non-recursive programs.
In contrast, our algorithm yields precise results, for both recursive and non-recursive
programs.

e In Section 6 we present a demand dataflow-analysis algorithm for the class of IDE problems.
This demand algorithm is more general than both the demand algorithm of Duesterwald,
Gupta, and Soffa [DGS95] and the demand algorithm of Horwitz, Reps, and Sagiv [HRS95].
For example, it can handle linear-constant-propagation problems, which neither of the above
algorithms can handle.

o Our dataflow-analysis algorithms have been implemented and used to analyze C programs.
Our experimental results have shown that

o Although solving constant-propagation problems precisely resulted in a slowdown by a
factor ranging from 2.2 to 4.5, the precise algorithm found additional constants in 7 of 38
test programs.

e In contrast to previous results for numeric Fortran programs [GT93], linear-constant prop-
agation found more constants than copy-constant propagation in 6 of 38 test programs.

e The demand algorithm, when used to demand values for all uses of scalar integer variables,
was faster than the exhaustive algorithm by a factor ranging from 1.14 to about 6.

The remainder of the paper is organized as follows: In Section 2 we introduce the copy-constant-
propagation and linear-constant-propagation problems. Linear-constant propagation is used in sub-
sequent sections to illustrate our ideas. In Section 3 we define the class of IDE problems. In Section 4,
we define a compact graph representation of distributive environment transformers and show how
to use these graphs to find the meet-over-all-valid-paths solution to a dataflow problem. Section 5
presents our algorithm for solving IDE problems. In Section 5.4, we discuss the application of our
approach to copy-constant propagation and linear-constant propagation. In Section 6 we extend
our algorithm to perform demand-driven dataflow analysis. Experiments in which our algorithm
has been applied to perform copy and linear-constant propagation on C programs are reported in
Section 7. Section 8 discusses related work.

2 Distributive Constant-Propagation Problems

There are (at least) two important variants of the constant-propagation problem that fit into the
framework presented in this paper: copy-constant propagation and linear-constant propagation. In
copy-constant propagation, a variable z is discovered to be constant either if it is assigned a constant
value (e.g., = := 3) or if it is assigned the value of another variable that is itself constant (e.g., y := 3;
z :=y). All other forms of assignment (e.g., ¢ := y + 1) are (conservatively) assumed to make z
non-constant.

Linear-constant propagation identifies a superset of the instances of constant variables found by
copy-constant propagation. Variable z is discovered to be constant either if it is assigned a constant
value (e.g., z := 3) or if it is assigned a value that is a linear function of one variable that is itself
constant (e.g., ¥y := 3; T := 2xy + 5). All other forms of assignment are assumed to make z
non-constant.




3 The IDE Framework

3.1 Program Representation

A program is represented using a directed graph G* = (N*, E*) called a supergraph. G* consists
of a collection of flowgraphs G1,Ga, ... (one for each procedure), one of which, Gy, 4,, T€presents
the program’s main procedure. Each flowgraph G} has a unique start node sp, and a unique exit
node e,. The other nodes of the flowgraph represent statements and predicates of the program in the
usual way, except that a procedure call is represented by two nodes, a call node and a return-site
node.

In addition to the ordinary intraprocedural edges that connect the nodes of the individual flow-
graphs, for each procedure call, represented by call-node ¢ and return-site node r, G* has three
edges:

e An intraprocedural call-to-return-site edge from c to r;

o An interprocedural call-to-start edge from c to the start node of the called procedure;

e An interprocedural exit-to-return-site edge from the exit node of the called procedure to r.
The call-to-return-site edges are included so that we can handle programs with local variables and
parameters; the dataflow functions on call-to-return-site and exit-to-return-site edges permit the
information about local variables that holds at the call site to be combined with the information
about global variables that holds at the end of the called procedure.

Example 3.1 Figure 1 shows an example program and its supergraph. For the moment ignore the
edge labels. This program will be used in the rest of the paper as a running example. O

3.2 Interprocedural Paths

Definition 3.2 A path of length j from node m to node n is a (possibly empty) sequence of j edges,
which will be denoted by [e1, es,...,€;], such that the source of ey is m, the target of e; is n, and for
alli, 1< i< j—1, the target of edge e; is the source of edge e;y.1. Path concatenation is denoted by

il. @

The notion of an (interprocedurally) valid path is necessary to capture the idea that not all paths
in G* represent potential execution paths. A valid path is one that respects the fact that a procedure
always returns to the site of the most recent call. To understand the algorithm of Section 5, it is
useful to distinguish further between a same-level valid path — a path in G* that starts and ends
in the same procedure, and in which every call has a corresponding return (and vice versa) — and
a valid path — a path that may include one or more unmatched calls.

Definition 3.3 The sets of same-level valid paths and valid paths in G* are defined inductively
as follows:

o The empty path is a same-level valid path (and therefore a valid path).

e Path p || [e] is a valid path if either e is not an exit-to-return-site edge and p is valid or e
is an erit-to-return-site edge and p = pr, || [ec] || p+ where p; is a same-level valid path, pn is @
valid path, and the source node of e is the call node that matches the return-site node at the
target of e. Such a path is a same-level valid path if ps is also a same-level valid path.

We denote the set of valid paths from node m to node n by VP(m,n). D
Example 3.4 In the supergraph shown in Figure 1, the path
Smain —> Nl = sp 2 nd = n9 — e, = n2
is a (same-level) valid path; the path
Smain — M1 — 8p —+ nd - nd

is a (non-same-level) valid path because the call-to-start edge nl — s, has no matching exit-to-
return-site edge; the path

Smain = N1 — sp = nd -+ n9 — e, — n7

is not a valid path because the exit-to-return-site edge e, —+ n7 does not correspond to the preceding
call-to-start edge nl — sp. O



declare x: integer
program main
begin

call P(7)

print (x) /* x is a constant here */

end

procedure P (value a : integer)
begin /* a is not a constant here */
if a > 0 then
a:=a—2
call P (a)
a:=a-+ 2
fi
x:i=—-2%a-+5
/* x is not a constant here */
end
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Figure 1: An example program and its labeled supergraph G*. The environment transformer for all

unlabeled edges is Aenv.env.




3.3 Environments and Environment Transformers

Definition 3.5 Let D be a finite set of symbols. Let L be a finite-height meet semi-lattice with a
top element T.2 We denote the meet operator by M. The set Env(D, L) of environments is the set
of functions from D to L. The following operations are defined on Env(D, L):

o The meet operator on Env(D, L), denoted by envi M envs, is Ad.(envi(d) M enva(d)).

e The top element in Env(D, L), denoted by Q, is Ad.T.

o For an environment env € Env(D,L), d € D, and | € L, the expression env|d — | denotes
the environment in which d is mapped to | and any other symbol d' # d is mapped to the value
env(d').

0

Example 3.6 In the case of integer constant propagation:

o D is the set of integer program variables.

o L= ZI where z C y iff y = T, z = L, or z = y. Thus the height of ZI is 3.
In a constant-propagation problem, Env(D, L) is used as follows: If env(d) € Z then the variable d
has a known constant value in the environment env; the value 1 denotes non-constant and T denotes
an unknown value. 0

Definition 3.7 An environment transformer t: Env(D,L) — Env(D, L) is distributive (denoted

by t: Env(D, L) LA Env(D, L)) iff for every envy,envs, ... € Env(D, L), andd € D, (t(]; env:))(d) =
[ (t(env;))(d). Note that this equality must also hold for infinite sets of environments. O

3.4 The Meet-Over-All-Valid-Paths Solution

A dataflow problem is specified by annotating each edge e of G* with an environment transformer
that captures the effect of the program operation at the source of e.

Definition 3.8 An instance of an interprocedural distributive environment problem (or
IDE problem for short) is a four-tuple, IP = (G*, D, L, M), where:
o G* is a supergraph.
o D and L are as defined in Definition 3.5.
e M:E* — (Env(D,L) 4 Env(D, L)) is an assignment of distributive environment transform-
ers to the edges of G*.
O

Definition 3.9 Let IP = (G*,D,L, M) be an IDE problem instance. The meet-over-all-valid-
paths solution of IP for a given node n € N*, denoted by MVPy, is defined as follows:

def
Mve, 2 [ M@,
g€ VP(smam,n)
where M is extended to paths by composition, i.e.,
M([]) = denv.env

and
def

M(le,ez,...,e;5]) = M(ej) o M(ej-1)0 --- 0 M(ez) 0 M(er).

In an IDE problem, the environment transformer associated with an intraprocedural edge e
represents a safe approximation to the actual semantics of the code at the source of e. Functions on
call-to-return-site edges extract (from the dataflow information valid immediately before the call)
dataflow information about local variables that must be re-established after the return from the call.
Functions on exit-to-return-site edges extract dataflow information that is both valid at the exit site
of the called procedure and relevant to the calling procedure.

3Hence, L is also complete and has a least element, denoted by L.



Note that call-to-return-site edges introduce some additional paths in the supergraph that do not
correspond to standard program-execution paths. The intuition behind the IDE framework is that the
interprocedurally valid paths of Definition 3.3 correspond to “paths of action” for particular subsets
of the runtime entities (e.g., global variables). The path function along a particular path contributes
only part of the dataflow information that reflects what happens during the corresponding run-time
execution. The facts for other subsets of the runtime entities (e.g., local variables) are handled by
different “trajectories”, for example, paths that take “short-cuts” via call-to-return-site edges.

In the case of linear-constant propagation, the interesting environment transformers are those
associated with edges whose sources are start nodes, call nodes, exit nodes, or nodes that represent
assignment statements.

Linear-constant propagation handles assignments of the form 7 := c and & := ¢1 ¥y + ¢2, where
¢, ¢1, and ¢y are literals or user-defined constants. The environment transformers associated with
these assignment statements are of the form Aenv.env[z ~ c] and Aenv.env[z +> ¢1 * env(y) + cof,
respectively. For example, the transformer associated with edge n9 — ep in the supergraph of
Figure 1 is Aenv.env[z — —2 * env(a) + 5].

For other assignment statements, for example, z := y+2z, the associated environment transformer
is Aenv.env[z — L]. This transformer is a safe approximation to the actual semantics of the assign-
ment; the transformer that exactly corresponds to the semantics, Aenv.env[z — env(y) + env(2)],
cannot be used in the IDE framework because it is not distributive.

Whether edges out of start nodes have non-identity environment transformers depends on the
semantics of the programming language. For example, these edges’ environment transformers may
reflect the fact that a procedure’s local variables are uninitialized at the start of the procedure; that
is, the transformers would be: lenv.envlzy = L]z = L]...[zn — L] for all local variables z;. The
environment transformers for the edges out of the start node for the program’s main procedure may
also reflect the fact that global variables are uninitialized when the program is started. For instance,
in our running example we make the assumption that globals are uninitialized when execution begins,
and thus the environment transformer associated with edge Syqin, — 11 in the supergraph of Figure 1
is Adenv.envfz +» L].

The environment transformers associated with call-to-start edges reflect the assignments of actual
parameters to formal parameters. For call-by-value-result parameters, the environment transformers
associated with exit-to-return-site edges reflect the assignments of formals back to actuals. For exam-
ple, the transformer associated with edge nl — sp in the supergraph of Figure 1 is Aenv.env[a + 7).
The transformer associated with edge ep — n7 in the supergraph of Figure 1 is denv.envla — TJ,
since the value of the local variable a of P at ep has no impact on the value of the local variable a
at n7. Instead, the value of a at n7 is equal to the value of a at n6, obtained via the environment
transformer Aenv.env{z + T|, which is associated with edge n6 — n7. In contrast, the value of the
global variable = at n7 is equal to the value of z at ep, obtained via the environment transformer
Xenv.envla ++ T], which is associated with edge ep — nT7.

Aliasing (e.g., due to pointers or reference parameters) can be handled conservatively. For ex-
. ample, if z and y might be aliased before the statement z := 5, then the corresponding environment
transformer would be Aenv.env[z 5 5][y = (5 M env(y))]-

4 From Supergraphs to “Exploded” Supergraphs

In this section, we show that the meet-over-all-valid-paths solution in G* can be found by finding the
“meet-over-all-realizable-paths” solution of a rélated problem in an “exploded” supergraph Gt Gt
is obtained by pasting together graphs that represent the “pointwise” behavior of G*’s environment-
transformer functions. Representing these functions at a finer level of granularity leads to efficient
dataflow-analysis algorithms because operations such as meets and compositions of functions can
often be carried out by trivial, unit-cost operations on the pointwise representation.

4.1 A Pointwise Representation of Environment Transformers
One of the keys to the efficiency of our dataflow-analysis algorithm is the use of a pointwise repre-
sentation of environment transformers. In this section, we show that every distributive environment

transformer t: Env(D, L) LY Env(D, L) can be represented using a directed graph whose edges are
labeled by functions from L to L. For example, Figure 2 illustrates pointwise representations for
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Figure 2: The pointwise representations for three of the environment transformers that occur in the
running example program.
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Figure 3: The pointwise representation of the environment transformer Aenv.envlz = 5)[y + (51

env(y))]-

three of the environment transformers from the example program shown in Figure 1. Figure 3 il-
lustrates the pointwise representation of an environment transformer that approximates aliases as
described in Section 3.4.

In general, the pointwise representation of a distributive environment transformer ¢: Env(D, L)
Env(D, L) is a labeled graph with 2(D + 1) nodes and at most (D + 1)? edges. Each edge d' — d
is annotated with a function fg 4 from L to L. Function fg 4 captures the effect that the value
of symbol d' in the argument environment has on the value of symbol d in the result environment.
Function fa,q4 is used to represent the effects on symbol d that are independent of the argument
environment. For any symbol d, the value of t(env)(d)? can be determined by taking the meet of
the values of D + 1 individual function applications:

t(env)(d) = fa,a(T)N [] faralenv(d))

d'eD

Informally, we say that the “macro-function” t is represented by the “micro-functions” fa a.

If an edge from d' to d is labeled with the function Aenv.T, it can be omitted from the graph
(and we say that d does not depend on d').

These ideas are formalized in the following definition:

Definition 4.1 Let t: Env(D, L) 4 Env(D, L) be an environment transformer and let A be a symbol
not in D. The pointwise representation of t, denoted by Ry: (DU {A}) x (DU{A}) = (L 4 L),

4\We assume that application associates to the left; that is, t(env){d) equals (t(env))(d), not t((env)(d})).



is defined by:

(Al d=d=A ()

AL(Q)(d) d=AdeD (ii)

ALT deD,d=A (i)

R(d,d) ! T &,de DAV — )(d) = tQ)(d) (i)
ALL d,d € D AVLEQd — 0)(d) = t(Q)(d) N (v)

T I=T . :

{ AL { t(Q[d’ 3 l])(d) o.W. } otherwise (’U’L)

Also, for a given pointwise representation Ry: (DU{A}) x (DU{A}) — (L 4 L), the interpretation
of Ry, [R:]: Env(D, L) 4 Env(D, L), is the distributive environment transformer defined by

[R:](env)(d) ' Ri(A, d)(T) 1 [] Rold, d)(env(d)) 1)
d'eD

0l

It is easy to verify that R;(d’,d) is always a distributive function.

The intuition behind the definition of R; is that macro-function t is broken down into micro-
functions as discussed above. The general case is case (vi): micro-function R¢(d',d), where neither
d’ nor d is A, is the function

T =T
)‘l‘{ t(Qd' — 1])(d) otherwise (2)

This function captures the effect that the value of d' in ¢’s argument environment has on the value
of d in the result environment. ‘
The remainder of the cases can be explained as follows:
case (i)
Case (i) is included for technical reasons so that the compositions of the micro-functions in the
pointwise representations of functions ¢; and ¢2 correspond to the macro-function composition
ta0t;.
case (i)
Case (ii) captures an upper bound on the value of d that will result from an application of £.
The micro-functions R;(A,d) capture the effects on d that are independent of the argument
environment. These micro-functions play a role similar to the “gen” sets of gen-kill problems.
(Note that these are the only non-co-strict micro-functions in Definition 4.1.)
cases (i) and (iv)
The function AL T is used whenever possible:
e In case (iii), functions of the form Ry(d',A) do not appear on the right-hand side of
Equation (1) (and thus their values are irrelevant).
e In case (iv), AT is used in place of (2) when, for all , t(Q[d’ + ])(d) is equal to t(Q)(d)
(i.e., Ri(d’, A)(T)), in which case t(Q2[d’ — 1])(d) does not contribute anything new to the
right-hand side of Equation (1).
case (v)
The identity function is used whenever possible, i.e., ALl is used in place of (2) when, for
all 1, the right-hand side of Equation (1) will have the same value when [ is substituted for
t(Qd' — 1)(d).

Example 4.2 The general-case micro-function (case (vi) of Definition 4.1) is illustrated by the
micro-function on the edge a —» z in Figure 2(c), where ¢t = lenv.env|z + —2 % env(a) + 5. In
particular,

T l=T
Ri(a,z) = AL t(Qa — I])(z) otherwise
T b=T

= A4 (Qla s o v 2% (Qa — )(a) + 5])(z)  otherwise




T =T

= A (Qa = Y[z~ —2% 1+ 5])(z) otherwise
- N T =T

"1 —=2x1+4+5 otherwise
= Al.—-2%l45.

The last step assumes that operations * and + are the natural extensions of multiplication and
addition that also operate on T and L.
Cases (i)—(v) are illustrated in Figure 3, where t = Aenv.env[z = 5][y = (5 Menv(y))):

¢ By Definition 4.1(1), R:(A,A) = ALL
e Since t(Q)(z) = Qz +~ 5]y = (5N QyY))](z) =5, Ri(A,z) = AL5 (case (ii)).

o Since t(Q)(y) = Oz — 5y = GNAYNIY) =5MQy) =5NT =5, Ry(A,y) = A5 (case
(if)).

e By Definition 4.1(iii), both R:(z,A) and R:(y,A) are AL.T.

e Since for all [, t(Q[z = 1])(z) = t(Q)(z) = 5, Re(z,z) = AL T (case (iv)).
Similarly, since for all 7, t(Q[y = I])(z) = t(Q)(z) = 5, Ri(y,x) = ALT.
Finally, since for all I, t(Q[z — I})(y) = t(Q)(y) =5, Ri(z,y) = AL.T.

e Since for all I, t(Qy — () = Qz = 5lly = N Qy = N)y) = 501 = t(D)(y) N1,
Ri(y,y) = Al (case (v)).

]

Theorem 4.3 For every t: Env(D, L) 4 Env(D, L), t = [Rd].
Proof: By Definition 4.1, we have to show that for every env € Env(D, L), and d € D,

tlenv)(d) = [Re]( env)(d) (3)
= Ry(A,d)(T)N [ Bi(d,d)(env(d)) (4)
d'eD
First, we claim that
R(A,d)(T)N [] Ruld,d)(env(d)) = 6@ N [ ] t(@d" = env(d)])(d) (5)
d'eD d'eD

To show (5), we first show that 3 holds in (5). By Definition 4.1(ii), R:(A,d)(T) = t(22)(d), and by
Definition 4.1(iv)—(vi), for every d' € D,

Ri(d',d)(env(d')) 3 t(Qd' — env(d)])(d).
Therefore,

Ry(A,d)(T)N [] Re(d,d)(env(d)) 3 4(Q)(d) N [ tld ~ env(d)])(d)
d'eD d'eD

We now show that T holds in (5). By Definition 4.1(ii), R:(A,d)(T) = t()(d), and by Defini-
tion 4.1(iv)—(vi), for every d’' € D,
Ry(A,d)(T) N Ry(d', d)(env(d)) T t(Qd’ + env(d)])(d)-

Therefore,

Ri(A,d)(T) N [] Ri(d',d)(env(d)) Ry(A,d)(T)N [ (Ru(A, d)(T) N Re(d', d)(env(d))
d'eD d'eD

H)@ N [ tHQld ~ env(d)])(d)

d'eD

i



To complete the proof it is sufficient to show that

t(env)(d) = t()(@) N [ tQld' + env(d)])(d) (6)
d'eD

This is shown by induction on k, the number of symbols in env that are not mapped to T.
Basis: For k = 0, env =  and therefore all the terms of the form Q[d' ~» env(d')] in the right-hand
side of (6) are equal to 2. Hence, (6) trivially holds.
Induction hypothesis: Let d be an arbitrary element of D and assume that for every env € Env(D, L)
with exactly k symbols not mapped to T, (6) holds for ¢, d, and env.
Induction step: Let env € Env(D, L) be an arbitrary environment with & + 1 symbols not mapped
to T and let us show that (6) holds for t, d, and env.

Let dy € D, such that, env(do) # T and let end’ def env[dy — T]. By definition, env =
env' N Q[dy — env(do)] and therefore, since ¢ is distributive,
t(env)(d) = t(env')(d) Nt(Qdy — env(do)])(d). (7

Since in env’, k symbols are not mapped to T, the induction hypothesis implies that

temv')(d) = @)@ N [] tQld = env'(d)])(d)
d'eD
H)(d) Nt(Qldo = en'([d)D@ N []  HQUd' = env(d)])(d)-
d'eD—{do}

By the definition of env', env'(ds) = T and therefore Q[do ~ env'(dp)] = 2. Hence we get:
t(env')(d) = t(Q)(d) N H tH{Q[d' = env(d)])(d). (8)
d'€D—{do}

The proof is completed by substituting the right-hand side of (8) for t(env')(d) in (7). O

4.2 The Labeled Exploded Supergraph

Definition 4.4 Let IP = (G*,D,L,M) be an IDE problem instance. The labeled exploded
supergraph of IP is a directed graph G* = (N . EY) where

N N (DU {A)

and
B i, @) - (n,d) |m = n € B*, Rpgmormy(dsd) # AT}

Edge labels are given by a function EdgeFn: E' 5 (L 4 L) defined to be:

BdgeFn((m, ') — (n,d)) €' Rys(mmy(d,d).

A path p in G! is a realizable path if the corresponding path in G* is a valid path. We denote the
set of realizable paths from an ezploded-graph node mt to an exploded-graph node n! by RP(m!,nt).
Same-level realizable paths, denoted by SLRP(m*,n¥), are defined similarly.

Also, for all paths p € VP(Smqin,n) and d € DU{A}, we use r(p,d) to denote the set of realizable
paths from (Syqin, A) to (n,d) that correspond to p. U

Example 4.5 Figure 4 contains the exploded supergraph for the running example program labeled
with the non-identity FdgeFn functions. O

Definition 4.6 Let IP = (G*,D, L, M) be an IDE problem instance. The meet-over-all-realizable-
paths solution of IP for a given exploded node nt € Nt, denoted by MRP .y, is defined as follows:

MRP,, & M PathFn(q)(T)
4€RP((s i) n)

main’

where PathFn is EdgeFn estended to paths by composition. O

10




°p
ENTER P

AL7
e 5
maimn
ENTER main
ML
n5
ai=a-2
! .., ALl -2
n A T
CALL P(a)
RETURN 1 7
FROM P By 1
n7 /
RETURN
7 FROM P
PRINT(x) I
l 78
C Bi=8+2
mam A\

EXIT main

A M1-24s

Figure 4: The labeled exploded supergraph for the running example program for the linear-constant-
propagation problem. The edge functions are all Al.l except where indicated.
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We will show that the meet-over-all-valid-paths solution to an IDE problem can be obtained by
finding the meet-over-all-realizable-paths solution in G*. A key step in this argument is to show
that compositions of the macro-functions along paths in G* are emulated by compositions of the
micro-functions along paths in G¥. This is captured by the following lemma:

Lemma 4.7 For everyn € N*, d € D, and path p € VP(Spgin, 1),

M@= [] PathFn(r)(T) (9)
reér(p,d)

Proof: By induction on the length of p.

Basis: For a length-0 path p, 7(p,d) = ¢ and therefore both sides of (9) have the value T.
Induction hypothesis: Assume that for a path p = [e1, €2, - - ;] € VP(8y4in,n) and for every d € D,
the lemma holds.

Induction step: Let p' = [e1,ea, - €;,€j+1] € VP(Spqin,n) and let d € D. We have:

M@E))(d) = (Mej1) o M(p))(2)(d)
= (M(ej41)(M(p)())(d) Definition of o
= ([Buie;sn) (M (p)()))(@) Theorem 4.3
= Ra(e;on) (8 d)(T) NMyep Ruse;any (d, (M (P)(Q)(@))  Definition 4.1

Rp(e;4y) (A )(TIN

== Hd'ep RM(Ej+1)(dl7d)(rlre'r(p,d’) PathFn(r)(T)) Induction hypothesis

_ Buepy(A,d)(T)N Distributivity of
Nuren! her(pary BM(e; 1) (d d)(PathFr(r)(T)) Ri(e;41)(d' d)
RM(€j+1)(A’ d)(T)n

= 4/ €D, Ras(eg4) (@ DENT er(p.d’)

Rpge;20)(d's d)(PathFn(r)(T))
= HTET(p',d) Patth('r)(T)
|

We now state the theorem that is the basis for our algorithm for solving IDE problems:

Theorem 4.8 For everyn € N* and d € D, MV P,(d) = MRP (, gy-
Proof: Let p € VP(syqin,n)- Then, using Lemma 4.7 and the fact that r(p,d) C RP((syains ) (n,d)),

M@= []| PathFn(r)(T)3 [ PathFn(r)(T) = MRP , 4
rer(p.d) r€RP((s 1 qim A)s(ned))
and therefore
MV P,(d) = [ M®©Q)(d) 3 MRP )
pE VP(smain,n)

Now let 7o € RP({Smain, ), (n,d)) and let p be the corresponding path in G*. Then, by
Lemma 4.7,
M@p)Q)(d) = [| PathFn(r)(T) C PathFn(ro)(T)
rer(p,d)

and therefore MV P,(d) C MRP(n, qy. O

The consequence of this theorem is that we can solve an IDE problem by solving the meet-over-
all-realizable-paths problem on the labeled exploded supergraph.
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5 An Algorithm for Solving IDE Problems

In this section, we present an algorithm to compute the meet-over-all-valid-paths solution to a given
dataflow problem instance IP. The input to the algorithm is the labeled exploded supergraph G*.
The algorithm computes a value val(n!) € L for each exploded graph node n! € N'. When the
algorithm terminates, for all n# € N ¥, val(n') = MRP .

The algorithm operates in two phases, which are shown in Figures 5 and 7. In Phase I, the
algorithm builds up jump functions (recorded in JumpFn) and summary functions (recorded in
SummaryFn). Jump functions and summary functions are defined in terms of edge functions
(EdgeFn), and other jump functions and summary functions. In Phase II, the jump functions are
used to determine the actual values associated with nodes of the exploded graph.

5.1 Phasel

Phase I is performed by procedure ForwardComputeJumpFunctionsSLRPs, shown in Figure 5.
ForwardComputeJumpFunctionsSLRPs is a dynamic-programming algorithm that progressively com-
putes jump functions, which are functions from L to L, for longer and longer same-level-realizable
paths in G¥. The jump functions to (n,d) summarize the effects of same-level realizable paths from
the start node of n’s procedure p to (n,d). There may be a jump function from (s,,d') to (n,d) for
all & € DU {A}. ForwardComputeJumpFunctionsSLRPs also computes summary functions, which
summarize the effects of same-level realizable paths from nodes of the form (c, d'), where ¢ is a call
node, to (r,d), where r is the corresponding return-site node.

ForwardComputeJumpFunctionsSLRPs is a worklist algorithm that computes successively better
approximations to the jump and summary functions. It starts by initializing jump and summary
functions to AL T (lines [1]-[4]). The worklist is initialized to {(smain,A) —* {Smain,A}}, since we
know that there is a length-0 path from (s,,4in, A) t0 (Smain, A) (line [5]), and JumpFn((smain, A) =
(Smain, AY) is initialized to the identity function, 4d (line [6]). Figure 6 depicts the configurations that
are used by ForwardComputeJumpFunctionsSLRPs to progressively compute better approximations
to jump and summary functions for longer and longer same-level realizable paths.

To reduce the amount of work performed, ForwardComputeJumpFunctionsSLRPs uses an idea
similar to the “minimal-function-graph” approach [JM86): Only after a jump function for a path
from a node of the form (s,,d;) to a node of the form (c,dz) has been processed, where c is a call
on procedure g, will a path from (s4,ds) to (sq,ds) be put on the worklist — and then only if edge
(c,dg) = (s4,d3) is in E* (lines [12]-[13]).

5.2 Phase Il

Phase II is performed by procedure ComputeValues, shown in Figure 7. In this phase, the jump
functions are used to determine the actual values associated with nodes of the exploded graph. Phase
11 consists of two sub-phases:

(i) An iterative algorithm is used to propagate values from start nodes to call nodes and from
call nodes to start nodes. To compute a new approximation to the value at call node (c,d')
in procedure p, JumpFn({sp,d) — (c,d')) is applied to the current approximation at node
(sp,d) (lines [7]-[10]). To compute a new approximation to the value at start node (sq,d'),
EdgeFn((n,d) — (sq,d')) is applied to the current approximation at all nodes (n, d), where n
is a call on ¢ (lines [11]-[13]). At the end of this sub-phase, for all procedures p and all d,
val((sp,d)) = MRP s, q).

(ii) Values are computed for all nodes (n,d) that are neither start nor call nodes. This is done
by applying JumpFn({sp,d') = (n,d)) to val((sp,d’)) for all d' (where p is the procedure that
contains n), and taking the meet of the resulting values (lines [15]-[17]).

Note that val((Smygin,A)) is initialized to L in Phase II(i). In fact, the initial value could be
anything other than T; T cannot be used because then the test in PropagateValue would fail, and
the algorithm would not visit all nodes of the form (n,A). The particular non-T value is irrelevant:
that value is propagated to all nodes of the form (n, A), but because the function on an edge from
one of these nodes to a non-A node m! is always a constant function (see Definition 4.1), the value
at (n,A) cannot affect the value at mh.
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procedure ForwardComputeJumpFunctionsSLRPs()
begin

[1] for all (sp,d'), (m,d) such that m occurs in procedure p and d',d € DU {A} do
[2] JumpFn((sp,d') -+ (m,d)) = ALT od

[3] for all corresponding call-return pairs (c,7) and d’,d € DU {A} do

[4] SummaryFn({c,d') = (r,d)) = ALT od

[5] PathWorkList == {(smain, &) = (Smain M}

[6] JumpFn((spain, A) = (Smain, A)) = id

(7] while PathWorkList # § do

[8] Select and remove an item (sp,d1) — (n,dz) from PathWorkList

[9] let f = JumpFn({(sp,d1) = (n,d2))

[10] switch(n)

[11] case n is a call node in p, calling a procedure g¢:

[12] for each ds such that (n,ds) — (s4,ds) € E* do

[13] Propagate ({sq,ds) —* (sq,ds), id) od

[14] let r be the return-site node that corresponds to n

[15] for each ds such that e = (n,ds) — (r,ds) € E' do

[16] Propagate((sp,d1) — (r,ds), EdgeFn(e) o f) od

[17] for each ds such that fa = SummaryFn((n,ds2) —+ (r,ds)) # AT do
[18] Propagate({sp,d1) -+ {r,d3), fa 0 f) od endcase

[19] case n is the exit node of p:

(20] for each call node ¢ that calls p with corresponding return-site node r do
[21] for each da,ds such that {c,ds) = (sp,d1) € E* and (ep,d2) — (r,ds) € E* do
[22] let fi = EdgeFn({c,ds) ~+ (sp,d1)) and

[23] f5 = EdgeFn{{ep,dz2) — (r,ds)) and

[24] f' = (fs o f 0 fa) N SummaryFn(({c,ds) = {r,ds))

(25] if f' # SummaryFn({c,ds) =+ (r,ds)) then

[26] SummaryFn((c,ds) = (r,ds)) := f'

[27] let s, be the start node of ¢’s procedure

[28) for each ds such that fa = JumpFn((sq,ds) -+ (c,d4)) # ALT do
[29] Propagate({sq, dz) — (r,ds), f' 0 f3) od fi od od endcase

(30] default:

[31] for each (m,ds) such that (n,dsz) = (m,da) € EY do

[32] Propagate({sp,d1) — {(m,ds), EdgeFn((n,dz) — (m,ds)) o f) od endcase
[33] end switch od

end

procedure Propagate(e, f)
begin

[34] let f' = f 1 JumpFn(e)

(35] if f' # JumpFn(e) then

[36] JumpFn(e) = f

[37] Insert e into PathWorkList fi
end

Figure 5: The algorithm for Phase I.
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procedure ComputeValues()
begin
/* Phase II(i) */
(1] for each nf € N¥ do val(n') ;=T od
(2] val({smgin, A)) == L
(3] Node WorkList := {(Syqin, M)}
[4] while Node WorkList # ¢ do

[5] Select and remove an exploded-graph node {n,d) from NodeWorkList
(6} switch(n)
[7] case n is the start node of p:
[8] for each c that is a call node inside p do
[9] for each d' such that f' = JumpFn((n,d) — (c,d')) # AT do
[10] PropagateValue({c, d'},f' (val({sp,d}))) od od endcase
[11] " case n is a call node in p, calling a procedure g¢:
[12] for each d’ such that {n,d) = (sq,d') € E* do
[13] PropagateValue((sq,d'), BEdgeFn({n,d) — (sq,d'))(val({n,d)))) od endcase
[14] end switch od

/* Phase II(ii) */
[15] for each node n, in a procedure p, that is not a call or a start node do
[16] for each d',d such that f = JumpFn({sp,d') = (n,d)) # A.T do
17 val((n, d)) = val({n,d)) M f'(val({sp,d'))) od od

end

procedure PropagateValue(n!, v)
begin

8] let v' = v Mwval(nt)

9] if v’ # val(n!) then

0] val(n?) := o/

1] Insert n' into Node WorkList i
end

Figure 7: The algorithm for Phase II.
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Example 5.1 When applied to the exploded graph of Figure 4, our algorithm discovers that z has
the constant value —9 at node n3 (the print statement in the main procedure), and that a does not
have a constant value at node sp (the start node of procedure P). During Phase I, the algorithm
computes the following relevant jump and summary functions:

JumpFn((sp,a) = (n6,a)) = M.I-2

JumpFn((sp,a) = (ep,z)) = AM.=2%1+5
SummaryFn{(nl,A) = (n2,z)) = M.-9
JumpFn({Smain, A) = (n2,2)) = A.-9
JumpFn((smain, A) = (n3,2)) = Al -9

During Phase I1(i), values are propagated as follows to discover that a is not constant at node
sp:

val({Smaim, A)) = L
val((nl, A)) = 1
val({sp,a)) = 7
val((n6,a)) = 5
val({(sp,a)) = 5N7 = 41

During Phase II(ii), JumpFn({Smain, A

~—

—+ (n3,z)) is applied to val({(smqin,A)), producing
val((n3,z)) = -9

]

5.3 Termination and Cost Issues

It is possible to prove the partial correctness of the algorithm given in Sections 5.1 and 5.2 (i.e., if
the algorithm finishes, then for every exploded-graph node nt € NY, val(n?) = MRP ).

Theorem 5.2 (Partial Correctness of the Algorithm) If ComputeValues terminates, then for
every node m € N* and d € D, val((m,d)) = MRP (1 gy. O

The algorithm does not terminate for all IDE problems; however, it does terminate for all copy-
constant-propagation problems, all linear-constant-propagation problems, and, in general, for all
problems for which the space F' of micro-functions contains no infinite decreasing chains. (Note that
it is possible to construct infinite decreasing chains even in certain distributive variants of constant
propagation [SP81, page 206].)

The cost of the algorithm is dominated by the cost of Phase I. This phase can be carried out
particularly efficiently if there exists a way of representing the micro-functions such that certain
operations on micro-functions can be computed in unit-time.

These termination and cost issues motivate the following definition:

Definition 5.3 A class of micro-functions F C L % L has an efficient representation if
e id € F and F is closed under functional meet and composition.
e F has a finite height (under the pointwise ordering).
e There is a representation scheme for F with the following properties:
Apply: Given a representation for a function f € F, for everyl € L, f(l) can be computed in
constant time.b
Composition: Given the representations for any two functions fi,f2 € F, a representation
for the function fi o fo € F' can be computed in constant time.
Meet: Given the representations for any two functions fi, fo € F, a representation for the
function fi M fo € F can be computed in constant time.
EQU: Given the representations for any two functions fi,fo € F, it is possible to test in
constant time whether fi = fa.
Storage: There is a constant bound on the storage needed for the representation of any function
feF.

5We assume a uniform-cost measure, rather than a logarithmic-cost measure; e.g., operations on integers can be
performed in constant time.
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An IDE problem instance IP = (G*,D, L, M) is efficiently representable if for every e € E*,
and d',d € D, Ry ey(d',d) € F for some class of functions F that has an efficient representation. [

Note that in the above definition we do not impose any restrictions on Rys(c)(d’,d) when either
d' or d is A. This is based on the assumption that the constant functions and the identity function
can always be represented in an efficient manner. (Similarly, we assume that AL T can always be
represented in an efficient manner.)

In describing the cost of the algorithm it is convenient to introduce the notions of jump edge and
summary edge. A jump edge is a pair of exploded-graph nodes whose jump function is not equal to
M. T; likewise, a summary edge is a pair of exploded-graph nodes whose summary function is not
equal to ALT.

The source of a jump edge is a node of the form (s,,d), where s, is the start node of some
procedure p; thus, there can be at most D + 1 jump-edge sources in each procedure. Each iteration
of Phase I extends a known jump edge by composing it with (the function of) either an E! edge or
a summary edge. There are at most O(ED?) such edges. Because each edge e can be used in the
operation “extend a jump edge along edge e” once for every jump-edge source, there are at most
O(ED?) such composition steps.

For each jump edge and summary edge from an exploded node (n,A), the jump-function value
can change at most height-of-L times. Similarly, jump edges and summary edges emanating from
other exploded nodes (n,d), d € D, can change at most height of F' times. Consequently, the total
cost of Phase I, and thus of the entire algorithm, is bounded by O(ED?) (where the constant of
proportionality depends on the heights of L and F.)

In the case of both copy and linear-constant propagation, the size of D is bounded by MaxVisible
(the maximum number of variables visible in any procedure of the program), and the height of
L is 3. For copy-constant propagation, the height of F' is 1; for linear-constant propagation, the
height of F is 4 (see Section 5.4 below). Consequently, our techniques solve all instances of these
constant-propagation problems in time O(E MaxVisible®).

5.4 Some Efficiently Representable IDE Problems
5.4.1 Finite Distributive Subset Problems

The IDE framework generalizes a class of interprocedural dataflow-analysis problems that we have
treated in previous work. We call these problems the interprocedural, finite, distributive, subset prob-
lems, or IFDS problems, for short. In IFDS problems, the dataflow facts form a finite set U, and
the dataflow functions (which are of type 2V — 2U) distribute over the meet operator (either union
or intersection) [RSH94, RHS95, HRS95]. The IFDS problems include all locally separable problems
— the interprocedural versions of classical “bit-vector” or “gen-kill” problems (e.g., reaching defini-
tions, available expressions, and live variables) — as well as non-locally-separable problems such as
truly-live variables [GMW81], copy-constant propagation [FL88, page 660}, and possibly-uninitialized
variables [RSH94, RHS95, HRS95].

Every IFDS problem can be treated as an IDE problem by representing the set of dataflow facts
as an environment that corresponds to the set’s characteristic function: Suppose U is the finite set of
dataflow facts, and suppose the meet operation is U.® The meet semi-lattice 2V .can be represented
as Env(U, {1, T}) where L C T. If env € Env(U,{L, T}) represents set .S € 2V, then env(u) = L
if u € S. For example, the maximum environment Au.T represents the set §, the environment
Au.T[z ~ L] represents the set {z}, and the minimum environment Au.L represents the set U.

When IFDS problems are treated as IDE problems, the only micro-functions that arise are id
and M.L. All of the occurrences of micro-function M.l are associated with edges of the form
(m,A) = {n,d). The only functions on “non-A” edges are identity functions. Since id 0 id = id and
idM4d = id, the class I = {id} is trivially a class of functions that has an efficient representation.

6IFDS problems in which the meet operator is intersection can be handled by transforming them to a complementary
union problem.
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5.4.2 Copy-Constant Propagation

In copy-constant propagation, the micro-functions that arise are either id or of the form M.c, where
¢ is either a manifest constant that appears somewhere in the program or L." However, all of
the constant functions AM.c are associated with edges of the form (m,A) = (n,d). Thus, the only
functions on “non-A” edges are identity functions, so again we are dealing with the class I = {id},
which is trivially a class of functions that has an efficient representation.

5.4.3 Linear-Constant Propagation

Linear-constant propagation can be handled using the set of functions Fi. = {AM.(a*l+b)MNc|a €
Z —{0},b € Z,and ¢ € Z]}. (The functions where a = 0 are the constant functions, and, as in
copy-constant propagation, these are all associated with “A” edges.) Every function f € Fi can be
represented by a triple (a,b,c), wherea € Z — {0}, b€ Z,c € Z], and

T =T
f= }‘l'{ {(axl+b)Mc otherwise

The third component ¢ is needed so that the meet of two functions can be represented. For
example, consider the code fragment

if -+ then

a: yYy:=5%xzx-T7
else

b: y:=3xzx+1
fi

c: v

Variable y is only constant at ¢ when the initial value of z is 4, and in this case y’s value is 13. Micro-
function Rps(a-+c)(T,y), the micro-function into {c,y) from the then-branch, is Al.5 * I — 7, which
is represented by (5,—7, T). Micro-function Rps(s—c)(2,y), the micro-function into (c,y) from the
else-branch, is \l.3%+ 1, which is represented by (3,1, T). Therefore, Ras(a—c) (%, %) M Brs(b—sc) (Z5 )
is equal to the function

AL { 13 I=4

1 otherwise

which is also equal to the function Al.(5 %1 — 7) M13. It is the latter way of expressing the function
that corresponds to a triple, namely (5,—7,13).
F. has an efficient representation because:
eidec F.(a=1,b=0,c=T)
e Longest chains in F). have the form: A.T J Ml.(a*l+b) 3 Al.(a*1+b)Nc 3 Al.L, for some
a,b,c€ Z.
o The four representation requirements are met:
Apply: Trivial.

eet:
Eauzhciﬂcz) (ay#1o + br) 01=<12,b1§b2
_ ai,b,c ¢c={ay *lg +b;)MNecy MNcae, where
(a2, b1,01) 1 (a2, ba, ) = lo=(b1—-bz)/(az—a1) €Z
(1,0,4) otherwise

Composition: (a1,by,¢1) 0 (az,bs,c2) = ((a1 *az), (a1 * b2 +b1), ((a1 ¥ c2 +b1) 1 c1)). Here it
is assumed that z* T=Txz=z+T=T+z=Tforz € Z] andthat z+ L = L*z =
g4+ Ll=l4+z=LforxzeZ,.

EQU: All representations except that of Al.L are unique. Any two triples in which ¢ = L
represent Al.L. However, equality can still be tested in unit time.

Linear-constant propagation can be also performed on real numbers RI. In this case, the meet
operation is slightly simpler because there is no need to test whether as —a; divides b; — by evenly
— only that as # a1 if by # b;.

7 Although copy-constant propagation can be handled as an IFDS problem — and hence encoded as an IDE problem

with only the functions id and M.l as described in Section 5.4.1 — it is far more efficient to treat it directly as an
IDE problem. (See the discussion in Section 8.1.)
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6 A Demand Dataflow-Analysis Algorithm

In this section, we give a demand algorithm for the IDE framework. The demand algorithm finds
the value for a given symbol d € D at a given supergraph node 7 € N*. The demand algorithm is
similar to the exhaustive algorithm of Section 5. However, in the demand algorithm, the traversals
of G¥ used to compute jump and summary functions are backwards (i.e., edges are traversed from
target to source). Furthermore, whereas in the exhaustive algorithm all jump edges have sources of
the form (s,,d), in the demand algorithm there are two different kinds of jump edges:

e In procedure BackwardComputeJumpFunctions, the target of every jump edge generated is
the demand node (7T, d). These jump edges, which are recorded in the table JumpFnToQuery,
summarize how the dataflow value at a given exploded node affects the value at (7, d).

e In procedure BackwardComputeJumpFunctionsSLRPs, all the jump edges generated have tar-
gets of the form {e,,d). These jump edges, which are recorded in the table JumpFn, summarize
the effects of same-level realizable paths from a node (n,d') to (ep,d), where p is the procedure
containing n.

Given a demand for the dataflow value at exploded node (@2, d), MRP @) is computed by pro-

cedure ComputeExplodedNodeValue, shown in Figure 8, which has two phases:
(i) The jump functions in JumpFnToQuery are computed by the procedure BackwardCompute-
JumpFunctions, shown in Figure 9, during a backwards traversal of Gt
(ii) The meet-over-all-realizable-paths values are computed by the procedure ComputeValues-
ForVisitedNodes, shown in Figure 11. In particular, at the end of this procedure, val (@, d) =
MRP A"

The demand algorithm is a caching algorithm, i.e., the values of JumpFn, SummaryFn, val, and
Nodes WithKnown Values are accumulated across different calls to ComputeExplodedNodeValue. We
maintain the invariant that for exploded nodes in the Nodes WithKnown Values set, the meet-over-
all-realizable-paths value is already stored in val.

The procedure Backward ComputeJumpFunctions, shown in Figure 9, is a dynamic-programming
algorithm that computes jump functions from exploded nodes to the demand node (7, d), for increas-
ingly longer paths. On every iteration of the while loop in lines [5]-{25], a node (n,d) is removed
from the worklist, and procedure Visit is invoked to process some predecessor nt of (n,d). If the
meet-over-all-realizable-paths value of n is known (i.e., n! is in Nodes WithKnown Values), then n! is
inserted into the set SourceNodesRelevantToQuery. (In phase (ii), procedure ComputeValuesForVis-
itedNodes starts from nodes in SourceNodesRelevantToQuery and goes forward, computing values
for successors.) If the meet-over-all-realizable-paths value of n! is not yet known, a better approxi-
mation to JumpFnToQuery(n!) is computed (lines [31]-[34]). If JumpFnToQuery(n?) changes, then
nt is placed into Node WorkList to be processed later in the main loop of BackwardComputeJump-
Functions. The node set VisitedNodes accumulates the exploded nodes that have been processed.

The procedure BackwardComputeJumpFunctions employs the procedure BackwardCompute-
JumpFunctionsSLRPs to compute summary edges on demand. BackwardComputeJumpFunction-
sSLRPs is the “dual” of ForwardComputeJumpFunctionsSLRPs, which appears in Figure 5. Back-
wardComputeJumpFunctionsSLRPs starts from the exit node of a procedure and progressively com-
putes jump functions for longer and longer same-level realizable paths leading to the exit node.

Unlike ForwardComputeJumpFunctionsSLRPs, BackwardComputeJumpFunctionsSLRPs is able
to make use of a technique for “short-circuiting” the computation of summary functions: Because
M.L is the least element of the domain of micro-functions, if BackwardComputeJumpFunction-
sSLRPs ever discovers a jump edge whose source is of the form (n,A) -+ (ep,d1), there is no need
to process any more jump edges to node (ep,d;). Therefore, on discovering such an edge, Back-
wardComputeJumpFunctionsSLRPs inserts the jump function Al.L into JumpFn({sp, A) — (ep,d1))
and into the worklist (lines [28]-[31]). Furthermore, when a jump edge (n,dz) — (ep,d1) is taken
out of the worklist (line [4]), it is processed only if it is itself of the form (sp,A) — (ep,d1), or if
JumpFn((sp, A) -+ (ep,d1)) # Al.L.

Procedure ComputeValuesForVisitedNodes, shown in Figure 11, computes meet-over-all-realizable-
paths values in a manner similar to procedure ComputeValues of Figure 7. However, there are a
number of differences:
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declare
G* = (N*, E*): global exploded supergraph
JumpFn: global table of jump functions /* Preserved across calls */
initialization: for all (s,,d'), (m,d) such that m occurs in procedure p and d',d € DU {A} do
JumpFn({sp,d') =+ (m,d)) = N.T
od
SummaryFn: global table of jump functions /* Preserved across calls */
initialization: for all corresponding call-return pairs (c,r) and d',d € DU {A} do
SummaryFn({c,d') = (r,d)) = M.T
od
val: global table of node values /* Preserved across calls */
initialization: for all n € N do
val((n,A)) == L
for all d € D do
val({n,d)) :="T
od od
Nodes WithKnown Values: global node set /* Preserved across calls */
initialization: Nodes WithKnownValues := {{n,A)jn € N*}
JumpFnToQuery: global table of jump functions
initialization: for all n € N* do
JumpFnToQuery(n') := ALT
od
PathWorkList: global set, initially empty
NodeWorkList, SourceNodesRelevantToQuery, VisitedNodes: global node set, initially empty

procedure ComputeExplodedNodeValue((7, d))
begin
BackwardComputeJumpFunctions((7, d))
ComputeValuesForVisitedNodes()
for all n* € VisitedNodes do
JumpFnToQuery(n?) := AL.T
od
end

Figure 8: The demand algorithm.

21



procedure BackwardComputeJumpFunctions((7, )
begin

[1) SourceNodesRelevantToQuery =0

2] VisitedNodes := ()

(3] Node WorkList := {(7, d)}

4 JumpFnToQuery((7, d)) := id

(5] while Node WorkList # § do

[6] Select and remove an exploded-graph node (n, d) from Node WorkList
[7 let f = JumpFnToQuery({n,d))

18] switch(n)

[9) case n is a return-site node of a call node ¢ in p, calling a procedure g:
[10] PathWorkList :=

[11] for each d’ such that (e, d') = (n,d) € E* do

[12] Propagate({eq,d') -+ {eq,d’), id) od

(13] BackwardComputeJumpFunctionsSLRPs()

[14] for each d’ such that e = {¢,d’) — (n,d) € E' do

[15] Visit((c,d"), (7, d), f o EdgeFn(e)) od

[16] for each d' such that f' = SummaryFn{(c,d') = (n,d)) # M.T do
[17] Visit({c,d"), (f,d), f o f')) od endcase

[18] case 7 is the start node of p:

[19] for each call node c that calls p do

[20] for each d’ such that e = (¢,d') = (n,d) € E¥ do

[21] Visit({c, d"), (75, d), f o EdgeFn(e)) od endcase

[22] default:

[23] for each e = {m,d’) such that (m,d') — (n,d) € E' do

(24] Visit((m,d'), (7, d), f o EdgeFn(e)) od endcase

[25] end switch od

end

procedure Visit(n!, (71, d), f)

begin
[26] if n* € Nodes WithKnown Values then
[27] Insert n! into SourceNodesRelevantToQuery
(28] else
[29] if n¥ ¢ VisitedNodes then
[30] Insert n! into VisitedNodes fi
[31] let f' = f 1 JumpFnToQuery(n')
[32] if ' # JumpFnToQuery(n') then
[33] JumpFnToQuery(nt) := f'
[34] Insert ¥ into Node WorkList fi fi
end

Figure 9: Phase I of the demand algorithm.

(Auxiliary procedure Propagate is given in Figure 10.)
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procedure BackwardComputeJumpFunctionsSLRPs()

begin
[1 while PathWorkList # @ do
2] Select and remove an item (n,d2) — (ep,d1) from PathWorkList
[3] let f = JumpFn((n,d2) = {(ep,d1))
[4] if JumpFn({sp,A) = (ep,d1)) # M.L or n = s, and da = A then
15] switch(n)
[6] case 7 is a return-site node of a call ¢ in p, calling a procedure ¢:
[7] for each ds such that (eq,ds) — (n,d») € E' do
[8] Propagate((eq, ds) — (eq,d3), id) od
19] for each ds such that e = (¢, ds) — (n,d2) € E¥ do
[10] Propagate((c, ds) — {ep,d1), f o EdgeFn(e)) od
[11] for each dz such that fs = SummaryFn({c,ds) — (n,dz2)) # Al.T do
[12] Propagate((c, ds) = {ep,d1), f 0 f3) od endcase
[13] case n is the start node of p:
[14] for each call node c in ¢ that calls p with corresponding return-site node r do
[15] for each da,ds such that (c,ds) — (n,d2) € E* and (ep,d1) = (r,ds) € E* do
[16] let fs = EdgeFn{{c,ds) — (n,d2)) and
[17] fa = EdgeFn{{ep,d1) — (r,ds)) and
[18] f = (fs0 fo f5s) N SummaryFn((c,ds) — (r,ds))
[19] if f' # SummaryFn({c,ds) = (r,ds)) then
[20] SummaryFn({c,ds) = (r,d4)) := f’
[21] for each ds such that f3 = JumpFn((r,ds) — (eq,ds)) # M. T do
[22] Propagate({c, ds) — (eq,d3), f3 0 f') od fi od od endcase
[23] default:
[24] for each e = (m, ds) such that {(m,ds) = (n,dz) € E¥ do
[25] Propagate((m, ds) = (ep,d1), f 0 EdgeFn(e)) od endcase
[26] end switch od fi
end
procedure Propagate({n, d2) — {ep,d1}, f)
begin

27 let f' = f N JumpFn({n,d2) — (ep,d1))
28] if f' = ML and dz = A then n := s, fi

29] if ' # JumpFn((n,dz) — (ep,d1)) then
30] JumpFn((n,dz) = (ep,d1)) == f'
31] Insert (n,d2) —+ (ep,d1) into PathWorkList fi

end

Figure 10: The algorithm to compute jump functions for same-level realizable paths on demand.
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procedure ComputeValuesFor VisitedNodes()

begin
Node WorkList := SourceNodesRelevantToQuery
while Node WorkList # 0 do
Select and remove an exploded-graph node (n,d) from Node WorkList
let v = val{{n, d))
switch(n)
case n is a call on ¢ in p with a corresponding return-site node 7:

end

for each d' such that e = (n,d) — (s5,d') € E¥ A (s4,d') € VisitedNodes do
PropagateValue ({sq,d'), EdgeFn(e)(v)) od

for each d’ such that e = (n,d) — (r,d') € E* A (r,d') € VisitedNodes do
PropagateValue((r, d'), BdgeFn(e)(v)) od

for each d’ such that f = SummaryFn({n,d) = (r,d')) # ALT A (r,d') € VisitedNodes do
PropagateValue({r,d'}, f(v)) od endcase

case n = ep: skip endcase
default:

for each (m,d') such that e = (n,d) — (m,d') € E' A (m,d') € VisitedNodes do
PropagateValue({(m, d'), EdgeFn(e)(v)) od endcase

] end switch od
[18] Nodes WithKnown Values = Nodes WithKnown Values U VisitedNodes

procedure PropagateValue(n*, v)

begin

{19] let v/ = v Mwal(n¥)

[20] if v/ # val(n') then

[21] val(n?) == o'

[22] Insert n! into Node WorkList i

end

Figure 11: Phase II of the demand algorithm.

o ComputeValuesForVisitedNodes starts from the set of nodes SourceNodesRelevantToQuery,
rather than from the single exploded node (s g4, A)-

o ComputeValuesForVisitedNodes only computes values for the nodes in VisitedNodes. This is
done in order to decrease the running time for processing a single demand.

o ComputeValuesForVisitedNodes involves only one phase. In contrast, ComputeValues has two
phases: in the first phase it computes meet-over-all-realizable-paths values for all call and start
nodes; in the second phase it computes meet-over-all-realizable-paths values for all other nodes.

Example 6.1 Consider the call ComputeExplodedNodeValue({n3, z)) for the exploded graph shown
in Figure 4. The following jump and summary functions are computed by BackwardComputePath-

Functions:

SummaryFn({nl, A)

JumpFnToQuery((n3, )
JumpFnToQuery((n2, z)
JumpFn({ep, z) = (ep, T)
JumpFn({n9,a) = (ep, )
JumpFn({n8,a) -+ (ep, T)
JumpFn({n7,a) = (ep,T)
JumpFn((n6,a) — (ep,
JumpFn({n5,a)
JumpFn((n4,a)
JumpFn((sp,a)
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The following values are computed by ComputeValuesForVisitedNodes

val(n2,z) = -9
val(n3,z) = -9

The reader may wonder why ComputeValuesForVisitedNodes is called to compute values for all
visited nodes, when MRP (.3 can simply be computed as

JumpFnToQuery(n*)(val (n?)) (10)
nteSourceNodesRelevant To Query

at the end of BackwardComputeJumpFunctions. This simpler computation can be performed if the
goal is an algorithm tailored to the task of answering a single demand. The algorithm as presented
is tailored for better performance on a sequence of demands: Procedure ComputeValuesForVisit-
edNodes is invoked to make sure that the meet-over-all-realizable-paths value is known for all nodes
visited during the call on BackwardComputeJumpFunctions. Consequently, on subsequent calls to
BackwardComputeJumpFunctions — to satisfy later demands — these nodes need not be re-visited.

Our demand algorithm is designed so that it has the same worst-case asymptotic complexity as
the exhaustive algorithm of Section 5 when the sequence of demands consists of all N ¥ nodes: In
particular, the time is bounded by O(ED?) for efficiently representable IDE instances.

Because a dataflow value at one point might depend on all other values at all other points, theo-
retically, the worst-case asymptotic complexity of the demand algorithm is O(ED?), even for a single
demand. (This is true even if MRP @) is computed immediately at the end of BackwardCompute-
JumpFunctions via (10).) However, in the experiments discussed in Section 7, the demand algorithm,
used to demand values for all uses of scalar integer variables, was faster than the exhaustive algorithm
in all cases.

7 Experiments

We have carried out several experiments to determine the feasibility of our proposed algorithms.
Three dataflow-analysis algorithms were used in the experiments:
Precise Ezhaustive

The exhaustive algorithm of Section 5, which considers only realizable paths in Gt
Precise Demand

The demand algorithm of Section 6, which also considers only realizable paths in G,
Naive Ezhaustive

An exhaustive algorithm that considers all paths rather than just the realizable paths. This

algorithm is safe, but may be less accurate than the precise algorithms. For example, for

the program in Figure 1, the Naive Exhaustive algorithm would not identify variable z as a

constant at the print statement in procedure main.
The three algorithms were implemented in C and used with a front end that analyzes a C program
and generates the corresponding exploded supergraphs for copy-constant propagation and linear-
constant propagation (for scalar integer variables).®

The study used 38 C programs; some came from the SPEC integer benchmark suite [SPE92] and
some were standard UNIX utilities. Figure 12 gives information about the characteristics of the test
programs. The second column indicates the code size (lines of C source code after the C preprocessor
has been applied and blank lines removed). The third column gives the number of uses of scalar
integer variables.
Tests were carried out on a Sun SPARCstation 20 Model 71 with 64 MB of RAM. We used

each of the three algorithms to perform copy and linear-constant propagation on each of the 38

81n the experiments, pointers were handled conservatively: Every call via a procedure-valued pointer was considered
to be a possible call to every procedure of an appropriate type that was passed as a parameter or whose value was
assigned to a variable somewhere in the program. Every assignment through a pointer was considered to conditionally
kil all variables to which the “&” operator was applied somewhere in the program; all uses through pointers were
considered to be non-constant.
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# of Uses
Example Lines Ofnfggg‘r
Variables

diff.difth 303 137
genetic 336 150
allroots 427 70
ul 451 168
compress 657 288
stanford 665 570
clinpack 695 402
travel 725 200
lex315 747 197
sim 748 1357
mway 806 647
pokerd 1099 475
ansitape 1222 293
loader 1255 251
gec.main 1285 363
voronoi 1394 150
ratfor 1531 515
live 1674 833
struct.beauty 1701 338
diff.diff 1761 663
xmodem 1809 519
compiler 1908 594
learn.learn 1954 199
gnugo 1963 952
triangle 1968 2154
football 2075 1724
dixie 2439 310
eqntott 2470 939
twig 2555 356
cdecl 2577 244
lex 2645 1402
patch 2746 899
assembler 2994 355
unzip 3261 920
tbl 3462 1500
gee.cpp 4061 927
simulator 4239 928
i 6054 431

Figure 12: Information about the 38 test programs.
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Example Naive Exhaustive Precise Exhaustive Precise Demand
Copy Linear Copy Linear Copy Linear
consts | time | consts | time | consts | time | consts | time | time time
diff.difth 1 0.19 1 0.19 1 0.53 1 0.60 0.17 0.17
genetic 0 0.09 0] 0.10 0] 0.27 0 0.31 0.12 0.12
allroots 10 0.19 10| 0.19 10 0.52 10 0.58 0.10 0.10
ul 2 0.26 2 0.26 2 0.63 2 0.72 0.37 0.40
compress 18 1.04 18 1.06 18 2.59 18 2.91 0.97 0.98
stanford 15 0.49 15 0.53 15 1.35 15 1.54 0.31 0.32
clinpack 123 0.61 129 0.63 131 1.57 137 1.79 0.38 0.37
travel 27 1 0.39 31 0.38 36 1.03 39 1.13 0.24 0.25
lex315 3 0.55 3 0.57 3 1.56 3 1.75 0.33 0.34
sim 4 0.86 41 092 4 2.41 4 2.71 1.68 1.49
mway 7 1.67 7 1.66 7| 4.56 7 5.38 1.71 1.82
pokerd 0 0.95 0 0.96 0 2.47 0 277 0.90 0.96
ansitape 5 2.01 ) 2.03 5 5.30 5 5.96 2.18 2.22
loader 10 1.34 10 1.36 10 3.36 10 3.74 0.67 0.66
gee.main 12 1.50 12 1.56 12 4.14 12 4.43 1.50 1.56
voronoi 0 0.94 0 096 0 2.58 0 2.73 0.73 0.77
ratfor 4 1.09 4 1.11 4 2.93 4 3.12 2.29 2.46
live 11 2.09 11 2.11 11 5.30 11 5.98 0.88 0.90
struct.beauty 7 1.52 7 1.57 7 418 Ty 477 2.43 2.50
diff.diff 8 4.13 8| 440 8 | 10.66 8 | 12.44 2.35 2.41
xmodem 6 2.83 10 2.85 13 7.25 17 | 8.29 2.51 2.59
compiler 6 1.57 6 1.58 6 5.13 6 5.75 3.37 3.89
learn.learn 2 2.06 2 2.09 2 4.73 2 5.31 2.18 2.29
gnugo 6 1.17 6 1.27 10 2.83 10 3.23 1.25 1.33
triangle 0 1.711 0 1.74 0 4,22 0| 4.79 0.99 1.02
football 0 3.94 0] 420 0] 954 0 | 10.53 4.84 4.98
dixie 7 1.88 7 1.92 7 5.42 7 5.90 1.73 1.76
eqntott 9 2.13 9 2.34 9] 490 9 5.49 1.86 1.94
twig 3 3.49 3| 3.56 3 8.38 3 9.39 2.70 2.92
cdecl 13 1.48 13 1.45 13 3.75 13 4.01 3.28 3.07
lex 4| 471 4 | 518 6 | 12.73 7 | 13.02 9.18 9.59
patch 4 5.47 4 5.71 4| 13.76 4 | 16.32 6.35 6.78
assembler 9 4.89 9| 4.95 9] 1241 941414 2.58 2.65
unzip 9 4.32 9 4.38 12 | 12.36 13 | 13.50 4.65 4.83
tbl 0 4.57 0 4.56 0] 10.14 0| 11.47 5.30 5.91
gee.cpp 15 9.17 15 9.37 15 | 23.85 21 | 27.75 9.39 9.71
simulator 7| 4.67 7 470 711217 7 | 13.09 2.50 2.54
li 1| 12.32 11 12.09 1] 50.27 11 55.78 | 20.60 21,12

Figure 13: Running times and number of constants detected.

programs, recording running times and the number of uses of scalar integer variables that were
detected as constants. This data is presented in Figure 13. The number of constants detected by
each algorithm, reported in columns 2, 4, 6, and 8, respectively, indicates the number of places found
by each algorithm where constants could be substituted for variables to improve the code. In all our
reported results, running times reflect the trimmed mean of five data points (i.e., all experiments
were run five times, and the average running times were computed by discarding the high and low
values). All running times are the sum of “user cpu-time” and “system cpu-time” (in seconds) for
the algorithms once the exploded supergraph is constructed. Boldface is used to emphasize the cases
in which the algorithms did not all detect the same number of constants. (The Precise Exhaustive
and Precise Demand algorithms always detect the same constants; therefore, we have not repeated
that data under “Precise Demand”.)
This data allowed us to make the following comparisons:
e The running times and accuracies of the Naive Exhaustive algorithm versus those of the Precise
Exhaustive algorithm.
e The running times and accuracies of copy-constant propagation versus linear-constant propa-
gation.
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Figure 14: The relative times of the Naive Exhaustive algorithm versus the Precise Exhaustive
algorithm for both copy and linear-constant propagation.

e The running times of the Precise Demand algorithm versus those of the Precise Exhaustive
algorithm.

Comparison 1: Naive Exhaustive vs. Precise Exhaustive

Figure 14 summarizes the relative times of the Naive Exhaustive algorithm versus the Precise Exhaus-
tive algorithm for both copy and linear-constant propagation. Recall that the asymptotic running
time of the Precise Exhaustive algorithm is bounded by O(E MaxVisible®), whereas the asymptotic
running time of the Naive Exhaustive algorithm is bounded by O(E MaxVisible). In our test sample,
we found that solving constant-propagation problems precisely resulted in a slowdown by a factor
ranging from 1.14 to about 6. However, the Precise Exhaustive algorithm found additional constants
in 7 of the 38 test programs (see Figure 13).

Comparison 2: Copy-Constant Propagation vs. Linear-Constant Propaga-
tion

Figure 15 summarizes the relative times for copy-constant propagation versus linear-constant prop-
agation (for both the Precise Exhaustive algorithm and the Naive Exhaustive algorithm). These
results indicate that the overhead for performing linear-constant propagation is relatively minor. At
best, copy-constant propagation is about 9% faster for the Naive Exhaustive algorithm, and about
16% faster for the Precise Exhaustive algorithm.

We also compared the accuracies of copy and linear-constant propagation. In our study, linear-
constant propagation found more constants than copy-constant propagation in 6 out of the 38 test
programs for the Precise Exhaustive algorithm and in 3 out of the 38 test programs for the Naive
Exhaustive algorithm. Furthermore, in 7 out of the 38 test programs, linear-constant propagation via
the Precise Exhaustive algorithm found more constants than copy-constant propagation via the Naive
Exhaustive algorithm. These results are in contrast to previous results reported by Grove and Tor-
czon for numeric Fortran programs [GT93], in which no differences in accuracy were found between
“pass-through parameter” constant propagation (which is even weaker than copy-constant propa-
gation) and “polynomial parameter” constant propagation (which is stronger than linear-constant
propagation). °

9The algorithm used by Grove and Torczon in their study did not necessarily determine precise interprocedural
information because of limitations in the way the algorithm handled “return jump functions”. This may have distorted
their results.
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Figure 15: The relative times for copy-constant propagation versus linear-constant propagation (for
both the Precise Exhaustive algorithm and the Naive Exhaustive algorithm).

Comparison 3: Precise Demand vs. Precise Exhaustive

Figure 16 summarizes the relative times of the Precise Demand algorithm versus the Precise Exhaus-
tive algorithm for both copy and linear-constant propagation. For the Precise Demand algorithm
the times given in columns 10 and 11 of the table in Figure 13 are the total times for a sequence of
demands. However, a demand was not placed at every node of the exploded supergraph; instead, a
demand was placed for every use of a scalar integer variable, since this information is sufficient to
determine all opportunities for replacing variables by constants. (Thus, column three of the table in
Figure 12 gives the number of demands issued for each test program.)

The Precise Demand algorithm was faster than the Precise Exhaustive algorithm on all test
programs; the speedup observed ranged from 1.14 to about 6.

8 Related Work

This paper concerns interprocedural dataflow-analysis problems in which the dataflow information
at a program point is represented by an environment, and the effect of a program operation is
represented by a distributive environment transformer. We have described an algorithm to solve
such problems precisely in polynomial time. In this section, we explain how our ideas and results
relate to previous work.

8.1 The IDE Framework

The IDE framework is based on earlier interprocedural dataflow-analysis frameworks defined by
Sharir and Pnueli [SP81) and Knoop and Steffen [KS92], as well as the IFDS framework that we pro-
posed earlier [RSH94, RHS95, HRS95]. The IDE framework is basically the Sharir-Pnueli framework
with three modifications:
(i) The dataflow domain is restricted to be a domain of environments.
(ii) The dataflow functions are restricted to be distributive.environment transformers.
(iii) The edge from a call node to the corresponding return-site node can have an associated dataflow
function.

Conditions (i) and (i) are restrictions that make the IDE framework less general than the full
Sharir-Pnueli framework. Condition (iii), however, generalizes the Sharir-Pnueli framework and
permits it to cover programming languages in which recursive procedures have local variables and
parameters (which the Sharir-Pnueli framework does not). A different generalization to handle
recursive procedures with local variables and parameters was proposed by Knoop and Steffen [KS92].
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Figure 16: The relative times of the Precise Demand algorithm versus the Precise Exhaustive algo-
rithm for both copy and linear-constant propagation.

As discussed in Section 5.4.1, the IDE framework is a strict generalization of the IFDS framework.
In IFDS problems, the set of dataflow facts D is a finite set and the dataflow functions (which are
in 2P — 2P) distribute over the meet operator (either union or intersection, depending on the
problem). All IFDS problems can be encoded as IDE problems. On the other hand, only some IDE
problems can be encoded as IFDS problems. For example, an IDE problem in which L is infinite
— such as the linear-constant-propagation problem —— cannot be translated into an IFDS problem.
Consequently, this paper strictly extends the class of interprocedural dataflow-analysis problems
known to be solvable in polynomial time.

In addition, even when L is finite, the algorithm presented in this paper will perform much
better than the algorithm for IFDS problems for many kinds of problems. For example, consider
the problem of copy-constant propagation: In any given problem instance, the size of L is no larger
than the number of literals in the program; the IDE version of copy-constant propagation involves
environments of size D, where D) is the set of program variables; by contrast, the set of dataflow
facts for the IFDS version is D x L. This has a substantial impact in practice: For some C programs
of about 1,300 lines that we tested, the IFDS version ran out of virtual memory, whereas the IDE
version finished in a few seconds. (To date, we have run the IDE algorithm — for the more general
linear-constant-propagation problem — on programs as large as 6,000 lines.)

In our previous papers, we showed how IFDS problems could be solved precisely in polynomial
time by transforming them into a particular kind of graph-reachability problem — not an ordinary
reachability problem, but reachability along realizable paths. This transformation yields an efficient
interprocedural dataflow-analysis algorithm because the realizable-path reachability problem can
be solved by an efficient dynamic-programming algorithm. In the present paper, we show how to
generalize these techniques from IFDS problems to IDE problems. In making this generalization,
the following new issues arise:

e Although the transformation we apply to IDE problems is similar to the one used for IFDS
problem, the transformed problem that results is a realizable-path summary problem, not a
realizable-path reachability problem. That is, in the transformed graph we are no longer con-
cerned with a pure reachability problem, but with values obtained by applying functions along
(realizable) paths. (The relationship between transformed IFDS problems and transformed
IDE problems is similar to the relationship between ordinary graph-reachability problems and
generalized problems that compute summaries over paths, such as shortest-path problems,
closed-semiring path problems, etc. [AHU74, CLR90].)

e The algorithm’s efficiency depends on the use of compact representations of the functions that
label edges in (the transformed) IDE problems. For example, in Section 5.4.3 we showed how
the functions that arise in the linear-constant-propagation problem can be represented very
simply using triples of integers.
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The IDE (and IFDS) problems can be solved by a number of previous algorithms, including
the “elimination”, “iterative”, and “call-strings” algorithms given by Sharir and Pnueli and the
algorithm of Cousot and Cousot [CC78]. However, for general IFDS and IDE problems, both the
iterative and call-strings algorithms can take exponential time in the worst case. Knoop and Steffen
give an algorithm similar to Sharir and Pnueli’s “elimination” algorithm [KS92]. The efficiencies
of the Sharir-Pnueli and Knoop-Steffen elimination algorithms depend, among other things, on the
way functions are represented. No representations are discussed in [SP81] and [KS92]; however,
even if the techniques of the present paper are used, because the Sharir-Pnueli and Knoop-Steffen
algorithms manipulate functions as a whole, rather than pointwise, they are not as efficient as the
algorithm presented here.

8.2 Constant-Propagation Algorithms

Our algorithms for solving IDE problems can be used to find precise (i.e., meet-over-all-valid-paths)
solutions for both copy and linear-constant propagation problems in polynomial time. For both
copy-constant propagation and linear-constant propagation, there are several antecedents. A version
of interprocedural copy-constant propagation was developed at Rice and has been in use for many
years. The algorithm is described in [CCKT86]}, and studies of how the algorithm performs in practice
on Fortran programs were carried out by Grove and Torczon [GT93]. The Rice algorithm has two
potential drawbacks that our algorithms do not have:

e The Rice algorithm is not precise for recursive programs. (In fact, it may fall into an infinite

loop when applied to recursive programs.)
e The precise function that captures how procedure p transforms an input environment is

Aenv. rl M{r)(env). (11)
TGSLRP(S,, €p)

However, the Rice algorithm uses only an approximation to (11) (the so-called “return jump
function”). Because of this approximation, the Rice algorithm does not even yield precise
answers for non-recursive programs.
In contrast, the solutions to copy and linear-constant propagation problems obtained with our algo-
rithms are precise for both non-recursive and recursive programs. Our algorithms generate precise
“return jump functions”: In particular, the collection of micro-functions of the form JumpFn((sp, dy—
(ep,d)) represents (11).

An algorithm for precise copy-constant propagation (for both recursive and non-recursive pro-
grams) was given using the IFDS framework by Reps, Sagiv, and Horwitz [RSH94, HRS95]. However,
as discussed in Section 8.1, there is a significant drawback to formulating copy-constant propagation
as an IFDS problem: The running time and the space used both depend on the quantity “number
of literals in the program”.

We.have also shown in this paper how to solve linear-constant-propagation problems, which in
general find a superset of the instances of constant variables found by copy-constant propagation.
Several others have also examined classes of constant-propagation problems more general than copy-
constant propagation [Kar76, SK91, GT93, MS93, CH95].

e Karr used linear algebra to define a safe algorithm for (intraprocedural) affine problems (i.e.,

problems in which relationships of the form z := aiy1 + ... + ayx -+ c are tracked) [Kar76).

e Steffen and Knoop address the more general problem of determining whether a subezpression
(rather than a variable) has a constant value [SK91]. They define a decidable version of the
problem and give an algorithm for the intraprocedural setting. In the case of loop-free code,
the algorithm is optimal.

e Grove and Torczon defined a class of polynomial jump functions [GT93], which are more
general than the linear jump functions used in our work; however, because of limitations in
the way they define “return jump functions”, their algorithm does not necessarily find precise
interprocedural information.

e An algorithm given by Metzger and Stroud can handle statements of the form z := ay +bz+c
[MS93], which is a more general form than can be handled by the IDE framework. (The
environment transformer that corresponds to such a statement, Aenv.envjz — a * env(y) +
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b env(z) + ¢} is not distributive.) However, their algorithm is imprecise; it does not find the
“meet-over-all-valid-paths” solution.

e Carini and Hind defined an algorithm for interprocedural constant propagation (extending the
work of Wegman and Zadeck [WZ85]) that can handle non-distributive dataflow functions (and
thus is more general than our algorithm) [CH95]. However, since they do not propagate values
from called functions back to calling functions, their results are even less precise than our Naive
Exhaustive algorithm.

Wegman and Zadeck [WZ85], building on earlier work by Wegbreit [Weg75], examined the interaction
between constant propagation and dead-code elimination. This issue is not addressed in our work.

8.3 Demand Dataflow-Analysis Algorithms

Section 6 presented a demand algorithm for solving IDE problems, and the experiments reported in
Section 7 indicate that for constant-propagation problems in C programs the demand algorithm is
superior to the exhaustive algorithm (at least in programs of up to 6,000 lines). The relationship
between the demand algorithm of Section 6 and the exhaustive algorithm of Section 5 is similar to
the relationship that holds for IFDS problems between the demand algorithm of [RSH94, HRS95)
and the exhaustive algorithm of [RSH94, RHS95).

One approach to obtaining demand algorithms for interprocedural dataflow-analysis problems was
described by Reps [Rep94c, Rep94a]. Reps presented a way in which algorithms that solve demand
versions of interprocedural analysis problems can be obtained automatically from their exhaustive
counterparts (expressed as logic programs) by making use of the “magic-sets transformation”, a
general transformation developed in the logic-programming and deductive-database communities for
creating efficient demand versions of (bottom-up) logic programs [RLK86, BMSU86, BR&7, UllgY).
Reps illustrated this approach by showing how to obtain a demand algorithm for the interprocedural
locally separable problems. Subsequent work by Reps, Sagiv, and Horwitz extended the logic-
programming approach to the class of IFDS problems [RSH94, RHS95]. (The latter papers do not
make use of logic-programming terminology; however, the exhaustive algorithms described in the
papers have straightforward implementations as logic programs. Demand algorithms can then be
obtained by applying the magic-sets transformation.)

A different approach to obtaining demand versions of interprocedural dataflow-analysis algorithms
has been investigated by Duesterwald, Gupta, and Soffa [DGS95]. In their approach, for each query
a set of dataflow equations is set up on the flow graph (but as if all edges were reversed). The flow
functions on the reverse graph are the (approximate) inverses of the forward flow functions. These
equations are then solved using a demand-driven fixed-point-finding procedure.

The demand algorithm of Section 6 has the following advantages over the algorithm given by
Duesterwald, Gupta, and Soffa:

(1) Their algorithm only applies when L has a finite number of elements, whereas we require only
that L and F be of finite height. For example, linear-constant propagation, where L has an
infinite number of elements, is outside the class of problems handled by their algorithm.

(2) Instead of computing the value of d at n, their algorithm answers queries of the form “Is the
value of d at n 3 [?” for a given value | € L. In linear-constant propagation, there is no way
to use queries of this form to find the constant value of a given variable.

(3) When restricted to IFDS problems, the worst-case cost of the Duesterwald-Gupta-Soffa tech-
nique is O(E D 2P). In contrast, the worst-case cost of our demand algorithm is O(E D?®).

Duesterwald, Gupta, and Soffa also give a specialized algorithm that, for copy-constant propagation,
remedies problems (2) and (3).
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