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Abstract. We present a necessary and sufficient condition for the convergence of the
GMRES(m) method. We present examples illustrating situations in which GMRES(m)
stalls, i.e., fails to converge. Several theorems are proved regarding the convergence of

GMRES(m) for special classes of matrices.
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1. Introduction.

The GMRES method was introduced by Saad and Schultz [8] as an iterative method
to solve linear systems of equations. The advantage of the GMRES method over methods
such as the conjugate gradient method and many other methods is that it can be applied
to systems for which the matrix of coefficients is not symmetric or positive definite.

The GMRES method, as a Krylov space method, is a process that starts with a
vector z generating a sequence of vectors and then chooses the update y — z from the
span of this sequence so as to reduce the residual. In practice, to limit the storage used,
GMRES is replaced by GMRES(m) in which at most m vectors are generated to span the
Krylov space. The GMRES(m) method consists of regenerating m vectors and choosing
the update within the span of these vectors.

However, GMRES(m) has the disadvantage that it can stall. That is, for some initial

vectors the best update is the zero vector. In this paper we state the precise conditions
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that determine the stalling of GMRES(m). We also present a convergence estimate for
GMRES(m) showing a geometric rate of convergence.

By convergence of GMRES(m) we mean that repeated application of the GMRES(m)
algorithm produces a sequence of vectors that converge to the solution of the linear system
and that this convergence holds for all initial vectors.

Several variants of GMRES(m) have been presented with the intent of reducing the
likelihood of stalling. Among these are the FGMRES(m) method of [7], the DQGMRES
method of [9], the GMBACK algorithm of [5], the GMRESR(m) method of [10], and
the method of Joubert [4]. The methods of this paper should useful in analyzing the
convergence of these methods. Another useful way of considering GMRES(m) from a
theoretical point of view is presented in [3].

We begin in section 2 with a basic description of the GMRES(m) method. In section
3 we present and prove the basic theorem on the stalling of GMRES(m). Several examples
illustrating stalling are presented in section 4 and several general converge conditions are

presented in 5. A convergence estimate is given in section 6.

2. Description of GMRES(m).

We now present the description of the GMRES algorithm to solve Az = b. This first
presentation of the algorithm will be for ease of understanding.

We consider the linear system Az = b where A is a nonsingular N x N matrix with
real entries. For some applications we can consider A to have complex entries, in which
case we use the Hermitian inner product on cV.

We start with a description of the GMRES(m) method. There are several computa-
tional short cuts that we ignore in this description.

The algorithm starts with an initial iterate 2°. The residual r® = b— Az? and the unit
vector v° = r0/||r%|| are computed.

Iterate: For j =0,...,m—1

1. Compute Av7.
2. Compute h; ; = (Av?,v*), for i =0,...,].
3. Compute

j
oIt = Av? = hy 0t (2.1)
3=0



and set hjy1 ;= |67
If hjt1,; = 0 or is sufficiently small, go to step Q withg=7+1
4. Compute vi+t =63+ /hjy ;.
End of loop on j.
Set g = m.

Stopping.

Q. Construct the new solution z! given by

g—1
ot =10+ Z ;v (2.2)
1=0

so that ||p — Az?|| is minimal.

The success of GMRES(m) as a computational procedure depends on having an effi-
cient means of solving the least squares problem (2.2). The solution of the least squares
problem depends on the Arnoldi relations and is discussed in [8].

We begin by deriving the Arnoldi relation. From the equation (2.1), we obtain

J Jj+1
Avd = hj_*.l,j’l}]'}.l -+ Z hi,j’l}z = Z hi,jvi . (23)
=0 =0
We form the matrices V;, whose columns are the vectors w9, ..., v*" 1. Note that the V4 are

orthogonal matrices. (When the index on a matrix or vector is related to the number of
columns or components, as with V, we adopt the convention used in the language C, for
index k, the indexing on the columns or components starts at 0 and runs up to k — 1.)

The relation (2.3) can then be written as

AV = Viyah;
where h; is the vector with components ho,j, hijs---shjr1,;. If we form the (k+1) x k
matrix
hoo hoi --- hok-1
hio hii ..o hig-1
Hy, = 0 ha1 ... hag-1
0 0 ... hpg-1



then we obtain the Arnoldi relation
AV = Vi1 Hy (2.4)

The matrices Hy, have upper Hessenberg form, that is, all elements are zero below the first
subdiagonal.
We use the Arnoldi relation (2.4) to modify the minimization problem. Let a™ be the

vector with components ag, @1, ..., ®m-1. Then from (2.2) we have

b—- Azt =b—-A (:vO + Zaivi>
i=0

=b— A(z°+ Vma™)
=b— Az® — AV,,a™

=70 — AV,a™ .

Let B = ||r9]| and let e® be the vector all of whose components are 0 except for the first
component, which is 1. (The dimension of ¢? need not be specified.) Then, from the

definition of v°, we have 0 = Bv° = BV,e". So we have by the Arnoldi relation

b— Azl =10 — AV,a™ = BViny1€® — Vg1 Hma™
= Vm+1 (ﬁeo - Hma'm)
and so
b — Az = |Vins1 (Be® — Hma™) || = |8’ — Hma™|

since Vi, 41 is an orthogonal matrix.
This shows that the minimization problem is reduced from a problem with the N x N
matrix A to one involving only the (m + 1) x m matrix Hy,. This makes the problem far

more tractable. The system to solve is
Hpo™ = Be° (2.5)

where the meaning of ~ is that the two sides are as close as possible in the sense of least

squares.



3. Stalling of GMRES(m).

The stalling of GMRES(m) occurs when the least squares solution of (2.5) is the
solution a™ = 0. To see when this occurs we look at the structure of the linear system

(2.5). We now look at the particular case of m = 3. The system is

hoo ho1 hoz o B
hio hii hie ao 10
0  he1 hap al ~lo0
0 0 hgpe 2 0

A quick inspection shows that if the first row of the matrix H,, contains only zero entries,
then the optimal solution is the zero solution. Moreover, if any element of the first row,
say ho is nonzero, then nonzero values ¢y can be chosen so that the the least squares
solution is less than 8. An examination of when the first row of the H matrices can be

identically zero leads us to the following theorem.

Theorem 3.1. A necessary and sufficient condition for GMRES(m) to converge, that

is, not stall, is that the set of vectors
Vm'—:{'l}:('l)’_Aer)::O f()r 1§]§m}

contains only the vector 0.

Proof.
If the initial vector v° is in V,,, then it is easy to see that the first row of the matrix

H,, is zero. Indeed, koo = (v°, Av®) =0, and so v = Av®/||Av®||. We have also
o = (0, dv') = (u°, 420%) /[ Av®]| = 0.

Each successive v/ for j larger than 1 is a linear combination of the vectors ARy for k
strictly greater than 0 and k at most j. Thus all inner products (v9, Av?) are zero.
If the first row of H,, is zero, then the least squares problem has the solution a™ = 0.

Indeed, the optimal solution is the solution to
HLH..a™ = Hye’ = 0

which has the solution a™ = 0.



Conversely, if Vm = {0}, then for each vector v9 there is some element hg ; that is
nonzero. By choosing a; = € and all other ax = 0 we have, for € to be sufficiently small

and with the sign of ho ;,
| Hna™ — Be®||? = (eho; — B) + O(e)? < B°

(recall that 3 is positive). Thus the least squares solution results in a solution with residual

norm less than 8 and GMRES(m) does not stall. 1

In [1], it is observed that the stalling of GMRES(m) is related to the singularity of
the matrix H’, formed from the first m rows of Hp. As Theorem 3.1 shows, stalling is
equivalent to this matrix having the first row be identically zero. If H), is singular, but
the first row of H! is not identically zero, then the algorithm will not stall, and in fact it
converges in that step.

The condition that V., contain only the zero vector can be viewed as a generalization
of the matrix A being positive definite. Indeed, V1 = {0} is equivalent to A being either

positive definite or negative definite.

4. Examples.

In this section we present two examples of matrices of dimension N with N > m for

which GMRES(m) fails to converge. This first example has been presented by Brown in

[1].

Example 1.
We consider an orthonormal set of p vectors vk for k = 0,...,p — 1. The matrix
P is the permutation matrix corresponding to v° — ol = v o = Pl 0

Define P to be the identity on the orthogonal complement of the span of the v/. Because
(v°,v7) = (v°, Piv0) for j =1,...,p— 1 we see that GMRES(m) will fail to converge with
initial residual v° for matrix P if m is less than p.

Notice that the minimal polynomial of P is AP — 1.



Example 2.

For the second example we consider (N + 1) X (N + 1) matrices of the form

/(1 =y 0 0 0 0 0\
0 1 -y O 0 0 0
0 0 1 -—v 0 0 0
0o 0 0 1 0 0 0
L L (4.1)
0 0 0 O 1 —y 0
0 0 0 O JR—
0 0 0 0 0 0 1

The condition (z, A¥z) =0for 1 <k <m < N with z = (zo,T1,...,ZN) is then

k

> (=) (2) I\gzjzﬂ.e = 0.

£=0

By taking z to be a unit vector, and by comparing successive conditions, we see that these

conditions are equivalent to

N-¢
Z TjTjte = vyt for 0<E£<m. (4.2)
j=0

We now show that the system (4.2) has nontrivial solutions for « sufficiently large.

Thus for ~ sufficiently large, GMRES(m) will not converge for the matrix (4.1).

Theorem 4.1. There is a constant T'(m), depending only on m such that for v > I'(m)

and for m < N the system of equations (4.2) has solutions.

Proof.
We consider the nonlinear system F(z(e)) = b(e) where F' and b(e) are defined by

N-¢
Fy(z) = Z TiTjpe = et for >0
J=0
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For ¢ = 0 we have the solution z¢(0) = 1 and z,(0) = 0 for £ > 0. If we set z; = 0 for
m < j < N we have m + 1 equations in the remaining m + 1 unknowns. The Jacobian of
F at this ¢ is the identity matrix. Thus there is a solution z for all vectors b near to b(0),
see e.g., Buck [2] sect. 5.7. In particular, for ¢ sufficiently small there is a solution z(e)

corresponding to b(e). By taking v = ¢~! there is a solution to the system (4.2). 1

This second example is interesting because it shows that the stalling phenomena is
not dependent just on the eigenvalues, but on the structure of the eigenspace.

We think that these two examples illustrate the two basic reasons that GMRES(m)
stalls. Either the eigenvalues are too scattered around the origin or the matrix is too far
from being a normal matrix or both of these conditions hold together. These ideas are
illustrated by the theorems in the next section. The paper [6] by Nachtigal, Reddy, and
Trefethen contains several test matrices for GMRES and other methods. Those that cause

difficulty for GMRES(m) have the basic form of the above examples.

5. Special Cases.

In this section we present several special classes of matrices for which GMRES(m)

converges. These results are all applications of Theorem 3.1.

Theorem 5.1. If A is a symmetric matrix or if A is a skew-symmetric matrix, then
GMRES(2) converges.

Proof.
We have for all nonzero vectors v
(v, A%) = £(v, AT Av) = +||Av]|2 # 0
where the plus sign corresponds to the symmetric case, and the minus sign to the skew-
symmetric case. |

We also state a theorem related to the first example in section 4. For the next two

theorems we can allow A to be a matrix with complex entries.

Theorem 5.2. If A is a normal matrix and p(-) is a polynomial of degree m that maps

the spectrum of A into the right half plane, then GMRES(m) converges for A.



Proof.
Let p(p) = Z;’f__o aji’ and let v be a nonzero vector decomposed as Zgzl vy Where

v is an eigenvector of A with eigenvalue A,. Then

m N
(v,p(A Za] v, Alv) = Zp()\a)ﬂvanz
_7:_—_0 a=1
So
Re Zaj(v,AJ = Re Zp lvall? > 0.
Jj=0

Hence, for each nonzero vector v some of the inner products (v, A¥v) must be nonzero and
so GMRES(m) will converge. 1

Theorem 5.1 follows from Theorem 5.2 using the polynomial p? for the symmetric
case and —p? for the skew case. Using the special polynomial u™ we have the following

result.

Theorem 5.3. Let A be a normal matrix. If there is an integer m and a real number §

such that each eigenvalue of A is in one of the sets

2k
Ik—{z—'-rew |9——-——7£—v6] _7r__} for k=0,1,...,m—1,
m 2m

then GMRES(m) converges for all initial vectors.
Proof.
If A; is in Z, then A7 is in the set
{z:rew : 10 — 2km —md| < g} = {Z=’I‘6i6 10 —md| < g}
Thus the real part of e““im‘s)\;-n has positive real part and so by Theorem 5.2 with the
polynomial e~*™%™ GMRES(m) will converge for A.

For general matrices, i.e., not necessarily normal, we have the next results.

Theorem 5.4. A sufficient condition for GMRES(m) to converge, that is, not stall,
is that there is a polynomial g(-) of degree m with g(0) = 0 such that g(A) is positive
definite.



Proof.
If g(t) = ZJ * L g;t’ is a polynomial such that g(A) is positive definite, then for each

nongzgero vector v

0 < (v,9(A)) = Zgj v, Alv)
j=1

and thus some of the inner products (v, A%v) must be nonzero, and by Theorem 3.1,
GMRES(m) converges. 1

Theorem 5.5. If the minimal polynomial of A has degree m, then GMRES(m) con-

verges.

Proof.
Let p(t) = Z?_—o ajtj be the minimal polynomial of A. Since A is nonsingular, ag is

not zero. So for any nonzero vector T

0 # aollel* = =) a;(z, A’z)
j=1

Thus for each vector x some of the inner products (z, A7z) must be nonzero. Thus

GMRES(m) converges. 1

Theorem 5.6. If GMRES(m) converges for A, then GMRES(m) converges for AT,

Proof. The proof follows from Theorem 3.1 and the observation that (v, AJv) =
(v, (AT)7v). B
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6. A Convergence Estimate.
We now prove a convergence estimate for GMRES(m).

Theorem 6.1. IfrF is the residual after k steps of GMRES(m), then
17112 < (1 = pm)* Il (6.1)

where

m-—1/ 0 1
Pm = pm(A) = min (Zj:O (’U ,A’U])2>
lvll=1

o |lAvi|2

and the vectors v? are the unit vectors generated in the GMRES procedure starting with

9 = .

Notice that pm = 0 is equivalent to the necessary and sufficient condition for stalling
presented in Theorem 3.1.
Proof.

The least squares solution to (2.5) has a smaller residual than does the solution to
H,hoo ~ Be° (6.2)

where hg is the column vector with entries ho j. The solution to (2.5) with v = ahyg is the

solution of
min [(aP -8+ azQz]

where

k—1
P=7 hj,
=
and
2
k k—1
@ = | > hijho;

i=1 \j=i-1

At the minimum
P
gL

11



and
QZ
P?+Q?’

We now estimate the expression Q2/(P? + Q?) = (Q?/P?)/(1+ Q?/P?).

Q? _ Zf:l (Z —im1 P ,JhOJ)Z

Irt)* < A

P2 k—1
P (32520 h,)?
~k 2 2
< Li::l (Z je==g—1 h’z,] Z =i—1 h’ ) < 22_12 —=i—1 1,,_7
—— k —

by the Cauchy-Schwartz inequality. Continuing by interchanging summations

k—1 j+1
Qz < ZZ——OZ =f— 1 _ Zj:() 'Z:_-.() h‘zz,j

D2 = k-1 k—1
P Zy:O h(z),j Z]:O h’g,]
k—1
. Z ( 7+1,7 + ZJ-— 1 )
= =1 .
=0 155

Using the relation, from (2.1), see also [8],

J
Pigr; = A2 =D R
1=0

we have
e ] e e 1 PR v VG
h X% b, Sk
Thus, using ho,; = = (v, Av?),
@ P L oy YKo (v, Avd)?
P2 4+ Q? P? +Q? 1+Q2/P? = Z?;é || Avi||2

and by taking the maximum of the right-hand side of this expression, we have (6.1). This

proves the theorem. §

The convergence estimate of Theorem 6.1 is not very useful since the value of py, is not

easily obtainable in most cases. However, it does show that if GMRES(m) does converge,

it does so with a geometric rate of convergence. Also, it relates the necessary and sufficient

condition of Theorem 3.1 with the rate of convergence.
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7. GMRES(m) and Preconditioning.

Frequently, GMRES(m) is used with preconditioning, that is, a matrix B is used to

modify the original linear system to either
(B~'A)z = B™'b,

which is left preconditioning or
(AB~Y)Bz = b,

which is right preconditioning. The matrix B is called the preconditioning matrix and it
is chosen so that the matrices B~*A or AB~! have nice properties with respect to the
iterative method. Preconditioning is a common practice to increase the speed of iterative
procedures such as GMRES(m) and other conjugate-gradient-like methods.

The condition that the left preconditioned system will stall is that there is a nonzero

solution v to
(v,(B~'A)Yv) =0 for 1<j<m, (7.1)

and the condition that the right preconditioned system will stall is that there is a nonzero

solution v to
(v,(AB™)v) =0 for 1<j<m. (7.2)

By using left and right preconditioning on alternate GMRES(m) steps, the condition
that the iterative process stall is that there must be a nonzero vector v satisfying both (7.1)
and (7.2). Because this involves 2m conditions, we see that the alternating of the left and
right preconditioning may be less likely to stall than is either left or right preconditioning
by itself. Of course, in the trivial case with B the identity matrix there is no advantage
to this strategy. However, in real computation in which the matrix B is a reasonable
preconditioner it is quite likely that the alternating of the preconditioning will prevent
stalling in many situations.

The matrices B~1A and AB~! have the same eigenvalues, however, the relations (7.1)
and (7.2) will, in general, be independent conditions. With the left/right preconditioning
the estimate (6.1) is replaced by

17212 < ([ = pm (B~ A1 = pm(AB™O]) 172 .

13



However, even if both pp,(B~'A) and pp,(AB™!) are zero, alternating the preconditioning
will still converge if there are no nontrivial vectors satisfying both (7.1) and (7.2).

The flexible GMRES algorithm (FGMRES) of Saad (7] is different in approach to
that suggested here in that it changes the preconditioner within the GMRES(m) steps. It
should be possible to extend the results of this paper to the FGMRES algorithm and other
suggested variants of GMRES(m).

8. Conclusions.

We have given a necessary and sufficient condition for the GMRES(m) method to
converge. A convergence estimate has also been established. We have applied the conver-
gence condition to obtain sufficient conditions for convergence for some special classes of
matrices. Further research is being done on extending the methods of this paper to some
of the variants of GMRES.
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