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Abstract
We present a convergence result for chaotic asynchronous relaxation that is a mod-
ification of the result of Chazan and Miranker. The modification is a restriction to the
case of global memory or fast communication. The extra restriction is that each update is

based on a prior state of the system, rather than based on prior sub-states of the system.
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1. Introduction.

In their seminal paper [5] Chazan and Miranker studied chaotic relaxation, now usually
called asynchronous relaxation, for the solution of linear systems. In chaotic relaxation
the order in which components of the solution are updated is arbitrary and the past values
of components that are used in the updates are also selected arbitrarily. This is meant to
be a model for parallel computation in which different processors work independently and
have access to data values in local memory.

The chaotic model of Chazan and Miranker is interesting because of the great gen-
erality allowed and because there is a simple necessary and sufficient condition for the
system to converge for chaotic updates. The model of Chazan and Miranker is an extreme
model in that many real systems place more restrictions on the process than Chazan and
Miranker do.

Much of the paper [5] deals with the special case of periodic relaxation, in which there
is a well-define order to the process of updating. Much of the work that has followed that
of Chazan and Miranker extends the analysis of periodic relaxation, see, for example, [4]
and [6]. At the end of [5] Chazan and Miranker prove an interesting very general theorem

on convergence for chaotic iteration. In this paper we present, we believe, the first theorem
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that modifies their general theorem for chaotic relaxation. Our version of chaotic relaxation
is more restrictive than is that of Chazan and Miranker.

The structure of this paper is as follows. Section 2 presents the chaotic relaxation of
Chazan and Miranker with a discussion of our modification. Both the general theorem of
Chazan and Miranker and our new result are stated. Section 3 presents the proof of our

theorem and Section 4 presents some conclusions.

2. Chaotic Asynchronous Relaxation.

We consider the solution of linear systems of the form
(I-BZ=d (2.1)

where [ is the N by N identity matrix, B is an N by N matrix, d is the data vector, and
i is the vector of unknowns. Both # and d have N components. The iteration begins with
an initial vector £° and proceeds by computing successive iterates 7.

We first establish some notation. The spectral radius of a matrix A will be denoted
by p(4). We define the absolute value of a vector Z to be the vector whose components are
the absolute values of #, and we denote the absolute value of ¥ as |Z]. The absolute value

A|. The Buclidean norm of a vector

of a matrix 4 is defined similarly and will be written
T will be written as ||Z]|.

Chaotic relaxation as defined by Chazan and Miranker can be specified in terms of
two functions, an update function u(-) and a shift function s(-,-). For each nonnegative
integer v the component to be updated at step v is given by u(v). For the update at step
v the value of the mth component used in the update is the value at s(v, m) steps back.

This can be expressed as
= TN et T e for E=u()
it =y for € # u(v).
The standard Jacobi and Gauss-Seidel methods of solution are particular cases in

which there is a repeating pattern to the updating of components. For example, the

Jacobi method can be described by
u(v) =(r mod N) + 1
s(v,m) =v mod N,
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and similarly, the Gauss-Seidel method can be described by

u(v) =(v mod N) + 1

s(v,m) =0.

As is well known, a necessary and sufficient condition for the convergence of the Jacobi
method is that p(B) be less than 1. Of interest here are cases where there is no particular
pattern to the order of the updates.

Bertsekas and Tsitsiklis [2, page 435] consider a seemly more general form of asyn-
chronous relaxation in which the function u(-) takes sets as values. All the components in
the set u(v) are updated at step v. However, it is easily seen that this is equivalent to the
chaotic relaxation of Chazan and Miranker under a renumbering of the steps.

The update and shift functions are required to satisfy the following conditions.

Condition 1. The update function u(:) takes on each value ¢ for 1 < ¢ < N infinitely

often.

Condition 2. The shift function is bounded, that is, there is an integer § such that

0 < s(v,m) < 5. For the initial steps to be well defined, we require s(v,m) < v, as well.

Condition 1 is obviously necessary for the process to converge, and Bertsekas [3] has
an example of a non-converging process in the case that Condition 2 fails to hold.
For the general chaotic relaxation as defined here, Chazan and Miranker have proved

the following stability theorem. (See also Bertsekas and Tsitsiklis [2] for a proof.)

Theorem 2.1. A necessary and sufficient condition for the chaotic iteration to converge
for all update functions and shift functions satisfying Conditions 1 and 2 is the condition
p(I1Bl) < 1.

An interesting feature of the definition of Chazan and Miranker is the extreme gen-
erality allowed. We emphasize two features especially. First, if a component is updated
twice, say u(v1) = u(ve) = ¢ with vy < vy there is no constraint on s(vy,m) compared
with s(5, m). A reasonable restriction would be to require more recent data in the update

at v than was used at v1. In particular, one might require

[N}
o]
~

v1 — s(vy,m) < vg — s(va,m) when u(vy)=u(rvs) for vy <ws. (2.

Secondly, for processes in which there is a global common memory or in which there

is some control of the consistency of the data, the update of any particular component
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would be required to use the data at a given state. That is. the function s(-.-) would be
independent of m. In this case the update of component u(r) depends only on the vector

75"}, This condition can be stated as:
Condition 3. The shift function is independent of m.

Here we are interested in considering a modification of the processes allowed by Chazan
and Miranker by considering the Condition 3 along with Conditions 1 and 2. In the
notation of Bertsekas and Tsitsiklis [2] this condition is that le(t) is independent of j.

Our main result is the following theorem.

Theorem 2.2. A necessary and sufficient condition for the chaotic iteration to converge
for all update functions and shift functions satisfying Conditions 1, 2, and 3 is the condition
p(1B]) < 1.

The proof of this result does not follow from the proof of Chazan and Miranker because
the construction of the non-converging sequence in [5] depends heavily on the function s(-, -)
depending on the component of the vector. In fact, the construction of the non-converging
sequence for the restricted case of Theorem 2.2 is more involved than in the general case

of Theorem 2.1.

3. Proof of Theorem 2.2.

The proof that the condition p(|B|) < 1 implies that the restricted processes will
converge follows from the theorem of Chazan and Miranker. However, we include it here

for completeness. The proof of the following lemma is due to Baudet [1].

Lemma 3.1. The condition p(|B|) < 1 implies that there is a value o with 0 < o <1

and a vector p with positive components such that |B|p < ap.

Proof.

Suppose first that |bs.,| > 0 for all components of |B|. Then by Perron’s Theorem
[7, vol. 2, page 53] on positive matrices, the largest eigenvalue of |B| is simple and the
eigenvector has positive values. If 7 is this eigenvector and « is the eigenvalue then |B[p' =
ap, and the theorem is proved in this special case.

If bg., = 0 for some entries of B, consider the matrix B. in which all zero entries
in B are replaced by a small positive value €. Since the spectral radius of a matrix is a

continuous function of the matrix entries, we can choose e small enough so that p(|B:|)
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is less than 1. As in the special case above there is an « and p satisfying |B.|j = ap.

However, we also have |B|p < |B¢|p'= ap. This proves the lemma. 1

Proof of Theorem 2.2.

We first prove that if p(|B|) < 1, then the process is convergent. We consider the
difference between z*, the solution of the system (2.1), and the iterates. Let §* = &* — I".
Using the vector p and value « discussed in Lemma 3.1, we consider the first § vectors in
the process. Since all components of 7 are positive, there is a positive value M such that
|7“] < Mp for 0 < v < 5. Consider any component updated using any of these § vectors,

the update satisfies the estimate

N
et < lbemllyn*@| < aMu
m=1

If vy is the first instance after § for which all the components have been updated, then
|7°1] < aMp. Moreover, |§| < aMp for all v greater than vy. Similarly, if v is the next
instance after v, for which all components have again been updated, then |7*| < «®?Mp
for all v greater than vy. In this way we see that § converges to 0.

We now consider the proof that if p(|B|) > 1, then there is an update function wu(:)
and a shift function s(-) such that the process does not converge. We may assume that
p(B) < 1, since if this is not the case, the Jacobi method does not converge.

Our construction relies on the following simple lemma.

Lemma 3.2. Let B be a matrix with p(B) > 1 and let Z be a non-zero vector such that

BTZ = A\Z with |\| > 1. If X is a vector such that XTZ # 0, then ||[B"X|| is bounded

away from 0.

The proof follows immediately from the relations.

0 < [A" Z7X| = [(BT)"2)TX| = |27 (8" X)| < | Z]||B"X]| .

The construction of a process that does not converge involves the construction of an
auxiliary process that starts from a large set of initial vectors and can be shown to be
nonconvergent. Then we show that there exist nonconvergent processes that start with a
single vector. The auxiliary process starts with a set of P + 1 vectors w” for 0 < v < P.

We construct a process that diverges, starting with these vectors.
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Let @ be an eigenvector of |B| with eigenvalue A, i.e., |B|t' = A7 and let ¥ > 0 and
A> 1.
We begin with a sequence of vectors w” for 0 < v < P for some integer P satistying
the following three criteria.
1. |@¥| = 7.
2. Between successive vectors @' and @' there is precisely one component that changes

sign.
3. For each row of B, there is a @ with the same pattern of signs and a w* with the

opposite pattern of signs. That is, for each ¢ there is some v and some p such that

N N
Z bg,mwrun = Z Ibg,mI’Um = /\Ug
m=1 m=1
and

N N
E be,mwh, = — E b0, m |Um = —Avg.
m=1 m=1

Notice that P must be at least 2V and can be taken to be less than N2. We conjecture
that P can always be chosen proportional to V.

For each m with 0 < m < N, let o, be the sign of lUSn. We first construct vectors
@t for P < v < P+ N. For now we define the update function u(v) and the shift
function s(v) only for v greater than and equal to P. Let { = 1+ (v — P) mod N and then
determine g with 0 < g < P such that @* has the sign sequence of the (-th row of B if

o¢ = 1 or where w* has the opposite sign sequence of the ¢-th row of B if o, = —1. Then

for P<v < P+ N set

u(v) =14 and s(V)=v—p.

With this choice of u(+) and s(-) we have for { = u(v)

N N N
E bg’mwr’/n“s(l/) = E be’mwfn = Oy E ]bg,mlvm = gpAUp = /\w? .
m=1

m=1 m=1

In this way, the vector wF+V is A°.
For v from P+ N up to 2P + N, the update and shift functions are defined as follows.
For v in this range, define u as v — P — N. The vectors w* and wht! differ only in the

sign of one component. Let this component be ¢, we define u(r) = £. We define s(v) in
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this way. If the sign of 7.627‘“ is positive, let 7 with 0 < 7 < P be the index of the vector
@7 that has the same sign sequence as the ¢-th row of B. If the sign of 1 is negative,
let 7 with 0 < 7 < P be the index of the vector @" that has the opposite sign sequence as
the (-th row of B. Then s(v) =v — 7.

With this choice of u(v) and s(v), the vector w**! has the same sign sequence as
W HI=P=N and is, in fact, A 1=~V In this way the vectors " for P+N < v < 2P+ N
are equal to A times the sequence W for 0 <v < P,

For v greater than or equal to 2P + N, the functions u(-) and s(-) are defined by
periodicity with period P + N

We now construct the matrix B and vector Y. The vector ¥ is formed by using the
direct sum of the vectors w” for v =0, ..., P. (The dimension of ¥ is N(P +1).) The rows
and columns of B are indexed by the ordered pairs (i, m) where 0 < yp < Pand1 <m < N.
The first N rows of B are defined using the steps to construct w” for P <v < P+ N

B _{be,m f=P+0-1-s(P+{-1),
(0,6)(8,m) 0 otherwise.

The elements B(q,¢)(3,m) for o > 0 are constructed using the update and shift functions
for P+ N <v< 2P+ N.
be.m ff=a+P+N-1-s(a+P+N-1),
and { =u(a+ P+ N —1),
B(a—l,e)(ﬁ,m) otherwise.

Ba.eys,m) =

The vector BY is the vector formed from the " for P+ N < v < 2P+ N. In general, the
vector B™Y is the vector formed from the w” for m(P + N) <v < (m+ 1)P +mN. By
the construction of B, we have that BY = \Y.

We now construct the sequence starting from an initial vector 0. Let Z be a vector
such that ZTY =1 and BTZ = AZ. From #° we will construct a vector X such that Z7 X #
0, and by Lemma 3.2, this will imply that the process starting with Z¥ is nonconvergent.

Partition the components of Z in the same way as those of Y. We index the components
as z/. Some of the components of Z must be nonzero, choose a component i* such that

for some v the product v;«z}. is nonzero. Define

pr= Orgluagcp{u s vzl £ 0}

Let 7* be any index other than i*. By the construction of B and because Z is a left

eigenvector, u* is not zero.



Since we assume that p(B) < 1, the matrix [ — B is nonsingular and we define % by
(I — B)Z® = —7. Note that BZ® = 7° + ¥. Define u(v) = j* for 0 < v < P and define
s(v) = v for these same values. Thus the vectors 7 are equal to Z° except in the j*-th
component, where the value is L(]) + vj-. The vector .X of dimension V(P + 1) is formed
from the components of the #“ in order.

To use Lemma 3.2 we need to consider the dot product of X and Z. This is the sum

of the dot products of ¥ with z¥. That is,

P P
NTZ =3 # v ) 2
v=0 v=1
If XTZ is nonzero, then by Lemma 3.2, the sequence ||B"X]|| is nonconvergent. This
implies that the chaotic process is nonconvergent.
If XTZ is zero, we modify the above process to have u(p* — 1) = ¢* instead of

u(p* — 1) = j*. In this case the dot product is

and therefore, as above, this process is nonconvergent. This proves Theorem 2.2.

4. Conclusions and Discussion.

We have given a necessary and sufficient condition for the convergence of chaotic
relaxation under the additional constraint that there be a definite state to the data at each
step of the chaotic iteration.

A interesting topic for further study would be the analysis of systems that are less
chaotic than the general system of Chazan and Miranker[5], but allow for behavior that is
not deterministic. The situation in which there is some constraint on older data not being
available once newer data is available, see (2.2), appears to be much more difficult than
the case studied here. We have not been able to use the methods of this paper to approach
this question.

From the proof of Theorem 2.2, it appears that the addition of Condition 3 requires
that the nonconvergent sequence has a greater value of 5 than did the construction of
Chazan and Miranker. It would be of interest to see how the results of Theorem 2.2 would

be modified under restrictions on §.
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