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Abstract
Shared memory multiprocessors are becoming increasingly common. We present
a technique that uses shared memory multiprocessors to efficiently implement
run-time checking. The user program pays a very small premium on each run. In
return there is an assurance of reliability. A second “shadow” process looks for
errors in the background. For the error-free runs, the user process hardly notices
the shadow process; for erroneous runs, the shadow process provides useful error
information automatically.

1 Introduction

Run-time checks can detect errors that cannot be detected at compile-time, including array bound
violations, invalid pointer accesses, and use of uninitialized variables. Extensive run-time check-
ing provided by diagnostic compilers incurs significant run-time costs. In [Ste92], run-time checks
were added to a C compiler. The code generated ran 10 times slower than the original code. Simi-
lar slowdowns are reported for commercially available run-time error checking systems such as

Purify [HI92].

The high cost of run-time checks restricts their use to the program development phase. When
programs are fully developed and tested, they are assumed to be correct and run-time checks are
disabled. This is dangerous because errors in heavily-used programs can be extremely destructive.
They may not always manifest themselves as a program crash but may instead produce a subtly
wrong answer. Even if an erroneous program crashes, it may be difficult to repeat the error inside a
debugger. Further, debugging long running programs can be very time consuming. Undiscovered
errors in heavily-used programs may not be rare; a study [MLS90] has shown that as many as a
quarter of the most commonly used Unix utilities crash or hang when presented with unexpected
inputs. Thus there is a strong case for running programs with checks routinely enabled. Naturally,

these checks should be as inexpensive as possible.

The goal of this work is to provide run-time checking at a very low overhead so that heavily-
used programs can be run with checking enabled all the time. Run-time checking does not involve

modification of program variables and it does not change the result of valid computations. Hence
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run-time checking can be overlapped with normal computation. One approach to concurrent run-
time checking is to use specialized hardware. Tagged hardware [Feu73] can be used for type-
checking at run-time. Watchdog processors [MJI88] are used to provide control flow checking.
Unfortunately specialized architectures are not widely available and they may not be able to sup-
port the full range of desirable checks (e.g., pointer validity checking). We propose to use general

purpose multi-processors for concurrent run-time checking.

Use of multiprocessors is no longer restricted to big corporations and research institutes.
Low-end bus based shared memory multiprocessors are widely available today. Vendors such as
Sun and SGI offer multiprocessor workstations. Dual processor PCs have started appearing in the
market. With rapid advances in microprocessor technology, high-performance microprocessors
should soon be able to incorporate as many as four general-purpose central processing units on a
single chip [GGPY89]. We believe it is quite likely that current applications will not be able to
routinely use this extra processing power. As a result, processors will often be underutilized. We
plan to use spare processors to execute run-time checks using a technique called shadow process-
ing.

The basic idea in shadow processing is to partition an executable program into two run-time
processes, derived from the same source program. One is the main process, executing as usual,
without run-time checking. The other is a shadow process, following the main process and per-

forming the run-time checks needed to validate its performance. Figure 1 shows a generic shadow
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processing environment.

One key issue in shadow processing is the degree to which the main process is burdened by
the need to synchronize and communicate with the shadow process. We believe the overhead to the
main process must be very modest (say 5-10%) to justify the use of shadow processing for heavily-

used programs.

Envision the shadow process as a copy of the main program with all the desired run-time
checks added. Communication is minimal - it is needed only for those values that cannot be safely

recomputed by the shadow process (e.g. interactive input, return values of system calls etc.). The
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shadow process will definitely run slower than the main process, but this may well be acceptable if
errors need not be detected at the exact microsecond they occur. With a careful analysis, the
shadow process need not reproduce the main process’ full computation, but rather only those val-
ues that need to be monitored and those that affect flow of control. Hence a shadow process need

not greatly lag behind the main process; it may be able to detect errors in almost real time.

We have developed a prototype shadow processing system for checking pointer and array
accesses in C programs. We call our checking technique shadow guarding. The highlights of this

work are:

1. Low overhead to the original program: The main process which computes results runs
almost as fast as the original process. Run-time checking is taken out of the critical execution
path of the main process. The overhead to the main process (which the user sees) is less than
10% as opposed to typical overhead of 300-500% with traditional approaches. Thus there is no
need to turn off run-time checking.

b2

Fast error reporting: The shadow process needs to perform only the computations relevant to
run-time checking. Thus a shadow process co-operating with a main process can terminate
much earlier than a single process performing both the computation and checking. Sometimes
shadow can even run ahead of the main process catching errors before they actually occur.

3. Handling of real programs: Shadow guarding has been implemented to handle “real” C pro-
grams. It provides complete [ABS94] error coverage for array and pointer access errors. It has
been used to detect previously unreported errors in a number of SPEC benchmarks and Unix
utilities.

4. Many applications: A shadow program is an abstract version of the main program, executing
only those statements that are relevant for the activity being monitored. Shadow processing
seems well suited for any run-time analysis of programs that can be carried out on abstract ver-
sions of the programs. Typical applications include executing user defined assertions, reporting
side effects of functions, determining coverage of test suites, detecting memory leaks, and per-
forming tag-free garbage collection of strongly typed languages.

The rest of this report is organized as follows. Section 2 presents details of shadow guarding.

Section 3 discusses the performance of our prototype and presents techniques to reduce the

shadow processing overhead. Section 4 presents related work. Finally, Section 5 summarizes our

results.

2 Shadow Guarding

The process of checking the validity of pointer and array accesses using shadow processing will be
called shadow guarding. This involves creating shadow objects (guards), to maintain bounds for
pointers and arrays in the main process. Common pointer operations such as dereference and
assignment in the main process have shadow counterparts involving guards.The key idea in
shadow guarding is that in order to check the validity of a pointer dereference, the actual numeric
value of the pointer is unimportant. One needs to merely check that the pointer points within its

intended referent. Thus the pointer values from the main process need not be examined by the
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shadow. This drastically reduces communication between the two processes.

Valid pointers in C contain addresses of data objects (including pointers) or functions. In pro-
grams that do not cast non-pointers into pointers, the origin of a valid object pointer can be traced
back to either the address-of operator, &, or a call to a memory allocation routine such as
malloc. In either case, there is an object the pointer is meant to reference. We call the object the
intended referent of the pointer. The intended referent has a fixed size and a definite lifetime. It is
clearly illegal to dereference an uninitialized pointer. Dereferencing an initialized pointer can be
illegal for two reasons:

1. The memory location being referenced is outside the intended referent of the pointer. Derefer-
encing the pointer will lead to a spatial error.

2. The lifetime of the intended referent has expired (e.g. the pointer points to a heap or a local
object that has been freed). Dereferencing the pointer will lead to a temporal error.

2.1 Guards

Every pointer p in the main process has a guard G_p in the shadow. We will use the term pointer to
denote array references as well because when an array identifier appears in an expression, the type
of the identifier is converted from “array of T” to “pointer to T"[HS91]. Operations on pointers in
the main process lead to operations on guards in the shadow. Structures and unions containing
pointers have shadow objects containing guards. Each level of a multilevel pointer type in the
main program leads to a typedef of corresponding guard type. For example the type “char

*+ % leads to a typedef of three guard type “a_char_guard”, “b_char_guard” and

“c_char_guard” corresponding to “char *”, “char **7, and “char ***”,

Main program Shadow program
int arr(10]; a_int_guard G_arr;/* initialize fields */
int *p; a_int_guard G_p; /*clear fields*/
p = arr; G_p = G_arrx;
p += 5; G_p.Index += b;
aed] | [ | L 1T T T | size count index lock key ptr shptr
/A Ganl40 [ 10 [ 0 [OID] | | nun|
{
p -
6,010 T 5 oM (\ [wi]

\ :: Global_key
FIGURE 2. m

Given the declaration T *ptr; the guard G_ptr in the shadow has the following fields:

Size: The size, in bytes, of the intended referent of ptr. In Figure 2, G_arr .Sizeissetto
40 because arr has 10 elements of size 4 (sizeof (int)) each.

Count : The number of objects of type T being pointed to by ptr. If the intended referent of
ptr is an array, this field will hold the number of elements of the array. If ptr gets cast into a
pointer to another object type, this field will have to be recalculated.



Index: A pointer in general may point to a collection of objects of a given type; pointer
arithmetic is used to access a particular object in that collection. The field Index in G_ptr
denotes the offset of the current object being pointed to by ptr. For legal pointers, this is a
non-negative value less than G_ptr . Count . Pointer arithmetic on ptr leads to changes in
G_ptr.Index. e.g. in Figure 2, G_p. Index is modified in the shadow due to the statement
“p +=5" in the main.

Lock: An identifying code used to check temporal legality of dereference of ptr.

Rey_Ptr: This field points to the identifying code of an object.This code must match with the
Lock field of G_ptr for a dereference of ptr to be temporally valid. In Figure 2, arr is a
global array, the field G_arr . Key_ Pt points to the location of the key for all global objects,
Global_ Key. Further, G_arr.Lock has the same value (9/7) as that of Global_Key.
After the assignment, p = arr, the intended referent of p is the same as that of arr, hence all
the fields of G_arr are copied in G_p.

Assignment of the fields Lock and Key_Ptr is discussed in Subsections 2.2 and 2.3.
shptr: Pointers are data objects themselves, hence a pointer can reference another pointer.
Each level of a multi-level pointer has a guard associated with it, and there must be a way to
access each of those guards.The field shptr is used for that purpose. In Figure 3, the intended
referent of p is another pointer g, G_p . shptr points to the guard of g viz. G_g. Thus the 2-
level dereference * *p leads to checking of two guards G_p and * (G_p . shptr) (whichis
G_q).

Main program Shadow program

char **p,*q, c; b_char_guard G_p:
a_char guard G_dg;

q = &C; / *set fields of G_g*/G_qg.shptr = NULL;

p = &qQ; /*set fields of G_p*/G_p.shptr = &G_qg;

- . NULL
> shptr__,/( Shpir——»
p q ¢ G_p G_q
FIGURE 3.

In C, invalid pointers [HS91] can be created by casting arbitrary integer values to pointer
types, by deallocating the storage for the referent of the pointer, or by using pointer arithmetic to
produce a pointer pointing outside its intended referent. It is legal to create or copy invalid
pointers — attempts to dereference them are illegal. Thus pointer arithmetic and copying in the

main program go unchecked.

Each pointer dereference implicit in p[i] in the main program leads to two run-time checks in

the shadow program:

check ( (unsigned) (G_p.Index + 1) < G_p.Count)
check (G_p.Lock == *(G_p.Key_ptr))

The two checks are for the spatial and temporal legality of the dereference *p. The first

check is equivalentto “0 <=(G_p.Index+i) < G_p.Count”.



2.2 Shadow heap

To be able to check accesses to heap objects in the main process, a data structure called shadow
heap is maintained in the shadow process. The shadow heap is an expandable array of unsigned
integers. Each heap object in the main has a slot in the shadow heap containing an identifying inte-
ger that is a key for the object. After a dynamic allocation of an object O in the main, a slot from
the shadow heap is reserved for O until the time O is de-allocated. This slot stores the (essentially)
unique key value for O. A list of empty slots arising due to de-allocations of objects is maintained
along with the shadow heap. These empty slots are reused later to avoid unbounded expansion of
the shadow heap (much like a free-space list). When a pointer p points to a valid heap object O,
G_p.Key_ptr points to the shadow heap slot corresponding to O. Further, the key value in that
slot matches G_p . Lock. Key values are assigned using a global counter called HeapKey which
wraps around to zero after reaching the maximum value (typically 232.1). Thus there is an
extremely small” chance (typically << 2732y that dereference (*p) of a pointer whose referent has
been freed will go undetected. We shall consider the problem so small that it may be safely

ignored.

Pointer operation Guard operation

p = malloc(S) G_p.Size = S

G_p.Count = S/aligned_sizeof (*p)
G_p.Index 0

G_p.Key_ptr = Next_heap_ slot ()
*(G_p.Key_ptr)= G_p.Lock = HeapKey++

t

The function Next_heap_slot () returns the address of an empty slot in the shadow heap.
If p is a multi-level pointer, malloc (S) results in allocation of a certain number (N) of pointers.
Guards for these newly allocated pointers also need to be allocated using the statement
“G_p.shptr = calloc(N,sizeof (G_p))” where NisG_p.Count.If pisasingle
level pointer, a NULL value is assigned to G_p . shptr. Calls to calloc are handled very much
like calls tomalloc. A call realloc (p,newsize) leads to changes in G_p.Size, and
G_p.Count. A call free (p) leads to the checking of temporal and spatial legality of *p.
“G_p.Index > 0 indicates p currently points in the middle of an object; a warning message
may be printed here. In addition, freeing of non-heap objects is reported by requiring that

G_p.Key_ptr points into the shadow heap.

2.3 Shadow stack

In C, it is illegal to dereference a pointer to a local variable of a function that has exited. To catch
these dereferences, a data structure called a shadow stack is maintained. It is a stack of unsigned
integers. Each active frame in the run-time stack has a slot in the shadow stack containing its iden-

tifying key value. All local variables in a function share a slot and a key value. The key values are

* Prob(undetected invalid dereference) =

Prob(invalid deref) * Prob(two objects getting the same slot) * Prob(two objects getting the same key)
This will happen only when the slot occupied by p’s defunct referent gets reused by another object which hap-
pens to get the exact same key value — due to the wrap around of HeapKey.
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assigned using a global counter called StackKey. On a function entry, a slot gets pushed on the
shadow stack, StackKey is incremented and its value gets stored in the newly pushed slot. On a
function exit, the top slot from the shadow stack is erased and popped. After the assignmentp =
&var in the main process, G_p . Key_ptr is made to point to the shadow stack slot correspond-
ing to var’s enclosing frame (global variables use a special Global_Key). As long as the frame
containing var is active, G_p . Lock will continue to match the key value in the slot pointed by
G_p.Key_ptr. After the frame containing var is exited, its shadow stack slot will be erased. If
an attempt is made to dereference p now, the temporal check (G_p.Lock==* (G_p.Key_Ptr))
will fail. The shadow stack slot corresponding to an exited function will get reused on the next
function entry (possibly to the same function) with a different key value (StackKey value at that

time). Hence, dereferencing p will continue to lead to a temporal error.

Pointer operation Guard operation
p = &var G_p.Count = 1
G_p.Index = 0
G_p.Key_ptr = <frame_slot for var>»
G_p.Lock = *{(G_p.Key_ptr)

The value frame_slot for var is the address of the slot corresponding to var’s activation
record in the shadow stack. If p is a multi-level pointer, vaxr must be a pointer with its own guard
G_var. In this case the statement “G_p.shptr = &G_var” isneeded. Otherwise a NULL

value is assigned to G_p . shptr.

setjmp and longjmp functions in C implement a primitive form of nonlocal jumps
[HS91]. setjmp (env) records its caller’s environment in the “jump buffer” env, an implemen-
tation-defined array. The function longjmp takes as its argument a jump buffer previously filled
by a calling set jmp and restores the environment stored in that buffer. Since many active frames
on the stack may become inactive after a longjmp, corresponding slots in the shadow stack are

popped and erased (as a result of doing longjmp in the shadow)

2.4 Implementation

An overview of our prototype shadow processing system is shown in Figure 4. The frontend for
shadow guarding reads in a C program and creates the shadow and the main programs. The main
program uses a shared circular buffer to communicate values which can not be recomputed in the

shadow.

Analyzing and tracking expressions involving pointers in C can be a formidable task. These
expressions may involve side-effects and multiple dereferences. Further, they can occur as loop
conditions, array indices, actual parameters etc. A simplification phase was introduced to restrict
the case analysis required for shadow guarding. Our simplifier is a C-to-C translator whose output
is a subset of C similar to the intermediate representation called SIMPLE from McGill universi-
ty[HS92]. Simplification greatly reduces the number of cases to be analyzed by the translator

phase — there are only 15 types of basic statements in any simplified program. However a large
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FIGURE 4. Overview of shadow guarding system

number of temporary variables are introduced. These variables increase the demand on register
allocation. Hence a simplified program (compiled with -04 using gcc 2.5. 8) runs around
1-2% slower than the input program on a SPARC 630 MP.

The translator in Figure 4 reads in a simplified program and produces main and shadow pro-
grams. The main program is obtained by instrumenting the simplified program to communicate
selected relevant values. The shadow program is a copy of the simplified program which reads the
same selected values from a shared buffer. In addition it performs computations necessary for
guarding. Currently, we perform checks only for user defined functions for which source code is
available and we provide a clean interface for the library functions. Memory allocation routines
such asmalloc and free are treated separately. Many library functions, such as atoi and
strlen that do not affect any data structures inside the library are safely replicated inside the
shadow process. Special action is necessary for functions such as strtok that affect internal data
structures of the library. Routines that cause output or change the external environment in some
way and the routines which may lead to system calls are not repeated in the shadow. Return values
of such routines are communicated. Thus execution of the shadow does not ever affect the output

of the main process.

3 Results
Shadow guarding was implemented on a Sun SPARC 630 MP which is a 4 SPARC processor

shared memory machine running SunOs Release 5.3 [UNIX system V release 4]. Sun’s multi-
threading library [PKB+91] was used to create main and shadow threads. The test programs
included integer benchmarks from the SPEC92 test suite, one program, yacr, from the SafeC
[ABS94] test suite and many commonly used utilities from SunOs 4.1.3. A utility called fuzz
[MLS90] was used to generate random input for the SunOs utilities. SPEC benchmarks were

tested with their reference inputs.

3.1 Errors uncovered
Run-time errors which do not crash programs can go unnoticed for a long time. Shadow guarding
reports such errors as they occur. Programmers can use the feedback from shadow guarding to

eliminate subtle bugs. We uncovered unreported errors in five test programs which did not crash.



These programs (with the number of errors in parentheses) were decompress(1) and sc(2) from
SPEC92 and c¢b(1), ptx(4), and ul(1) from SunOs. Four SunOs utilities col, deroff, uniq, and units
crashed with random inputs. These were already reported to be buggy [MLS90] in earlier versions
of SunQs. However, we found new errors in these utilities as well. In all, we uncovered 15 errors
in nine programs. A complete report on the errors in the programs tested so far is presented in the

Appendix. We expect further testing will certainly reveal errors in other widely-used programs.

3.2 Performance

Table 1 compares (real) execution time of main process with that of the original program. The
overhead to the main process is mainly due to the communication with the shadow process. The
overhead indicates the delay in obtaining results of the original computation in the shadow pro-
cessing environment. It is below 10% in all the cases. To the average user, the main process will

appear almost indistinguishable from the original uninstrumented program.

Program espresso | alvinn | yacr | eqntott | xlisp compress sc | decompress
original 6s 265s 35s 67s 12s 13s 7s 17s
main process 0s 268s 35s 68s 13s 14s 7s 17s
Overhead 0% 1.13% 0% 1.49% | 8.3% 7.7% 0% 0%

Table 1: Shadow guarding: overhead to the user program

How fast does the shadow run? We found that for decompress, the shadow actually ran faster
than the original program. In other cases, the shadow ran 1.2 to 8.5 times slower than the original
program. These slowdowns are still less than the slowdowns (1.5 to 10.1) of the input program
instrumented to perform the checks sequentially. Figure 5 compares execution time of shadow
guarding with that of sequential checking. Since the shadow process executes in the background,
not interfering with the user, it may complete after the user has gone on to another task. The user

sees only the main process, which is essentially as fast as the original program.

yacr

SC

1.0

] sequential checking

shadow guarding

0.5

normalized execution time

espresso alvinn eqntott compress

FIGURE 5. Execution time: shadow guarding vs. sequential checking

7
decompress



3.3 Speeding up shadowing

The execution time of the shadow process depends on two factors:

Number of pointer operations in the input program. To reduce this slowdown, a variety of
range checking optimizations such as [Gup93] can be applied to reduce the number of checks
done at run-time. Both the sequential approach and shadow guarding approach can equally ben-
efit from these optimizations.

We are currently exploring an optimization to reduce the overhead of temporal checks. We want
to statically determine the life-time of the referent of pointers. The approach based on [EGH94]
and [And93] classifies pointers into the following categories:

i. Points_to_NULL: These are uninitialized pointers whose dereference is reported at com-
pile time.

ii. Points_to_global

iii. Points_to_local_of_current_function

iv. Points_to_local_of exited_function: Dereferencing these pointers is illegal and can be
reported at compile time.

v. Points_to_heap.

Temporal checks and maintenance of temporal attributes can be elided for the pointers in the
second and third category — sometimes cutting the runtime overhead by half.

Extent of repetition of computations from the input program. The shadow guarding pro-
cess needs to recompute only those values that affect the flow of control and pointer values
being monitored. Any computation that affects the external environment (e.g. printf£,
chdir) may not be repeated. The effect of deleting such computations is very apparent for
compress, sc and decompress in Figure 5. The shadow took less time to execute than the
sequential approach mainly because it could avoid all the output calls. The effect was most pro-
nounced for decompress where the shadow not only beat the sequential instrumented approach
but it was also faster than the original program.

There are cases in Figure 5 in which the shadow takes almost as much time as the sequential
approach. These programs do not spend much time in the output routines hence the effect of
reducing output calls is not apparent. We think the speed of shadow can be further improved by
using slicing technology to remove computations not necessary for guarding. We modified the
shadow program for alvinn to delete statements not necessary for guarding and the resulting
shadow process ran 21% faster than the sequential checking process. We are currently interfac-
ing our translator with the slicing backend from the Wisconsin Program-Integration System.
The slicing backend, based on [BH93], can slice programs with arbitrary control flow. It should
allow us to generate much faster shadow programs.

4 Related work

ANNA (Annotated ADA) is an Ada language extension that allows user defined executable asser-
tions (checking code) about program behavior. An ANNA to ADA transformer that allows either
sequential or concurrent execution of the checking code is described in [SM93]. Concurrent run-
time monitoring is achieved by defining an ADA task containing a checking function for each

annotation. Calls to the checking function are automatically inserted at places where inconsistency
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with respect to the annotation can arise. Like shadow processing, the ANNA to ADA transformer
uses the idea of executing checking code concurrently with the underlying program. However, it
generates numerous tasks per annotation, which may lead to excessive overhead. Executing user

defined assertions seems like a good application for shadow processing.

CodeCenter[KLP88] is a programming environment that supports an interpreter-based devel-
opment scheme for the C language. The evaluator in CodeCenter provides a wide range of run-
time checks. It detects approximately 70 run-time violations involving illegal array and pointer
accesses, improper function arguments, type mismatches etc. Interpretation of the intermediate
code for supporting these checks is very expensive though; the evaluator executes C code approxi-

mately 200 times slower than the compiled object code.

Purify [H192] is a commercially available system that modifies object files to, in essence,
implement a byte-level tagged architecture in software. It maintains a bit table at run-time to hold
a two-bit state code for each byte in the memory. A byte could be in one of the three states i) unal-
located, ii) allocated but uninitialized and iii) allocated and initialized. A call to a checking func-
tion is inserted before each load and store instruction in the input object files. This checking
function verifies that the locations from which values are being loaded are readable (i.e. allocated
and initialized) and the locations in which values are being stored are writable (i.e. allocated).
Slowdowns by a factor of 5-6 are very common for Purified pointer intensive programs. Purify is
very convenient to use because it works on object files and can handle third-party libraries for
which source code may not be readily available. However the major disadvantage of working at
the object level is that Purify can not track the intended referents of pointers. Any access to mem-
ory that is in an allocated state is allowed. This severely restricts the kinds of errors that Purify
detects. For example, an out of bounds array access can go undetected if it accesses a location
belonging to another variable. If a pointer’s intended referent is freed and the memory is reallo-
cated, dereferencing the pointer should lead to a temporal access error; however Purify is also

unable to detect that error.

Austin et al [ABS94] have proposed translation of C programs to SafeC programs to handle
array and pointer access errors. Their technique provides “complete” error detection under certain
conditions. They have reported execution time overhead in the range of 130% to 540% for 6 (opti-
mized) test programs. Their experimental system requires the user to convert each pointer to a safe
pointer using a set of macros. A safe pointer is a structure containing the value of the original
pointer and a number of object attributes. An input C program, annotated with macros, results in a
C++ program which combined with some run-time support performs pointer access checking.
Shadow guarding shares the “completeness” of error detection with SafeC. Unlike the system
described in [ABS94], shadow guarding is completely automated and has been used to detect
errors in “real” programs. Temporal access errors in SafeC are caught using a ““capability” attribute
which is an essentially unique value per object, much like the Lock in shadow guards. However,

checking temporal validity of a pointer access involves an expensive associative search in a capa-
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bility database. Such a search is avoided in shadow guarding by adding the Key_ptr field in
guards. The value of Key_ptr in shadow guards also serves to determine the storage class of
objects. Hence a separate “storage class” attribute, as in safe pointers, to catch freeing of global

objects is not necessary.

Shadow processing was motivated, in part, by a tool called AE that supports abstract execu-
tion [Lar90]. AE is used for efficient generation of detailed program traces. A source program, in
C, is instrumented to record a small set of key events during execution. After execution these
events serve as input to an abstract version of the original program that can recreate a full trace of
the original program. The events recorded by the original program include control flow decisions.
These are essentially the same data needed by a shadow process to follow a main process. AE is a
post-run technique that shifts some of the costs involved in tracing certain incidents during a pro-
gram’s execution to the program that uses those incidents. In contrast shadow processing is a run-
time technique that removes expensive tracing from the critical execution path of a program and

shifts the cost to another processor.

Parasight [AG88] is a parallel programming environment for shared-memory multiproces-
sors. The system allows creation of observer programs (“parasites”) that run concurrently with a
target program and monitor its behavior. Facilities to define instrumentation points (“scan-points”)
or “hooks” into a running target program and dynamically link user defined routines at those points
are provided. Threads of control that communicate with the parasites using shared-memory can be
spawned. Parasight is an interactive system geared towards debugging of programs. The overhead
incurred in the target program because of “hooking in” of parasites is not an issue. Shadow pro-
cessing can use some of the ideas from Parasight. In certain applications, the shadow process need
not be active for the whole execution of the main program. It could be “hooked in” with already
executing main process when a processor becomes available, “spot checking” the main program.
The shadow will have to start executing at certain well defined points, say at the entry of functions.
The main process will have to leave a trail of indicators of having reached those points (in a shared
buffer).

5 Conclusions

With shared memory multiprocessors becoming increasingly common, run-time checking tech-
niques that exploit multiple processors become attractive. Shadow guarding is a technique that
uses shared memory multiprocessors to check the validity of array and pointer accesses. Current
approaches to pointer access checking work sequentially, typically slowing a computation 3-4
times. Such high overheads make those approaches unsuitable for use with heavily-used programs.
After programs are fully developed and tested, running them with embedded checks seems unac-
ceptably slow. Most programmers turn off the checks; trading reliability for speed. Shadow guard-
ing offers an excellent way out — a shadow process works silently in the background watching for

run-time errors. Computations in the user program are performed by a main process. Error-free
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runs of the main process are only slightly slower than the original. Occasional erroneous runs lead
to an elaborate, sometimes delayed, error report from the shadow process. If the original program
crashes, an error report from the shadow points to the root cause of the crash. Reports on errors

which do not crash the original program can be extremely helpful in correcting the program.

We have developed a prototype shadow guarding system which supports full-size programs
written in C. Our system instruments an executable user program in C to obtain a “main process”
and a “shadow process.” The main process performs computations from the original program,
occasionally communicating a few key values to the shadow process. The shadow process follows
the main process and performs run-time checking. The overhead to the main process is very
low — almost always less than 10%. Further, since the shadow process avoids repeating some of
the computations from the input program, it runs up to two times faster than a single process per-
forming both the computation and checking. Sometimes the shadow process can even run ahead of
the main process catching errors before they actually occur. Our system has found a number of
errors (15 so far) in widely-used Unix utilities and SPEC92 benchmarks. We believe our approach
shows great potential in improving the quality and reliability of application programs at a very

modest cost.
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Appendix
Bug Report from Shadow Guarding

1 Setup

Shadow guarding was implemented on a SPARC 630 MP which is a 4 SPARC processor shared
memory machine running SunOs Release 5.3 [UNIX system V release 4]. Sun’s multi-threading
library[PKB+91] was used to create main and shadow threads. The test programs included integer
benchmarks from the SPEC92 test suite, one program from the SafeC test suite and a number of
commonly used utilities from SunOs 4.1.3. A utility called fuzz [MLS90] was used to generate ran-

dom input for the SunOs utilities. SPEC benchmarks were tested with their reference inputs.

Utility Source # of different errors detected I::;S%i::;
cb SunOs 4.1.3 1 no
col SunOs 4.1.3 1 yes

decompress SPEC92 1 no
deroff SunOs 4.1.3 3 yes
ptx SunOs 4.1.3 4 1no

sc SPEC92 2 no

ul SunOs 4.1.3 1 no
uniq SunOs 4.1.3 1 yes
units SunOs 4.1.3 1 yes

Run-time errors which do not crash programs can go unnoticed for a long time. Shadow
guarding reports such errors promptly after they occur. Programmers can use the feedback from
shadow guarding to eliminate subtle bugs. We uncovered unreported errors in five utilities (which
did not crash). The SunOs utilities which crashed were already reported to be buggy [MLS90] in
earlier versions of SunOs. However, we found new errors in these utilities as well. A complete
report on the errors in the utilities tested so far is presented below. We expect further testing will

certainly reveal errors in other utilities.

2 Detailed error report
cb

Macros isop, isalpha, isupper . all index the array _chtype using character vari-
able ‘c’. The size of the array is 129, with the assumption that input characters will be in the range

1-128. With random input, ‘c’ may not be ASCII, violating bounds of array ‘_chtype’.
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col
229 c3 = *line;

Inside the program, there is a lot of places where the pointer ‘1ine’ is incremented without check-

ing its validity.

decompress

Function getcode () called from decompress ()
1144 /* high order bits */
1145 code |= (*bp & rmask([bits]) << r_off;

Pointer ‘bp’ is used to traverse global character array ‘buf [BITS] .
While decompressing the reference input #of_bits/code changes to 16. (This condition can be
forced by changing #define INIT_BITSto 16).

Sometime after this happens, ‘bp’ dereferences one location beyond the array ‘buf’ at line 1145.

Check: Put ‘assert ( (bp-&buf [0])<BITS) ;’ before line 1145.

derof
341 *r4lp = C;
345 *1p = ‘\0';

The character pointer ‘1p’ is incremented without being checked. Whenever the line being pro-

cessed is longer than 512 characters, there will be a pointer out of bound error.
812 .. chars{cp[0]]==LETTER

Array ‘chars’ is indexed using input characters assuming that they are ASCIIL. For random

input many non-ASCII characters result in violation of array bounds for ‘chars’.

ptx
All the errors detected are due to accesses beyond bounds of global arrays. The reason they did not

crash the program must be that the errant accesses (illegally) referred to other valid global data.

This program has “#define isbreak(c) (btablelc])”
where char btable[128] isused to indicate whether a character in the range 0-127 is a break
character or not. The assumption here is that input characters will all be printable characters in the
range 0-127. If the utility is fed a random stream of characters, the check isbreak (c) violates
the bounds of array btable.
332 if(isabreak(*pchar)) {
338 if (isabreak (*pchar++))

Function get 1ine () uses the pointer 1inep to run through the array

“char 1ine([200]”. linep is incremented and dereferenced many times in the function with-
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out checking whether input line is small enough to fit in 200 characters.
308 *4+4+linep = ‘'\n’;
Similar error occurs in function getsort ()

469 *linep++ = C;

Function getsoxrt () has the following code:

407 linep = line;

408 while((c = getc{sortptr)) != EOF) {
409 switch(c) {

410

415 case ’'\n’:

416 while(isspace(linep(-11))

If cis “\n’ on the very first iteration, 1ine[-1] gets accessed.

SC

Found error is sc . ¢, in function update () :

213 /* Now pick up the counts again */
214 for (i = stcol, cols = 0, col = RESCOL;
215 (col + fwidth[i]) < COLS-1 && 1 < MAXCOLS; i++) {

An array bound violation occurs in the terminating condition of the for loop.
The two operands of ‘&&’ are in the wrong order ‘1 < MAXCOLS’ must come before indexing
‘Fwidth[1]’.When ‘i’ becomes ‘MAXCOLS’ (40) there is an array bound violation. (Occurs

twice for input .ref/loada?2).

Found error in file lex. ¢, in function yylex ():

114 for (tblp = linelim ? experres : statres; tblp->key; tbhlp++)
115 if (((tblp->key[0] tokenst[0])&0137)==0
116 && tblp->keyltokenl]==0) {

Array ‘tokenst’ contains the current token and ‘tokenl’ is the length of the current
token. The for loop traverses a table of reserved words to see if the current token is a reserved
word. Pointer ‘tblp’ is used to point to various entries of a table of reserved words.The first part
of the if condition checks if the first letter of the current reserved word and the current token are
the same. (It uses some clever bit manipulation and properties of the ASCII character set to ignore
case differences.) The second part makes sure that the current reserved word is not longer than the
current token. For input token ‘goto’, ‘tokenl’ is 4. There is a keyword ‘GET’ in the table
‘statres’. The first part of the if condition is satisfied (( (G’ ~"g’&0137)==0) is TRUE)
For the second check,

‘tblp->key [tokenl]’ accesses the 5th element of the current key ‘GET’ which has length 4

17



('G’,"E’,"T',"\0"). Accessing the 5th element of an array of size 4 is clearly illegal.

ul

There are numerous array bound violations in function filter().
Array ‘obuf’ is indexed using the variable ‘col’. If an input line contains >=512 characters ‘col’

gets larger than the maximum index (511) allowed for ‘obuf”’.

units
199 ocp++ = C;

Pointer “cp” is not checked for before it is accessed producing out of bounds pointer reference
uniq
76 *buf++ = c;

Size of the buffer ‘buf’ is not checked before this statement, for input line size greater than 1000,

array bound is violated.
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