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Abstract

In this thesis we study how controlled movements of a camera- can be used to infer properties of a
curved object’s three-dimensional shape. The unknown geometry of an environment’s objects, the
effects of self-occlusion, the depth ambiguities caused by the projection process, and the presence of
noise in image measurements are a few of the complications that make object-dependent movements
of the camera advantageous in certain shape recovery tasks. Such movements can simplify local shape
computations such as curvature estimation, allow use of weaker camera calibration assumptions, and
enable the extraction of global shape information for objects with complex surface geometry. The
utility of object-dependent camera movements is studied in the context of three tasks, each involving
the extraction of progressively richer information about an object’s unknown shape: (1) detecting the
occluding contour, (2) estimating surface curvature for points projecting to the contour, and (3) building
a three-dimensional model for an object’s entire surface. Our main result is the development of three
distinct active vision strategies that solve these three tasks by controlling the motion of a camera.

Occluding contour detection and surface curvature estimation are achieved by exploiting the concept
of a special viewpoint: For any image there exist special camera positions from which the object’s view
trivializes these tasks. We show that these positions can be deterministically reached, and that they
enable shape recovery even when few or no markings and discontinuities exist on the object’s surface,
and when differential camera motion measurements cannot be accurately obtained.

A basic issue in building three-dimensional global object models is how to control the camera’s
motion so that previously-unreconstructed regions of the object become reconstructed. A fundamental
difficulty is that the set of reconstructed points can change unpredictably (e.g., due to self-occlusions)
when ad hoc motion strategies are used. We show how global model-building can be achieved for

generic objects of arbitrary shape by controlling the camera’s motion on automatically-selected surface
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tangent and normal planes so that the boundary of the already-reconstructed regions is guaranteed to
“slide” over the object’s entire surface.

Our work emphasizes the need for (1) controlling camera motion through efficient processing of
the image stream, and (2) designing provably-correct strategies, i.e., strategies whose success can be
accurately characterized in terms of the geometry of the viewed object. For each task, efficiency is
achieved by extracting from each image only the information necessary to move the camera differentially,
assuming a dense sequence of images, and using 2D rather than 3D information to control camera motion.
Provable correctness is achieved by controlling camera motion based on the occluding contour’s dynamic
shape and maintaining specific task-dependent geometric constraints that relate the camera’s motion to

the differential geometry of the object.
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Chapter 1

Introduction

Visual object exploration is the process of performing controlled camera movements to extract an
unknown object’s geometrical and physical properties from the images ‘obtajned, or to inspect an
object’s surface. This thesis focuses on one aspect of the general visual object exploration problem:
How can controlled changes of a camera’s viewpoint, i.e., changes in the relative position of a camera
and an unknown object, be used to infer properties of the object’s three-dimensional shape. Among
others, properites of interest include surface convexity and curvature.

Much emphasis in computer vision has been placed on exploring an object’s shape using predefined
viewpoint changes that do not take into account the object being explored (e.g., moving the camera
along straight lines parallel to the image plane to simplify shape computations [32]). However, the
unknown geometry of an environment’s objects, the effects of self-occlusion, the depth ambiguities
caused by the projection process, and the presence of noise in image measurements are just a few of the
complications that make object-dependent viewpoint changes advantageous in certain shape recovery
tasks. For example, when measuring the height of a coffee cup, near-top views should generally be
avoided since the foreshortening of the cup’s wall can lead to unreliable measurements; moving to a
near-side view, on the other hand, can be very useful for this purpose because this motion cancels out
the effect of foreshortening, making height computations more reliable and, possibly, simpler. As a
second example, when using images taken by a moving camera to build a three-dimensional model of a
complicated object with dents, holes, and protrusions, parts of the object may be missed due to occlusion

if the camera moves in some predefined way in front of the object; reaching viewpoints where those



Figure 1: Example of an object of interest in this thesis.

parts are visible can lead to the construction of more accurate representations of the object’s shape.

Object-dependent viewpoint changes must by driven by image data in order to be useful in exploring
unknown objects, since no a priori shape information is available about the objects. Very little is
currently known about how the cooperation of vision processing and viewpoint control can be used
for visual object exploration either in shape recovery or in inspection tasks. In this thesis we show
how this cooperation can be exploited for extracting geometric properties of objects that contain curved
surfaces of complex shape, i.e., they can even contain multiple non-convex regions that occlude each
other (Figure 1).

While psychologists have long advocated the active nature of perception [64-66,87], the com-
bination of vision and action in order to simplify and enhance vision processing is a relatively new
development in computer vision research [9,11,12,14,16,154]. A key idea in active vision is that
there are computational advantages in interleaving the control of a camera’s parameters with vision
processing when operating in a three-dimensional, unstructured world. For example, Aloimonos et al.
[9] showed that by controlling camera parameters such as the direction of gaze and the vergence of a
stereo camera pair in task-driven and image-driven ways, mathematically ill-posed problems can be- -
come well-posed, geometric computations can be linearized, solutions can become stable against noise,

and assumptions about the environment such as object smoothness can be relaxed. Partly motivated
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by the behavior of biological organisms, a number of active vision paradigms have been introduced to
emphasize the close connection that exists between the tasks of animate organisms (e.g., manipulating
objects, navigating, pursuing), the actions they have to take in order to perform them, and the vision
processing they use [6, 15, 124, 144, 165]. The recent development of “anthropomorphic” vision plat-
forms [47, 56, 100, 119, 123] equipped with rotating “necks,” binocular cameras that can automatically
change vergence, focus, and zoom, and the advances in general-purpose hardware design, haveled to a
number of demonstrations of the feasibility, generality, and power of integrating vision and action (e.g.,
see the collections of papers in {7, 10,30, 73, 155, 156]).

Although a growing literature acknowledges the need for image-driven and task-driven control of
a camera’s parameters (e.g., fixating to keep a moving object in the field of view [47], verging and
focusing to keep a moving object within the depth of field [125]), the use of image-driven viewpoint
control for exploring unknown objects has received limited attention [1 12, 149].

The goal of this thesis is to study how image-driven viewpoint control can be used in the visual
exploration of curved objects. Its main contribution is the development of a framework whereby vision
processing and viewpoint control are formulated as two continuous, interdependent processes that are
tightly coupled and occur simultaneously. We show that such a coupling has a significant impact on
the shape recovery tasks that can be performed and on the computations needed to perform them.
In particular, we show that the tight coupling of viewpoint control and vision processing can lead to
localized processing of images, improved resistance to noise, and the ability to explore curved objects

with complex surface geometry.

1.1 Motivation and Problems Considered

Visual object exploration can be used to autonomously extract information about the shape of an
unknown object in order to manipulate it, inspect its surface, and perform shape measurements. Such
a process is particularly useful when humans cannot be used to perform the task directly. Transmission
delays, the difficulty of tele-operation and remote manipulation, and the time-critical nature of operating
in hazardous, unstructured environments (space, undersea, or toxic) emphasize the need for high degrees

of autonomy.
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Visual object exploration for three-dimensional model-building is becoming increasingly important
in the context of computer graphics and manufacturing as well. The realism of computer-generated
images is contingent upon the realism and accuracy of the object models used as input. The recent
interest in virtual reality and the design of systems for interactively navigating within three-dimensional
“virtual worlds” [111] brings up the question of how models of the objects furnishing these worlds can
be acquired. A method for automating this model acquisition process is clearly desirable, especially for
objects with complex surface geometry (e.g., natural objects such as orchid flowers) for which manual
construction can be time-consuming. In manufacturing, construction of new Computer-Aided Design
(CAD) models can be simplified by “reverse engineering” already existing industrial parts, reducing
the need for manual construction or use of time-consuming Coordinate Measuring Machines [150].
Currently, no general method exists for automating the model acquisition of complicated objects (e.g.,
with dents and holes), although some initial studies have been reported [117,177] and commercial
products for building models from real objects have appeared [166].

Visual object exploration does not have a single purpose. Rather, the geometric properties extracted
about an object are defined by the particular task. Our claim is that the proposed framework of tightly
coupling viewpoint control and vision processing is a general one. To demonstrate this we apply
our framework to three shape recovery tasks, each involving the extraction of progressively richer

information about an object’s surface geometry:

e Determining the silhouettes of individual objects in an image, which can be used to grasp one of

the objects
¢ Computing surface curvature at individual points on an object’s surface

e Building a three-dimensional model of an object’s entire surface

To solve these tasks we study the relationship between the differential geometry of a surface (e.g.,
curvature, tangent planes, the nesting configuration of parabolic curves), the surface’s projected shape,
and the manner in which this projected shape changes when viewpoint is controlled relative to the surface
itself. The result is a collection of task-driven and image-driven exploration strategies for controlling
viewpoint that have distinct functionalities and impose progressively greater demands on the resources

of the vision system.
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While the purpose of visual object exploration varies from task to task, the ability to explore curved
objects of unspecified geometry can be very valuable. Even objects constructed from simple primitives
such as spheres can exhibit complicated geometries and topologies, causing partial or complete occlusion
of some of these primitives. Consequently, a priori assumptions about the structure of an image (e.g.,
no self-occlusions) are too restrictive in the context of visual exploration.

The approach taken in this thesis is to develop visual exploration strategies that have provable
properties. In particular, the first two of the tasks we consider are studied in the context of arbitrarily-
shaped curved objects, and a precise geometrical analysis of the conditions under which the strategies
succeed and fail is given. Furthermore, our study of the third task shows how to combine viewpoint
control and vision processing in a way that can provably guarantee the success of the visual exploration
process for curved objects of “almost arbitrary” shape: The developed strategy is shown to provably
achieve the task for arbitrary generic objects, an object class whose members can approximate arbitrarily

closely any curved object with no surface discontinuities.

1.2 Overview of the Approach

The main question studied in this thesis is how image-driven viewpoint control can be exploited to infer
properties of an object’s three-dimensional geometry. A key issue is what image data to use to extract
shape information and to control viewpoint. Flexibility and generality can only be achieved if the image
features used have a strong connection to the shape of the viewed object. Many different types of features
are potentially useful for this purpose, including projected surface texture, markings, discontinuities,
shadows, specularities, and silhouettes, to name just a few. Among these, texture, markings, and
discontinuities have proved to be extremely valuable for accurately recovering an object’s shape as a set
of rigid 3D points, even when the camera undergoes completely arbitrary motion [162]. Unfortunately,
relying on such image features can make visual exploration difficult for curved objects with sparsely
distributed markings and discontinuities. Our work is specifically targeted toward exploring curved
objects with little texture and few or no markings and discontinuities on them.

In our framework, visual exploration of curved objects is performed using the occluding contour

[91] both to control viewpoint and to recover shape information. Roughly, the occluding contour can
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be viewed as a generalization of the silhouette; it corresponds to the depth discontinuities in an object’s
projection. The occluding contour is ideal as an input to the exploration of curved objects because its
shape is highly constrained by the surface giving rise to it [116, 136] and can be recovered from images
[170]. All of the work in this thesis revolves around the study of relationships between viewpoint
control, surface shape, and their effect on the shape of the occluding contour.

The proposed continuous, contour-driven viewpoint control framework has three characteristic
features: (1) Viewpoint control and vision processing are modeled as continuous, dynamic processes
that occur simultaneously, (2) viewpoint control is driven directly by the image data, and in particular,
by the shape of the occluding contour, and (3) the exploration strategies are based on the differential
geometry of surfaces and have provable properties. Efficiency is achieved by changing viewpoint
in a continuous fashion, assuming a dense sampling of images, relying on 2D rather than 3D shape
information to control viewpoint, and extracting from each image only the information necessary to move
the viewpoint differentially. Provable correctness is achieved by maintaining specific task-dependent
geometric constraints between the viewpoint’s motion and the object itself. Figure 2 gives an example
of a simple exploration strategy for computing surface curvature, which is studied in Chapter 5.

When viewpoint is controlled in a continuous fashion, the occluding contour deforms. The key idea
in our approach is that continuous viewpoint control allows us to design visual exploration strategies
that constrain the deformation of the occluding contour in a task-specific manner by controlling the
viewpoint’s motion relative to the object. In this formulation, the main question posed for a given shape
recovery task is: How should the viewpoint’s motion be controlled so that the constrained deformation
of the occluding contour solves the task? Our claim is that this formulation can be very useful for solving
shape recovery tasks. For example, surface curvature can be computed under weaker assumptions than
those required by existing methods, and tasks such as building a model for an object’s entire surface
can be provably achieved for objects with complex surface geometry.

In this thesis we show that we can force the contour’s constrained deformation by controlling
viewpoint directly from the image data, i.e., without first recovering 3D shape information about the
object. Furthermore, we show that by basing the dynamic feedback loop that controls viewpoint on the
occluding contour’s deforming shape, this constraining process can be performed and analyzed locally

in both space and time, even when performing global shape recovery tasks (e.g., building a model for
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Figure 2: We show in Chapter 5 that surface curvature for a point projecting to the silhouette becomes
trivial to compute from a special viewpoint which, for point ¢ in (a), corresponds to the side view of the
toy. Results from the differential geometry of surfaces tell us that we can indeed reach that viewpoint
through a continuous, contour-driven viewpoint control process: The viewpoint is reached from (a) by
rotating viewpoint on a plane perpendicular to the image and tangent to the contour at g (i.e., a horizontal
plane), until the curvature of the occluding contour at its uppermost point is maximized, as shown in

(b).

an object’s entire surface). This leads to the design of viewpoint control strategies that have minimal
computational requirements, perform local processing in each image, and have provable properties.
Figure 3 shows the architecture of our framework. It consists of two computational processes that
occur simultaneously: (1) The vision processing needed to control viewpointamounts to tracking curves
in the image, a subset of which corresponds to the occluding contour, and (2) the viewpoint control
computations generate a continuous stream of differential motion commands. These commands can
be used to move a camera relative to a stationary object, or to rotate the object in front of a stationary
camera. Their goal is to achieve or maintain specific geometric constraints between the viewpoint’s
motion and the object. Drawing from results on the differential geometry of surfaces, these constraints

are defined in terms of the occluding contour’s shape. As a consequence, differential motion decisions
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Figure 3: Organization of the continuous, contour-driven viewpoint control framework developed in
this thesis. Solid arrows in this and in subsequent figures indicate computational dependencies; dashed
arrows indicate indirect dependencies (e.g., motion commands indirectly affect the input of the vision
processing module).

are designed to force the contour’s shape to “evolve” in a well-defined and constrained way.

We claim that the proposed framework has advantages over existing approaches for viewpoint control
when recovering information about the shape of curved objects. These approaches can be broadly
categorized as following a search-based framework, a gradient-based framework, or a constraint-based
framework. The three frameworks differ in the underlying mechanism that controls viewpoint, as well
as the tasks to which they have been applied.

The assumption underlying the search-based framework is that both vision processing and physical
camera motions are resource-intensive operations that must be executed as few times as possible. This
framework has been applied primarily to three-dimensional model-building [45,117,177] and to object
recognition [69,81,86]. The main idea is to try to extract as much information as possible about
the object’s shape from the current viewpoint and then use that information to decide where to move
next (Figure 4). Viewpoint selection is performed by searching through the space of possible target
viewpoints using an appropriate optimization criterion. For example, Connolly [45] constructed a
volumetric model of the visible regions on an object from a single viewpoint and subsequently searched
for the viewpoint that would maximize the area of the visible and unexplored portions of the object.

In the search-based framework, the single-viewpoint shape recovery computations imply that mech-

anisms other than viewpoint control are used to recover the shape of an object’s visible areas. For
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Figure 4: Search-based viewpoint control framework.

example, Connoly [45] used a laser range-finder. Furthermore, in the context of three-dimensional
model building, the optimization part of the process can be computationally-intensive. Determination
of a viewpoint’s utility requires forming hypotheses about the appearance of the environment from
the new viewpoint. For distant viewpoints and unknown objects, accurate prediction of an object’s
appearance is not possible. While heuristic evaluation criteria can be used, guarantees are not provided
in existing methods about which parts of a complicated object will or will not be reconstructed during
its exploration.

Recent advances in computer hardware design as well as in real-time vision techniques suggest that
neither vision processing nor viewpoint control need be time-consuming. The gradient-based framework
was designed to exploit this new technology. In the gradient-based framework, viewpoint is controlled
by executing a differential motion command that optimizes a gradient-based optimization criterion. The
gradient-based framework has been applied primarily to the task of visual servoing, ie., keeping the
image of a moving object stationary by maintaining a fixed geometric relationship with respect to the
object [55,71,73,176]. In this task, the camera’s position is controlled reactively, in order to match the
“external disturbances” causing motion of the object being viewed (Figure 5(a)). The framework has
recently been used for obstacle avoidance in environments containing curved objects by first extracting
3D shape information using predefined linear camera movements and a shape-from-motion module
[25,31,160]. In the context of shape recovery, the gradient-based framework has been restricted to
cases where easily identifiable object features such as markings or corners always exist to drive the

viewpoint control process by following an appropriate control law [149] (Figure 5(b)).



10

External ] Vision Position/velocity
disturbance processing control
-..
i Feature detection Camera motion ] | Disturbance
1 & tracking model model
{  I—t m—
- - of -t
{_] Differential - Control law
motion command
(a)
Vision Position/velocity
processing control
2
i Feature detection Camera motion
I & tracking model
! =
1_1 Differential - Gradient computation
motion command
(b)

Figure 5: Gradient-based viewpoint control framework. (a) Organization for visual servoing. (b)
Organization for recovering shape.

Our framework is similar to the gradient-based framework and was partly inspired by it. Both
frameworks consider vision processing and viewpoint control as two continuous processes that are
tightly coupled. However, in their current formulation, gradient-based approaches either rely on the
existence of markings or discontinuities to drive the viewpoint control process, or use predefined
camera movements to recover three-dimensional shape from multiple images. Hence, the question
of how image-driven viewpoint control can be used to recover shape information for curved objects
with few or no markings and discontinuities has not been investigated. Furthermore, gradient-based
approaches are by definition local; it is unclear how they can be used to control viewpoint for performing
global recovery tasks such as building a three-dimensional model of an object’s entire surface.

At its most general formulation, our continuous, contour-driven viewpoint control framework con-
strains the viewpoint’s motion to impose a specific structure on the evolution of an object’s projection.

This general principle was recently used to control viewpoint in the context of object recognition
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Figure 6: Constraint-based viewpoint control framework.

[182-184], and shape recovery [112]. Together with these recent studies, our work can be classified
as following a more general constraint-based framework in which image-driven viewpoint control is
used constrain the evolution of an object’s projection. Unlike gradient-based approaches where the
viewpoint’s motion is completely unconstrained and is controlled locally by computing a gradient direc-
tion, constraint-based approaches force the viewpoint to move on well-defined constraint surfaces [80]
(e.g., specific planes [183]), that impose a specific evolution on the object’s projection. This simplifies
the analysis of the viewpoint’s motion by effectively reducing the degrees of freedom of this motion.
Strategies based on the constraint-based framework have only been developed for controlling viewpoint
around polyhedral objects. For example, Madsen and Christensen [1 12] used a image-driven viewpoint
control strategy to measure the angle between two edges on a polyhedron’s face by moving to viewpoint
at which the image plane was parallel to that face.

Our continuous, contour-driven viewpoint control framework applies the more general projective-
structuring framework to the exploration of curved objects, providing answers to the questions of what
features to extract from an image, how to relate them to surface shape, and how to use their dynamic
evolution to control viewpoint. From an analytical point of view, the occluding contour’s shape does
not change arbitrarily under differential viewpoint changes. These changes can be characterized in
terms of the differential geometry and topology of curved surfaces. This makes tractable the problem
of predicting how the contour’s shape will change by constrained viewpoint changes, allows shape

computations to be simplified, and leads to provably-correct exploration strategies for curved objects of
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complex geometry. From a computational point of view, continuous motion leads to effective filtering of
the image stream. Since differential viewpoint changes produce small changes in the image, processing
can focus on those areas where the object’s projection does change, i.e., around the occluding contour.

No single sensor is ideal for exploring objects in every environment. Other sensors such as touch
and laser range-finders, if available, can play an important complementary role in this process, and other
types of visual information, such as markings, texture, specularities, and shading are likely to be very
useful in specific contexts, and when more information about the environment’s objects is available.
Our goal was to choose an instance of the general object exploration problem, and develop a coherent
framework that can be used to study issues related to the cooperation and coordination of sensing and
action in the context of visually exploring curved objects, while imposing minimal restrictions on the

objects that can be explored.

1.3 Major Contributions
The main contributions of this thesis can be summarized as follows:

e Introduction of a new framework for combining vision and action in the exploration of curved
objects. In particular, this framework exploits the use of continuous, contour-driven viewpoint
control both to enhance the shape recovery capabilities of an active vision system and to simplify

its computations.

e Formulation of exploration as a process of constraining the deformation of the occluding contour
of curved objects. It is shown that this formulation allows the use of results from the local and
global differential geometry of surfaces to formalize the connection between vision and action in

the exploration process.

e Demonstration that continuous, contour-driven viewpoint control leads to local geometrical anal-
ysis, local processing in the image, and simple, locally-controlled motions even when global
shape recovery tasks are performed. In particular, it is argued that (1) analysis of global shape
recovery tasks becomes mathematically tractable, and (2) tangential viewpoint control becomes

a key elementary motion in the exploration of curved objects. This motion controls viewpoint on
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the tangent plane of an automatically selected surface point, requires only tangent computations
in the neighborhood of the point’s projection, and is the cornerstone of all exploration strategies

developed in the thesis.

e A theoretical investigation of how viewpoint control and vision processing can be combined to

develop strategies with provable properties for exploring curved objects with complex surface

geometry.

¢ Development of an active vision strategy for detecting an object’s occluding contour. It is shown
that viewpoint control enables detection without extrinsic calibration of the camera and without

a priori identification of surface markings.

e Development of an active vision strategy for recovering surface curvature from the occluding
contour. It is shown that viewpoint control enables local shape recovery without measurement of

camera velocities or accelerations, and without a priori identification of surface markings.

e Development of an active vision strategy that controls viewpoint to globally reconstruct an
object’s surface from the occluding contour. No existing approaches guarantee the outcome of
this global exploration process for curved objects of complex surface geometry (e.g., non-convex,

self-occluding objects), using either cameras or laser range-finders.

1.4 Thesis Outline

The remainder of this thesis is organized conceptually into two parts. The first part, consisting of
Chapters 2 and 3, further develops our general approach to visual object exploration and provides
necessary background. The approach is then applied in Chapters 4, 5, and 6 to three shape recovery
tasks requiring the extraction of progressively richer information about the shape of an unknown object.
In each of these three chapters, a distinct viewpoint control strategy is developed through a theoretical
investigation of geometric relationships between continuous viewpoint control, the geometry of curved
surfaces, and their constantly evolving projection. Initial experiments with simulated and real objects

serve as “proofs of principle” and practical illustrations of our theoretical arguments.
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Chapter 2 places the work in this thesis within the broad context of shape recovery, presents more
details of the approach, and discusses its relation to previous approaches in computer vision that employ
image-driven viewpoint control. The key sections of this chapter are Section 2.2, which states the
main design criteria of the exploration strategies developed in subsequent chapters, Section 2.3 which
motivates the use of the occluding contour for shape recovery, and Section 2.4, which introduces
two geometric notions, special viewpoints and the exploration frontier, which form the basis of all
exploration strategies in subsequent chapters.

Chapter 3 introduces tangential viewpoint control, which is the basic mechanism used in this thesis
to control viewpoint. It involves (1) moving on the tangent plane of a selected point projecting to the
occluding contour, and (2) tracking the point’s projection as viewpoint changes on that plane. The
chapter introduces necessary geometrical background, describes how this motion is used in the thesis to
constrain the contour’s deformation, and presents an approach for implementing the viewpoint’s planar
motion and the point tracking operation.

Chapter 4 studies the occluding contour detection task. The task involves distinguishing the image
curves corresponding to the occluding contour from those that are projections of markings and disconti-
nuities on an object’s surface. Detection is based on the non-stationarity property of the curves projecting
to the occluding contour: When viewpoint is changed, these curves “slide,” rigidly or non-rigidly, over
the surface. The chapter shows that by moving to a special viewpoint defined by the object’s shape and
the initial viewpoint, these curves can be distinguished from stationary surface curves, i.e., markings
and discontinuities. The viewpoint is reached by tangential viewpoint control. Initial experimental
results with simulated and real data are presented to demonstrate the effectiveness of the approach.

Chapter 5 studies the local curvature estimation task. The task involves computing the curvature of
the surface at a selected point projecting to the occluding contour. The exploration strategy developed
for this purpose is based on a relation between the geometries of an object’s surface and of its occluding
contour: If the object is viewed from a special viewpoint, corresponding to the principal direction of
the surface at a point projecting to the occluding contour, surface curvature at the point becomes trivial
to compute from the contour’s shape. The chapter shows that such a viewpoint can be reached by
tangential viewpoint control. Initial experimental results illustrating the performance of the method

with simulated and real data are presented.
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Chapter 6 studies the global surface reconstruction task. The task involves building a three-
dimensional model of an object’s entire surface, or as much of the surface as possible, from images
of the occluding contour. The chapter develops an exploration strategy for continuously controlling
viewpoint that allows this task to be provably achieved for generic objects of arbitrary shape. The
strategy is formulated as a process of constraining the evolution of the exploration frontier (defined in
Chapter 2), and involves a repeated application of tangential viewpoint control steps. Simulation results
are presented to illustrate the developed strategy and the chapter’s theoretical arguments.

Chapter 7 summarizes the main contributions of the thesis and its main limitations, and discusses

directions for future work.



Chapter 2

A Framework for Visual Exploration of

Surface Geometry

Our goal is to investigate the effectiveness and generality of the continuous, contour-driven viewpoint
control framework for recovering shape properties of an unknown curved object. We do this by (1)
classifying shape recovery tasks into four broad categories, (2) defining a set of design criteria that we
must take into consideration when exploring an unknown object to recover its shape properties, and (3)
developing a framework that is applied to the exploration of curved objects, uses the occluding contour,
controls viewpoint in a task-driven and image-driven manner, and can be used to perform exploration
tasks in each of the four categori_es of shape recovery tasks while conforming to the stated design criteria.

This chapter discusses the above three elements of the approach. Section 2.1 presents a classification
of shape recovery tasks and Section 2.2 presents the design criteria we use. These two sections are
not meant to be all-encompassing of the work in computer vision; rather, their purpose is to set the
context within which we view our work and our contributions. Section 2.3 defines the occluding contour
and motivates its use for exploration. Section 2.4 introduces the notions of a special viewpoint and of
the exploration frontier, the two geometric notions underlying all strategies we develop in subsequent
chapters. Sections 2.5 and 2.6 briefly review existing work that exploits viewpoint control, relating it to

the discussion in Sections 2.1 and 2.4.

16
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2.1 A Classification of 3D Shape Recovery Tasks

In this thesis we argue that visual object exploration is not an end in itself but must be studied in
the context of the requirements of particular types of tasks [6]. The reason is purely computational;
given that any vision system has limited resources (e.g., CPU cycles, means for interacting with the
environment), these resources have to be applied in the most effective and efficient manner to solve the
task at hand [14, 15]. For example, building a three-dimensional model of an object in order to grasp it,
which in many cases can be performed simply by analyzing the object’s silhouette [26], may not only be
unnecessary, but can introduce numerical instabilities caused by inverting the projection process [6]. We
study exploration by considering four classes of shape recovery tasks that depend on the acquisition of
different types of information about the geometry of an object. Geometric information can be classified
with respect to two broad categories: local vs. global, and quantitative vs. qualitative.

Local shape properties characterize an object’s surface in the neighborhood of a point (e.g., convex-
ity/concavity, curvature, etc.)[24,38]. Global shape properties characterize an object’s entire surface
(e.g., the configuration of the parabolic curves on an object [136], the configuration of surface orientation
discontinuities [79], or a description of an object’s entire shape [33, 135]). Visual information is spa-
tially local; the need to interact with the environment in a well-defined manner is therefore particularly
critical for performing tasks that require recovery of an object’s global shape properties.

Qualitative shape properties depend on affine or projective coordinate descriptions of an object’s
shape [118], or are defined in terms of bounds or constraints [16,42, 185] (e.g., surface convex-
ity/concavity, depth ordering of points). Quantitative shape properties depend on Euclidean coordinate
descriptions of an object’s shape (e.g., surface curvature at a point, distance from the camera, equation of
a parabolic curve). Quantitative shape recovery is much more demanding since coordinate information
is lost during the projection process.

These two categories lead to the following classification of shape recovery tasks:

e Local qualitative shape recovery tasks

These tasks involve determining surface convexity/concavity at one or more points on the object,
identifying the boundaries of visible object regions, computing the affine or projecting coordinates

of a collection of points, or identifying the visible surface orientation discontinuities. Example
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applications include grasp planning [26] and recognition [97].

e Local quantitative shape recovery tasks

These tasks involve extracting a parameterization for local surface patches describing neighbor-
hoods of points on the object’s surface, computing the fundamental forms which completely
determine the curvature of the surface in such patches [38], or computing the Euclidean coor-
dinates of a set of surface points. Example applications include surface inspection [122], solid

modeling and reverse engineering [150], as well as grasp planning [104].

e Global quantitative shape recovery tasks

These tasks involve extracting surface descriptions that describe quantitatively either the entire
surface, or regions that are completely determined by global surface properties (e.g., all regions
that can be made visible and all non-concave regions). Applications are solid modeling, reverse

engineering, and model-building for inspection, grasping, motion planning, and recognition.

e Global qualitative shape recovery tasks

These tasks involve the extraction of affine, projective, or coordinate-free representations for (1)
describing regions that are completely determined by global surface properties (e.g., the nesting
configuration of convex, concave, and hyperbolic regions on an object’s surface [39, 90, 120]), or
(2) performing visual search [187] over a globally-defined surface region (e.g., over all potentially-
visible regions). Example tasks include qualitative shape modeling, searching for markings on an
object’s surface (e.g., manufacturer’s identification, or bar code), searching for graspable object

regions, and object recognition.

There has been a considerable amount of work on controlling viewpoint in environments that
have been completely modeled in advance [48,49,53, 68, 69, 81, 86,107, 113,143, 158, 159, 164, 188].
However, as discussed in Sections 2.5 and 2.6, work on controlling viewpoint to perform shape recovery
tasks in the above categories has been limited. We study visual exploration by studying specific
instances of the above shape recovery tasks; the tasks of occluding contour detection, surface curvature
estimation, and global surface reconstruction studied in this thesis are representative instances of the

first three categories of exploration tasks, respectively.




19

2.2 Key issues

The classification in the previous section suggests that depending on the context in which the exploration
of an unknown object takes place, different requirements and expectations will be placed upon the vision

system’s resources. In particular, three key issues are:

1. What parameters of the vision system need to be measured?
2. How efficient is the exploration process?

3. Under what conditions about the environment’s objects are the exploration strategies suc-

cessful?

The projected geometry of an unknown object is highly dependent on the parameters defining the
state of the vision system (e.g., 3D position and orientation, which constitute the camera’s extrinsic
parameters, intrinsic camera parameters such as focal length and pixel aspect ratio, and motion parame-
ters such as velocity and acceleration). Clearly, the more state parameters known, the easier the task of
“inverting” this projection process, and the richer the geometrical information about an unknown object
we can visually extract. On the other hand, assumed knowledge of state parameters such as camera
position and velocity affects the practical utility of an exploration strategy in three ways. First, such
information may be unavailable or hard to obtain (e.g., determining the 3D position requires extrinsic
camera calibration [163]). Second, the vision system’s parameters may change (e.g., during viewpoint
control) making repeated calibrations necessary. Third, errors in state parameter measurements can
introduce errors in the extracted shape information and, consequently, negatively affect the outcome
of the exploration process. It therefore becomes important to try and keep state measurements to a
minimum, requiring only those that can be measured as easily and as robustly as possible. In this
thesis we show that image-driven viewpoint control can have an impact on the required measurements,
allowing us to “trade off” measurement requirements with simple controlled motions.

The use of viewpoint control also raises an efficiency issue unique to active vision systems. Unlike
traditional, passive vision techniques where the parameters of the vision system are not under the direct
control of the vision system, image-driven and task-driven viewpoint control requires the interaction of

the vision system with the environment. This is manifested in two ways. The process of controlling
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viewpoint in a task- and image-dependent manner can impose a computational burden on the overall
exploration process; to avoid this burden, which is not present in passive approaches, requires keeping
the viewpoint control computations to a minimum. Furthermore, viewpoint control is a limited resource
of an active vision system [72, 142]; this makes it necessary to know how much motion is performed
during the exploration process. An important contribution of this thesis is to show that the use of simple
and efficient computations for exploring curved objects is not only possible, but also enables us to
guarantee the outcome of the exploration process (e.g., completeness of a constructed object model).
A question posed in almost every approach in computer vision concerns assumptions about the
geometry of the objects in the environment. We focus on the exploration of curved objects and,
primarily, objects with few or no discontinuities. While a clearly limited class, curved objects are being
used in manufacturing [128] and can also describe the surface of many natural objects (e.g., rocks,
flowers, fruit, etc.). While we impose no restrictions on the class of curved objects for two of the three
exploration strategies we develop, the global surface reconstruction task is considered in the context of
exploring generic objects. Generic objects are bounded by a smooth surface and can have an almost
arbitrary shape: It only takes an infinitesimal deformation to make any smooth object generic. The
two key restrictions imposed by the generic object assumption is that generic objects cannot contain
flat regions or discontinuities. While these restrictions are clearly important, generic objects do allow
us to study the visual exploration problem for objects of nearly unrestricted shape; the problems of
exploring an object’s non-convex regions and of dealing with self-occlusions must be directly addressed

to provably explore such objects.

2.3 The Occluding Contour

The absence of identifiable features that persist across viewpoints (e.g., markings, discontinuities)
renders traditional stereo [115] and shape-from-motion [17, 109] techniques inadequate for recovering
the shape of curved objects with few or no markings on them. Two general approaches to this problem
have been suggested in the literature: (1) Inferring shape directly from image intensities and their
variation, and (2) using the occluding contour. Unfortunately, intensity-based approaches such as

shape-from-shading [78, 126], shape-from-specularities [27,93,171], and shape-from-texture [4, 8],
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Figure 7: The visible rim and the occluding contour of a bean-shaped surface (adapted from [36]). The
occluding contour consists of a single curve whose endpoints are a T-junction and a cusp.

while potentially very useful, rely on assumptions about the reflectance properties of the viewed surface
or about its texture distribution, both of which may not be known.

We use the occluding contour to guide the visual exploration process and to extract the shape of
the object being explored. The occluding contour' is the projection of the one-dimensional set of
visible points at which the surface “turns away” from the viewer. Formally, the occluding contour
is defined as the projection of the visible rim [90],> the set of visible surface points whose tangent
plane contains the viewpoint (Figure 7). For almost every curved surface and almost every viewpoint
(in a measure-theoretic sense), the occluding contour is a collection of open and closed curves whose
endpoints terminate at cusps and T-junctions [91].

The main reason for using the occluding contour for the exploration of curved objects is that there
is a strong connection between the shape of a surface, the shapes of the visible rim and the occluding
contour, and the way that their shapes change when viewpoint changes. Furthermore, the occluding
contour is a source of both qualitative and quantitative information about the local and global shape

of curved objects, and, along with shadows [147], discontinuities [18, 114] and markings [43, 153], is

1 Also known as the contour [36], the apparent contour [42,44], the profile [62], and the extremal boundary [170].
2 Also known as the contour generator [42], the critical set of the projection mapping [36], and the fold [91, 181].
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the only shape information that we can hope to extract from an image when physical surface properties
are unknown. From a computational point of view, the occluding contour is just a collection of edges,
which can be efficiently tracked across frames [28].

The connection between the shape of an object and its occluding contour makes it applicable to

qualitative, quantitative, local, as well as global shape recovery tasks:

¢ Local, qualitative shape recovery

Several studies have shown that the geometry of the occluding contour severely constrains the
underlying surface geometry even from a single viewpoint [18, 108, 114, 121, 136]. For example,
the sign of the Gaussian curvature at the visible rim (i.e., whether the surface at the rim is convex
or hyperbolic) is completely determined by the occluding contour [88]. However, even though a
single image of the occluding contour constrains surface geometry, the problem of distinguishing
the occluding contour itself from markings and discontinuities cannot be resolved from a single
viewpoint [170,193]. In general, unless viewpoint can be controlled in an object-dependent
manner, this problem becomes equivalent to recovering surface curvature at the visible rim, a

quantitative task requiring camera calibration and viewpoint motion information [44].

e Local, quantitative shape recovery

A slight change in viewpoint will affect the geometry (i.e., curvature) and possibly the topology
of the visible rim, and hence the occluding contour. Moreover, the set of rim points changes
and therefore new constraining information about the surface shape becomes available. This
observation has been used to recover a complete description of local surface shape by forcing
viewpoint to undergo a predefined motion [44, 62]. Unfortunately, when no surface markings can
be identified a priori, predefined camera motion leads to approaches that require measurement of

velocities and accelerations.

o Global, quantitative shape recovery

In global quantitative shape recovery tasks, there is a fundamental need for viewpoint control when
the occluding contour is used: When the only information available is the occluding contour at

a single viewpoint or at a spatially localized set of viewpoints, we can only hope to extract local




23

information about an object’s geometry, i.e., for points in the neighborhood of the visible rim.
Even though approaches have recently appeared for piecing-together local surface descriptions
derived from the occluding contour [82, 146, 192], the problem of controlling viewpoint in an
object-dependent manner to recover an object’s global shape has not been considered. In this
thesis we show how, by appropriately controlling viewpoint, global shape recovery tasks can also

be solved.

e Global, qualitative shape recovery

Object-dependent viewpoint control is necessary for performing global qualitative shape recovery
tasks since not all points on an object’s surface can be seen from a single viewpoint [45]. The
occluding contour is an important piece of information in such tasks because it is the projection of
the boundary of an object’s visible regions, and it can be used to induce the visibility of occluded

regions [117].

Despite the above advantages of the occluding contour, any shape recovery approach based on the

occluding contour has to deal with a number of complications:

e Occluding contour detection: In real-world situations the surface of an object may contain
surface markings, shadows, discontinuities, as well as specularities. An efficient and reliable
method for distinguishing the occluding contour from these other surface curves, if they exist, is

therefore necessary (Chapter 4).

o Occluding contour tracking: Unlike surface markings and discontinuities, the visible rim is
a collection of curves that deform and change connectivity as viewpoint changes. In order to
track the occluding contour, these changes must be taken into account. Current curve tracking
algorithms cannot handle such general image curve deformations and connectivity changes. A

promising direction for future work on this problem is briefly discussed in Section 4.8.

o Effects of global surface geometry: Changes in the topology and the geometry of the visible rim
and the occluding contour are important when dealing with global shape recovery tasks because

such “events” determine which parts of the surface are explored. These changes depend on
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the global shape of the object’s surface, and provably-correct global shape recovery cannot be

achieved without taking them into account (Chapter 6).

e Recovering the shape of concavities and flat regions: A fundamental limitation of the occluding
contour is that points in concave surface regions can never project to the occluding contour, and that
the occluding contour becomes degenerate when flat areas are viewed “edge-on”. Consequently,
the shape of an object’s concavities and the extent of flat regions cannot be recovered quantitatively,
although their shapes can be constrained [192]. When cameras are used for quantitative shape
recovery the alternative is to use information such as shading, shadows, discontinuities and

markings to recover information about such regions.

2.4 Continuous, Contour-Driven Viewpoint Control

Chapter 1 motivated a framework in which exploration of an unknown object is formulated as a process
of constraining the deformation of the object’s occluding contour or, equivalently, the motion of the
visible rim over the surface. Clearly, object exploration is task-dependent, and not every exploration
process enables such a formulation. However, this thesis shows that we can solve a number of shape

recovery tasks by exploiting two general manifestations of this dynamic structuring process:
1. Moving to a special viewpoint
2. Controlling the motion of the exploration frontier

A key result in this thesis is that even though the shape recovery tasks we consider have different
objectives, being both local and global, and even though they rely on different principles for formulating
exploration as a dynamic structuring process, the viewpoint control mechanisms in all of these tasks
always control viewpoint in one of two simple ways: Either by moving on the tangent plane of the
surface at a visible rim point automatically selected during the exploration process, or by moving on a
normal plane at such a point. As a consequence, viewpoint is always locally-controlled even though
the task itself may require global shape recovery. Thus viewpoint is always controlled with respect to a
single point on the object’s surface, and depends on image-computable quantities that are localized in

the image.
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Moving to a special viewpoint. Special viewpoints are viewpoints that have a well-defined geometric
relationship with the local or global shape of a curved object (e.g., a viewpoint along the principal
direction at a surface point, or a viewpoint on an object’s support plane). Very little attention has
been paid in the past to the existence of such viewpoints (Section 2.5); special viewpoints have been
predominantly considered as unwanted degeneracies (e.g., a viewpoint corresponding to a side view
of a cube) that occur only by “accident” and complicate visual processes such as object recognition
[110, 182]. However, because viewpoint is highly constrained, these viewpoints provide qualitative
and quantitative geometric information about the surface that cannot be easily obtained from arbitrary
viewpoints.

Two of the shape recovery tasks considered in this thesis, namely occluding contour detection
(Chapter 4) and local curvature estimation (Chapter 5), are solved by using specml viewpoints. To
reach these viewpoints we ask how we can generate a continuous path that leads us to the desired
special viewpoint. Because these special viewpoints can be defined in terms of the shape of the
occluding contour itself, reaching them involves dynamically changing viewpoint until the contour’s

shape “evolves” into one that satisfies the conditions characterizing a special viewpoint.

Controlling the motion of the exploration frontier. In order to perform tasks involving exploration
of an object’s global shape such as global surface reconstruction a vision system must be able to (1)
represent the set of points on an object’s surface that have already been explored, and (2) characterize
precisely how a specific viewpoint change will affect this set. The exploration frontier is the boundary
of this set. In general, the structure of the exploration frontier changes unpredictably if we move to a
distant viewpoint. However, we can make such tasks tractable by formulating exploration as a process
of controlling viewpoint in a continuous fashion in order to “slide” the exploration frontier over the
entire surface, or over as much of the surface as possible (Figure 8).

In this thesis we control the evolution of the exploration frontier for the purpose of global surface
reconstruction (Chapter 6). We ask how to generate a continuous path so that the visible rim slides over
the entire surface, even though the the connectivity of the visible rim may change, and even though
its motion depends on the object’s local and global shape. A basic result is that because we control

viewpoint in a continuous and highly-constrained way, we can perform a local analysis of this task
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Figure 8: Controlling the motion of the exploration frontier to make visible all points on the surface;
the explored points are the points that have already been made visible. In this example, parts of the
exploration frontier coincide with the visible rim. Under an instantaneous viewpoint change, both the
visible rim and the exploration frontier will slide over the surface as shown in the figure.

while at the same time guaranteeing global reconstruction of generic objects of arbitrary shape. In
effect, continuous, contour-driven viewpoint control gives us the ability to provide global guarantees by
reducing the global reconstruction process to a local one at those discrete positions along the viewpoint’s

path where the rim’s topology changes.

2.5 Relation to Previous Approaches Using Image-Driven View-

point Control

Very little attention has been given in computer vision to the use of image-driven viewpoint control for

either exploring an object or for recognizing it. Furthermore, with the exception of the work by Blake
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and his group, the strategies developed either assume polyhedral objects, or assume the existence of
markings and discontinuities.

The existence of special viewpoints has been one of the main motivations for exploiting viewpoint
control. Following the projection-structuring framework, Wilkes and Tsotsos [183, 184] suggested a
strategy for reaching viewpoints where the projected lengths of two fully-visible creases on an Origami
object are simultaneously maximized; these viewpoints were used to simplify recognition of such
objects and are reached through a sequence of differential motions. The strategy was later generalized
by Madsen and Christensen [112]. In an analogous approach, Yoshimi and Allen [189] used a strategy
for aligning the optical axis with a hole in an object (assumed to be a point in the image) in order to
simplify peg-in-hole insertion. Grosso and Ballard [70], motivated by general observations about the
re-orientation behaviors of biological organisms (e.g., forcing the optical axis to be perpendicular to a
book before reading it), proposed a control scheme for changing the orientation of the optical axis about
arbitrary vectors in space.

Image-driven viewpoint control has also been used for increasing robustness in local quantitative
exploration tasks. Smith and Papanikolopoulos [149] incorporated viewpoint control into a gradient-
based, visual servoing control scheme in order to obtain a robust estimate for the depth of points on a
textured object. Hervé and Aloimonos [75] proposed the use of small, controlled movements to increase
the robustness of shape-from-shading and shape-from-texture computations. However, both strategies
relied on the assumption that either markings can be identified on the object or that surface reflectance
and motion information is available.

Image-driven viewpoint control in environments containing curved objects was studied by Blake
et al. in the context of grasping curved objects or moving around them [25,29,31,51, 160]. They
formulated viewpoint control as a local, gradient-based search for the optimal differential movement. A
predefined camera motion before each optimal movement was used to recover the shape of the surface
in the neighborhood of the visible rim, thus enabling a local curvature-based optimization process. The
developed strategies were local; no guarantees were given about their success or failure for general
non-convex objects.

Image-driven viewpoint control for exploring curved objects has thus been very limited. This thesis

is an attempt to study viewpoint control as a continuous, image-driven, appearance-structuring process,
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and to use it for simplifying the tasks of both local and global, qualitative and quantitative shape recovery

for curved objects.

2.6 Relation to Previous Approaches Using Range-Driven View-
point Control

The use of visual information is only one way to explore unknown objects. The development of tactile
sensors [2,3,20,151] and sensors for extracting physical properties of objects is still a topic of active
research [37,59, 87]. Laser range-finders [23] are the most commonly used alternatives to cameras for
exploring unknown objects.

Laser range-finders are particularly appropriate for extracting local, quantitative information about
an object’s shape since they estimate depth, a dimension lost during the projection process. Such sensors
are usually composed of a laser beam emitter device and a device for receiving the beams reflected
from an object’s surface. State-of-the-art range finders can provide accuracies for three-dimensional
measurements that far surpass those obtained from images [22,74]. However, these sensors have a
number of limitations that still make cameras appealing for exploring unknown objects. Range-finding
systems have a fixed field of view whose extent is dependent on the desired accuracy. On the other hand,
the accuracy of a range-finder depends on the optical characteristics of the sensed object’s surface (e.g.,
reflectance, color, etc.), as well as on environmental conditions such as ambient light and temperature;
even though some effects such as sensitivity to light absorption characteristics can be reduced using
high-powered lasers, such lasers can lead to eye safety hazards.

Since range-finders simplify the problem of extracting local, three-dimensional coordinate informa-
tion, a considerable amount of effort has been spent on building three-dimensional models of unknown
objects, although work on grasping has been reported as well [104]. One of the key problems is occlu-
sion [104, 117]; since coordinate information can only be extracted for points that are visible both to
the beam emitter and to the receiver, viewpoint control is needed to get the shape of occluded regions.
Initial studies of this problem appeared almost a decade ago [45]. Since then, viewpoint has been con-

trolled in a predefined manner [1], or controlled using the search-based viewpoint control framework.
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The optimality criteria guiding the search process either minimize the uncertainty of the current noisy
measurements [72, 177-180], or maximize estimates of the area reconstructible at the new viewpoint
[117].

Unfortunately, the problem of using range-finders for fast and reliable global reconstruction of
curved objects arbitrary shape is still unsolved. The question of how global surface geometry (e.g., self-
occlusions) affects the correctness of existing exploration strategies has not been considered. Currently,
no system exists which can provide guarantees about which parts of a complicated object (e.g., with
holes, dents, and protrusions) will be reconstructed.

The usefulness of trying to optimize the number of viewpoint changes is also not clear. Although
the developed optimization criteria attempt to minimize this number, they do not necessarily minimize
the length of the path traced by going to each of those viewpoints. Wixson [186], after studying the
viewpoint selection problem in simulated two-dimensional polygonal environments, has recently argued
that the strategy of moving to a random viewpoint has similar performance characteristics to strategies
that attempt to “intelligently” decide on moving to a distant viewpoint.

The results in this thesis are useful in the context of range-based object exploration in two ways.
First, our study of the global reconstruction task is directly relevant to the study of global reconstruction
using range-finders. The initially-occluded regions on an object can only be made visible by forcing the
exploration frontier to slide over them; the strategies in this thesis are designed precisely for this purpose.
Second, the availability of a range-finder should not lead to a computational burden and to viewpoint
control strategies that lack correctness guarantees; we believe that both cameras and range-finders have
their place in the exploration of an unknown object, and can complement each other’s limitations.

The key question in combining vision and range sensing for exploration is how to use a range-finder
in the most effective manner; one way to achieve this is to consider range-finders as tools for (1) refining
shape information that has been extracted with simpler and more efficient means, such as cameras, and
(2) overcoming the limitations of simpler sensors, e.g., the inability to explore concavities and flat areas

on an object’s surface using only occluding contour information obtained by a camera.



2.7 Summary

This chapter laid the conceptual foundations of our work, motivating our study of the general problem
of visual object exploration, the main issues addressed in our viewpoint control strategies, and the use
of the occluding contour for exploration.

Two key notions were introduced: The existence of special viewpoints, and the motion of the
exploration frontier. We argue that these notions can be extremely valuable in the exploration of
unknown objects, can be exploited by controlling viewpoint in a continuous, contour-driven fashion,
and can lead to simple, locally-controlled motions even when performing global shape recovery tasks.
Tangential viewpoint control, which is the main locally-controlled motion we use to reach special

viewpoints and to structure the motion of the exploration frontier, is described in the next chapter.




Chapter 3

Tangential Viewpoint Control

The continuous, contour-driven viewpoint control framework requires addressing two competing prac-
tical issues: On one hand, it requires that per-frame computations during the viewpoint’s motion be
efficient. On the other, it requires that a continuous stream of geometrical information is available to
guide viewpoint which, in principle, can be computationally-expensive to extract. Viewpoint control
mechanisms that balance these two issues are therefore desirable.

We claim that tangential viewpoint control is such a mechanism. In particular, we claim that
tangential viewpoint control requires simple and local computations in the image while at the same
time, leads to provably-correct exploration strategies for both local and global shape recovery tasks.
Tangential viewpoint control can be defined as follows: “Given a visible rim point p projecting to
the occluding contour, circumnavigate p by moving on its tangent plane until a specified condition
is satisfied” Among the conditions used in this thesis are maximization of the occluding contour’s
curvature at the projection of the point p (Chapter 5), and occlusion of p by points closer to the camera
(Chapter 6). Tangential viewpoint control involves computing p’s tangent plane or its intersection in
the image, changing viewpoint in a constrained way (i.e., on a single plane), tracking p’s projection
across frames, and detecting its occlusion. All viewpoint control strategies developed in this thesis can
be described as repeated selections of a point p and applications of this highly-constrained motion.

This chapter studies tangential viewpoint control and its geometry. Sections 3.1 and 3.2 provide
necessary geometrical background. Section 3.3 presents the key ideas of this chapter; it shows that tan-

gential viewpoint control can be used as an “appearance structuring tool” to manipulate the relationships
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between the shape of the surface, the shape of the occluding contour, and the way in which this shape
changes under continuous viewpoint control. Sections 3.4 and 3.5 then consider the practical issues of
festﬁcting the viewpoint’s motion to a plane, and tracking the projection of the surface point defining the
tangential motion. These two sections are not required for the material in subsequent chapters. Section

3.6 summarizes the chapter.

3.1 Projection Model

Projection models relate the shape of objects to the shape of their image. Several projection models have
been used in the computer vision literature, the most notable among these being the perspective and
orthographic projection models [5]. These models differ in two fundamental ways. First, the notions
of a “viewpoint” and of a “viewpoint change” are defined differently. Second, the projection of the
same physical point on an object’s surface is different for each of them. The first difference implies
that the effects of a tangential motion depend on the projection model. The second difference impacts
the exploration process computationally because different methods are needed to invert the projection
process. Both differences must be taken into account in the design of viewpoint control strategies for
exploration.

The model most accurately describing the projection process in CCD cameras is the perspective
projection model. Given the camera’s pose (position and orientation) and its focal length, this model
defines the projection of a 3D point p to be the point of intersection of the image plane with the line
through p and the camera’s focal point (Figure 9(a)).

Of the three strategies developed in this thesis, two are applicable to both projection models and one
of them relies on the orthographic projection model (Chapter 4). In this model the points on an object’s
surface are projected along parallel rays that are perpendicular to the image plane (Figure 9(b)). These
rays define the camera’s viewing direction. For the sake of uniformity our results are all presented using
the orthographic projection model.

It is clear from the geometry of the two projection models that the projection of a given 3D point
depends both on the position of the camera and on its orientation: In the case of perspective projection

any change in the camera’s pose along any of the three spatial and three orientation dimensions will
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Figure 9: Projection models. (a) Perspective projection. (b) Orthographic projection.

change the point’s projection; in orthographic projection, the parallelism of the projection rays implies
that motions perpendicular to the image plane do not affect the projection process.

While in general, camera motion under orthographic projection has five degrees of freedom, the
position and orientation degrees of freedom are coupled in all the strategies we describe. In particular,
(1) camera motions are always performed with respect to a reference point on the object being explored
[13,70], (2) the camera’s orientation is always such that the reference point’s projection is at the center
of the image, and (3) no rotations about the viewing direction are performed. Any positional movement
of the camera is therefore combined with a fixation, i.e., a concurrent change in viewing direction that
centers the reference point in the image. The reference point is always the point defining a tangential
viewpoint control motion.

A consequence of the orthographic projection model and of the tight coupling of the camera’s
positional and orientational degrees of freedom is that for a given reference point, there is a 1-1
correspondence between camera positions and viewing directions. We use the term viewpoint to refer to
both. For a given reference point, viewpoints can be thought of as points on a viewing sphere of infinite
radius surrounding the object [36] (Figure 10).

Unfortunately, orthographic projection cannot be used in all circumstances as an accurate model of
the projection process. First, it cannot be used in exploration problems that require motion with three

positional degrees of freedom (e.g., getting closer to an object in order to see through an opening) since
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Figure 10: Viewing direction ¢ is represented as the point (cost cos s, costsins,sint) with s €
[0,27),t € [0,7).

the camera has only two positional degrees of freedom under orthography.

Second, and most important, orthographic projection is valid only when the distance of the camera
to the viewed object remains large compared to the camera’s focal length [161]. This assumption can
be quite unreasonable when the viewing parameters are not known or are not controllable. In an active
context, however, this assumption is not as restrictive because the camera-to-object distance does not
have to be arbitrary; this distance can be increased, and the validity of the ray parallelism property can

be actively verified, to ensure the accuracy of the orthographic projection model.

3.2 Local Surface Geometry

The effects on an object’s projection of moving on the tangent plane of a visible rim point p are
completely determined by the local and global surface geometry. Below we introduce some basic
notions from the local geometry of surfaces that are required for this study.

Suppose S is a smooth, oriented surface in 13, viewed under orthographic projection along a viewing
direction €. Let x be a parameterization of S and p = X(u,v) be a point on 5. The partial derivatives

x4 (p), Xy (p) of x with respect to u and v define T;,(.5), the plane tangent to S at p. The visible rim of S
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Figure 11: Classification of the surface point p based on K: (a) pis elliptic, (b) p is hyperbolic, (¢) p is
parabolic, and (d) p is planar.

is the set of those visible points p for which 7;,(S) contains a line parallel to £.

In order to move on T,(S) we need to be able to compute it, or at least know its intersection with
the image. Barrow and Tannenbaum [18] showed that T,(S) can be determined using a very simple
relationship that holds between the tangent plane at p and the shape of the occluding contour at p’s
projection: The tangent plane at p is the plane defined by the viewing direction £ and the tangent to the
occluding contour at p (Figure 7). Therefore, its intersection with the image is along the tangent to the
occluding contour at p’s projection.

Motion on the tangent plane of a visible rim point p produces qualitatively different effects depending
on the way in which this tangent plane intersects the surface in the vicinity of p. Specifically, let
N(p) : S = S? be the Gauss map of S, assigning a unit normal vector N( p) in the direction of the
vector product X, A X, at every point p € S. The normal section of S along a direction ¢ in T»(S)
is the plane curve produced by intersecting S with the plane of { and N(p). The second fundamental
form, I1,(£), gives an expression for the curvature of this curve at p [38,90]. II, has a single maximum
and minimum, k,, and k,,, along two orthogonal directions, e; and e, respectively. These directions
are called the principal directions at p. The surface in the neighborhood of p can then be described
qualitatively by looking at the sign of their product A = kn, kn,, the Gaussian curvature of Satp
(Figure 11).

This qualitative surface classification determines the local structure of the intersection of the surface

with p’s tangent plane [38,89]. The strategies we develop in this thesis control viewpoint only on the
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Figure 12: Moving on the tangent plane of an elliptic point p. Viewing directions on T,,(.5) correspond
to points on a circle C of infinite radius lying on T,(.5) and centered at p.

Figure 13: Moving on the tangent plane of a hyperbolic point p.

tangent plane of elliptic and hyperbolic points. We therefore restrict our analysis to these two cases

(Figures 12 and 13). For elliptic and hyperbolic points, the local structure of S N Tp,(S) is shown in

Figure 14.
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Figure 14: Structure of T,(S) in the neighborhood of p. Top views of the tangent plane are shown for
the cases where p is (a) elliptic, and (b) hyperbolic. The axes represent the principal directions, and
the origin corresponds to the point of contact, p, with the surface. C represents the circle of viewing
directions on the tangent plane. (a) As viewpoint changes on T,(S ), p will not be occluded by points in
its neighborhood. The intersection of the surface with planes close to p and parallel to T,,(.5) is described
by Dupin’s indicatrix [38], which is a first-order approximation for the curve of intersection, and is an
ellipse in this case. (b) When p is hyperbolic, p can become occluded by points in its neighborhood
(shaded areas). The visibility transition will occur when the viewing direction is along an asymptotic
direction, along which the surface is locally flat. Dupin’s indicatrix is a hyperbola, with asymptotes
coincident to p’s asymptotic directions.

3.3 Tangential Motion as an Appearance Structuring Tool

One of the basic characteristics of the occluding contour is that it depends both on viewpoint and on
the shape of the viewed object. Motion on the tangent plane of a visible rim point becomes a key
motion in the exploration of an unknown object because it can be used to dynamically structure the
shape of the occluding contour and the motion of the visible rim in a way that factors out some of their
viewpoint-dependent properties; what remains is viewpoint-independent information about the local and
global shape of the object being explored. More specifically, tangential motion allows us to compensate

for three viewpoint-dependent properties of the occluding contour and visible rim:

1. The one-dimensional set of points comprising the visible rim will change under any infinitesimal

change in viewpoint.
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2. The shape of the occluding contour (i.e., tangents and curvatures) may change under an infinites-

imal change in viewpoint.

3. Under an infinitesimal viewpoint change, the motion of the visible rim over the surface and its
connectivity depend on (1) the local and global shape of the surface, (2) the initial viewpoint, and

(3) the direction of the infinitesimal motion.

Below we present the main ideas behind how the dependency on viewpoint of each one of these
properties can be factored out through tangential viewpoint control. These ideas are expanded upon in

Chapters 4-6, which put the ideas into the context of specific exploration tasks.

Forcing visible rim point stationarity. Suppose p is a point on the visible rim at a given viewpoint. p
will not remain on the visible rim if that viewpoint is perturbed in an arbitrary fashion. However, if we
start changing viewpoint on p’s tangent plane, p will remain on the visible rim for as long as it does not
become occluded by points that are closer to the camera [82, 134, 138] (Figures 12,13). This follows
directly from the definition of the visible rim.

Consequently, even though in general the visible rim can be thought of as sliding over the surface
when viewpoint changes continuously, we can force the visible rim to remain “stationary” at specific
points by controlling viewpoint on their tangent plane. We show in Chapter 4 that by appropriately
choosing these points we can detect the occluding contour without the need for extrinsic camera

calibration or viewpoint motion measurements.

Factoring out the dependence of the occluding contour’s shape on viewpoint. In general, when a
surface point p is viewed from different viewpoints on its tangent plane, the local shape of the occluding
contour (i.e., its curvature at p’s projection) will be different. However, the manner in which the
occluding contour’s shape changes around p’s projection as viewpoint changes on p’s tangent plane is
completely determined by the local shape of the surface at p. This allows us to reach special viewpoints
on p’s tangent plane at which the contour’s shape depends only of the local shape of the surface. This

is the basis of our shape recovery approach in Chapter 5.
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Factoring out dependence of the visible rim’s motion on viewpoint We show in Chapter 6 that
under small viewpoint adjustments, the changes in the connectivity of the visible rim near a point p and
the visible rim’s motion near that point are completely determined by the relationship between the initial
viewpoint and the endpoints of the arcs of viewpoints from which p is visible from its tangent plane
(Figure 15). Furthermore, there exists a direct relationship between the global shape of a surface and
the distance between the endpoints of these arcs. We show that we can force the visible rim’s motion to
depend only on the global shape of the surface by keeping the viewpoint’s relationship to the endpoints
of these arcs fixed (e.g., always at the middle of the arcs) before forcing the visible rim to slide over
points p on the exploration frontier. Our main result in Chapter 6 is that this is sufficient to structure the

visible rim’s motion in a way that guarantees global reconstruction of arbitrarily-shaped generic objects.

3.4 Enforcing Planar Viewpoint Control

Tangential viewpoint control requires viewpoint to be controlled in a very constrained way, i.e., by
moving on a plane corresponding to the tangent plane at a selected visible rim point and on a collection
of normal planes. Given that robotic arms and pan-tilt units have constraints of their own on how their
end-effectors can be moved, the issue of how these “hard” constraints on the viewpoint’s motion can
be performed with reasonable accuracy and speed becomes important. We briefly describe below one
approach for implementing such constrained motions that (1) exploits the natural constraints imposed
on the motion of orienting devices such as turntables and pan-tilt units, and (2) changes viewpoint by
controlling the orientation of the object.

Suppose that we have placed an object on a horizontal turntable and that both the viewing direction
and the image rows are horizontal. Furthermore, suppose that the image’s center row is tangent to the
object’s occluding contour at the projection of a point p (Figure 16(a)). Then, because the viewing
direction and the image’s center row define a horizontal plane, any rotation of the turntable will force
the viewing direction to move strictly parallel to p’s tangent plane. In order to enforce planar viewpoint
control on the tangent plane of an arbitrary visible rim point we develop a strategy that enforces this
special geometry between the object, the turntable, and the camera (Figure 16). Ideally, this can be .

achieved by finding a transformation that makes the point’s tangent plane horizontal, and applying that
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Figure 15: Views of a torus from T(5), which is horizontal and perpendicular to the plane of the page.
(a) View from an arbitrary position on T5(S); (b) view from the position where p first becomes occluded
while moving to the left on T,(S); (c) view from the position where p first becomes occluded while
moving to the right. The distance between the viewpoints corresponding to (b) and (¢) and their distance
from the viewpoint corresponding to (a) determine how quickly the visible rim curve containing p will
disappear under a vertical downward viewpoint adjustment starting from (a)

transformation to the object so that the original viewpoint (i.e., the position of the camera relative to the
object) remains unchanged by this transformation.

In theory, object re-orientation amounts to a rotation about an axis parallel to the viewing direction.
In practice, object re-orientation is limited by the configuration and the degrees of freedom of the
devices used to re-orient the object [103]. The questions we answer are: Given T5,(S), (1) how can

we re-orient the object so that T,(S) becomes as close to horizontal as possible,' and (2) how can we

1The ability to make 7, (S) horizontal will depend on the joint limits, accuracy, and resolution of the device used to
re-orient the object. We do not treat the problem of joint limits here. On the other hand, the accuracy and resolution of
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Figure 16: (a) Geometry of viewpoint control within 7(5). The object orientation and camera position
are such that T,,(S) is horizontal. (b) To allow viewpoint control on T,,(.5) for an arbitrary visible rim
point p, we have to re-orient the object to obtain a view identical to the one in (a) (up to a translation in
the image plane). :

ensure that the viewpoint remains unaffected by this process? Object re-orientation can be achieved
with a rotational stage mounted on pan-tilt unit (Figure 17). Fortunately, by adding a simple step to the
object re-orientation process we can also guarantee that the initial viewpoint is preserved up to a change
in distance from p (which does not affect the ability to move on T,,(5)).

More specifically, we base our strategy for object re-orientation on the relationship between the
surface normal at the selected point and the three axes of rotation of the RRR unit shown in Figure 17.
The strategy, outlined below, can be used to implement viewpoint control on any plane tangent to a
visible rim point p. It requires calibration of the hand-eye system, i.e., knowledge of the angles between
the three rotational axes of the RRR unit and any plane defined by the viewing direction and a line in the
image. Figure 18 shows the geometry of the object re-orientation process and Figure 19 shows views,
which were obtained by manually controlling the orientation of a RRR unit and the camera’s position,

of an object undergoing this re-orientation process.

Object Re-Orientation Strategy

the orienting device determines the distance between the selected point p and the closest point, p’, on the object whose
tangent plane is horizontal when the object re-orientation process is completed. As long as p’s tangent plane is close to
being horizontal after this process, the distance between p and p’ will be small. This distance is determined up to first order
by the principal curvatures of the surface at p.



42

Figure 17: Object re-orientation can be achieved using an orienting device with three consecutive
rotational joints (RRR unit). The first joint axis 2z, corresponds to a “pan” axis, and joint axis 2z
corresponds to a “tilt” axis. 2, and z; are perpendicular, as are z; and zs.

Step 1: Compute the rotation 63 about 23 that forces the surface normal, N (p), to become perpendicular

10 Zo.
Step 2: Compute the rotation 6, about z, that forces N(p) to become collinear with z,.
Step 3: Rotate the object first by 65 about 23 and then by 6 about z; (Figure 19(c),(d)).

Step 4: Let 0; be the rotation about z; induced by the rotations about z; and z3. Rotate the object by
—0, about z, (Figure 19(e)).

The first step provides us with all the information we need to compute the two rotations making
T,(S) horizontal and can be performed using a camera-centered coordinate frame. These rotations are
then applied in Step 4. Step 5 ensures that the original relationship between the camera position and
point p is preserved up to a change in distance from p: Since rotations about axes z, and Z3 in general
cause rotations in T,(S), Step 5 corrects for any such rotations. With this strategy, accurate motion

along arbitrary planes can be performed.
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Figure 18: Geometry of object re-orientation. Rotation by 05 about z; forces N (p) to lie in the plane of
71, z3. Rotation by 8, about 2z, forces N(p) to become collinear with z;. The rotation about z3 induces
a rotation about z; which must be corrected in order to ensure that object re-orientation does not affect
the direction along which p is viewed on T,(S).

3.5 Tracking Points During Tangential Viewpoint Control

One of the useful properties of tangential viewpoint control is that this motion can be performed using
local and efficient processing in the image. In particular, the exploration strategies we develop in the

next chapters require only four computational steps in order to control the viewpoint’s motion:

e Computing the occluding contour tangent at the projection of a selected elliptic or hyperbolic

visible rim point p
e Tracking p’s projection as viewpoint changes on 75,(S5)
¢ Detecting when p becomes occluded during motion on T,(S)

e Detecting when a point tangent to T,(S) becomes visible during motion on T,(S)

Here we discuss a simple implementation of these steps which allowed us to control viewpoint on the

tangent plane of selected elliptic or hyperbolic visible rim points.
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Figure 19: (a) View of a pipe. (b) View of the pipe from a position where the dot on the pipe’s surface
in (a) lies on the visible rim. (c) Rotating about axis z3. (d) Rotating about the horizontal axis z,. The
tangent plane at the circular mark is now horizontal. (¢) Rotation about the vertical axis z, ensures that
the point will be viewed along the same viewing direction on its tangent plane.

Clearly, apart from the first step, the remaining steps are impossible to perform on a curved object
with no markings or discontinuities when viewpoint is controlled in an arbitrary fashion. However, they
become particularly easy to solve in our case precisely because we control viewpoint on the tangent
plane of the point being tracked.

First consider the problem of tracking a visible rim point p while changing viewpoint on Tp,(S5).
Suppose for the sake of specificity that T,(S), the viewing direction, and the image rows are all
horizontal. The occluding contour at p will then be tangent to a row in the image (Figure 16(a)). When
viewpoint is controlled on T,(S), p projects to the occluding contour as long as it remains visible. So,
to track p we need to know which occluding contour point corresponds to p when the viewpoint is
changed. This is given to us by the geometry of Figure 16(a): Since the viewpoint remains on T,(S),
the occluding contour at p’s projection must always be tangent to same image row. This leads to the

following tracking procedure:




45

Figure 20: Objects used in the experiments.

Tangent Point Tracking Procedure: Let [ be the row tangent to p’s projection. To track p,
match p’s projection in the previous frame to the point in the current frame that is tangent

to [ and is closest to p’s previous projection.

In practice, to perform tracking we use five steps: (1) Center a small window W on row ! and on
the column of p’s previous projection, (2) apply a Canny edge detector to W, (3) discard all edge pixels
whose detected orientation differs by more than a threshold from {’s orientation, (4) perform hysteresis
thresholding on the remaining edge pixels, and (5) track the edge pixel closest to p’s previous projection.

Occlusion of the tracked point is detected when tracking fails. To detect when a point tangent to
T,(S) becomes visible after p’s occlusion, we process the window W in a manner identical to the way
we track p, looking for edge pixels that are close to row [. Since processing is only performed within W,
however, we need to know where to position this window along . One approach would be to estimate
where p would project if it were visible. However, to do this we either need to know p’s 3D coordinates,
or we need to track other rigidly-moving points [95, 118]. Instead, we used a simpler approach: When
p becomes occluded we simply shift W along ! by the window width at each successive frame. This
reduces the effective frame rate for detecting p’s reappearance, which we compensate for by reducing
the speed by which the viewpoint is moved on T,(S) during this disocclusion detection process. The

benefit is that neither 3D information nor tracking of additional points is needed.
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Figure 20 shows the objects we used to test the above point tracking and occlusion/disocclusion
detection approach. The point tracking computations allowed us to maintain tracking while rotating
these objects with speeds of 40 degrees/second using no dedicated hardware. Disocclusion detection
was achieved with rotations up to 10 degrees/second.

What makes these computations efficient is the size of the window W: In our particular experiments,
with an image resolution of 640x512 pixels, the tracked point did not deviate by more than 5-6 pixels
from p’s initial row, allowing window sizes of less than 20x20 pixels (see Figures 21-24). We also found
that the tracking process is relatively insensitive to the choice of thresholds, which were left unchanged
in all our experiments. Edge pixels whose orientation differed by more than 7/20 radians from ’s
orientation were rejected to encourage good localization of tangency points and few false positives.
Edge detection was performed with o = 4, and hysteresis thresholding used low thresholds to make the
tracker resistant to shadows and changes in shading, which are common when dealing with complicated
objects.

In our limited experiments, the disocclusion detection test proved very effective in accurately
detecting when the tracked point became disoccluded (Figures 21, 24). Furthermore, to improve the
robustness to noise in the disocclusion detection computations, given the low thresholds we use for edge
detection, we required that tracking be maintained for at least 4-5 frames on edge points in W before
point disocclusion was signalled. For the objects we considered, this approach succeeded in detecting

point disocclusion without generating false positives.

3.6 Summary

This chapter introduced tangential viewpoint control as a basic tool for structuring the shape of the
occluding contour for exploration. The geometry of tangential viewpoint control was presented and
practical issues of realizing such controls were discussed. While from a geometrical point of view
tangential viewpoint control is simple, it raises two important practical questions that need to be
addressed further.

Constrained viewpoint control requires the means to relate projected surface geometry to viewpoint

motion. This problem becomes particularly hard for curved objects with few or no markings and
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(a)
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Figure 21: Point tracking while moving on its tangent plane. (a) Initial view of the object. The
window W is centered on the point p to be tracked. Tp(S) is horizontal. (b) View of the object when
p’s occlusion is detected during counter-clockwise object rotation. (c) View of the object when p’s
occlusion is detected during clockwise object rotation. (d) View of the object when disocclusion is
detected for a point tangent to 7,(S). The object is viewed from a direction nearly opposite the one in

(a).

discontinuities since no fixed reference points will generally be found on their surface. The simple
approach taken in this thesis is to use hand-eye calibration as a way of relating image tangents to planar
motions in space. The problem, however, deserves more attention. In particular, it may be possible to

verify the quality of this calibration by checking whether the occluding contour remains tangent to the
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Figure 22: (a) Left: Magnification of the window in Figure 21(a). The crossis centered on the pointto be
tracked. Right: Output of window processing after Canny edge detection and orientation thresholding,
and before hysteresis thresholding. (b) Same as in (a) for the window in Figure 21(d).

motion plane at the point being tracked.

The problem of tracking a surface point while moving on its tangent plane also deserves a more
detailed analysis (e.g., along the lines of [52]). Even though our simple tracking approach proved fast
and effective for our purposes, additional efficiency gains (as well as the ability to deal with larger image

motions) can also be obtained using a Kalman-filter approach to perform edge tracking [28].
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Figure 23: Application of the system to a different object. (a) Initial view of the object. The window
is centered on the point p to be tracked, which lies on the upper interior surface of the pipe. T,(S)
is horizontal. (b) View of the object when p’s occlusion is detected during counter-clockwise object
rotation. (c) View of the object when p’s occlusion is detected during clockwise object rotation. (d)
Another view of the object during counter-clockwise object rotation. This view was obtained after p’s
occlusion was detected in (b) but before any point disocclusions on T,(S) were detected.
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(a) ©

Figure 24: Detecting point disocclusion. (a) View of the object in Figure 23 when disocclusion is
detected for a point tangent to the horizontal plane corresponding to T},(S) in Figure 23. This view
corresponds to viewing the pipe’s interior from a direction opposite the one in Figure 23(a). (b) Left:
Magnification of the window in Figure 23(a). The cross is centered on the point to be tracked. Right:
Output of window processing after Canny edge detection and orientation thresholding, and before
magnitude thresholding. (c) Same as in (b) for the window in (a).




Chapter 4

Occluding Contour Detection

The occluding contour plays a key, dual role in our continuous contour-driven viewpoint control
framework. Its continuously-evolving shape guides the viewpoint control process during the exploration
of an unknown object. Furthermore, it is the source of information we use about the unknown geometry
of an environment’s objects.

In this chapter we present an approach for detecting the occluding contour curves in an image. This
detection process is a necessary initial step in the exploration of curved objects since, in practice, an
object’s surface may contain markings or discontinuities which also project to curves in the image.
Occluding contour detection can be formulated as follows: “Given a collection of image curves,
determine which curves belong to the occluding contour and determine their sidedness, i.e., on which
side of the occluding contour the surface closest to the camera lies.” Apart from detecting the contour,
this also allows us to get a segmentation of an image in terms of the visible surfaces, to find grasping
points [29], and to determine the sign of the Gaussian curvature of the surface at the visible rim [34, 88].

The rest of the chapter is organized as follows. The next section presents the basic ideas of the
approach and compares it to previous work on occluding contour detection. Section 4.2 introduces the
geometry of the problem. Section 4.3 studies how the projections of the visible rim and of markings and
discontinuities deform when viewpoint is changed in a continuous fashion. The section also motivates
the use of a prediction-verification scheme for detecting the contour after moving to an appropriate
special viewpoint. Section 4.4 then uses this result to develop a viewpoint control strategy for detecting

the occluding contour, under the assumption that the image of markings and discontinuities at arbitrary
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viewpoints can be predicted. Section 4.5 presents the main result of this chapter, which gives us a way
to form these predictions through tangential viewpoint control by using elements from the theory of
affine-invariant representations. Section 4.6 discusses how we can account for errors in the image data,
and Section 4.7 presents results from initial experiments. The chapter concludes with a discussion in

Section 4.8.

4.1 Active Occluding Contour Detection

Under continuous viewpoint control the visible rim possesses two properties that distinguish it from

markings on an object’s surface:

e The curves comprising the visible rim “slide” rigidly or non-rigidly over the surface, possibly

changing their connectivity.

e The deformation of the visible rim’s projection, the occluding contour, uniquely determines the

shape (i.e., curvature) of the parts of the surface over which the visible rim slides [44, 62].

Most previous work on identifying the occluding contour of curved objects focused on the second
property: Because occluding contour deformations uniquely determine shape, one can check whether
the deformations of an image curve determine the shape of a curved surface. Since the deformation
of the projection of a surface marking corresponds to a surface of infinite curvature coinciding with
the marking itself [42,44, 169, 170], this test is sufficient for identifying the occluding contour curves
in a sequence of images. Unfortunately, the test involves comparing the speeds and accelerations of
the curves in the image sequence to the speed and acceleration of the viewpoint’s motion, and, hence,
requires accurate measurement of these quantities (or an accurately calibrated stereo system [170]). This
makes the occluding contour process sensitive to errors, and is undesirable when the occluding contour is
used to extract qualitative information about an object’s shape, e.g., for model indexing or for grasping,
where accurate measurements of the viewpoint’s motion are not necessary. Furthermore, the robustness
of the surface reconstruction process itself can be greatly improved by a priori distinguishing between

the occluding contour and the surface markings [44], and, as will be shown in Chapter 3, specialized
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viewpoint control strategies can be used to simplify local curvature estimation once the occluding
contour has been identified.

This chapter shows that when viewpoint is controllable the occluding contour can be identified
directly, i.e., without first computing surface shape (distance and curvature). This is achieved by
exploiting the first property of the visible rim: Unlike the visible rim curves, surface markings are
stationary, i.., their position on the surface is fixed and viewpoint-independent.! Instead of attempting
to accurately measure the speeds and accelerations of the visible rim curves over the surface, we utilize
the stationarity property of surface markings; by determining which curves in the image are projections
of non-stationary surface curves, we factor out the need for recovering metric properties about the
surface or the viewpoint’s motion.

Our approach is closely related to that of Zisserman et al. [193] who also suggested a direct
approach for detecting the non-stationarity of the occluding contour, although without controlling the
viewpoint’s motion. Unfortunately, the ability to distinguish the occluding contour from markings is
highly dependent on the viewpoint’s motion and the discrimination performance can be poor when
viewpoint is not under the direct control of the vision system. Furthermore, object-independent motions
cannot be used, in general, to detect the sidedness of the contour, and some surface markings need to
be identified in the image a priori to bootstrap the occluding contour detection process.

Continuous, image-driven viewpoint control can solve these problems. In particular, no markings
need to be identified a priori and viewpoint can be controlled so that discrimination power depends only
on global properties of the objects being viewed. The only requirements of this approach are that (1)
a correspondence can be established during the viewpoint control process for the image curves whose
identity is sought (i.e., “surface marking” or “occluding contour™), and (2) at least four image curve
points with parallel tangents can be identified at the initial viewpoint.

The method is based on one simple observation: Suppose a curve on the visible rim coincides with a
surface marking. Because the position of the visible rim curve depends on viewpoint while the position
of the surface marking does not, the coincidence relationship between the projections of the two curves

will not be preserved when the viewpoint changes. So, if we are able to compute how a visible surface

1When the position of the light source and an object is fixed, image curves corresponding to shadows are also stationary.
We do not distinguish between such image curves and the projections of surface markings in this chapter.
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curve would project at other viewpoints assuming it is stationary, we can simply change viewpoint and
compare its projection with the one predicted under the stationarity assumption. When the predicted
projection of a curve does not coincide with the actual one, the curve must be on the visible rim.

The crucial issue one must address to exploit this observation is how to predict the projection
of a surface curve under the stationarity assumption. Previous work on predicting novel views of a
three-dimensional object either assumed the availability of an object model [145], the existence of a
collection of “model” views in which the projections of either the surface markings or the visible rim
curves have been identified [ 167], or the existence of a small number of easily-identifiable point features
on the surface of an unknown object that could be matched across frames [148]. Here we present a
detailed geometrical analysis of this prediction problem that (1) shows how to distinguish stationary
from non-stationary surface curves using an active vision system and discusses under what conditions
this discrimination can be achieved, (2) shows how this ability can be used to detect the occluding
contour as well as the contour’s sidedness when no surface markings have been identified a priori, and
(3) takes into account errors in image measurements.

The basic assumption used in all previous approaches for identifying the occluding contour and for
predicting novel views of an object was that viewpoint motion was object-independent. This means
that the motion of the viewpoint between any two views of the object is not related in any way to the
geometry of the object. This is a reasonable approach, however, only when the vision system cannot
control viewpoint. When the viewpoint’s motion can be controlled, the choice of viewpoint(s) does not
have to be arbitrary.

The significance of our method lies in the use of continuous, image-driven viewpoint control to
achieve and maintain specific geometric relationships with the viewed surface in order to distinguish
the occluding contour from the projections of stationary surface curves. We show how we can use an
active vision system to move to special viewpoints in which the image of a stationary surface curve
can be accurately predicted, and then use this predictive power in order to classify the curves in the
image either as occluding contour curves, or as projections of stationary surface curves. Throughout

this chapter we assume that each image has been processed to extract a collection of curves.
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4.2 Viewing Geometry

The shape and position of the visible rim depends on the shape of a surface S and the viewpoint. This is
the fundamental difference between visible rim curves and surface markings; the surface position of the
curves corresponding to such markings is independent of the viewpoint. We qualitatively characterize

the difference between these two types of curves with the notion of non-stationarity:

Definition 4.1 A surface curve is stationary ifits position on the surface does not change when viewpoint

changes. It is non-stationary if its position is viewpoint-dependent.

Our goal is to exploit the non-stationarity of the visible rim to identify the occluding contour. This
operation requires a correspondence between points on the surface at different viewpoints, and between
points in images. We use the epipolar plane correspondences [44, 62, 170] for this purpose.

In particular, suppose the viewing direction changes according to £(t) on a motion plane with normal
Ng. This motion defines a family of planes parallel to the motion plane called the epipolar planes.
If B(to) an image curve at time to, the epipolar plane correspondence matches a point ¢ € B(to)
to the intersection of B(to + 8t) with the epipolar plane through ¢. This correspondence induces a
correspondence between points belonging to the surface curve (t) projecting to B(t).

Figures 25(a,b) make explicit the non-stationarity property characterizing the visible rim curves:
When the tangent of an occluding contour curve at a point ¢ does not belong to an epipolar plane,
we can think of the point g(t) corresponding to g at time ¢ as being the projection of a point p(t) that
“moves” on the intersection of the surface with the epipolar plane through q. We call such points p(t)
non-stationary.

The key property of the epipolar correspondences used in our approach is derived from the geometry
of Figure 25(c): Even though, in general, we cannot determine which points in the image are projections
of stationary points, as discussed in Chapter 3 we can force the stationarity of specific points by
appropriately controlling viewpoint; viewpoint simply needs to move in a plane parallel to the tangent

plane at those points.

Tangential Motion Property: If a point g on an image curve has its tangent parallel to

the motion plane, and epipolar plane correspondences have been established for g across
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Viewpoint 2
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Figure 25: Point correspondences induced by the epipolar geometry. Point ¢' is the point corresponding
to q. (a) When ¢ is the projection of a point p on a surface marking at Viewpoint 1, ¢’ is the projection
of p at Viewpoint 2. (b) When p is on the visible rim and the tangent of the image curve at g does not
belong to an epipolar plane, T,,(.S) is not an epipolar plane and ¢’ is the projection of p’, not p. (c) When
the tangent of the image curve at q belongs to an epipolar plane, T,(5) is an epipolar plane and both ¢
and ¢’ are projections of p (Chapter 3).

frames, all points corresponding to ¢ must be projections of the same surface point. This
property does not depend on whether or not the image curve containing q is the projection

of a surface marking.

In the following, if p is a surface point projecting to ¢ at the initial viewpoint, we denote by p(t) and

q(t) the points corresponding to p and ¢, respectively, at viewpoint £(¢).

4.2.1 Affine-Invariant Representations

A basic step in our method for determining the non-stationarity of the visible rim points is that of re-
projection [19, 148, 167]: Given the projections of a collection of 3D points along a sequence of viewing

directions, compute the projection of those points along a viewing direction that is not contained in
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the sequence. Affine-invariant representations are important because they allow us to re-project points
without knowing the viewpoint motion parameters and without recovering any metric properties of the
corresponding surface points. The related theory was introduced and applied in computer vision only
very recently [21,54, 58,95, 118,173, 175], and was first applied to the occluding contour detection
problem in [193].

Let p1,...,pn € R3,n > 4, be a collection of points at least four of which are not coplanar.
An affine-invariant representation of those points is a representation that does not change if the same
non-singular linear transformation (e.g., translation, rotation, scaling) is applied to all the points. The
representation consists of three components: The origin, po, which is one of the points p;,z = 1....,m;
the affine basis points, ps, » Ps,, Pb; Which are three points from the collection that are not coplanar with
the origin; and the affine coordinates of the points p;, which are the coordinates of p; — p, with reépect
to the affine basis vectors b; = py, — po, 7 = 1,2, 3. To re-project, we use the following two properties

of affine-invariant representations:

Property 4.1 When the projection of the origin and basis points is known along a viewing direction

¢(t), we can compute the orthographic projection of a point p; from its affine coordinates.

Property 4.2 The affine coordinates of i, - - . , P» can be computed when their projection along at least

two viewing directions is known.

More specifically, the affine basis vectors bj,j = 1,2,3 constitute a basis for R. If B =
[ b, b, by |is the invertible 3x3 matrix describing the affine basis, the relation between a point

p and its affine coordinates can be expressed in matrix form as

T a;

R 2

(1) Yy Po = B a,
z a?,

where [ z y 2 |7 and| ol ol o |7 are the Euclidean and affine coordinates of p, respectively.

Let [ uf ok ]7 be the projection of p along viewing direction &, k = 1,2, and let | u{;j vﬁj 17 be

the projection of the basis vector b;, j = 1,2, 3. Computation of the affine coordinates of p is achieved

using the formula:
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This formula gives rise to two linear equations for each viewing direction. Three of these equations
can be used to solve for the affine coordinates of p. When the affine coordinates of p and the projection
of b; are known, re-projection is achieved through a simple matrix multiplication using Eq. 2.

When the affine coordinates of all points pi, ... ,p, are sought, and when the projection of those
points from m viewing directions is available, the affine coordinates of those points can be found by

solving an overdetermined system of linear equations:
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These derivations were used by Koenderink [95], Weinshall [173], and Weinshall and Tomasi [174]

to compute the affine representation of a collection of points.

4.3 Detecting Point Non-Stationarity

The previous section showed that a fundamental property distinguishing the visible rim from surface
markings is non-stationarity: Except for a finite (and, in practice, small) collection of points that
depends on the viewpoint’s motion plane, the points on the visible rim are non-stationary. Hence, we
can identify the occluding contour curves by controlling viewpoint to determine which image curves
contain projections of non-stationary points.

Our approach is based on a theorem that allows us to distinguish between the projection of stationary

and non-stationary points by exploiting a few simple properties of smooth surfaces and their occluding
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contours. We only consider the case where the surface is initially viewed from a “general viewpoint,”
i.e., a viewpoint for which an arbitrarily small perturbation does not produce topological changes of the
visible rim and the occluding contour. We also restrict our analysis to the problem of determining the
non-stationarity property for points that are not endpoints of a curve in the image.

Suppose viewing direction changes on a single plane according to a smooth function ¢(¢), let p(0)
be the surface point projecting to g(0), and let E be the epipolar plane through p(0). Theorem 4.1
characterizes the distance between ¢(t) and the projection, §(t), of p(0) along £(t) (Figure 26). See
Appendix A for proofs.

Theorem 4.1 Points p(t), q(t), and §(t) have the following properties:

(1) Suppose that the curves in S N E are parameterized so that their curvature is positive when their
normal is toward the surface interior. Then, p(t) is contained in the maximal, connected, convex

subset of S N E that contains p(0).

(2) Let ) be the smooth curve corresponding to the set in (1). The distancé between q(t) and (%) is

given by

0 if p(0) is stationary,

| [p(t) — p(0)] - n(p(t))| if p(0) is non-stationary,

@) lla(t) — 4@l =

where n(p(t)) is the normal® of curve X at p(t).

(3) If p(0) is non-stationary, ||q(t) — §(t)|| is zero along at most three viewing directions on E, with

£(0) being one of them.

Theorem 4.1 motivates the use of a prediction-verification scheme for determining whether or not a
point p(0) is stationary: If we are able to compute p(0)’s projection along any viewing direction on the
motion plane, we can assume that p(0) is stationary and then check the validity of that assumption. The
stationarity of p(0) can be verified by moving to a new viewing direction { (t) and then verifying that

§(t), i.e., the predicted position of g(t) under the stationarity assumption, coincides with g(t) in the new

21n order to distinguish curve normals from surface and plane normals we use lowercase n for the former and uppercase
N for the latter.
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Figure 26: Distinguishing stationary from non-stationary points. (a) A “top” view of the epipolar plane
is shown. The shaded area corresponds to the surface interior. A is the open curve corresponding to the
set of Theorem 4.1(1). (b) A case where three viewing directions, £(0), £(¢1) and £(t2) force points ¢(t)
and §(t) to coincide according to Theorem 4.1(3).

image. If ¢(t) and §(t) do not coincide, p(0) must be a non-stationary point. Intuitively, if not equal to
zero, the distance ||g(t) — §(t)|| measures the “degree” of non-stationarity of p(0).
The following corollary to Theorem 4.1 goes a step further, showing that the position of ¢() can

serve as a qualitative indicator of the sidedness of the occluding contour (Figure 27):

Corollary 4.1 If p(0) is non-stationary and £(to) is such that ||q(t) — G(t)|| # 0 for 0 < t < to, the

surface must lie on the side of q(to) containing §(to).

Theorem 4.1 tells us that even an arbitrarily small change in viewing direction on E will force
llg(t) — G(t)]| to become non-zero. Even though, in theory, this should be sufficient for identifying the
non-stationary points in an image, in practice we must allow for errors in image measurements and
for the inability to measure arbitrarily small distances in an image. The next corollary to Theorem 4.1
characterizes the effectiveness of this prediction-verification scheme by specifying how large ||¢(¢) —

G(t)]| can be (Figure 28):

Corollary 4.2 The function f(t) = ||q(t) - §(t)|| is maximized when [p(t) — p(0)] - £(t) = 0, i.e., when
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Figure 27: Determining the sidedness of the contour. (a) Since A is convex, the vector G(t) — g(t) points
in the direction of \’s normal, N(p(t)), at p(t). The corresponding image is shown in (b). The epipolar
plane is always viewed “edge-on”, and hence it projects to a line in the image.

p(t) is at a local maximum distance from p(0). (1) If at least one such point exists on A then there is a

point p(t*) corresponding to a maximum of f, such that

) sy » sl

nmam

where K., is the maximum absolute principal curvature of the surface, and ¢ is the minimum angle
between E’s normal and the surface normal along ). (2) If f(t) is only maximized at the endpoints of
A

(6) f(t*) 2 min{D(pmid’ll)’D(pmidle)}

where py,p2 are the two endpoints of A; 11,1, are the tangent lines at p, pa, respectively; pmia is the

point on X that is equidistant from py and p; and D(p,1) is the distance from point p to line .

Theorem 4.1 and its corollaries demonstrate that by computing p(0)’s projection along a new viewing
direction on the epipolar plane we can identify the occluding contour and determine its sidedness.
Furthermore, by appropriately choosing this viewpoint we can maximize the contour’s detectability,
making it depend on global surface properties. We discuss the implications of the above results in the

next section, where we describe a strategy that continuously controls viewpoint to detect the contour.
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Figure 28: Bounding the distance between ¢(t) and ¢(¢). (a) A viewing direction maximizing the
distance between g(t) and §(t). When the viewing direction is along £(¢*), the image plane is parallel
to the normal of X at p(t*). (b) The image of the surface corresponding to (a). /N is the projection of
the surface normal in the image plane and is along the normal of the occluding contour at ¢(t). (c) The
shaded area of the epipolar plane corresponds to the intersection of the two half-planes, P1, P, of the

points p satisfying the inequalities D(p, ) < D(pmia, 1) and D(p,l2) < D(pmia, l2), respectively.
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4.4 Active Occluding Contour Detection

The goal of our approach is to control viewpoint in an image-driven fashion so that the identity (visible
rim or surface marking) of the surface curves projecting to the image can be determined. We do this by
assuming the curves projecting to the image are stationary, selecting a motion plane, and then controlling
viewpoint on that plane to verify the stationarity assumption. This process involves verifying that the
actual projection of the surface curves coincides with that predicted under the assumption they are
stationary. To completely specify our occluding contour detection strategy we therefore need to answer
three questions: (1) How to select the motion plane, (2) how to control viewing direction on that plane,
and (3) how to predict the projection of the selected curves from viewpoints on that plane under the
stationarity assumption? Below we first outline the main ideas, and in Sections 4.5 and 4.6 present more

details.

4.4.1 An Active Strategy for Detecting the Occluding Contour

Suppose that the viewpoint’s motion plane has been selected and thata method is available for predicting
the projection of a collection of surface curves B, ... , B from viewpoints on the selected motion plane.
We first consider how to control the viewing direction to determine the non-stationarity of a single point
p(0) on the visible rim at the initial viewpoint.

Let ¢(0) be p(0)’s projection. Theorem 4.1 tells us that there are viewing directions on the selected
motion plane from which the non-stationarity of p(0) can be established by verifying that p(t)’s
projection does not coincide with that of p(0). Since the distance between the two projections can
be arbitrarily small depending on the viewpoint, we use a strategy 10 reach the special viewpoints for
which this distance is maximized. Corollary 4.2 shows that in most cases, the maximum distance can
be characterized by only two parameters, one of which depends only on the intrinsic surface geometry.

Let E be the selected motion plane. Viewpoints on E can be thought a points on a unit circle C
on E (Figure 29). As the viewing direction changes on E, the corresponding point moves on C. Our
goal is to smoothly move this point on C until the viewpoint maximizing the distance between ¢(t) and
the projection, §(t), of p(0) is reached. There are only two possibilities for moving on the unit circle,

either clockwise or counter-clockwise. Clearly, we can move on C as long as correspondences for q(0)



Figure 29: Changing viewing directions on E. Viewing directions correspond to points on the unit
circle C contained in E.

can be established, i.e., as long as the curve ) containing p(0) is convex, and as long as p(t) is not
occluded. Corollary 4.2 says that because the distance between ¢(t) and §(t) can have local maxima, the
motion must be performed both in the clockwise and counter-clockwise directions if a global distance
maximum is sought.

When the goal is to identify the type of each curve in a collection of curves in an image, the above
process can be applied simultaneously to all points on the selected curves. These considerations lead to

the following strategy for identifying the occluding contour curves:

Active Occluding Contour Detection Strategy

Step 1: Let By, ... , B, be the image curves whose identities are sought.
Step 2: Select the motion plane E.

Step 3: Perform a small clockwise viewing direction change.

Step 4: For every point ¢(0) on B,(0),.. . , B,(0) for which a correspondence ¢(t) can be established

along the current viewing direction,

a. compute §(t),

b. compute the distance 5(¢(t)) = ||q(t) — 4(2)||-

Step 5: Repeat Steps 3-5 until either the initial viewing direction is reached, or no correspondences can

be established for curves B;(0), ... , Ba(0).
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Step 6: If the initial viewing direction is not reached, repeat Steps 4-5 while changing viewing direction

in a counter-clockwise fashion.

Step 7: Given the computed distances 6(q(t)),0 <t < T, foreach point g(0) on the curves By, ... , By,

label these curves as either type surface markings or type occluding contour.

In the next section we show how we can use tangential viewpoint control to construct an affine
invariant representation and perform Step 4. Section 4.6 then discusses the curve classification process

in Step 7, which takes into account noise in image measurements.

4.5 A Prediction Mechanism for Detecting Non-Stationarity

The occluding contour detection strategy described in the previous section made an important assump-
tion: Given a point p(0) on the surface, we can compute p(0)’s projection along arbitrary viewing
directions on its motion plane. In general, this computation cannot be performed unless the three-
dimensional coordinates of that point are known. Here we show that by exploiting the geometry of
tangential motion developed in Chapter 3 and the Tangential Motion Property (Section 4.2) to select
the viewpoint’s motion plane, we can formulate this computation as a re-projection; this allows the
assumption to be slightly relaxed without affecting the correctness of the strategy given in Section 4.4,

Suppose we want to determine whether or not a point p(¢;) projecting to g(t;) is non-stationary.
Theorem 4.1 says that if we select a plane through p(#;) that is not tangent to p(t1) and change our
viewing direction on that plane to £(t), we can determine that p(¢,) is non-stationary by verifying that
the predicted projection, §(t), of p(t) along £(t) does not coincide with the measured one, i.c., q(t). To
exploit this theorem without having to explicitly compute §(¢) we simply note that the exact distance
between §(t) and q(t) is not important, as long as we can determine that it is non-zero. We use the

following result, which extends Theorem 4.1:

Theorem 4.2 Let p(t,) be a surface point and let q(t1) be its projection along {(t1). Let q(t2) be
the point corresponding to q(t,) along a viewing direction £(t2) on the motion plane, E. If (1) the
projections, ri(t1),. .. ,ra(t1), of four stationary and non-coplanar surface points can be identified in

the image along £(t1), and (2) [ oy a; o3 |7 is the affine coordinate vector computed from Eq. 2
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with [ uk vk |7 = q(te), k= 1,2, and [ uf of |7 = rj(te) = ri(te),J = 2,3, 4, then the point §(t)
defined by

ay

@ g(t) =1 ro(t) — ri(t) ra(t) —ri(t) ra(t) — ra(t) 1 oy

Q3
has the following two properties:

1. Let \ be defined as in Theorem 4.1, and let p be the 3D point with affine coordinates

[y ay a3t Thedistance between q(t) and §(t) is given by

if p(t1) is stationary,
®) la(t) - a(t)l = Y PR
|[p(t) — B] - n(p(t))| if p(t1) is non-stationary,

where n(p(t)) is the normal of curve X at p(t).
2. If p(t1) is non-stationary, ||q(t) — §(t)|| is zero along at most four viewing directions on E.

Theorem 4.2 implies that if we can identify the projections of four non-coplanar stationary points in
the image, we can replace the computation of ¢(¢) in Step 4a of the Active Occluding Contour Detection
Strategy by computing §() without compromising the correctness of the strategy. The first property
of §(t) ensures that by computing §(t) instead of §(t) we do not introduce any “false positives” in
our occluding contour detection process. The second property shows that the distance ||q(t) - §(¢)||
behaves almost identically to the “true” distance ||g(t) -- §(t)||, allowing us to use the Active Occluding
Contour Detection Strategy to identify the occluding contour. The following corollary, which is similar

to Corollaries 4.1 and 4.2, makes this explicit:

Corollary 4.3 (1) The function f(t) = ||q(t) — G(t)|| is maximized when [p(t) — p]- £(t) = 0, i.e., when
p(t) is a local maximum distance from p. If at least one such point exists on A and that point is not one

of its endpoints, then there is a point p(t*) corresponding to a maximum of £, such that

© fry > sindl

’fmax
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where Komqz i the maximum absolute principal curvature of the surface, and ¢ is the minimum angle
between E’s normal and the surface normal along . (2) Let £(7) be a viewing direction maximizing

f. If p(0) is non-stationary, the surface must lie on the side of q(t) containing ().

The proof of Corollary 4.3 is similar to that of Corollaries 4.1 and 4.2.

Corollary 4.3 shows that the only major impact of computing §(t) instead of g(t) is in the determi-
nation of the contour’s sidedness. Intuitively, the contour’s sidedness can be correctly determined only
along viewing directions at or close to the global maximum of ||q(t) — §(?)|l.

To use Theorem 4.2 and Corollary 4.3 we must be able to identify the projections of four stationary
points in the image. In general, when the viewpoint’s motion cannot be controlled this is impossible to
achieve. However, when we can select the viewpoint’s motion plane, the Tangential Motion Property
can be exploited: If four points in the first image can be identified whose tangents are parallel, the
motion plane defined by those tangents guarantees the stationarity of those points in the orthographic
projection model. This solves the problem of predicting the projection, 4(t), of p(t) in Sfep 4a of the
Active Occluding Contour Detection Strategy under the assumption that p(0) is stationary.

Theorem 4.2 shows that at least three views, £(t1), £(22), £(£3), are required to determine that a point
p(t,) projecting to ¢(t;) belongs to the visible rim: £(¢1), {(t2) are necessary for computing §(¢3) along
£(t3), and £(t3) is necessary for computing the distance ||q(t3) — G(t3)]|. The need for three views was
also noted by Vaillant and Faugeras [170], where the occluding contour was identified by first computing

the shape of the surface in the vicinity of the contour using trinocular stereo.

4.6 Measurement Errors

The final step in the Active Occluding Contour Detection Strategy is the classification of image curves
based on whether or not they contain projections of non-stationary points. This requires determining if a
specific quantity, namely ||g(¢) — g(t)]], is zero or not. In practice, due to errors in image measurements,
this quantity may not be zero even for projections of stationary points. It is therefore necessary to
account for such errors in the classification process. We accomplish this in three ways: (1) We use
many views to determine the non-stationarity of each point p(0) projecting to the initial image, (2) we

estimate the probability that p(0) is non-stationary under the assumption the image measurement eIrors
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have a zero-mean Gaussian distribution, and (3) to classify a curve, we estimate the above probability
for all points projecting to that curve. We briefly outline this classification process below.

To incorporate multiple frames in the classification of a point p(0) projecting to ¢(0), we compute
the affine coordinates of § as the least-squares solution to the overdetermined linear system given by
Eq. 3 [67, 174]. More specifically, if W is the 2K x 3 matrix of image coordinates of the affine basis
at K viewpoints, and q is the vector collecting ¢(t)’s coordinates at those viewpoints, we compute the
affine coordinate vector a of p by
(10) a= (W'W)" WTq
The projection of p at the K viewpoints is then given by
(1) a=w (WTw)" wTq,
where q is the vector collecting the image coordinates of p.

To classify point p(0) as non-stationary, we compute the squared Mahalanobis distance, ||q — g||?,
of the residual q — q from 0, assume that this distance is corrupted by noise in the image measurements,
and then estimate the probability that it is non-zero [190]. If this probability is high, p(0) and ¢(0) are
classified as being on the visible rim and the occluding contour, respectively.

To simplify the error analysis we only allow for errors in the measurement of q.> We also assume
the errors in each element of q are independent and have a Gaussian distribution with zero mean and
variance o. Under these assumptions, and when p(0) is stationary, the distance (1/0?)||q — g||? follows

a x? distribution with three degrees of freedom.*

To perform point and curve classification we now have the following criteria:
Point Classification Criterion: Classify ¢(0) as an occluding contour point if
1 - . .
(12) Pr ;]]q —g|I* > & | p(0) is statlonary] <m

where m is an a priori defined constant, § is the computed value of (1/0?)||q — §J|*, and

the probability is computed using a x* distribution table.

Curve Classification Criterion: Classify curve B as an occluding contour curve if more

than M % of the points on B are classified as being on the occluding contour.

3However, a more sophisticated error analysis that takes into account errors in W is also possible (e.g., see [170]).
4This follows from the non-coplanarity of the basis points, which ensures that the rank of W is three [50, 190].
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Figure 30: Polyhedral model of a bottle and its visible rim.

4.7 Experimental Results

To demonstrate the effectiveness of our occluding contour detection method we have performed pre-
liminary experiments using both simulated and real data. We implemented a system that (1) detects and
tracks image curves across frames, (2) detects and tracks the curve points whose tangents are parallel to
the viewpoint’s motion plane, (3) selects an affine basis from those points, and (4) classifies the curves
using our Active Occluding Contour Detection Strategy.

Figure 30 shows the model used in our simulations, a polyhedral representation of a bottle. Four
points were randomly selected from the polyhedron’s vertices to be the affine basis points. The object
was rotated a total of 7 radians about a vertical axis through the center of the bottle, and the projection of
the affine basis points was computed for each of the frames. The generated images and the projections of
the basis points were the only inputs to the system. The affine coordinate computations were performed
using the first two frames of the sequence. This simulation corresponds to the best-case scenario for
our strategy: Due to the model’s symmetry, the occluding contour remains unchanged throughout the
model’s rotation, while the projection of a stationary surface curve varies with viewpoint. The simulation

results are shown in Figure 31. They show that the difference between the actual and predicted positions
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Figure 31: (a) Predictions for 10 frames overlayed with the detected curve which does not move
throughout the rotation. (b) Curve predictions for the first frame when 10 frames (rotation of 7 /4 radians)
and 20 frames (rotation of /2 radians) are used for the affine computations (Eq. 3). respectively. Note
that the distance between the predicted and actual position of the curves is smaller when least-squares is
used due to its smoothing effect. The distance also becomes smaller as the surface normal approaches
the axis of rotation, as stated by Corollary 4.3.

of the image curves can be dramatic, in this case almost equal to the radius of the bottle. Note also
that the predicted position of the curve is on the side of the contour where the surface lies, correctly
indicating the sidedness of the contour.

Figures 32-36 show the results of applying our strategy to areal scene. The image sequence consisted
of five frames, showing rotation of about /2 radians. No information about the object’s motion (apart
from the direction of rotation) or the camera parameters was used. Viewing direction was changed in
a horizontal plane perpendicular to the plane of the page. The system detected points with horizontal
tangents and tracked them across the frames. The affine basis points were selected by minimizing the
condition number of the affine basis matrix [174]. The affine computations and the point and curve

classifications were performed as described in Section 4.6. We used o = 1 and classified a curve as
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Figure 32: Two images of a rotating toy.

an occluding contour curve if more than 80% of its points had a probability greater than 90% of being
non-stationary.

The results of the classification process for three of the image curves can be evaluated using the
graphs in Figures 34-36. The first graph shows the variation of ||q — ||? for the curve points with
respect to their position on the curve. This quantity must be close to zero for stationary points and is the
basic information used to determine a point’s identity. Because we employed a very simple method for
establishing point correspondences across frames, i.e., independently for each point on the curve, the
second graph evaluates tracking performance. The graph plots the variance of the inter-frame matching
distance for every point on the curve with respect to its position on the curve. Sharp peaks indicate
tracking errors for the associated points. The third graph shows the input to the final stage of the curve
classification process. Itis a histogram of the number of points on the curve that have a given probability
of being non-stationary. This information is used by the Curve Classification Criterion (Section 4.6) to
determine the identity of the image curve. The mass under the histogram should be concentrated near
100% for non-stationary curves.

The “m” curve on the surface and the upper occluding contour curve (top of the head) were

classified correctly, and the sidedness of the upper occluding contour curve was correctly determined.
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Figure 33: (a) The measured and predicted curves for three of the curves detected in the first frame. (b)
Results of the classification process. Horizontal bars denote the occluding contour curves. The cross is
on the side of the surface. The large diamond corresponds to the origin of the affine coordinate frame.
The three small diamonds correspond to the points defining the three affine basis vectors.

The approache’s success is also indicated by the dramatic difference in their associated probability
histograms. However, due to the small amount of rotation and the high surface curvature near the
visible rim, the distance between the predicted and actual curves for both occluding contour curves in
Figure 33(a) was not as great as in the case of the bottle. This resulted in a misclassification of the
left curve corresponding to the right arm of the object. In addition, a considerable number of points
were misclassified in the “m” curve. This was due to tracking errors, indicated by the strong correlation
between errors in ||q — §||? and sharp peaks in the variance of the inter-frame point matching distance
(e.g., around point position 250). We do not currently use this correlation information to classify points.
In the case of the upper occluding contour curve, a number of points were assigned low probability of

being non-stationary. This is not an error; these points are near the top of the head, where the surface
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normal is close to that of the motion plane.

A number of observations can be made from these experiments. First, a curve may not contain points
of only one type. For example, the upper occluding contour curve contains points on its bottom end that
are not occluding contour points. However, a sharp drop in the prediction error could be used to decide
where to segment such curves. Second, the results show that the approach is more effective with large
motions. In effect, the approach factors out the need for measuring differential properties of the viewed
surface by observing large-scale effects of viewpoint control on the surface’s occluding contour. Of
course, large motions require reliable curve tracking across many frames, as well as consistent tracking
of points with tangents parallel to the observer’s tangent plane. Tracking of such points will not, in
general, persist for large viewing direction changes; however, if at least four tangency points are visible
during the observer’s motion (not necessarily the same ones throughout), one can use an approach
similar to that of Tomasi and Kanade [162] to handle occlusions by changing the affine basis points as
they become occluded. Further extensions can be made to improve tracking performance and reduce

errors in the computation of ||q — §|| by tracking curves rather than points.
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Figure 34: Left top: Plot of the squared Mahalanobis distance between predictions and measurements
for every point on the curve corresponding to the letter “m.” Left bottom: The variance of the distance
in image positions between matched points in consecutive frames. Right top: Histogram of the number
of points on each curve having a given probability of being non-stationary.
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Figure 35: Left top: Plot of the squared Mahalanobis distance between predictions and measurements
for every point on the curve corresponding to the toy’s head. Left bottom: The variance of the distance
in image positions between matched points in consecutive frames. Right top: Histogram of the number
of points on each curve having a given probability of being non-stationary.
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Figure 36: Left top: Plot of the squared Mahalanobis distance between predictions and measurements
for every point on the curve corresponding to the toy’s right arm. Left bottom: The variance of the
distance in image positions between matched points in consecutive frames. Right top: Histogram of
the number of points on each curve having a given probability of being non-stationary.
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4.8 Summary

We have demonstrated that an active vision system can follow an image-driven viewpoint control strategy
to identify the occluding contour edges in an image and determine their sidedness. The approach is
based purely on image measurements, does not recover 3D shape or any metric scene properties,
and, hence, factors out the need for differential measurements of viewpoint motion. Results from an
initial implementation of this occluding contour detection process are encouraging. At the heart of the
approach lies (1) the ability to control viewpoint on the tangent plane of selected points on an object’s
surface, which allows us to detect the contour using an invariant-based analysis, and (2) the ability to
reach special viewpoints on this plane which maximize the contour’s detectability.

As a side-effect, our method constructs an affine representation for a collection of fixed 3D points,
on or close to the surface, whose projection can be predicted when viewpoint changes (Theorem 4.2).
We believe that this representation is a very important one, and that it leads to entirely new ways of
extracting information about the shape of an unknown curved object. The reason is that this fixed set of
points can be thought of as a collection of “imaginary” markings, “visible” throughout the viewpoint’s
motion, that can serve as fixed reference points during the exploration process when no such points exist
on the surface itself.

One potential application of this concept is in parallax measurements [109,141]. Cipolla and
Blake [44] have shown that shape estimates based on parallax measurements (i€, measurements
relating changes between the shapes of the occluding contour and of nearby markings) are insensitive to
viewpoint acceleration and rotational velocity. One aspect of our future work will be to study how shape
representations for curved, featureless objects can be recovered robustly and with few or no motion
measurements using such “imaginary” markings. Furthermore, because these parallax measurements
are available in each frame the shape information they convey (e.g., surface curvature) can be used
to improve tracking performance of the occluding contour curves by more accurately predicting the
position of the occluding contour in subsequent frames, and predicting its potential connectivity changes.

Finally, even though our approach allows the contour to be distinguished from fixed surface curves,
it cannot be used to distinguish it from other viewpoint-dependent curves, such as those resulting from

specularities. Detection of such curves is an open issue, although some promising work on specularity



detection has been reported recently [41, 106].
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Chapter 5

Recovering Local Surface Shape

Current approaches for recovering surface curvature from the occluding contour detect the contour as
a side-effect of the recovery process. The continuous, contour-driven viewpoint control framework
allows an alternative approach: By considering the tasks of contour detection and curvature estimation
sequentially, we can design viewpoint control strategies that are specialized to each of the two tasks.
This independent, sequential treatment of the tasks simplifies the solution of both.

The previous chapter studied occluding contour detection; this chapter considers the local curvature
estimation task. The specific task we address is the following: “Given a point p projecting to the
occluding contour, compute the principal curvatures and principal directions of the surface at p.” This
quantitative exploration task allows the surface in the neighborhood of a single visible rim point to be
approximated using a quadratic polynomial.

The rest of the chapter is organized as follows. Section 5.1 describes the basic ideas of our curvature
estimation method and its relationship to previous work. Section 5.2 reviews basic terminology. Section
5.3 discusses the relationships we exploit between viewpoint and the geometries of the occluding contour
and the surface. This section presents the major result enabling us to actively recover surface curvature
from the occluding contour. Section 5.4 uses this result to describe the main shape recovery step
of our approach. Our results are then extended in the following two sections. Section 5.5 shows
how the approach can be used for global surface reconstruction of surfaces of revolution, and Section
5.6 considers how we can automatically select points on the surfaée in order to extend the single-point

recovery process. Section 5.7 then presents experimental results on synthetic and real images to illustrate
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our geometrical arguments. Section 5.8 summarizes the main contributions of the chapter and discusses

limitations and possible extensions of the approach.

5.1 Active Shape Recovery

There has been considerable interest in recovering information about the structure of an environment
from sequences of images, assuming a camera in motion (e.g., work on optical flow [78] and shape-
from-motion [162]). One common feature of approaches dealing with curved objects is the use of
known motion (i.e., velocities and accelerations) in order to recover quantitative surface properties such
as curvature [44, 82,98, 146,157,170, 191, 192]; shape recovery without such motion information has
been restricted to local, qualitative tasks involving the processing of one (88,108, 114, 136] or more
[193] images.

Key to the extraction of quantitative shape information from the occluding contour is the contour’s
dependency on viewpoint. Differential viewpointchanges affect the geometry (i.e., curvature) of the rim,
and hence the occluding contour. Moreover, the set of rim points changes and therefore new constraining
information about the surface shape becomes available. Giblin and Weiss [62] showed that if we know
how the geometry of the occluding contour changes with viewpoint, we can derive a parameterization
of the surface and determine its shape. The issue here is how to accurately measure such changes in the
rim’s geometry with small viewpoint changes. For example, we must be able to measure the velocity and
acceleration of surface points entering and leaving the rim [44, 170], a problem that, in general, requires
first- and second-order image differentiation operations, and knowledge of viewpoint velocities and
accelerations, and hence is sensitive to noise. While parallax measurements can eliminate dependence
on rotational velocities and on acceleration, the existence of a priori identified surface markings close
to the visible rim is required [44].

This chapter applies the continuous, contour-driven viewpoint control framework to recover quan-
titative surface shape information without requiring differential motion measurements. We show that
shape for a selected point on the visible rim can be recovered from the occluding contour of two views.
The only requirements are that (1) the surface point projects to the occluding contour in both views,

and (2) the viewpoint for one of the views has a special relationship with the surface geometry at the
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selected point. The idea of the approach is to employ tangential viewpoint control in order to achieve
such a well-defined geometric relationship with respect to a 3D shape. We show that this relationship
is characterized by specific image-computable quantities and enables a simple maximization-based
analysis [99] analogous to the one described in the previous chapter.

The basic assumption used by all previous approaches was that the viewpoint and its motion are
object-independent. Our approach uses continuous, contour-driven viewpoint control to obtain a view
that allows exact shape information to be recovered from the occluding contour. The main step of
the approach is based on a relation between the geometries of a surface in a scene and its occluding
contour: If the viewpoint is along a principal direction for a selected surface point whose projection
is on the contour, the corresponding principal curvature at the point can be recovered. Hence, even
though in general surface curvature estimation from the occluding contour of a single view is an under-
constrained problem, for any given point there do exist viewpoints that make this recovery problem
well-defined. If the viewpoint can move to one of those special viewpoints, the ambiguities caused by
the projection process can be resolved. We show that we can in fact deterministically move to these
special viewpoints by simply maximizing or minimizing a geometric quantity of the occluding contour
(curvature at a point) while changing viewpoint in a constrained way (through tangential viewpoint
control). Furthermore, we show that we can recover the shape of the surface at the selected point (i.e.,
both principal curvatures) from the occluding contour of one additional view for which the selected
point projects onto the contour. Thus viewpoint is moved to one of the special viewpoints in order to
make shape recovery a well-defined problem.

The significance of the method lies in the use of continuous, contour-driven viewpoint control to
achieve and maintain purely geometrical relations between a surface and its occluding contour in order
to recover surface shape. Hence, there is no need to perform any velocity or acceleration measurements
in the vicinity of the visible rim, a process requiring point-to-point correspondences in the images and
precise knowledge of viewpoint motion. Furthermore, since there is a well-defined procedure to reach
the desired viewpoint, the viewpoint control strategy does not need to perform a complicated search in
order to find it.

Even though our approach is limited to the recovery of surface shape in the vicinity of a single point

on the visible rim, we show that there is an important special case for surfaces of revolution, for which
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we can recover the shape of the entire surface. In this case the viewpoint can be actively “aligned”
with the viewed surface in order to find a viewpoint giving complete surface information (i.e., one
perpendicular to the surface’s axis of rotation).

We also present an extension to the above approach that recovers the shape of points in the vicinity
of the rim. After the shape of a selected rim point is recovered, the viewpoint is changed in order to
bring a new surface point onto the rim and to recover its shape. Since our basic shape recovery step
involves aligning the viewpoint with one of the principal directions at the new point, it is important for
this visual alignment process to require only small viewpoint adjustments. We show that if (1) the new
point selected is in the normal plane of the previously selected point, and (2) the new pointis sufficiently
close to the previously selected point, these adjustments will in fact be small and their extent will depend
entirely. on the intrinsic properties of the surface. This is a major difference from approaches using

“passive” motion, where the points selected for reconstruction cannot be controlled.

5.2 Local Surface Geometry

Let S be a smooth, oriented surface in R?, viewed under orthographic projection along a viewing
direction £. The shape of the occluding contour depends on S and the viewing direction. Our goal is
to use this contour information to recover a description for the parameterization x at points of S in the
vicinity of the corresponding rim points.

The shape of the surface around p can be completely described by the principal curvatures kq, , kn, ,
and principal directions ey, ez, at p (Section 3.2). In particular, we can use the principal curvatures at p

to compute the curvature of the normal sections along any direction on T, (S) using Euler’s formula:

(13) kn(®) = Fny co5% ¢+ ki, sin” ¢

where ¢ is the angle between the direction on T,(S) and e;. Hence, we can recover the local shape
of S at a point p completely from the principal curvatures of S at p.
Our goal is to recover the principal directions and principal curvatures at selected points on S. We

focus on the general case where p is not an umbilic point, i.e. a point where any pair of orthogonal
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directions on T,(S) is a pair of principal directions; recovering the local shape of the surface at
umbilic points is then straightforward. In the vicinity of non-umbilic points there exists a special
parameterization x(u, v) of S such that the tangents to the curves x(u, vo) and x(uo, v) (uo, vo CONStant)
are along the principal directions. These curves are called lines of curvature and their properties are
intrinsically related to the underlying surface. Therefore they serve as a natural basis for describing a
surface [34, 153]. In the rest of the paper x will refer to such a parameterization.

The geometry of a point on the occluding contour and the information we can derive from it depends
on whether the point is a projection of an elliptic, hyperbolic or parabolic point. This qualitative

classification is therefore especially important in order to evaluate the results of our approach.

5.3 Local Surface Geometry from Occluding Contour

The problem of recovering surface geometry from the occluding contour has been mainly studied under
the assumption that the viewing direction is object-independent. For example, there are surfaces for
which their rim is planar when viewed from a particular set of directions [116]. The assumption that
the viewpoint is arbitrary immediately excludes such viewing directions from consideration since the
rim is not always planar [90]. Unfortunately we can only derive a limited amount of information from
the occluding contour when this assumption is in effect.

Let p be a point on the visible rim of S when viewed from direction ¢ and let ¢ be its projection on
the image plane. There are three main results describing what can be recovered from the shape of the

occluding contour under orthographic projection and from an arbitrary viewing direction:

e We can recover the surface normal and the tangent plane at p from ¢ and the tangent to the

occluding contour at ¢ (Section 3.2).

e Let k, be the curvature of the occluding contour at g. Then k, and the Gaussian curvature K of

S at p have the same sign [34, 88].

e If k, is the normal curvature of S at p along ¢, then K = k.k, [34,62, 88].

1The quantity k., is also referred to as the radial curvature of S at p [170].
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Similar results hold for perspective projection where the plane of projection is not positioned at infinity,
and for the case where k, = 0[34]. Because K is defined as the product of two curvatures on the surface
(i.€., kn, , kny ), these results suggest that if we know k, then we only need to measure one curvature on
the surface instead of two. In fact k, and k, determine the second fundamental form at p. This was the
main idea behind the surface reconstruction approach of Cipolla and Blake [44].

The above results are important but they also imply that if we have no additional information
about the shape of the viewed surface, the information provided by the occluding contour is primarily
qualitative. However, when the viewing direction can be actively controlled, we can exploit the
existence of directions that allow the derivation of complete information about the surface. We show
this by presenting three simple corollaries to a result of Blaschke [90]. Blaschke’s result is analogous

to Euler’s formula and relates the curvature of the occluding contour with the principal curvatures of S

at the rim:

Theorem 5.1 (Blaschke) Let ¢ be the angle between ¢ and the principal direction e at p. Then,

(14) k() = k;lsin® ¢+ k) cos® ¢

Corollary 5.1 If¢ is along ey, then k, = kn,.?

Corollary 5.2 Let €, €' be two distinct viewing directions in Tp(S ) from which p is visible, and let k,, k,

be the curvatures of the occluding contour at the corresponding projections of p. If (1) K #0atp, (2)

¢ = ey, and (3) the angle between £ and €' is known, then we can compute k,,, e;, and K at p.
1

Corollary 5.3 Let p be a point on the visible rim of S with K # 0. Let ¢ € [—m,pi) be the angle
between £ € T,(S) and ey. (1) Ifp is elliptic and non-umbilic, the function k. () takes its minimum and
maximum values only when £ coincides with one of the principal directions. (2)Ifpis hyperbolic, k,(€) is

well-defined only when |§| < arctan \/(kn,/ — kz,) for || < m /2, or m — |¢| < arctan \/@m/ - k;;

for |¢| > w /2. For these directions, k, (€) takes its maximum value when § coincides with e, and it has

no minimum value. (3) If p is umbilic, ko(§) is constant.

See Appendix B for proofs. Corollary 5.1 suggests that the principal directions at p form a special

set of directions providing explicit information about surface geometry in the vicinity of p. Now assume

2This is also mentioned in [90].
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that we are viewing a point p from a particular viewing direction and can measure the curvature of the
occluding contour at p’s projection. If somehow we can adjust our viewing direction to coincide with
a principal direction at p and know what this adjustment is, Corollary 5.2 shows that we can derive the
second fundamental form of S at p. This solves the shape recovery problem for p. The most important
result is given by Corollary 5.3. It shows that the problem of finding the principal directions at a point
can be treated as a simple maximization (or minimization) problem. We describe the implications of

this result in the next section and show how it can be used to find the principal directions at p.

5.4 Recovering the Local Geometry of a Surface Point

The basic step of our surface reconstruction approach is to select a point on the occluding contour
and recover the local surface geometry for its corresponding rim point. We do not address the point
selection problem directly. The reason for this is that we cannot decide a priori which point on the
occluding contour will prove the most useful. This will depend on the context in which the approach is
used. However, there are specific types of points for which our reconstruction method may not work.
Therefore, our task will be to select a point on the rim for which we can ensure that our approach is

effective. Below we first outline the main ideas, and in Section 5.6 present more details.

5.4.1 The Active Reconstruction Approach

Suppose we have selected a point p on the rim of surface S. For simplicity we will assume that p is at
the origin. We first consider the case where p is non-umbilic. Corollary 5.3 says that if p is a hyperbolic
point or a non-umbilic elliptic point, there are only two viewing directions in T,(S) for which k, obtains
a local maximum value and two directions for which k, obtains a local minimum. Our goal is to find
one of these directions since they correspond to e; and e. We discuss the problem of finding ez; e, is
treated similarly.

Both the initial viewing direction and the direction e; belong to the tangent plane of the selected
point. In order to align the viewing direction with ez, we execute a tangential viewpoint control step
until e, is reached (see Figure 37). To do this we must answer two questions: (1) Which direction

should the viewpoint move on the tangent plane, and (2) how can we detect when the viewing direction
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Figure 37: Aligning the viewing direction with a principal direction on Tp(S).

is equal to e3 ?

We only have two possibilities for moving on the unit circle representing viewpoints on Tp,(.5), either
clockwise or counterclockwise. Obviously, we prefer the minimal motion solution in which the desired
extremum is attained with the smallest possible change in viewing direction. In particular, if we move
in the direction of increasing k,, the first extremum we reach is a maximum. It easily follows from
the local geometry of elliptic and hyperbolic points that this strategy will in fact produce the smallest
viewing direction change (Figure 38). On the other hand, parabolic points do not have this property.

The second question, detecting when the viewing direction is equal to e, is partly answered by
Corollary 5.3. It says that we can detect this event by detecting a local maximum of k,. However, in
order to detect this local maximum, p must be visible; k, cannot be measured otherwise. The visibility
of p is affected by the local surface geometry at p as well as by the global geometry of S. Ignoring
for a moment the case where p is occluded by some distant point on .S, we arrive at the following two
conclusions: (1) If p is elliptic, we can align the viewing direction with either e; or ez. Furthermore, the
maximum possible direction change before the alignment takes place is 7/2 (Figure 38(a)). (2) Ifpis
hyperbolic, we can align the viewing direction only with e;. The maximum possible direction change
in this case is determined by the point’s asymptotes (Figure 38(b)).

The problem of recovering the local surface geometry at an umbilic point on the visible rim is even

simpler. Corollary 5.1 suggests that if we know p is umbilic, we can recover the local surface shape
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Figure 38: Finding the principal directions. Top views of the tangent plane are shown (refer to Figure
14). The viewing direction makes an angle ¢ with the first principal direction. (a) p is an elliptic point.
Clockwise change in viewing direction decreases k,. The viewing direction can change by at most
/2 before a local minimum or a local maximum is reached. (b) p is hyperbolic. The only achievable
extremum is a local maximum, obtained in this case by a counterclockwise rotation. Shaded areas,
delimited by the asymptotes of the point, represent the directions where p is occluded. The maximum
viewing direction change before an extremum is found in this case decreases to the angle between e;
and the asymptotic directions. (Note that the axis labels have been reversed.)

at p by simply measuring the curvature of the occluding contour at p’s projection. It therefore suffices
to find a way of detecting that p is umbilic. Corollary 5.3 shows that this can be done by determining
whether k, remains constant as the viewing direction moves on T,(S).

These results suggest a simple algorithm to align the viewing direction with e, and recover the local

surface shape at p:

Active Local Shape Recovery Strategy

Step 1: Perform a small change of viewing direction on T,(S) and measure the difference between
the previous and current value of k,. If it increases, continue to change the viewing direction in
the same way so that e, will be reached first. If it decreases, move the viewing direction in the
opposite way. If it remains constant, Stop moving; k,, and k,, are both equal to k, (ie., p is

umbilic).
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Step 2: Continue moving in the same direction until k, reaches a maximum. This viewpoint corresponds

to e, and therefore the viewpoint’s motion can be stopped and the current value of k, used as an

estimate of ky, .

Step 3: Measure the total change of viewing direction between the initial and final directions. Corollary

5.2 says that this angle along with k,, and the initial value of k, can be used to determine k., .

The above algorithm assumes that we can measure relative changes in viewing direction. For
elliptic points this requirement can be relaxed at the expense of additional motion: We can recover the
principal curvatures at the selected point by moving to the viewpoints corresponding to the maximum
and the minimum value of k,. Hence, in this case shape recovery can be achieved without relying on
any quantitative measurements involving the viewpoint’s motion; we must simply be able to control

viewpoint around the selected point by moving clockwise and counterclockwise on its tangent plane.

5.4.2 Selecting Surface Points for Reconstruction

Any viewpoint motion minimizing or maximizing k, must take into account the effects of global surface
geometry: Irrespective of its local structure, p may become occluded by distant points on S. The
following proposition shows that (a) there are at least some points on the visible rim of S that cannot
be occluded by S if the viewing direction is changed as described above, and (b) these points are easily

detected on the occluding contour (Figure 39).

Proposition 5.1 (1) Let p be a visible, elliptic point on the rim of a smooth surface S when viewed from
direction £ under orthographic projection. Let q be the projection of p in the image plane and let | be
the tangent to the occluding contour at q. Then, p is visible from every direction on T,(S) iff | does not
intersect the occluding contour and is not tangent to it at any point other than q.

(2) Let C be the occluding contour of S when viewed from direction €. Then there is at least one

point on S projected in C that is visible from every direction in T,(S).

See Appendix B for a proof. Figure 40 shows the results of applying Proposition 5.1 to the occluding
contour of a candlestick. The proposition implies that the only points ensuring the correctness of the

algorithm are elliptic. However, this is a necessary requirement for the presence of occlusion but not a
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Figure 39: Determining the complete visibility of rim points. Since the tangent at ¢ does not intersect
the occluding contour, C, elsewhere, g corresponds to a rim point visible from every direction in its
tangent plane.

Figure 40: Selecting points for surface recovery. Solid lines on the occluding contour of a candlestick
show the points that cannot become occluded while changing viewing direction in their tangent planes.
The arrow indicates the point having the greatest (absolute) curvature of all acceptable points.

sufficient one. This means that there are cases where the geometry of hyperbolic points can be recovered
with our approach. In fact, shape recovery for hyperbolic points requires less motion on average since

the extent of the visibility of these points is limited by their asymptotic directions.
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5.5 Surfaces of Revolution

In the last section we presented an algorithm for recovering the shape of a single point on the surface
rim. However, there are surfaces for which the local shape of a single rim point reveals global properties
of the surface. Surfaces of revolution present an ideal example of such surfaces. The properties and
appearance of surfaces of revolution and their generalizations have been studied extensively [34,38,77,
116,131,137, 153, 168]. Here, we focus on the specific relation between their global structure and the
local shape of points on the rim.

Surfaces of revolution are formed by rotating a planar curve around a straight axis that does not meet
the curve. Therefore, we can completely describe a surface of revolution by the axis and the generating
curve. Approaches for recovering the axis of a surface of revolution have been mainly geared towards
detecting symmetries in their occluding contour or outline [116], or utilizing their viewpoint-invariant
properties [77,131,132]. The problem with detecting symmetries in the occluding contour is that the
existence of such symmetries depends on viewpoint. On the other hand, the identification, detection
and utilization of viewpoint-invariant properties is a non-trivial task. For example, in [132] the axis was
recovered using a Hough transform-based technique. However, such a technique largely depends on the
number of rim points actually detected. In addition, the axis is severely foreshortened for near-“top”
views of a surface of revolution (i.e., when the viewing direction is almost parallel to the axis of rotation),
limiting the applicability of methods relying on a single, arbitrary view to precisely recover the axis.
Our active approach neatly lends itself to these problems in order to make them easier to handle. The
idea is that if the viewing direction can be aligned with a principal direction of a rim point, then shape
and symmetry analysis of the occluding contour becomes especially simple. This is because one of
the principal directions corresponds to a “side” view of the surface (i.e., a view for which the viewing
direction is perpendicular to the axis of rotation). If the generating curve of the surface can be written
in the form y = f(z), then the recovery of the axis of rotation allows us to recover the generating curve
directly from a side view. Even further, the surface rim from such a view is guaranteed to be completely
visible. In the rest of this section we focus on surfaces of revolution whose generating curve has this

property.
Consider a point p on the rim of a surface of revolution when viewed from an arbitrary direction
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Figure 41: (a) A surface of revolution. The z-axis is the axis of rotation. (b) Constraining the axis of
rotation from the principal curvatures of two rim points from a side view. Curve C is a segment of the
occluding contour corresponding to a side view. Since the view is a side view, C' belongs to a generating
curve of the surface. Let the principal curvature corresponding to the parallels at p and p' be k and K/,
respectively. The distance of p and p’ from the projection of the axis of revolution, l,is 1/k and 1/K/,
respectively. Let g and ¢’ be the projections of the points of intersection of the axis with the planes of
the parallels at p and p/, respectively. The axis must be perpendicular to the lines along pg and p'q'.
Therefore the axis must be tangent to the circles of radius 1/k and 1/k’, centered at p and p' respectively.
There are at most two such lines that do not intersect the generating curve C. The direction of the axis
is the normal of the plane defined by the viewing direction and the line through pg.

(Figure 41(a)). The two principal directions at p correspond to the tangents to the parallel and the
meridian passing through p. Since the parallel is a planar curve, if the visual ray is tangent to the parallel
at p it is contained in the plane of the parallel. Hence, it is perpendicular to the axis of rotation and
the view corresponds to a side view of the surface. The occluding contour from such a side view is
symmetric. Therefore, the axis of rotation (as well as the generating curve) can be recovered by simply
using existing symmetry-seeking approaches (e.g., [77]) which are well-defined for such a viewpoint.
However, the direction and position of the axis can also be constrained by recovering the principal
curvatures corresponding to the parallels for two points on the rim of a side view (Figure 41(b)). This
approach is similar to one used by Richetin et al. [137] where the geometry of the occluding contour
at two parabolic points was used to hypothesize the pose for surfaces that are straight homogeneous

generalized cylinders.
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We must choose between moving towards the principal direction of minimum curvature or moving
towards the one of maximum curvature. Although the curvature extremum corresponding to a side view
for a selected point is not known a priori, this choice is easy if the visible rim contains hyperbolic points.
Recall that the only principal direction from which these points are visible is the direction of maximum
curvature and that if the generating curve of the surface can be written in the form y = f(z), then these
points must be visible from a side view of the surface. Hence, we can select one hyperbolic point and
align the viewing direction with the principal direction of maximum curvature (Corollary 5.3).

It is also easy to show a more general property of surfaces of revolution with this type of generating
curve: If the viewing direction smoothly changes on the tangent plane of a selected rim point, this point
will not become occluded if the viewing direction is approaching the direction of a side view. This fact
can be used to decide how to change viewing directions on the tangent plane in order to approach a side
view of the surface when no hyperbolic surface points are visible.

Our discussion above deals with a specific type of surface of revolution. However, it can be
generalized to an arbitrary surface of revolution and to the case of straight homogeneous generalized
cylinders where the axis is perpendicular to the cross-section. Consider the case where a rim point is
selected that belongs to a parallel that is also a geodesic. If such parallels exist on the surface, our
approach can be used to obtain both the top and the side views of the surface as well as its axis. Consider
the case where the generating curve of the surface of revolution cannot be written in the formy = f (z)
(e.g., a torus). In this case, we can still recover the axis of rotation from the side view using occluding
contour symmetries, and find points on the generating curve for which the tangent to the generating
curve is parallel to the axis. These points belong to parallels that are geodesics and their principal
directions correspond to the side and top views of the surface. Therefore, we can align the viewing
direction with the top view for any type of surface of revolution.

Points on the rim that belong to geodesic parallels are also important because they can be used to
recover the axis of surfaces of revolution and straight homogeneous generalized cylinders. The surface
normal at these points lies on the plane of the parallels. The viewing direction corresponding to a side
view also belongs to this plane. Therefore, we can recover the plane of the parallels. Since the axis of
rotation is normal to this plane we can also recover the direction of the axis of the surface. It is in fact

possible to detect such a point on the rim if it exists (without having already determined the axis).
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The next section extends our basic shape recovery step by (1) selecting a new point on the surface
in the vicinity of the previously selected point, and (2) applying the shape recovery step presented in
Section 5.4 to the new point. We also briefly discuss how this two-step approach can be used to select

rim points that belong to geodesic parallels.

5.6 Extending Surface Recovery to Neighboring Points

Our main objective is to recover the complete shape description for a single rim point. In this section we
consider an extension to this approach—selecting a new point and applying the shape recovery process
to that point. We must consider two important issues in order to demonstrate the effectiveness of such

an extension:

o The extent of the viewing direction adjustments needed to align the viewing direction with one of

the principal directions at the newly selected point.

e The extent of the viewing direction adjustments required by our basic shape recovery algorithm
in order to produce reliable shape information for the newly selected point. This is because if
the viewing direction adjustment is close to zero, then numerical problems are introduced in the

calculations of the principal curvatures from Corollary 5.2.

We will discuss the issue of selecting new points for shape recovery based on these two issues. The
process has as a primary goal the removal of the first point from the rim and its replacement by a new
point at which the first step will again be applied.

Let p be the previously selected point. After applying the shape recovery step, the viewing direction
¢ is aligned with one of the principal directions at p, say e;. We have seen that if we change directions
in T,(S), p will not leave the rim. Therefore, we must change viewing direction in some other plane
containing e;. The importantissues here are (1) which plane should be selected for changing the viewing
direction, and (2) how much should the viewing direction change in that plane? The motivation for
our approach is to ensure that the shape recovery step for the new point will need only small viewing
direction adjustments. In other words, we require that the new viewing direction does not form a large

angle with one of the principal directions at the new point.



94

viewing
direction

Figure 42: Removing p from the rim. The figure shows the intersection of a selected plane P with the
surface. The viewing direction ¢ changes in P and the visual rays graze the surface along the curve

B(s)= SN P.

Suppose we have selected a particular plane P passing through p and containing e;, and that we
continuously change viewing direction in that plane. As the viewing direction changes, the visual ray
contained in P will graze the surface along a curve ((s) also contained in that plane (Figure 42). Now
suppose that we stop at a new viewing direction ¢'. The visual ray will now be tangent to 3(s) at some
new surface point. The shape recovery step will now be applied to this point, attempting to align the
viewing direction with e, at the point. We must therefore examine how the angle of 3'(s) with e, varies

with s. The basic idea is to examine the properties of B(s) in light of the following efficiency and

reliability requirements:

e The efficiency requirement is that 3(s) should always form an angle with e; that is as close to 0

as possible. This means that we require 3(s) to approximate a line of curvature.

e The reliability requirement is that 3(s) should form an angle of at least ¢*, for some predetermined
constant ¢* that depends on the reliability of the shape recovery step. This means that we require

f(s) to form an angle of at least ¢* with the lines of curvature corresponding to es.
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The compromise between these two requirements is to require 3 (s) to form an angle of exactly ¢* with
the corresponding lines of curvature. This means that 3(s) is a loxodrome for the surface, i.e., a line
on S that forms a constant angle with the lines of curvature. Therefore we should trace S along such a
curve while changing viewing directions.

We show in Appendix C that if the selected plane P is the normal plane (i.e., the plane defined by
the viewing direction and the surface normal at p) and if the viewing direction change on this plane
is small, then the viewing direction adjustments during the shape recovery step will in fact be smooth
and depend entirely on intrinsic properties of the surface. Specifically, we show that these adjustments
are (to a first approximation) proportional to the geodesic curvature of the lines of curvature at p and
~ inversely proportional to the normal curvature of the lines of curvature at p. This is an important result
because it allows us to predict the performance of our active viewing strategy based on knowledge of
the intrinsic properties of the surface.

As an example, consider the case of surfaces of revolution. Suppose that the viewing direction
is aligned with the principal direction corresponding to the parallels. Now suppose that the viewing
direction is changed on the normal plane at p and eventually a new point p’ is selected for shape recovery,
as outlined above. If p belongs to a geodesic parallel, no viewing direction adjustments will be necessary
during the shape recovery step at p', i.e., the viewing direction is also tangent to the parallel through
p’. On the other hand, if the geodesic curvature of the parallel through p is non-zero, some viewing
direction adjustments will be necessary. In fact it can be shown that if this process is repeated and
points p', p”, p", .. ., are selected these points will asymptotically approach a geodesic parallel if such
a parallel exists. To illustrate this, let us assume for simplicity that the axis of the surface of revolution
is vertical and the point initially selected is p. Then, the new point selected will be on a parallel below
the parallel through p if the surface normal is pointing upwards. Therefore if there is a geodesic parallel

below the parallel through p, the points selected will approach that geodesic parallel.

5.7 Experimental Results

In this section we demonstrate the applicability of our active shape recovery approach. We have

implemented a prototype system that (1) automatically selects points on the rim of an object, (2) tracks
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Figure 43: Models of a candlestick and two tori used for the simulations.

Figure 44: A sequence of 120 frames used in our experiments. Frames 1, 30 and 120 are shown.

these points while changing viewing direction on their tangent plane, and (3) computes the curvature
of the occluding contour at the selected points in order to detect the viewpoints where it obtains an
extremum value. We have applied our algorithms to simulated scenes and have also performed some

preliminary experiments with a real scene. Figures 43 and 44 show the objects used in our experiments.
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§.7.1 Simulated Scenes

The simulations were performed by synthetically generating images given a polyhedral object model®
and a camera constrained to move only in a circle of viewing directions around the object. The
occluding contour of the model for the current viewing direction was displayed and updated as the
viewing direction changed smoothly. In our examples, the viewing direction was changed on a plane II
defined by a horizontal line in the image and the viewing direction (i.e., the projection of this plane to
the image is a horizontal line).

Recall that the process of aligning the viewing direction with a principal direction at a point requires
that the viewing direction changes on the point’s tangent plane (Figure 37). Hence, the one degree of
freedom in rotation allowed us to detect the principal directions only for points tangent to II. Our system
automatically identified these points by finding the points where the occluding contour was tangent to a
horizontal line. These points were automatically detected, labeled and subsequently tracked while the
viewing direction changed smoothly (Figures 45, 46).

Point tracking was performed using the Tangent Point Tracking Procedure of Section 3.5. Figures
45 and 46 show some of the tracked points for the two models. The points were initially selected and
labeled for the viewing direction ¢ = 0. Note that after a rotation of 3.93 radians the only unoccluded
points are the points 0 and 6, exactly as predicted by Proposition 5.1 (i.e., the tangents to the occluding
contour at these points do not intersect the contour).

Curvature computations were performed by first approximating the occluding contour in the neigh-
borhood of the selected points using cubic B-splines [46]. The curvature was measured at the points
where the tangent to the splines was horizontal. Even though splines have the effect of smoothing high
curvature parts of a curve, we found that even with the actual rim curvatures being underestimated the
curvature maxima were very distinct. In the case of polyhedral models, smooth viewpoint changes
can result in an arbitrary number of model vertices entering and exiting the polyhedral rim. Hence,
the shape of the rim changes in a very discontinuous fashion, a problem not encountered with curved
objects where topological changes of the rim are not as frequent. This fact resulted in discontinuities in

the curvature estimates, which ideally should vary continuously with viewpoint. However, Figures 47

3Qur use of polyhedral models was only for convenience in generating the occluding contour. The implementation of
our algorithms did not exploit the polyhedral property of the models.
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Figure 45: Snapshots of the occluding contour as the viewing direction changes. The numbered points
are the points being tracked.

and 48 show that the major peaks and valleys of the curvature estimates are clearly visible even in the
presence of the discontinuities caused by the polyhedral approximation.

Figures 47 and 48 also show how the absolute value of the curvature of the occluding contour at the
selected points varies with viewpoint. Note that the candlestick and the torus are surfaces of revolution.
Therefore, a “side” view corresponds to the viewing direction that is a principal direction for all points

on their rim (i.e., the direction is tangent to the surface parallels). This is illustrated by the fact that
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Figure 46: Snapshots of the occluding contour as the viewing direction changes. The numbered points
are the points being tracked.

the curvature maxima and minima occur at approximately the same viewing directions for the selected
points. View 2 of the candlestick and the tori shows the occluding contour from the viewpoint of
maximum curvature for point 0. The views in fact correspond to side views of the surfaces as expected.
Also, note that in the case of the candlestick, the curvature maxima are much larger than the minima
(over an order of magnitude), whereas in the case of the tori the extremal values are not very different.
This is because the difference in the values of the principal curvatures at the selected points on the

candlestick is much larger than for the two tori.

5.7.2 A Real Scene

In order to perform preliminary experiments with a real scene we extended the simple tracking and
curvature estimation algorithms used in our simulations, and applied them to the sequence shown in
Figure 44. The sequence was produced by manually rotating an object after placing it on a horizontal
turntable. The amount of the object’s rotation between frames was assumed unknown. As in our

simulations, this object motion allows the viewing direction to be aligned only with the principal
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Figure 47: Variation of the absolute curvature with respect to viewpoint at the selected points on the
occluding contour. The model was rotated a total of 27 radians. The curve for point 5 on the candlestick
ends at the viewpoint where the point’s occlusion is detected. Viewpoints V1,V2,V3 correspond to

views 1,2 and 3 of the candlestick in Figure 45

directions of points on the object whose tangent planes are horizontal.

The occluding contour of the object was tracked across frames using a simplified implementation
of a B-spline snake [44,84]. The snake was interactively initialized near the object’s contour. Point
tracking was again performed by tracking the point on the snake whose tangent is horizontal (Figure
49). Figure 50(a) shows the variation of the curvature of the snake at the tracked point for one run of the

tracking process. Figure 51 shows the views of the object corresponding to the minimum and maximum

measured curvature.
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Figure 48: Variation of the absolute curvature with respect to viewpoint at the selected points on the
occluding contour. The model was rotated a total of 27 radians. The curve for point 5 on the tori ends
at the viewpoint where the point’s occlusion is detected. Viewpoints V1 and V2 correspond to views 1
and 2 of the tori in Figure 46.

Curvature measurements were noisy mainly because of the snake’s tracking behavior, which de-
pended on the initial positioning of the snake and did not always lead to accurate approximations of the
object’s contour. Clearly, the curvature estimation process can be improved (especially near viewpoints
corresponding to curvature maxima) by paying closer attention to the snake’s tracking behavior. Our
purpose here is simply to illustrate that the theoretically-predicted curvature variation at the tracked
point can be observed in practice. Since the only computations apart from snake tracking involve
measuring the curvature of the snake at a single point, our active reconstruction approach is amenable
to a real-time implementation; snake trackers operating at video rates are already becoming available

[28].
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Figure 49: The point being tracked is the snake point whose tangent is horizontal.

Figure 50(a) shows that it is necessary to incorporate measurements from multiple adjacent views in
order to detect the principal directions of the tracked point. This implies that viewpoint must move past
the viewpoint corresponding to the point’s principal direction before the curvature extremum can be
reliably detected. Figures 50(b) and 52 give the results from another run of the tracking and curvature
measurement process. In this run, the contour’s curvature was averaged over nine frames. Although the
snake approximated the object’s contour in a different manner, the principal directions of the tracked
point are again easily distinguishable.

Further improvements can be made to the principal curvature measurements at the selected point by
incorporating information from multiple frames during the viewpoint’s motion, and for more accurately
localizing the point’s principal directions. More specifically, when the relative changes in viewing
direction between frames can be accurately measured, the principal curvatures and principal directions
at the selected point can be predicted using three viewing directions on the tangent plane of the tracked
point that satisfy the reliability requirement of Section 5.6 (i.e., they are not too close to each other)
[96]. This observation leads to a prediction-verification scheme for improving the accuracy of our active

approach, whereby predictions during the process of aligning with a principal direction are evaluated
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Figure 50: (a) Curvature variation with viewpoint. (b) Curvature estimates averaged over nine frames.

against the outputs of the contour curvature estimator and the extremum detector. We expect this process
to be useful primarily when the viewing direction is close to the principal direction of maximum absolute

curvature where contour curvature measurements tend to be more reliable.
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Figure 51: Viewpoints corresponding to the global minima and maxima of the curvature measurements.
Also shown is the computed osculating circle at the tracked point, i.e., the circle that is tangent to the
tracked point and has radius equal to 1/k,.

5.8 Summary

This chapter demonstrates that an active vision system can use a very simple exploration strategy to
recover quantitative shape information at selected visible rim points. This strategy is based purely on
the computation of a simple property of the occluding contour (curvature at a point). Our experimental

results show that this strategy is readily implementable and because of its simplicity and its low
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Figure 52: Viewpoints corresponding to the global curvature minima and maxima for a different run of
the tracking process. The extrema were found after averaging the curvature measurements over nine
consecutive frames. The osculating circle for the view corresponding to the detected curvature minimum
is not shown because it is not fully contained in the image. Note that both curvature measurements have
been underestimated, and the global curvature minimum now corresponds to the back side of the object.

computational requirements, is very suitable for real-time implementation.
The use of continuous, contour-driven viewpoint control is the most crucial aspect of the method.
The ability to change viewpoint in a controlled manner makes it possible to reach the special viewpoint

where the shape of the occluding contour provides complete and exact curvature information. Moreover,
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our approach demonstrates that recovering quantitative shape information from the occluding contour
does not necessarily require knowledge of the velocities or accelerations of the viewpoint’s motion, but
only knowledge of the viewing direction. The reason is that viewpoint motion is not used to merely
change the shape of the occluding contour (as in existing approaches), but it is used to change it in a
well-defined way, factoring out the need for differential measurements involving viewpoint motion.

Current limitations of the approach are (1) the use of orthographic projection, (2) the ability to recover
surface shape only at isolated surface points, and (3) its applicability to only elliptic or hyperbolic surface
points. Extension of the method to perspective projection is possible. In particular, a formula analogous
to Blaschke’s formula governs the relation between the contour’s curvature and the local surface shape
[90]. If the distance to the selected visible rim point is kept constant during tangential viewpoint control
(e.g., by exploiting the kinetic depth effect [16]), shape recovery can be performed in a manner identical
to the one described in this chapter.

We believe that our active approach of moving towards viewpoints that are closely related to the
geometry of the viewed surfaces is a very important and general one. Consider, for example, the problem
of obtaining a “face-on” view of a planar curve (or a texture element). This problem has been studied
extensively in the past and several approaches exist that kypothesize face-on views, based on information
from a single viewpoint (e.g., [35, 83]). Exploration strategies similar to the one presented in this paper
enable viewpoint to be changed in order to obtain a face-on view of a planar curve. Special viewpoints
are also particularly appropriate in the context of recognition, since impose additional constraints on
the projection of the objects to be recognized [183]. For example, we can force reduction in the
dimensionality of the recognition problem for curved objects [96] by first moving to a view along
an asymptotic direction at a parabolic visible rim point (only a one-dimensional set of such views is
generically possible).

The problem of overcoming the second limitation still remains an open issue; the local nature of
the strategy makes it applicable to the construction of only sparse surface representations. The next
chapter shows that we can construct dense global surface representations by appropriately controlling
viewpoint and by sacrificing the weak motion assumptions employed in this chapter (e.g., unknown

viewpoint velocities and accelerations).




Chapter 6

Global Surface Reconstruction

In the previous chapters we focused on the application of the continuous, contour-driven viewpoint
control framework to local shape recovery tasks. In this chapter we go a step further, asking what
viewpoint control strategies become important for tasks requiring global shape recovery. Specifically,
we design a continuous, contour-driven viewpoint control strategy for deriving a global and dense
three-dimensional description of an object’s surface from its occluding contour. The global surface
reconstruction task we consider can be formulated as follows: “How should viewpoint be controlled to
generate a dense sequence of images that allows reconstruction of an object’s entire surface, or as much
of the surface as possible?”

While local shape recovery strategies can be used to achieve global reconstruction from the occluding
contour for special classes of surfaces such as surfaces of revolution (Chapter 5), the strategies must
necessarily rely on class-specific assumptions that link the local shape of surfaces in the class to their
global structure. Here we consider the general case for a generic object of arbitrary shape; the object
is unknown, can be non-convex, and can self-occlude. A solution to this problem requires taking into
account how an object’s global geometry (e.g., the configuration of convex, concave, and hyperbolic
regions on an object, and the manner in which they come in and out of view) affects the outcome of the
exploration process. In particular, it requires making explicit how the interaction between continuous
viewpoint control and an object’s global shape affects the motion of the visible rim over the surface and
its topological changes.

Our analysis builds on concepts already introduced in earlier chapters: The visible rim’s and the
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occluding contour’s viewpoint-dependent shapes are put in the context of global surface reconstruction
and their relation to the global geometry of smooth surfaces is investigated. The central notion in the
chapter is the notion of the exploration frontier. At any point in time during the exploration process,
the exploration frontier is defined to be the boundary of the already-reconstructed regions on the object
being explored. The purpose of the strategy we develop is to force the visible rim and, consequently,
the exploration frontier, to slide over as much of the surface as possible.

One of the key theoretical results we obtain in this chapter is that continuous, contour-driven
viewpoint control allows this appearance structuring process to be studied locally in both space and
time. This allows us to achieve global reconstruction by focusing on those special viewpoints that cause
changes in the topology of the visible rim, and those special regions on the surface where the rim’s
topological changes occur. The practical consequence is that global reconstruction can be achieved
simply through repeated applications of an appropriate tangential viewpoint control motion.

The rest of the chapter is organized as follows. Section 6.1 motivates the main ideas of the approach,
puts it in the context of previous work on global surface reconstruction, and highlights some of the
major difficulties in solving the problem. Section 6.2 provides necessary geometrical background.
Section 6.3 considers the problem of locally structuring the motion of the exploration frontier. This
leads to a characterization of the reconstructible regions on an object’s surface (Section 6.4). Section
6.5 then shows how the basic motions developed in Section 6.3 can be used to incrementally “grow”
the reconstructed regions on an object’s surface. The main result of the chapter is presented in Section
6.6.3, which presents a strategy for global reconstruction of arbitrary generic objects that uses the basic
motions of Section 6.3. Simulation results of applying this strategy to a curved object are presented in
Section 6.7. The chapter concludes with Section 6.8 which summarizes the main contributions of the

chapter, its main limitations, and briefly discusses possible extensions.

6.1 Active Global Surface Reconstruction

Under continuous viewpoint control the visible rim “slides” over the surface and may change its con-
p y

nectivity, affecting the geometry and topology of the occluding contour [89-91]. When the viewpoint’s
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velocities and accelerations are available, the contour’s deformation contains all the information nec-
essary to construct a dense surface representation for the points over which the visible rim slides
[44, 60, 62,63,82, 146,170, 191]. We exploit this property by formulating global surface reconstruc-
tion as the task of continuously controlling viewpoint so that the visible rim slides over the maximal,
connected, and reconstructible object regions intersecting the visible rim at the initial viewpoint. This
formulation allows us to separate the issue of controlling viewpoint from the issue of reconstructing the
surface itself, i.e., processing the images produced during the viewpoint’s motion.

Previous work on constructing global surface models of curved objects with few or no markings
and discontinuities used primarily range data [45,76,117,152,166,177]. Apart from requiring the
availability of laser range-finders tc recover an object’s shape, these approaches do not adequately
address the question of how the global geometry of an object’s surface (e.g., self-occlusions) affects
the completeness of the constructed three-dimensional models. Recently, the problem of constructing
global models of curved objects from images of their silhouette or their occluding contour has been
receiving a growing amount of attention [1,40, 63, 82,146, 152, 157,191, 192]. All approaches on this
subject deal with the problem of deriving an accurate surface representation from an image sequence
generated through object-independent viewpoint control; no previous work has considered the problem
of automatically generating a dense sequence of images that would guarantee the global reconstruction
of an object with complex surface geometry from its occluding contour. The viewpoint control strategy
described in this chapter complements previous approaches on recovering surface shape from the
occluding contour by giving a way to generate such a sequence.

The main contribution of the work in this chapter is to make precise how viewpoint should change
with respect to an unknown object to achieve global reconstruction of an object’s surface. The strategy
we develop can be used for constructing CAD models of objects whose geometry and appearance are
not known beforehand. This is achieved by studying the interaction between the viewpoint controls,
the global shape of the object, and its dynamic appearance. Unlike previous approaches where global
reconstruction is not guaranteed, we show how continuous, contour-driven viewpoint control leads to
a strategy which, even though it depends on local and efficiently-computable information, guarantees
global reconstruction of unknown, arbitrarily-shaped generic objects.

Our strategy for controlling viewpoint is developed in the context of three increasingly more general
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reconstruction tasks: The region reconstruction task, where viewpoint is controlled to reconstruct a
region around the visible rim; the incremental surface reconstruction task, where viewpoint is controlled
to “push” the exploration frontier over the unreconstructed regions on the object; and the global surface
reconstruction task, where all maximal reconstructible regions intersecting the visible rim at the initial
viewpoint are reconstructed.

The main difficulty in solving these three reconstruction tasks is that although we have some control
over the motion of the visible rim over the surface, this control is not complete; the motion of the
visible rim also depends on the shape of the surface itself. In addition, the visible rim’s topology can
change, further complicating the reconstruction process. Consider, for example, the pipe-shaped object
shown in Figure 53. In order to reconstruct its surface, the viewpoint’s motion must force the visible
rim to slide over all points along the dark curve drawn on the surface. When viewpoint (b) is the initial
viewpoint, one way to proceed is to move upward, causing the visible rim to slide over the segment
of the dark curve that is initially occluded. As viewpoint moves upward, however, the visible rim in
the vicinity of the dark curve shrinks to a point and disappears due to self-occlusion (Figure 53(e)),
changing the topology of the visible rim and making any further upward motion ineffective. Viewpoint
must now move in some other way in order to continue the reconstruction process. Similar difficulties
occur due to geometrical changes in the visible rim (i.e., even when no topological changes occur).

This simple example illustrates that a number of different motions may be necessary to achieve global
surface reconstruction. It is therefore necessary to ask what motions are needed, whether the whole
surface is always reconstructed, and whether the reconstruction process is guaranteed to terminate.
These questions are precisely the reasons why provably-correct strategies for controlling viewpoint
become important: Since the answers to these questions are not evident even for surfaces as simple
as the pipe-shaped object of Figure 53, such strategies become useful if one hopes to use them for

reconstructing the surface of complex, curved, real-world objects.
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(d) ()

Figure 53: Difficulties in reconstructing the surface of a pipe-shaped object. (a) The dark curve is also
drawn on the interior surface of the object, as shown in (b)-(e). (b) Initial view of the object. (c)-(e)
During upward viewpoint motion the visible rim curve sliding in the vicinity of the dark curve shrinks
to a point and disappears.

6.2 Occluding Contour Evolution Under Continuous Viewpoint
Control

We begin by specifying the class of objects considered in this chapter. We assume the object being
explored is bounded by a smooth, closed, and generic surface S. Informally, generic surfaces exemplify
the notion of non-degeneracy: They are surfaces whose geometrical characteristics (e.g., the Gauss

map) are not affected if the surface is infinitesimally perturbed’. Generic surfaces can approximate

1Generic surfaces have been the subject of research in singularity theory [85,129, 130, 172]; their precise definition is
quite technical (e.g., see [85]); the generic condition for a family of smooth maps can be described as an application of a finite
number of transversality conditions [172]. Intuition about the genericity assumption can be obtained by considering simpler
cases, such as surfaces that are graphs. In particular, a function f : 2 — R is generic if (1) f has only non-degenerate
critical points (ie., the determinant of the Hessian is not zero), and (2) the critical values corresponding to distinct critical
points are distinct [92]. Intuitively, if (z, y, f(z, y)) is the surface defined by f, planes parallel to the z — y plane are never
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arbitrarily closely any curved object with no surface discontinuities. We also assume that S is viewed
under orthographic projection. Under continuous viewpoint motion, viewpoints can be thought of as
tracing a curve c(t) on the viewing sphere. We refer to viewpoints as points on this sphere, rather than
as viewing directions, since this simplifies the exposition in this chapter.

The shape and topology of the visible rim and the occluding contour depend on S and the viewpoint.
A suitable surface parameterization relating the shape of S, the visible rim, and the occluding contour is
the epipolar parameterization [44, 62]. When viewpoint is continuously controlled and when topology
of the visible rim does not change, the epipolar parameterization uses the epipolar plane correspondences
to make precise the visible rim’s sliding motion over the surface and its relationship to surface shape
(Section 4.2). This allows the non-concave parts of the surface to be considered as a collection of
regions, each of which is a family of visible rim curves [63] (Figure 54). When this parameterization
can be constructed from an image sequence, the shape of the surface in those regions (i.e., the first and
second fundamental forms) can be recovered [44,62, 170]. The details of the shape recovery process
are not important for our analysis and the reader is referred to [44,62,170].

The crucial point in the definition of the epipolar parameterization is that the epipolar parameteri-

zation imposes four strong constraints on the ability to recover a region II around a visible rim point

p-

Epipolar Reconstructibility Constraints

CO: A surface point p must be visible from some viewpoints on its tangent plane.

C1: p must not be the endpoint of a visible rim curve. This is because it is assumed that p is noton II’s
boundary.

C2: If v(t) is the viewpoint’s velocity, T,(S) must not contain v(t). This is because in that case point
p remains on the visible rim.

C3: The topology of the visible rim curve containing p must not change in the neighborhood of p under
an infinitesimal viewpoint motion. Only a finite collection of curves on the surface cannot satisfy

this constraint. These curves bound the surface points not satisfying constraint CO (Section 6.4).

tangent to the surface at planar points, such planes are tangent to the surface only at a finite number of isolated points, and
no such planes can be simultaneously tangent to two points on the surface.
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epipolar
plane

Figure 54: The epipolar parameterization. Curves x(s, to) and x(s,to + At) are curves on the visible
rim of the surface corresponding to viewpoints c(to) and c(to + At), respectively. The tangent to the
curve x(so,t) for t = o is along the line through c(to) and p. The curve’s normal is in the epipolar
plane, defined by the direction of motion, v(t), and the line c(to)p.

The Epipolar Reconstructibility Constraints show that the epipolar parameterization cannot be used
to describe the surface in the neighborhood of every visible rim point. They also show that the surface
region II depends on how the visible rim curve x(s, o + At) slides over the surface when At varies
continuously. Consequently, the dynamics of the visible rim curves determine the regions reconstructed.
These dynamics depend on the local and global shape of the surface as well as the viewpoint’s motion.

The Epipolar Reconstructibility Constraints characterize the reconstructible regions on the surface,
i.e., they tell us what is the most we can expect from any viewpoint control strategy that uses the

occluding contour for reconstruction:

Reconstructible surface regions: The reconstructible regions are the maximal connected
sets of points for which all the Epipolar Reconstructibility Constraints can be simultaneously

satisfied.

We will see that the reconstructible regions are bounded by points that satisfy constraint CO but
not constraint C3 (Section 6.4). Constraint C3 applies only to surface points belonging to visual event

curves, briefly discussed below.
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6.2.1 Visual Event Curves

The topology of the occluding contour of a smooth surface is stable for almost all viewpoints. Results
from singularity theory show that the space of viewpoints can be partitioned into a collection of maximal
connected cells within which the visible rim’s and the occluding contour’s topology remains constant
[90,127,140]. Visual events are the boundaries of these cells. An infinitesimal perturbation of a
viewpoint belonging to a visual event results in changes in the topology of the visible rim and of the
occluding contour. Visual events are described in terms of the configuration of the occluding contour
curves before and after the events are crossed (Figure 55). For generic surfaces, the visual events are
associated with a collection of surface curves, called the visual event curves; only in the neighborhood
of these curves can the visible rim’s connectivity change when viewpoint crosses a visual event.

A presentation of the catalogue of all visual events is outside the scope of this thesis. Here we
concentrate on the subset of the visual events that affect the outcome of the global reconstruction
process. In particular, the visual event curves relevant to our analysis are? (1) the parabolic surface
curves (s), associated with beak-to-beak and lip events, such that the line segment m(s)c is along
an asymptote at «(s) for some viewpoint c, (2) the curves 7(s), associated with triple-point events,
such that the line segment 7(s)c touches the surface at three distinct points for some viewpoint ¢, (3)
the curves ~(s), associated with tangent-crossing events, such that the line segment v(s)c touches the
surface at two distinct points with identical tangent planes for some viewpoint ¢, and (4) the curves
o(s), associated with cusp-crossing events, such that the line segment o (s)c touches the surface at two
distinct points and is an asymptote at o'(s) for some viewpoint c. A subset of these visual curves bounds

the reconstructible regions. We characterize this subset in Section 6.4.

6.3 Viewpoint Control for Region Reconstruction

In this section we consider the region reconstruction task: Suppose the viewpoint is at position ¢, and
Jet p be a visible rim point on the object’s surface that is identified by its projection, g, on the occluding
contour. The task is to continuously control viewpoint, starting from point c, in order to recover the

local shape of the surface for all points in some neighborhood II of p. Initially, the exploration frontier

2The reader is referred to Appendix D for an informal definition of these curves.
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Figure 55: Visual events for a transparent surface. Also shown are examples of how these events appear
when the viewed surface is opaque. The Epipolar Reconstructibility Constraint C3 is not satisfied for the
visible rim point p that projects to g and is farthest away from the viewpoint’s position. (a) Local events.
In a beak-to-beak event two occluding contour curves meet at a point and then split off, generating two
cusped contours. In a lip event a cusped contour appears out of nowhere. In both cases, p lies on a
parabolic curve, 7. (b) Multilocal events. In a triple-point event, points on three occluding contour
segments project to a single point. Point p lies on a triple-point curve, 7. In a tangent-crossing event
two contours meet creating a pair of T-junctions. p belongs to a tangent-crossing curve, 7. Finally,ina
cusp-crossing event three occluding contour segments connected by two T-junctions split off with one
of the segments ending with a cusp. p belongs to a cusp-crossing curve, o.

coincides with the visible rim; a study of the region reconstruction task therefore leads to a strategy for
locally controlling the motion of the exploration frontier by forcing it to slide over a neighborhood of
one of its points.

We use the following two observations:

o If p is the endpoint of a visible rim curve, the epipolar parameterization cannot describe the surface
in the neighborhood of p. However, there are other viewpoints on p’s tangent plane at which p is

not the endpoint of a visible rim curve, i.e., at which Epipolar Reconstructibility Constraint C1 is

satisfied.
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e The point p and the viewpoint may be such that the occluding contour’s topology changes in the
neighborhood of p under an infinitesimal viewpoint perturbation. For all points p except those
lying on a subset of the visual event curves, we can satisfy Epipolar Reconstructibility Constraint
C3 by moving to other viewpoints on p’s tangent plane at which the contour’s topology does not

change in the neighborhood of p if these viewpoints are infinitesimally perturbed.

Based on these observations, for any given viewpoint we distinguish four types of visible rim points:
Ordinary points, which satisfy constraint C3 and are not endpoints of a visible rim curve; cusp points
and T-junction points, which satisfy constraint C3 and are visible rim endpoints projecting to a cusp and
a T-junction on the occluding contour, respectively; and degenerate points, which are visible rim points
not satisfying constraint C3. These four types of visible rim points are exhaustive and give rise to four
instances of the region reconstruction task.

To perform region reconstruction we use a basic viewpoint control strategy to deal with the case
where p is ordinary. The other three cases are treated by using three strategies, each corresponding to a
particular type of visible rim point, that first change viewpoint to reach a viewpoint where p is ordinary,
and then use the basic strategy in order to recover the shape of the surface in a neighborhood of that
point. Three properties of these viewpoint controls should be pointed out that have important practical

implications. These properties will be demonstrated later in the chapter.

e We will see in Section 6.6 that the strategies handling the case of degenerate visible rim points
is sufficient for solving the global surface reconstruction task. This means that to achieve region
reconstruction around an arbitrary visible rim point we do not have to determine whether that
point is an ordinary, cusp, T-junction, or degenerate point, and we do not have to detect whether
topological changes occur on the occluding contour. This property is crucial since the problems
of locating or identifying cusps or degenerate points and detecting connectivity changes on the
occluding contour can be very difficult in real images. Because of the sufficiency of dealing with
the case of degenerate points and because this case also requires dealing with region reconstruction

around ordinary points we only consider those two cases in this chapter.?

e The strategies used for the region reconstruction task use only two very simple types of motion:

3The reader is referred to [102] for a treatment of the remaining cases.




117

tangential viewpoint control, and motion on an appropriately selected normal plane.

o The strategies are presented in the context of recovering shape for a (possibly arbitrarily-small)
region around a selected visible rim point. However, the analysis in Section 6.6, which studies
the global reconstruction task, shows that when these strategies are applied in conjunction with
a special set of rules, the regions reconstructed on the object’s surface will not simply cover a
small neighborhood of the selected point but will cover areas of the surface that are large enough
to guarantee global reconstruction. For example, our simulation results of Section 6.7 show that
a good approximation to the entire exterior surface of the curved pipe shown in Figure 53 and of

its reconstructible interior can be obtained by applying these strategies three times.

6.3.1 Viewpoint Control for Reconstruction Around Ordinary Points

Under continuous viewpoint control, the points belonging to the visible rim are in a transitional visibility
state. Some points become occluded under an infinitesimal motion along the viewpoint’s path, and
some remain visible but leave the visible rim. Hence, the task of forcing the visible rim to slide over
a neighborhood of an ordinary visible rim point p requires (1) inducing the visibility of all points in a
neighborhood of p that are occluded at the initial viewpoint, and (2) inducing the occlusion of all points
in a neighborhood of p that are visible from the initial viewpoint.

Suppose viewpoint changes by tracing a smooth curve c(t) with c(to) = ¢, and let v(t) = c/(t) be
the instantaneous direction of motion. Given a segment J3(t) of the visible rim at viewpoint c(t), the
epipolar parameterization allows us to define the segment B(t + 6t) of the visible rim at ¢(t + &t) that
corresponds to 3(t). Theorem 6.1 shows that we can get a qualitative characterization of the motion of

the visible rim over the surface by looking at the surface normal:

Theorem 6.1 (Visibility transition dynamics) Suppose N(p) is the surface normal at p and that the
viewpoint is c(t). If B (), ..., B (t) and By (1), ... ,B=(t) are the (open) smooth segments of the
visible rim that contain ordinary points p satisfying N(p) - v(t) > 0 and N (p) - v(t) < 0, respectively,

then

1. all points B} (t + 8t),5 = 1,... ,n, are occluded from position (t).
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2. all points B7(t + 6t),i = 1,... ,m, are visible from position c(t).

3. All ordinary visible rim points satisfying N(p) - v(t) = 0 will be contained in the visible rim at

c(t + ot).

See Appendix E.1.1 for aproof. When the viewpoint changes continuously along a smooth curve c(t),
toart < t < tena, the visible rim segments will slide over the surface. If Bi(t) is the segment containing
the selected point p, B;(t) will trace a region II on the surface around p that can be described using
the epipolar parameterization. The boundary of this region consists of the segments Bi(tstart)s Bi(tend)
contained in the visible rim at viewpoints c(%sart), c(fend), respectively, and the traces of the endpoints
of B3;(t). The endpoints of B;(t) will either be points satisfying IV (p) - v(t) = 0, or will be the endpoints
of a visible rim curve®. The following viewpoint control strategy can now be used to reconstruct a

surface region around p (Figure 56):

Ordinary Region Reconstruction Strategy

Step 1: Select a point p on the visible rim that is not the endpoint of a visible rim curve. This selection
is done indirectly by selecting p’s projection, ¢, on the occluding contour. Point g must not be the

endpoint of an occluding contour curve.
Step 2: Compute the surface normal at p.

Step 3: (Reconstructing the occluded points near p) Select a direction v, for moving on the motion
sphere that satisfies the inequality N(p) - v1 > 0. Change viewpoints along v, while continuously

monitoring the deformation of the occluding contour curve that initially contains q.

Step 4: (Reconstructing the visible points near p) Move back to the initial viewpoint and reapply Step

3 by selecting another direction of motion v, that satisfies the inequality /V (p)-va<O.

Two components of the above strategy are purposely left unspecified. First, the choice of directions
v, and v, in Steps 3 and 4 is required to satisfy a particular inequality, but no exact value is given.

Second, no condition is specified for terminating the viewpoint motion in these two steps. In Section

4These points have also been called frontier points by Giblin and Weiss [61, 63] who recently provided a comprehensive
study of the surface geometry around such points.
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Figure 56: Reconstructing a region around an ordinary visible rim point on a torus. (a) The edges
detected in the initial view, to. The small triangle in the middle of the torus points toward the direction
of the line connecting the initial viewpoint and the center of the torus. The point selected is point p,
shown in (b), in which the torus is viewed from below. The point is selected by selecting its projection,
g, on the occluding contour from the initial viewpoint, c(to). (c) Views of the surface as Step 3 of
the Ordinary Region Reconstruction Strategy is applied. The tangent to the occluding contour at g is
horizontal and, hence, the projection of the surface normal at p in the image is vertical. Viewpoint
changes vertically downward. B is the projection of the visible rim segment (3(%,) that contains p. Since
B(t) disappears during the viewpoint’s motion, after the application of Step 3 the region reconstructed
on the surface is bounded by the curves traced by the endpoints of 3(t) and by B(to) (i-e., a triangle-like
region). These curves belong to the exploration frontier. The region is shown as the lightly-shaded area
in (b). Step 4 completes the reconstruction process around p by reconstructing a region on the other
side of B(to) (shown as the darkly-shaded area in (b).

6.6, where we consider the global surface reconstruction task, we show that when applying the Ordinary
Region Reconstruction Strategy the viewpoint must be controlled according to a number of rules that

“ground” these steps and force viewpoint to move on a normal plane of the surface at p.
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6.3.2 Viewpoint Control for Reconstruction Around Degenerate Points

Suppose that the viewpoint moves along a curve c(t), and that the topology of the visible rim changes
in the vicinity of the visible rim point p at viewpoint ¢ = ¢(to). To reconstruct a region around p we
first move to a viewpoint on T,(S) at which p is an ordinary point. This motion ensures that during
the application of the Ordinary Region Reconstruction Strategy at the new viewpoint, all topological
changes on the visible rim near p will be “delayed” until after a region around p is reconstructed. An
important aspect of the analysis below is that this can be accomplished without answering the question
of which topological changes might occur, and without detecting any such changes.

Topological changes of the visible rim occur only when the line connecting ¢ and p has a high-order
contact with the surface or when it contacts the surface at multiple points (Appendix D). Generically,
if the viewpoint is infinitesimally perturbed to a new viewpoint, ¢’, on T,(S), the line connecting <’ and
p will either have lower-order contact with the surface or will touch the surface at fewer points. Hence,
if p is visible from the new viewpoint, p will become an ordinary visible rim point (Figure 57(a)).
Unfortunately, p may no longer be visible. In this case, in order to make p ordinary the viewpoint
must move to distant viewpoints on T,(S) from which p is visible (Figure 57(b)). We therefore need to
specify how the viewpoint should move and when to stop.

The first question can be answered by moving either clockwise or counterclockwise on a circle in
T,(S) around p. The direction of motion on this circle is not important. Viewpoint motion should stop
when p becomes ordinary. It is easy to see that if there is an open arc of viewpoints on the viewpoint’s
motion circle from which p is visible, any viewpoint on that arc guarantees that p is an ordinary visible
rim point at that viewpoint. To completely specify the viewpoint’s motion, it remains to give a way
of detecting when p becomes visible again. One approach is to first determine the three-dimensional
coordinates of p, and then continuously check if any visible rim point with tangent plane coincident
to T,(S) has those coordinates. Alternatively, to avoid dependence on such coordinate information
we observe that the occluding contour must be tangent to T,(S) at p’s projection. This leads to the

following viewpoint-control strategy for reconstructing the surface around p (Figure 58):
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Figure 57: Forcing p to become ordinary. A top view of the tangent plane of an elliptic degenerate
visible rim point p is shown. Shaded regions correspond to the intersections of T},(.5) with the object.
In this example, p belongs to a visual event curve associated with a triple-point event: the line through
p and the viewpoint’s position, ¢, touches the surface at three points. (a) A small viewpoint change on
T,(S) makes p ordinary. (b) The geometry of the intersection T,(S) N S forces p to become occluded
when small viewpoint changes are performed. However, there are viewpoints on Ty(S) at which p is
ordinary. (c) The geometry of the intersection T},(5) N S forces p to be occluded at all viewpoints except
C.

Degenerate Region Reconstruction Strategy
Step 1: Let p(t, — 8t) be the visible rim point at position ¢(to — ) that is matched to p by the epipolar

parameterization. Compute the tangent plane at p as the limit lims;o Toto-s56)(S)-

Step 2: Perform a small counterclockwise motion on T;,(S). If p remains visible, set ¢ = pand continue

with Step 5. Otherwise, return to the initial viewpoint, c.

Step 3: Perform a small clockwise motion on T;,(S). If p remains visible, stop. Otherwise, return to
the initial viewpoint, c.

Step 4: Move clockwise on a circle around p on T,(S) until either c is reached again or there is an
ordinary visible rim point ¢ whose tangent plane coincides with T,(S5).

Step 5: If the initial viewpoint is reached, stop. Otherwise, apply the Ordinary Region Reconstruction
Strategy to reconstruct a region around g, and continue with Step 4.

With the above strategy, region reconstruction is not achieved for p if and only if p is occluded

from all but a finite set of viewpoints on its tangent plane. Such points never become ordinary during
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Figure 58: Reconstructing a region around a degenerate point on the torus. Top row: Viewpoint moves
downward until the visible rim segment pointed by the triangle shrinks to a point p and disappears.
The tangent plane at p is horizontal and perpendicular to the plane of the page. The visual event
corresponding to the disappearance of that segment is a tangent-crossing event. Due to this event,
the surface in the neighborhood of p cannot be reconstructed by performing a small viewpoint change.
Bottom row: Moving on T,(S) in order to make p ordinary. The black horizontal line is the projection of
T,(S) in the image. A clockwise viewpoint change is performed on T,(S) until an ordinary visible rim
point with tangent plane identical to T,(S) is detected. After performing a 180° rotation, such a visible
rim point is found; in this case the point is p. We can now use the Ordinary Region Reconstruction
Strategy to reconstruct a surface region around p.

the viewpoint’s motion on T,(S) (Figure 57(c)). This is not the fault of the Degenerate Region
Reconstruction Strategy, however; in this case Epipolar Reconstructibility Constraint C3 cannot be

satisfied because there are no motions that force the visible rim to slide over a neighborhood of such a

point.

6.4 The Reconstructible Surface Regions

The analysis of the region reconstruction task gives us a way to characterize the reconstructible regions
on the surface by characterizing their boundaries®. In particular, the strategies described in Section 6.3

allow us to reconstruct a region around all surface points except for (1) points that are never visible

5Qur characterization is similar, in spirit, to the visual hull concept recently introduced by Laurentini [105). The visual
hull is the closest approximation to a non-convex polyhedral object that can be reconstructed from images of the object’s
sithouette. However, both our goals (characterization of reconstructible regions on smooth objects) and the tools we use for
this characterization (differential geometry) differ.
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from viewpoints on their tangent plane, and (2) points on visual event curves that are visible from only
a finite number of viewpoints on their tangent plane. For these points, there is no viewpoint motion
that will force the visible rim to slide over their neighborhoods. This leads directly to the following

characterization of the reconstructible regions on the surface:

Reconstructible surface regions: The reconstructible surface regions are the maximal
connected sets of points that are visible from a one-dimensional set of viewpoints on their

tangent plane.

Unless the surface is entirely reconstructible, each connected reconstructible surface region R forms
an open set on the surface. Its boundary contains the segments of visual event curves whose points are
visible only from a finite number of viewpoints on their tangent plane. By checking which visual event

curves can contain such segments, it is easy to show the following:

Theorem 6.2 (Reconstructible region boundaries) A point p is on the boundary of a reconstructible

surface region if and only if it belongs to either
e a parabolic curve bounding a surface concavity,
e a curve 7(s) associated with a triple-point event,
e a curve ¥(s) associated with a tangent-crossing event, or
e a curve o(s) associated with a cusp-crossing event,

and is visible from only a finite number of viewpoints on its tangent plane.

An intuitive description of Theorem 6.2 can be given as follows. To each pointpina reconstructible
surface region we can associate a collection of visibility arcs. These arcs are simply the open and
connected one-dimensional sets of viewpoints on p’s tangent plane from which p is visible (Figure 59).
When p asymptotically approaches one of the above visual event curves, the length of at least one of
its visibility arcs decreases, diminishing to zero (Figure 59(a)-(c)); this can only happen for the visual
event curves listed above. Now, if the lengths of all visibility arcs of p diminish to zero, the visual event

curve approached by p belongs to the boundary of a reconstructible region (Figure 59(d)-(f)).
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) (e) ®

Figure 59: The visibility arcs of a point p. A top view of the tangent plane of p is shown. Shaded
areas correspond to the intersections of T,,(S) with the object. (a)-(c) Approaching a visual event curve
T associated with a triple-point event. Point p has two visibility arcs. As p approaches 7, one of the
visibility arcs of p degenerates to a point. In this case, the point p in (c) belongs to 7, but is not contained
in the boundary of a reconstructible surface region; the neighborhood around p can be reconstructed
by moving to a viewpoint in the remaining visibility arc of p. (d)-(f) Approaching a visual event curve
 associated with a triple-point event. Point p now has one visibility arc. As p approaches 7, the
visibility arc of p degenerates to a point. In this case, p asymptotically approaches the boundary of a
reconstructible surface region.
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Flecnodal
Tangent-crossing
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Figure 60: Applying Theorem 6.2 to some surfaces studied by Petitjean er al. [127] and Koenderink
[90]. The figures are taken from [127]. The squash-shaped surface in (a) and (b) is completely
reconstructible: No cusp-crossing or triple-point visual events can occur, and the surfaces do not have
concavities. Furthermore, for each point on the two visual event curves corresponding to a tangent-
crossing event (shown in (b)), we can associate at least one visibility arc. The dimple-shaped surface in
(c) has one reconstructible region. This region is bounded by the parabolic curve bounding the concavity
on the surface.
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The visual event curves listed in Theorem 6.2 are therefore potential boundaries of a reconstructible

surface region. They bound such regions only if they contain points with no visibility arcs. Figures 60,

61 show the reconstructible regions for three objects.

6.5 Viewpoint Control for Incremental Surface Reconstruction

The goal of the global surface reconstruction task is to reconstruct the reconstructible surface regions
that intersect the visible rim at the initial viewpoint. To achieve this, we incrementally “grow” the
regions initially reconstructed on the surface by answering two questions: (1) How can we force points
on the exploration frontier to lie on the visible rim, and (2) how can we control viewpoint so that new
regions around those points can be recovered?

The first question can be answered by considering the fact that the exploration frontier is traced by
points on the visible rim from previous viewpoints. Hence, it suffices to move back to the viewpoint
where a given frontier point belongs to the visible rim. This can be achieved by saving, along with
each occluding contour image, the viewpoint corresponding to that image during the application of

the Ordinary Region Reconstruction Strategy. Since there is a correspondence between the points on

Concave

Hyperbolic

Convex

Hyperbolic

Parabolic curve

Figure 61: Reconstructible regions for the pipe surface of Figure 53. The surface has one reconstructible
region, which is the union of the convex and hyperbolic areas of the pipe, and one unreconstructible
region (shown in gray), corresponding to the pipe’s upper interior surface, which is concave.
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the exploration frontier and the images they project to, this information is sufficient to move to the
viewpoint where a particular boundary point was on the visible rim. Furthermore, since any frontier
point can be forced to become a visible rim point, and the strategies developed in Section 6.3 can be
used to reconstruct a surface region around any visible rim point for which this is possible, the second
question is easily answered by using the strategies already presented. These considerations lead to the

following strategy:

Incremental Surface Reconstruction Strategy

Step 1: If the exploration frontier has not been reduced to a point, select a point p on the frontier and

let ¢ be the viewpoint at which p projected to the occluding contour.
Step 2: Move to c.

Step 3: Use the region reconstruction strategy appropriate for performing the local surface reconstruc-

tion task around p, and continue with Step 1.

The specific algorithm for selecting the points p on the boundary of the already-reconstructed surface
regions is not important for guaranteeing their successive expansion. However, in order to perform the
global surface reconstruction task we must obey an additional rule when doing this selection; we discuss

this rule in Section 6.6.

6.6 Global Surface Reconstruction

What kinds of strategies are needed to accomplish global surface reconstruction? In Section 6.1 we
motivated the need for strategies for which (1) the reconstruction process does not terminate (i.e., at
least one of the component strategies is applied an infinite number of times) if and only if there is no
finite-length viewpoint path that accomplishes global surface reconstruction (finize termination), and (2)
if the reconstruction process terminates, the reconstructed points must be the union of the reconstructible
regions intersecting the visible rim at the initial viewpoint, and if it does not terminate the reconstructed

points must asymptotically approach that set (completeness).
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(b)

Figure 62: Difficulties involved in globally reconstructing a dimple-shaped surface. In the n-th iteration
of the Incremental Surface Reconstruction Strategy the viewpoint is moving upward in order to recon-
struct points in the neighborhood of the visible rim point &(#}) on curve a. The visible rim eventually
slides to the right, making the viewpoint’s upward motion ineffective for reconstructing the surface in
the vicinity of a(t3).

In this section we show that global surface reconstruction can be achieved by (1) using the Incremental
Surface Reconstruction Strategy, while (2) obeying a number of simple rules that constrain how that
strategy is applied. The idea behind these rules is simple: Their goal is to constrain the viewpoint
controls during each iteration of the Incremental Surface Reconstruction Strategy so that all four
Epipolar Reconstructibility Constraints are satisfied for as long as possible during the viewpoint’s
motion, and for as large a region on the surface as possible. It is a basic result of our analysis that this
approach guarantees global surface reconstruction.

Motivated by our characterization of the reconstructible regions and the difficulties illustrated in
Figures 53 and 62 that we need to overcome, we develop these rules by considering the following three

increasingly more general global reconstruction tasks:

o Semi-global curve reconstruction task: Suppose a curve is drawn on the surface so that it
intersects the visible rim at the initial viewpoint (Figure 62(a)). The task is to reconstruct the
segments of this curve that are connected, reconstructible, intersect the visible rim at the initial
viewpoint, and terminate on a visual event curve that potentially bounds a reconstructible surface

region, as in Figures 59(c, f).
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¢ Global curve reconstruction task: Suppose a curve is drawn on the surface so that it intersects
the visible rim at the initial viewpoint. The task is to reconstruct the segments of this curve that
are connected, reconstructible, intersect the visible rim at the initial viewpoint, and terminate on

the boundary of a reconstructible region.

e Global surface reconstruction task: Global surface reconstruction is a generalization of the
global curve reconstruction task in the following sense. It is equivalent to reconstructing for every
surface curve that intersects the visible rim at the initial viewpoint, a connected, reconstructible

segment terminating on the boundary of a reconstructible region.

By obeying the rules we develop in this section, we “ground” the steps in the Incremental Surface
Reconstruction Strategy and the Region Reconstruction Strategies that we left unspecified in Sections
6.3 and 6.5. In the following we keep our analysis at a fairly intuitive level, working through specific

examples to motivate the rules. Proofs can be found in Appendix E.

6.6.1 Semi-Global Curve Reconstruction

Recall that during the application of the Incremental Surface Reconstruction Strategy we select a point
p on the boundary of the already-reconstructed regions and then control viewpoint to reconstruct a
new region around p. To achieve semi-global curve reconstruction, the length of the curve segment
reconstructed at each iteration must diminish if and only if it asymptotically approaches a visual event
curve potentially bounding a reconstructible surface region. The following theorem gives the three rules

that must be obeyed in order to accomplish the semi-global curve reconstruction task.

Theorem 6.3 (Semi-global curve reconstruction rules) Let a be a finite-length curve drawn on the
surface. If o intersects the visual event curves at most a finite number of times, and the following three

rules are obeyed, the semi-global curve reconstruction task will be accomplished:

Rule 1: When choosing the point p on which to apply the Region Reconstruction Strategies, always

select a point of intersection of o with the visible rim.

Rule 2: Always apply the Ordinary Region Reconstruction Strategy after first moving to a viewpoint ¢

corresponding to the middle of a visibility arc of p.
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Rule 3: When applying the Ordinary Region Reconstruction Strategy to reconstruct a region around p
starting from an initial viewpoint ¢, move around the surface on the normal plane at p and stop

only after the endpoint of the segment of a being reconstructed coincides with a cusp, T-junction

or degenerate visible rim point, or c is reached again.

Rules 1 and 3 are obvious. For example, consider the semi-global curve reconstruction task for the
surface in Figure 62(a). The n-th iteration of the Incremental Surface Reconstruction Strategy requires
selecting a point on the visible rim in order to reconstruct a region in its neighborhood. Rule 1 simply
states that the point selected should be a(t}). This rule ensures that a segment around o(t}) will be
reconstructed even when that point is a degenerate visible rim point. Now suppose viewpoint starts
moving in an upward direction according to the Ordinary Region Reconstruction Strategy in order to
reconstruct a region around a(t}). Rule 3 states that the viewpoint should move upward at least until
the cusp endpoint of the visible rim coincides with the dark curve at a(t3), as shown in Figure 62(c).
Clearly, there is no reason for continuing to move upward after that point since reconstruction of a
larger piece of the dark curve around that point will not occur. By constraining motion on a normal
plane it also ensures that Epipolar Reconstructibility Constraint C2 will be satisfied for as many points
as possible in the neighborhood of the selected point after a small viewpoint motion.

The utility of Rule 2 is not as obvious, although it is crucial for achieving the semi-global curve
reconstruction task because it constrains the long-range effect of the viewpoint’s motion on the set of
reconstructed surface points. Intuitively, Rule 2, together with Rule 3, ensures that Epipolar Recon-
structibility Constraints C1 and C3 are satisfied for as long as possible during the upward motion of the
viewpoint. To see how this is achieved in the semi-global reconstruction of o, suppose the viewpoints
corresponding to Figures 62(a)-(c) are c({7), ¢(t3) and c(t3), respectively, and the line through ¢(t) and
a(t) is [(t). To achieve semi-global curve reconstruction, the length of the segment between a(t}) and
a(t2) must diminish if and only if o(t}) asymptotically approaches a visual event curve that potentially
bounds a reconstructible surface region. Now consider Figure 63. Since a(13) is a cusp point, the line
I(t7) is along an asymptote at o(t3). Therefore, if 4(?) is the angle between [(t) and the corresponding
asymptote at (t), we can conclude that a necessary and sufficient condition for the curve point aft3)

to become a cusp visible rim point is that ¥(¢) goes to zero as ¢ approaches {3.
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Figure 63: Geometry of the reconstruction of a segment of curve in Figure 62. Viewpoints c(t7), ¢(t3)
correspond to Figures 62(a) and (c), respectively. The tangent plane and Dupin’s indicatrix of points
a(t?) and a(t}) is also shown.

Clearly, if ¥(t7) is large, the length of the segment between a(t7) and o(t%) will also be large. It
is therefore necessary to require 1({7) to be large. But how large can we make P(t7)? If ¥(t7) is too
large, the line /(¢7) may approach the other asymptote at a(t7); the best we can do is to ensure that
¢(t7) is in the middle of the visibility arc, which in this case is bounded by the two asymptotes at a(t}).
At that viewpoint, ¢ (t7) will form equal angles with both asymptotes at a(ty).

Obeying Rule 2 is quite easy: We determine the extent of the visibility arc containing ¢(¢7), and
then move to the middle of that arc. To measure the extent of the visibility arc, we can simply move
on To(em(S) first in a clockwise and then in a counterclockwise direction, stopping when a cusp or T-
junction is formed at the projection of o(t7). Figures 64-66 show results from a real-time implementation

of this rule.
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(b)
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Figure 64: Implementing the viewpoint control strategies required for global reconstruction: Moving
to the middle of the visibility arc for a point on a pipe by tangential viewpoint control (Rule 2). The
point is at the center of the white square. (a) Initial view. (b) Moving to one of the visibility arc’s
endpoints. Object rotations were performed at speeds of 40 degrees/second. The arc endpoints are
reached when tracking fails. (c) Moving to the other visibility arc endpoint. The view was again
automatically obtained, as in (c). (d) Moving to the middle of the point’s visibility arc. The pan position
corresponding to this view was obtained from the pan positions corresponding to the arc’s boundaries.

By following the above rules, semi-global curve reconstruction is accomplished: The distance
between o(t?) and o(t2) will diminish if and only if the visibility arc at a(t]) degenerates to a point.

This occurs only when «(t?) approaches one of the visual event curves listed in Theorem 6.2.
y 1) app
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Figure 65: Implementing the viewpoint control strategies required for global reconstruction: Changing
viewpoint on the normal plane of the selected point (Rule 3).
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Figure 66: Implementing the viewpoint control strategies required for global reconstruction: Finding
the middle of the visibility arc of a point on a different object. (g) Initial view. (h) View corresponding
to one of the arc’s endpoints. (i) View corresponding to the other arc endpoint. (k) View corresponding
to the middle of the point’s visibility arc.
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6.6.2 Global Curve Reconstruction

In the global curve reconstruction task we must reconstruct the whole curve drawn on the surface if this
is possible, or a segment of that curve whose endpoints either lie on or asymptotically approach the
boundary of a reconstructible surface region. This task is harder to accomplish than semi-global curve
reconstruction because if the whole curve cannot be reconstructed, the endpoints of the reconstructed
segment must lie on visual event curves that are actual, not just potential, boundaries of a reconstructible
surface region. To achieve this task the three rules guaranteeing semi-global reconstruction of a curve
must be obeyed. The following theorem shows that in addition to these rules, a fourth rule is also

necessary. Its proof follows from the proof of Theorem 6.3 and is omitted.

Theorem 6.4 (Global curve reconstruction rules) Let o be a finite-length curve drawn on the surface.
If o intersects the visual event curves at most a finite number of times, and the following four rules are

obeyed, the global curve reconstruction task will be accomplished.:

Rule 1: When choosing the point p on which to apply the Region Reconstruction Strategies, always

select a point of intersection of o with the visible rim.

Rule 2: Always apply the Ordinary Region Reconstruction Strategy after first moving to a viewpoint c

corresponding to the middle of a visibility arc of p.

Rule 3: When applying the Ordinary Region Reconstruction Strategy to reconstruct a region around p
starting from an initial viewpoint c, move around the surface on the normal plane at p and stop
only after the endpoint of the segment of o being reconstructed coincides with a cusp, T-junction

or degenerate visible rim point, or c is reached again.

Rule 4: In order to reconstruct a region around the selected point p, always apply the Degenerate Region

Reconstruction Strategy independently of whether p is ordinary, cusp, T-junction or degenerate.

Rules 1-3 are identical to those used for accomplishing the semi-global reconstruction task. To
see why the fourth rule is necessary for global curve reconstruction, suppose that only the first three
rules are obeyed to perform the task for the curve in Figure 62. In this case, the length of the segment

reconstructed at the n-th iteration of the Incremental Surface Reconstruction Strategy will diminish
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even when these endpoints asymptotically approach a point on a visual event curve that does not bound
a reconstructible surface region (Figure 59(c)). These points have at least one visibility arc.

Rule 4 requires reconstruction of several regions around the selected point p, by moving to the middle
viewpoints of all the visibility arcs of p and then applying the Ordinary Region Reconstruction Strategy
starting at each one of those viewpoints. By obeying this rule, the length of the reconstructed segment
can diminish only if all visibility arcs at p diminish. Since this occurs only when p approaches a point
bounding a reconstructible surface region, Rules 1-4 guarantee global curve reconstruction. Adding
Rule 4 also implies that the reconstruction process is simplified: The Ordinary Region Reconstruction
Strategy and the Degenerate Region Reconstruction Strategy are sufficient to accomplish global curve

reconstruction.

6.6.3 Global Surface Reconstruction

In this section we consider the global surface reconstruction task. To accomplish this task we must
now reconstruct not only points lying on a single surface curve that intersects the visible rim at the
initial viewpoint, but must also reconstruct points lying on every such curve that can be drawn on
the surface. The following theorem shows how this task can be accomplished using the Incremental
Surface Reconstruction Strategy and the Ordinary and Degenerate Region Reconstruction Strategies

(Figure 67):

Theorem 6.5 (Global surface reconstruction rules) If the following four rules are obeyed, global

surface reconstruction will be accomplished.

Rule 1: Always choose the frontier points p on which to apply the Region Reconstruction Strategies so
that the already-reconstructed surface regions expand in every direction after a finite number of

iterations.

Rule 2: Always apply the Ordinary Region Reconstruction Strategy after first moving to a viewpoint c

corresponding to the middle of a visibility arc of p.

Rule 3: When applying the Ordinary Region Reconstruction Strategy o reconstruct a region around p

starting from an initial viewpoint ¢, move around the surface on the normal plane at p and stop
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only after the the visible rim segment initially containing p (and all visible rim segments splitting

from or merging with it) disappears, or c is reached again.

Rule 4: In order to reconstruct a region around the selected point p, always apply the Degenerate
Region Reconstruction Strategy independently of whether p is ordinary, cusp, T-junction, or

degenerate.

Rules 2 and 4 are identical to those for global curve reconstruction. Rule 3 is a generalization of
the corresponding rule used for global curve reconstruction in the following sense. When performing
global curve reconstruction, as in the example in Figure 62(a)-(c), viewpoint motion was required to
stop only after an endpoint of the visible rim “slid over” the curve drawn on the surface. For global
surface reconstruction, the same rule must hold for every curve that we can draw on the surface. This
requires the viewpoint to move upward at least until the visible rim segment in Figure 62(a) containing
a(t}) disappears (or, equivalently, the two segments B, B2 in Figure 62(c) disappear), or the initial
viewpoint is reached again.

Rule 1 is also a generalization of the corresponding rule used for global curve reconstruction. It
requires reconstruction of a region in the neighborhood of every curve that can be drawn on the surface,
intersects the visible rim at the initial viewpoint, and intersects the boundary of the reconstructed
points after a finite number of iterations of the Incremental Surface Reconstruction Strategy. This rule
is necessary because if the reconstruction process does not terminate and the reconstructed region is
expanded in only one direction, some pieces of the boundary of the already-reconstructed points will
never approach the boundary of a reconstructible region.

By obeying Rules 1-4, global surface reconstruction is guaranteed. The Incremental Surface Re-
construction Strategy terminates after a finite number of steps precisely when the whole surface is
reconstructible. Otherwise, the set of points reconstructed converges to the reconstructible surface
regions intersecting the visible rim at the initial viewpoint. Furthermore, in this case, no strategy can
achieve global surface reconstruction in a finite number of steps: When the visible rim touches a visual
event curve on the boundary of a reconstructible surface region, it touches it at exactly one point, making
it impossible to reconstruct the surface in every neighborhood of such a curve in a finite number of

steps.
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Incremental Surface Reconstruction Strategy
Rules that must be obeyed
Rule 1:  Select points uniformly on the
exploration frontier
Rule 4: Always apply the Degenerate
Region Reconstruction Strategy
independently of the type of p

|

Degenerate Region Reconstruction Strategy
Rule that must be obeyed
Rule 2: Always move to the middle of a visibility arc

|

Ordinary Region Reconstruction Strategy
Rule that must be obeyed
Rule 3: Move on a great circle around the surface
and stop when either the initial position is
reached again, or the visible rim segment
initially containing p (and all segments
splitting from it or merging with it) disappear

Figure 67: Strategies used to accomplish global surface reconstruction. Also shown are the rules that
must be obeyed when each of the strategies are applied.

6.7 An Example: Reconstructing a Curved Pipe

In order to study the viewpoint-control strategies we have defined, we implemented a system that allows
us to visualize (1) the motions generated during an object’s global reconstruction, and (2) the surface
regions reconstructed during those motions. The input to the system consists of a polyhedral represen-
tation of the object (typical sizes are 40,000 polygons), an initial viewpoint, and a point on the object’s

visible rim at the initial viewpoint. Given this input, the system automatically generates the motions
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prescribed by the Incremental Surface Reconstruction Strategy and Region Reconstruction Strategies
while conforming to the rules guaranteeing global surface reconstruction in order to incrementally
reconstruct regions on the object’s surface (Figure 67).

The simulator also marks the parts of the surface over which the visible rim slides during the
generated motions (i.e., it marks the portions of the object that would be reconstructed due to these
motions). At each viewpoint, the object’s visible rim and its occluding contour are computed using
efficient ray-tracing techniques® [57]. Below, we briefly present results of using this system to simulate
the reconstruction of the surface of the curved pipe shown in Figure 53. These results can be evaluated
in three ways: (1) The surface regions reconstructed, (2) the number of times the Region Reconstruction
Strategies were applied to complete the reconstruction process, and (3) the generated motions. The next

three subsections consider each of these issues.

6.7.1 Reconstructed Regions

The global geometry of the curved pipe is shown in Figure 61. Its surface has only one reconstructible
and one unreconstructible region. These regions are bounded by the two parabolic curves on the pipe’s
interior surface. In our simulation, the motions generated by the Region Reconstruction Strategies
resulted in complete reconstruction of the pipe’s exterior surface. The reconstructed portions of the
pipe’s interior surface (i.e., the surface of the hole) are shown in Figure 68. The figure shows that this
part of the reconstructed region closely approximates the reconstructible hyperbolic region of the pipe’s
interior surface. In particular, the boundaries of the reconstructed region are close to the two parabolic
curves bounding the pipe’s interior reconstructible region. This result is a direct consequence of the
convergence property of the strategy we use for global surface reconstruction: The strategies guarantee
that the reconstructed region will grow arbitrarily close to the boundary of the pipe’s reconstructible

region as long as the Region Reconstruction Strategies are applied a sufficient number of times.

SFrames are typically generated at a rate of 1 frame/second.
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Figure 68: Three views of the region reconstructed on the pipe’s interior surface.

6.7.2 Number of Applications of the Region Reconstruction Strategies

Even though the convergence property of the strategy we use for global surface reconstruction ensures
that the regions incrementally grown on the object’s surface will eventually approach an object’s
reconstructible region, no bounds are given on the number of times they might need to be applied to
get good approximations to an object’s reconstructible region. One of the most important observations
that can be made from our simulations is that the number of applications needed for objects such
as the curved pipe is small. For the curved pipe, only three applications of the Degenerate Region
Reconstruction Strategy were sufficient to reconstruct the object’s entire exterior surface and to get a
good approximation to the object’s reconstructible interior.

This result emphasizes an important property of the Region Reconstruction Strategies when they
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are applied in conjunction with Rules 1-4 of Theorem 6.5: Even though the motions generated by these
strategies can be performed using only local computations in the image (e.g., tracking a single point
while moving on its tangent plane), the regions reconstructed due to these motions can cover large areas

of the surface.

6.7.3 Generated Motion

Figure 70 shows the path traced by the moving viewpoint during the reconstruction process. This path is
a connected set of arcs contained in the viewpoint’s motion sphere. The path was produced by applying
the Degenerate Region Reconstruction Strategy at three points on the pipe’s surface. The following
pages show a sequence of snapshots taken from a real-time animation of the entire reconstruction
process for the pipe. The yellow curves on the pipe’s surface correspond to the visible rim. The visible
rim point selected at each iteration of the Incremental Surface Reconstruction Strategy is indicated by
a red arrow, pointing in the direction of the point’s surface normal. The pipe’s surface is rendered in
two colors, indicating the unreconstructed (ivory) and reconstructed (green) regions of the surface. The
reconstructed regions expand as the visible rim slides over the surface due to the viepwoint’s motion.
As prescribed by the Incremental Surface Reconstruction Strategy and the Region Reconstruction
Strategies, the generated motions involve (1) motion on the tangent plane of the selected visible rim
point, (2) motion on a normal plane at a selected point, and (3) motion to a previous position on the
traced path, in order to force a point on the boundary of a reconstructed region to become a visible rim
point. A brief explanation of these motions for each of the three visible rim points used for the pipe is

given below.

Point 1: Point 1 is on the visible rim at the initial viewpoint and was given as input to the system.
The first motion performed involves motion on the point’s tangent plane in order to determine
the extent of the point’s visibility arc. Since the point is on the object’s convex hull it is visible
from every viewpoint on its tangent plane, causing Point 1 to be circumnavigated during this step.
After the point’s circumnavigation, a motion on the point’s normal plane is performed. In this
phase a number of “shortcuts” that reduce the amount of motion can be used. In particular, the

normal motion can terminate when the visible rim curves are entirely contained in a reconstructed
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region of the object’s surface.”

Point 2: This point was selected from the boundary of the already-reconstructed surface region. To
minimize viewpoint motion, the point selected was the point requiring the least amount of motion
to force its inclusion on the visible rim. The motions generated from the application of the
Degenerate Region Reconstruction Strategy illustrate that even though no information about the
surface’s global structure is used, the generated motions appear to take into account the object’s
global shape. For example, reconstruction of the pipe’s interior around Point 2 causes the pipe’s

interior to be observed through both ends of the pipe.

Point 3: This point was selected from the boundary of the already-reconstructed surface region. The
reconstruction process terminated immediately after the application of the Degenerate Region
Reconstruction Strategy for this point. This occured because the strategy’s application caused a

minimal increase in the area of the already-reconstructed region on the surface.

The image sequence below is partitioned into the following four groups, each corresponding to a

distinct step of the strategy we use for global surface reconstruction:

o Finding the middle of the current visibility arc: This involves moving on the tangent plane at the

selected point.

o Clockwise and counter-clockwise motion on normal plane: This involves moving on a great circle

in the direction of the surface normal at the selected point.

e Moving on tangent plane to find new visibility arc: This involves moving on the tangent plane at

the selected point.

e Forcing a region boundary point to become a visible rim point: The region boundary point is
indicated by a small yellow circle on the object’s surface. Note that Point 2 is on the pipe’s interior
surface when this process begins. The yellow circle is used only to indicate its position relative

to the visible rim.

71t can be shown that this premature termination of the viewpoint’s motion does not affect the correctness of the
reconstruction process.
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The initial and final images in each group correspond to the views of the object before and after the

step described by the group was applied, respectively.

6.8 Concluding Remarks

We have demonstrated that an active monocular observer can use a simple viewpoint control strategy
to recover a global description of a generic, arbitrarily-shaped object from the occluding contour. The
regions that are reconstructed on the object can be accurately characterized and depend only on global
shape properties of the object.

Continuous, contour-driven viewpoint control plays a key role in the global surface reconstruction
process. On one hand, it permits the use of shape-from-motion methods to extract shape information
even with a single camera. On the other, its enables the use of local, contour-driven viewpoint controls
that are simple enough to be executed in real time and that guarantee global reconstruction when they
are appropriately combined. The reason is that viewpoint control is not used merely to change the shape
of the occluding contour in an arbitrary manner (as in existing approaches), but it is used to change it in
a well-defined way. This allows precise statements to be made about the progress of the global surface
reconstruction process, and allows its outcome to be accurately controlled.

Current limitations of the method are: (1) the inability to change the camera’s distance to the object,
(2) the inability to reconstruct the entire surface of objects with concavities, (3) the assumption that the
environment being explored contains a single object, (4) the assumption of generic objects, and (5) the
lack of an analysis of how the camera’s finite spatial resolution and finite temporal sampling rate affect
the outcome of the reconstruction process. An extension of the method to perspective projection and
to full three-dimensional motion (e.g., moving closer to the surface to see through a hole) is currently
under development. Such motions will, at least in theory, eliminate all potential sources of occlusion
and allow the reconstruction of all non-concave regions on an object’s surface (provided the viewpoint
can move arbitrarily close to the object). Furthermore, while the shape of a concave region cannot be
recovered from images of the occluding contour, the contour can be used to constrain its shape [192].

The single object assumption allows us to formulate reconstruction of an object’s surface as the task

of incrementally “growing” a reconstructed surface region. In practice, the object being explored may
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lie on a tabletop, in a robot end-effector, or in a pile of objects. In order to decide when to stop the
region-growing process, the vision system must be able to determine which of the environment’s visible
surfaces belong to the object being reconstructed. When the object is grasped by a robot end-effector
whose shape can be determined in advance, answering this question is, in principle, feasible. However,
in general, when exploration is performed by moving in a static and completely unknown environment
this question cannot be answered. The issue of under what conditions about the environment can the
vision system decide to stop an object’s exploration, requires further study.

Even though our study has focused on the exploration of generic objects, extensions are possible:
The visual events defined for generic surfaces describe the visual events for the non-generic case;
however, the visual event “curves” may degenerate to entire regions on an object’s surface [127] (e.g.,
all points on a cylinder are parabolic whereas, generically, parabolic points always form curves on the
surface). Reconsiruction of the non-degenerate regions on the surface of non-generic objects should, in
principle, be possible with the strategies developed in this chapter. The issue of how the existence of
surface discontinuities affect the correctness of the developed exploration strategies also requires further
investigation.

How can the strategy developed in this chapter be generalized to perform global visual search tasks
(e.g., visually inspecting the surface of an object or the interior of a room, moving around an unknown
three-dimensional obstacle during a motion planning operation)? What can be learned from this strategy
that could be used to guide the motion of a range sensor in the construction of global object models? We
believe that both of these questions can be addressed by extending the notion of the exploration frontier
and studying its evolution in the context of these tasks. A key role for viewpoint control in these tasks is
to force the visibility of an object’s entire surface. An appropriate definition for the exploration frontier
is to define it as the boundary of all surface points that were made visible from some viewpoint during
the course of the exploration process. Controlling the frontier’s dynamic evolution in this generalized
sense requires controlling the motion of the occlusion boundary; this collection of curves bounds the
visible from the occluded surface points at a given viewpoint, is simply a superset of the visible rim, and
“slides” over the surface under continuous viewpoint control. Our analysis of the interactions between
continuous, contour-driven viewpoint control, the surface’s local and global geometry, and the dynamic

evolution of the exploration frontier is likely to be a component in the study of these more general
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exploration tasks.
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Region Reconstruction Process for Point 1
Finding the middle of the current visibility arc of Point 1
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Figure 69: Reconstructing the surface of a pipe-shaped object.
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Region Reconstruction Process for Point 2
Forcing Point 2 to lie on the visible rim
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Figure 69 (cont.): Reconstructing the surface of a pipe-shaped object.
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Moving on tangent plane to find new visibility arc of Point 2
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Figure 69 (cont.): Reconstructing the surface of a pipe-shaped object.
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Figure 69 (cont.): Reconstructing the surface of a pipe-shaped object.
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Region Reconstruction Process for Point 3
Forcing Point 3 to lie on the visible rim
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Figure 69 (cont.): Reconstructing the surface of a pipe-shaped object.




WVoving to visibility soe boum

(

—

VMaving o new visibility are Yioving to new visihility are

biliy o E Moving Lo
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Figure 70: Two views of the path traced by the moving viewpoint. This path consists of arcs on the
viewpoint’s motion sphere. Also shown is the surface of the pipe.




Chapter 7
Conclusions and Future Work

This thesis has studied how controlled viewpoint movements can be used to explore an object’s unknown
geometry and to simplify computations required in the exploration process. Our focus has been on the
extraction of qualitative, quantitative, local, as well as global information about the shape of curved
objects with complex surface geometry (arbitrarily-shaped or generic). The mathematical tools we
used were drawn from relationships between the geometry of smooth surfaces, their projected shape,
and the way this shape changes when viewpoint changes. We obtained theoretical and algorithmic
results (strategies for controlling viewpoint, geometrical analysis of their properties, and simulations)
and performed initial practical demonstrations (application of our viewpoint control strategies to real

scenes).

71 Main Contributions and Limitations
The contributions of this thesis can be summarized as follows:

e Introduction of a new framework for combining vision and action in the exploration of curved
objects with complex surface geometry. In particular, this framework exploits the use of contin-
uous, contour-driven viewpoint control both to simplify qualitative and quantitative local shape

computations and to enable global shape recovery of arbitrarily-shaped generic objects.
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e Formulation of viewpoint control as a process of constraining the deformation of the occluding
contour and the motion of the visible rim over the surface. It is shown that this formulation allows
the use of results from the local and global differential geometry of surfaces to formalize the

connection between vision processing and action in the exploration process.

o Demonstration that continuous, contour-driven viewpoint control leads to local geometrical anal-
ysis, local processing in the image, and simple, locally-controlled motions even when global
shape recovery tasks are performed. In particular, it is argued through a study of specific shape
recovery tasks that (1) analysis of global shape recovery tasks becomes mathematically tractable,
and (2) tangential viewpoint control becomes a key elementary motion in the exploration of curved

objects.

e Demonstration that in the context of specific exploration tasks, continuous, contour-driven view-
point control has certain advantages over existing approaches for exploring curved objects. In
particular, by developing strategies that exploit continuous, contour-driven viewpoint control the

following results were obtained:

- Occluding contour detection can be achieved without extrinsic camera calibration and with-
out a priori identification of surface markings; existing approaches employ at least one of

these two assumptions.

— Surface curvature at a point can be estimated without measurement of camera velocities or
accelerations, and without a priori identification of surface markings; existing approaches
require velocity measurements and either acceleration measurements or a priori identified

markings.

~ Global reconstruction from images of the occluding contour can be provably achieved for
generic objects of arbitrary shape; no existing approaches provide guarantees about the
outcome of the global reconstruction process for curved objects that are non-convex and can

self-occlude, using either the occluding contour or range data.

The results presented in this thesis have several limitations. First and foremost, we assume that

viewpoint is controllable. Our framework is therefore not applicable to the analysis of image sequences
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that have been generated in advance, or to cases where the degrees of freedom for changing viewpoint
in the manners prescribed are not available. This thesis also takes a rather extreme view on the
issue of utility of viewpoint controls. Large (but well-quantified) viewpoint motions may potentially
be generated to obtain better measurements and allow weaker calibration assumptions to be used in
local shape recovery tasks. Optimality of motion path length for global shape recovery has also been
ignored although, clearly, only local decisions can be made. In time-critical situations, large motions
will eventually limit the performance of the local shape recovery strategies we described, and the
development of locally-optimal strategies for global exploration will become necessary. While the
occluding contour is an invaluable source of shape information, it is by no means the only shape cue
potentially available in an image. The interaction between various shape cues (e.g., contours, texture,
discontinuities, specularities) when viewpoint changes and between different sensors (e.g., vision and
range) is only now beginning to be understood. A deeper understanding of such interactions and of the
role of controlled viewpoint movements in this broader context will inevitably become important in the

exploration of objects from diverse real-world environments.

7.2  Future Directions

The work presented in this thesis can be extended along several directions. These include addressing
theoretical and practical issuesrelated to system-building and application of the contour-driven viewpoint

control framework to novel tasks:

e Occluding contour tracking: The ability to track occluding contour curves across frames is key
to the exploration processes we described. While fast and robust curve tracking methods have
been reported [28], the contour’s shape-dependent deformations and connectivity changes cannot
be handled by current trackers. The viewpoint control strategy of Chapter 4 allows surface shape
information in the form of parallax measurements [44,109] to be incorporated in the tracking

process to predict such curve deformations and connectivity changes.
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o Implementation of viewpoint controls: We plan to implement the developed viewpoint control
strategies by mounting either a camera or an object on a six-degree-of-freedom robotic manip-
ulator. This requires further investigation of effects of singularities and joint limits on planar
viewpoint control, issues in real-time manipulator control, as well as how hand-eye calibration

requirements can be relaxed.

o Constructing Euclidean object models for reverse engineering: The integration of the devel-
oped viewpoint control strategies, their extension to non-generic object classes, as well as the
incorporation of existing shape-from-contour techniques in the exploration process for producing
CAD models of objects is an important direction for future research. We are also interested
in investigating how a priori information about an object’s surface, e.g., information about the
primitive shapes contained in a Constructive Solid Geometry representation of the object, can aid

the exploration process.

o Constructing affine object models using an uncalibrated camera: A key problem in the
construction of Euclidean curved surface models is the need for camera calibration. Several
recent approaches have shown how affine representations of point sets can be constructed by a
moving uncalibrated camera; these representations can replace Euclidean representations both in
recognition as well as computer graphics tasks (e.g., real-time animation). Unfortunately, no such
methods exist for obtaining affine models of curved objects. We are in the process of extending
the occluding contour detection strategy of Chapter 4 to construct affine representations of curved

objects using an uncalibrated camera.

e Performing global qualitative exploration tasks: In principle, the inspection of an unknoan
object’s surface (e.g., for finding the bar code identifying the object) should not require recon-
struction of the object’s surface or precise camera calibration. We plan to extend our analysis of
structuring the motion of the exploration frontier to deal with such global qualitative exploration
tasks. A key issue in this context is how to represent the exploration frontier when the camera is

uncalibrated, e.g., by constructing an affine representation of the frontier.
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e Active object recognition; Active object recognition is a task that lends itself both to the study
of motion utility and to the study of special viewpoints. The underlying issue here is efficiency:
Viewpoint should be changed only when such a change will lead to faster recognition. On one
hand, this requires deriving an estimate of object hypotheses that would be generated if a single
image was used for recognition. On the other hand, it requires using contour-driven viewpoint
control to reach special viewpoints that (1) are closely related to the object’s global geometry
(e.g., views along an object’s supporting plane), and (2) are guaranteed to reduce the number of

generated object hypotheses (e.g., by reducing the dimensionality of the hypothesis space).

o Motion planning and exploration in three-dimensional environments:

The problem of provably-correct motion planning in an unknown and unstructured 3D environment
for a freely-moving robot is still an open problem. In previous work [101] we have shown that
this problem requires, in general, exploration of an environment’s obstacles. To perform such
an exploration process the ability to control distance to the obstacle surfaces must be taken into
account. While the strategy developed for global surface reconstruction can be extended to take
distance changes into account, several questions still remain. These include dealing with the
inability to reconstruct object concavities, the inability to move arbitrarily close to an obstacle,

and the extension of the developed strategies to non-generic objects.



Appendix A
Proofs of Chapter 4 Theorems

A.1 Proof of Theorem 4.1

(1) Since p(0) is visible along £(0), the open line segment p(0)g(0) does not intersect the interior
of the surface. Furthermore, if p(0) is non-stationary, E is not tangent to S at p(0). In this case,
S N E is a smooth curve that is convex in the neighborhood of p(0). To establish the epipolar plane
correspondences for p(t), all points p(7),0 < 7 < ¢, must be convex, and no point p(7) can be occluded
by a distant surface point. Hence, the set {p(7)|7 € [0,]} is connected.

(2) If p(0) is stationary, p(t) = p(0), and hence their projection coincides. If p(0) is non-stationary,
their image difference is equal to the projection of p(t) — p(0) on the image plane at {(¢). Since p(%)
is on the occluding contour, £(t) is perpendicular to n(p(t)). The image plane is also perpendicular to
£(t), and hence it is parallel to n(p(t)). Eq. 4 now follows.

(3) From Eq. 4 it follows that ||g(t) - ¢(¢)|| = 0 if and only if [p(t) — p(0)] - n(p(¢)) = 0. When
p(t) # p(0), the distance becomes zero only when the segment p(¢)p(0) is tangent to A at p(t). Let
p(t1) be the first point whose tangent is on p(¢1)p(0) when A is traversed clockwise starting from p(0).
Since ) is convex, for any point p(#') on A after p(t;) the line through p(t') and p(0) intersects .5 on
both sides of p(t). Hence, if A contains a point p(¢") after p(t;) whose tangent is on p(t")p(0), that
point will never be visible. This implies that p(t;) is the only point in a clockwise traversal of A for
which q(t;) and §(t,) coincide. If A is open the above proof must be repeated for a counter-clockwise

traversal of \. Therefore, there are at most three points on A for which ¢(t) and ¢(t) coincide and three
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viewing directions along which this can occur, namely the tangents at those points.[

A.2 Proof of Corollary 4.1

It follows that the points of A between p(0) and p(t) coincide with their convex hull. Therefore, the line
segment p(t)p(0) intersects the interior of S only in the neighborhood of p(t), and its projection in the

image coincides with the projection of the visible surface points on A that are close to p(t).0]

A.3 Proof of Coroflary 4.2

(1) Parameterize A by arc length and define s(t) so that p(t) = A(s(t)) and s(0) = 0. The extremum
condition follows directly by differentiating Eq. 4. The details of this derivation are omitted. To obtain
a lower bound on the extrema of f(¢*), let \’ be the segment of A between p(0) and a distance maximum,
let « be the maximum absolute curvature of X, let § be the point on A where this occurs, and let t be
its tangent. Consider the smallest disc that is centered at p(0) and contains A’ in its interior. The disk
will touch X at a point p(t*) for which f is maximized, and will have radius & = f(¢*) . It follows that
f&) 2 1/k.

To obtain a bound on &, we use Meunsier’s formula [38]. According to the formula, & = &,/ sin(¢),
where %, is the normal curvature at p along t, and ¢ is the angle between E’s normal and the surface
normal at p. It follows that & < Kpa/ sin(¢). Eq. 5 follows by combining the bounds for « and R.

(2) (Sketch) Since A is convex and no distance maximum exists for p between p; and ps, no point

other than p..;q is contained in the intersection P, N P, (Figure 4.1(g)).U

A4 Proof sketch of Theorem 4.2

(1) If ¢(t,) is stationary, ¢(t) and g(t) are projections of the same surface point. Properties 4.1 and 4.2
imply that p = p(t,) and §(t) = ¢(t). When g(%,) is non-stationary, the proof is identical to that given
in Theorem 4.1. (2) In general, $ does not lie on A. If it does, the proof is identical to that in Theorem

4.1. If it lies in the surface interior or exterior, the proof of Theorem 4.1 can be modified to show that
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at most two and four viewing directions, respectively, make [|g(t) — ¢(t)|| zero.O




Appendix B

Proofs of Chapter 5 Theorems

B.1 Proof of Corollaries 5.1-5.3

If £ is along e, ¢ = 0 in Eq. (14). Corollary 5.1 immediately follows. For Coroilary 5.2, note that k,,
is derived using Corollary 5.1, and that ¢ is known. Since A # 0, Eq. (14) is well-defined and we can
use it with ky, as the unknown. The other principal direction is also computable since e; must lie on

T,(S) and be perpendicular to £. In fact, £ is perpendicular to the rim even though this does not hold in
general [90].

Finally, the derivative of k,(®) is

/ (11 sin 2¢
(15) Ko(9) = (/» kn,) (kztsin? @ + ki cos? 6’

In the case of an elliptic, non-umbilic point, kn, # kn, and therefore k; becomes 0for¢ = Oor¢ = /2,

i.e., when ¢ is along a principal direction. If p is hyperbolic, the expression in the denominator tends
to O as ¢ approaches arctan y/(kn, / — k»,) which is the angle between e, and the asymptote of the

surface at p. In the interval [arctan /(k,, / — kn, )', arctan y/(kn, / — kn,) + 7] p becomes occluded
and therefore k(@) is undefined. In the interval where k,(¢) is defined, Eq. (15) shows that k.(¢) has

a maximum only for ¢ = 0 or ¢ = 7. Finally, when p is umbilic, k,,, = kn, by definition, and k(&) is

identically zero. J

161



B.2 Proof of Proposition 5.1

(1) (Only If) Consider the intersection of S with T,(5 ). If the intersection contains only the point p,
then the intersection of any line m € T(S) with S will either be empty or equal p. Recall that while
changing viewing direction, T,(S) is viewed “edge-on” and its projection is the line [. Since { is the
projection of all lines in T;(S) (except those lines parallel to &), it follows that [ will only intersect the
occluding contour at g.

(f) Assume there is a viewing direction in T,(S) from which p is not visible. Let ¢ be the first such
direction while moving clockwise (Figure 71). The viewing direction ¢’ must contact S at p and at
at least one more point, say s. Now consider the intersection of .5 with T,(S). The intersection will
consist of a set of closed curves and isolated points. Since p is elliptic there must exist a small disk in
T,(S) centered at p that does not contain any other points of S. Therefore p and s must be in different
components. We distinguish two cases, namely whether s is an isolated point or a point on a curve.
If s is an isolated point then T,(S) must be tangent to S at s. But then s is also part of the rim when
viewed along the original direction ¢. In addition, s must be on the visible rim because it is the first
point that occludes p when changing viewing direction from ¢ to &'. This implies that the projection of
an imaginary line joining s and p will contact the occluding contour at two points, the projections of s
and p.

If s is not an isolated point, let @ C S N T,(S5) be the closed curve containing s. Now consider
the family of lines parallel to £&. A line of the family will contact Q, say at point r. Without loss of
generality assume that r is the first such contact point when Q@ is traced in a counterclockwise fashion
starting from s. This point, by definition, must be on the rim of S when the viewing direction is £. If
it is also on the visible rim (Figure 71(b)), the projection of the imaginary line joining 7 and p must
intersect the occluding contour at at least two points (i.e., at the projections of r and p).

Now suppose 7 is not on the visible rim. To treat this case, note that by definition, s must be
visible when the viewing direction is £. Let s’ be the first occluded point on @ when @ is traced in
a counterclockwise fashion starting from s (Figure 71(c)). The point ' occluding s’ must necessarily
belong to the visible rim. Therefore, the projection of the imaginary line connecting r’ and p intersects

the occluding contour at at least two points.
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Figure 71: The effects of global occlusion. (a) A “side” view of T,(S). Viewing direction ¢’ is the
first direction in which p becomes occluded. s is the point occluding p from that direction. () is the

component of S M T,(S) containing s. (b),(c) “Top” views of the tangent plane of 5 at p. v is the
original viewing direction.

(2) Consider any point g on C that is also contained in the convex hull of C. Since C cannot be a
straight line, q is, by definition, the only point in common between (' and the tangent at g. But then ¢

also satisfies the conditions of (1) above. [J



Appendix C

Extent of Viewing Direction Adjustments for

Local Shape Recovery

Let us assume we have recovered the principal curvatures at p and the viewing direction ¢ is along the
principal direction e, at p. Now assume that the viewing direction changes on the plane of £ and the
surface normal at p in order to introduce new points to the rim. We show that the viewing direction
adjustment that will be needed during the shape recovery step is proportional (at a first approximation)
to k,, and inversely proportional to kn,, the geodesic and normal curvatures of the line of curvature
corresponding to e;. This is an important result because it allows us to predict the performance of
this active viewing strategy based on intrinsic properties of the viewed surface. It follows that the
performance of our strategy smoothly degrades as the surface becomes more complicated (i.e., k,, and
k;,, become large). We first present some concepts from differential geometry for the study of curves

on surfaces.

C.1 The Local Geometry of Surface Curves

Let afs) : I — R be a curve parameterized by arc length (i.e., [@/(s)| = 1). Consider the unit tangent
and unit normal vector, (s) and n(s) respectively, at point a(s). We can describe the curve with two
quantities, its curvature x(s) and torsion 7(s), where &(s) = «(s)n(s) and ({(s) A n(s)) = 7(s)n(s).

The vectors £(s),n(s), t(s) A n(s) describe an orthogonal coordinate frame, the Frenet frame centered
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Figure 72: The Darboux Frame. w(s) lies on a sphere S, and p is a point of w(s). N(p) is the surface
normal, T = w'(s),and V = N(p) AT € T,(S). The Darboux frame is the orthonormal coordinate
frame of T, V, N.

at a(s). This coordinate frame can be used to locally describe the curve based on the values of < and 7
at a(s).

Now let S be a smooth, oriented surface, and let &(s) be a smooth curve on S. We can locally
describe &(s) using a coordinate frame similar to the Frenet frame called the Darboux frame (Figure
72). Consider a point p on &(s). The Darboux frame is defined by N(p), the normal to the surface,
T(p), the tangent to &(s), and V(p) = N(p) A T(p). Note that the T ~ V plane is the plane tangent
to S. The vector &@"(s) defining the curvature of &(s) can be analyzed in terms of two components, a
tangential component (i.e., on T,(S5)) in the direction of V/, and a normal component in the direction
of N. Therefore we can define the curvature of &(s) in terms of the curvatures of its projections kg, ky,
on the tangent plane of S and on the T — N plane, respectively. k, is called the geodesic curvature of
a(s) and k,, is the curvature of the normal section of 5 in the direction of T'. Intuitively, the geodesic
curvature measures how “far off” the T — N plane the curve actually lies. We show that the geodesic
curvature of the lines of curvature is closely related to the strategy employed to select new points for
shape recovery. Intuitively, the geodesic curvature of the lines of curvature measures how the arc length

of a curve in the ¢; direction changes as one moves along the e; direction.

The curve &(s) can be locally described by the vectors T, N,V and their derivatives. These
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derivatives can also be expressed in terms of the three frame vectors:

dT’

(16) - = kV+kN
dv

(17) 'JS‘ = -‘-kgT*-TgN
dN

where 7, is called the geodesic torsion of &.

C.2 The Dependence of the Viewing Direction Adjustments on kg,

Intuitively, the dependence on ky, is not unexpected: Recall that k,, measures how far off the plane of
¢ and N(p) the line of curvature actually lies. On the other hand, the curve 3(s) traced by the visual
ray that originally passed through p lies on that plane (Figure 73). Therefore, one should expect a
connection between the angle of 3'(s) and e, k,,. The following result shows that there is a very simple

relation between them:

Proposition C.1 (1) Let B(s) be the intersection of S with the plane defined by € and N(p) (3(0) = p,
5'(0) = 5»). If € is along the principal direction e then

(19) kyy = —

where kg, is the geodesic curvature of the line of curvature along e, at point p, and ¢(s) is the angle
between ('(s) and the second principal direction at B(s).
(2) Let & = B'(s) be the new viewing direction on the plane of € and N(p). If 0 is the angle between

€ and €', then for values of 0 close to 0 we have

o

(20) b(0) ~ L
kn,

Proof: (1) The Darboux trihedron for 5(0) is composed of the vectors T(0) = B'(0), N(8(0)) = N(p),
and V(0) = N(B(0)) A T(0), where N(-) is the Gauss map for the surface. We use a second-order
Taylor series expansion and Egs. (16)-(18) to find T'(s) = '(s) with respect to T'(0) = ¢:
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i &T
(21) T(s)=T(0) = S s + 59T
2
(22) ~ s(kV + k. N) + -Sé—(kgv + kN
2
~ ..-5.2- (k2 +82) T+
s/,
. Sk_q + —2— (kg -+ knTg) V +
-5'2
(23) [skn +5 (K~ kgrg)] N

where all coefficients of s are evaluated at 3(0). Now note that ((s) is always on the 7' — N plane
and therefore T'(s) - V(0) = T(0) - V(0) = 0, or (T'(s) — T(0)) - V(0) = 0 for all s. Constraining the
V-component of Eq. (23) to be identically equal to zero we get

(24) ky =0

The geodesic curvature k, can be expressed in terms of the geodesic curvatures of the lines of curvature

using Liouville’s formula:

d
(25) ky = k,,costp + kg, sina + Eﬁ
S

where 1 is the angle between (3'(0) and e;. But 3'(0) is equal to ez, and therefore ¢ = m /2. Noting that
¢ = m/2 — % and combining Eqs. (24) and (25), we get the desired result. U
(2) ¢ will be tangent to 3(s) for some s. Therefore, ¢ = T'(s). We use Eq. (23) to get a first order

approximation of s for values close to 0:

[T(s) - T(0)]- N
kn,

Note that [T'(s) — T'(0)] - N equals sin 0, where 0 is defined as above. Now using Eq. (19) and a

(26) s~

first-order approximation for ¢(6) we get the desired result. [

Finally, we can draw three conclusions from Eg. (20):

o If k,, = 0, no viewing direction adjustments will be done during the shape recovery phase if the
viewing direction changes in the plane of ¢ and N(p) in the second step. The curve 3(s) traces a
part of the line of curvature associated with e;. This can happen only if that line of curvature is

also a geodesic.
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viewing
direction
change

viewing
direction

Figure 73: Changing directions on the T'- N plane. Top: N,(S5 )is the T- N plane. The visual ray initially
grazes the surface at p in the direction T. N is the surface normal at p. As the viewing directions change
on this plane, the visual ray traces the curve §(s) = S N N,(S5). p' is the new point selected for shape
recovery. Bottom: A view of the tangent plane at p. The plane N,(S) and the traced curve are viewed
“edge-on”. The viewing direction change stops when the visual ray grazes p’. [ and !’ are the lines
of minimum curvature passing through p and p’, respectively. The shape recovery step will require a
rotation by an angle of ¢ on the tangent plane at p’ in order to align the viewing direction ¢ with e; at p'.

o ¢(f) can grow arbitrarily large with decreasing values of ky,. If ks, is close to 0, the surface is
locally flat in the e direction. Therefore, in such a case the approximation is not valid. However,
this problem is inherent to the use of the occluding contour for shape recovery in the case of
almost flat surfaces. The reason is that if the surfaces are locally flat, surface points will enter
and leave the rim at arbitrarily large rates. This problem will also exist for methods that measure

image velocities in the vicinity of the rim (e.g. [44]), since they require that the image points or
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features are not widely separated on the surface.

e Eq. (20) can also be used as a means to approximate kg,: After a small rotation by @ in the plane
of N(p) and &, the shape recovery step will produce a value for #(0). Hence, we can use the
equation to approximate kg,. This means that we will be able to completely describe the line of

curvature corresponding to e, in the vicinity of the previously selected point.



Appendix D

Visual Events and their Associated Visual

Event Curves

In this Appendix we briefly describe the visual events relevant to the analysis in Chapter 6, as well as
their associated visual event curves. See [127] for an excellent intuitive description of the visual events,
their associated surface curves, and their relation to the shape of the object. More details can also be
found in [85,90, 129, 130, 139, 140].

Under orthographic projection, the cells for which the occluding contour’s topology is constant
occupy two-dimensional regions on the viewing sphere. Visual events, i.e., the boundaries of these
cells, correspond to viewpoints where the projection mapping is singular. For generic objects, visual
events are defined either by curves on the viewing sphere or by the intersection of two such curves
[89, 127]. Since we only use results from the analysis of visual events defined by curves on the viewing
sphere, we restrict our discussion below to those events.

Each visual event can be defined as the intersection of the viewing sphere with a special ruled
surface, i.e., a surface that can be represented as a 1-parameter family of lines called rulings. The
rulings are lines that contact the object at multiple points, or have a high-order contact with the object at
one or more points.! These contact points form certain characteristic curves associated with the visual

event, called visual event curves.

1 A line is said to have n-th order contact with a surface at a point p when all directional derivatives at p along the line up
to (but not including) order n are zero.
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Visual events are classified into local and multilocal events, depending on whether the lines of their
associated ruling touch the surface at one or more points. Local events occur when the lines have a high
order contact with the surface at exactly one point. In this case the viewpoint is contained in a ruled
surface that touches the surface along a single curve defining the visual event. Multilocal events occur
when the lines of the ruling contact the surface at at least two points. The viewpoint in this case belongs
to a ruled surface that touches the object along two or more curves. Figure 74 shows the topological
changes corresponding to all possible local and multilocal events.

The local events are the swallowtail, beak-to-beak and lip events (Figure 74(a)). These events
correspond to viewing directions where there is a visible rim point p for which the line ! defined by p
and the viewing direction has fourth order contact with the surface. The swallowtail event occurs when
p is on a flecnodal curve [89], while the lip and the beak-to-beak events occur when p is on a parabolic
curve.

The multilocal events are the triple-point, tangent-crossing, and cusp-crossing events [127] (Figure
74(b)). Triple-point events occur at viewpoints where there is a triplet of collinear rim points whose
supporting line [ is parallel to the viewing direction. These three points project to a single point on
the occluding contour. The line [ has second order contact with each of the points. The ruled surface
associated with a triple-point event contains rulings that touch the object at three distinct points; it
is formed by sweeping [ while maintaining three-point contact with the object. These points trace
three curves on the surface; we define 7(s) to be the curve containing the point farthest away from the
viewpoint’s position.

A tangent-crossing event occurs at viewpoints where there is a pair of rim points with a common
tangent plane parallel to the viewing direction. The ruled surface associated with this event touches
the surface along two curves; we define v(s) to be the curve containing the point farthest away from
the viewpoint’s position. Finally, a cusp-crossing event occurs at viewpoints for which there is a line [
parallel to the viewing direction that touches the surface at two visible rim points, one of which is a cusp
visible rim point. In this case, [ has third order contact with the surface at the cusp point and second
order contact at the other one. Again, the ruled surface associated with a cusp-crossing event is created
by sweeping ! while maintaining one second-order and one third-order contact with the surface. The

ruled surface touches the object along two curves; we define o(s) to be the curve containing the point
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Figure 74: Topological transitions of the occluding contour that correspond to the visual events for
a transparent object (adapted from [133]). Also shown are examples of how these transitions appear
when the viewed object is opaque. The Epipolar Reconstructibility Constraint C3 is not satistied for the
visible rim point p that projects to ¢ and is farthest away from the viewpoint’s position. For viewpoints
on the visual events, the line { that is parallel to the viewing direction and contains p has a high order
contact with the surface, or touches the surface at multiple points. (a) Local events. In a swallowtail
event the occluding contour develops a singularity and then it breaks off into three segments forming
two cusps and a T-junction. In a beak-to-beak event two occluding contour curves (of which only one is
the projection of a visible rim curve) meet at a point and then split off, generating two cusped contours.
In a lip event a cusped contour appears out of nowhere. (b) Multilocal events. In a triple-point event,
points on three occluding contour segments project to a single point. In a tangent-crossing event two
contours meet creating a pair of T-junctions. Finally, in a cusp-crossing event three occluding contour
segments connected by two T-junctions split off with one of the segments ending with a cusp.

farthest away from the viewpoint’s position.
From the description of the visual events given above, it follows that we can define the following

visual event curves on the surface:
e the parabolic curves of the surface

e the flecnodal curves of the surface
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e the curves 7(s) associated with triple-point events
e the curves y(s) associated with tangent-crossing events
e the curves o(s) associated with cusp-crossing events

The analysis of the visual events and their associated visual event curves of generic surfaces
generalizes to non-generic surfaces in the following sense. Visual events for non-generic surfaces also
occur when a line parallel to the viewing direction has high order of contact with the surface, or when
that line touches the surface at multiple points. The same catalog of visual events is still valid [127].
However, degeneracies may also occur: The visual event “curves” defined above may in fact become
two-dimensional regions on the surface (e.g., all points on a cylinder, which is not a generic object,
are parabolic). See [127] for a discussion of this issue in the case of algebraic surfaces which are not

generic in general, and for the equations describing the visual event curves for these surfaces.



Appendix E

Provable-Correctness of Global

Reconstruction

E.1 Proofs of Section 6.3 Theorems

E.1.1 Proof of Theorem 6.1

Let p be an ordinary visible rim point. Consider the epipolar plane, A, defined by the vector v(t) and
the line segment connecting p and c(t), and the intersection, o, of S with A in the neighborhood of p
(Figure 75).

Suppose that the viewpoint does not move on the tangent plane of the surface at p,i.e., N(p)-v(t) # 0.
In this case, A # T,(S) and « is a regular curve in the neighborhood of p [89]. In addition, suppose «
is parameterized so that the curve normal at p points toward the surface interior. Since p is an ordinary
point, p must be a convex point of . Furthermore, the open line segment connecting p and c(t) does
not intersect the surface, implying that p does not become occluded by a distant point of .5 under an
infinitesimal viewpoint change on A.

The visibility of p (and of points on o close to p) in this case is determined by the sign of
N(p) - [p— ¢(t)] [89]. Therefore, changes in the visibility state of p under infinitesimal observer motion
occur due to changes in the sign of this dot product. Since p is a visible rim point, this dot product is

zero at position ¢(t). Therefore, the visibility of p under an infinitesimal viewpoint change depends on
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Figure 75: Inducing the visibility of points in a neighborhood of an ordinary hyperbolic point p. (a)
The curve « is the curve of intersection of S with the epipolar plane A. If v(t) - N(p) > 0, the visible
rim point contained in A will move toward the previously-occluded portion of a under an infinitesimal
viewpoint change along v(t). (b) A face-on view of the plane A. The outward normal »;(p) of c at pis
the projection of N(p) on the plane A. The geometry of the intersection of S with the epipolar planes
corresponding to visible rim points close to p is also similar to the one shown.

the sign of the derivative { N(p) - [p — c(t)]}’. We have:
2NG) - I~} =
N(p) - - cl] + N [p - e(t)] =
— N(p) - v(t)

If the observer moves on p’s tangent plane, p may become occluded by points in the neighborhood of
p but will always remain on the rim. It will remain visible unless p is hyperbolic and the line connecting

c(t) and p is along an asymptotic direction of the surface at p (Figure 14). This, however, cannot occur

since p is ordinary. U

E.2 Proofs of Section 6.6 Theorems

E.2.1 Proof of Theorem 6.3

Let a(t™) be the point on « selected at the n-th iteration of the Incremental Surface Reconstruction

Strategy. First, note that if o is not reconstructed in a finite number of steps, the limit, a(t%), exists:
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Since the points a(t™) belong to a curve of finite length, and the length of the reconstructed portion of
the curve is an increasing function, the sequence (a(t")). has a limit point.

To prove the theorem we study how the visibility arcs of o(t™) change as n goes to infinity. The
endpoints of these arcs belong to two types of lines on T (S): Bitangent lines through a(tt), ie.,
lines that touch the surface at at least two distinct points, one of which is a(t™), and asymptotes of
a(t™). The finiteness assumption of Theorem 6.3 ensures that these lines and the visibility arcs they

delimit are well-defined for large n:

Lemma E.1 If « intersects the visual event curves at most a finite number of times, and if M is
sufficiently large, the configuration of the asymptotes and bitangents through «(t") (i.e., their number

and relative ordering) does not change forn > M.

Proof: Consider the configuration of asymptotes and bitangents through a(t) on S N Tyy(S), for
0 < t < T. The configuration will change at a point a(t.) if and only if the number of contacts with the
surface of lines through a(t) on Tu(s)(S) changes or the degree of such contacts changes. By definition,
this can only happen if o(t.) belongs to a visual event curve. Since there is only a finite number of
such intersection points, all o(¢") will fall in a single interval between these points, ifn > M and M is
sufficiently large. O

To show that the semi-global curve reconstruction task is achieved for «, we consider the angles
formed by the bitangent lines and asymptotes at o(t™) as n goes to infinity as well as their relationship to
the continuously-changing viewpoint. This relationship is re-established through tangential viewpoint
control at each iteration of the Incremental Surface Reconstruction Strategy.

In particular, after we select point a(t") at the n-th iteration, the following steps are then taken: (1)
The viewpoint moves to a previous viewpoint, cj;,, from which a(t™) was on the visible rim. (2) Since
Rule 3 is obeyed, we can assume without loss of generality that a(t™) is a cusp, T-junction or degenerate
visible rim point at ¢*;,. In either case, Rule 2 forces the viewpoint to move to the middle, cz,;q, of a
visibility arc of a(t"). (3) The Ordinary Region Reconstruction Strategy is applied to reconstruct a new
segment of a, ending at a(t™ + §t"). The Ordinary Region Reconstruction Strategy terminates when
a(t™ + 6t™) belongs to the visible rim, and Rule 3 allows us to assume without loss of generality that if

cf,.p i the viewpoint when this occurs, ot + §t") is either a cusp, T-junction or degenerate point.
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We now use the following two observations:

1. The visibility arc containing c},;, can be of three types: Type AA, whose endpoints lie on the two
asymptotes at a(t"); type AB, whose endpoints lie on one asymptote of o(¢") and one bitangent

line through a(t“) on T, (S); and type BB, whose endpoints lie on two bitangent lines through
Q(tn) on Ta(tn)(S).

2. The line through c},,, and a(t" + §t") is either a bitangent line (B) through a(t™ + 6t™) on
To(ins5t(S), or an asymptote (A) at a(t™ + 6t7).

In all, there are six different combinations of the above cases, which we represent by the string X-Y
where X = {AA, AB, BB},and Y = {A, B}. Without loss of generality we can prove the proposition
for each of the above cases separately. Only three of the six cases are considered below. The remaining

three cases can be treated in an identical manner.

Case AA-A

This case is shown in Figure 76(a).
The line ¢}, (" + 6t") is an asymptote at a(t™ + §t™). Without loss of generality assume that
a(t™) is also hyperbolic, and let [™ be the corresponding asymptote at e(¢™). Since limne a(t™) =

limpeo a(t™ + 8t7), we get

@27 lim Z(I*, G pa(t™ +6t7) =

n—+oo

Because the motion of the visible rim during the execution of the Ordinary Patch Reconstruction

Behavior between c7;;; and cf,,, describes S in the neighborhood of a(t™), it follows that

(28) lim ¢}, = nl_l_)IEio Crid

n-too SLOP
From Egs. (27) and (28) we conclude that
(29) Jim Z(I%, cfi0a(t™)) =0

1To see this, note that the observer’s motion from ¢y ;; to cmp is along a smooth curve, ¢. Since the segment a(t),

(" < t < t" + 61™) can be described by the epipolar parameterization, the observer’s motion can be described by the curve

e(t),t < t < " + 6t™ such that c(t) is the observer’s position when a(t) is on the visible rim. The mapping m : o — ¢ is
smooth, and consequently ||¢%;,, — Cmigll = 0 if and only if [ (" + 6t") — a(t)|| = 0.
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Since ¢4 is the midpoint of a visibility arc of a(t™) of type AA, we have
(30) L(I*, epiae(t™)) = ¢" /2

where ¢., is the angle between the two asymptotes at a(t™). Hence, from Egs. (29) and (30) it follows
that

(31) lim ¢" =0

n—o0
This implies that the direction of the asymptotes tends toward the first principal direction, e3°, of the
surface at o(t*) (Figure 76(a)).
The angle ™ between the asymptotes and the first principal direction, e7, of the surface at o(t") is

given by
(32) tan ™ = "“"%{ = tan(¢™/2)

where k7, kJ are the first and second principal curvatures of the surface at a(t™), respectively.
Since the surface is smooth, k2 is always bounded. Hence, from Egs. (31) and (32) it follows that
limy o k7 = 0. For generic surfaces, this implies that (") is on a parabolic curve bounding a surface

concavity.l

Case AB-A

This case is shown in Figure 76(b). The line c};,,a(t" + 6t") is an asymptote at a(t™ + §t™). Without
loss of generality assume that «(t") is also hyperbolic, and let " be the corresponding asymptote at
a(t™). Since limpe a(t") = limpe a(t™ + 667), we get

(33) lim Z(I", chgpa(t" +6t7) =0

Asin Case AA-A, we have

(34) lim Z(I", ¢ a(t™)) = 0

n—y00

Since the visibility arc containing cZ,;, is of type AB, the following equations hold:
(35) LI, chige(t™) 2 ¢7/2
(36) L(I7, chia(t™)) = ¢° /2
€2 L(13, chga(t™)) = ¢"/2
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where (7 and [} are the asymptote and bitangent line, respectively, bounding the visibility arc containing

¢ .., and ¢" is the angle they form. From Egs. (34) and (35) it follows that

(38) lim ¢" =0

n-—r0o0

Since (7 is a bitangent line, it contacts the surface at an additional point, ¢". Lemma E.1 tells us
that we can assume without loss of generality that for n > M, the points ¢" belong to a single curve.?

Consequently, the limit lim, ., ¢ exists and is equal to some point ¢*. We now distinguish two cases:

s ¢ # o(t*). Then the line ¢ (1°°) touches the surface at two distinct points. Furthermore, from
Egs. (36)-(38) we can conclude that the line g®a(t*) coincides with the line lim, o [7, which
is an asymptote at (t*). Hence, o(*) belongs to the curve o associated with a cusp-crossing
visual event. Furthermore, the visibility arc containing c7,;, diminishes as o(t") approaches
a(t™) (i.e., it approaches a visual event curve that is a potential boundary of a reconstructible

surface region).

e ¢ = aft®). Since [} and [3 bound the region on To(m)(S) from which a(t™) is visible, and
their angle, ¢", tends to zero, it follows that (1) the limit limp_, . [5 exists and is an asymptote
at a(¢™), and (2) the angle between a(t™)’s asymptotes tends to zero. From the analysis of Case

AA-A it now follows that a(t™) belongs to a parabolic curve bounding a surface concavity.

a

Case BB-B

This case is shown in Figure 76(c).
The line g, ,a(t” + 6t™) is a bitangent line at aft™ + 6¢™). Without loss of generality assume that

the topology of the intersection, Tay(S) N S, does not change for ¢ < ¢ <" + §t™, and let I" be the

2Since the configuration of asymptotes and bitangents does not change for » > M, the number of bitangent lines in
Toeny(S) will be equal to some fixed constant k. Furthermore, these lines can be grouped into k continuous families of
lines whose contacts with the surface trace continuous curves. The line I3 will belong to one of those k families. We can
therefore partition the sequence (a(t"))n into k subsequences in which {3 always belongs to the same family. For each such
subsequence, [} contacts the surface at an additional point ¢ that belongs to the continuous trace of contacts of a single
family of bitangent lines.



18C

corresponding bitangent line at (¢"). Since limnyco ot") = limueo at™ + 6t7), we get

(39) lim Z(I, %, a(t™ + 8t™)) = 0

n—yoo ? “stop

Asin Case AA-A, we have

(40) lim Z(I", c%y(t™)) = 0

n-roo

Since the visibility arc containing c},;, is of type BB, the following equations hold:

(41) Z(I", criae(t™)) 2 6/2
(42) Z(ll ) mtda( )) ¢'n/2
(43) Z(12 3 mtda( )) ¢n/2

where [? and (3 are the two bitangent lines bounding the visibility arc containing cj,;,, and ¢" is the

angle they form. From Egs. (40) and (41) it follows that
@ Jiz 4 =0

Since I™ and I3 are bitangent lines through o(i"), they contact the surface at points ¢q7 and g5,
respectively, distinct from a("). As in Case AB-A, we assume without loss of generality that the points
q} and g3 belong to the trace of two continuous curves on the surface. Hence, the limits ¢7° = limp 0 ¢
and ¢§° = limpc0 g5 EXist.

We now distinguish four cases:

o oft®),q®, ¢ are distinct. In this case the lines at*)g® and «(t*)g5° are bitangent lines.
From Egs. (42)-(44) we conclude that the two lines are identical, and hence a(t*)q5° is tangent
to the surface at three distinct points. Furthermore, a(t*°) is not between points ¢5° and ¢5°.
Consequently, a(t>) belongs to a visual event curve 7; Or 72 associated with some triple-point
visual event. Furthermore, the visibility arc containing c];, diminishes as a(t™) approaches that
point (i.e., it approaches a visual event curve that is a potential boundary of a reconstructible

surface region).

o ¢ = ¢ # o(t®). This implies that the topology of the intersection To(s=)(S) N S in the
neighborhood of ¢§° is different from that of Tomy(S)N S for any large n. This occurs only when
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To(t=)(S) is tangent to the surface at point ¢{° [94], and ¢;° is hyperbolic. Hence, To(=)(S) 1s
tangent to the surface at two distinct points and, consequently, o(t*) belongs to a visual event
curve 7, or 2 associated with a tangent-crossing event. Furthermore, the visibility arc containing
c” ., diminishes as a(t™) approaches that point (i.e., it approaches a visual event curve that is a

potential boundary of a reconstructible surface region).

o ot™) € {¢°, ¢} and ¢ # ¢5°. Suppose (t®) = ¢;°. Since the lines [, [7 bound a region
in which a(t") is visible and ¢{° = a(t*), it follows that [{° is an asymptote at o(*°). But Eq.
(44) implies that [$° also touches the surface at g3°. Hence, a(t*) belongs to a visual event curve
Ocusp associated with a cusp-crossing visual event. Furthermore, the visibility arc containing
¢, diminishes as a(t") approaches that point (i.e., it approaches a visual event curve that is a

potential boundary of a reconstructible surface region).

e a(t®) = ¢ = ¢&. Since the lines 7,3 bound a region in which a(t") is visible, it follows
that [°, [2° are the two asymptotes at &(t*). Eq. (44) and our analysis in Case AA-A imply that

o(t*) is on a parabolic curve bounding a surface concavity.

0

E.2.2 Proof of Theorem 6.5

Suppose '™ is the set of surface points reconstructed after 7 iterations of the Incremental Reconstruction
Behavior. Furthermore, suppose the reconstruction process never terminates. Let I'° = U, I, and
take ¢ to be a limit point of I'°. We show that ¢ is a limit point of a reconstructible surface region.

Let 3 be a curve lying in the open set I'® — '™, connecting g to the visible rim at the initial
viewpoint. By definition, any point on 3 except its endpoint, g, will be reconstructed after a finite
number of iterations of the Incremental Reconstruction Behavior. We distinguish two cases, depending
on whether or not ¢ belongs to a curve y; or 7y, corresponding to a tangent-crossing visual event.

First, suppose ¢ does not belong to such a curve. In this case, we can find for any ¢ > 0, a
neighborhood TI of g of radius less than €, such that II does not intersect any visual event curves 71, 72.

Since the observer obeys Rule 1 of Theorem 6.5 and 3 always intersects the boundary of reconstructed
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points, it follows that after a finite number of iterations of the Incremental Reconstruction Behavior, a
point p will be selected that is contained in II. After selecting p, the observer executes the Degenerate
Patch Reconstruction Behavior to reconstruct the sufface around p.

Now, we can define a smooth curve v(t) (0 < t < ), such that ¥(0) = p, v(¢) = ¢, and () is
contained in II for all t. By its definition, g will not be contained in the patch reconstructed by the
observer. Let r be the first point on -y intersecting the boundary of this patch. If 7 = v(t,), the topology
of the intersection T,(;)(S) N S is the same for all 0 < % < . Hence, we can use the arguments in
Theorem 6.3 to conclude that ¢ is a limit point of a reconstructible surface region.

Now suppose g belongs to some curve, 1 Or 72, corresponding to a tangent-crossing visual event,
and let € > 0. Only a finite number, K, of such curves can intersect at g. These curves partition every
neighborhood 1 of g of radius less than ¢ into K regions, in a star-shaped fashion. Aftera finite number
of iterations of the Incremental Reconstruction Behavior, a point p will be selected that is contained
in one of those A regions. Without loss of generality, we may assume that p does not belong to the
boundaries of these regions. We can now define a curve  connecting p to ¢ such that its trace is
contained in II, and intersecting a visual event curve, 71 Or 7y, only at ¢. This reduces the theorem’s

proof to the previous case.l]
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Figure 76: Representing the configurations of the asymptotes and bitangent lines through o(t") and
a(t™ 4+ 6t™). For each of the three cases, the left figure corresponds to a “top” view of the plane T, (1)(S)
while the right figure corresponds to a “top” view of the plane T (sn45:)(S). (a) Case AA-A. (b) Case
AB-A. (c) Case BB-B.
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