L.CM: Memory System Support for
Parallel Language Implementation

James R. Larus
Brad Richards
Guhan Viswanathan

Technical Report #1237

July 1994

Appears in: “ASPLOS VIL” Oct. 1994.

Reprinted by permission of ACM.

LLCM: Memory System Support for Parallel Language Implementation®

James R. Larus

Brad Richards

Guhan Viswanathan

Computer Sciences Department

University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706 USA

{larus,richards,gviswana}@cs.wisc.edu

Abstract

Higher-level parallel programming languages can be
difficult to implement efficiently on parallel machines.
This paper shows how a flexible, compiler-controlled
memory system can help achieve good performance
for language constructs that previously appeared t00
costly to be practical.

Our compiler-controlled memory system is called
Loosely Coherent Memory (LCM). Itis an example of
a larger class of Reconcilable Shared Memory (RSM)
systems, which generalize the replication and merge
policies of cache-coherent shared-memory. RSM pro-
tocols differ in the action taken by a processor in re-
sponse to a request for a location and the way in which
a Processor reconciles multiple outstanding copies of
a location. LCM memory becomes temporarily in-
consistent to implement the semantics of C** par-
allel functions efficiently. RSM provides a compiler
with control over memory-system policies, which it
can use to implement a language’s semantics, improve
performance, or detect errors. We illustrate the first
two points with LCM and our compiler for the data-
parallel language C**.

*This work is supported in part by NSF PYI/NYI Awards
CCR-9157366 and CCR-9357779, NSF Grants CCR-9101035
and MIP-9225097, DOE Grant DE-FG02-93ER25176, and do-
nations from Digital Equipment Corporation, Thinking Ma-
chines Corporation, and Xerox Corporation. Our Thinking
Machines CM-5 was purchased through NSF Institutional In-
frastructure Grant No. CDA-9024618 with matching funding
from the Univ. of Wisconsin Graduate School.

1 Introduction

Compiling parallel languages for parallel computers
is difficult. Most of these languages assume a shared
address space in which any part of a computation
can reference any data. Parallel machines provide
either too little or too much support for many lan-
guages [22]. On one hand, message-passing machines
require a compiler to statically analyze and handle all
details of data placement and access, or pay & large
cost to defer these decisions to run time. On the
other hand, shared-memory machines provide more
dynamic mechanisms, but generally use them to im-
plement a fixed cache-coherence policy that may not
meet a language’s needs.

This paper shows how a compiler can exploit con-
trol over the memory system of a parallel computer to
construct a language-specific address space for a high-
level parallel language. Because the address space’s
semantics match the language’s, the compiler can
generate efficient code, with assurance that the mem-
ory system will detect unusual cases and errors so a
run-time system can handle them. We first present a
family of memory systems, called Reconcilable Shared
Memory (RSM), that identifies where and how a com-
piler and run-time system can control memory coher-
ence and semantics. To demonstrate this approach,
we built a RSM system called Loosely-Coherent Mem-
ory (LCM) and used it to implement the large-grain
data-parallel language C** [21].

The hardware base for RSM is a parallel computer
with a Tempest-like interface, which provides mech-
anisms that permit user-level software to implement
shared-memory policies [19, 26]. A Tempest memory
system is possible on a wide range of parallel sys-
tems, including those without shared-memory hard-
ware [30]. Tempest offers a program both control
over communications and data placement, as is possi-
ble with message passing, and the dynamic fine-grain
policies possible with shared memory.

Reconcilable Shared Memory (RSM) provides a
global address space and basic coherence policy whose

Appears in: “ASPLOS VL,” Oct. 1994.

two key policies governing memory system behavior
are under program control. The first is the system’s
response when a processor requests a copy of a cache
block. The second is the system’s response when a
processor returns a cache block. Unlike most shared-
memory systems, RSM places no restrictions on mul-
tiple outstanding writable copies of a block and per-
mits non-sequentially consistent memory models. A
language-specific coherence protocol uses RSM mech-
anisms to support a language’s semantics directly.
Custom coherence policies can also improve the per-
formance of shared-memory programs written in any
language. For example, global reductions and stale
data fit naturally into the RSM model. Finally, RSM
can help detect unsynchronized data accesses (data
races).

We implemented a RSM system to support C**,
which is a new large grain data-parallel programming
language based on C++ [21]. In C** when a pro-
gram applies a parallel function to an aggregate data
collection, the function is invoked separately on each
clement in the aggregate. Semantically, each function
invocation executes atomically and simultaneously, so
conflicting data accesses are impossible. When all in-
vocations from an application complete, their modifi-
cations are combined into a new global state. Fortran
90 and HPF [17] whole-array operations share a simi-
lar semantics, albeit restricted to predefined functions
and arrays.

Loosely-Coherent Memory (LCM) is a RSM mem-
ory system that implements C** semantics with a
fine-grained copy-on-write operation and a language-
specific reconciliation function. The C** compiler
uses RSM directives to identify memory accesses in a
parallel function that possibly conflict with accesses
from other invocations. At one of these references,
LCM copies the referenced cache block and makes
it private to the invocation. These writable copies
preserve C**’s semantics—even though memory as a
whole becomes inconsistent—since other invocations
do not see changes. When the parallel call termi-
nates, LCM reconciles multiple versions of a block to
a single consistent value with an application-specific
reconciliation function.

We built a LCM system on Blizzard, which is a fine-
grain distributed shared memory system (not a sim-
ulator) that runs at near shared-memory hardware
speeds on a Thinking Machines CM-5 [30]. We com-
pared the performance of four C** programs running
under both the unmodified Stache protocol [26] and
LCM (implemented using the Tempest mechanisms
provided by Blizzard). We found that the LCM mem-
ory system improved performance by up to a factor
of 2 for applications that used dynamic data struc-
tures. For applications with static data and sharing

Reprinted by permission of ACM.

patterns, which a compiler could analyze and opti-
mize, LCM’s performance is comparable to a stan-
dard memory system.

The contributions of this paper are:

e A new memory model, RSM, that identifies two
points in memory protocols at which compilers
can control memory-system policies.

e An implementation, LCM, of this model that
helps implement C**.

e A demonstration that this model and system
simplify implementing a higher-level parallel lan-
guage and help improve its performance.

e And, a demonstration that controlled inconsis-
tency can help implement a parallel language.

This paper is organized as follows. Section 2 sur-
veys related work. Section 3 explains the RSM mem-
ory model. Section 4 describes the C** language
briefly. Section 5 describes LCM. Section 6 shows
how the C** compiler uses LCM. Section 7 explores
other applications of the memory system. Section 8
concludes the paper.

2 Related Work

Existing, scalable shared-memory machines are in-
flexible and provide minimal assistance for language
implementation. Many use cache-coherence protocols
whose policies are implemented permanently in either
hardware or a combination of hardware and software
2,11, 18, 23, 32]. These systems support only a single
coherence protocol and consistency model (typically,
sequential consistency) and provide few performance-
enhancing mechanisms beyond prefetches and cache
flushes. Compilers can circumvent coherence policies
only by sending messages [19], even when language
semantics or program analysis shows that much co-
herence traffic is unnecessary [9, 14, 22].

Relaxed consistency models trade a simple view
of memory as a sequentially consistent store for in-
creased hardware performance [1]. Most models
adopt the view that memory need only be consis-
tent at program-specified synchronization points. Re-
laxed consistency, instead of providing mechanisms
by which a compiler or programmer can control mem-
ory semantics, takes the opposite view and leaves se-
mantics as unspecified as possible. LCM allows mem-
ory to become inconsistent between synchronization
points, but this “loose” consistency is both under pro-
gram control and is an end in itself, not a byproduct
of hardware optimization.

Several proposed systems, including Wisconsin Ty-
phoon and Blizzard [26, 30] and Stanford FLASH

Appears in: “ASPLOS VI,” Oct. 1994.

[20], provide low-level mechanisms to implement co-
herence policies in software. Typhoon and Blizzard
provide the Tempest interface, which allows user-level
software to implement these policies. RSM is a less
general facility that explores another approach by
providing a compiler with control over selective as-
pects of a coherence policy rather than the means to
implement a new policy.

The Myrias machine implemented a copy-and-
reconcile operation similar to the one in LCM, but
in hardware with a fixed policy and page granularity
[6]-

Distributed shared memory systems, in general,
provide few mechanisms for an application to control
a memory system [7, 13, 24]. LCM shares with Munin
[7, 10] the ability to adapt shared-memory policies to
an application. Munin, however, provides a set of
fixed coherence policies, each tailored for a specific
sharing pattern. A programmer or compiler asso-
ciates a policy with a language-level object. RSM
provides a more general framework in which to de-
velop application-specific policies by breaking coher-
ence policies into two components, each of which is
specified separately. LCM’s mechanisms also apply
at cache block granularity, not to entire objects or
memory pages.

In VDOM [15], memory objects are immutable.
Modifying an object produces a new version of the
object. Like LCM, both systems allow multiple, dis-
tinct copies of memory to develop. VDOM handles
coherence at an object level, as opposed to LCM’s
finer-grained cache block operations. It also uses a
single coherence mechanism based on object version
numbers.

The division of labor between the C** compiler and
LCM system is reminiscent of the interaction between
Lisp and ML systems and virtual memory [5] for stack
and heap bounds checking and concurrent garbage
collection [4].

Many data-parallel languages have been designed
and implemented for MIMD machines, for example,
C* [27], Data Parallel C [16], VCODE [12], and parts
of HPF [17]. Data-parallel languages handle data
races in different ways. Functional languages, such
as NESL [8], avoid conflicts entirely by omitting side
effects. Other languages, such as Paralation Lisp
[28], ignore the problem by leaving the semantics of
conflicting side effects unspecified. C* [27] uses a
SIMD execution model in which all processors exe-
cute the same statement simultaneously. The array-
based data parallel subset of HPF [17] specifies that
all inputs to a data-parallel operation are read be-
fore any are written. C** atomic and simultaneous
semantics are similar, but generalize to user-defined
data-parallel functions and unstructured data.

Reprinted by permission of ACM.

Considerable research has been devoted to increas-
ing grain size and removing unnecessary synchro-
nization when compiling data parallel languages for
MIMD machines [12, 16]. By contrast, C** allows
a programmer to express large-grain parallelism di-
rectly, but imposes restrictions on data accesses to
prohibit conflicts.

3 Reconcilable Shared Memory

Reconcilable Shared Memory (RSM) is a family of
memory systems that provides means by which a
compiler can implement policies to control memory
system behavior and performance. Both conventional
cache-coherent, shared memory and our LCM system
fit within the RSM model. This section describes
RSM and outlines why cache-coherent shared mem-
ory is an instance of this more general model.

The hardware base for RSM is a collection of au-
tonomous processing nodes connected by a point-
to-point network. Each node contains a processor,
cache, network interface, and local memory. The
physically distributed memory is addressed through
a global address space, 50 each processor can refer to
any location independent of where it is located. A
processor manages coherence of its local memory ac-
cording to the RSM policies. When a prograrm refer-
ences a memory location that is not in the processor’s
cache, the processor sends a request to the location’s
home processor for a copy of the location. The home
processor responds with this location, which may be
marked read-only or read-writable. The transfer unit
is called a block. A processor eventually returns a
(possibly modified) location to its home processor for
a variety of reasons, such as a cache replacement or
a program-initiated cache flush, or in response to a
request from another processor.

As described above, RSM assumes the same basic
mechanisms as cache-coherent shared memory (26, 32]
but generalizes the policies. RSM is a family of pro-
tocols that differ in the action taken by a processor
in response to a request for a location and the way
in which a processor reconciles multiple outstand-
ing copies of a location. Unlike most shared-memory
systems, RSM places no restrictions on multiple out-
standing writable copies of a block and permits non-
sequentially consistent memory models.

Reconciliation of writable copies brings the copies’
contents into agreement. It may also, depending on
the reconciliation function, invalidate copies (remove
them from processors’ caches and memories). Recon-
ciliation can return memory to a consistent state in
which all copies of a location contain the same value.
Reconciliation provides an opportunity to communi-
cate values among processors and to perform compu-

Appears in: “ASPLOS VIL” Oct. 1994.

tation on these values. An application program con-
trols the request and reconciliation policies through
memory system directives, which specify the policies
for a region of memory.

Sequentially consistent, cache-coherent shared
memory is a simple form of RSM. Since it fits within
this model, it provides a natural default policy for a
RSM system. Requests in these shared-memory sys-
tems return a copy of a block, subject to the guaran-
tee that only one processor holds a writable copy at
a time. In many systems [11, 23], a centralized direc-
tory controller records which processors hold copies
of a location and invalidates outstanding copies upon
request.

Reconciliation policies in these systems are also
simple. Read-only copies are identical and so can
be combined by a null reconciliation function. When
a processor returns a writable copy of a block, its
value is reconciled by making it the new value of the
location. Update-based systems reconcile after mod-
ification to a shared location by assigning the new
value to all copies.

4 C** Language

We implemented the memory model described previ-
ously and used it to support programs written in C**,
a new data-parallel language [21]. This section pro-
vides a brief overview of the language and a sample
C** program.

4.1 Overview of C**

C** is a data-parallel programming language that ex-
tends C-+-+ with a small number of features. It sup-
ports a new form of data parallelism (large-grain data
parallelism), that offers much of the semantic simplic-
ity of SIMD data parallelism [27], but does not require
lockstep execution. In the C** data-parallel model,
parallelism results from applying a parallel function
across a collection of data called an aggregate. Ag-
gregates look and behave like C++ arrays, but form
the basis for parallel functions. Applying a parallel
function creates an asynchronously executed parallel
function invocation for each element in an aggregate.

Parallel functions are defined like other C++ mem-
ber functions. The mandatory aggregate argument
to a parallel function is specified by the keyword
parallel. Additional features of parallel functions
include:

e Pseudo variables (#0, #1, etc.) that specify on
which element in an aggregate a particular par-
allel invocations is operating.

Reprinted by permission of ACM.

e The ability to combine values from parallel func-
tion invocations or from a reduction on a loca-
tion.

4.2 Parallel Functions Semantics

Parallel invocations created by applying a parallel
function to an aggregate execute asynchronously and
independently of one another. In an imperative lan-
guage, such as C**, with a global address space, asyn-
chronous execution raises the possibility of data ac-
cess conflicts and races. In C**, parallel function in-
vocations must appear to execute “atomically and si-
multaneously.” In other words, when an invocation
modifies a global location, the modification is private
to the invocation and cannot be seen by other, con-
currently executing invocations. When all parallel
function invocations complete, the program’s global
state is updated by merging all private modifications.
In general, if two or more invocations modify the same
location, exactly one modified value will be visible af-
ter this merge. C** allows nested parallel functions
(i.e., parallel calls from within parallel functions), but
this paper considers only non-nested parallel func-
tions.

To make these ideas concrete, below is a trivial C**
function that illustrates C** semantics. The func-
tion computes a stencil on interior points of a two-
dimensional matrix:

void stencil(parallel Matrix &A) parallel

{
// Pseudo variables specifying position
int x = #0, y = #1;

Alx1ly] = (Alx-11[y]l + Alx+11ly]
+ Alx][y-1] + AlxiLy+11) / 4.0;
¥

The function invoked at each array element reads
the values of its four neighbors and writes its own
value. If memory reads and writes follow a sim-
ple shared-memory model, a programmer would not
know if a neighboring value had been updated. In
C**, conflicts like this are impossible, because all
shared modifications, including the one above, do not
become visible outside of their local invocation un-
til the parallel function invocation completes. Since
stencil writes each data point only once, no modifi-
cations conflict and the merge phase only records the
value assigned to a location.

C** also has reduction assignments, which com-
bine the values written into a location with a binary,
associative operator and leave the final value in the
modified location. For example, to sum the elements
in array A into a variable total, we would write:

Appears in: “ASPLOS VI,” Oct. 1994.

double total;

void sum(parallel Matrix &A) parallel
{

total %+= A[#0][#1];
}

In contrast, the simple assignment statement total
+= A[#0] [#1] adds each element of A to a local copy
of total. The merge phase combines these local val-
ues into a single value by applying the appropriate
reconciliation function.

5 LCM

RSM systems can aid in implementing parallel pro-
gramming languages, particularly for higher-level lan-
guages such as C**. A natural way to implement
CO*%g semantics is a copy-on-write scheme, in which
each parallel invocation obtains and modifies its own
copy of shared data. We implemented this policy
in a RSM system called Loosely Coherent Memory
(LCM). LCM and the C** compiler cooperate to de-
tect the need for shared data and to copy it, instead
of the conventional approach in which a compiler gen-
erates conservative code to copy shared data. LCM’s
copies, although they share the address of the origi-
nal, are private to a processor and remain inconsis-
tent until a global reconciliation returns memory to
a consistent state.

RSM offers several advantages over explicit copy-
ing. A compiler can produce code optimized for when
no copying is necessary, which is likely to predom-
inate in most programs.’ Compiler-produced copy-
ing code is conservative and incurs unnecessary over-
head either by copying too much data or by testing
to avoid unnecessary copying. The LCM copy-on-
write scheme defers copying until a location is ac-
cessed, which reduces the quantity of data that must
be copied.

A compiler’s control of LCM permits optimizations
when analysis is possible. For example, not all modifi-
cations to shared data need cause a copy. Only items
possibly shared between processes must be copied. If
compiler analysis determines that no other process
will access a location, it need not be copied, which
avoids the overhead of making and reconciling a copy.
However, this approach requires close cooperation be-
tween the compiler and memory system to select—
at a fine-grain—policies governing portions of data
structures.

1Languages can encourage programmers t0 avoid data races.
C**, for example, offers no guarantees about the value resulting
from multiple modifications of a location or even if parts of a
large object will be written by the same invocation.

Reprinted by permission of ACM.

In C**, computation alternates between parallel
and sequential phases. Memory becomes coherent
at the end of a parallel phase as processors recon-
cile their modified memory locations. C** semantics
dictate how copies are reconciled. In general, C** re-
quires only that the coherent value left in a memory
location modified by a parallel function call be a value
produced by one invocation of the call. LCM discards
all but one of the modified copies. However, values
written by C**’s reduction assignments (Section 4.2)
require different reconciliation functions that combine
values.

5.1 LCM Implementation

We implemented a LCM system on Blizzard, which is
a fine-grain distributed shared memory system that
runs at near shared-memory hardware speeds on a
Thinking Machines CM-5 [30]. Blizzard implements
the Tempest interface [26], which permits user-level
control of the memory system. LCM is user-level code
that runs on the CM-5. We started with the user-level
Stache protocol [26], which provides cache-coherent
shared memory and uses a processor’s local memory
as a large, fully associative cache. This cache is es-
sential to ensure that a processor’s locally modified
(inconsistent) blocks are not lost by being flushed to
their home node. When a modified cache block is se-
lected for replacement (either because of a capacity
or conflict miss), the block is moved to the Stache
in local memory. On a cache miss to the block, its
value comes from the Stache, rather than its home
Processor.

LCM provides the C** compiler with three direc-
tives. The first, mark.modification(addr), creates
an inconsistent, writable copy of the cache block con-
taining addr. If the block is not already in the
processor’s cache, it is brought in. The second,
reconcile_copies() appears as a global barrier ex-
ecuted by every processor. When it finishes and re-
leases the processors, the memory has been reconciled
across all processors and is again in a coherent state.
This directive flushes all modified blocks back to
their home processors to be reconciled. Qutstanding
read-only copies of these blocks are then invalidated
throughout the system. The third, flush_copies(),
performs a partial reconciliation by flushing a proces-
sor’s modified cache blocks back to their home proces-
sors. The next section illustrates how the C** com-
piler uses these directives.

Reconciliation occurs at the home location of a
modified block, when it returns. This poses a po-
tential bottleneck for systems with many processors,
but it is unlikely to be a problem for several reasons.
First, a typical block is modified by relatively few
processors and so few copies need to be reconciled.

Appears in: “ASPLOS VIL,” Oct. 1994.

Second, copies are flushed as each invocation com-
pletes, so few blocks arrive simultaneously. Finally, if
reconciliation became a bottleneck on large systems,
the process could be organized as a tree-structured
reduction.

C** parallel function invocations start execution
with the original (pre-parallel call) global state. LCM
retains an unmodified copy of global data throughout
a parallel call. At the first write to a cache block man-
aged by the copy-on-write policy, the block’s home
node creates a clean copy of the block in main mem-
ory. The node uses a clean copy to satisfy subsequent
requests for unmodified global data.

Another complication is that each processor typ-
ically runs many distinct invocations of a parallel
function. The system must ensure that a new in-
vocation does not access local cache blocks modified
by a previous invocation. To avoid this error, LCM’s
flush_copies() directive removes modified copies of
global data from the Stache. If a compiler cannot
ensure that invocations access distinct locations, it
issues this directive between invocations. This di-
rective flushes cache blocks to their home processor,
where they are reconciled. A subsequent read of one
of these blocks returns its original value from the
clean copy. Cache flushing, although semantically
correct, performs poorly for applications that reuse
data in flushed blocks. In another approach, each
processor keeps a clean copy of every block it modi-
fies. In this case, the flush_copies directive returns
modified values to their home node and replaces the
cached value with the clean copy, so it remains local
for a subsequent reference.

LLCM’s memory usage depends on the number of
potentially modified locations. At a location’s first
mark.modification directive, LCM creates a clean
copy in memory. Cached copies resulting from this
directive require slightly more state information than
ordinary cached blocks. Clean copies exist only dur-
ing a parallel function call and are reclaimed at the
reconcile.copies() directive.

6 Compiling C**

Compiling a C** program to run under LCM is
straightforward. To ensure the correct semantics for
parallel functions, the C** compiler inserts memory
system directives, described above, in parallel func-
tions. Alternatively, the compiler could guarantee
these semantics with run-time code that explicitly
copies data potentially modified in a parallel func-
tion invocation. Explicit copying works well for func-
tions with static and analyzable data access patterns.
However, it becomes complicated and expensive for
programs with dynamic behavior since the generated

Reprinted by permission of ACM.

code must either perform run-time checks or copy a
conservative superset of the modified locations. This
section illustrates both approaches with a static par-
allel function (the stencil function) and a dynamic
parallel function (an adaptive mesh) and compares
the performance of LCM against the explicit copying
strategy.

6.1 Stencil

As an example, consider a simplified version of the
code generated by the C** compiler for a stencil
function (Section 4.2) to run under LCM:

void stencil_SPMD(parallel matrix &A)
{
for all invocations assigned to me do

{
Set variables #0 and #1;

// Function body:
int x = #0, y = #1;

mark_modification(Alx]{yl); // LCM directive

Alx1 [yl = (Alx-11[y] + Alx+1]1[y]
+ Alx][y-11 + Alx1[y+1]) / 4.0;
flush_copies(); // LCM directive
¥
reconcile_copies(); // LCM directive

}

Each invocation writes to A[x] [y], which is also
read by its four neighboring invocations. Compiler
analysis easily detects this potential conflict, which
the C** compiler rectifies with mark modification
directives. The flush_copies directive removes mod-
ified copies from a processor’s cache before another
invocation starts. The reconcile.copies directive
causes the memory system to reconcile modified lo-
cations and update global state to a consistent value.

Because compiler analysis reveals that stencil ac-
cesses the entire array, the C** compiler could also
preserve C** semantics by maintaining two copies of
A—all reads come from the old copy of A and all writes
go to the new copy of A. After each iteration, the code
exchanges the two arrays with a pointer swap. This
simple technique preserves the C** semantics with
little overhead beyond the cost of twice the memory
and cache usage.

6.2 Dynamic C** Program

LCM offers greater benefits for programs with dy-
namic behavior that is difficult or impossible to an-
alyze. These programs require extensive (and ex-
pensive) run-time operations to run in parallel [29].
For example, consider an adaptive mesh version of
stencil, which selectively subdivides some mesh
points into finer detail. It is part of a program that

Appears in: “ASPLOS VL,” Oct. 1994.

100000

50000

Figure 1: Relaxation of an adaptive mesh

computes electric potentials in a box. The program
imposes a mesh over the box and computes the po-
tential at each point by averaging its four neigh-
bors. At points where the gradient is steep, finer
detail is necessary and the program subdivides the
cell into four child cells. This process iterates un-
til the mesh relaxes (see Figure 1). Initially, points
on the mesh are represented in a two-dimensional
matrix, but dynamically-allocated quad-trees capture
cell subdivision:

// Update my quad-tree in the mesh
1/
double Mesh::update_mesh() parallel

{
// What part of tree changed?
#self = update_quad_tree(self, neighbors);

// Return maximum of local values
return %> local_epsilon;

// Main program - do the iterations
1/
main()

{

create_mesh();
while (difference >= epsilon)
difference = update_mesh();

In this program, the mesh changes dynamically so
a compiler cannot determine which parts will be mod-
ified. Without a LCM system, a compiler must con-
servatively copy the entire mesh between iterations to
ensure C**’s semantics. With LCM, the memory sys-
tem detects modifications and copies only data that
is modified.

Reprinted by permission of ACM.

50

a L.CM-scc
7] LCM-mee
i Copying
g 1
2]
Jeo}
(=3
:E’
Q
£
§
£ 10t
8
I
0 L
Stencil-stat Stencil-dyn
Figure 2: Stencil execution time.
Program Cache misses Clean copies
(in thousands) (in thousands)
sCC mcc | Copying | scc mcc
Stencil-stat 3,216 | 6,374 1,035 13 406
Stencil-dyn 6,615 12,696 6,541
Adaptive 4,427 | 3,335 2,245 | 66 2,398
Threshold 411 116 432 2 63
Unstructured | 1,168 | 1,156 1,176 0 130

Table 1: Benchmark cache misses and clean copies.

6.3 Performance

We evaluated the performance of LCM with four
small C** benchmarks (Stencil, Adaptive, Thresh-
old, and Unstructured) that performed similar com-
putations with varying degrees of dynamic behavior.
As a baseline, we ran the same C** programs, com-
piled under an option to perform explicit copying, on
the unmodified Stache protocol [26]. Both LCM and
Stache run under Blizzard-E [30] on a CM-5 with 32
Processors.

We measured two versions of LCM. The first, LCM-
scc, keeps a single clean copy of each marked cache
block at the block’s home node. Section 5.1 explains
why this approach can perform poorly for applica-
tions with spatial or temporal reuse between invo-
cations. The other system, LCM-mce, maintains a
clean copy of a marked block on all processors that
obtain the block. When a modified cached copy is
flushed home, after a parallel function invocation, the
block is reinitialized immediately from the local clean
copy.

Figures 2 and 3 show the execution time for the
four test programs and three memory systems. Ta-
ble 1 records cache misses and clean copies. Below,
we discuss the test programs in more detail.

Stencil performs a simple, regular four-point sten-
cil computation over a fixed mesh (Section 6.1). The
data is for 50 iterations on a 1024x1024 mesh. Since

Appears in: “ASPLOS VI,” Oct. 1994.

5000

LCM-scc
LCM-mcc

Copyin
4000 pying

3000 +

2000 |-

Execution time (milfions of cycles)

1000

Adaptive Threshold Unsl;uctured

Figure 3: Benchmark execution time.

a cache block holds eight single-precision floats, the
program has considerable spatial cache-block reuse.
LCM-scc does not exploit this reuse and its perfor-
mance is roughly four times slower than LCM-mec,
which reduced cache misses by a factor of almost 8
over LLCM-scc.

We measured two versions of this program. The
first (Stencil-dyn) dynamically partitioned the mesh
into P (number of processor) chunks at the beginning
of an iteration. The second (Stencil-stat) only parti-
tions the mesh once, at the start of the computation.
The first version ran roughly 2% faster under LCM-
mec than under Stache. The second version ran al-
most five times faster under Stache because the static
partition enabled this protocol to keep the entire inte-
rior of a chunk in a processor’s local memory through-
out the computation and only communicate bound-
ary elements. On a machine with a limited cache or
on problems that require less repeatable scheduling
techniques, the first version’s performance is likely to
be more typical.

Adaptive is another stencil computation, but over a
time-varying mesh (Section 6.2). With a conventional
memory system, like Stache, the program maintains
two copies of the mesh and copies values between
them before an iteration. By contrast, LCM’s fine-
grain copy-on-write policy copies only modified loca-
tions. The measurements were collected for 100 it-
erations on an initial 64x64 mesh, with a maximum
quad-tree depth of 4. Statically and dynamically par-
titioned version were tested. For the static code,
LCM-sce ran slightly (1.1%) faster than LCM-mcc
because spatial reuse in the quad trees is too lim-
ited to justify the more costly protocol. Both LCM
versions ran 13% slower than the statically-scheduled
Stache version for reasons discussed above. With dy-
namic scheduling, the benchmark running on LCM-
mecc is almost two times faster (92%) than the Stache
version.

Threshold performs a stencil computation over a

Reprinted by permission of ACM.

structured 512x512 mesh (50 iterations), but does not
modify all mesh elements. At each point, Threshold

reads its neighbors and updates the point only if its
value changed by more than a threshold. Without
LCM support, the mesh must be completely copied
in each iteration to move values from the old mesh to
the new one. The program itself copies values that are
not updated, so a separate copying phase is unneces-
sary. LCM only copies modified values. The ratio
of modified to unmodified mesh cells is small (2.1%)
since the mesh is initially zero except for a few points.
Only cells near a fixed value change during the first
iterations. LCM-mcc is 12% faster than LCM-scc be-
cause of spatial reuse of single-precision floats. LCM
ran considerably faster than Stache (97% and 74%,
respectively) because it copied far fewer locations.

Unstructured applies a relaxation technique to an
unstructured mesh. This program builds the graph
(256 nodes and 1024 edges, 512 iterations) and stati-
cally partitions it. To ensure C** semantics without
LCM support, the program maintains an extra copy
of the nodes. No additional copying is necessary since
all nodes are updated in each iteration. Unstruc-
tured differs from Stencil because Unstructured has
little locality due to its irregular structure. LCM-
mec’s performance exceeds LCM-scc’s by 8% because
of spatial reuse. LCM is faster, by 19% to 28%, than
Stache because the graph data structure has many
cross-processor edges that cause communication un-
der this protocol as well as LCM.

These measurements show that LCM helps ef-
ficiently implement C**, particularly for programs
whose behavior is difficult to analyze or predict stat-
ically. Few compiler techniques have addressed these
programs, which are typically written by hand, with
the aid of elaborate libraries [29]. The numbers above
also show that a compiler should not rely exclusively
on LCM. In situations, such as Stencil-stat, in which
communication is simple and rarely occurs under a
protocol like Stache, LCM has little to offer. One of
the virtues of user-level shared memory [26] is that
a compiler can make this choice (or even, use both
in a program) by selecting the libraries linked with a
program.

7 Other LCM Applications

Reconcilable shared memory proved useful in imple-
menting C** parallel functions. But RSM is not lim-
ited to this role. RSM can support other language
features, both for C**-style languages and languages
with more traditional semantics. This section out-
lines a few other applications for RSM.

Appears in: “ASPLOS VI,” Oct. 1994.

7.1 Reductions

The reconciliation mechanism in RSM combines data
values from multiple copies of a cache block to pro-
duce a single value for the block. This mechanism can
also implement reductions in conventional languages.
For example, a programmer typically sums the ele-
ments in an array by adding them into a variable:

for i := 1 to N do
total = total + alil;

To run this loop in parallel, the programmer could
protect total with a lock, which would introduce a
bottleneck, or could rewrite the loop so each processor
reduces its portion of the array into a private variable
and then sum these partial results. In a RSM sys-
tem, a compiler that detects the reduction in the loop
[3] could choose a reconciliation function for total’s
cache block that sums the values added to the loca-
tion’s initial value. When the loop completed, the
locally cached accumulators are reconciled into a sin-
gle value.

Of course, if the compiler can detect the recursion
and emit RSM directives, it can call a library routine
or produce code similar to that outlined above. The
advantages of RSM are two-fold. First, it requires
no additional compiler analysis to distinguish multi-
ple accumulators in complex situations in which pro-
gram analysis fails, for example, in reductions over
a pointer-based data structure such as an unstruc-
tured mesh or code like: A[f(3)] = A[f(2)] + c. Sec-
ond, RSM is likely to be less expensive than shared-
memory code since RSM can implement the reduc-
tion by sending messages rather than communicating
through memory locations [14, 19].

7.2 Semantic Violation Detection

A RSM system can help implement other parallel lan-
guages. For example, Steele proposed a language se-
mantics that forbids programs with conflicting or rac-
ing side effects [31]. Static analysis is too conservative
since it may disallow programs that do not violate
the semantics. Steele proposed a scheme for detect-
ing run-time violations that required maintaining an
access history for each memory location that could
possibly communicate side-effects from one processor
to another. Whenever an operation accesses a region,
it is added to the region’s history and checked against
the previous accesses to the region to detect conflicts.
Optimizations can decrease the space for access his-
tories, but the worst-case remains unbounded.

LCM can identify illegal programs without access
histories. A program uses the LCM mechanisms to
make copies of modified shared data, just as for C**.

Reprinted by permission of ACM.

At synchronization points, the program forces a rec-
onciliation that detects conflicts (since multiple mod-
ifications are prohibited, values need not be recon-
ciled). If a word in a block is modified by multi-
ple processors, a conflict occurred. A processor can
record the modified words in a cache block by set-
ting its access control to ReadOnly [30] and trapping
stores until all words are modified.?

A read-write semantic violation occurs if a mem-
ory location is concurrently read by one processor
and written by another. When reconciliation is per-
formed, modified cache blocks are returned to their
home node to be combined. The home node is also
aware of read-only copies. A check during reconcil-
iation can ensure that readable and writable copies
of the block were not outstanding at the same time.
However, outstanding read-only copies need not be
used during the parallel phase of the computation. A
read-only block could remain in a processor’s cache
from a previous computation. To catch actual viola-
tions, all read-only cache blocks must be flushed from
the caches at synchronization points.

7.3 Data-Race Detection

The scheme described above also detects unsynchro-
nized data accesses. A memory system could per-
form this service for languages with more traditional
semantics, thereby detecting data races at run time.
The same tradeoffs discussed above apply to race de-
tection. Potential data access conflicts could be iden-
tified by performing reconciliations at each synchro-
nization point and detecting the coexistence of read-
only and writable copies of a block. Detecting ac-
tual races would require flushing all read-only cache
blocks from the caches after each reconciliation. The
loss in performance is less critical here since a run-
time race detection system is most likely used only
while debugging, and other run-time techniques have
high overheads [25].

7.4 Reducing False Sharing

False sharing occurs when several processors concur-
rently access (with at least one write) different lo-
cations in the same cache block. LCM-like systems
can reduce the effects of false sharing. If multiple
processors modify distinct locations in a block, each
process can have its own copy of the block and com-
pute without contending for access. In general, this
scheme must be limited to memory accesses that a
compiler or programmer ensures are non-conflicting.

2Many thanks to Anne Rogers for this suggestion.

Appears in: “ASPLOS VI,” Oct. 1994.

7.5 Stale Data

In some scientific applications, such as N-body sim-
ulations, contributions from distant elements are less
significant than those of closer elements. Repeatedly
using old information about distant elements may not
adversely affect the computation. This optimization
is particularly attractive for large systems, in which
the number of outstanding values and the cost of up-
dating them is large.

In a cache-coherent machine, .keeping around
“stale” data requires explicit copying. When a value’s
producer changes a location, its read-only copies are
updated or invalidated, even if consumers would be
content with the old value. A programmer can copy
data to private memory, but this complicates the pro-
gram and increases the required storage. An RSM
system would allow a program to operate with stale
data for many iterations before obtaining the latest
value. The data’s consumer uses an operation simi-
lar to mark modification to create a local copy of a
block. The consumer obtains the most recent value by
reconciling its copy with the producer’s value. The
consumer may not know the producer’s identity, in
which case the consumer can simply flush the block.
The next reference will bring its latest value back into
the cache.

8 Conclusion

In this paper, we showed that a flexible, program-
controlled memory system can help a compiler
achieve good performance for a language feature that
previously appeared too complex and costly to be
practical. We explored this new approach to par-
allel language implementation in the context of the
data-parallel language C** and a new memory sys-
tem called Loosely Coherent Memory, which coop-
erates closely with our C** compiler. The compiler
produces code that assumes that data access conflicts
do not arise. If these conflicts occur, the LCM sys-
tem detects them and invokes run-time code to handle
them by copying the accessed block. This division of
labor simplifies the compiler, which can concentrate
on the expected case rather than worry about the
worst case.

More generally, we presented a new model called
Reconcilable Shared Memory, of which LCM is an
example. RSM provides a program with control over
two aspects of a coherence protocol: producing copies
of a block and reconciling the copies. The RSM model
is not limited to compiler support for higher-level lan-
guages. In this paper, we briefly described how RSM
can be used to improve the performance of general
shared-memory programs with efficient global reduc-

Reprinted by permission of ACM.

tions, reduced false sharing, and stale data. It also
has potential applications in run-time race detection.

Acknowledgements

This work was performed as part of the Wisconsin
Wind Tunnel project, which is co-lead by Profs. Mark
Hill, James Larus, and David Wood and funded by
the National Science Foundation. We would like to
thank Sarita Adve, Anne Rogers, and Guy Steele for
helpful comments on this research and earlier drafts
of this paper.

References

[1] Sarita V. Adve and Mark D. Hill. A Unified Formalization
of Four Shared-Memory Models. IEEE Transactions on
Parallel and Distributed Systems, 4(6):613-624, 1993.

[2] Anant Agarwal, Richard Simoni, Mark Horowitz, and
John Hennessy. An Evaluation of Directory Schemes for
Cache Coherence. In Proceedings of the 15th Annual In-
ternational Symposium on Computer Architecture, pages
280-289, 1988.

[3] Zahira Ammarguellat and W.L. Harrison III. Automatic
Recognition of Induction Variables and Recurrence Re-
lations by Abstract Interpretation. In Proceedings of
the SIGPLAN ’90 Conference on Programming Language
Design and Implementation (PLDI), pages 283-295, June
1990.

[4] Andrew W. Appel, John R. Ellis, and Kai Li. Real-
time Concurrent Collection on Stock Multiprocessors. In
Proceedings of the SIGPLAN 88 Conference on Pro-
gramming Language Design and Implementaiion (PLDI),
pages 11-20, June 1988.

[5] Andrew W. Appel and Kai Li. Virtual Memory Primitives
for User Programs. In Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS IV),
pages 96-107, April 1991.

[6] Monica Beltrametti, Kenneth Bobey, and John R. Zor-
bas. The Control Mechanism for the Myrias Parallel Com-
puter System. Computer Architecture News, 16(4):21-30,
September 1988.

[7] John K. Bennett, John B. Carter, and Willy Zwanepoel.
Munin: Distributed Shared Memory Based on Type-
Specific Memory Coherence. In Second ACM SIGPLAN
Symposium on Principles & Practice of Parallel Program-
ming (PPOPP), pages 168-176, February 1990.

[8] Guy E. Blelloch. NESL: A Nested Data-Parallel Language
(Version 2.6). Technical Report CMU-CS-93-129, Depart-
ment of Computer Science, Carnegie Mellon University,
April 1993.

[9] William J. Bolosky and Michael L. Scott. Faise Shar-
ing and its Effect on Shared Memory Performance. In
Proceedings of the Fourth Symposium on FEzperiences
with Distributed and Multiprocessor Systems (SEDMS),
September 1993.

[10] John B. Carter, John K. Bennett, and Willy Zwanepoel.
Implementation and Performance of Munin. In Proceed-
ings of the Thirteenth ACM Symposium on Operaling
System Principles (SOSP), pages 152-164, October 1991.

[11] David Chaiken, John Kubiatowicz, and Anant Agar-
wal. LimitLESS Directories: A Scalable Cache Coherence
Scheme. In Proceedings of the Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS IV), pages 224~
234, April 1991.

Appears in: “ASPLOS VI,” Oct. 1994.

(12]

(13]

(15]

(16]

(17]

[18]

(19]

[22]

(23]

[24]

(25]

(26]

Siddhartha Chatterjee, Guy E. Blelloch, and Allan L. Fis-
cher. Size and Access Inference for Data-Parallel Pro-
grams. In Proceedings of the SIGPLAN ’91 Conference
on Programming Language Design and Implementation
(PLDI), pages 130~144, June 1991,

Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui
Lu, Ramakrishnan Rajamony, and Willy Zwaenepoel.
Software Versus Hardware Shared-Memory Implementa-
tion: A Case Study. In Proceedings of the 21st Annual In-
ternational Symposium on Computer Architecture, pages
106-117, April 1994,

Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis
Schoinas, Mark D. Hill, James Larus, Anne Rogers, and
David Wood. Application-Specific Protocols for User-
Level Shared Memory. In Proceedings of Supercomputing
94, November 1994. To appear.

Michael J. Feeley and Henry M. Levy. Distributed
Shared Memory with Versioned Objects. In OOPSLA
’98: Object-Oriented Programming Systems, Languages
and Applications Conference Proceedings, pages 247-262,
October 1992.

Phillip J. Hatcher, Michael J. Quinn, Anthony J. La-
padula, Bradley K. Seevers, Ray J. Anderson, and
Robert R. Jones. Data-Parallel Programming on MIMD
Computers. IEEE Transactions on Parallel and Dis-
tributed Systems, 2(3):377-383, July 1991.

High Performance Fortran Forum. High Performance For-
tran Language Specification. Version 1.0, May 1993.

Mark D. Hill, James R. Larus, Steven K. Reinhardt, and
David A. Wood. Cooperative Shared Memory: Software
and Hardware for Scalable Multiprocessors. ACM Trans-
actions on Computer Systems, 11(4):300-318, November
1993. Earlier version appeared in ASPLOS V, Oct. 1992.

David Kranz, Kirk Johnson, Anant Agarwal, John Kubia-
towicz, and Beng-Hong Lim. Integrating Message-Passing
and Shared-Memory: Early Experience. In Fifth ACM
SIGPLAN Symposium on Principles & Practice of Par-
allel Programming (PPOPP), pages 54-63, May 1993.

Jeffrey Kuskin et al. The Stanford FLASH Multiproces-
sor. In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 302-313, April
1994.

James R. Larus. C**: a Large-Grain, Object-Oriented,
Data-Parallel Programming Language. In Utpal Banerjee,
David Gelernter, Alexandru Nicolau, and David Padua,
editors, Languages And Compilers for Parallel Comput-
ing (5th International Workshop), pages 326-341, New
Haven, August 1992. Springer-Verlag.

James R. Larus. Compiling for Shared-Memory and
Message-Passing Computers. ACM Letters on Program-
ming Languages and Systems, 2(1-4):165-180, March-
December 1994.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy. The Directory-Based
Cache Coherence Protocol for the DASH Multiprocessor.
In Proceedings of the 17th Annual International Sym-
posium on Computer Architecture, pages 148-159, June
1990.

Kai Li and Paul Hudak. Memory Coherence in Shared
Virtual Memory Systems. ACM Transactions on Com-
puter Systems, 7(4):321-359, November 1989.

Robert H.B. Netzer and Barton P. Miller. Improving the
Accuracy of Data Race Detection. In Third ACM SIG-
PLAN Symposium on Principles & Practice of Parallel
Programming (PPOPP), pages 133-144, April 1991.

Steven K. Reinhardt, James R. Larus, and David A.
Wood. Tempest and Typhoon: User-Level Shared Mem-
ory. In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 325-337, April
1994.

[27]

(28]

[29]

(30]

Reprinted by permission of ACM.

John R. Rose and Guy L. Steele Jr. C*: An Extended C
Language for Data Parallel Programming. In Proceedings
of the Second International Conference on Supercomput-
ing, pages 2-16, Santa Clara, California, May 1987.

Gary W. Sabot. The Paralation Model: Architecture-
Independent Parallel Programming. MIT Press, 1988.

Joel H. Saltz, Ravi Mirchandaney, and Kay Crowley. Run-
Time Parallelization and Scheduling of Loops. I[EEE
Transactions on Computers, 40(5):603-612, May 1991.

Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck,
Steven K. Reinhardt, James R. Larus, and David A.
Wood. Fine-grain Access Control for Distributed Shared
Memory. In Proceedings of the Sizth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VI), October
1994. To appear.

Guy L. Steele Jr. Making Asynchronous Parallelism Safe
for the World. In Conference Record of the Seventeenth
Annual ACM Symposium on Principles of Programming
Languages, pages 218-231, January 1990.

David A. Wood, Satish Chandra, Babak Falsafi, Mark D.
Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis,
Shubhendu S. Mukherjee, Subbarao Palacharla, and
Steven K. Reinhardt. Mechanisms for Cooperative Shared
Memory. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 156-168,
May 1993.

