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Abstract

Aggregates are rife in real life SQL queries. However, in the parallel query processing
literature aggregate processing has received surprisingly little attention; furthermore, the
way current parallel database systems do aggregate processing is far from optimal in many
scenarios. We describe two hashing based algorithms for parallel evaluation of aggregates.
A performance analysis via an analytical model and an implementation on the Intel Paragon
multi-computer shows that each works well for some aggregation selectivities but poorly for
the remaining. Fortunately, where one does poorly the other does well and vice-versa. Thus,
the two together cover all possible selectivities. We show how, using sampling, an optimizer
can decide which of the two algorithms to use for a particular query. Finally, we investigate
the impact of data skew on the performance of these algorithms.

1 Introduction

SQL queries in the real world are replete with aggregate operations. One measure of the
perceived importance of aggregation is that in the proposed TPC-D benchmark [TPCY4] 15 out
of 17 queries contain aggregate operations. Yet we find that aggregate processing is an issue
almost totally ignored by the researchers in the parallel database community. The deceptive
simplicity of aggregate processing is possibly the reason for this negligence. However, we find
that though it looks straightforward, most parallel database systems (hereafter called PDBMSs)
implement aggregate processing algorithms that are far from optimal. In this paper we study
aggregate processing on shared nothing parallel database systems, and propose two different
schemes for aggregate processing on PDBMSs.

The standard parallel algorithm for aggregation is for each node in the multiprocessor to
first do aggregation on its local partition of the relation. Then these partial results are sent to
a centralized coordinator node, which merges these partial results to produce the final result.

*This research was supported by NSF grants IRI-9113736 and IRI-9157357.



Briefly, the first approach we propose parallelizes the second phase of the traditional approach.
The second approach is to first redistribute the relation on the GROUP BY attributes and then
do aggregation on each of the nodes producing the final result in parallel. The algorithms
we propose are simple enough that we hesitate to call them “new” algorithms, as we suspect
that they may have already been thought of and perhaps even implemented. However, to our
knowledge neither a description of these algorithms nor an analysis of their performance has
appeared in the literature.

While these approaches are simple, their performance behavior is not obvious. The ana-
lytical models and the implementation on the Intel Paragon parallel super computer [Int93]
show that the two proposed schemes are complementary in terms of performance. We find
that whereas first approach works well when the number of result tuples is small, the second
approach works better when the GROUP BY is not very selective. We show that it is relatively
easy for the optimizer to decide which scheme is the best in a given scenario. This can be de-
cided either on the basis of some known statistic about the relation, or by an efficient sampling
based strategy. Finally, we study how these schemes perform in presence of data skew. We first
characterize the data skew problem in aggregate processing and investigate the impact of skew
on the performance of these algorithms.

As mentioned, there has been little work reported in literature on aggregate processing.
Epstein [Eps79] discusses some algorithms for computing scalar aggregates and aggregate func-
tions on a uniprocessor. Bitton et al [BBDWS83] discuss two sorting based algorithms for
aggregate processing on a shared disk cache architecture. The first is somewhat similar to the
proposed two phase approach in that it uses local aggregation. We study its performance and
show that it fares better than the traditional approach but worse than the proposed two phase
approach. The second algorithm of Bitton et al. uses broadcast of the tuples and lets each
node process the tuples belonging to a subset of groups. This is too impractical on today’s
multiprocessor interconnects which do not efficiently support broadcasting. Su et al. [SM82]
discuss an implementation of the traditional approach. Graefe [Gra93] discusses some issues
in dealing with bucket overflow when using hash bases aggregation in a memory constrained
environment.

The rest of the paper is organized as follows. Section 2 introduces aggregation, the previous
approaches to aggregate processing and describes the two proposed approaches. An analytical
evaluation of the different algorithms is presented in Section 3. In Section 4 we describe the
implementation of the algorithms on the Intel Paragon and show their performance results.
Section 5 shows how we can decide which algorithm to use given a particular scenario. In
Section 6 we discuss the effect of data skew on aggregate processing. Section 7 offers our
conclusions.

2 The Algorithms

An SQL aggregate function is a function that operates on groups of tuples. Its basic form is:

select [group by attributes] aggregates from {relations}
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[where {predicates}|
group by {attributes}
having {predicates}
We note that in practice the aggregate operation is often accompanied by the GROUP BY

operation’. Thus the number of result tuples depends on the selectivity of the GROUP BY

attributes. We define GROUP BY selectivity as ]-11%—%%. We find that it does indeed vary quite
a lot. For example, in the TPC-D benchmark we found GROUP BY selectivities of 0.25, 0.00167
and le-5. The HAVING clause, when properly constructed (i.e. one that can’t be converted to a
WHERE clause), is evaluated after the processing of the GROUP BY clause and it does not directly
affect the performance of the aggregation algorithms we are trying to study. Hence we will
assume that the query does not have a HAVING clause.

In the remainder of the paper we will assume that aggregation is always accompanied
with GROUP BY and that scalar aggregation can be considered as a special case where number
of groups is 1. The following simple query will serve as the running example using relation
R(tid,cardNo,amount).

select cardNo, avg(amount) from R
group by cardNo;

Further, we assume a Gamma [DGS+90] like architecture where each relational operation
is represented by operators. The data “flows” through the operators in a pipelined fashion as
far as possible. For example, a join of two base relations is implemented as two select operators
followed by a join operator. Aggregation can be implemented by one or two operators, as
detailed below, which are fed by some child operator (e.g.. a select or a join) and the result is
sent to some parent operator (e.g. a store). In our study we assume that the child operator is
a scan/select and the parent operator is a store.

We also present analytical cost models of the four approaches. The cost models developed
below are quite simple and as such they should not be interpreted to predict exact running
times of the algorithms. The intention is that although the models will not be able to predict
the actual running times, they will be good enough to predict the relative performance of the
algorithms under varying circumstances. Fortunately, as we shall see in Section 3, in this study
the results are robust under even fairly significant perturbations of the constants in the cost
model, so even an approximate model is sufficient. The simplifying assumptions in the model
include no overlap between CPU, I/O and message passing, sufficient network bandwidth, and
that all nodes work completely in parallel thus allowing us to study the performance of just one
node. With few exceptions (noted later in this paper) even this simple model generates results
that are qualitatively in agreement with measurements from our implementation.

We assume that the aggregation is being performed directly on a base relation stored on
disks as in the example query. The parameters of the study are listed in Table 1 unless otherwise
specified. These parameters are similar to those in previous studies e.g. [BCL93]. The CPU
speed and network speed were chosen to reflect the characteristics of the current generation of

n the TPC-D benchmark 13 out of 15 queries with aggregates have GROUP BY.



Symbol | Description Values
N number of processors 32
Mips MIPS of the processor 15

R size of relation 400 MB
|R| number of tuples in R 4 Million
|R;| number of tuples in R on node ¢ |R|/N
P page size 4 KB
10 effective time to read a page 3.5ms

p projectivity of the aggregation 25%

ty time to read a tuple 300/Mips
tw time to write a tuple 100/Mips
173 time to compute hash value 400/Mips
ta time to add a tuple to current aggr value 300/Mips
tm time to merge two aggr values in sorted streams 150/Mips
ts time to compare and swap two keys 500/Mips
ty time to move a tuple 400/Mips
S selectivity of the GROUP BY I—-}{—l to 0.5
S phase 1 selectivity in Two Phase max(S * N, 1)
Sy phase 2 selectivity in Two Phase maa:(—}v, S)
ty time to compute destination 10/Mips
My message protocol cost per page 1000/Mips
my message latency for one page 1.3 ms

Table 1: Parameters for the Analytical Models




commercially available multiprocessors (e.g. the Intel Paragon). The I/O rate was as observed
on the Maxtor disk on the Paragon. The software parameters are based on instruction counts
taken from the Gamma prototype and are similar to those in previous studies e.g. [BCLY3]. In
the following we assume that aggregation on a node is done by hashing.

In the remainder of this section we discuss previously proposed approaches to parallel ag-

gregation and two new approaches that we have not seen discussed in the literature.

2.1 Traditional Approach

. coordinator

{ )
T

(,,, ‘) (, | ( ») () local aggregation

| |

tuples from the child operator

Figure 1: Traditional Scheme

The traditional approach, e.g. the one implemented in Gamma [DGS90] and some commercial
PDBMSs, is for each node to do aggregation on the partition of the relation on the node. These
result in local (group, aggregate-value) tuples. These are sent to a central coordinator which
merges the local results into the overall (global) aggregate value (Figure 1). In our example, it
will result in each node computing local sum, and count for each group resulting in tuples like
(cardNo = 1234, sum = 100, count = 2) being generated on each node. Assuming the second
node (in a 2 node system) produces (cardNo = 1234, sum = 300, count = 3), the coordinator
computes the final value to be (cardNo = 1234, avg = (100 + 300)/(2 + 3) = 80).

As we will show, this approach works well if the number of resulting tuples is very small.
But as soon as the selectivity of the GROUP BY becomes moderate, the central coordinator
node starts becoming a bottleneck. In TPC-D queries, for example, there is a GROUP BY with
selectivity as low as 0.25 (i.e. on average, 4 tuples form a group). Hence, in general using
single node global aggregation forms a, serial bottleneck at that node.

The cost components of the analytical model are as follows. In the first phase each node
processes the tuples residing locally.

e scan cost (I0): (R;/P) x IO
e select cost, getting tuple out of data page: |Ri| * (tr + tw)

e local aggregation involving reading, hashing and computing the cumulative value: |R;| *
(tr + tp + ta), or if using sorting then sorting and scanning/aggregating the cumulative
value: |Ry| * log |Ri|  ts + |Ril * (to + ta)
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e generating result tuples: |Ri| * Sp* tw
e message cost for sending result to coordinator: (R; * Si/P)  (myp +my)

Tn the second phase these local values are merged by the coordinator. The number of tuples
arriving at the coordinator are: |G| = 2 |Ril + 51 = |R|* S; and G =p* R* 5.

e receiving tuples from local aggregation operators: (G/P) *my

e computing the final aggregate value for each group involves reading and computing the
cumulative values: |G| * (t; + tq) or using merging of sorted streams: |G| * tm

e generating final result: |G| * Sg * ty

e 1/O cost for storing result: (G * Sq/P) x 10

2.2 Approach of Bitton et al. : Hierarchical Merging

( ) two level hierarchical
K N merging using (N-1)
o nodes in a pipeline

local aggregation

tuples from the child operator

Figure 2: Local Aggregation with Hierarchical Merging

The first algorithm proposed in [BBDW83] first makes each node do aggregation on locally
resident data like the traditional approach. However, instead of one node doing the merging
of these local aggregate results into final ones, it utilizes a (pipelined) binary merging scheme,
thus off-loading some of the work from the final node (see Figure 2). However, the final node
still has to generate all the final aggregate values, as it has to do the final merge.

This approach also works well if the number of resulting tuples is very small. It even handles
the moderate selectivity ranges well because of the hierarchical merging. However, when the
number of tuples become sufficiently large, its performance declines as the final merging phase
becomes the bottleneck.

The central merging phase of the traditional approach is now replaced by a pipelined hier-
archical merging. This necessitates addition of a sorting step in the hashed based aggregation
which consumes |R; * Si|log (|Ry| * Sp) s + | Ri * Sy| * t, amount of CPU. Otherwise, the cost
of the first phase remains identical. Assuming ideal pipelining, the cost is determined the bot-
tleneck node in the pipeline. Thus the cost will be determined by the maximum of the costs



on each node which are computed as follows, where n is the number of tuples arriving to that
node and f is the fraction reduction (up to at best 0.5) in the number of tuples after the merge.

e receiving tuples from previous operator in the pipeline: (n/P)*myp

e merging the two arriving aggregate streams: 1k Ly

o generating result tuples: n * f#*ty

o message cost for sending result to next operator: (n* f/P)* (my +my)
e storing result by the last operator: p* R+ 810

We propose two possible alternatives for GROUP BY aggregate evaluation using hash based
redistribution. The first one extends the traditional scheme by parallelizing the second phase.
The second approach redistributes the data first by hashing on the GROUP BY attributes and
then computes the aggregates locally thus avoiding the second phase necessary in the previous

approaches.

2.3 Two Phase Parallel Aggregation
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Figure 3: Two Phase Aggregation Scheme

In the first phase, the tuples after being read from disk are passed to the aggregate operator
on the same node. This local “message passing” is more efficient than redistribution. Each
aggregate operator then computes the aggregate on the set of tuples its scan operator generates.

In the second phase, the local aggregate results are partitioned on the GROUP BY attributes
and sent to one of the “global aggregation” operators that are running on each of the nodes.
The global aggregation operator merges these individual local results into the final aggregate
values for each group. In our example query, each node will send tuples of the form (cardNo,
sum, count) to the global aggregation operator. The global aggregation operator will compute
the final result by summing up the tuples belonging to the same group received from all the
nodes and dividing by the total count. This operation for different groups is done in parallel by
redistributing these tuples on ‘cardNo’ attribute, so as to avoid the bottleneck in the traditional

approach.



The main performance difference from the traditional approach is that the second phase is
now parallel. The first phase remains the same except that now the destination for the tuples
containing local aggregation information has to be computed adding |R;| * Sy * tg to the cost.

The second phase is parallelized becoming:

e receiving tuples from local aggregation operators: (G;/ P)*m, where G; = p* R;* S; and
|G| = | Ril * 50

o computing the final aggregate value for each group arriving to this node: |G| * (tr + ta)

or using merging of sorted streams: |G| * tm
e generating result tuples: |G| * Sg * tr
e storing result to local disk: (Gi * Sg/P) % 10
In practice, however, there will be an additional but negligible overhead of sending control

messages to all the nodes and receiving control messages after the termination of the operators.

2.4 Parallel Aggregation by Redistribution

) aggregate

distribute the tuples from
the child operator by
o , o . hashing on group by
= - v < attributes
tuples from the child operator

Figure 4: Repartitioning Scheme

The second algorithm is motivated by the fast message passing in today’s multi-computers.
The tuples after being read are redistributed by hashing on the GROUP BY attributes (just like
in a join operation where tuples are redistributed on the join attribute) as in Figure 4. FEach
node now does a GROUP BY as in a single node system and the result produced is final for
that group because tuples belonging to a group are on only one node. In our example, all the
tuples with cardNo = 1234 will be on one node and the result of the average will be final. In
this method, therefore, we avoid a second phase in aggregation at the cost of redistributing
the entire relation (which is not too expensive in current day multi-computers). We know of
one commercial PDBMS that uses this approach for vector aggregates. Unfortunately, this
strategy does not work efficiently as given when the number of groups is comparable or less
than the number of nodes available because then not all the nodes will be exploited. We expect
this strategy to be efficient when the number of groups is more than the number of processors
available.
The cost model for repartitioning approach is as follows.

e scan cost (I0): (R;/P) + IO



select cost involving reading, writing, hashing and finding the destination for the tuple:
|R;| * (tr +tw +1th + tq)

repartitioning send and receive: R;/P * (myp + my + mp)

aggregate by reading and computing the cumulative sum: |R;| * (tr + tq) or by sorting
and scanning/aggregating the cumulative value: |R;| * log | Ry| # t5 + | Rs| * (ty + ta)

generating result tuples: |R;| + S * iy

o storing result to local disk: (p * R; * Sg/FP) * IO

However, one must observe that if the number of groups is less than the number of available
processors, then all processors can not be exploited by the basic scheme. That is R; = R«

maz(S, 7{,—) Implemented as is, it will show poor performance when number of groups is small,

: 1
1.e. IS' > N

3 Analytical Results

We studied performance of the four approaches under varying assumptions. The main perfor-
mance characteristics are evident from Figure 5. It shows the performance characteristics of the
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Figure 5: Relative Performance of the Approaches

algorithms for a standard configuration: 32 nodes each with 25 MIPS CPU, sufficient memory,
1 disk and an Intel Paragon-like network. The relation size was 4 million tuples. Two main

observations are common to both.

1.

The two phase approach can easily replace the previous approaches because it is never
worse than them and the previous approaches suffer at higher selectivities.



9. The two phase approach does much better than repartitioning till number of groups is
less than the number of processors. Then both algorithms perform similarly but finally
the repartitioning approach is significantly better.

The reason why two phase scheme does better at low GROUP BY selectivities is that the over-
head of repartitioning the whole relation is avoided and since very few tuples are generated the
second phase does not affect the overall performance. As mentioned earlier, the repartitioning
approach does not exploit all nodes when number of groups is less (or comparable) than the
number of nodes. However for high selectivities, the repartitioning scheme does better because
it does not duplicate the aggregation work, which the two phase scheme is forced to do for high
selectivities thus nullifying the advantage of avoiding the redistribution by the merging of local
aggregate values in the second phase.

The above results hold even when the parameters are changed. Figures 6, 7, 8, 9 show
graphs with 4 times faster CPU, 4 times faster network, 4 times faster 1/O and 4 times less

memory respectively.
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Figure 6: Performance with 4 times faster CPuU

Most of the differences are expected. The faster CPU results in faster response time for
both the algorithms; the faster network improves the relative performance of the repartitioning
approach because it uses the network more than the others; the faster I/O improves the overall
response time of all algorithms. However, we find that if we constrain memory a little such that
not all of the data structure for the group by information (e.g. a hash table) can be kept in
memory, then we find that the all except the repartitioning approach suffer significantly because
of memory thrashing. Memory thrashing is modeled simply by assuming that a reference will
miss and suffer a page fault with the probability that the group it refers to is not in memory.

This points to an interesting observation regarding the behavior of the algorithms. In the
hash based aggregation a hash table entry is maintained per group. Since tuples belonging to
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Faster Network
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Figure 7: Performance with 4 times faster Network
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Figure 8: Performance using 4 disks per node in parallel
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Less Memory
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Figure 9: Performance in a Constrained Memory Configuration

a group are initially randomly distributes across the nodes, each node is likely to have tuples
belonging to a particular group. Hence there will be a hash table entry for that group on all
the nodes containing tuples belonging to the group. Thus the hash table is, in a way, replicated
across the nodes of the system. In contrast, the repartitioning algorithm brings all tuples
belonging to a group to a particular node and hence there is only one hash table entry of that
group in the entire system. Hence the total memory requirement of the redistribution approach
is significantly smaller. This smaller memory requirement results lets it handle larger number
of groups without thrashing or using alternative (e.g. multi-bucket aggregation) approaches.

Speedup of The Approaches Scaleup of The Approaches
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Figure 10: Speedup and Scaleup Characteristics of the Approaches at 5}—1 Selectivity

Figure 10 shows the speedup and scaleup for a selectivity of Z—}T which lies in the “middle”
range of the selectivity where both the algorithms are expected to perform well. We find that
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the speedup and scaleup characteristics of both the approaches are very close to ideal, the
repartitioning approach beiné 2 little better. This is expected in the middle selectivity range
because both the algorithms (modulo data skew) are fully parallelizable with little overhead.
The two phase algorithm suffers the overhead of the second phase (which grows with the selec-
tivity) whereas the overhead in the repartitioning scheme is the redistribution of the relation.
As a system grows larger, the repartitioning algorithm will show better performance as evident

from the speedup results.

Speedup of The Approaches at Low Selectivity Speedup of The Approaches at High Selectivity
300 T T T T T 300 T T T T T ——1
Repartitioning —>— Repartitioning ——
Two Phase -+ Two Phase -+
250 - Igleﬁl e A 250 (EP S pp—
200 | s : 200
/'” = -
'% /"ﬂ/ '%
9150 e 8150 F
2 e &
100 e 1 100 .
,/'“
,'/»
50 7 ] 50 F .
s S
0 1 : 1 I : 0 - I L L 1 L
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Number of Processors Number of Processors

Figure 11: Speedup of the Approaches at low, g}-g, and high, i% Selectivities

However, as evinced by Figure 11, the speedup characteristics of the algorithms at the low
and high GROUP BY selectivities are quite different. At low selectivity, the two phase algorithm
clearly wins as the repartitioning approach is unable to exploit all the processors. For high
selectivities the repartitioning approach shows a significantly better speedup than the two phase.
This further supports our claim that we need both the approaches in a PDBMS.

4 TImplementation Results

In order to further investigate the performance of the two proposed approaches, we implemented
them on the Intel Paragon parallel super computer. The Intel Paragon has a shared-nothing
architecture with 64 nodes each having a i860 CPU, 16 MB memory and a Maxtor MXT-12405
disk. The nodes are connected by a high bandwidth, low latency interconnection network. We
implemented the algorithms on top of the OSF/1 file system using the Paragon message passing
library.

Since the using multiple processes per node was not recommended for performance reason,
and we did not have a thread package, we decided to do our own mini thread management
among the related processes. Our implementation had no concurrency control and did not use
slotted pages. Hence the algorithms are significantly more CPU efficient than what would be
found in a complete database system. As we will see, the performance numbers therefore match
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those of a fast CPU with a constrained memory in the analytical model.

We used 32 nodes of the system in our experiments. The 4 Million 100 byte tuples were
partitioned in a round-robin fashion. Thus each node had 12.5 MB of relation. We decided to
“block” the messages into 4 KB pages because sending large messages is more efficient than

sending several smaller messages.
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Figure 12: Relative Performance of the Approaches

The algorithms performed almost as expected from the analytical model. Figure 12 shows
the performance of the traditional, two phase and the repartitioning approach.

As mentioned earlier, the low CPU cost of our implementation makes the performance
numbers comparable to the fast CPU case in the analytical model. However there are some
differences which must be noted. First, in the low selectivity range, the repartitioning approach
does not do as bad as predicted by the analytical model even when only one processor is
being used for aggregation. We investigated this and found that the reason was that the CPU
utilization of the node being used is significantly higher than the average utilization of the CPU
when all processors are being used. This shows that one disk per node is not sufficient to drive
the processors at their full capacity. Second, in the high selectivity case, the memory thrashing
results in a significantly poorer performance of the two phase and the traditional approaches.
This is predicted, but not accurately, by the analytical model using constrained memory. The
repartitioning approach requiring significantly less memory is not affected.

Figure 13 shows the speedup and scaleup for a selectivity of —2—}—5 which lies in the “middle”
range of the selectivity where both the algorithms are expected to perform well. We find that
even in practice, the speedup and scaleup characteristics of both the approaches are close to

ideal.
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Scaleup of The Approaches
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Figure 13: Speedup and Scaleup Characteristics of the Approaches at —2—}5 Selectivity

5 Selecting the Appropriate Approach

From the discussion above it is clear that the two proposed algorithms work well in their
respective domains. The two phase approach works well when the number of groups is small
and the repartitioning works well when the number of groups is large. In the middle ranges
both algorithms show comparable performance. We also saw that this general observation does
not change even with significant changes in system parameters.

Quantifying it a little, we find that two phase scheme is much better till GROUP BY selectivity
of about TTNi_l because in this range the repartitioning scheme can not exploit all the processors.
Between approximately T%[T and TU}FT\T both algorithms have comparable performance though
the two phase is slightly better. For selectivities above i‘o-l?ﬁ the repartitioning approach is
significantly better. Here the two phase approach is not able to do enough reduction in the
number of tuples through local aggregation in the first phase as the selectivity is very small.
Therefore the second phase has to do a lot of work in global aggregation thus significantly
increasing the overhead.

Evidently, the performance of these algorithms depends critically on the GROUP BY selectivity
of the aggregate. In many cases (for example, if the aggregate is on an indexed column of a
stored table) this selectivity may be available from the statistics stored in the system catalogs.
However, in many cases such a statistic may not be available (for example, if the aggregate is
on a column in a relation that is an intermediate result in a query evaluation plan). We propose
a sampling based scheme for determining the selectivity in such cases.

The general problem of accurately estimating the number of groups (and hence the GROUP
BY selectivity) is similar to the projection estimation problem. It is fairly complex and has
received a lot of attention in the statistics literature [BF93].

However, in our case we only need to decide efficiently whether the number of groups in
the relation is small or not because we have a lot of leeway in the middle range where both
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the algorithms perform well. This does not require an accurate estimate of the number of
groups (especially when they are large) making the problem significantly simpler than the
general estimation problem. Our scheme is as follows. First the optimizer will decide what
is an appropriate switching point of the algorithms depending on the system characteristics.
A reasonable number of groups for switching may be say, 10 times the number of processors
available (a small number likely to lie in the middle range). Call this the crossover threshold.
Then, it can use the following algorithm to decide which scheme to use for aggregation.

sample the relation

find the number of groups in the sample

if (number of groups found < crossover threshold)

use Two Phase
else

use Repartitioning
It can be shown that the number of samples required is fairly small. For example, for

a crossover threshold of 320 (assuming 32 processor and 10 times as many groups) this is
approximately 2563. This is likely to be less than 1% of any reasonably sized relation for small
crossover thresholds.

The probability that the we find G groups in a sample (with replacement) of size S when
there are exactly G groups in a uniformly distributed relation is given by the following recurrence
equation.

P(g,s) = P(g,s —1) * —é— +P(g—1,s—1)x(1 - %—1—)

where P(1,1) = 1 and P(g,s < g) = 0. Solving for P(G, S) gives the desired probability. This
equation can be solved quite efficiently using dynamic programming. Note that the probability
does not depend on the size of the relation. For any fixed value of P(G, S), the number 5 grows
approximately as G * log G [ER61]. This ensures that the number of samples required is not
very large even if the crossover threshold is significant.

What is an appropriate value of P (G, S) and hence the number of samples? The graph on
the left in Figure 14 illustrates the shape of a typical probability curve, here for P(320,5). It
is evident that we must choose the probability in the upward convex part of the curve so as
to ensure that we are stable in terms of estimates i.e. the estimate will not vary widely with
addition or deletion of a few samples. In other words, the probability of underestimating the
number of groups (e.g. estimating 320 groups when there are 322 groups) will fall rapidly as
exemplified by the right graph. In our case we want to minimize the probability that we will
underestimate the number of groups, since we will never overestimate. estimation. In practice
the error would be how often we estimate the number of groups as “small” when it is not 8o,
e.g. how often we estimate the number of groups to be less than or equal to, say 320, when
in fact there are more groups. In practice, the cost of making a minor mistake is small and
Figure 14 shows that we are not likely to make any major mistakes in estimation. Choosing
P(crossover threshold,S) = 0.9 implies that 90% of the time we will guess the number of
groups exactly, and Figure 14 suggests that even in the 10% of the time we underestimate, it
will not be by a significant amount.
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Figure 14: Accuracy in Estimating G

All the performance measures reported so far assume that the relation is drawn from a
uniform distribution and is evenly declustered across the participating nodes. In the next
section we challenge that assumption and see how data skew affects performance of the two
approaches.

6 The Effect of Data Skew

The two main forms of data skew that can occur in aggregate processing are the following. First,
instead of about equal number of tuples forming each group, the number of tuples forming a
group may vary widely. That is, under uniformity assumption a GROUP BY selectivity of 0.01
implies that each group is formed by about 100 tuples, but in a data skew scenario it is possible
to envision that a few groups, say, are formed with 5 tuples but others are formed with 1000
tuples averaging to a selectivity of 0.01. Upon repartitioning, such unequal distribution of
group sizes will result in different processors getting different number of tuples. We call this
skew the selectivity skew. In the second form, the child operator of the aggregate operator on
each node produces a different number of tuples. We call this the placement skew. In our case,
this implies that initially different nodes have different number of tuples.

These two kinds of skew will manifest themselves differently depending on the algorithm.
Selectivity skew alone will not affect the performance of the two phase approach as far as the
tuples belonging to a group are uniformly generated by different scan operators. This ensures
that each node will get equal number of tuples albeit the number of tuples belonging to a
group will vary. However, when the selectivity is high, the selectivity skew results in some
groups having large number of tuples which can be aggregated in phase one of the algorithm
thus reducing work for phase two. Hence, the two phase approach can potentially have better
performance for high skew, high selectivity case. In the repartitioning approach, selectivity
skew will result in some nodes getting more tuples to process than the others because all tuples
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belonging to a group will be on one node and hence its performance will be adversely affected.

Effect of Selectivity Skew
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Figure 15: Effect of Selectivity Skew on Performance of the Approaches

Figure 15 shows the performance of the algorithms obtained from the implementation, the
selectivity skew being modeled using a Zipf distribution with parameter § = 0.1 which results
in the worst loaded node getting about two times as many tuples as the no-skew case. It shows
that the two phase approach is not affected significantly whereas the repartitioning approach
does a little poorer in all cases where all processors are utilized (i.e. number of groups > number
of processors). The 1/0 bottleneck of single disk, however, minimizes this difference because
the CPUs wait for the disks which finish at about the same time as all nodes still have same
amount of I/O requirements.

Next, we turn to placement skew, which we modeled by generating the database so that
one node had twice as many tuples as the other nodes. Placement skew will affect the CPU
performance of the two phase approach as all the tuples generated must be processed locally
thus increasing the amount of work for the skewed node. The second phase of the algorithm
should not be affected by skew as the number of tuples arriving there will be a function of the
number of groups and the number of nodes and not the number of tuples in a group or initial
placement.

Additionally, in our case, placement skew determines the amount of disk I/O a node has to
perform. Hence, both algorithms will be equally hit in I/O performance. This is brought out
by the implementation results in figure 16. The placement skew is modeled by having twice as
many tuples on the skewed node as the no-skew case implying the worst case I/O cost is twice
as much.

In summary, selectivity skew affects the repartitioning algorithm more than the two phase
algorithm, while placement skew affects the two phase algorithm more than the repartitioning
algorithm. However, over the ranges of skews that we tested, the impact of skew was not
significant enough to change the relative performance of the algorithms in any important way.
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Effect of Placement Skew
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Figure 16: Effect of Placement Skew on Performance of the Approaches

7 Conclusions

We have shown that aggregate processing, though apparently simple, has not so obvious trade-
offs. We show that each of the two approaches proposed do well in a limited domain decided by
the selectivity of the GROUP BY attributes and that it is easy for an optimizer to use sampling
to decide which algorithm to use. We also showed that the estimate of selectivity need not
be very accurate in order to get good performance, but if we do not use the appropriate algo-
rithm towards the fringes of the selectivity poor performance will result. We also showed what
problems can be caused by data skew in aggregate processing and how it affects the relative

performance of the two approaches.
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