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ABSTRACT

With the aid of automated reasoning techniques, we show that all previously
known short single axioms for odd exponent groups are special cases of one gen-
eral schema. We also demonstrate how to convert the proofs generated by an
automated reasoning system into proofs understandable by a human.

§0. Introduction. There are two eras in the history of single axioms for groups and
varieties of groups. The early results, by Neumann and others [7], often produced single
axioms which were larger than the minimal possible size, but which were constructed
via some scheme which made them easy to verify by hand. Although not optimal, these
results had the virtue that a person could conceptually grasp their proofs. The second
era began with the advent of MecCune’s automated reasoning system OTTER [4]; now one
could produce shorter and simpler single axioms, which often required much more complex
verifications. Short single axioms for groups and some varieties of groups were found by
MecCune and Wos [5,6], and by Kunen [2,3]; in many cases, these axioms were shown to
be of optimal size. The results in these latter four papers had the defect that no insight
was given into why the single axiom worked. The proofs often consisted of instructions on
how to set up the OTTER input, and the reason given for considering a particular axiom
was often that it survived an exhaustive computer search.

In this paper, we have our cake and eat it too — at least in the case of single axioms
for odd exponent groups. We produce a large class of such axioms of minimal size, and we
give conceptual proofs that these axioms are correct. We, too, used OTTER as a reasoning
assistant, as advocated by Larry Wos, but found that by examining the output from our
assistant, we could provide conceptual proofs which a human could also understand. This
conceptual understanding, n turn, led us to discover more axioms.

We begin with our notation. We shall use i for the group inverse operation and e or
1 for a group identity. We shall use symbols such as * or # to denote product operations,
written in infix as usual, with products associating to the right, and we often omit the
product symbol. We use exponentiation as a further abbreviation, with z! abbreviating
and 2™+ abbreviating = x ™. Thus, for example, 2%, ¢ * ¢ * ¢ and Tz all abbreviate the
term x * (T * ).

If n > 1 is an integer, a group of ezponent n is a group which satisfies the equation
2" = ¢. We do not require that n be the smallest exponent of the group; so, for example,
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every group of exponent 3 is also a group of exponent 6. For groups of a fixed finite
exponent, inverse and identity can be equationally defined in terms of product, so one
may axiomatize such groups by equations using product only. We shall study here single
axioms in product alone, and in product plus identity. In many cases, we can create an
axiom with identity from one without identity by simply inserting an e in the correct place
(see Theorem 1.8).

If o is a term constructed from * and variables, then we say that the equation {a = y)
is a single aziom for groups of exponent n iff (a = y) is valid in all groups of exponent n
and every model for (o = y) is a group of exponent n. For example,

gx(z*(zry)rz)xzxz=Y (A.3.1)

discovered by McCune and Wos (equation 4.3 of [6]), is a single axiom for groups of
exponent 3.

If « is a term constructed from *, e, and variables, then we say that the equation
(a =y)isa single aziom for groups of exponent n iff (o = y) is valid in all groups of
exponent n (interpreting e as the identity), and every model for (a = y) is a group of
exponent n in which e is the identity. An example, also taken from [6] (equation 4.10) is
the following single axiom for groups of exponent 3:

gw(z*(vry)rz)rexzkz=y . (B.3.1)
However, we do not call
:v:l:(a:*(:cﬂ:y)*z)=\<(e*e*e)>kz>!<z:y

a single axiom for groups of exponent 3, because although every model for this axiom 1S a
group of exponent 3, e can be interpreted as any constant in the model (since the cube of
every element is the identity). If o contains only one occurrence of e, then in every model
for (o = y) in which * is a group operation, e must be the identity, as can be seen by
setting all variables in equal to the group identity.

One might also consider axioms in product and inverse, but we do not do that here.
There are no single axioms for any variety of groups in product, identity, and inverse
together (see Theorem 5.1).

The general form of the equations A.3.1 and B.3.1, as associative variants of 23yz® = v,
perhaps with an e inserted somewhere, is no accident. These are of the minimal possible
size, and any single axiom of that minimal size must be of this general shape. More
formally, let V(o) be the number of variable occurrences in «. Suppose (o = y) is a
single axiom for groups of exponent n > 1. Then V(a) > 2n+ 1. So, for example, for
n = 3, the minimal Via), 7,18 displayed by A.3.1 and B.3.1. Furthermore, if n > 2 and
V(ia) = 2n + 1, then o must be some associative variant of z™yz", with zero or more
occurrences of e inserted. This is proved in Theorem 5.5.

We confine ourselves in this paper to such axioms of minimal possible size. The
existence of arbitrarily long single axioms for groups of exponent n is immediate by a
general result of Neumann [7]; see also [3]. For even n > 9, short single axioms are known
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only in the case of exponent 4, and the axioms with e [6] do not bear much resemblance
to the axioms without e [3].

For small odd exponents, a number of such axioms, with and without e, were described
by McCune and Wos [6]. For the most part, these axioms seemed unrelated, although
MecCune and Wos detected a few patterns in axioms for exponents 3 and 5 and extended
the patterns to a sequence of axioms for odd exponents. They discovered their axioms
by testing associative variants of z%yz® = y on OTTER. In analyzing their results, we
discovered that all their axioms, with and without e, are in fact part of one meta-pattern.
We also discovered a conceptual proof that the pattern provides axioms for groups of odd
exponent.

Now, equation A.3.1 generalizes in three ways. First, as noticed by McCune and Wos
[6], the axiom extends to larger odd exponents, producing axiom A.n.1 for every oddn > 3.
For example, the exponent 7 axiom 18

vre(zzz(zy)z)® =y (A.7.1)

Second, replacing the 2% by some particular other associative variants of z8 produces still
more axioms. One such axiom 1s

vrz(zza(zy)z)(z2)(22)(22) =y (C.7.1)

As before, there is also a corresponding C.n.1 for every odd n > 3. Third, by the notion of
cycling, defined in §1, each of these axioms generates a family of 9 equations. For example,
A.7.1 generates the family:

6

czz(zzz(zy)z)z” =Y (A.7.1)
:c:r(a:xm(a::r:y)z)zG =y (A.7.2)
x(m::c(:cxa:y)z)zs =1y (A.7.3)
(mmm(wxwmy)z)zﬁ =y (A.7.4)

cra(zzaaryz’)z =y (A.7.5)
vx(zzee(zy)z®)z =y (A.7.6)
r(rr%m(amy)zG)Z =y (A.7.7)
(zzza(zaay)z®)z =y (A.7.8)

crrz(zeeyz)2® =y (A.7.9)

Cycle AT

Equation A.7.5 1s equation 4.7 from [6], and McCune and Wos verified that this pattern
extends to all odd exponents. They also conjectured that pattern A.7.1 generalizes, which
we verify here. In fact, we show (Theorem 1.4) that the members of such a family are all
equivalent except (possibly) for A.7.4 and A.7.9.

To express our axioms for an arbitrary odd exponent, we use the following notation
for repeated products:



Definition. Let fo(z,y) be y and let fir1(z,y) be z * filz,y).

Thus, for example, fs(z,y) denotes xzzy, whereas 23y denotes (zzz)y.
The form which generalizes A.7.1 and C.7.1, for odd exponent, n = 2m + 1 1s

Flm, frm(, (@ xy)x2) xg(2)) =Y (G.n.1)

where g(z) is some associative variant of z2™, perhaps with an e inserted. By Theorem
1.4, for any such g(z), G.n.1 is one of a collection of n equivalent equations.

Definition. If g(z) is a term constructed from =, exactly 2m occurrences of the
variable z, and zero or more OCCUITences of the constant e, we say that g(2) works iff G.n.1
with that g(z) is a single axiom for groups of exponent n.

Note that the form of g(z) implies that G.n.1 will be valid in all groups of exponent
n, so g(z) works iff G.n.1 implies that * is a group operation and, if e occurs in g(z), that
¢ is the identity. The “exponent n” part is then trivial by setting y =z = e in G.an.l.

We do not have an algorithm to decide whether a given g(z) works, but we have
verified a number of general patterns. For example, g(z) = z°™ (right associated) does
work, as does g(z) = (22)™ (the form of C.7.1 above), as does g(z) = Ly pm=t I
exponent 5 without e, this gives us three g(z) which do work: zzzz, (22)(zz), and (zz2)z.
The other two associative variants of 2%, ((z2)2)z and z(zz)z, do not work.

Fach single axiom without e yields a single axiom with e, since if g(z) has no e in it,
and works, then so does g(z) * e (Theorem 1.8). However, € * g(z) could fail; for example,
in exponent 5, € * (22)(zz) fails. However, g(z) = ex 2™ does work, as was conjectured
by McCune and Wos [6], who, with the help of OTTER, verified it up to exponent 17.

Sections 1 and 2 contaln some consequences of G.n.1, which hold for all g(z). In par-
ticular, in §2, we show that g(z) working 1s equivalent to a statement about automorphisms
of groups. Proofs for the g(z) which work are given in §3, and countermodels for some
g(z) which do not work are given in §4. In §5, we prove some facts about single axioms
in general. In §6, we show that our meta-pattern includes all single axioms for groups of
exponent 3, but we also demonstrate there a single axiom for groups of exponent 5 which
the pattern omits.

§1. Cycles. We begin with the following elementary observation. Consider the two
equations:

Vy(k(h(y)) = ) (1)
Vy(h(k(y)) = y) (2)

Now, (1) and (2) are not in general equivalent, but they are equivalent statements if k
and h are bijections. Generalizing this idea, we shall see that under an assumption of
injectivity or surjectivity, we can establish the equivalence of some equations of apparently
different form. In this way, each single axiom for groups will immediately give rise to a
number of equivalent clones.



Suppose that v and 7 are terms in variables ¥, T1,. .. Tn. Let ~(7), m(r) denote the
result of substituting the term 7 for all occurrences of y in v, 7. 50 ~(y), (y) are the same
as v, 7. Now, consider the equations:

Yy, 21, - Ta(T((Y)) =vy) (1)
Wy, o w(r() = 7)) (15)

Clearly, (1) = (1.5) and (2) = (1.5). Butalso (1) = (2) under the injectivity assumption
Vul,u2, zy,. . a(m(ul) = m(u2) = ul =u2) ,
since that yields (1.5) = (2); similarly, (2) = (1) under the surjectivity assumption
Vo, 21, .. epJu(r(u) =v)

since that yields (1.5) = (1).

We shall use this only in the case that n(y) is a product of the form y * 6 or & * Y,
whence m(~(y)) is y(y)#*d or §x~(y), and (7 (y)) is ~(y*8) or y(d xy). Then, a somewhat
simpler notion of surjectivity and injectivity will suffice for our purpose:

Definition. A binary function * is called
left injective or left cancellative it Yul,u2,z (z xul =2 * u2 = ul = u2)
left surjective iff Vv, zu(z xu =)
left bijective iff it 1s both left injective and left surjective
right ingective or right cancellative FVul,u2,z(ulxz =u2*x = ul = u2)
right surjective iff Vv, zJu(u*z =)
right bijective iff it is both right injective and right surjective

Thus, for example, left surjective says that if we fix any «, multiplication on the left
by z (u — @ * u) is a surjection.

Definition. ¥ is the set of all terms in *, constants, and variables, which have exactly
one occurrence of y. A map T': 3 — % is defined as follows: T(y) is y. If o is of the form
§ % y(y), where ¢ does not contain y, we say that y s on the right in a, and we let T ()
be (6 *y). If a is of the form ~(y) * 6, where ¢ does not contain y, we say that y s on
the left in a, and we let T(c) be y(y * 8).

1.1 Lemma. T is a bijection from S onto 5. For each a € X, there is a finite n such
that T"(a) is a.

Thus, each o € ¥ is part of a finite cycle, a, T(a), T*(a),... o An example of a cycle
of length 9 is cycle A.7 in the Introduction. As examples of the computation of T In AT.1,
y is on the right; we write o as T * cx(zzz(z y )z)2%, and T(a) 1s zzx(zzz(z (z*Y) )2)2%,
which is A.7.2. Tn A.7.4, y is on the left; we write this a as [zzz(zzaz y) 2]+ 28, and T'(a)
is [czz(zzer (Y * 2%)) z], which is A.7.5.



In any model in which * is left and right bijective, all axioms in a cycle are equivalent.
More precisely,

1.2 Lemma. Suppose « is a term in .
a. If y is on the right in a, then every left injective model for (a =y) is a model for

(T(e) =)

b. If y is on the right in «, then every left surjective model for (T'(a) = y) is a model
for (a =y)

c. If y is on the left in a, then every right injective model for (a = y) is a model for
(T(a) =y)

d. Tf y is on the left in a, then every right surjective model for (T(a) = y) is a model
for (o =y)

Proof. For (a,b), a is 6 * y(y), and the 7 in (1)(1.5)(2) above is just & * y. For (c,d),
o is y(y) * 6, and the 7 1n (1)(1.5)(2) above is just y * 5. m

Obviously, we could extend our cycles to the case of terms with 7, where T(2(y(y))) =
7(1(y)), and going around the cycle would require injectivity or surjectivity of 7. In fact,
T(a) could be defined for terms with exactly one y 1n any language.

Many of the equations that we meet in studying single axioms for groups imply the
needed injectivity or surjectivity. In some cases, this implication is immediate by the

following:

1.3 Lemma. Let 6(y) be a term.

a. Bvery model for (6(z xy) = y) satisfies left injectivity.
b. Every model for (z * ¢ =y) satisfies left surjectivity.

c. Every model for (6(y *z) = y) satisfies right injectivity.
d. Every model for (§ *z =y) satisfies right surjectivity.

For example, in Cycle A.7, equation A71is of the form ...(zy)... =y, and hence
implies left injectivity (by 1.3a). Thus, since y is on the right, A.7.1 implies A.7.2 in any
model (by 1.2a). Also, equation A.7.2 is of the form x * ... = y, and hence implies left

surjectivity (1.3b); so A.7.2 implies A.7.1 in any model (1.2b).

Likewise, since y is on the right in A.7.7, A.7.7 implies A.7.8 in any model satisfying
left injectivity, and A.7.8 implies A.7.7 in any model satisfying left surjectivity. Now AT
is of the form ... (zy)... =y, and hence implies left injectivity, but A.7.8 is of the form
...%z = y, which implies right surjectivity; so 1t 1s not immediately clear that A.7.8 implies
A.7.7 in every model. It does, however, as we show by studying the cycle more carefully.
We turn to a proof of this now, in general form.

In general, we consider equation G.n.1 of the Introduction, and study its cycle, which
has length n + 2.

In the following display, to make the pattern clear, we sometimes write an axiom
twice, rewriting an 2y as fi(z,y).



Flz, fm(z, (T xy) * ZN)*Q( ) :y> (G.n.1)

Frnt (@ fon (2 Fa () % 2) * 9(2)) =¥ (Gon.2)

fl(m)fm(ajafm(m7y) * Z) *9(7
2% Fn (1) Fa(,) % 2

F (@, frgr (T, ) % 2) *
fm(my fmt1 (1'7?/ * g(z)) * Z

fn1-1(377fm+1($7($ * y) * g(
fm-—l(mafm—{-l(xvfl(x?y) * g(/

o0 00O O0O0O0O0O0

fl(mafm+1(m7fm—1(m7y) * g(
T ¥ fm+1($7fm—1($>y> *

fm+1(fl7,fm(93,y) *
fmﬂ(%fm(ﬂ?,y * Z) *g(z)) —

- y> (G.n.m)

=y ?2(G.nm+ 1)
=y (G.n.m + 2)

% =y > (Gn.m +3)

3.) *zz _ y> (G.n.2m + 1)

Z) %z =y (G.n.2m +2)
?(G.n.2m + 3)

w2

Cycle Gn n=2m+1

The symbol g(z) has a dual meaning. Our original intent was that it stand for some
associative variant of z2™, perhaps with an e inserted. But, the basic results of this section
hold if g(z) is any function of z — that is, we can consider g to be a new function symbol
of the language. In this generality, we can prove a number of results which come close
to saying that # is an exponent n group operation and g is the group inverse operation.
Then, in §3 and §4, when we replace g(z) by a specific term, it will often be easy to see
whether or not the resultant equation really is a single axiom for groups of exponent n.

However, fj(z,u) always stands for one specific term, as defined in the Introduction.
Observe, in going down the cycle, that fj(z,u) is the same term as x * fj—1(z,u); since we
are right associating, any expression beginning as filz,...) .. 18 really of the form x ...,
with y on the right.

This display emphasizes the structure of the cycle for large n; for n = 3, 5, the equation
labels overlap somewhat; for example, for n = 5,m =2 G.n.m + 3 and G.n.2m + 1 are
the same.

For any n and g(z), all the members of the cycle are equivalent except (possibly) the
two marked with a 7.

1.4. Theorem. In cycle G.n, with n = 2m + 1, if g(z) is any function, then each
of the equations G.n.i except (possibly) G.n.m + 1 and G.n.2m + 3 implies all the other



equations in the cycle, together with left and right bijectivity. Every finite model for either
G.n.m+1 or G.n.2m + 3 satisfies all the equations in cycle G.n.

Proof. We make frequent use of Lemmas 1.2 and 1.3, plus some additional arguments.
(¢.n.1 immediately implies left surjectivity and left injectivity. By left surjectivity, it implies
G.n.2m + 3, which implies right injectivity. Thus, any model for G.n.1 is left and right
injective, and thus satisfies G.n.2, G.n.3,. . .; that is, G.n.l implies all the other equations
in the cycle. Since G.n.2m + 9 implies right surjectivity, G.n.1 implies left and right
bijectivity. So, it 1s sufficient now to show that each of the equations except (possibly)
G.n.m + 1 and G.n.2m + 3 implies G.n.l.

Each of G.n.2 through G.n.m implies left surjectivity, and hence G.n.l.

Equation G.n.m + 2 implies G.n.1 by the following longer argument. Let us use f for
fm, and note that fma1(z,u) =T * f(z,u). Writing G.n.m + 2 twice:

fla,[zx f(=, y « g(z)) J*xz)=y
flu, [u* fu,v* g(w))] * w) =v ,

and matching (w — g(z) =z —u y = u* Flu,v =+ g(g(2)))), we get Flu, (uxv)*z) =
w f(u,v* g(g(2)))- Comparing this with G.n.m -+ 2:

f(u,(u*v)*z): wx f(u o, v ¥ g(g(2)))
flu, us f( u o, v * g(w)) xw)=v ,

matching (w — g(z)), and substituting the first equation into the second, we get G.n.L:

Flu £l (u v) x2) ¥ g(2)) =

Now, each of G.n.m + 3 through G.n.2m + 1 implies left surjectivity, and hence
G.n.m + 2, and hence, as we have just seen, G.n.l.

Finally, we verify that G.n.2m + 2 implies left surjectivity (and hence G.n.2m + 1,
and hence G.n.1). We again use f for fm, and now note that Fmar (2 u) = flz, @ * u).
Writing G.n.2m + 2 twice:

fle,zx f(z, y )+ g(z) )xz=y
Flu,  wr flu,v)xg(w) )+ w =v
and matching (w — g(z) =z = u y > u* Flu,v) * g(g(2))), we get flu,u xv)*z =
w f(u,v) * g(g(z)). Comparing this with G.n.2m + 2:

Fu, U v )

oo = (o) glol=)
flu, u o+ flu,y)xg(z) )*

=Y

ISR

and matching (v = f(u,y) * g(z)) we get

w* fu, Flu,y) *g(2)) *9(g(2)) =y

This is of the form u * ... =y, and hence implies left surjectivity.
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Equation G.n.m +1 implies left injectivity, which is equivalent to left surjectivity in
any finite model. Sincey is on the right in G.n.m, every fnite model for G.n.m + 1 satisfies
G.n.m, and hence the rest of the cycle. Likewise, in a finite model, G.n.2m + 3 implies
right surjectivity and hence G.n.2m + 2, and hence the rest of the cycle. m

This theorem was discovered through cooperation with OTTER. We could see most
of the implications easily enough by hand, but we had trouble showing that G.n.m+2 and
G'.n.2m + 2 implied the rest of the cycle axioms. For G.n.2m + 2, we simply ran OTTER
with this equation in the sos, expressing the equation in terms of *, g, and f = fm. We
also put x * f(z,u) = f(z,z * u) in the sos. We then examined the output for other
cycle axioms or for some equation which would yield (via Lemma 1.3) the injectivity or
surjectivity needed to imply another cycle axiom. When we found an interesting equation
in the output, we ran OTTER again with that equation negated, so that we would get
a proof to examine. After a bit of experimentation, we found the reasonably short proof
above. We did likewise with G.n.m + 2.

We tried to do the same for G.n.m + 1 and G.n.2m + 3, but failed. Even in the case
n = 3, with g(z) = z * 2, these do not seem to produce any interesting consequences. We
conjecture that these do not imply the rest of the cycle equations, or the group axioms,
but we do not have a model to prove this. In [3], the two bad apples in a cycle were refuted
by a trivial Knuth-Bendix argument, since they failed to unify with any proper subterms
of themselves, but that simple argument does not work here.

Having established Theorem 1.4, we proceeded to see what consequences of the general
cycle could be derived for an arbitrary g(2). Presumably, this would make the study of
specific g(z) (as in §§3,4) easier. We again ran OTTER, using as axioms those cycle
equations which could be expressed in terms of f = fm, together with left and right
injectivity. Observe that in view of the definition of f, left injectivity for f can be inferred
from left injectivity for #; this is not true for right injectivity. Thus, we expressed injectivity
by putting the following clauses in the usable list:

x k¥ =y | x*xz'=uly=2

y * X =y | z*x!=uly=2z

£(x,y) !'=u | f(x,z) '=u |l y=
We set up the run so that only equations were generated. We again examined the out-
put for interesting equations, and then applied the procedure described above to obtain
short proofs of them. In particular, the ones in the following theorem seemed especially
significant.

Z.

1.5. Theorem. In cycle G.n, with n = 2m + 1, if g(z) is any function, then each of
the equations G.n.1 except (possibly) G.n.m + 1 and G.n.2m + 3 implies the following:
a. The expression fm(2, Fgi(z,z) ¥ g(2)) is a constant, which we shall call 1.
b. zx1=uz.
c. Lxglgly)) =y
d. g(g(1*z)) =z
e. g(1)=1
£ Falmy) =y,
g (zxy)*(1x2) =% (y*z)



h. fi(z,y*z)= filz,y) = fi(1, z) for every 7.
iz fm(l,9(2)) =1

Equation (b) says that there is a right identity, which, by injectivity of *, must then be
unique. Right inverse (Vady(zxy = 1)) is immediate from left surjectivity. So, by (g), * is
a group operation iff 1 is also a left identity. This observation will be useful when we verify
specific g(z) in §3. Note that if * is a group operation, then (1) reduces to z * g(z) =1, s0
g is the group inverse.

Proof of 1.5. By Theorem 1.4, we have all the cycle equations at once. Let us write
equation G.n.m + 1, replacing z by g(z) and y by z, followed by equation G.n.2m + 3,
replacing y by « (and noting that fmei(z,u) =T * fm(z,u) = fm(z, @ * u)):

b fon(en) rg() o) =z (Grm+D)
wt Fn(@ frmtr (2, 2) % 9(2)) =z (G.n2m+3)

The first equation plus right cancellation implies that the value of FlT, fgr (2, 2)* g(z)) is
independent of the value of z, and the second equation plus left cancellation implies that the
value of fun (2, frmt1(@,2)* g(z)) is independent of the value of z. Thus, fm (2, fm+1(z, z) %
g(2)) is a constant, which we are calling 1, and we have established (a),(b), and (c).

For (d), set y = 1szin (1+g(g(v)) =y) and apply left cancellation.

To establish (e),set 2 =y =2z = 1 in equation G.n.m + 1, and apply 1% 1 = 1 to get

lag(l)=1=1x1,

whence g(1) = 1 follows by left cancellation.
To establish (f), set z = 1 in equation G.n.m + 1, and apply the fact that g1y =1
and 1 is a right identity. We get Fn(@, frot1(z,y)) = y; but Fn(@, fma1(z,y)) is the same

as f2m+1 (CE, y)a or fn(:va y)
For (g), let us write equation G.n.1, replacing z by u, followed by equation G.n.m+2,

replacing z by g(u), (noting that fmi1(z,w) = frm(z,zxw)):
g

Fol@, fmlz,  (wxy)ru)  xglu)) =Y (G.n.1)
Pl fm(z, @ x(yxglg() *g(w) =y (G.nom +2)

Left cancelling « m times, right cancelling g(u), and then left cancelling © m more times,
we get (z*y)*u =% (y * g(g(u))). Now, replacing u by 1 % z and applying (d), we get
(8)-

Now, (h) follows from (g) by induction. The case j = 0 is trivial and j = 1 is just a
restatement of (g). Assuming 1t holds for 7, we prove it for j +1 by applying (g) again:

fi (e yxz) = ox(fi(z,y)xf5(1,2) = (w3 (2, ) R(L25(1,2)) = frea (2,9 i (1,2)

For (i), consider the definition of 1 in (a), and apply (h) and (f):

]- = fm(mvfm+1(mvz) *g(z)) = fm(l',fm+1(33,2)) * fm(1>g(z)) =
Falz,2) * fm(1,9(2)) = 2% fm(L,9(z) =
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When using OTTER to verify that a specific g(z) works, one might replace g(z) by
‘ts definition in terms of *, and use as input all the cycle axioms, together with the conse-
quences of Theorem 1.5, and try to derive 1 * ¢ = z. In fact, consequences (b)(£)(g)(i) of
Theorem 1.5 are sufficient to imply the cycle axioms, and hence all the other consequences
of Theorem 1.5. This is of interest when searching for a proof, since we may argue from
assumptions of a much simpler syntactic form, and therefore use a much lower weight
bound.

1.6. Theorem. Suppose that g is any function, 1 is a constant, and (b)(f)(g)(i) of
Theorem 1.5 all hold. Then * satisfies all the axioms of cycle G.n.

Proof. As we noted in the proof of 1.5, (h) follows directly from (g), so we can use
(h) also. Applying, (h), (f), (g), (i), then (b), we verify G.n.2m + 3 as follows:

fm+1(xafm($7y * Z) * g(Z» = fm+1(337][m(1'7y * Z)) * fm-!-l(]-?g(z)) =
¢ ogee)s(Lef(Log(=) = (yx2) s (Lo fmlLg(2) = y#(x Fm(Lg()) = el =y

Now, G.n.1 follows from G.n.2m + 3 using left injectivity, which follows from (f). The rest
of G.n now follows by Theorem 1.4. »

When we replace g(z) by a specific term built from *, we must be careful in considering
single axioms with identity. Here, g(z) is a term constructed from z and one or more
occurrences of the constant e. As pointed out in the Introduction, calling the constant “e”
is just wishful thinking; we must still prove that the axiom forces e to be the same as the
identity 1 that we already have. However, by the next theorem, if e occurs just once in
g(z), then our wish is always fulfilled:

1.7. Theorem. Suppose that g(z) is composed of #, z, and exactly one occurrence
of a constant e, and suppose that the cycle axiom G.n.1 holds. Then e = 1.

Proof. We use Theorem 1.5. First note that, since 1 is a right identity, Va(zl =
1 = z = 1), and using 1 = 11, plus left cancellation, Ve(lz = 1 = ¢ = 1), It
follows by induction that whenever §(x) is a term in 1, *, and exactly one occurrence of
z,Ve(§(z) =1 = 2= 1). In particular, letting §(z) be g and z be e, and using g(1)y=1
(by 1.5(e)), we have e = 1l =

The next result gives us a general way of converting a single axiom without identity
to one with identity.

1.8. Theorem. If g(z) is an associative variant of 22™ and ¢(z) works, then so does
g(z) xe.

Proof. By Theorems 1.5 (b) and 1.7, equation G.n.1 using g(z) * e implies that e is
a right identity. So g(z) * e reduces to g(z). =

The results of the next section might make the results of this section less mysterious.
§2. Group Models. Given a group G with product #. we show how to define a new
operation * on G. Special cases of this idea were discussed in [2,3] as a way of defeating

a candidate (a = y) by constructing a non-group model in which (@ = y) is valid. This
construction takes on added importance here, since the equations we consider can only be
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defeated by such a model. That is, every model for cycle G.n is a group in a natural way,
but # need not be the group operation — this depends on g(z).

First, we describe how to build a non-group from a group, and then we explain how
to go backwards.

Let G be any group, with group operation #, and suppose ¢, 1 are automorphisms of
G which commute (¢ 01 = 1 o ). We define another operation * on G by

TRy = 90(%)#1/)(9)

We use 1 to denote the identity of the group (G, #).
Observe that * has the following properties:
Aczxl=p(@); Lxy=1(y).
B.1lx1=1.
C.  is left and right bijective.
D. (wx1)x(yxz)=(zxy)x(1lxz).
(A) and (B) follow from the fact that automorphisms must take 1 to 1. (C) uses the
bijectivity of ¢ and 1 and the left and right bijectivity of #. To prove (D) note that
since ¢ and 1 commute, both the left and the right sides of the equation are equal to
oo (@) #p(b(y)# (¥ (2))-
In a group, the identity is the only element which can satisfy equation (B); so by (A),
% is a group operation iff ¢ and ¢ are both the identity automorphism.

9.1. Theorem. Assume we have an operation * on a set G and an 1 € @, and

assume (B),(C),(D) above all hold. Following (A), define

o) =oxl , ) =1xy

and then define
sy = ¢ (@) x 9T (y)
Then # is a group operation on G with identity 1, ¢ and 7 are automorphisms of the

group (G, #), p ot = o, and z*y = p(a)#P(y).

Note that the theorem applies to models for most of the equations of cycle G.n.
By Theorem 1.5 (b)(g) and Theorem 1.4, each of the equations G.n.1 except (possibly)
G.n.m + 1 and G.n.2m + 3 implies (B),(C),(D). For models of these equations, since (B)
is strengthened to  * 1 = z, ¢ will be the identity map, and by 1.5(c), v (y) = g(9(y));
so z#y = = * g(g(y))-

We prove the Theorem in the general form to emphasize the symmetry between ¢ and
. Observe that (C) implies that ¢, are bijections, so that their inverses, w1, 7! are
defined and are bijections also.

Proof of 2.1. The fact = *y = o(z)#p(y) is immediate from the definition of #.
Next, by (B), ¢(1) = (1) = 1; so also e (1) =4"1(1) = 1. Thus

#l = Y a)xl=ple 7 (2) =2 ,



and 1 is a right identity with respect to #. Similarly, 1 is a left identity.
Next, # is left and right bijective because * is and ¢, are bijections. In particular,
by left and right surjectivity, there are left and right inverses:

Vedy(edy = 1) 5 VedyQy#e=1) ,

although it is not clear, until we prove associativity, that the left and right inverses of z
are the same.
To see that pot) = hop, put z = z = ein (D) ; using (B), we get 1x(y*1) = (1 sy 1,

or P(¢(y)) = (b(y))-
Next, put 2 = 1 in (D). We get ¥(y * z) = ¥(y) * ¥(z), or, using the fact that b, @

commute, ¥(p(y)#¢(z)) = Y(p(y))#((z)). Since P, p are bijections, this establishes:
Y(y#z) = Y(y)#P(2)

Likewise, putting z = 1 in (D) establishes

o(z#ty) = e(z)Fe(y)

So, ¢, will be group automorphisms if we can show that # is a group operation, for
which all we need prove is associativity. To do this, replace * by its definition in terms of
4 in (D), and then use the last two equations. We get

(@) (Do (y)#Pb(2)) = (pe(@) b (W) #PP(=)
which implies
e#(y#z) = (aH#y)#z
because v, @ are commuting bijections. m

We comment further on the case that ¢ is the identity automorphism, since that is
the situation with our main cycle G.n. Note then that

fi(z,y) = atp(@)# .. #T @)#FY (v) (1)
so that .
file,y) =¥’ (y) (2)
We can then express the cycle axioms in terms of requirements on %:

2.2. Theorem. Suppose that H is a group, with product # and identity 1, and g 1s
an arbitrary unary function on H. Suppose that ¢ is an automorphism of H, and define
* by z*y = x#p(y). Then all the axioms of cycle G.n hold iff

s (). #* (x) (3)
g(2)#yp™(2) =1 (4)

5]

Il

both hold.
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Proof. Assume the cycle axioms and apply Theorem 1.5. In particular, by (f),
fn(z,1) =1, from whence we get (3) by applying (1). Next, observe that (3) implies

pra) = (5)

since by (3),
a#p(1l) = a#P(z)# ... Hop?mH (2) = 142+ (2)

or x = 2™+ (z). Now, by (2) and Theorem 1.5(1), z#y™ 1 (g(2)) = 1, or »p™tHg(2)) =
>~1. or, by (5), g(z) =¢¥™(z7"). Now, (4) follows, since 3 is an automorphism.

To prove the converse, assume (3) and (4). By Theorem 1.6, it suffices to derive
(b)(f)(g)(i) of Theorem 1.5. But (b) and (g) are trivial, and (f) and (i) follow easily by
reversing the above argument. =

This theorem could also have been proved directly, by expanding one of the cycle
axioms in terms of #.

Given a specific g, we can express 1t explicitly using ¢ and #. Then, Theorem 2.2
can be used in two ways. If one can produce a group and a @ which is not the identity
automorphism such that (3) and (4) hold, then we have proved that g does not work.
However if we can prove that (3) and (4) imply that  is the identity automorphism, then
we have proved that g does work.

Thus, the question of whether a specific g works is reduced to the existence of groups
with a specific kind of automorphism. We do not know in general whether this question is
decidable, but we shall answer it in a number of specific cases in §3 and §4.

Note that (5) says that the automorphism ¢ has order n. By (4), g(z) = (™)1,
so ¢ is an anti-automorphism: g(z#ty) = g(y)#g(z); g is an automorphism iff # is com-
mutative. However, ¢> = 1™ =~ is a group automorphism of order n.

We can now understand what Theorem 1.5 says in terms of #. Parts (b)(f)(g)(i) were
just discussed above. (¢) and (d) both say again that ¥ ™! = gog. (h) is clear in terms of
#, since if we expand out either side of the equation, f;(z,y * z) or fj(z,y) * fi(1,2), we
get

op(@)dh . T (@) ()T ()

§3. Some g(z) which work. Using OTTER, we were able to show the four g(z)
specified in the Introduction work.

3.1. Theorem. The following g(z) work:

A g(z) = 22m

B. g(z) = ex 2*™

G g(z) = ()"

D. g(z) = 2™ xzm L

In view of Theorem 1.5, to show these g(z) work, it sufficed to show that with any of
these g(z), equation G.n.1 implies 1%z = 2. We ran OTTER, using as axioms equations of
cycle G.n and of Theorem 1.5, along with some injectivity clauses. Observe that once we
have fixed a specific g(z), we may express it in terms of an appropriate f;, and then input
a cycle axiom in closed form to OTTER, without an integer variable m. For example, for
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(A), we may use f to denote fm-—1; then g(z) = f(z, f(z, 2z % 2)), so that cycle axiom G.n.1
may be input as:

flz,z * flz,z* (v * y)* z) * f(z, f(z,2 % Z2))) =y

For (A), (B), and (C), OTTER found a proof given very few equations; for (D), OTTER
failed to find a proof given a similar small set of equations, but succeeded after we added
both more equations of cycle G.n and of Theorem 1.5, and some additional hints.

To find these hints, we let OTTER prove (D) for specific small instances of m. Com-
paring OTTER’s proofs for various m, we identified key equations common to each proof.
We then weighted the general form of these equations low in the input file for (D), which
enabled OTTER to prove (D) for arbitrary m.

In analyzing OTTER’s proofs, by translating equations in * to equations in v and #,
we discovered that most of OTTER’s proof steps reduce to equation (3) or (4) of Theorem
9.9 This led us to short proofs for the g(z) of Theorem 3.1, which in turn led us to discover
more g(z) which work.

Here, we present the short proofs that these g(z) work. Given a particular g(z), we
write it in terms of 1 and #. We then use the results of Section 2, showing that ¢ must
be the identity automorphism to conclude that g(z) works.

First, a lemma:

3.2. Lemma. Let ® be any function, and suppose that a € dom(®) and ®'(a) =
®J(a) = a, where 1, are relatively prime positive integers. Then ®(a) = a.

Proof. Let k be the least positive integer such that ®*(a) = a, and note that k must
divide both 7 and 7. =

Next, we verify that the four specific g(z) of the Introduction work.

Proof of Theorem 3.1. In all four cases, we simply rewrite ¢g(z) in terms of ¢ and
#. and then insert it into equation (4) of Theorem 2.2. We then use 2.2(3), cancellation,
and the automorphism properties of 9 to show either Ve(yp™t(z) = z) or Ya(p™(z) = ).
Since we always have Yz(p™(z) = ) (see equation (5) of §2), and both m and m + 1 are
relatively prime to n, we may then conclude that Va(y(z) = ) by Lemma 3.2.

For (A), g(z) = a#b(z)#. .. #1p2™~1(z). Combining equations (3) and (4) produces

b (2)Fh . AP (@) (2) = e () H . YT (@) (@)

Cancelling, we get ¥2™(z) =™ (z) ; so Y™ (z) = =z, since ¢ is an injection..
For (B), note that since e occurs only once in g(z), we may identify it with 1 (by

Theorem 1.7); so g(z) = b(z)Hp? (x)H - - #?™(z). Applying ¢ to equation (3) and

combining the result with equation (4) produces

B(a) P (0)F - F7 ™ (2)HP™H (@) = (@) (@)F# - #PP ()™ ()

Cancelling, we get ¥>™ ! (z) = ¢™(z); so Ppmti(z) = z.
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For (C), replacing = by #? (z * ) in equation (3) and combining the result with
equation (4) produces

D 4pp(a?) AT (@)Y () = D2 () HYT T (@) (@)

Cancelling yields

P (™ (@) ) =97 (@)
| P ()R AP (%) =
Since 22 (z * ) is z#1(x), we have
N L G b A GO L GO

So by (4) ¥™ ! (z) = .
For (D), applying ¥™ to cach side of equation (4) and combining the result with
equation (3) produces

v (@) AT (@)™ (@) FT T () #P7™ (z) =
™ (@)Y (@) 1?7 ()™ (@)™ (@) # T ()
Cancelling gives us
() . Y™ (@) = (@) (@) T (e) (a)

Then combining equations (3) and (4) and cancelling from the left yields

B ()™ (@) AT (@) = () #D (@)F #y™ (z)

So
wﬂl(m)#¢m+l($)# LT (2) = b (z)H# ... Hp™ () . (b)

Substituting (b) into (a) we have

r(@)F .. HYT (@) = e#P(a)F H™ T ()" ()

Hence ™ (z) = $?>™(x), or z = Pp™(z). m

By Theorem 1.8, we may insert € on the right in (A), (C), and (D) to get that
g(z) = 22™xe, g(z) = (z2)™xe, and g(z) = (zm 1z~ )xe all work. The proof of Theorem
1.8 also shows that g(z) = fam(z,¢€), 9(2) = fm(22,¢€), and g(z) = 2™+ g (™71 % e) and
g(z) = (z™F xe)* »m=1 a1l work. In (C) and (D), we cannot insert an ¢ on the left, since
in exponent 5, g(z) = e* (22)(zz) and e * (2z2)z do not work (see Theorem 4.3).

Some more complex g(z), with multiple occurrences of e, can be proved to work by
the following theorem.
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3.3. Theorem. Suppose 2m = kl. Consider the following two g(z):
I g(2) = 2F * froi(e, 2F) * foonyale, 25) # .x Fir-ny-n(e, 25).
IL g(z) = (e* 2") * fi1(e e 2K fa—yale, e x 2R xx faena—n(e e x 2.
For each of these ¢(z), if the cycle axioms with this g(z) imply that e = 1, then g(z)
works.
Proof. If we can replace e by 1, then expressing g(z) in terms of ¢,we see that in
case (I), the expression is the same as in case (A) of 3.1, and in case (II), the expression 1s
the same as in case (B) of 3.1. =

3.4. Corollary.
L g(z)=2z"x* fm—1(e, ™) works iff n 1s not divisible by 3.
1L g(z) = (ex z™) * fm-1(e,e* z™) works.

Proof. By the theorem, g(z) works if the cycle axiom implies that e = 1. For (I):
Since g(1) = 1 and 1™ = 1, we have 1 * fm-1(e,1) = 1 = 1%1. By cancellation,
fm-1(e,1) = 1. We always have fa(e,1) = 1 (Theorem 1.5(f)). If n is not divisible by 3,
then n and m — 1 are relatively prime; so e = fi(e, 1) =1 (apply Lemma 3.2, with a =1
and ®(z) = e z). For (II): Since g(1)=1and 1™ =1, we have e fm—1(e,e) = 1. That
is, fmy1(e,1) = 1. Since fa(e, 1) = 1 and n,m + 1 are always relatively prime, we have
e = fl(e,l) = 1

For the converse of (I): If n is divisible by 3, then so is m — 1. If we interpret e as
the integer n/3, then (Z n,+) is a model for the axiom in which + is a group operation of
exponent n, and e is an element different from 1 (i.e., 0 in this additive group). m

§4. Some g(z) which do not work. If g(z) fails to work, then, by the results of §2,
g(z) may always be refuted by a group model. In many (not all) cases, that model may
be taken to be a ring model, as in [2,3], where the group is the additive group of a ring.
We may find the appropriate ring by studying polynomials, as we describe below.

Definition. If g(z) is a term in #, z, and zero or more occurrences of e, the associated
polynomaal for g(z) is the polynomial Q(k) (over Z) obtained by replacing e by 0 and u*v
by u + kv in g(2), and reducing the result to Q(k) - =.

For example, if g(z) is e(2z)(zz), then, doing the replacement, we get
0+ k[(z + kz) + k(z + k2)] = (K* + 26> + )z,

so Q(k) is k% + 2k* + k.

4.1. Lemma. Suppose that n = 2m + 1, g(z) is a term in * having exactly 2m
occurrences of z and zero or more occurrences of e, and Q(k) is the associated polynomial
for g(z). Suppose that thereis a commutative ring with 1 and a k # 1 in the ring satisfying
the equations R(k) = S(k) = 0, where

R(k) :1+k+k2+'"'k2m
S(k) = Q(k) + k™.

17



Then there is a model for the axioms of cycle G.n in which * is not a group operation.

Proof. Multiplying each side of the equation R(k) =0 by k— 1 yields k™ = 1; so k is
a unit of the ring (i.e., has a multiplicative inverse, k2™). So if we let i(z) = kz, ¥ 1s an
automorphism of the additive group of the ring. The result now follows by Theorem 2.2
and the remark preceding Theorem 2.1. m

The following lemma gives a very simple sufficient condition for the existence of a ring
satisfying 4.1.

4.2. Lemma. With the same notation as 4.1, assume that ged(n, S'(1)) > 1, where
S’ is the derivative of S. Then there is a model for the axioms of cycle Gn in which * is
not a group operation.

Proof. Let p be a prime divisor of n and 5 '(1), and let R be the ring of polynomials
in one variable, U, over Z,. Since Q(k) has one term for each occurrence of z in g(2),
R(1) = S(1) =n=0in Z,. Also, R(1)=1+4+2+--+2m =mn, so R'(1) = 5'(1) = 0.
Thus, (U — 1) divides both R(U) and S(U) in R. Let T be the ideal in R generated by
the polynomial (U — 1)>. Then the equations R(k) = S(k) = 0 have solution E=U4#1
in the quotient ring R/Z. =

4.3. Theorem. For exponent 5, none of the following g(z) work:
((z2)2)z  z(22)z e(zz)(z2)  e(zzz)z
Proof. The four associated polynomials are, respectively,
Sk+1 24 k+1 K2k +k K H2E"+k

Adding k? to get S(k), we see that for all but the second of these, 5 divides S’(1), so we
may apply Lemma 4.2. For the second one, we apply Lemma 4.1. We have the equations:

Bk P+ k+1=3+k+1=0
By k® = 1, it is natural to look for a solution in a Z, with p —1 divisible by 5, and we
quickly find k =9 over Z11. m

By the results in §3, we now have analyzed the five associative variants of z*: zzzz,
(22)(z2), and (zz2)z, do work, but ((z2)z)z and z(zz)z do not. The failure of e(zz)(z2)
and e(zzz)z shows that inserting an e before a g(z) which does work may yield one which
does not, so that the proof in §3, that g(z) = ex 22™ does work, really needed something
special about this particular association.

Life is not always so easy, however. Consider the exponent 7 case. Now g(z) =
(2222)(zz) does work, as we showed in §3, but, we conjecture that g(z) = (222)(zzz) does
not. However, they both have the same associated polynomial, 1 + 2k + 2k% + k3, so it is
clear that we cannot refute (zzz)(zzz) by a ring model as in Lemma 4.1. Turning back to
groups, we look at the two conditions of Theorem 2.2. The first is, for both g(z),

b (2) 0% (2)#0° ()0 (2) 0" (0)F#9° (@) = 1
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The second, for g(z) = (zz2z)(22), is

()30 (2) % (2) () 4% (o) () = 1

which, as we saw, forced 1 to be the identity, whereas the second, for g(z) = (z22)(222),
1S

wh(2) 02 () (2)#0° () #0° () # () = 1

which is different if the group is not Abelian.

§5. Some general limitations. We prove some results limiting the form of single
axioms for varieties of groups in general.

First, no equational variety can be axiomatized by a single equation in product, in-
verse, and identity. For the variety of all groups, this was pointed out, without proof, by
Tarski [8], and a proof was given by Neumann [7]; we simply generalize Neumann’s proof

here. Of course, we have to omit the trivial variety, consisting of the l-element group,
which is axiomatized by (z = y).

5.1 Theorem. If ¢ = (G;*g,1g,eg) is any group with more than one element and
(a = y) is valid in G, then there is a finite non-group, H = (H; 3,19, €n), such that
(a =y) is valid in H.

Note that by H being a non-group, we mean that it is not the case that *3 1s a group
operation in which iy is the inverse operation and ey is the identity. For example, the
following is a minor variant of a single axiom of McCune (see §5 of [2] for a discussion):

(ie rz)*m) * i(z’(e*(z*y)) *az) =y

If this equation is valid in H, then *3 must be a group operation and 13 must be the group
inverse operation; but ey need not be the group identity. So, this is not a counter-example
to Theorem 5.1.

The second result shows that no variety of groups can be axiomatized by any set of
equations with only two variables. For the variety of all groups, this was shown in [2], but
the argument there does not easily generalize to arbitrary varieties. This result is used to
limit the candidates for single axioms for groups or varieties of groups; see §6 and 12,3].
Again, the trivial variety, consisting of the 1-element group, is an exception.

5.2 Theorem. If § = (G;x*g,1g,eg) is any group with more than one element, then
there is a finite structure H = (H; *3, 1%, e ), such that the associative law fails in ‘H but
U satisfies every equation (o = ) such that (a = f3) contains 2 or fewer variables and 1s
valid in G.

Let us first reduce the G in both theorems to an Abelian p-group. Let Z, denote the
additive group of the integers modulo p. (Z )™ denotes the direct product (or direct sum)
of n copies of Z .

5.3 Lemma. If § is any group with more than one element, then there is a prime p
such that every equation (o = () valid in G is valid in (Z )" for all n > 1.
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Proof. Note that the validity of equations 1s preserved under products and substruc-
tures. Since Zp is both a factor and a substructure of (Z )", both structures satisfy the
same equations. Thus, the Lemma holds for G if G contains a subgroup isomorphic to Zip
for some prime p. If not, then G contains a subgroup isomorphic to 7.. Since equations
are also preserved under homomorphic images, the conclusion of the Lemma will hold for
every p. m

Proof of 5.1. By Lemma 5.3, it is sufficient to prove this in the case that G is Z , for

some prime p. Then for H, the domain of discourse, H, will be the set Z 5, but (k94,19 €7)
will be defined by:

TAEAYY =T +y+a

Z'H(l) =—x+b

ey = C y
where a,b,c are some constants in Z,. Since (o = B) is valid in Z, if we replace
(%34, 09, €3) 1D (a = ) by their definitions, we find n,m,r € Zp such that the linear
equation,

ma+nb+rc=0

is equivalent to the validity of (o = B) in H. We need to show that there is some solution
to this equation which makes the resultant H fail to be a group. If m # 0,letb=1,¢c= 0,
and @ = —n/m; then H will not satisfy the equation i(e) = e, which is true in all groups.
Hfm=0letb=c=0anda=1; then H will not satisfy the equation e x e = ¢, which 1s
true in all groups. =

For Theorem 5.2, likewise, it is enough to consider a Zp. For the case p = 2, a
10-element model was constructed in [2] using a Steiner triple system with 9 points (an
5(2;3,9) — see, e.g., [1] for notation). For an arbitrary prime p, that proof generalizes to
produce a model of size (p — )k + 1 from an S(2;p+ 1, k). However, the following direct
proof avoids the use of Steiner systems.

Proof of 5.2. Let F be a field and H a vector space over F. We show how to modify
the additive group of H to satisty the Theorem.

If P is a 2-dimensional subspace of H, let us call a radial map of P any bijection
¢ from P onto P such that for every l-dimensional subspace L of P, there is a non-zero
scalar ¢ € F' (depending on L) such (%) = cT forall & € L. So,in the plane P, we are just
stretching each radial line by a (possibly) different amount. We assume no relationship
between the ¢ for one line and the ¢ for another line.

Now, choose, for each 9_dimension subspace, P, some radial map ¢p of P. For each
any 7,7 € H, define &+ § = 03 (op(T) + @p(Y)) where P is some (any) two-dimensional
subspace containing &,y This definition of * is unambiguous, because P is unique unless
7,y are linearly dependent, in which case 7 * ¢ reduces to & + ¥ for any P chosen. We
interpret inverse as the old inverse operation in H: i(Z) = —% = ¢p (—(ep(@))), and we
interpret indentity as 0.

This defines the structure H = (H; *3, 13, ey ). Observe that for each two-dimensional
subspace P of the vector space H, the new structure, (%3,19,en) on P 1s isomorphic to
the old additive group structure on P via the bijection ¢ p. Thus, our new H satisfies all
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the 2-variable equations valid in the additive group of F2. If F has characteristic p, these
are the same as the 2-variable equations valid in Z .

In view of Lemma 5.3, we are now done if we can show how to choose the ¢ p to make
associativity fail. We assume here that the vector space H has dimension at least 3 and
that F has more than 2 elements; so, F' can be Z, unless p = 2, in which case we take
F to be some Galois field extending Z,. F cannot be Z o because that would force every
radial map to be the identity.

For any linearly independent #,§ € H, let p(Z,7) be the 2-dimensional subspace
spanned by &, 7. Fix linearly independent 7,¢,7. Fix any ¢ € F with ¢ different from 0
and 1. Let, for all ¥ in the appropriate subspace:

Pp(y.2 (¥) =70
ep(z,+2)(0) =V

%(f,r)("ﬁ = U
Spp(fw,z”)(g) =cZ

Pzt T+ T+ cE) =T+

Note that by linear independence, we are free to make this definition, since the four 2-
dimensional subspaces, p(7, 2), p(Z, ¥+ 2), p(,7) , p(Z+7,7), are all distinct, and within
the subspace p(Z +7, Z), the three vectors, 7, T+, T+7+cZ, lie on different 1-dimensional
subspaces. Then (Z+7)* 2= + 7+ cZ, whereas T+ (i x 2) =T + i + ¢Z, so associativity

fails. =

Associativity is very strong. In the presence of associativity, any of the axioms in this
paper imply the group axioms.

5.4 Theorem. Assume G satisfies associativity and ™ * y * zi % e zJ =y, where
n >0, and 1,7 > 0. Then G is a group of exponent n, and e is the identity.

Proof. By z* (...) =y , G is left surjective, and by ...(z*y)... =Y , G is left
injective (see Lemma 1.3). Setting z = ¢, we have "+ y*e® =y, where k = 147+ 1. Since
x is arbitrary, ™ * y * eF=y=a"ryx* eF | so by left injectivity, y * eF =gt xyxef =y.
Let 1 = e¢f. Then 1 is a right identity. Right inverse (VzIy(zy = 1)) follows from left
surjectivity. Then, setting o =y = 2 = 1 shows that e = 1, and setting y = z = 1 In the
original axiom shows that the group has exponent n. =

This last result is less helpful than one might think in practical verification. It’s true
that to verify (a = y) as a single axiom, 1t now suffices to insert (o = y) in the sos
and a * (b * c) # (axb) = c in the usable or passive list, and let OTTER run; it is
not necessary to verify the other group axioms. However, in practice, all the other group
axioms get derived quickly anyway if associativity appears, and for the harder cases ([3],
or §3, or §6), the verification doesn’t succeed unless some other group fact, such as exe = ¢,
is proved first.

Finally, we justify our restriction to associative variants of z"y2z" = y when considering

short single axioms for exponent n groups. For even n, this was done in [3], and now
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Theorem 5.2 allows us to extend the result for all n. Recall that V() is the number of
variable occurrences in o.

5.5 Theorem. Suppose that (a = y) is a single axiom for groups of exponent
n > 1, where a is a term constructed from #, variables, and 0 or more uses of e. Then
V(a) > 2n+1. Furthermore, if n > 2 and V(o) = 2n+1, then a must be some associative
variant of 2™yz™, with 0 or more occurrences of e inserted, where @, z are variables distinct
from y.

Proof. Since (o = y) is valid in the additive group Zin, V() = kn + 1 for some
k. Then, since (a = y) implies associativity, a must have at least 3 distinct variables by
Theorem 5.2, so k > 2; and, furthermore, if k = 2, then o must have 1 occurrence of y,
and n occurrences of z,z, where x,z are variables distinct from y. The fact that a is of
the claimed form now follows directly from the fact (see, e.g., Lemma 2.2 of [3]) that if
n> 2 and 0 < i < n, there is a group of exponent n in which the equation (:I:iy:c””i =y)
is not valid.

§6. Other odd exponent axioms. There are single axioms for odd exponent groups
which are not part of cycle G.n at all. For example,

(:U*:L’)*((x*x)*(:E*y)*z)*(z*z)*(z*z):y

is a single axiom for groups of exponent 5. Verifying this on OTTER is a little tricky.
As lemmas, one can verify left and right cancellation, and then prove z(zz)(zz) is an
idempotent and is independent of the value of x. After that, one can add z(zz)(zz) = e
as an axiom and derive associativity.

This axiom does not seem to be related to the axioms of our cycle G.5. Its cycle
length is 5, whereas G.5 has length is 7. Presumably, this too is part of a pattern which
extends to other odd exponents, but we have not traced 1t out.

Tt is true that in exponent 3 without identity, our cycle G.3 yields the only short single
axioms. Of course, there is also its mirror, obtained by replacing all u * v by v * u. The
only possible g(z) here is zz.

6.1. Theorem. Suppose (a = y) is a single axiom for groups of exponent 3, where
o is an associative variant of z3yz®. Then (a = y) or its mirror is a member of the cycle
G.3.

Proof. By exhaustive search, as in [3], although the search is a little shorter here.
There are only 132 associative variants of z3yz®, and it is easy to write a simple Prolog
program which generates all of them and eliminates those which are refuted by some simple
ring models. In these models, the domain of discourse is some 7Z ., and we interpret  * ¥
as hx + ky for some h,k € Z ,, where h, k are not both equal 1. All but 40 candidates are
eliminated by taking r among 3,5,7,9. Next, we can eliminate all a such that (a = y) is
provable from all 9_variable facts true in Z 3, since by Theorem 5.2, there is a non-group
model for those facts. In exponent 3, this removal is easily accomplished by deleting all
terms which contain a sub-term of the from z(zx), (zz)z, 2(z2), or (z2)z. After this, only
10 remain; namely, the members of (.3 and their mirrors. m
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§7. Conclusion. The use of OTTER to discover new mathematical results is by now
standard. We have shown here that by examining OTTER’s output, one can construct
proofs which a human can understand too. In fact, all the major results in this paper were
written in the usual style of theorems and proofs in mathematics.

On the specific subject of single axioms for odd exponent groups, we have produced
a large number of such axioms, but are still far from a general description of all of them.
We still do not know a decision procedure to test whether a specific equation is a single
axiom. We know that our general cycle does not include all such axioms, and even within
our cycle we have left two different problems open. First, we do not have a refutation for
the cycle members G.n.m+1 and G.n.2m +3. Second, for the other cycle members, which
are all equivalent, we lack a decision procedure for which g(z) work.

Even for the specific g(z) = (222)(zz2), we are unable to prove it works or produce a
counter-model, although we have reduced the existence of such a model to the existence
of a group with a particular kind of automorphism. It is easy to see, by applying the
Sylow theorems, that such a model must have size at least 56, so that it would have to be
produced by group-theoretic techniques, rather than by the model-generation techniques
from automated reasoning.
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