An Evaluation of Directory
Protocols for Medium-Scale
Shared-Memory Multiprocessors

Shubhendu S. Mukherjee
Mark D. Hill

Technical Report #1229

April 1994

To appear: Proceedings of the 8th ACM International Conference on Supercomputing, July 1994.

An Evaluation of Directory Protocols for Medium-Scale
Shared-Memory Multiprocessors *

Shubhendu S. Mukherjee and Mark D. Hill

Computer Sciences Department

University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706 USA

shubu@cs.wisc.edu

Abstract

This paper considers alternative directory protocols
for providing cache coherence in shared-memory mul-
tiprocessors with 32 to 128 processors, where the
state requirements of Diry may be considered too
large. We consider Dir;B, i = 1,2,4, Diry, Tris-
tate (also called superset), Coarse Vector, and three
new protocols. The new protocols—-—Gmy-hardware,
Gray-software, Home—are optimizations of Tristate
that use gray coding to favor near-neighbor sharing.

Our results are the first to compare all these
protocols with complete applications (and the first
evaluation of Tristate with a non-synthetic work-
load). Results for three applications—ocean (one-
dimensional sharing), appbt (three-dimensional shar-
ing), and barnes (dynamic sharing)—for 128 pro-
cessors on the Wisconsin Wind Tunnel show that
(a) DinB sends 15 to 43 times as many invali-
dation messages as Diry, (b) Gray-software sends
1.0 to 4.7 times as many messages as Diry, making
it better than Tristate, Gray-hardware, and Home,
and (c) the choice between Dir;B, Coarse Vector,
and Gray-software depends on whether one wants
to optimize for few sharers (Dir;B), many sharers
(Coarse Vector), or hedge one’s bets between both
alternatives (Gray-software).

Keywords: Shared-memory multiprocessors,
cache coherence, directory protocols, and gray code.

1 Introduction

This paper considers medium-scale parallel comput-
ers, which we define as having 32 to 128 proces-
sors. Small-scale machines differ from medium-scale
ones because they can have centralized resources
(e.g., main memory) and are often designed primar-
ily to run independent serial programs. In con-
trast, large-scale machines must use distributed re-
sources (e.g., Processor-memory nodes) and are de-
signed for asymptotic scalability, which may compro-
mise performance on small versions of these systems.
Medium-scale machines fall in between. They proba-
bly use processor-memory nodes to avoid the bottle-
necks of small-scale machines, but they may occasion-
ally use unscalable solutions—such as broadcasts—
avoided by large-scale machines. Of course, others
might pick different numbers for the exact boundaries
of medium scale.

We expect that many medium-scale computers
will support cache-coherent shared memory in hard-
ware. Relative to message-passing multicomputers,
hardware shared memory makes it easier to provide
operating system support for multiple users, is a
more straightforward target for automatic paralleliza-
tion of serial programs, and allows programmers of
explicitly-parallel programs to use pointers and ignore
per-processor memory limits. Per-processor caches
reduce average memory latency and bandwidth de-
mand when some locality is present. Hardware cache
coherence makes the caches functionally invisible so

* This research was supported in part by NSF PYI Awards
CCR-9157366 and MIPS-8957278, NSF Grants CCR-9101035
and MIP-9225097, Univ. of Wisconsin Graduate School Grant,
Wisconsin Alumni Research Foundation Fellowship and dona-
tions from A.T.&T. Bell Laboratories, Digital Equipment Cor-
poration, Thinking Machine Corporation, and Xerox Corpora-
tion. Our Thinking Machines CM-5 was purchased through
NSF Institutional Infrastructure Grant No. CDA-9024618
with matching funding from the Univ. of ‘Wisconsin Graduate
School.

that compilers and operating systems can optimize
for common cases rather than managing worst-case
data sharing. For these reasons, we assume cache-
coherent shared memory in this paper.

Many protocols have been proposed for implement-
ing cache coherence. We assume that medium-scale
computers are too large to rely on snooping a shared
bus [2] but small enough that they need not be con-
cerned about asymptotic scalability [10, 12}. A rea-
sonable structure for medium-scale computers is to
associate a directory with the memory module in each
of the N processor-memory nodes. For each aligned
block in memory—say 32 to 128 bytes—a directory
entry records the state of the block and the identities
of processors which might have copies. We assume a
write-invalidate protocol in which the block may be
currently uncached, cached writable at one proces-
sor, or cached read-only by 1 to N processors. An
invalidation event occurs when a processor wishes to
obtain a writable copy of a block while other cached
copies exist. Invalidation events force the coherence
protocol to send 1 to N invalidation messages.t To
avoid always sending N invalidation messages, most
directory entries include a sharing code. When one
writable cache copy is outstanding, the sharing code
identifies which processor has the block using at least
logN bits.?

Alternative sharing codes have been proposed for
identifying the sharers when multiple read-only copies
are outstanding. At one extreme is Din B [1} which
sends N invalidation messages at each invalidation
event with more than one sharer. If there were ac-
tually j sharers, j > 1, then N —j of the N mes-
sages are unnecessary invalidation messages. The
advantage of DinB is that it requires no sharing
code beyond the logN bits needed to identify a single
writable copy. However, the unnecessary invalidation
messages could have three potential negative effects:
(a) increased contention in the network, (b) wasted
cycles to send the messages, assuming they are sent
out one at a time, and (c) wasted cycles to process
these messages and increased contention at the direc-
tories that do not have a copy of the block. At the
other extreme is Diry that uses a bit vector {0 ex-
actly identify the sharers [1). Diry never sends an
unnecessary invalidation message, but uses N bits of

1The number of invalidation messages is actually N — 2
because (a) no invalidation will be sent to the requesting pro-
cessor initiating the invalidations, and (b) the invalidation to
the processor on the home node will be locally absorbed. Of
course, if the requesting processor is on the home node, the
number of invalidation messages will be N — 1. Our discussion
ignores these minor effects, but our simulations consider them.

2 All logarithms in this paper are base two.

sharing code. For 128 processors, this sharing code is
50% to 12.5% memory overhead for 32- to 128-byte
blocks.

Several proposals also exist that use a smaller shar-
ing code than Diry, but do not always fall back on
broadcast. We call these proposals multicast proto-
cols; others have called them limited broadcast proto-
cols [1]. The challenge of designing 2 multicast proto-
col lies in minimizing both the sharing code size and
the number of unnecessary invalidation messages.

In this paper we will study variants of three previ-
ously proposed multicast protocols—Dir; B, Tristate,
and Coarse Vector. DirB, 1 <1 < N, uses i % logN
bits to exactly identify upto ¢ sharers and broadcasts
otherwise [1]. Coarse Vector uses N /K bits, where
a bit is set if any of the processors in a K-processor
group cached the block [9]. Tristate [1], also called
the superset scheme by Gupta et al. [9], uses a logN
digit code requiring 2 bits per digit. The j-th digit of
the code is 0 if the j-th bit of all sharers is 0; the digit
is 1 if all sharers have 1; the digit is both otherwise.
On an invalidation event, Tristate sends invalidation
messages to all processors covered by its sharing code.
32 processors, for example, require a five-digit code.
The code value “1 both both 1 0” implies that in-
validations must be sent to processors 10010, 10110,
11010, and 11110. In general, if k digits are both,
then 2F invalidations must be sent.

Section 2 proposes three optimizations of Tristate
that can perform better for near-neighbor sharing.
Gray-hardware works exactly like Tristate except that
Processors are enumerated using a binary-reflected
gray code, so that consecutive processor numbers dif-
fer by one bit. Gray-software uses the same hard-
ware as Tristate but shows how software can redis-
tribute the work so that neighboring work is assigned
to processors whose numbers differ in only one bit.
Finally, Home uses gray-coded processor numbers like
Gray-hardware, but has a sharing code of only logN
bits, where the j-bit is set if the j-th bit of any sharer
differs from the j-bit of the home node number. Pro-
tocol features are summarized in Table 1.

Section 3 discusses the three benchmarks used in
this paper—ocean (one-dimensional sharing), appbt
(three-dimensional sharing), and barnes (dynamic
sharing), evaluation platform (Wisconsin Wind Tun-
nel), implementation assumptions (e.g., 32 to 128
processors, notifying protocols, and no special net-
work support for broadcasts or multicasts), and eval-
uation metric (number of invalidation messages).

Section 4 shows DiryB sends 15 to 43 times
as many invalidation messages as Diry. Of the
closely-related protocols of Tristate, Gray-hardware,
Gray-software, and Home, we find Gray-software per-

id as reference id

Protocol Description Number of bits Invalidation messages
in sharing code consecutive four | worst four
Diry maintains precise identity N 4 4
of sharers
Dir;B, i< N broadcasts invalidations i x logN N,i<4 N,i<4
for sharers > 1 4,7 >4 4,i> 4
Tristate each digit in the sharing 2 % logN ¥ 3 xlogN +1 N
code represents states
0, 1 and both
Coarse Vector | each bit in sharing code ceiling(N/K) 1 | 2x Kor3x K, K =2 4x K
represents J processors, Kor2x K, K>2
1< K<N
Gray-hardware | Tristate with gray code 2 % logN t 7 N
in hardware
Gray-software Tristate in hardware, 2 x logN 7
gray code in software
Home Gray-hardware with home logN t 7to N

Table 1: Protocols

This table provides a description of the protocols studied in this paper. The three new protocols proposed in this paper are shown
in the lower half of the table. Specifically, for Dir;B, we have chosen 4 to be 1, 2, and 4, for our study. Column two provides a
brief description of the protocols, column three shows the number of bits necessary for the sharing code, column four expresses the
number of invalidation messages sent by the corresponding protocol on an invalidation event when four consecutive processors are
involved in sharing, while column five shows the number of invalidation messages if any four processors were involved in sharing

(worst case). N is the total number of processors in the system.

When four consecutive processors are involved in sharing, the number of invalidations sent on an invalidation event is straightforward

for Diry and Dir;B. For Coarse Vector, when K = 2, the number
processors, or 3 X K, when the four sharers spans three consecutive

of invalidations is either 2 x K, when each bit covers exactly two
bits in the sharing code. When K > 2, the number of messages

is I, if one bit covers all the four sharers, or 2 x I, when the sharers span two consecutive bits. For Tristate, the expression,
3 x logN + 1, can be calculated using reasoning similar to that used to motivate Gray-hardware in Section 2.1. Sharers j to j+3
differ in two bits if j mod 4 = 0, which is true for one-quarter of all j’s. Otherwise, the bit patterns also differ in one or more

1

higher-order bits. Given this case, the probability of exactly an i-bit difference is 2. Thus, the expected number of messages sent

21

for four consecutive sharers is % x 22 4 (% x 2% 4 T% % 24 +...), which sums to 3 x logN +1, for arbitrarily large N. If finite system
size is considered, the sum turns out to be 3 x logN — 2. For Gray-hardware, the expected number of messages for four consecutive

sharers is 22 if j mod 4 = 0 and 23 otherwise, which reduces to

7= 1 x 224 2 x 2%. The number of messages for Gray-software is

identical to Gray-hardware. For Home, the expected number of invalidation messages for four consecutive sharers is 7, if the home
node is one of the sharers; otherwise, it is more than 7 and can be as large as N.

For a worst combination of four sharers, Diry and Dir;B, ¢ > 4, will still send only four invalidation messages. Dir; B with ¢ < 4,
Tristate, Gray-hardware, Gray-software, and Home will all send N messages. Coarse Vector will, however, send only 4 x K messages,

because only four separate bits in the sharing code will be set.
1 These protocols use an additional logN bits for a counter, s

edgements are returned on invalidation requests.

ince we assume a notifying protocol [6] where only positive acknowl-

forms best of four with the same hardware as Tris-
tate . For ocean, barmes, and appbt, respectively,
Gray-software sends 1.0, 1.3, and 4.7 times as many
invalidation messages as Diry. The barnes num-
ber is large due to a high degree of dynamic shar-
ing. Coarse Vector performs better for barnes but
worse for the other two applications, while Dir,B and
DiryB perform very poorly whenever there are more
than two or four sharers (as is to be expected). Thus,
the choice of protocol between Dir;B, Coarse Vector,
and Gray-software will depend on whether one wants
to optimize for few sharers (Dir;B), many sharers
(Coarse Vector), or hedge one’s bets between both
alternatives (Gray-software).

We see two key contributions for this paper. First,

we introduce three new protocols—Gray-hardware,
Gray-software, and Home. Second, we do the
first study to compare DinB, Diry, Tristate,
Gray-hardware, Gray-software, Home, Coarse Vector,
DirsB, and DiryB, using the same assumptions, 32 to
128 processors, and running the applications to com-
pletion (tens of billions of cycles each). None of the
previous studies have done a systematic comparison
of the existing multicast protocols for medium-scale
shared-memory systems. In particular, Tristate has
not been evaluated with real benchmarks.

Previous studies of directory protocol performance
were limited by systems with smaller number of
processors—between 4 and 64. Agarwal et al. [1]
evaluated directory protocols for a small bus-based

system using four-processor VAX traces less than two
million instructions long. In the same paper, they
proposed Tristate without evaluating it. The MIT
Alewife machine uses a Diry-like protocol, called
LimitLESS, which maintains five of the pointers in
hardware and the rest in software. Chailen et al. [5]
compared LimitLESS against Diry, using several ap-
plications on 16 and 64 processors with 7 to 30 million
references per application. They found that Limit-
LESS’s performance is comparable to Diry. Gupta
et al. [9] compared Coarse Vector with Tristate us-
ing a synthetic benchmark, which randomly picked
the processors sharing a block, and concluded that
Coarse Vector is superior to Tristate, which is con-
tradicted by our results based on three non-synthetic
benchmarks. In the same paper, Gupta et al. pre-
sented invalidation message counts and execution
time for four benchmarks having 8 to 22 million
shared-memory references on 32 processors using the
Tango simulator. They concluded that Coarse Vector
could be competitive with Diry. Wood et al. [17]
introduced Diry SW+—a broadcast protocol similar
to Dir B that traps like LimitLESS to handle invali-
dations when number of sharers is greater than one.
They compared Dir S W+ against Din B, DiryB, and
Diry, for a 32-processor system using eight bench-
marks by simulating between 1.5 to 25 billion cycles
(for each application) on the Wisconsin Wind Tunnel
[15]. They concluded that Diry SW’s performance is
comparable to Diry. However, their results could be
biased in favor of Dirf SW* because their simulations
did not accurately model networlk contention.

9 New Multicast Protocols

This section discusses three optimiza-
tions of Tristate— Gray-hardware, Gray-software, and
Home—that can perform better on near-neighbor
sharing. The basic idea behind these protocols is
to use gray coding to reduce the number of both’s
in the sharing code. We first discuss constructing
gray codes for one- and multi-dimensional sharing,
and then present the new protocols.

2.1 Gray Code

Tristate performs non-optimally for near-neighbor
sharing between consecutive processors along one di-
mension, because consecutive processor numbers can
differ in k >> 1 bits, causing 2% messages to be sent
on an invalidation event. Specifically, half of all pairs
of consecutive numbers differ in one bit (i.e., even-odd
pairs: 0-1, 2-3, 4-5, ...), one-quarter differ in two bits

(1-2, 5-6, ...), one-eighth in three bits, etc. The ex-
pected number of invalidation messages istx2+ % X
22+§><23+...+§T,%W><2109N+(§,—,}7,v><2109”?) = logN.
The final term (—2-,—,,17ﬁ x 2009y gccurs when processor
N — 1 also shares with processor zero®., While logN
sounds small, here it means that Tristate sends five
to seven invalidations (per invalidation event) for 32-
to 128-processor systems, while Diry needs to send
only two invalidations.

If instead we enumerate processors with a binary-
reflected gray code, then consecutive processor num-
bers would always differ in only one bit. In this case,
only two invalidation messages would be needed, the
same as Diry. For more consecutive sharers, using a
gray code produces results between Tristate and Dirny
(see row Gray-hardware of Table 1).

While binary-reflected gray coding works well on
near-neighbor sharing in one dimension, what can
be done to support near-neighbor sharing in multi-
ple dimensions? In the simplest case, one can form
a multi-dimensional gray code by concatenating gray
codes from each dimension. The multi-dimensional
gray code for an N = 2% x 2% x 28_node mesh uses 16
bits—4 from the first index, 4 from the second, and
8 from the third. Forming a multi-dimensional gray
code is more complex, however, if most dimensions
are not powers of two.

In general, the problem is equivalent to the follow-
ing graph embedding problem:

Given a d-dimensional mesh and the
smallest hypercube with as many nodes as
there are vertices in the mesh, what is the
best possible mapping of vertices of the
mesh to the nodes of the hypercube such
that neighbors in the mesh are as close to
each other as possible [7].

Define dilation as the maximum distance between
any two mesh neighbors on the hypercube. Alter-
nately, dilation can also be defined as the maximum
number of bit positions in which any two mesh neigh-
bors differ when mapped to the hypercube. The prob-
lem then is to find a mapping with the minimum di-
lation.

The problem can be solved optimally—with dila-
tion 1—if at least d— 1 dimensions of a d-dimensional
mesh are powers of two. This case occurs commonly
in parallel applications, because programmers size
their data to fit the machine they run on.

For the important case of two-dimensional meshes,
Chan [7] shows how to automatically construct an

3Without this wrap-around, the series sums to logN — 1.

embedding with dilation one or two. Consider a3 x5
mesh to be embedded in its smallest hypercube with
16 nodes. Simply taking the gray codes of indices
in each dimension—two bits plus three bits—will ne-
cessitate a 32-node hypercube. Chan’s construction
starts with two bits for the first index and two for the
second, and then encodes the information missing in
the second index in the unused state(s) of the first.
Three-dimensional meshes can be embedded with
dilations of one (two dimensions are powers of two),
two (one dimension is a power of two and using
Chan’s construction for the other two), three (in
many cases [4]), and never worse than seven ([8]).
Rarely-used higher dimensional meshes can always be
embedded with dilation O(dimension) [8].

2.2 New Protocols

Here we discuss specific implementation issues re-
lated to the three new protocols—Gray-hardware,
Gray-software, and Home.

2.2.1 Gray-hardware

unsigned graycode {unsigned id)

return {id@ 4 (id >> 1));

ungigned inverse_graycode (unsigned graycode)
unsigned i, id = graycode, temp = graycode;
for (i=1;i<log2{N),i++)
{

temp = temp >> 1;
id 4= temp;

}
return id;
}

Figure 1: C code for computing binary-reflected gray
code and its inverse

This code shows how to do the gray coding in one dimension.
The text explains how to do multi-dimensional gray coding.

Gray-hardware is optimized for near-neighbor shar-
ing between consecutive processors in one dimension.
Tt works like Tristate, except that processor numbers
are stored in the sharing state with a binary-reflected
gray code. The code can be formed with a shift and
exclusive-or (Figure 1). Upon an invalidation event,
gray codes are inverted using the naive procedure de-
picted in Figure 1 or with special parallel prefix hard-
ware.

2.2.2 Gray-software

Gray-software eliminates two negative aspects of
Gray-hardware. First, Gray-software can be cus-
tomized to support either one- or multi-dimensional

Benchmark | Briefl Input Data Set Cycles

Description (x10%)
ocean 1D stencil 384 x 384, 2 days 17.6
appbt 3D stencil 328, 4 iter 77.8
barnes 8-ary tree 8192 bodies, 4 iter 26.4

Table 2: Application programs

This table lists the characteristics of the three benchmarks used
for simulations in this paper. Column two provides a brief
description of the benchmark that is relevant for this paper.
Column three lists the input data set. Column four lists the
number of cycles (in billions) for 128 processor runs for Diry .

sharing. Second, Gray-software eliminates the extra
hardware of Gray-hardware to use the same hardware
as Tristate.

Gray-software supports near-neighbor sharing by
asking software to assign neighboring work to proces-
sors whose numbers differ by one bit (i.e., are gray
codes). Say, for example, a program normally assigns
column 3 to processor 3 and column 4 to processor
4. With Gray-software, columns 3 and 4 should be
assigned to processors 2 and 6, respectively. Alter-
natively, columns 2 and 7—the columns whose gray
codes are 3 and 4—should be assigned to processors
3 and 4.

While this software transformation may sound
complex, it can be hidden in a single line change in
the many single-program-multiple-data (SPMD) pro-
grams that calculate what work to do as a function
of processor number using something like:

my_work = get.my-proc.num().

For one-dimension, the above line should be re-
placed with:

my_work = inverse_graycode(get_my_proc_num()).

For dim dimensions, use:

my.work = inverse_multi_graycode(
dim, ni, n2,..., ndim),

where nl and ndim sizes of each dimension. The in-
verse functions can be easily provided as library rou-
tines.

Changing the mapping from pro-
cesses to processors—as done by Gray-so flware—may
make the processors that share data further away (or
closer) in the interconnection network topology of a
real machines. We do not expect this movement to
have a first-order effect on performance, because with
our directory protocols data moves from processor to
a directory at an arbitrary node to processor, not
directly between processors. Performance could be
affected, however, in systems that carefully selected
directory nodes to minimize communication distance.

2.2.3 Home

Home is another multicast protocol that cuts the
sharing code size of Tristate in half. Instead of us-
ing two bits per digit to encode 0, 1, and both, Home
uses one bit which is reset only if all sharers have the
same bit value as the directory entry’s home node.
The performance of Home is very sensitive to data
placement, since it acts like Tristate with the home
node always participating in the sharing.

Invalidation events

100 17

80

60

40

% invalidation events

o 1 _
Mﬂ% £l 5, s B
1 2 3 4 5 6 7 8 >=8
Number of sharers

Figure 2: Invalidation events distribution

These measurements are with Diry on 128 processors. Mea-
surements with other protocols studied in this paper show neg-
ligible difference in the number of invalidation events.

3 Methodology

This section discusses the benchmarks used in this pa-
per, the platform to perform evaluations, the parallel
system assumptions, and the metric for comparing
the different protocols.

3.1 Benchmarks

The three benchmarks used in this paper are ocean
and barnes from the SPLASH suite [16], and
appbt, a NAS serial benchmark [3] that was paral-
lelized by our group. We limited ourselves to three
codes—selected as having one-dimensional, three-
dimensional, and dynamic sharing—to allow us to
focus on qualitative trends and to reduce simulation
time. Table 2 summarizes the programs.

Ocean is a hydrodynamic simulation of a two-
dimensional (2D) cross-section of a cuboidal ocean
basin. The principal data structures are two-
dimensional arrays. Each processor is assigned a se-
quence of columns from the 2D arrays. Sharing is

between two consecutive processors along the bound-
ary column. Invalidations occur predominantly when
the number of sharers is less than equal to two, as
shown by Figure 2. Figure 2 shows the invalidation
events distribution for the three benchmarks with 128
processors. The horizontal axis shows the number of
sharers at an invalidation event, while the vertical
shows the percentage of invalidation events occurring
with each number of sharers.

Appbt is a computational fluid dynamics pro-
gram, which solves multiple independent systems of
non-diagonally dominant, block tridiagonal equations
with a 5 x 5 block size. The code is spatially paral-
lelized in three dimensions with each processor as-
signed the responsibility for updating one 3D sub-
block. Sharing is between neighboring processors in
3D along the boundaries of these sub-blocks. The
principal sharing occurs along faces, corner columns
and corner points of these sub-blocks between two,
three, and four processors, respectively. Figure 2
shows the invalidation events distribution with dif-
ferent number of sharers.

Barnes performs a gravitational N-body simula-
tion using the Barnes-Hut algorithm. The main data
structure is an 8-ary tree, which is partitioned con-
tiguously among processors. We have used the cost-
zones partitioning scheme described in detail by Singh
et al. [16]. The allocation in this scheme is such that
contiguity of partitions in the tree does not guaran-
tee contiguity in space. The sharing pattern is dy-
namic and irregular and the frequency of many dy-
namic sharers grows with the number of processors.

3.2 Evaluation Platform

Our measurements were done on the Wisconsin
Wind Tunnel [15). It runs parallel shared-memory
programs on a parallel message-passing computer (a
Thinking Machines CM-5) and uses a distributed,
discrete-event simulation to concurrently calculate
the programs’ execution times on a proposed tar-
get machine. The Wisconsin Wind Tunnel simulates
one or more target nodes (processors) per host node.
Physical memory limitations restrict us to simula-
tions of 128 processors or less on a 32-node CM-5. All
protocols were implemented as variants of the base
Dir SW [17] protocol module.

3.3 System Assumptions

We assume cache-coherent shared-memory multipro-
cessors of 32, 64, or 128 processor-memory nodes,
where each node contains a processor, shared-memory
module, cache, and network interface. Processors

Benchmark Processors Invalidation messages {millions)
Diry l Tristale l Coarse Gray— Gray— Home Dirg B DigB Dir B
Vector hardware software l i l
ocean 32 0.45 0.87 070 045 0.48 1.09 0.45 0.45 4.40
4 1.86 5.44 6.00 1.03 1.93 13 .63 1.86 1.93 55 02
128 7.31 19.97 28.91 7.51 7.50 53.53 7.31 8.03 314.65
appbt 32 0.72 1.01 1.10 1.07 0.96 1.03 072 072 3.82
64 1.02 1.53 277 1.67 1.30 4.99 1.02 2.09 1511
128 1.94 3.61 9.77 3.47 2.52 18.49 1.94 9.54 78.85
Darues 32 G.49 1.25 0.83 1.19 1.21 1.81 0.98 1.80 2.02
64 0 G8 2.40 1.69 228 2.33 3.72 244 4.34 6.52
128 0.95 4.76 3.14 4.41 4.41 7.49 0.01 9.90 14.16

Table 3: Total invalidation messages

This table lists the raw invalidation message count (in millions) for all the protocols studied in this paper. Minor differences in
invalidation messages between Gray-hardware and Gray-software for ocean and barnes are due to differences in the number of local
invalidations at the processor-memory nodes, which do not generate invalidation messages.

execute SPARC binaries. Memory locations other
than stack references and instructions are cached in a
node’s cache (256 KB, 4-way set-associative, 32-byte
blocks). A cache miss invokes a coherence protocol
that sends messages, accesses a directory entry etc.

We assume the network supports only point-to-
point messages—i.e., there is mo special support for
broadcasts or multicasts. Network topology is ignored
and all messages are assumed a fixed latency of 100
processor cycles. Finally, our protocol implementa~
tions assume that a directory entry logically keeps a
count of the outstanding copies of a block, a processor
always notifies the directory when it replaces a block
(called notifying [6]), and only positive acknowledge-
ments are collected at an invalidation event.

3.4 Evaluation Metric

The ultimate measure of performance is total pro-
gram execution time. The Wisconsin Wind Tunnel
allows us to calculate total program execution time
for a 100-cycle network that ignores contention. The
latency seen by a message in an real network, how-
ever, depends on the network topology, link capacity,
and message contention encountered while the mes-
sage traverses the network. We distrust the execu-
tion time results of the Wisconsin Wind Tunnel for
this study, because our results show that DirnB can
send 40 times the number of invalidation messages
as Diry. Since invalidation messages come in bursts,
they may encounter considerable contention that af-
fects execution time, but is not modeled by this ver-
sion of the Wisconsin Wind Tunnel.

For this reason, this paper will compare protocols
using the number of invalidation messages sent di-
vided by the number sent by Diry—a metric not af-
fected by contention. A further benefit of this metric
is that it focuses on exactly the place where the proto-
cols differ, much like miss ratio highlights how caches
differ even when a program’s execution time is the

bottom line. Finally, this metric does not tie results
to specific assumptions for network topology and link
capacity.

4 Results

This section discusses the results for DirB,
Diry, Tristate, Gray-hardware, Gray-software, Home,
Coarse Vector, DirsB and DiryB. Table 3 gives raw
invalidation message counts for most runs presented
in this section. Figure 3 is an example of a graph
triple we will use several times. The horizontal axis
shows the number of processors, while the vertical
axis shows the total number of invalidation messages
with a protocol divided by the total number of inval-
idations for Diry.

4.1 Diry and DirB

Table 3 shows that for Diry the number of invalida-
tion messages sent grows with the number of proces-
sors. For ocean, the increase is roughly a factor of
four, when we double the number of processors. The
first factor of two comes from having near-neighbor
sharing of twice as many boundary elements, because
columns are now divided between twice as many pro-
cessors. The second factor of two occurs because
using more processors maps less data to each per-
processor cache. Data not replaced by finite cache
effects must instead be recalled with invalidation mes-
sages. When we double the number of processors and
halve the cache size—not shown—ocean’s invalida-
tions just double. For appbt, the number of inval-
idation messages grows with the number of proces-
sors because although the sharing pattern distribu-
tion does not change, we have increased number of
boundary elements because the same 3D grid is di-
vided into greater number of processors. For barnes,
the frequency of many dynamic sharers increases with

ocean

50 50

appbt

barnes
50

Z = DIr1B = = DIrB £ = DIr1B
8 40 {{»—» DIN S 40 jj»—» DitN 9 40 l|»— DiN
@ @ @Q
(=4 o o
4 80 @ 30 @ 30
5 £ €
5 20 | 5 20 5 20
5 5 g
210 210 2 10 i
> > >
= =9 e

0 =t 0 = 0

32 64 96 128 32 64 96 128 32 64 96 128

number of processors

number of processors

number of procassors

Figure 3: Invalidation messages for DinB and Diry

The vertical axis shows number of invalidation messages for DiriB and Diry relative to Diry itself for the same number of

Processors.

the number of processors, resulting in the increase
in the absolute number of invalidation messages for
Diry.

Figure 3 shows that relative to Diry the number
of invalidation messages for Dirm B increases rapidly
with increasing number of processors. For 32 proces-
sors, the number of invalidation messages for DirB
is five to ten times Diry, while for 128 processors, the
invalidation messages blow up to 40 times Diry for
ocean and appbt. In ocean, sharing is predominantly
between two neighboring processors, while in appbt it
is primarily between a maximum of three processors.
Since the number of sharers does not increase with
the number of processors, DiryB sends more invali-
dation messages than necessary for a greater number
of processors. In barnes, the frequency of many dy-
namic sharers increase with the number of processors.
As a result, Dir; B sends fewer unnecessary messages
relative to Diry, resulting in a 15-times increase for
128 processors.

4.2 'Tristate

The question now is—can the multicast protocols
get close to Diry with much less state? Figure 4 dis-
plays the answer. Note that the vertical axis in this
figure extends to 10 rather than 50, as in Figure 3.
Figure 4 shows that Tristate is successful in keeping
the invalidation message count closer to Diry. Un-
like DiryB the number of messages does not grow
rapidly with increasing number of processors. For
128 processors, Iristate results in less than four and
two times the invalidation messages of Diry for ocean
and appbt, respectively. Results are relatively good,
because these benchmarks have a low degree of shar-
ing for which Tristate is optimized. Interestingly, for
a dynamic benchmark like barnes with a possibility
of random sharing patterns which could degrade the
performance of Tristate, the invalidation messages are
within a factor of five more for 128 processors. It ap-

pears that sharing in barnes is not completely ran-
dom in practice, and that the sharers are largely con-
secutive processors.

4.3 Gray-hardware, Gray-software,

and Home

Gray-hardware improves upon Tristate when neigh-
boring processors are involved in sharing (Sec-
tion 2.2). This effect is predominant in ocean (Fig-
ure 4), where two consecutive processors share a col-
umn (Section 3). Gray-hardware reduces the number
of messages sent by Tristate by a factor of two to three
and is almost identical to the number of messages sent
by Dirn. For appbt, sharing is between neighbor-
ing processors in three dimensions (Section 3). Since
Gray-hardware i8 targeted towards sharing in one di-
mension, it does not show any spectacular improve-
ment over Tristate in this case. The improvement is
about 4% over Tristate for 128 processors. In barnes,
we have two effects - (&) the frequency of many shar-
ers grows with the number of processors, and (b) the
sharing pattern is dynamic. These imply that the
sharers might not always be neighboring processors.
Figure 4 shows that the improvement is roughly 8%
for 128 processors.

Gray-software sends almost the same or fewer in-
validation messages than Gray-hardware. Thus, the
extra hardware for gray coding and taking its in-
verse can be eliminated. For ocean, Gray-software
is almost identical to Gray-hardware because both
the protocols use one-dimensional gray coding. The
results are more interesting for appbt, where three-
dimensional gray coding is achieved in software,
which exploits the 3D near-neighbor sharing pat-
tern of the benchmark. Here for 128 processors,
Gray-hardware sends 79% more invalidation messages
than Diry. Gray-software closes almost two-thirds of
this gap to use only 30% more invalidation messages
than Diry. For barnes, there was no direct way to

appbt

P g

bames

E E L3 -AGlay-hazdwnm %
{#—8 Gray- cottwirn Yol
2 5 g [smieie S o
@ @ Q
& & &
3 2 6 a2 6
|43 @ o -
£ £ g | 7
= c 4 o 4k s
8 2 S |
@ © =
= s 2 — 2 2
o B §asassaosmmmmmnsonnaen TR =
> > >
= o [~
£ 9 — E gl £ 5 U
32 64 96 128 32 84 96 128 32 64 96 128

number of processors

Figure 4: Invalidation messages for Home,

number of processors

number of processors

Tristate, Gray-hardware, and Gray-software

The vertical axis shows number of invalidation messages for Home,
for the same number of processors. Note the change in the vertical axis from 50 in Figure 3 to 10 in this figure. We had used a scale

of 50 in Figure 3 to accommodate Dir1B within the graph.

determine the sharing pattern. Hence, we chose to
use Gray-software in one dimension. The results are
similar to ocean, in that there is almost no difference
in the invalidation messages with Gray-hardware.

Home uses the same number of bits for the shar-
ing code as in DinB by using the home node num-
ber of a block as its reference number to do the en-
coding. Home can perform as well as Tristate or
Gray-software if data is placed so that the home node
is one of the sharers, but Home will perform worse
otherwise. Since we did not control data placement,
Figure 4 displays the latter case. Results show Home
should not be used when data placement is not con-
trolled.

4.4 Coarse Vector, Dir,B, and Dir,B

Figure 5 displays the results for Coarse Vector,
Dir,B, and DinyB versus the just-discussed
Gray-software. To be fair, we use the same num-
ber of bits for the sharing code of Coarse Vector as
in Gray-software—2 x loglV . For regular applications
with well-defined sharing patterns and low number
of sharers like ocean and appbt, Coarse Vector is
worse than Gray-software (Figure 5), and the differ-
ence grows with increasing number of processors. For
128 processors, the deterioration is around a factor
of four for these benchmarks. However, for dynamic
sharing patterns like in barnes, with a large number
of sharers, Coarse Vector shows a slower degradation
rate with increasing number of processors, and is con-
sistently better than Gray-software (Figure 5). We
found that for barnes (not shown), Coarse Vector is
worse than Gray-software when the number of shar-
ers equals two. But it becomes progressively bet-
ter than Gray-software as the number of sharers in-
crease. Even though Coarse Vector does better than
Gray-software for barnes, both perform much worse
than Diry due to the high degree of sharing.

The accuracy of Coarse Vector in tracking the

Tristate, Gray-hardware, and Gray-software, relative to Diry

number of actual sharers increases with increasing
number of bits for the sharing code. Decreasing the
number of bits for the sharing code (and hence in-
creasing the number of processors per bit), results in
increasing number of invalidation messages, as shown
by Figure 6. The horizontal axis shows the number
of bits devoted to the sharing code for Coarse Vector,
while the vertical axis shows the corresponding num-
ber of invalidation messages relative to Diry. In-
creasing the number of bits for the sharing code from
12 to 28 bits cuts down the number of invalidations
by a factor of 1.6-1.9 for the three benchmarks.

Finally, we compare Coarse Vector and
Gray-software with Dir,B and Din,B (Figure 5).
The results confirm the fact that the broadcast pro-
tocols become unstable when the number of sharers
exceeds the number of explicit pointers maintained
by these protocols. For ocean, the number of sharers
is predominantly two. Both DirnB and DiryB suc-
cessfully capture this. For appbt, Dir,B results in
a factor of 4.9 increase in invalidation messages OvVer
Diry, while DinyB is identical to Diry. This is be-
cause the number of sharers sometimes goes beyond
two but stays below five almost all the time. For
barnes, both Dir,B and DiryB are worse than the
two multicast protocols because number of sharers
can exceed four.

5 Conclusion

This paper considers alternative directory proto-
cols for providing cache coherence in medium-scale
shared-memory multiprocessors. The protocols we
compare differ primarily in their sharing code. DirB
uses a sharing code of only logN bits, but must send
invalidation messages to all N processors. At the
other extreme, Diry uses an N-bit vector to en-
code exactly who has the data to avoid sending un-
necessary invalidation messages. The goal of other

barnes

12 F--Oirel 12 0B Rm— 12 {-oies —
= L RDIa8 -d XeDiraB =z DA
& to[T G & 1olc2 e & toll G
2 123 0
28 28 28
4 8 8
£ 6 £ 6 E 6
5 g 5
= 4 = 4 £ 4
2 k=4 e
T 2 w 2 w25

0 0 o]

32 64 96 128 32 64 96 128 32 64 96 128

number of processors

number of processors

number of processors

Figure 5: Invalidation messages for Dir,B, DiryB, Coarse Vector, and Gray-software.

The vertical axis shows number of invalidation messages for DiraB, DirgB, Coarse Vector,

the same number of processors.

protocols~—DiriB, 1 < i < N, Coarse Vector, and
Tristate (also called superset)—are to use a sharing
code near the size of DiriB’s, but still send few un-
necessary invalidation messages, like Diry -

To optimize for near-neighbor sharing, we propose
three new protocols that are optimizations to Tris-
tate. Gray-hardware enumerates processors with a
binary-reflected gray code so that neighboring pro-
cessors in one-dimenision differ by only one bit.
Gray-software pushes the gray coding into software
so that multi-dimensional near-neighboring sharing
can be accommodated with Tristate hardware. Fi-
nally, Home cuts the sharing code size down $0 logN
bits (from Tristate’s 2 X logN) at the expense of more
unnecessary invalidation messages in the absence of
careful data placement.

We gathered results for three benchmarks—ocean
(one-dimensional sharing), appbt (three-dimensional
sharing), and barnes (dynamic sharing)—using the
Wisconsin Wind Tunnel to simulate 32-, 64-, and
128-processor systems. We assume notifying proto-
cols and no special network support for broadcasts
or multicasts. We measure performance using the to-
tal number of invalidation messages rather than total
execution time to focus on how the protocols differ
to avoid having to vary network topology and link
capacity assumptions.

Results for 128 processors, for example, show
Dir,B sends 43 (ocean), 40 (appbt), and 15 (barnes)
times as many invalidation messages as Diry, pro-
viding a large window of opportunity for the other
protocols. Tristate exploits much of this opportunity
by sending 2.7, 1.9, and 5 times as many invalidation
message as Diry. It appears Tristate performs better
here than it did for Gupta et al. [9], because shar-
ing in our benchmarks was less random than in their
synthetic one.

Of the closely-related protocols of Tristate,
Gray-hardware, Gray-software, and Home, we rec-
ommend Gray-software. Gray-software performs as

i0

and Gray-software, relative to Diry for

well or better as the others in all cases, requires
the same hardware as Tristate, and is not as sensi-
tive to data placement as Home. For 128 processors,
Gray-software sends the same number of invalidation
messages as Diry for ocean, and 1.3 and 4.7 as many
invalidation message as Diry for appb® and barnes,
respectively.

Coarse Vector performs worse than Gray-software
for ocean and appbt that have few dynamic shar-
ers, but better for barnes that more frequently has
many dynamic sharers. This “more stable” behavior
of Coarse Vector occurs, because it never sends more
than (K — 1) x ¢ unnecessary invalidation messages
for ¢ sharers with each bit representing K proces-
sors. Not surprisingly, Dir;B is less stable than both
Coarse Vector and Gray-software, because it sends N
messages when there are more than 4 sharers. This
rarely occurs in ocean, OCCUIS significantly in appb®
for DirsB but not for DiryB, and occurs significantly
in barnes for both Dir;B and DiryB.

Thus, the choice of protocol between Dir;B,
Coarse Vector, and Gray-software will depend on
whether one wants to optimize for few sharers
(Dir;B), many sharers (Coarse Vector), or hedge
one’s bets between both alternatives (Gray-software).

The scope of any experimental study is finite. Our
study compares directory protocols that have very
similar implementations. Specifically, we examined
implementations that differ primarily in how the ghar-
ing code is encoded. We chose to exclude protocols
that use traps [5, 11], distributed directories [10], di-
rectory caching [9], and several other optimizations
[13, 14], because setting the plethora of implementa-
tion assumptions needed for these alternatives would
have compromized the generality of our study. We
did not examine Dir; NB because it performs poorly
without a special mechanism for handling read-only
data [17]. Nevertheless, in some situations, the pro-
tocols we did not study may perform better than the
ones we did study.

This figure shows the number of invalidati
is increased from 8 to 32 bits for 128 proce

ocean (128 processors)

appbt (128 processors)

barnes (128 processors)

z 10 - z 10 z 10
B [Coarse Vector [= l Coarse Vector| a Coarse Vector
5 8" 5 8] % 8 S
i) @D Q
(=2 o o
o © [+
@ 6] % ©
@ @ [
€ = £ « Gray-softwaig
s ¢ § s 4
= T g g TS—
2 2 g 2 2 2
g o Gray-software g o Gray-soltware fé"
€ oL Sindnadhiiae [) £ 4
8 12 16 20 24 28 32 8 12 16 20 24 28 32 8 12 16 20 24 28 32

number of bits in sharing code

number of bits in sharing code

number of bits in sharing code

Figure 6: Invalidation messages for Coarse Vector and Gray-software

number of bits used by Gray-software is fixed at 14 bits.

6

Acknowledgements

Members of the Wisconsin Wind Tunnel group pro-
vided invaluable support with the Wind Tunnel,
CM-5, and the benchmarks. Singh et al. [16] wrote
and distributed the SPLASH benchmarks. Bailey
et al. [3] wrote and distributed the sequential ver-
sion of the NAS benchmarks. Eric Bach and Suresh
Chalasani helped with the literature on mesh-to-
hypercube mapping. Doug Burger and David Wood
helped develop the initial ideas in this paper. Finally,
Satish Chandra, Jim Larus, Guri Sohi, Madhusudhan
Talluri, and David Wood provided invaluable com-
ments on the initial drafts of this paper

References

{1

Anant Agarwal, Richard Simoni, Mark Horowitz, and John
Hennessy. An Evaluation of Directory Schemes for Cache Co-
herence. In Proceedings of the 15th Annual International
Symposium on Computer Architecture, pages 280-289, 1988.

J. Archibald and J.-L. Baer. Cache Coherence Protocols:
FEvaluation Using a Multiprocessor Simulation Model. ACM
Transactions on Computer Systems, 4(4):273-298, 1986.

David Bailey, John Barton, Thomas Lasinski, and Hoist Si-
mon. The NAS Parallel Benchmarks. Report RNR-91-002
Revision 2, Ames Research Center, August 1991.

Said Bettayeb, Zevi Miller, and I. Hal Sudborough. Embed-
ding Grids in Hypercubes. Journal of Computer and System
Sciences, (45):340-366, 1992,

David Chaiken, John Kubiatowics, and Anant Agarwal. Lim-
itLESS Directories: A Scalable Cache Coherence Scheme. In
Proceedings of the Fourth International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems (ASPLOS IV), pages 224-234, April 1991.

David Lars Chaiken. Cache Coherence Protocols for Large-
Scale Multiprocessors. Technical Report MIT/LCS/TR-489,
MIT Laboratory for Computer Science, September 1990.

Mee-Yee Chan. Dilation-2 Embeddings of Grids Into Hyper-
cubes. In Proceedings of the 1988 International Conference
on Parallel Processing (Vol. III), pages 205-298, 1988.

11

8]

[12]

[13]

[14]

(18]

{17

on messages sent by Coarse Vector as the number of bits devoted for the sharing code
ssors. The sharing code of j bits has each bit represent ceiling(128/j) processors. The

Mee-Yee Chan. Embedding of d-Dimensional Grids Into Op-
timal Hyerpcubes. In Proceedings of the First ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA),
pages 52-56, 1989.

Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry.
Reducing Memory and Traffic Requirements for Scalable
Directory-Based Cache Coherence Schemes. In Proceedings
of the 1990 International Conference on Parallel Process-
ing (Vol. I Architecture), pages 312-321, 1990.

David B. Gustavson. The Scalable Coherent Interface and Re-
lated Standards Projects. IEEE Micro, 12(2):10-22, February
1992.

Mark D. Hill, James R. Larus, Steven K. Reinhardt, and
David A. Wood. Cooperative Shared Memory: Software and
Hardware for Scalable Multiprocessors. In Proceedings of the
Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
V), pages 262-273, October 1992.

Kendall Square Research. Kendall Square Research Technical
Summary, 1892

Wisam Michael. A Scalable Coherent Cache System With
A Dynamic Pointer Scheme. In Proceedings of the 1992 In-
ternational Conference on Supercompuling, pages 358-367,
1992.

Brian W. O’Krafka and A. Richard Newton. An Empirical
Evaluation of Two Memory-Efficient Directory Methods. In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 138-147, 1990.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R.
Lebeck, James C. Lewis, and David A. Wood. The Wiscon-
sin Wind Tunnel: Virtual Prototyping of Parallel Computers.
In Proceedings of the 1993 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages 48—
60, May 1993.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta.
SPLASH: Stanford Parallel Applications for Shared Memory.
Computer Architecture News, 20(1):5-44, March 1992.

David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill,
James R. Larus, Alvin R. Lebeck, James C. Lewis, Shub-
hendu S. Mukherjee, Subbarao Palacharla, and Steven K.
Reinhardt. Mechanisms for Cooperative Shared Memory. In
Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 156-168, May 1993.

