Fine-Grained Sharing in
a Page Server OODBMS

Michael J. Carey
Michael J. Franklin
Markos Zaharioudakis

Technical Report #1224

April 1994

Fine-Grained Sharing in a Page Server OODBMS*

Michael J. Carey
Computer Sciences Department
University of Wisconsin
Madison, WI 53706
carey@cs.wisc.edu

Abstract

For reasons of simplicity and communication efficiency, a number
of existing object-oriented database management systems are based
on page server architectures; data pages are their minimum unit of
transfer and client caching. Despite their efficiency, page servers are
often criticized as being too restrictive when it comes to concurrency,
as existing systems use pages as the minimum locking unit as well. In
this paper we show how to support object-level locking in a page server
context. Several approaches are described, including an adaptive
granularity approach that uses page-level locking for most pages
but switches to object-level locking when finer-grained sharing is
demanded. We study the performance of these approaches, comparing
them to both a pure page server and a pure object server. For the
range of workloads that we have examined, our results indicate that
a page server is clearly preferable to an object server. Moreover,
the adaptive page server is shown to provide very good performance,
generally outperforming the pure page server, the pure object server,
and the other alternatives as well.

1 Introduction

Recent years have seen dramatic research and development
progress in the area of object-oriented database management
systems (OODBMS). There are now a number of commer-
cial offerings in this area, and these systems are beginning to
gain real acceptance for certain classes of commercial appli-
cations (e.g., CAD/CAM and CASE). This emerging gener-
ation of DBMSs is being deployed primarily in distributed,
workstation/server-based environments. In contrast to tradi-
tional relational systems, distributed OODBMS architectures
are typically based on a data-shipping approach. Data items are
shipped from servers to clients so that query processing (as well
as application processing) can be performed at the client work-
stations, providing two advantages. First, OODBMSs usually
offer programmatic interfaces that support navigation through
complex persistent data structures. Data-shipping moves the
data closer to the applications, allowing efficient fine-grained
interaction between the application and the DBMS. Second,
data-shipping offloads DBMS function from the server to the
client workstations, enabling the plentiful and relatively inex-
pensive resources of the workstations to be exploited.

*This research was sponsored in part by the Advanced Research Projects
Agency, ARPA order number 018 (formerly 8230), monitored by the U.S.
Army Research Laboratory under contract DAAB07-91-C-Q518.

Michael J. Franklin
Dept. of Computer Science
University of Maryland
College Park, MD 20742
Sfranklin@cs.umd.edu

Markos Zaharioudakis
Computer Sciences Department
University of Wisconsin
Madison WI 53706
markos @cs.wisc.edu

1.1 OODBMS Architectures

OODBMS applications phrase their requests logically, in terms
of objects. The objects themselves, however, are stored on
disk in units of pages; therefore, an OODBMS must (at some
level) manage storage in terms of data pages. The data
shipping approach does not dictate where in the system the
mapping between objects and pages resides. As a result,
existing OODBMSs differ in the granularity at which their
clients and servers interact. There are two basic approaches:
page servers, where clients and servers interact using physical
units of data (e.g., individual pages or groups of pages), and
object servers, where client/server interactions involve logical
units of data (e.g., individual objects). The choice between
these two approaches has a significant impact on the design
of many OODBMS functions, including concurrency control,
crash recovery, and query processing.

Examples of both page and object servers can be found
among current OODBMSs. Current systems that are based on
page server architectures include EXODUS, GemStone, 02,
ObjectStore, and SHORE. Systems based on the object server
approach include Itasca (a commercial version of the MCC
ORION prototype) and Versant. The Ontos system allows
application programmers to choose between the object and page
server approach statically, on a per-collection basis. Finally,
Objectivity is implemented on top of the NFS remote file access
protocol — it can be viewed as a page server that uses NFS as
its page transport mechanism. This wide variety of approaches
is due, at least in part, to the lack of a common understanding
of the performance tradeoffs between page servers and object
servers. While benchmarks for OODBMS have been developed
(e.g., 001 [Catt92] and 007 [Care93]), they do not isolate the
effect of the transfer granularity from the effects of other system
implementation decisions.

In addition to transferring data efficiently, OODBMS try
to improve performance by reducing the need to obtain data
from the server in the first place. In order to minimize
communication and server disk accesses, both page servers
and object servers typically allow clients to cache data items in
their local memories once the items have been obtained from
the server. To more fully exploit the use of client memory,
some systems support intertransaction caching, where clients
are permitted to retain their cache contents even across
transaction boundaries. Intertransaction caching requires the
use of a cache consistency maintenance protocol to ensure
that all clients see a consistent (serializable) view of the
database. Despite the potential overhead associated with
such a protocol, intertransaction caching has been shown to
offer significant performance gains [Wilk90, Care91, Wang91,
Fran92a, Fran93]. As for data transfers, the granularity at

which cache consistency is maintained can have a large impact
on the performance of an OODBMS; this is another area where
the tradeoffs are not yet well-understood.

1.2 Our Focus

Given the lack of concrete data on the tradeoffs between
object and page servers, the debate has been largely based on
qualitative arguments. One commonly voiced concern about
page servers is the potential for increased data contention due
to the use of page-level cache consistency protocols and the
difficulty of implementing fine-grained concurrency control in
the context of a page server (e.g., [DeWiS0, Catt91]).

In this paper we study the performance implications of
ODDBMS granularity in a multiple client context. While
virtually all existing page servers support cache consistency
at only a page (or coarser) granularity, we demonstrate that
this restriction is neither necessary nor desirable. We describe
three approaches for extending a page server OODBMS to
support fine-grained cache consistency maintenance, studying
their relative performance and comparing them to both a basic
object server and a basic page server. One of the three
approaches simply extends a page server to perform static,
object-level cache consistency maintenance, while the other
two are adaptive in nature.

The remainder of this paper is structured as follows:
Section 2 surveys related work. Section 3 discusses granularity
issues in data-shipping QODBMS in more detail and describes
five alternative approaches to OODBMS granularity. Section 4
describes a simulation model, and Section 5 uses the model
to analyze the performance of the five alternatives. Section 6
covers advanced issues. Finally, Section 7 summarizes our
results and discusses future work.

2 Related Work

As implied in the Introduction, the current state of knowledge
regarding the performance of alternative OODBMS architec-
tures is rather primitive. The only previous study that has at-
tempted to answer some of the relevant questions is [DeWi90].
That study compared the performance of an object server and a
page server (and also an NFS-based file server), but only in the
case of a single client and a single server. The main conclusion
was that page servers perform well when access to multiple
objects on a page is likely (i.e., when data is well-clustered),
whereas object servers are preferable when clustering on pages
is poor or client memory is scarce — due to communications
and client memory savings gained by shipping only requested
objects to clients. In general, the performance of the page
server was somewhat more robust because there is only a small
incremental CPU cost for sending a message containing a page
of objects compared to that for sending only a single object.
While this study was informative as far as it went, multi-user
issues such as concurrency control, cache consistency, and po-
tential resource bottlenecks were not investigated.

Several papers related to granularity in the area of
multiprocessor shared disk (or “data sharing”) systems are
relevant to our work. The most relevant, which inspired the
best of the algorithms that we will be proposing, is the design
of an adaptive locking algorithm for Rdb/VMS for use on

Workstation Workstation
P T e
(Appli-" Appli~) “Application
..cation.” °_ cation. - o e S

R il

Server
DBMS

{Lock & Copy

s
[Lock & Copy!
| Table |

buffer pool

Database
Disks

Database
Disks

Server Server m

Figure 1: Reference Architecture for a Page Server DBMS

VAXClusters [Josh91]. This algorithm uses a technique called
lock de-escalation and works in the context of a hierarchy of
lock granularities [Gray79]. The basic idea was to obtain locks
at the coarsest granularity (e.g., file) for which no concurrency
control conflict exists in order to minimize interaction with
the VMS distributed lock manager; however, to avoid undue
data contention, locks can later be “de-escalated” into finer-
grained locks (e.g. pages or records) if subsequent conflicts
arise. Independently, an almost identical notion of lock de-
escalation was proposed for use in the context of main memory
database systems [Lehm89]. While [Josh91] presented some
brief preliminary performance results, neither of these papers
examined the performance of lock de-escalation in any detail.

Related work on shared disk systems has also been done
at IBM Almaden [Moha91]. This paper proposed using strict
two-phase locking on objects to ensure serializability, while
using physical locks on pages to ensure cache consistency.
These physical locks can either be released during a transaction
or they can be held across transactions. The basic idea
is to allow a given page to be held in shared (read-only)
mode simultaneously at multiple sites, but to ensure that only
one site at a time can gain update access to the page. To
update a page, a site is required to become the “owner”
of that page; when a different site wishes to update the
page, it must be sent the most recent copy of the page by
the current owner. This approach was designed to exploit
the relatively inexpensive inter-node communication paths
usually found in tightly-coupled data sharing architectures, and
several alternative algorithms (differing in their crash recovery
implications) were proposed. The algorithms were ordered
based on their designers’ performance expectations [Moha91],
but no performance analysis was attempted.

3 Alternative Approaches

The general architecture of a data-shipping OODBMS is
shown in Figure 1; it consists of two types of processes that
communicate via a local area network. Each client workstation
runs a Client DBMS process which provides access to the
database for the application(s) running at its local workstation.

Applications make requests of their local Client DBMS process,
which executes the request, sometimes by sending requests for
transaction support or for data items to a Server DBMS process.
Server DBMS processes are the actual owners of data; they
are ultimately responsible for preserving the integrity of the
data and for enforcing transaction semantics. These processes
manage the stable storage on which the permanent version of
the database and the log reside; they also provide locking and
copy management for the data that they own.

At a conceptual level, the database consists of objects, while
at a physical level, the database is divided into fixed-length
(on the order of 4K or 8K bytes) pages A page is the minimum
granularity of data that can be transferred between memory and
disk. In contrast to pages, objects are a logical unit; their size
is independent of the physical page size. In general, multiple
objects can reside in a single page or a single object can span
multiple pages. The Client DBMS process at a workstation is
responsible for accepting local application requests for objects
and for bringing the relevant data items (either objects or pages)
into memory at the client. As a result, all of the data items
required by the application are ultimately brought from the
server(s) to the clients. As described earlier, intertransaction
caching can be used to permit clients to retain the data items
that they receive from the server across transaction boundaries.
Server DBMS processes are responsible for providing the most
recent committed values for the data items that they own in
response to client requests; of course, due to concurrency
control conflicts, it may not be possible for a server to provide
the requested items immediately.

3.1 Granularity Issues

The issue of data granularity arises in many aspects of an
OODBMS. In this paper, we will focus on the choice of an
appropriate data granularity for three system functions:

1. Client-server data transfer - The data items that clients
request from servers can be either objects (for object
servers) or pages (for page servers). If pages are used,
then the server can be simplified, as clients can be made
responsible for mapping objects to pages.

&2

Concurrency control (locking) - To support multi-client
(i.e., multi-user) access to data, the DBMS must enforce
serializability for transactions. Concurrency conflicts can
be detected at various granularities. Locking at a coarse
granularity usually involves less overhead, but it raises the
potential for conflicts due to false sharing, i.e., conflicts
arising at a coarse granularity due to concurrent access to
distinct, but co-located, finer-grained items.

3. Replica management (callbacks) - Intertransaction caching
allows multiple copies of data items to reside in different
client caches. As a result, cache consistency maintenance
requires replica management in addition to concurrency
control. The granularity at which replication is managed is
therefore a third parameter in the design of a data-shipping
OODBMS.

The choices of granularity for these three functions are
orthogonal. That is, it is possible to devise working algorithms

involving the use of objects or pages in each case, though care
must be taken to choose combinations that can be implemented
efficiently. In this paper we argue that existing systems —
which typically use their data transfer granularity (be it objects
or pages) as the finest granularity for concurrency control and
replica management as well —have really been too careful in this
regard. We describe and analyze the performance of several
approaches where this restriction is not made. Furthermore,
we show that significant performance gains can be obtained by
allowing these granularity decisions to be made dynamically,
in an adaptive fashion, rather than statically.

In the remainder of this section, we describe five different
approaches for treating granularity in an OODBMS. First, we
present two “basic” approaches in which the granularity chosen
for all three functions is the same. The remaining techniques
operate at multiple granularities. All five approaches are
extensions of a pessimistic, locking-based cache consistency
protocol known as Callback Locking [Howa88, Lamb91].
Transactional Callback Locking algorithms have previously
been shown to have good performance over a wide range of
system configurations and workload characteristics [Wang91,
Fran92a] and are used by several OODBMSs, including
ObjectStore and SHORE.

In the approaches described here, we assume an underlying
steal/no-force recovery scheme based on write-ahead logging
and a purge-pages-at-client, undo-at-server approach to han-
dling transaction aborts (a la [Fran92b]). When a transaction
commits, copies of all updated data pages that are still in the
client’s cache are sent back to the server that owns the data;
this simplifies the server’s job of ensuring durability for com-
mitted updates. However, the server is not required to force the
updated pages to disk. To simplify the descriptions of the ap-
proaches, we will assume that objects are smaller than a page,
as large objects (i.e., those that span multiple pages) can be
handled in a page-at-a-time fashion, as is done in EXODUS
and other systems. We will also initially assume that updates
do not change the sizes of objects, deferring the discussion of
size-changing updates until Section 6. Finally, our descriptions
assume a system with a single server, and the algorithms are
presented as though a given client workstation can have only
one transaction active at a time. Extensions to multiple servers
with partitioned data are straightforward, and local lock man-
agement can be used to allow multiple transactions on a client
to safely share a common cache.

3.2 Basic Approaches

In this section we describe two basic approaches where the
same, statically-chosen granularity is used for data transfer,
for concurrency control, and for replica management. These
approaches correspond to the traditional notions of a page
server and an object server, respectively.

3.2.1 Page Server (PS)

The first approach that we discuss is the basic page server (PS),
which transfers pages between clients and servers. The PS
approach uses a Callback Locking algorithm to maintain cache
congsistency; it uses the page-level Callback-Read (CB-Read)
algorithm studied in [Fran92a, Fran93]. CB-Read guarantees

that copies of pages in client caches are always valid, so client
transactions can safely read-lock and read cached pages without
server intervention. When a client needs access to a page that
is not resident in its cache, it sends a request for the page to the
server. If no other client is holding a write lock on the page,
then the server returns a copy of the page to the requestor;
otherwise, the server waits until the conflicting lock is released
before sending the page. The server manages write locks and
keeps track of the locations of cached pages throughout the
system, while read locks are managed by the clients.!

In order to update a page, a client must first obtain a write
lock from the server. When a write lock request arrives for a
page that is not locked at the server, the server issues callback
requests to all sites (except the requester) that hold a cached
copy of the page. At a client, such a callback request is treated
as a request for an exclusive lock on the specified page. If the
callback request cannot be granted immediately (due to a local
lock conflict with an active transaction), the client responds to
the server saying that the page is currently in use. When the
callback request gains exclusive access to the page, the page
is purged from the client’s cache and an acknowledgement is
sent to the server. Once all callbacks have been acknowledged
to the server, the server registers a write lock on the page for
the requesting client and informs the client that its write lock
request has been granted. Subsequent read or write requests for
the page by transactions from other clients will then block at the
server until the write lock is released by the holding transaction.
At the end of the transaction, the client ensures that copies of
all updated pages exist at the server and then releases its write
locks, retaining copies of all cached pages (and thus implicit
permission to read those pages).

3.2.2 Object Server (OS)

The object server (OS) approach is analogous to PS, except
that it performs data transfer, concurrency control, and replica
management all at an object granularity rather than at a page
granularity. 'The basic object server is the most obvious
approach towards avoiding the potential communication,
memory usage, and false sharing problems of the coarser-
grained PS approach. This approach is similar to the object
server that was studied in [DeWi90], although consistency
issues were not explicitly considered there.

3.3 Hybrid Approaches

In contrast to PS and OS, the remaining approaches all remove
the restriction of having to statically choose a single granularity
to be used for all granularity decisions. In this section, we
describe three modifications of the basic PS approach. We
chose a page server over an object server as the basis for these
modifications based on efficiency and simplicity considerations
(this decision is revisited in Section 6). The three proposed
approaches are each based on adding one or both of the
following extensions to PS:

IRead locks for pages that have been accessed by an active client transaction
and then dropped from that client’s cache are maintained at the server as well
as at the client; such read locks are recorded at the server before it deletes the
relevant page copy from its table of cached copy locations.

1. Fine Granularity - Although pages are the granularity
of data transfer, concurrency control and/or replica
management can be performed at a finer (in this case object)
granularity.

2. Adaptive Granularity - In some cases, the granularity at
which an action (either locking or callback) is performed
can be determined dynamically.

The first extension, fine-granularity, aims to mitigate the
potential inefficiencies due to false sharing in a pure page
server while retaining the communication efficiency associated
with shipping pages rather than objects. However, as has
been noted elsewhere, the maintenance of cache consistency
at a granularity finer than the transfer granularity increases the
complexity of maintaining transaction semantics. For example,
as discussed in [DeWi90], if multiple clients simultaneously
have permission to update different objects on the same page,
then the resulting two copies of the page must be carefully
merged to avoid losing one of the updates. A way to avoid
this problem is to disallow simultaneous updates by using a
single write token per page [Li89], as is proposed in [Moha91].
The write token approach can be communication-intensive,
however — the entire page must often be sent when the write
token is transferred from one client to the other. For thisreason,
we have chosen to merge updates in the approaches studied
here. Merging is a relatively simple process if objects do not
change size; size-changing updates can also be handled and
will be addressed in Section 6.

The second extension, adaptive granularity adjustment, aims
to avoid the potentially high communication costs that fine-
grained cache consistency maintenance can involve. In a low
contention environment, the use of object level locking or
callbacks can greatly increase the number of messages required
to maintain cache consistency (as compared to the basic PS
approach) with no accompanying benefit. By allowing the
granularity to adapt to the current level of contention, we
hope to enable the system to adapt appropriately to different
workloads.

The following subsections describe our hybrid approaches.
Because they are based on the PS architecture, we denote
them with acronyms of the form PS-xy, where x indicates
the granularity used for concurrency control and y indicates
the granularity used for replica management. An “O” is used
to denote a static object granularity, and an “A” indicates that
the granularity is determined adaptively. Thus, the three hybrid
approaches are (in order of increasing dynamism): PS-OO0, PS-
OA, and PS-AA. In all three approaches, while finer granularity
techniques are used for concurrency control and/or callbacks,
client cache management still takes place at the page level.

3.3.1 Object Locking w/Object Callbacks (PS-O0)

The first hybrid approach is basic PS extended with static
object locking and object callbacks. This scheme attempts to
combine the communication advantages of page transfers with
the increased concurrency allowed by object-level locking and
callbacks. In PS-OO, objects that are cached at a client can
be read by that client without server intervention. When a
requested object is not cached locally, the client determines the

page in which the requested object resides, and requests that
page from the server. The server reads the page from disk
(if necessary) and ensures that no other clients have a write
lock on the requested object. Before sending the page to the
client, it marks any objects in the page that are write-locked
by transactions running at other clients as “unavailable”. The
server then sends the page to the requesting client.

When the client receives a page from the server, it places
the page in its cache. If the client already has the page cached,
however, and there are uncommitted updates on the page, it
first merges the incoming page with its own copy of the page
(being sure not to overwrite the objects that have already been
updated). Al of the objects on the page, except for those
marked as unavailable, are then considered to be cache-resident
at the client. When the client wishes to update an object, it sends
arequest for a write lock on the object to the server. This request
is handled similarly to a write request in OS, namely, object-
level callbacks are sent to remote clients that have cached copies
of the object. In this case, however, a client responding to a
callback marks the object as “unavailable” rather than purging
it from the cache. The callback therefore does not affect the
availability of other objects on the page.> As in the basic OS
approach, the server maintains information on the location of
cached copies at an object granularity.

3.3.2 Object Locking w/Adaptive Callbacks (PS-OA)

PS-OA, our second hybrid approach, uses the same locking
protocol as PS-O0, but differs in how callbacks are handled.?
Due to its object-level callbacks, PS-OO is susceptible to the
following inefficiency: Suppose that client A reads a given
page P once, and that P then remains in its cache unused. If
a different client, B, wishes to later update multiple objects
on page P, a separate callback request will be sent to client A
for each individual object that B wishes to update. Client A
will have to service all of these callbacks, even though none of
the objects on page P are now being used by client A. PS-OA
attempts to avoid this problem by performing callbacks in an
adaptive (de-escalating) manner.

At the server, information on the location of copies is kept by
PS-OA at a page granularity (rather than at an object granularity
like PS-O0). When the server receives a write lock request for
an object on a given page, it sends callbacks to all other clients
that have copies of that page cached. When a client receives a
callback request, it checks to see if any of the objects on that
page are currently locked by an executing transaction. If so, the
callback behaves like a callback request in PS-OO, and only
the specific object is called back. However, if none of the other
objects on the page are in use, then the entire page is purged
from the cache instead. The server is informed of the action
taken by the client that received the callback, and it updates its
copy information accordingly.

2Transaction aborts are handled similarly, with affected objects being
marked as “unavailable” in the aborting transaction’s client cache if the page
cannot be purged due to other active transactions at that client.

3A related hybrid approach, based on hardware support for locking of
“minipages,” was independently proposed in [Chu94]. Write-write conflicts in
that proposal are always handled at the page level, however.

3.3.3 Adaptive Locking w/Adaptive Callbacks (PS-AA)

The final approach that we describe is PS-AA, which performs
both locking and callbacks in an adaptive fashion. PS-AA
behaves like the basic PS scheme in the absence of data
conflicts, de-escalating to finer-grained operation only for data
items on which conflicts arise. Furthermore, PS-AA has the
ability to “re-escalate” if it determines that the contention that
caused a de-escalation has dissipated. In PS-AA, clients record
their reads and their writes locally at both a page and an object
granularity, essentially obtaining local locks (i.e., at the client)
at both levels. The server tracks cached copies of data at a
page granularity, as in PS-OA. When a client wishes to read an
object that is not present (or is marked as “unavailable™) in its
cache, it sends a read request to the server. When the server
receives an object read request, it checks for conflicts at the
object and/or page granularity. Three cases can arise:

No Conflict - If no other client has a write lock on the
page, and no other client has an object-level write lock on the
requested object, then PS-AA behaves like the other two hybrid
PS algorithms. That is, the server returns the entire page to the
client with any objects that are write-locked by other clients
being marked as “unavailable”.

Object-level Conflict - If another client holds an object-
level write lock on the requested object, then the read request
is blocked until the other client terminates.

Page-level Conflict - Lastly, if the read request conflicts with
a page-level write lock held by another client, then the client
holding the page-level write lock is asked to de-escalate its
lock. To do so, it obtains object-level write locks at the server
for any objects that it has updated while holding the page write
lock. After de-escalation is done, the server checks for object-
level conflicts and then proceeds according to one of the two
cases described above.

When a client wishes to update an object for which it does not
have write permission (i.e., for which it has neither a write lock
on the object nor on its containing page), it sends a write request
to the server. Initially, the write request is served as in PS-OA
—if no object-level write-write conflict is found, then callbacks
are sent to clients caching the page (if any). At each client, the
callback will invalidate the entire cached page if possible. After
the server has collected the callback acknowledgements, there
are two possible outcomes: If the page has been successtully
invalidated everywhere (i.e. nobody was using it), then a page
write lock is granted to the requestor. Otherwise, if one or
more clients were using the page, then no page write lock is
possible and the requestor is granted permission only to update
the specific object.

4 Page-Server OODBMS Model

To study the performance of the alternatives described in
Section 3, we extended an existing page server OODBMS
simulator to model transactions at the level of object (rather
than page) references and processing. We also developed a
variant of the simulator that models an object server rather than
apage server. In this section, we briefly describe these extended
models; readers interested in more information about the basic
model can find more complete descriptions in [Care91, Fran93].

ource
I Other Clients
oncurrency | crient Buffer oncurrency| | Server Butfer
Control H ‘ Control ~ L.
Manager Manager| {Manager Let\!,o,kl Managfr Manager l\ffnager
e el Manager

Hesource Manager esource Manager

cpu % Network E CPU% Disks%*%

Other Clients
Figure 2: Model of a Page-Server OODBMS

Client Model Server Model

4.1 System Model

The structure of the page server OODBMS model, which
we built using the DeNet simulation language [Livn88], is
depicted in Figure 2. We model a system consisting of a
single server plus a varying number of client workstations,
all of which are connected via a local area network. The
number of client machines in the system is a parameter of
the model. The model for each client node consists of a
Buffer Manager, which manages the contents of the client
buffer pool (i.e., client cache) using an LRU page replacement
policy, a Concurrency Control Manager, which performs
locking and consistency management functions, a Resource
Manager, which models CPU activity and provides access to
the network, and a Client Manager, which coordinates the
execution of client transactions. Each client also has a module
called the Transaction Source that submits transactions to the
client workstation one after another; upon completion of one
transaction, the source waits for a specified thinking period and
then submits a new transaction. Client transactions themselves
are each modeled as a string of object references (i.e., object
reads and writes). When a client transaction aborts, it is
resubmitted with the same object reference string.

The server model is somewhat different than that of the
clients. One difference is that its Concurrency Control
Manager, in addition to managing lock information, stores
information about the location of cached data copies (either
pages or objects, depending upon the approach). Another
difference is that there is no Transaction Source module;
work for the server always arrives via the network. A third
difference has to do with the server’s Resource Manager,
which must model disk activity as well as CPU activity and
network access. Lastly, it has a Server Manager component that
coordinates server operation based on the stream of incoming
client requests.

Table 1 shows the parameters for specifying the resources
and overheads of the system and the settings that will be
used for most of this study. The simulated CPUs of the
system are managed using a two-level priority scheme. System
CPU requests, such as lock, message, and I/O initiation,
are given priority over user-level requests and are scheduled
using a FIFO queueing discipline; user requests are managed
using processor-sharing. Each disk has a FIFO queue of I/O
requests, and the disk for each request is chosen uniformly
from among all of the server’s disks. Disk access times
are drawn from a uniform distribution between a specified
minimum and maximum. The simulator’s Network Manager
component is very simple, consisting of a FIFO server with
a specified bandwidth, as protocol processing (i.e., CPU

overhead) dominates the on-the-wire time for messages in
modern local area networks. The CPU cost to send or
receive a message via the network is modeled as a fixed
per-message instruction count plus an additional per-byte
instruction increment. In addition to the main settings shown
in Table 1, we have also varied many of the model’s size
parameters (for example, scaling the database and buffers by an
order of magnitude) in order to gain additional insight into our
results and to verify that our performance results scale. These
results are discussed where appropriate in Section 5.

To extend the page server model of [Care91] to model object-
level processing, two parameters were added. The first new
parameter is ObjectsPerPage, which specifies the number of
objects per page in the database. The other new parameter is
CopyMergelnst, which specifies the per-different-object cost
incurred to merge two copies of a page that differ due to
concurrent updates to some of their objects. In developing the
object server variant of the model, the client buffer manager was
modified to manage an LRU cache of objects rather than pages,
and the client and server models were modified to exchange
objects rather than pages when data transfers occur. The
parameters of Table 1 still apply in the object server case;
the capacity of the client cache (in objects) in this case is
ClientBufSize pages times ObjectsPerPage objects per page.

4.2 Workload Model

Our simulation model provides a simple yet flexible mechanism
for describing OODBMS workloads. The access pattern for
each client workstation can be individually specified using the
parameters shown in Table 2. The size of the transactions
submitted by a given client is controlled by two parameters:
TransSize, which specifies the average number of pages
accessed by a transaction, and PageLocality, which specifies
a range of values for the number of objects to be accessed
per page by a transaction. In addition, transactions can have
an AccessPattern that is either clustered (in which case all of
the referenced objects on any given page will be referenced
together) or unclustered (in which case references to objects
on different pages may be interleaved). To model different
sharing patterns, two ranges of database pages can be specified
for each client: a hotrange and a cold range. The probability of
a given page access being directed to a page in the hot range is
explicitly specified; other accesses go to cold range pages. For
both ranges, the probability that an object read access within
the range will lead to an update of the object is also specified.
The workload parameters also include the average CPU cost
for processing an object at the client once the proper lock has
been obtained, and this cost is doubled for write accesses.
Table 2 summarizes the workload parameters to be used
throughout most of this study. Other values for these
parameters, particularly transaction size and page locality, have
also been explored and will be discussed briefly later. The
data sharing patterns inherent in the workloads of Table 2
were chosen due to their previously established effectiveness
as performance discriminators for client caching alternatives
[Care91, Fran93]. The HOTCOLD workload has a high degree
of locality per client and a moderate amount of sharing and
data contention among clients. The UNIFORM workload

ClientCPU Instruction rate of client CPU 15 MIPS

ServerCPU Instruction rate of server CPU 30 MIPS
ClientBufSize Per-client buffer size 25% of DB size
ServerBufSize Server buffer size 50% of DB size
ServerDisks Number of disks at server 2 disks

MinDiskTime Minimum disk access time 10 milliseconds
MaxDiskTime Maximum disk access time 30 milliseconds
NenworkBandwidth | Network bandwidth 80 Mbits per second
NumClients Number of client workstations 10

PageSize Size of a page 4,096 bytes
DatabaseSize Size of database in pages 1250 (5 MB)
ObjectsPerPage Number of objects per page 20 objects
FixedMsginst Fixed number of instructions per message 20,000 instructions
PerByteMsginst Number of additional instructions per message byte 10,000 per 4KB page
ControlMsgSize Size in bytes of a control message 256 bytes

Lockinst Number of instructions per lock/unlock pair 300 instructions
RegisterCopylnst Number of inst. to register/unregister a copy 300 instructions
DiskOverheadinst CPU cost for performing a disk I/O 5000 instructions
CopyMergelnst Number of instructions to merge two copies of a page | 300 instructions per object

Table 1: System and Overhead Parameters

is a low-locality workload with no particular per-client data
affinity; its level of inter-client data contention is therefore
somewhat higher than in the HOTCOLD workload. The
HICON workload is similar to the skewed workloads that are
often used to study shared-disk transaction processing systems,
and it is used here to expose the performance tradeoffs that
would be seen in the (unlikely) event of very high OODBMS
data contention. Finally, PRIVATE is a CAD-like workload
with no data contention whatsoever; the only inter-client
sharing in the workload involves read-only data.

As indicated in Table 2, our study will center primarily
around two different settings for the transaction size and page
locality parameters. We will use a transaction size setting of
30 pages together with a page locality range of 1-7 (averaging
4) objects, and we will also use a transaction size setting of
10 pages with a page locality range of 8-16 (averaging 12)
objects. Both settings yield overall average transaction lengths
of 120 objects. By varying these two parameters together in this
way for each workload, we can study the impact of a higher
or lower page locality while keeping the average transaction
length constant in terms of the number of objects accessed.*

5 Experiments and Results

In this section, our QODBMS simulation model is used to
explore the relative performance of the five main alternatives
covered in Section 3, all of which use the callback-read
paradigm for caching data on clients across transactions.
Briefly, the five alternatives include the basic object server
(08S), the basic page server (PS), and the three schemes for fine-
grained sharing in a page server — one that does both locking
and callbacks at the object level (PS-OO), one that does object-
level locking but adaptively switches to page-level callbacks
when it can (PS-OA), and one that adaptively switches from
object-level to page-level operation for doing locking as well
as callbacks (PS-AA) whenever possible.

4Due to the size of the client hot regions in the PRIVATE workload,
i.e., 25 pages, and to the fact that pages are chosen without replacement to
create transaction reference strings, the 30-page transaction size setting is not
compatible with the PRIVATE workioad.

5.1 Plan of Attack

To explore the tradeoffs between these five alternatives, their
performance will be examined under each of the four workloads
specified in Section 4.2. As mentioned there, two cases will
be considered within each workload, one where the transaction
page locality is relatively low and one where it is a factor of
three higher; locality is a key factor in determining the tradeoffs
between object servers and page servers [DeWi90], and will
also be seen to play a significant role in terms of determining the
appropriate locking granularity. Within each case, the system
size is fixed at 10 clients and the object update probability is
varied to obtain different levels of contention and write-read
data sharing. Following this series of experiments, some of the
other experiments that we have conducted are summarized.

The primary performance metric for the study is the
throughput (transaction completion rate) of the system.> We
also examined a number of additional metrics in carrying out
our analysis of the results (e.g., client and server resource
utilizations, average per-transaction message counts, average
lock waits, and transaction restart rates), but will not be
specifically showing that data here. To ensure the statistical
validity of our results, we verified that the 90% confidence
intervals for transaction response times (computed using batch
means) were sufficiently tight. The confidence interval sizes
were within a few percent of the mean in most cases, which is
more than sufficient for our purposes.

5.2 HOTCOLD Workload

The first workload to be examined is the HOTCOLD workload.
In this workload, each client has an affinity for its own preferred
region of the database, directing 80% of its accesses to that
specific region and only 20% to the database as a whole. Figures
3 and 4 show the throughput results for the relatively low and
high page localities, respectively, for this workload. To aid in
the interpretation of the results, Figure 5 shows how the per-
page update probability behaves as a function of these figures’
x-axis, i.e., as a function of the per-object update probability,

5Since we are using a closed queuing model, the inverse relationship
between throughput and response time makes either metric sufficient.

[Parameter | Meaning | HOTCOLD [UNIFORM | HICON | PRIVATE |
TransSize Mean no. of pages accessed per trans. 30o0r10 30o0r10 30or 10 10
PagelLocality No. of objects accessed per page (min-max) 1-7 or 8-16 1-7 or 8-16 1-7 or 8-16 8-16
AccessPattern | Object access pattern unclustered unclustered | unclustered unclustered
HotBounds Page bounds of hot range p to p+49, - 1 to 250 pto p+24,

p =50(n-1)+1 p=25(n-1)+1

ColdBounds Page bounds of cold range rest of DB whole DB rest of DB 626 to 1250
HotAccProb Prob. of accessing a page in the hot range 0.8 - 0.8 0.5
HotWrtProb Prob. of updating an accessed hot object 0.02t00.5 - 0.021t0 0.5 002t0 05
ColdWrtProb Prob. of updating an accessed cold object 002t00.5 0.02t0 05 0.02t0 0.5 0
PerObjlnst Mean no. of CPU inst. per object on read 5000 5000 5000 5000

(doubled on write)
ThinkTime Mean think time between transactions 0 0 0 0

Table 2: Workload Parameter Definitions and Settings for Client n

for several different page localities. (The behavior shown in
Figure 5 is general, not workload-dependent, so it will help us
to interpret the results for other workloads as well.)

We begin by considering the results shown in Figure 3 for
the case with a relatively low page locality. Initially, when
the write probability is low, object updates are few and data
contention is negligible. In this region, the fully adaptive page
server (PS-AA), the adaptive callback page server (PS-OA),
and the basic page server (PS) all perform equally well; the vast
majority of their messages in this case are page-level reads and
page-level callbacks. The page server with object locking and
callbacks (PS-Q0) performs slightly worse due to its object-
level callbacks (which are the only way that it differs from
PS-0A). In PS-O0, when a client tries to update objects in its
hot region that other clients have read and therefore cached, the
cached copies are called back one object at a time; in contrast,
the three best performers call back a whole page of objects at a
time, thereby saving significantly on callback messages. These
extra messages in PS-OO hurt performance due to the CPU
burden for message handling that they impose on the server.
Finally, the basic object server (OS) performs the worst here
due to the many additional messages implied by its object-at-
a-time approach to requesting data from the server.

As the write probability is increased in Figure 3, throughput
goes down because more updates bring more work (both
CPU processing and 1/0s) and also more data contention.
As this happens, significant differences appear among the
page server (PS) alternatives. PS-AA, the fully adaptive
approach, stands out as the best; PS-OA is next, then basic PS,
and PS-OO performs the worst. PS-OA worsens with write
probability because, though it performs page-level callbacks
if it can, it requests individual object-level write locks, and
these requests involve messages. PS-AA wins here because
only about 10% of the pages that a given transaction updates
turn out to require object locks; the rest are page-locked,
saving many write lock messages over PS-OA. Basic PS suffers
because of its page-level lock granularity — as the object
write probability is increased, page-level data contention grows
rather rapidly (as indicated by the middle curve in Figure
5). Thus, PS experiences contention due to false sharing
that PS-AA manages to head off by de-escalating locks when
necessary. Finally, PS-O0 and OS perform poorly for the
reasons discussed in the preceding paragraph.

We now turn to Figure 4, the case with much higher page

locality. The relative ordering of the alternatives is nearly the
same as before, with one major exception: basic PS does very
well here. This is due to the much higher page locality, which
enables transactions to process the same number of objects with
fewer page accesses, yielding much less data contention for PS
than before. With its contention problems largely swept aside,
PS is now able to benefit significantly from locking and calling
back a number of objects at once due to its page-level nature.
Put differently, the alternatives that request locks and/or data
on a per-object basis suffer more here, as there is now a higher
relative overhead for operating at the object level. In fact, this
higher relative overhead causes the server to become CPU-
bound due to message overhead for these alternatives, which
explains why they perform so much worse than PS does as
the write probability is increased. In contrast, because of its
adaptive nature, PS-AA still performs quite well. Unlike the
other alternatives, PS-AA almost matches the performance of
PS, being just a little worse due to message overhead (because
it still occasionally handles objects at the object level).

5.3 UNIFORM Workload

The next workload to be considered is the UNIFORM
workload, where all clients access data uniformly throughout
the entire database. Due to the absence of per-client data skew,
inter-client sharing of pages is more likely, therefore giving the
alternatives that allow object-level sharing potentially more to
gain. Figures 6 and 7 show the low and high page locality
results for this workload, respectively. Due to the lack of
locality in the workload, the server disks turn out to be more
of a bottleneck here; this makes the performance differences
between the alternative page servers a bit smaller, as message
differences are not quite as important as they were in the
HOTCOLD case (although they are certainly still important,
particularly in the high page locality case).

As before, let us first look at the low locality case (Figure
6). The performance of the basic page server (PS) is relatively
worse here than in the HOTCOLD workload due to the higher
level of data contention in the UNIFORM workload. In fact,
the performance of PS is even worse than that of the basic
object server (OS) for write probabilities beyond 0.1. The
relative ordering of the remaining three page server approaches
is the same as before, with PS-AA beating PS-OA, which beats
PS-00, and for the same basic reasons. PS-AA outperforms
PS-OA only slightly; PS-AA has a bit more overhead than it

50
0.9 4
20 -
08 = PPt
- - 40 ad
&5 =)] Lt
E 3 304 B 06 -
S £, = . ’
5 5 T 05 ; .
. = : ,
210 2 = ; K
= = 20 3 04~ N ”,
= = 4 H L
& = B 03+ ’
5] , - PageLocs=1
10 02+ - = PageLoc=4
01 ---- PageLoc=12
0 T T 0 T T 00
0.0 02 04 00 02 0.4 o0 o o

Obj. Write Prob.

Figure 3: HOTCOLD, 10 Clients
transSize = 30, pageLocality = 4 (avg)

did before because a larger percentage of its updated pages are
locked at the object level (20% as opposed to 10%), and PS-OA
has less to lose here due to its message overhead (as explained
above). PS-O0 does somewhat better here due to the lack of a
hot/cold page distinction in the UNIFORM workload. (In the
HOTCOLD workload, performance suffered under PS-OO due
to cases where a client accessed another client’s hot page and
would then have to endure a series of object-at-a-time callbacks
by the client for whom the page is hot.)

We now turn to the high locality case (Figure 7). As before,
the performance of PS is now much better because the high
locality significantly reduces data contention. As Tay has
shown [Tay85], contention grows as the square of transaction
size, so reducing the transaction size for PS by a factor of
three (in pages) implies a nine-fold decrease in inter-client
page contention. Moreover, because of the high page locality,
the alternatives that lock objects instead of pages all now suffer
a much greater relative overhead, leading the right-hand side
of Figure 7 to tell a story similar to that of Figure 4. As we
saw there, only PS-AA can manage to match the performance
of the basic page server given the high page locality.

54 HICON Worklead

Figures 8 and 9 show the results for the HICON workload,
where all clients have the same data access skew and the
degree of data contention is very high as a consequence. While
we would never expect anything close to this degree of data
contention in an OODBMS, we were interested in seeing how
well PS-AA manages to adapt under such conditions.

In most respects, Figures 8 and 9 are fairly similar to the
UNIFORM figures (Figures 6-7). This is to be expected, as
HICON is also a uniform workload in the sense that all clients
have the same data affinity; HICON differs only in that it
involves much more data contention as the write probability is
increased. Thus, most of the analysis in the preceding section
carries over to this experiment as well. The main difference
lies in PS-AA’s performance in the high page locality case
(Figure 9). As the write probability is increased, PS-AA is
not able to track the performance of the basic page server in
this case, making PS the clear performance leader at high write
probabilities in Figure 9. At first, this seems counter-intuitive:
How can PS possibly beat PS-AA under such high contention?

To understand the reason for these results, it is useful to

Obj. Write Prob,

Figure 4: HOTCOLD, 10 Clients
transSize = 10, pageLocality = 12 (avg)

Object Write Prob.
Figure 5: Page Write Probability

consider the meaning of the topmost curve of Figure 5. This
curve shows that for the object write probability range where PS
performs the best in Figure 9, the page write probability is very
close to 1.0. This means that contention for PS stops growing
for object write probabilities beyond 0.2. In fact, contention for
PS actually drops a bit for the higher write probabilities because
pages are updated earlier; since PS write-locks pages as soon
as any of their objects are updated, it obtains locks sooner and
the likelihood of deadlocks is reduced. In contrast, PS-AA
asks for write locks on objects as they are individually updated.
As aresult, many more deadlocks and transaction aborts occur
under PS-AA here, which slows down transactions and further
increases contention. The lesson from this experiment is thus
not surprising after all —~ under a combination of high page
locality and object write probability, the majority of page-
level conflicts also imply object-level conflicts, making finer-
granularity locking harmful rather than helpful. Thus, because
PS-AA is doing its job — locking at the object level when page-
level contention is present — the basic page server outperforms
it here. Fortunately, such extreme data contention is unlikely
to arise in realistic OODBMS workloads, so this is not an
indictment against PS-AA.

5.5 PRIVATE Workload

Finally, we turn to the PRIVATE workload. As compared to the
previous workloads, PRIVATE is most similar to HOTCOLD
— but with a read-only cold region, resulting in a workload
with no read/write or write/write data sharing (i.e., with no data
contention whatsoever). As shown in Table 2, the database is
split into two regions. The first half of the database is a set
of completely private, per-client hot regions, and the other half
is the shared, read-only cold region. The only updates in the
workload occur in the private hot regions. Some OODBMS
researchers expect such conflict-free workloads to be the norm
for engineering design applications, making it interesting to ask
how the various alternatives handle them.

The PRIVATE workload results for the high page locality
case® are shown in Figure 10. The results are easily explained;
client caching is very effective in keeping the hot regions

Recall that smaller client hot regions rule out using our low locality
workload with PRIVATE. We ran a case with rransSize = 15 and pageLocality=
8 (avg) to ensure that the results shown here are indeed indicative of PRIVATE
performance.

Obj. Write Prob.

Figure 9: HICON, 10 Clients
transSize = 10, pageLocaltty =12 (avg)

cached in all cases, making the system server CPU-bound
for alternatives with heavy message requirements. Messages
are thus the primary PRIVATE performance determinant.
Since there is no data contention, both PS and PS-AA
request page-level write locks in this case, thereby providing
good performance. Performance degrades significantly with
increasing write probability for PS-OA and PS-OO due to the
fact that they send many messages to ask for object-level write
locks; the two are indistinguishable because no callbacks occur
under the PRIVATE workload. As expected, since OS does
everything at the object-level, it performs the worst.

When considering the performance issues for contention-
free workloads, one other question came to mind: How
would the alternatives perform for workloads where there is
no contention for objects, but where significant page-level
contention exists (i.e., heavy false sharing)? To answer this
question, we developed a variant of the PRIVATE workload
called Interleaved PRIVATE. This workload models an extreme
case of false sharing; it was arrived at by interchanging objects
between pairs of database pages spaced at 25-page intervals
so that the hot regions of clients are combined in a pairwise
fashion ~ the hot objects for client 1 now reside in the top half
of each page of their combined (50-page) hot region, and client
2’s hot objects are on the bottom half of each page, with clients
3 and 4, 5 and 6, and so on having their hot regions interleaved
in the same manner. We then took the PRIVATE workload
transactions from before and had them access the same objects,
but in their new locations, yielding a workload with transactions

Obj. Write Prob.

Figure 10: PRIVATE, 10 Clients
transSize = 10, pageLocalzty =12 (avg)

> 08 D
0s
6 & rS 15 - é PS
£ ps-00 S ps00 15
—- PS-0A - ps-0a
7 LrPSAA o - PS-AA 7
= By ol
= ST)
= g g 104
24 =3 =3
)))
=] o
< 1=l =1
T o ot
P =1 o
fm 2 B 5 A
0 T T 0 T U 0 T T
0.0 02 04 00 a2 04 00 02 0.4
Obj. Write Prob. Obj. Write Prob. Obj. Write Prob.
Figure 6: UNIFORM, 10 Clients Figure 7: UNIFORM, 10 Clients Figure 8: HICON, 10 Clients
transSize = 30, pageLocalz[y 4 (avg) transSize = 10, pagel. ocalzty =12 (avg) transSize = 30, pageLocalzty 4 (avg)
>¢ 08 - S
£ PS S¢ 08
1041 £ £5-00 60 ~ £t #5-00
— rS-0A 30
& A PS-AA & =
2 2 £
2 &= &
= 204 = A0 bt
2 & 2
)))
= = =
£ : £
=0 & 204 =
0 T T 0 T T 0 T T
00 0z 04 00 az 04 a0 02 0.4

Obj. Write Prob.

Figure 11: Interleaved-PRIVATE
transSize = 20, pageLocality = 6 (avg)

that can be roughly described as having transSize = 20 and
pageLocality = 6 (avg).

Figure 11 shows the results for the Interleaved Private
workload. Compared to Figure 10, several differences are
apparent. First, while OS is still the worst alternative, it is
relatively better due to the lower page locality. Second, also
due to the lower page locality, the performance differences
are smaller here than in the original PRIVATE workload.
Third, and most importantly, the relative performance of the
alternatives is somewhat different here. Over some of the range
of write probabilities, in fact, PS-OO, which locks and calls
back objects, offers the best performance, even outperforming
PS-AA to some extent. This is due to the extreme nature of the
Interleaved PRIVATE workload — since the hot objects for a
given client occupy half of a page that also contains hot objects
from its corresponding neighbor, the alternatives that use page-
level callbacks create a significant “ping-pong” effect, with
pages moving back and forth between the clients (viathe server,
of course). This can happen frequently in PS-AA and PS-OA
because a client transaction of average size 20 will access about
40% of the pages in the client’s hot region; thus, a neighboring
transaction that updates objects residing in any of the other 60%
of the hot region pages will call them back in their entirety.
Since PS-OO does object-level callbacks, it allows each client
to simply cache and retain their hot objects, avoiding the “ping-
pong” problem. (OS actually avoids it too, but this advantage
is overwhelmed by the other message costs of OS.) However,
the performance of PS-OO degrades as the write probability is

increased due to increasing message overhead associated with
object-level write lock requests.

5.6 Scalability and Completeness

In this section, we discuss several other experiments. We first
address database-size scaling, and then briefly summarize key
lessons from our other parametric explorations.

5.6.1 Scalability of Results

In reading through the analyses of the various workloads,
the reader will hopefully have noticed two things — that the
reasons for the results make a good deal of sense independent
of the workload particulars, and that they depend on relative
rather than absolute conditions. Thus, while we have used
a small database and small caches to make our simulations
less costly, there is nothing in particular about the results that
should keep them from being equally applicable given much
larger databases and memories. To verify this, we re-ran our
HOTCOLD, UNIFORM, and HICON experiments with the
database and client and server buffer pool sizes all scaled up
by a factor of nine. To reestablish similar operating conditions
following this order of magnitude increase, we also scaled
up the transaction size in pages. Since contention decreases
linearly in the database size, but increases as the square of the
transaction length [Tay85], the transactions were scaled up by
a factor of three.

Figures 12-14 show the results of the scaled-up case for the
low page locality. To make it easy to compare trends with
the experiments with the small database and buffer pools, the
results are shown in a normalized fashion. Specifically, since
PS-AA was generally the best performer throughout, the figures
plot the throughput of the other alternatives as a fraction of
PS-AA’s throughput. The solid lines show the results for the
scaled-up case, with the corresponding dotted lines showing
the previous results. It is clear from the curves that the results
scale as expected; the trends are the same, and lead to the
same conclusions regarding the relative performance of the
alternatives. The only arguably significant difference appears
in Figure 12, where OS performs even worse for the HOTCOLD
workload relative to the other alternatives.

5.6.2 Parameter Space Coverage

During the process of trying to understand the tradeoffs
among the alternatives, we also conducted a number of other
experiments. Though space prevents us from presenting those
results in detail, we summarize them briefly here. Our other
experiments included varying the number of client workstations
ala[Care91, Fran92a], using the clustered object access pattern,
and reducing the network bandwidth by a factor of ten. In all
cases, while the numbers were different, the qualititativeresults
told the same basic story regarding the algorithm tradeotfs and
the relative superiority of PS-AA. We also tried experiments
with other transaction sizes and localities; the only results
that differed from those of the experiments covered here were
results with an extreme page locality of one. That extreme case
yielded the only cases that we found where the object server
approach was competitive; under the UNIFORM workload, OS
won slightly (but only very briefly), and under the HOTCOLD

workload, OS was somewhat better than PS-AA over the entire
range of write probabilities. In both cases, the communication
cost saved by not sending a whole page to get a single object
was the main reason for the improvement, a la [DeWi90].

6 Other Granularity Issues

In this section we discuss two additional granularity issues:
concurrent page updates and “grouped-object” servers.

6.1 Concurrent Page Updates

As discussed in Section 3.3, combining object-level locking
with page-granularity data transfers raises the issue of
managing concurrent updates to pages. In general, this issue
can be resolved by either merging the updates of multiple clients
when necessary, or by disallowing concurrent updates using a
write-token approach. Merging can be CPU intensive and
may also require additional disk I/O at the server. On the
other hand, a write-token approach has the potential to be more
communication-intensive, as pages must often be sent along
with the transfer of the write-token. In a workstation/server
OODBMS, the cost of bouncing pages among multiple updaters
could be significant due to the relatively high communication
overheads of a local area network.

For this reason, we have focused our work on approaches
that allow concurrent page updates to occur.” As stated
previously, with fixed-length objects, the merging of concurrent
updates is fairly straightforward. When objects are allowed to
change size, however, the merge operation can become more
complicated. For example, if two objects on a given page are
increased in size by concurrent updaters, it is possible that a
subsequent merging of the two updates will cause the page to
overflow. Overflow can be handled using a standard forwarding
technique a la [Astr76], but this requires additional mechanism
at the server and could entail extra disk I/Os to update the
anchor pages of forwarded objects. Another approach would
be to use a space-reservation protocol; e.g., potential updaters
could be allocated a maximum update size beyond which they
would have to perform the forwarding themselves, as normal.

An alternative to merging that still allows concurrent page
updates can be applied in systems that use write-ahead-logging
(WAL). The WAL protocol ensures that all relevant log records
are sent to the server prior to a transaction commit. These
log records could be replayed at the server in order to update
the pages at the server, obviating the need to merge already-
updated pages that have been sent from clients. This “redo-at-
server” scheme is simple to implement (and was thus chosen
for the initial version of SHORE [Care94]). However, it has the
drawback of shifting a significant burden to the server, as the
server must repeat the updates performed by all clients. This
could negate one of the primary advantages of data-shipping,
namely the offloading of the server by utilizingclient resources.

6.2 Grouped-Object Servers

A second issue that we wish to address is our choice of
a page server as the foundation for our hybrid approaches.
In particular, it can be argued that it is possible to group

7 As future work, we do also plan to explore the write token approach.

Throughput Relative to PS-AA

05 - 0.5

Throughput Relative to PS-AA

Throughput Relative to PS-AA

X 08 X 08
Q rs O rs O ps
] ps-00 [0 rs-00 [rs-00
~ PS-0A -+ rs-0A -+ PS-0A
— 9x Scaling — 9x Scaling — 9x Scaling
-~ 1x Scaling -~ 1x Scaling -+ Ix Scaling
0.0 T T 00 : , 0.0 ; .
[130) 02 04 00 02 04 0.0 02 04

Obj. Write Prob.

Figure 12: HOTCOLD Scaling, 10 Cli
fransSize = 90, pageLocality = a (avg)

objects into coarser units — independent of pages — in order
to obtain the benefits of large data transfers. A variant of
this approach, which we call a “grouped-object” server, is
provided by the Versant OODBMS. While grouped-objects
can easily be used for data transfer, they can only be used
for cache consistency if the grouping is done in a static fashion.
This is because all clients must agree as to which objects
belong to a particular granule in order for consistency to be
maintained; furthermore, all clients must follow the same
hierarchical locking protocol over the grouped objects. Thus, if
grouping is done dynamically, grouping will only be usable for
data transfers; in this case, a grouped-object server will have
performance characteristics similar to our PS-OO approach,
which typically had lower performance than PS-AA.

7 Conclusions

In this paper, we have studied the granularity choices that
arise in the areas of client-server data transfers and cache
consistency for data-shipping OODBMS architectures. While
existing OODBMSs tend to favor the page server approach,
this approach has been criticized for being too restrictive when
it comes to concurrency; this is due to the fact that existing
implementations have used pages as the granularity for locking
and callbacks as well as for data transfers. We showed that
this criticism is unwarranted by presenting three page server
variants that allow for concurrent data sharing at the object
level while retaining the performance advantages of shipping
pages in response to client data access requests. The first was
a static approach that performs locking and callbacks at the
object level; the second approach is similar, but it uses page-
level callbacks when it can; the third approach also uses page-
level locking when it can, switching to object-level locking
only for pages where finer-grained sharing occurs. We studied
the performance of these approaches for a wide range of client
data sharing patterns, comparing them to each other and to pure
page and object servers. For the range of workloads examined,
our results indicate that a page server is clearly preferable to an
object server. Moreover, the adaptive page server was shown to
provide very good performance; it outperformed the pure page
server, the pure object server, and the other two alternatives.
As a result, we plan to use this approach in the context of the
SHORE system that we are now building [Care94].

Obj. Write Prob.

Figure 13: UNIFORM Scaling, 10 Cli
transSize = 90, pageLocality =4 (avg)

Obj. Write Prob.

Figure 14: HICON Scaling, 10 Clients
fransSize = 30, pageLocality = 4 (avg)

References

[Astr76] M. Astrahan, et al, “System R: Relational Approach to
Database Management”, ACM TODS 1(2), 1976.

[Care91] M. Carey, M. Franklin, M. Livny, E. Shekita, “Data Caching
Tradeoffs in Client-Server DBMS Architectures”, ACM SIGMOD
Conf., Denver, June 1991,

[Care93] M. Carey, D. DeWitt, J. Naughton. “The OO7 Benchmark”
ACM SIGMOD Conf., Washington D.C., 1993.

[Care94] M. Carey, et al. “Shoring up Persistent Applications”, ACM
SIGMOD Conf., Minneapolis, May, 1994.

[Catt91] R. Cattell, Object Data Management, Addison Wesley,
Reading, MA, 1991.

[Catt92] R. Cattell, J. Skeen, “Object Operations Benchmark”, ACM
TODS, 17(1), March 1992.

[Chud4] S. Chu, M. Winslett, “Minipage Locking Support for Page-
Server Database Management Systems”, submitted for publication,

Feb. 1994,

[DeWi90] D. DeWitt, P. Futtersack, D. Maier, F. Velez, “A
Study of Three Alternative Workstation-Server Architectures for
Object-Oriented Database Systems”, 16tk VLDB Conf., Brisbane,
Australia, Aug. 1990,

[Fran92a] M. Franklin, M. Carey, “Client-Server Caching Revisited”,
Proc. Int’l Workshop on Distributed Object Mgmt., Edmonton,
Canada, Aug. 1992.

[Fran92b] M. Franklin, et al. “Crash Recovery in Client-Server
EXODUS”, ACM SIGMOD Conf. San Diego, June, 1992.

[Fran93] M. Franklin, Caching and Memory Management in Client-
Server Database Systems, Ph.D. Thesis, TR #1168, Computer
Sciences Dept., Univ. of WI, Madison, July 1993.

[Gray79] J. Gray “Notes on Database Operating Systems” Operating
Systems: An Advanced Course, Springer-Verlag, 1979.

[Howa88] J. Howard, et al, “Scale and Performance in a Distributed
File System”, ACM TOCS 6(1), Feb. 1988.

[Josh91] A. Joshi, “Adaptive Locking Strategies in a Multi-Node
Data Sharing System”, 17th VLDB Conf., Barcelona, 1991.

[Lamb91] C. Lamb, G. Landis, J. Orenstein, D. Weinreb, “The
ObjectStore Database System”, CACM 34(10), Oct. 1991.

[Lehm89] T. Lehman, M. Carey, “A Concurrency Control Algorithm
for Memory-Resident Database Systems”, 3rd Int’l. FODO Conf.,
Paris, France, June 1989,

[Li89] K. Li, P. Hudak, “Memory Coherence in Shared Virtual
Memory Systems”, ACM TOCS,7(4) Nov., 1989.

[Livn88] M. Livny, DeNet User’s Guide, Version 1.0, Computer
Sciences Dept., Univ. of WI-Madison, 1988.

[Moha91] C. Mohan, L. Narang, “Recovery and Coherency-Control
Protocols for Fast Intersystem Page Transfer and Fine-Granularity
Locking in a Shared Disks Transaction Environment”, /7th VLDB
Conf., Barcelona, Sept. 1991.

[Tay85] Y. Tay, N. Goodman, R. Suri, “Locking Performance in
Centralized Databases”, ACM TODS 10(4), Dec. 1985.

[Wang91] Y. Wang, L. Rowe, “Cache Consistency and Concurrency
Control in a Client/Server DBMS Architecture”, ACM SIGMOD
Conf., Denver, June 1991,

[Wilk90] W. Wilkinson, M. Neimat, “Maintaining Consistency of
Client Cached Data”, 16th VLDB Conf., Brisbane, 1990,

