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Abstract

The programming models presented by parallel computers are diverse and changing. We
study a new parallel programming model—cooperative shared memory (CSM)—with a col-
laborative effort between chemical engineers and computer scientists. Since CSM machines
do not (yet) exist we evaluate our applications and machine designs with the Wisconsin Wind
Tunnel (WWT), which runs CSM programs and calculates the performance of hypothetical
parallel computers.

The application considered is the class of three-dimensional elliptic partial differential
equations (Laplace, Stokes, Navier) with solutions represented by boundary integral equa-
tions. The parallel algorithm follows naturally from our use of the Completed Double Layer
Boundary Integral Equation Method (CDLBIEM).

A major result is the demonstration that coding CDLBIEM is much simpler under CSM
than with the message passing model, and yet performance (computational times and speed
ups) is comparable, a fact that may be of great interest to designers of future machines.
With WWT, we can also examine performance as a function of machine parameters such as
cache size and network bandwidth and latency. The possibility of tweaking simultaneously
the algorithm and architecture to outline pathways of evolution for future parallel machines
is an important concept explored in this work.

Keywords: electrostatics, Laplace equation, potential theory;
boundary element, boundary integral equation;
cache coherence, DIR;SW, shared memory.
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1 Introduction

Economic factors are forcing the convergence of parallel computer hardware to a collection of
workstation-like nodes connected by a fast, usually custom network [Culler et al, 1993] (see
Figure 1). A similar consensus, however, has not developed for the mechanisms this hardware
should provide to support the communication and synchronization necessary to execute parallel
programs. In large part, this situation is due to the (temporary or permanent) absense of a
generally-accepted parallel programming model.

Parallel programming models are an abstraction of parallel machines that allow users to design
parallel programs. To be effective the models must be both natural to use and straightforward to
implement.

This present effort brings users (chemical engineers) and implementors (computer scientists)
together to evaluate and refine a new parallel programming model called CSM (Cooperative Shared
Memory). CSM allows users to view all their data as residing in a common memory but asks them
to manage performance with data buffering hints [Hill et al., 1993]. Since no CSM machines exist
we evaluate our designs with the Wisconsin Wind Tunnel (WWT) [Reinhardt et al., 1993]. WWT
runs CSM programs and calculates expected performance of a specific implementation. WW'T
is key to this research as it lets us use a machine that does not exist to influence what the next
generation of parallel machines would look like.

Processor Nodes

Network

Figure 1: Organization of a parallel computer. Many parallel computers are composed of P
processor nodes, each of which contains a microprocessor, cache, and physically local memory.
The nodes are connected by an interconnection network (e.g., a 2D mesh or fat tree).

Elliptic partial differential equations (PDEs) provide an excellent vehicle for trying out these
ideas. They are encountered in diverse phenomena in science and engineering: flow through porous
media, steady-state heat transfer, and very viscous flows are some of the chemical engineering
examples that come to mind. A boundary integral equation approach appropriate for complex
geometries associated with structured media [Kim and Karrila, 1991; Phan-Thien and Kim, 1994]
has successfully tackled these elliptic PDEs on a number of parallel computers [Amann and Kim,
1993; Fuentes and Kim, 1992; Karrila et al. 1989; Traenkle et al. 1993], and presents itself as a
logical test algorithm for programming models and proposed parallel computers.

Our first results in this direction are reported here. A boundary integral solution of the three
dimensional Laplace equation governing the interaction between charged particles in a dielectric
has been implemented in CSM. Our results indicate that for this class of boundary integral compu-
tations, CSM using a simple directory cache—coherence protocol (Dir; SW, see Section 5.1) scales
very effectively to many processors (we obtained a 7.74-fold speedup from 16 to 128 processors
for our problem). Our experimental measurements have gone up to simulations of 256 processors;



with access to larger machines to host the simulations, we plan to extend these shared-memory
experiments to over 1000 processors. This is an important finding given the generally prevalent
view that shared memory does not scale effectively to large numbers of processors. Even though
we have previously validated the Wisconsin Wind Tunnel against an existing system [Reinhardt et
al., 1993], projections to any non-existent system may still contain errors [Rettberg and Thomas,
1986].

2 Programming Models for Paralle]l Computers

A programming model is an abstraction from both programming languages and computer hard-
ware that specifies the operations that may be performed and the cost of performing them without
going into too much detail. Single-processor computers are unified by the von Neumann program-
ming model that allows people to switch languages (e.g., FORTRAN to C) and computers (VAX
to DECstation) without great disruption. The von Neumann model’s consensus is so broad that
many users forget it is there.

Broadly speaking today’s parallel computers support three programming models: message
passing, shared memory, and data parallel. We will discuss the first two but not data parallel,
because data parallel’s generality is not (yet) established.

The message-passing programming model exposes the hardware of a P-processor computer and
asks the programmer or compiler to write a program with the P processors, that use P address
spaces, and communicate with explicit messages. An address spaceis a mapping from addresses —
conceptually variable names — to memory locations — conceptually storage for variable values.
Thus, on a message-passing computer, the hardware will treat accesses to variable X by two
different processors as referring to two different locations. If X is to refer to the same location —
as in a language like HPF (high performance Fortran) — the compiler and runtime system must
send messages to create the illusion. The cost model for message-passing is that messages have
large start-up costs, implying that performance will be better for programs that can send only a
few, large messages.

The shared-memory programming model uses P processors, but allows them to share a single
address space. Thus, accesses to the same address automatically refer to the same variable. A
consequence of this variable sharing is that communication occurs implicitly whenever a processor
reads a location last written by another.

The term “shared memory” may suggest that all memory resides in a central place. To the
contrary, most future shared-memory computers will use the same physically-distributed memory
modules as a message-passing computer (see Figure 1). In contrast to message-passing, how-
ever, shared-memory programmers and compilers do not have to know exactly where data reside,
because they to not have to move it between address spaces with explicit messages.

One drawback of hiding the location of data is that it obscures the real cost of a shared-
memory access leading some to argue that the appropriate cost model for shared memory is that
all memory accesses have equal cost [Lin and Snyder, 1990]. Furthermore, hardware designers
often use the caches in each node to keep copies of some memory locations so that subsequent
accesses can be serviced quickly (e.g., Kendall Square KSR-1 [Kendall Square Research, 1992]
and Stanford DASH [Lenoski et al., 1992]). These caches usually hold the most recently accessed
locations since empirical evidence shows that this data is most likely to be accessed next. Cached
copies of data differ from software created copies, because they retain their original address and—in
a technique called cache coherence-they will be automatically reclaimed by hardware if another
processer writes the original memory location. A second difference is that caches store copies in



fixed-sized blocks of 32 to 128 bytes (4-16 double-precision floating-point numbers), while software
copies can be of any size.

The next section introduces a more realistic cost model for programming on cache-coherent
shared-memory computers.

3 Cooperative Shared Memory

Cooperative Shared Memory is a programming mode] that relies on shared-memory semantics for
correctness, but then provides a cost model and performance primitives that allow the programmer
to understand and manage program performance on cache-coherent shared-memory hardware
[Hill et al., 1993]. The model is “cooperative” in two ways. First, it discourages programs
whose processors compete when accessing shared data, and instead favors that they coordinate to
move data as little as possible. Second, it identifies sharing patterns that hardware can support
effectively to encourage their use; thus, allowing the software and hardware to cooperate.

Our initial implementation of cooperative shared memory, called Check-In/Check-Out (CICO),
asks the programmer to think of the computer as having a cache at each processor but not to
worry about the physical location of memory. We then ask the programmer to move data between
cache and memory with three annotations. However, unlike message-passing, the annotations
are “hints” that may be omitted or inserted aggressively without affecting the correctness of
the program. The final paragraph of this section discusses the advantages of this decoupling of
performance and correctness.

CICO’s annotations are:

check_out X Expect exclusive access to data
check_out_S Expect shared access to data
check_in Expect end of data access

check_out_X asserts that the processor performing the check-out expects to be the only processor
accessing the data until it is checked-in. check_out_S asserts that the processor is willing to share
read-only access to the block. check_in marks the end of an interval in which a processor uses the
data. Operationally, the check_out annotations can be viewed as fetching a copy of the data into
the processor’s cache, as if the processor directly accessed the block. In contrast, the check.in
annotation can be viewed as flushing the data from the processor’s cache back to memory, as if
the processor’s cache had replaced it.

When a CICO program executes on a cache-coherent computer, communication will occur
for three reasons. First, communication occurs at check_out and check_in annotations. Con-
sequently, performance can be improved by restructing the code to move the annotations out
of inner loops whenever possible. Second, communication occurs when the program violates an
annotation’s assumption (e.g., the programmer expects exclusive access and multiple processes
access the same data). Third, communication occurs when processors require exclusive access to
different variables that happen to be placed in the same cache block, called false sharing.

Currently, we ask programmers to check_out and check_in cache blocks, but we provide
tools that give feedback on what variable accesses cause communication so that programmers can
“performance debug” their programs. In the future, we hope to associate CICO annotations with
high-level language data types so that the compiler can manage both large data aggregates and
eliminate false sharing. Nevertheless, we expect the programmer will still need to manage the big
picture of communication.

Since the purpose of CICO annotations allow programmers to identify communication, why not
just have programmer use message passing, where communication is explicit? The key advantage of



CICO is that function and performance are separate. Adding CICO annotations can never break a
correct program. Thus, the optimizations can be added aggressively to important parts of program
and be completely omitted in rarely-executing parts. Furthermore, since CICO annotations do
not change a datum’s address, a program can optimize one routine without changing all routines
that interact with it. With message-passing, on the other hand, performance optimizations must
be done carefully to avoid transformations that could introduce functional bugs.

4 Boundary Integral Equation Methods for Laplace’s Equation

In this section we derive boundary integral equations (BIEs) that model the electric potential
generated by N fixed charged bodies. These boundary integral equations are equivalent to the
differential Laplace equation but have the advantage that the unknowns are densities confined to
the body surfaces, i.e., in going from the PDE to the BIE there is a reduction in dimensionality. In
addition, the specific version used here, the Completed Double Layer Boundary Integral Equation
Method (CDLBIEM), is amenable to solution by fixed-point iterative methods.

We consider two problems:

1. The N bodies are located at fixed points in an unbounded infinite void domain.
2. The N bodies are inclusions placed inside a spherical perfect conductor.

The standard CDLBIEM approach for problem 1 is readily extended to handle problem 2, using
the method of images. The bounded domain problem, while providing additional physical insight,
also introduces a well characterized increase in the computation to communication ratio — there
is an increase in the computational load per processor, without a corresponding increase in inter—
processor communications. The final equations for both arrays are of the same structure and are
solved by the same algorithm as described in the third part of this section. Since the load balance
has a large impact on the program’s scaling, we divide the workload onto the processors according
to a heuristic algorithm called Largest Processing Time first [Graham, 1969] and described in
Section 4.4. Finally special issues of CDLBIEM’s implementation in the Cooperative Shared
Memory (CSM) model are discussed.

4.1 N Bodies in an Unbounded Domain

The boundary integral approach is particularly well suited to handle the electrostatic interactions
between N bodies of arbitrary shape placed at specified locations in a 3-dimensional void! space of
infinite extent. However, for purposes of demonstrating the basic method, we present results for
the special case of N spheres. The assumption that they are perfect conductors ensures that their
surfaces are equipotentials. The derivation is presented in detail for the single-particle geometry,
but the extension to the multi-particle geometry is quite straightforward as summarized in the
subsequent section.

tThe analysis is readily extended to a dielectric medium by introducing the dielectric permittivity.



4.1.1 CDLBIEM for One Body

The electric potential %(z) in the void infinite domain satisfies the Laplace equation and the
following boundary condition:

PDE V2 =0 z e VO 0
BC e = V() |

Here V° denotes the open infinite 3-dimensional domain exterior to the body and .5 = 9V is the
surface of the body. In the case of a uniform applied (macroscopic) electric field E> the ambient
field can be written explicitly as 9™ = —E* - .

To derive the boundary integral representation we start with the basic relations: the Green’s
function or the fundamental solution of the Laplace equation; Green’s identity; and the integral
representation. The proofs are readily available in a number of references on potential theory,
e.g., [Jackson, 1975]. The classical integral representation is then modified to yield the completed
double layer representation which we use in our work.

The Green’s function for the Laplace equation is

1

O =g

(2)
and satisfies the following PDE and homogeneous boundary condition:

PDE V;G=-8(-=2) ; €E€V° )
BC Gim_,oo =0.

This Green’s function is used with Green’s theorem (Green’s second identity),

[ (ViGw(e) - 6Vi(e) ave= ¢ (VeG¥ - GVeh) () dc @)

54500

and the boundary condition of (1) at infinity to arrive at the integral representation,

x inside of V' ¢(x)

2 outside of V. 0 - ]{ Gla, €) A(E) - Veub(€) dS
zon S=0V iyY(=) 5
1 1 a)-(z—§)
—_— e —r dS; .
4 ?{; |z — &3 ¥(€) 45 (5)
The normal vector # = —n points out of the body into V. The first integral on the RHS, the so

called single layer potential, corresponds physically to a field generated by a surface distribution
of charges. The second integral, the double layer potential, is a field generated by a surface
distribution of electric dipoles. It will prove convenient to define

(x—&) A&

K(z, &) = m (6)

as the entity for the kernel of the double layer operator.

The classical integral representation (5) can be used directly as a computational method; given
the potential on the surface, we solve the integral equation for the unknown surface charge density
which is proportional to 7 - V¢9(€). However, a far more efficient computational method based



on the double layer potential can be derived as we now show.
The double layer part of the integral representation may be rewritten as

Cpln) = § K(2,€) 0(6) dS

where ¢(n) = -;-v,b(n) ,n € S is the double layer density on the sphere surface and K is the double
layer operator. Because of the weak singularity (as z — €) in K (=, £), the double layer kernel is
a compact linear operator [Friedman, 1982].

An essential property of the linear double layer operator are its jump conditions on the body
surface. As the point of evaluation, = goes from outside to S, and from S to inside, the jumps in
Equation 5 of 1(n)/2 are due solely to the double layer potential because the single layer potential
is obviously continuous across S. Indeed, for any double layer density ¢, we can show from first
principles that given @ = n+ en (so that for € > 0, = is inside V; for € < 0, x is outside V; and for
¢ =0, z =nis on S) the jump properties of the double layer potential may be written explicitly
as:

lim § K0 0(@dSe = K(n,6) (&) dSe + o) )
lip § K@ 9p©dSe = § K, 6(€) dSe — oln) (®)

It is evident that the double layer potential, as a superposition of dipole fields, cannot represent
the field produced by a charged conductor. That is precisely the role of the single layer potential.
However, in place of the single layer potential, we can use the field generated by a point charge,
with charge equal to the known net charge Q. on particle o and position x, at any arbitrary
point inside the body. This yields the completed double layer boundary integral representation,

$e) =9+ 2k f Kl €0l0)dS  sme V. )

On the surface of the particle, we employ the boundary condition and formally substitute the
surface potential 1(n) by the constant unknown #, to get the boundary integral equation. Now
because of the jump condition (7), the boundary integral equation for the unknown potential 1),
on the body surface is

Yo = %(n) = P=(n) + I?—C_%"‘ + fg K(n, &)p(€) dSe +¢(n) ;m€S, (10)

note that the operator that acts on ¢(n) is 1 + K.

Since the complete potential cannot be created by the double layer operator itself, the range
of the operator 1+ K is incomplete: the orthogonal complement of its range has dimension one.
By the Fredholm theorems, N(1 + K), the null space of 1 + K, must also have dimension one
[Friedman, 1982]. In fact, the constant function ¢ = 1 on the surface of the particle is the basis
of N(1 + K). Since nonzero surface potentials and charges go hand in hand, we may complete
the integral representation by assigning the unknown potential to a projection of the double layer
density on the null space,

1

Va=—g § pdS= —¢' (g, ') . (11)



Here S, denotes the surface area of particle o and

o' =1/V/5. (12)

is the normalized basis of N(1 + K) with respect to the inner product,
(fi)=§ fods. (13)

Equation (11) is a further condition for the double layer density ©(®) and is inserted into
Equation (10). The resulting equation for the unknown double layer density on the particle
surface S, is:

oln) = —47(m) = -2 = = f ple) a5~ § Kingp@)as . (4

In Equation (14) the operator K is replaced by the new operator H = IC + ©@) (8, p(*)) that
can be viewed as the Wielandt deflated double layer operator. The eigenvalue of K with the largest
norm is an isolated eigenvalue at —1 [Friedman, 1982] and the Wielandt deflation shifts it to the
origin. Consequently, the spectral radius of # is less than one and # is a contraction map. We
have thus arrived at the major purpose of the completed double layer representation: a well posed
Fredholm integral equation of the second kind that is amenable to iterative solution to the unique
fixed point. In subsequent sections, we will show that such iterative solutions fit naturally onto
parallel computers. We conclude this section with two items: the extension of the representation
to the N-body problem and the numerical approach to solve the boundary integral equation.

4.1.2 CDLBIEM for N Bodies

The equations derived so far are valid for just one body a in an infinite void space. In this section
the equations are generalized to describe N bodies in an infinite void space. Each body % is
described by its associated point charge of magnitude (), its position z,, and its surface S,. We
have N bodies, thus k varies in the range from 1 to N. Now the boundary surface S of the vacuum
in the completed double layer boundary integral representation (9) is the union of all body surfaces
S,.. Instead of having just one point charge, we have an array of N point charges that create a
sum of potential fields. These ideas are expressed in the following equation corresponding to the
equation for one body (9):

() +Z{

Using the jump condition (7) we obtain the boundary integral equation on the surface S, of
particle & corresponding to Equation (10):

Ve = P(n) +Z{

1 is the uniform potential on the perfectly conducting body .
Now we have a new operator 1+ K with a new nullspace that has one dimension for each body
surface and is spanned by N basis functions. There are N distinct basis functions, one for each

+ & K e)0e) dsg} eV (15)

!(B—'Ell S

el T hE (m, €)p(€) dSe} +o(m) meS . (16)



body surface:

1 .
W) T ®ES
o) () {o By k=1.N. (17)

After Wielandt’s deflation has been applied in parallel for all basis functions of the nullspace, the
following integral equations for the unknown double layer density ¢ are obtained:

o) = —0=() — 5, Q5= {2 ] K ge@dsf (9

]77“”31[

There is one equation for each body surface S;.. This system of integral equations can not be solved
analytically for arbitrary body shapes and number of bodies. The rest of this work approaches the
solution of this system numerically, using boundary elements and fixed-point iterative methods.
Having obtained the solution ¢ of the equation system (18), the potential on each body k can be

calculated using Equation (11):
1
-g—]{ p(€) dS¢ . (19)
k J S

The potential in the vacuum is readily available by evaluating Equation (15).

Uy =

4,1.3 Numerics

This section describes the numerical approach to solve Equation (18). The numerical solution
scheme boils down to (1) discretization of the particle surfaces into boundary elements; (2) ap-
proximation of the double layer densities by a basis set; and (3) approximation of the integrals by
quadratures. The integral equation then reduces to a large linear system in which the unknown
vector is the discretized representation of the double layer density.

Each body surface is discretized into M boundary elements, which are planar triangles. Those
are sufficient for the considered case of spherical bodies. First order collocation is used to re-
duce the continuous domain of the unknown double layer density ¢(n) to a finite set of variables
at distinct collocation points. In our approach to the problem, one boundary element has one
collocation point, its centroid, and ¢(n) is assumed to be constant on the whole boundary ele-
ment. However, to solve problems with more complex body shapes, curved elements, higher order
interpolation and higher order quadratures will be especially useful [Chan et al., 1992].

The double layer integral occuring in the boundary integral equation (18) is approximated by
Gaussian-Legendre quadrature. The common quadrature formulas for 1-dimensional domains are
generalized to the case of 2-dimensional boundary elements: for each natural coordinate direction
a l-dimensional Gaussian-Legendre quadrature is performed.

The resulting numerical approximation of the boundary integral equations (18) is

Or = Plmi) = — mz Z l”k (20)
'I
wbk;
1 M N M Q Q
A Z SkjPr; — ZZ [ 1 X g0 Z Wy, z Wys K (M, Prj 1+ Wi 1T 4 w5080 )01
k j=1 =1 j=1 r=1 s=1
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where
e k denotes the kth body and i its ith boundary element.
e 7; is the collocation point on this boundary element.
e S, is its area.
e p; 1 is one of its vertices and the vectors uy;; and wy; , represent its edges.
e w, and W,, are the weights, z, and &,, the Q collocation points of the quadrature.

The discretized boundary integral equation (20) is a system of linear algebraic equations, which

can be written as
r=A-z+b. (21)

The unknown vector @ contains the collocated double layer density as its elements: T(._1)ar4s =
@x;. The largest eigenvalues of the system matrix A are quite close to those of H. Thus parallel
iterative methods are applied to solve this system, as described in the next sections.

4.2 N Bodies in a Spherical Container

So far we have considered N bodies in an unbounded domain. In this section the boundary
integral equations (18) are modified to describe the double layer densities on N bodies that are
placed inside a closed spherical container. The bodies are surrounded by vacuum and are perfect
conductors as in the unbounded case. The spherical container is also a perfect conductor, so that
its exterior region does not influence the interior system. By using the method of tmages a new
Green’s function G (z,¢) and a new double layer kernel K (z, ¢) are derived. The domain for the
unknown double layer densities stays the same — the particle surfaces. Thus, upon descretization
the number of unknowns — there is one unknown collocated double layer density per boundary
element — stays the same. The fact that there is a spherical container surrounding the bodies is
completely accounted for by the modified Green’s function and the new double layer kernel. The
resulting discretized algebraic equation system is exactly of the same form as the one in Section
4.1.3, except that the elements in the system matrix A and in the constant vector b have changed.
Thus, the same iteration algorithm and its same 1mplementat10n in the CSM model can be used.
However, the routines for creating the system matrix A and the vector b have to be modified.
The net result of this approach is that the amount of inter-processor communication stays the
same, but the computation to communication ratio increases significantly — a good portent for
parallelism.

In electrostatics the method of images is a well known trick for matching BCs on boundaries
of simple shape. For the problem at hand, the relevant Green’s function is [Jackson, 1975]

= 1 a 1 a
G(z, €)= - - . , (22)
drlz — €l are] |o - e T anfz - & 4anlelfe - €]
where &* q 25 is known as the inverse point. The first term is the usual free-space Green’s

function correspondmg to a point charge at &; the second term corresponds to an image charge at
the inverse point that serves to cancel the first term on the sphere surface |z| = a.

10



To apply the method of images to CDLBIEM, the image of the double layer is needed as well.
Now a dipole can be obtained by a limiting process of coalescence of two point charges, so its
image can be derived in a straightforward way. In mathematical terms, we note that the double
layer kernel is obtained as a normal derivative (with respect to €) of the Green’s function:

K(,¢) = 2VeGla, €) - #(E) (23)

The same operations are now applied to the image terms. We start with

. 11
Gle, &) = - [w%] , (24)
where
a _|€]
o Tal )
¢l a

—lo— €] = @ - E)w — &), =l =€ =\l — )@ - &)

and use the following expressions for differentiation with respect to &,

a1 =z =&
55; =T (25)
Oor a
ey 26
5 = TRt (36)
o o
T()g = [5[2 (5,‘]' - 261'6]') . (27)

Here the unit vector e is defined as ¢; = lgé—l Using these derivatives the expression for the new
double layer kernel is obtained:

(w E) 1 { T; ”"fi n er v[_g*l [‘”lg*l(éu _Qeiej)!_‘zi;:_é-i_+ei:]} . (28)

[1, — E[S 5*103 5*[2

Note, that the first term of K (z, ¢) is the contribution of the original (free-space) double layer and
its second term is all contributed from its image. Note also, that the boundary integral equations,
such as (18), stay the same, except that the contribution of the image point charge has to be
added and the kernel of the double layer integral has to be replaced. Thus, the boundary integral
equation (18) turns into:

pn) = —¢=n) - 31: fs pl6) dSe (29)

— Z{ @ 9 + R’(n,s)so(adse}

= | In— = |z, ,n - T;{%fcll 5

The integration domain of the double layer mtegral is unchanged. The discretization and numerical
treatment of this modified boundary integral equation is the same as for the original boundary
integral equation. This ensures, that only minor changes have to be made in the program codes,
namely in the routines that calculate the system matrix A and the constant vector b.

11



4.3 Algorithm

The linear algebraic equation system (20) derived in Section 4.1.3 has a large number of unknowns
and a dense system matrix A. For a problem of N bodies, which are discretized into M boundary
elements each, the number of unknowns is M N. The number of elements in A is (MN)? For
instance, for N = 1024 and M = 320 the number of unknowns is 327,680, which using single
precision values is equivalent to 1 MB of memory, but even this is dwarfed by the 400 GB needed
for the system matrix.

The equation system (21) is solved by a parallel form of the Jacob: [teration that can be
applied because of the small spectral radius of the system matrix A. The Jacobi Iteration can
easily be parallelized, that is, the equation system is split into smaller parts, which can be solved
on different processors in parallel. This reduces the runtime to a tolerable amount. A further
advantage of the Jacobi Iteration is that the system matrix is split into square block matrices. To
reduce the memory space just a part of these block matrices is stored permanently in memory, the
rest is reconstructed during the iteration. Furthermore, this parallel algorithm is modified to a
Block Gauss-Seidel Iteration, which naturally fits our physical problem and reduces the execution
time by an order of magnitude.

The basic idea of the sequential Jacobi Iteration is to guess the solution z of the equation
system (21) initially, then to insert this guess into the right hand side of Equation (21). Evaluating
the right hand side gives a new approximation for the solution = that is inserted again into the
right hand side. This iteration step is repeated until the deviation of the approximation from the
exact solution is sufficiently small.

Let - 1)M+,( ) denote the approximation of the solution on the ith boundary element on the
kth surface oy in iteration step ¢, then the initial guess is given by:

2 (0) = by (30)

Inserting this initial guess into the right hand side of (21) we get a new more accurate guess

T (8 + 1) .

Ty (t+ 1) Z A,,m:Ln by, m=1.NM . (31)

The time # > 0 has dimensionless integer values and denotes the current iteration number.

To parallelize the Jacobi Iteration the solution vector @ is split into IV subvectors vy, where
y,. represents the solution on the surface of one body k. Each processor calculates Np = %
subvectors, where P is the number of processors, that is the bodies are uniformly distributed
across the processors, assuming the number of bodies is a multiple of the number of processors.
Every processor owns a subset of the iteration equations (31) as well as a subvector dj of the
constant vector b, and is responsible for updating its set of sub solution vectors y;. Processor p

has to evaluate the following formulas to update its sub vectors within one iteration step:

y(t+1) = ( Cii Cra -+ Cin ) . yZFt) + ( dy, > (32)
yn(t)

=[(p — 1)Np + 1]...(pNp) .

Here the matrix Cj; is a submatrix of A and describes the influence of body [ onto body k. Note,

12



that no other submatrix contains any information about this influence. The formulas (32) assume
that processor p knows the solution on every body surface at iteration step t. This means, that
all the solutions on the bodies that are not calculated on processor p have to be communicated
to processor p at time t. This is a synchronous algorithm, since this communication synchronizes
all processors at time ¢. The drawbacks of this synchronous approach are that it does not give us
much freedom in modifying the iteration scheme, as described in the subsequent paragraphs, and
introduces a large amount of communication and synchronization overhead, where the processors
have to wait for each other and are in an idle state.

A different, better performing approach is an asynchronous iteration scheme where a sub
solution vector on a distant body is communicated, as soon and only when it is needed. This
guarantees that always the most recent solution vector is used, which accelerates the convergence
of the solution as the Gauss-Seidel Iteration does in the sequential case [Bertsekas and Tsitsiklis,
1989]. Furthermore the synchronization and communication overhead is reduced.

Removing the synchronization barrier gives us more freedom in choosing a suitable iteration
scheme. The physical insight into the problem of charged bodies tells us, that the local interactions
between bodies are dominant against the interactions between far apart bodies. Thus, we do not
want to consider the influence from a far apart body onto a particular body as often as we consider
the influence from a close body in our calculations. To update an influence from one body & to
another body [ means to communicate the solution on body k to body I. This idea improves the
performance of the algorithm implementation in two ways:

1. If the two considered bodies are calculated on two different processors, the amount of com-
munication is reduced, since the solution on the bodies are exchanged less frequently between
the two processors. This demands that neighboring bodies should be clustered on one pro-
cessor, so that the computation of the solution on neighboring bodies can be executed locally
on the processors without any communication.

2. The amount of computation is reduced, since a processor only evaluates the dot product
associated to a sub solution vector, if this sub solution vector has been updated in its local
address space. Furthermore, if the submatrix Cy, needed for this dot product is not stored in
memory but has to be recreated because of memory shortage, the decrease in computation
is of orders of magnitude.

At the present time, the problem size is limited by the computational performance of current
parallel machines, and item 2 dominates. However, on future machines item 1 may become more
important as memory and network performance lag behind microprocessor development.

The implementation of this modified iteration scheme is as follows. A further input to the
algorithm is the communication schedule matriz (CS matriz) S, whose integer elements describe
the degree of influence from one body onto another. This N x N matrix is constructed a priors
looking at the array of bodies. The element sy minus 1 is the number of iterations, in which
the update of the influence from body [ onto body k is suppressed. That is, the influence is
only updated in those iteration steps ¢, where the division of ¢t by sy yields no remainder. In
those iteration steps the processor calculating body k accesses gobal shared memory to obtain
the solution on body I. After this it recreates the corresponding submatrix Ci, if necessary and
updates the corresponding dot product. A straightforward approach for setting the elements sy
is taking a feature which is closely related to the distance between the bodies k& and [. In our
approach sy, is proportional to the distance between the bodies k and [, scaled by the maximum
distance occuring in the given array of bodies. There might be better criterions for the degree of
influence between two bodies, e.g as presented in [Fuentes and Kim, 1992], but our simple choice
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already speeds up the convergence time of the solution by orders of magnitude. The asynchronous
iteration algorithm is illustrated in Figure 2.

[ Initialize Guess

Y

Synchronization

'Y

——D[ Calculate Matrix

Y

[ Receive Remote Solution

v

‘ Dot Product

v

———{ Update Solution
Tteration
—+ Synchronization

Figure 2: Asynchronous iteration algorithm.

4.4 Load Balancing

Load balancing has a large impact on our program’s scaling performance. In order to optimize
scaleup, the bodies are distributed to the processors in such a way that each processor has ap-
proximately the same workload. We use the CS matrix to estimate the amount of computation
time needed to calculate the solution on one body, viz., the sum of all entries in row &k of the CS
matrix § which corresponds to body &:

N
Ik = Z Sk - (33)
=1

The greater g is, the less often influences of other bodies onto body k are updated, correspond-
ingly, communication and computation is executed less frequently. The sum of these g, over all

bodies on one processor p
pNp

¢ = Z Gx (34)
k=(p—~1)Np+1

should have a minimal variance with respect to the processors. This problem wherein N nonneg-
ative numbers, gi, are partitioned into P blocks is called off-line makespan scheduling [Coffman
and Lueker, 1991]. The sum of the numbers in one block p, g7, has a maximum. This maximal
sum has to be minimized, so that the variance of g? is minimal. A further constraint is that each
of the P processors has to have the same number of bodies Np. This problem is N P-complete. It
is generally believed that algorithms solving N P-complete problems both exactly and efficiently
do not exist. For this reason, a heuristic algorithm is used to solve this problem. We use a re-
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versed and modified form of Largest Processing Time first (LPT) [Graham, 1969]. Our algorithm
is reversed because we take the “smallest” processing time first, and modsfied, since each processor
has to have the same number of bodies.

The load balancing routine works as follows:

1. The bodies are sorted so that g, is in a strictly decreasing order.
9. Body k with the greatest g, is assigned to the processor with the least g7, and g* is updated.

3. Then body k, with the second greatest g, is assigned to the processor which now has the
least g”.

4. The previous step is iterated until all bodies are distributed.

This routine guarantees that the variance of g7 is minimal and optimizes the load balance of the
Processors.

However, the heuristic algorithm LPT is not optimal, but both its absolute and relative error
tend to zero, if N is much larger than P [Coffman and Lueker, 1991].

4.5 Implementation in Cooperative Shared Memory

The parallel algorithm as described in Section 4.3 is implemented in Cooperative Shared Memory
(CSM). There have already been two further implementations on the Thinking Machines Cor-
poration’s CM-5: one in ANSI C using the message-passing CMMD library and one in Split-C
[Traenkle et al., 1993]. The CSM model fits our algorithm because of several reasons. First, the
update of a sub solution vector y; on processor p is done simply by accessing global shared memory.
Second, the amount of read and write global shared data, the sub solution vectors yy for instance,
is small compared to the amount of read only local data, which is stored in the local memory
spaces of the processors, such as the sub matrices Cy;. And third, because of the distribution of
the communication data in coherent memory blocks, one communication of one subvector y; is
done by one check_in, check_out pair.

The algorithm is easy to code in CSM because of the uniform address space of the global shared
memory. Accessing data in global shared memory involves just one active processor, different from
the message-passing implementation, where one processor is the requester and another processor
is the server of the data (this requires the coding of request-and-send schemes, e.g. in the form of
message loops).

CSM is a high level programming model and makes minor assumptions about the underlying
hardware architecture. This makes it easy to port the code to different parallel machines with
little or without any modifications.

5 Results and Discussion

5.1 Dir,SW: An Implementation of Cooperative Shared Memory

The results in this paper assume that cooperative shared memory is implemented on a shared-
memory computer using a cache-coherence protocol called Diry S W [Hill et al., 1993]. Recall that

'The name Diry SW is derived by extending the directory protocol taxonomy as in [Agarwal, et al., 1988].
They use [ir:B and Dir; NB to stand for directories with ¢ pointers that do or do not use broadcast. The SW in
Diry SW stands for our Soft Ware trap handlers.
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Processors
Cache
Block size

TLB
Page size

Message latency
Barrier latency

Cache miss

Cache invalidate

8-256 SPARCs

256 KB, 4-way set-associative
32 bytes

64 entries, fully associative,

FIFO replacement
4 KB

100 cycles remote, 10 cycles to self
100 cycles from last arrival

19 cycles + 5 if block is replaced

+ 8 if replaced block was exclusive copy

3 cycles + 5 if block is invalidated

+ 8 if invalidated block was exclusive copy

check._out Same as cache miss, plus 1 cycle
for check.out issue

check.in Same as cache invalidate, plus 1 cycle
for check_in issue

Directory 10 cycles + 8 if cache block is received
+ 5 if message is sent
+ 8 if cache block is sent

Trap 255 cycles + 5 for each message sent + 8

for each block sent
(directory hardware locked out
for first 55 cycles)

Table 1: Dur; SW assumptions.

cache coherence prevents a processor from reading a cached copy of data when another processor
has updated the original memory location. Dir; SW uses hardware similar to that of a message-
passing computer (c.f., Figure 1) plus it logically associates a small amount of memory-called
a directory entry-with each cache-block-sized piece of the memory. Diry SW uses the directory
entry to record that the block is idle (no cached copies), one writable copy exists, or the number
of read-only copies. The cache coherence protocol uses a combination of hardware and low-level
runtime software (trap handlers) to insure that a processor can obtain a copy of a block regardless
of the block’s prior state. Dir; SW is designed so that the transitions favored by CICO have the
highest performance.
Our numerical results also use the specific implementation assumptions listed in Table 1.

5.2 The Wisconsin Wind Tunnel

One challenge for performing experiments on the Dir; SW computer is that it does not (yet)
exist. For this reason, the measurements in this paper are performed on the Wisconsin Wind
Tunnel (WWT), a virtual prototype for cache-coherent, shared-memory computers [Reinhardt et
al., 1993]. WWT runs parallel shared-memory programs on a parallel message-passing computer
(a Thinking Machines CM-5) [Thinking Machines Corp., 1991] and uses a distributed, discrete-
event simulation to concurrently calculate the programs’ execution times on a proposed target
computer. Wherever possible, WWT exploits the similarities between Diry SW and the CM-5 to
run faster.

Each processor in the simulated Dir; SW computer (the target system) executes SPARC bi-
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naries. The execution time for each instruction is fixed. Instruction fetches and stack accesses
require no additional cycles beyond the basic instruction time. Other memory locations are
cached in a node’s cache. A cache hit takes no additional cycles, while a cache miss invokes a
coherence protocol that sends messages, accesses a directory entry, etc. Each message, cache or
directory transition has a cost. Caches and directories process messages in first-come-first-serve
order. Queuing delay is included in the cost of a cache miss. Network topology and contention
are ignored, and all messages are assumed a fixed latency.

There are two important drawbacks to using WWT. First, when WWT predicts the per-
formance of the proposed Diry SW computer, it actually runs programs about 100 times slower
[Reinhardt et al., 1993]. This means that full-scale data sets cannot be used in practice. Second,
any model of a real physical system may fail to include key aspects of that system. We guard
against important errors by validating against existing systems, but we can never be sure our
predictions are error-free at new design points.

WWT, however, provides several advantages for this research. First, we can perform the
research prior to the existence of a Dir; SW computer. Second, we can easily vary system param-
eters, such as the number of processors and cache size. Third, we get repeatable performance
predictions and access internal hardware state to determine where time was wasted. Fourth, we
can build virtual prototypes for other computers and compare results in controlled experiments.

The net result is that the Wisconsin Wind Tunnel allows us to run on future parallel super-
computers to influence how they are built! WWT allows us to cull the parallel supercomputer
design space in a manner similar to how aeronautical engineers use conventional wind tunnels to
design airplanes. This is why WWT is so named, even when it does not blow air.

5.3 Convergence Time
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Figure 3: Relative error versus execution time in clock cycles.

This section discusses the execution time of the algorithm in Section 4.3 with respect to
different communication scheme (CS) matrices. In Figure 3 two program runs with two different
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Number of processors 64
No container

Number of bodies 256
Number of boundary elements per body 20
Stored part of system matrix 240/256

Maximal number of suppressed updates maxy,; s 1, 40

Table 2: Input parameters for convergence time.

Number of processors 16, 32, 64, 128, 256
No container

Number of bodies 256

Number of boundary elements per body 20

Stored part of system matrix 240/256

Maximal number of suppressed updates maxg skt 5

Table 3: Input parameters for speedup.

CS matrices S are presented. The relative error of the solution vector with respect to a solution
obtained in a previous run at a high iteration step versus the execution time in clock cycles is
presented.” The input parameters common to both runs are presented in Table 2.

Curve “1” represents a run where all sub solution vectors are updated on every processor in
every iteration step, which corresponds to an algorithm using a synchronous iteration scheme, that
is, all entries in § are set to one. Curve “40” is a run where the element sy, corresponding to the
most distant bodies k& and [ is set to 40 and other elements are scaled w.r.t. to their corresponding
body distances. Since this run communicates the sub solution vectors between the different bodies
less frequently and less recent data is available on the processors, the number of iteration steps
needed for convergence increases. However, the execution time decreases significantly because of

less computation and less communication. Both runs store ggg of the system matrix in memory
permanently before the execution of the iteration, the remaining % is recalculated during the

iteration when needed, which is the main part of the execution time. Submatrices describing far
field interactions are least likely to be stored permanently, because they are recalculated very
infrequently in case of run “40”. Run “40” converges to the same solution for the double layer
density as in run “1”, but at a much faster rate (in time).

5.4 Speedup

An important criterion for the performance and quality of a parallel program is its speedup.
The speedup measures the scaling of the program under the contraint of a constant problem size.
The program is executed on different numbers of processors but with the same input set. The
speedup is usually defined as
_T"(n)

Tp(n)

where n is the size of the given input set, P the numbers of processors, T the execution time
on P processors and T*(n) the execution time of the optimal sequential implementation of the
algorithm. However, T*(n) is unknown for our algorithm and the problem with 256 bodies is too

Sp(n) (35)

tA 100 MHz microprocessor, for example, takes one second to execute 10% clock cycles.
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Figure 4: Speedup w.r.t. 16 processors.

large for the memory and speed of one processor. So we use a modified speedup based on the
execution time Ty on 16 processors:

i) = 203

For an ideal parallel implementation of an algorithm the speedup is equal to the number of
processors: Sp(n) = P or Sp(n) = P/16. Using the input set described in Table 3 the iteration
algorithm has been executed on 16, 32, 64, 128, and 256 processors. The resulting speedup is
shown in Figure 4 and is quite close to the ideal straight line. The speedup of the run on 128
processors compared to the run on 16 processors is 7.74 (the ideal speedup is 8). However, the run
on 256 processors has a speedup of 12.37 (the ideal speedup is 16). The scaling of the program
breaks down on 256 processors since the load balancing routine has no effect for this run. Each
processor computes only one body so that there is no degree of freedom in distributing the bodies.
With decreasing numbers of bodies per processor, the degrees of freedom decrease, the load balance
deteriorates (see Table 4), and the scaling of the program gets worse. In production runs we will
have a large number of bodies per processor, so that this effect will become less important.

The use of 16-processor data as the base point for speedup computations brings up an impor-
tant point concerning performance evaluations spanning several orders of magnitude in numbers
of processors. The classical definition of speedup requires results from a one-processor run, but
it is impractical to evaluate large simulations with a single-processor run; most notably because
even if total memory used is fixed, the memory hierarchy intrinsic to high performance computing
complicates the performance analysis. The alternative of running a smaller problem with one pro-
cessor sidesteps the issue of scalability of a given large scale simulation. The ultimate resolution
of this issue lies in a more sophisticated definition of speedup and scaleup. In the present paper,
the 16—processor base point serves the purpose of illustrating the scalability of the present work

(36)

to large numbers of processors.
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P fastest processor slowest processor load balance speedup
16 413487228 420940543 1.0180 1.0

32 206406117 213151123 1.0327 1.9748
64 102472027 108515008 1.0590 3.8791
128 51451454 54358375 1.0565 7.7438
256 21075391 34020965 1.6143 12.373

Table 4: Load balance and speedup for the runs on 16, 32, 64, 128, and 256 processors. The
execution time of the iteration is given in clock cycles for the “slowest” and the “fastest” processor.
Load balance is the ratio of slowest processor to fastest processor. Speedup is based on slowest
PTOCessor.

Number of processors Number of bodies Stored part
8 64 60/64

32 128 120/128

128 256 240/256

16 64 60/64

64 128 120/128

256 256 240/256

Table 5: Input parameters for time-constraint scaleup.

5.5 Time-constraint Scaleup

Another measure for the performance of a parallel program is its scaleup under the constraint
of constant execution time. The execution time is estimated a prior: for different input sets and
for different numbers of processors. As in the case of the speedup measurement, the program is
executed with different numbers of processors, but now the input sets are chosen in such a way
that the execution time stays constant. The actually obtained execution time is a measure for the
scaling of the program. In the ideal case, this execution time scaled w.r.t. the number of processors
in the smallest used partition is equal to 1. Since the calculation time of the system matrix is
of O((NM)?) and dominates the iteration time, the overall computation time of the iteration
algorithm, assuming that parts of the system matrix are recalculated within the iteration, is also
of O((NM)?).

According to this order the input sets for the runs on the different partition sizes are chosen
as in Table 5. The rest of the parameters, for instance the number of boundary elements, are as
shown in Table 3. Because of the limitations for the partition sizes there are two different sets of
runs both presented in Figure 5, which show the almost ideal scaleup of the iteration algorithm.
However, the scaleup is much worse for the run on 256 processors. This is due to the effect already
discussed in Section 5.4, where the degree of freedom in distributing the bodies to get a good load
balance is zero.

5.6 Many Bodies in a Spherical Container

Using the solution for the double layer density returned by the algorithm discussed so far, and
Equation (15) the potential is calculated on a planar cross section through the spherical container.
We considered an array of randomly placed 64 equally sized and equally charged spheres within a
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spherical container, whose surface is an equipotential with potential 0, and calculated the potential
lines on this crossection as shown in Figure 6. The thick lines are the boundaries of the container
and of the spheres, the thinner lines are the equipotentials. In the future, routine access to
this level of computational modeling allow us to bridge the gap between idealized microstructure
theories (e.g. periodic lattice models) and macroscopic semi-empirical theories (e.g. cell models).

6 Conclusions

In several respects, the situation we face today for coding of high performance parallel algorithms
is analogous to the difficulties faced by computational scientists in the early days of the electronic
digital computer. To obtain optimal performance, the programs had to be written in machine
code and were not portable from one machine to another. This observation is particularly relevant
for computationally oriented chemical engineers who, while interested in harnessing the power of
massively parallel computers, are not willing to devote inordinate amounts of time to rewrite their
codes for every successive generation of parallel machines. The need for a generally accepted par-
allel programming model, to pave the way for high-performance high-level parallel programming
language(s) is quite clear. Such a programming model would play a role analogous to that played
by Fortran in the development of the digital computer, in making computational power accessible
to a larger community of scientists and engineers.

Our work contributes to this goal. A parallel programming model (CSM) has been proposed,
and its performance should be tested on a number of “typical” scientific and engineering appli-
cations. The CDLBIEM algorithm has a record of good performance on small shared-memory
(Sequent Symmetry) and message-passing computers (Intel iPSC/860, OM5) that provides a basis
for comparison. Our finding is that coding is much simpler on CSM than with the message-passing
model (in fact, quite similar to our experience on the Sequent Symmetry), and yet performance
(computational times and speed ups) is comparable, even when scaled up to 256 processors. This
result may be of great interest to designers of future machines.

Because of space limitations, we have said very little about the physical applications of these
computations. We merely note in passing that this class of methods is useful in bridging the
gaps in length and time scales between macroscopic, empirical theories (such as cell models)
and microscopic theories that incorporate microstructure information on a more rigorous manner.
Readers interested in an example of such linkages are directed to a companion article [Traenkle
and Kim, 1994].

Since CSM machines do not exist (yet), our results were obtained on the Wisconsin Wind
Tunnel. An important by-product of this direction taken is that we were also able to examine
performance as a function of machine parameters such as cache size and network bandwidth and
latency. In essence, we were able to vary simultaneously the algorithm and architecture, to look for
optimal combinations. Given the enormous cost of building actual hardware, we believe that this
concept will become an important area for further research in the parallel computing community.
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Nomenclature

Roman letters

A system matrix

A system matrix
Cy;  sub system matrix
E®  electric field at infinity

G Green’s function

G Green'’s function for container problem
K double layer kernel

K double layer kernel for container problem

N number of bodies
N() nullspace

M number of boundary elements

P number of processors

Q charge

Qo  net charge of body o

S boundary of the fluid or void domain
Sa surface of body «

Sp speedup

Sp  modified speedup

S communication schedule (CS) matrix
1% domain of the fluid or vacuum

a sphere radius

b constant system vector

dy constant system subvector

n surface normal pointing into the body
7 surface normal pointing into the fluid or void
Skl element of CS matrix

T position vector

T solution vector

Yk sub solution vector on body k

T,  position of singularity in body «

Greek letters

Dirac’s delta function
i Kronecker delta
n position vector on body surface
I3 position vector as integration variable
p double layer density
() basis function of the nullspace on body «
Y electric potential
Ya electric potential on body «
P> electric potential at infinity
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Mathematical operators

H Wielandt deflated double layer operator
K double layer operator

v gradient w.r.t. @

Ve gradient wr.t. €

V.  divergence

Subscripts
4,7 boundary element label
k,l body label

o body label

Superscripts

(@) body label
oo domain at infinity
* lmage
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