Query Processing in Firm
Real-Time Database Systems

Hwee Hwa Pang
Technical Report #1221

March 1994

QUERY PROCESSING
IN
FIRM REAL-TIME DATABASE SYSTEMS

by

HWEE HWA PANG

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON

1994

ABSTRACT

In recent years, a demand for real-time systems that can manipulate large amounts of shared data has
led to the emergence of real-time database systems as a research area. The basic mechanism that all real-time
systems employ to enable jobs to meet their deadlines is priority scheduling. The adoption of priority
scheduling requires changes in the ways that database systems service their jobs, which are traditionally not
priority-based. In this thesis, we propose and evaluate techniques to allow queries to execute efficiently in

priority scheduling environments such as those envisioned for real-time database systems.

One of the key system resources for processing queries efficiently is memory (i.e., buffer pages). To
maximize the effectiveness of priority scheduling, it must be possible for running low-priority queries to
relinquish buffers for use by higher-priority queries that just arrived at the system. In addition, when these
higher-priority queries leave the system, freeing up memory, it would help the low-priority queries to meet
their deadlines if they could accept and make good use of the additional memory during the remainder of their
execution. Due to their heavy reliance on main memory, queries performing hash joins and external sorts are
especially vulnerable to fluctuations in their memory allocations. The first part of this thesis focuses on the
design and evaluation of memory-adaptive query primitives that allow hash joins and external sorts to execute

efficiently in the face of memory fluctuations.

With the low-level query primitives in place, the second part of the thesis is devoted to addressing
higher-level query scheduling issues, including admission control, memory allocation, and priority assign-
ment. In particular, an algorithm is proposed that dynamically controls the muitiprogramming level and the
memory allocation strategy for queries in a real-time database system to balance the demands on its memory,
CPUs, and disks. Through a series of simulation experiments, this algorithm is shown to perform well over a
wide range of workloads, but to be biased when presented with a multiclass workload. The algorithm is then
augmented with a class-priority adaptation mechanism to enable it to better handle the performance demands

of multiclass query workloads. The augmented algorithm strives not only to minimize the number of missed

i

deadlines, but also to distribute any missed deadlines among all query classes according to a set of

administratively-defined performance objectives.

it

ACKNOWLEDGEMENTS

I have been very fortunate to have both Professor Miron Livny and Professor Michael Carey as my
thesis advisors. Miron deserves credit for introducing me to real-time database research. During my graduate
career, he has repeatedly challenged me to strive for excellence in my work. I shall fondly remember the
many hours of discussion we had over the past three years, especially that "memorable" session in my living
room. Mike is one of the most giving persons I have ever met. As my mentor, he has been a constant source
of support, encouragement, and sound advice. He has also provided me with invaluable technical guidance,
steering me back in the right direction on those occasions when I have wondered off course. Despite my
incessant hounding, he has never lost his patience. I have enjoyed working with him tremendously. I salute
these two great guys!

I am also grateful to the other members of my committee, Professors David DeWitt, Jeffrey Naughton,
and Parmesh Ramanathan, for their constructive criticisms and suggestions. David, in particular, has helped

me revise the experiments in this thesis.

During my stint in Madison, I have benefited from my interaction with Paul Bober, Kurt Brown,

Michael Cheng, Mike Franklin, Manish Mehta, C.K. Tan, and other past and present graduate students at UW.

The National University of Singapore has been very generous in giving me a scholarship for the entire
duration of my Ph.D. studies. I would like to express my appreciation for Dr. Desai Narasimhalu, my
manager at the Institute of Systems Science, and Dr. Juzar Motiwalla, the director of the Institute of Systems
Science, for their faith in me and for recommending me for the scholarship.

Since young, my parents have impressed upon me the importance of getting a good education. My
family’s support of my decision to pursue a Ph.D. meant a great deal to me. I have been blessed with a mar-

velous wife, Janice, who made a huge sacrifice in leaving her job to be with me. The few holiday trips that

we have taken here are some of the happiest times in my life. Janice has been extraordinarily understanding

iv

when I needed to work long hours to meet paper submission deadlines, though she also has consistently plot-
ted to foul my attempts to work 25 hours a day. Without her steadfast love and encouragement, I would never

be able to go through this demanding program. Truly, "whoso findeth a wife findeth a good thing, and

obtaineth favor from the Lord" (Proverbs 18:22).

TABLE OF CONTENTS

ABSTRACT .ottt ettt es et et bbb ii
ACKNOWLEDGEMENTSooitiitrteteeeecreestettseteiennn st snssnsesne e iv
TABLE OF CONTENTS ..ottt sttt en s srsesansse s sasaessaneens vi
Chapter 1: INTRODUCTIONccooiiiimiiiininintniss et 1
1.1 Real-Time Database System ArchiteCtureccccecvvieiniinninniiiinecinieennnns 3

1.2 Thesis CONIIDULIONS ...eccveevereerreereerieenis ettt ssse e sssessnees 5

1.2.1 Memory-Adaptive Query Processingccccoceeeevevieeniivecienienininececninns 6

1.2.2 Admission Control and Memory AllOCationcccevvvevceivniiinvienninnnnnnne 7

1.3 Organization of the TheSISccccvuiviiminiiiii s 8
Chapter 2: MODEL AND METHODOLOGYococviieiiieicniinieccisccseennes 9
2.1 Database System Simulation Modelccooveiiiiiiniiiinin 9
2.1.1 Database Modulecococveeiieniiriiericeciniiieiree et 10

2.1.2 Source ModUIEcoccueviieriienireieeeccritcrt et 11

2.1.3 QUETY MANAZETcoveeviiiiiiiiiriiiiiiie ettt 12

2.1.4 MemOry Managerccceccvmiiuriciniinieioiesessieessssissesestsssaessssessassesnnns 14

2.1.5 CPU and Disk Managers:.coceereeeruereisiiniiisinsinseesiensesnsoninessenseessasenses 15

2.1.6 Concurrency Control Managercccecevevieviienieeniinnennineseceneeee e 16

2.2 Experimental Methodology and Performance Metricscoooevnniniiccnnnne 16
Chapter 3: PARTIALLY PREEMPTIBLE HASH JOINScccovniiiiiiiiiicicnenes 19
3.1 Related Work on Hash JOINS ...cccceeverevierneeriiniiiniiiinc e 20

3.2 Memory-Adaptive Hash Join Algorithms ..o 22
3.2.1 Partially Preemptible Hash JOINccocovninniniininicee, 23

3.2.1.1 PPHIJ: The BaSICS ...evvevvereerireeiicreircniniieceieie st 24

3.2.1.2 PPHI: Variations on @ Themeccccoevvrvininniiniinninnininnicneeene 25

3.2.2 Other AIZOTIthINSccovereieriiriiiiiiniic b 27

3.2.2.1 Nakayama €t @lc.cccorciviiviiiiininiiiniiieiiine e 27

3.2.2.2 Zeller and Graycccccvrererinnnienneiniinininieiecenneses e 27

3.2.2.3 GRACE and Hybridcccceevervreeceniiiiiiiiiicenccinceececennene 28

3.3 Experiments and RESUtSccocoveveiieriiiiiniiee e 29
3.3.1 Source of Memory FIUCtHAIONSccoueeiieviiiinmiiiiiiiniiiesnecesac e 29

3.3.2 Baseline EXPErimentccccvvieveieiminiiniiniininnnie et 30

3.3.3 Memory CONENHON ..c.ccevrerieerierrieiienresicninieise st 35

3.3.4 M to ||R|| Ratio and ||S]| to [[R]] RAtIO cccevereerrirreeereeiiiiiceiecineccennee e 38

vi

3.3.5 Magnitude of Memory FIUCTUALIONSccvveiierimininiinniniiciiiises
3.3.6 Rate of Memory FluCtuationscoceeueeecmomeieciiiininnessntcnnans
3.3.7 Discussion of Other AILErNAtIVESccovrerivesiienieneneeniiininiie e

3.4 Conclusionccccvveevveeees

...

Chapter 4: MEMORY-ADAPTIVE EXTERNAL SORTINGcovviiriiiinreieirnceeneenee
4.1 Standard External Sort AIZOrithInscooveeenineiiiniiiie e
4.1.1 In-Memory Sorting Methodsc.cccoiimiis

4.1.2 Merging Strategies .

...

4.2 Memory-Adaptive External Sort AIZOrithmscocivereiiiniicininsiiininns
4.2.1 Split-Phase Adaptationccoceeeuiiiemimeiimismissisc e
4.2.2 Merge-Phase Adaptation Strat€giescoeuemsimceniemnissniiininsinees

4.2.2.1 Suspension
4.2.2.2 Paging

...

...

4.2.2.3 DynamiC SPLIINEeeveresmscrsersiriiinsiniisisnsss s
4.2.3 Notation for External Sort AlOrithms ...

4.3 Experiments and Results

..

4.3.1 Source of Memory FIUCIUAtIONS ..c.cccoeevevneiiiininiiiiiiniisen s
4.3.2 No Memory FIUCTUAIION ...c.cvevrieircreainisimiiriinsissintss et

4.3.3 Baseline Experiment
4.3.4 M to ||R|| Ratio

..

...

4.3.5 Magnitude of Memory FIUCIUAtionsccouveinineiininicnciiiimiiisens
4.3.6 Rate of Memory FIUCIUALIONS ...ovveveereviemcniniiniiniisniis e

4.4 Sort-Merge Joins

...

4.4.1 Memory-Adaptive Sort-Merge JOINSoievviemimiiisnsncciniinnnenes
4.4.2 Experiment and RESUILS ...c.ovreeeeiiimnimiiininininsstccsisiissn e

4.5 Conclusioncoeeeveeeereenens

...

Chapter 5: MANAGING MEMORY FOR REAL-TIME QUERIESccovniieienne
5.1 Related Scheduling WOTKcoooeemmreentncneniiiinn s
5.2 Priority Memory Managementc.cocoereuriieerirsmeseismsmssssssstsiesnssisis s ssssesaee

5.2.1 Admission Control ..

...

5.2.1.1 Miss Ratio ProjeCtioncocceeeeieeeeeesiniiiininiiiinisninsissse e
5.2.1.2 Resource Utilization HEUTrIStICccovveieiimmiiinieniciniiiniiicees

5.2.2 Memory Allocation

...

5.2.3 Dealing with Workload Changes ...

5.2.4 An Example
5.3 Experiments and Results
5.3.1 Baseline Experiment

...
..

..

vii

40
42
45
46
49
50
50
51
53
53
54
54
54
55
58
59
59
60
63
67
70
72
74
74
75
76
79
80
80
81
82
83
84
87
87
88
89

5.3.2 Moderate Disk CONLENEION ..veiveevrerreerreerrrersesiinisresisressesenesssnesssusessssssans 95

5.3.3 Workload Changesc.cocoeeereummsessesesintssse st 98
5.3.4 Desirable Resource Utilization Levelscooveiininiinnnnniniie 100
5.3.5 Other QUETY TYPES ..covrrrmirrreiereiissies ettt 101
5.3.6 Multiclass WOrkloadccccceecererennimsimniinieeinieesesns et 103
5.3.7 Scalability Of RESULLScoovrriimmririnicecnetii e 103
5.4 CONCIISION 1vvererveeererresereerserasseessesessssssssssesssessseasssessrsesseessssasesaesassnssesssasaassne 105
Chapter 6: MULTICLASS QUERY SCHEDULINGooovniiimmiiiiieiininisisinnsins 107
6.1 Priority Query SChedulingccovvveuemneeeriiiiiii s 108
6.1.1 Priority Memory Management for Multiclass Workloadsc.cccoeenneee. 108
6.1.2 Priority Adaptation Query Schedulingcoovniiniiinnninnens 110
6.2 Experiments and RESULLScvvvcvmiiiimiimiinise 113
6.2.1 Baseling EXPErimentccovvimveururinmimmiceisiiinsisisnnssis s 114
6.2.2 Skewed Class ODJECLIVESccvverevrrmriniserrerrereeiisier s 120
6.2.3 TAENHICAl CLASSES ..vvevveerreerrereseeressereeseestaneessessesassessassassessssssessesssesassunsaes 123
6.2.4 Workload Changescccoevererirremisresinenisissctnss e 125
6.2.5 Three-Class Workloadscccoeeverriminimeimiiennsienicst e 127
6.3 CONCIUSION .uveeeeveeereeeriieeeessereseesseessessssatssrtesbesesbe st s e et s e s bt s st s s b e s ssuns s e an s e s aases 129
Chapter 7: CONCLUSIONScoiriiiieiiimsmsirsisssssssssss st 130
7.1 Memory-Adaptive Query Processing Resultsocoeemiiiiiiniinniinncnn. 130
7.2 Real-Time Query Scheduling RESUILScoovvieiiiiiniimiiiiii e 131
7.3 FULULE WOTK 1vveeveeereiereeererereesresansseressssosatesssssnsesasassountssesssstessustssnssansnsasnsass 132

viii

CHAPTER 1

INTRODUCTION

A number of emerging database applications, including aircraft control, stock trading, network manage-
ment, and factory automation, have to manipulate vast quantities of shared data. Moreover, these applications
may generate jobs that have to be completed by certain deadlines for the results to be of value in providing
decision-support [Abbo88a, Stan88]. For example, in a factory automation system, a quality inspection must
be completed within a specified time frame in order to undertake any necessary corrective actions. The need
for systems that are able to manage substantial amount of data in a timely fashion has contributed to the emer-

gence of real-time databases (RTDBS) as a research area.

The area of real-time database management is the result of a confluence between two previously
separate areas — database management systems and real-time computing. On one hand, while database
management systems provide efficient mechanisms for querying vast quantities of shared data, the notion of
deadline is foreign to these systems. On the other hand, past research on real-time computing has focused on
developing systems that support the time constraints that are native to real-time applications. To date, a
number of real-time task scheduling policies have been proposed, and numerous research results have been
obtained for both uniprocessor and multiprocessor systems [Liu73, Dert74, Mok78, Jens85, Lock86, Panw38,
Baru91]. However, these studies have ignored the need to manage substantial amounts of data. RTDBSs are
designed to combine the strengths of these two areas, i.e., to provide timely retrievals and updates for real-

time applications that require access to shared data that resides on secondary storage.

In a non-real-time database system, the usual performance objective is to minimize the mean response
time or to maximize the system throughput. For such a system, the primary concern is the overall system per-
formance, rather than the response time of individual jobs. In the case of an RTDBS, however, it is often

desirable to manipulate the response time of individual jobs because doing so can lead to fewer deadline

misses, i.e., better performance. To illustrate this point, suppose that two jobs with different timing require-
ments are submitted to an RTDBS. If the system uses a round-robin resource scheduling policy to service the
two jobs, it may provide timely services to the less urgent job but miss the deadline of the more urgent job.
Instead, by giving preferential service to the job whose deadline is more imminent, the system may be able to
complete both jobs on time. In order to regulate the progress of individual jobs, RTDBSs prioritize their jobs

and schedule them according to their priorities.

To ensure the effectiveness of priority scheduling, all of the resource schedulers in an RTDBS must be
priority-driven. It is inadequate for the scheduling decisions of only some of the resources to be priority-
cognizant because this leads to the possibility of a low-priority job blocking the progress of a higher-priority
job by depriving the latter of resources that are not priority-scheduled. Such a situation, known as priority
inversion, causes priority scheduling to be counterproductive to system performance [Sha90]. For example, if
the CPU and disks of an RTDBS are scheduled by priority but a standard two-phase locking protocol
[Eswa76, Gray79] is used, a high-priority job may be given precedence at the CPU and disks but still get
blocked by a lower-priority job because the latter is allowed to hold onto a lock that the high-priority job is
waiting for.

The need for all of the components of an RTDBS to be priority-driven requires several changes in the
ways that traditional database systems, which are not designed to handle the notion of priority, service their
jobs. While existing priority preemptive-resume [Pete86] or priority head-of-the-line [Klei76] scheduling
techniques can be used to schedule the CPU in an RTDBS, priority-based algorithms for concurrency control,
disk scheduling, admission control, and memory management have to be developed for such a system. Over
the past five years, a number of studies have investigated the problems of real-time concurrency control
[Abbo88a, Abbo88b, Abbo89, Hari90a, Hari90b, Hari91, Hari92, Hong93, Huan89, Huan91, Kim91}] and
disk scheduling [Abbo89, Abbo90, Care89, Chen91, Kim91]. However, to the best of our knowledge, no
work has met the admission control and memory management challenges that arise in processing queries with

deadlines. These are the challenges addressed in this dissertation.

1.1. Real-Time Database System Architecture

Jobs in a real-time application may have either hard deadlines, firm deadlines, or soft deadlines,
depending on the extent to which they can tolerate violations of their time constraints. For hard-deadline
applications, missing a deadline may have catastrophic consequences, and hence it is necessary to guarantee
that all jobs meet their deadlines [Jens85]. Applications like flight control systems and missile guidance sys-
tems belong to this category. In contrast, missing a firm deadline or a soft deadline may involve a perfor-
mance penalty, but it does not have disastrous effects. The distinction between firm- and soft-deadline appli-
cations lies in the way that late jobs are treated. For firm-deadline applications, jobs that have missed their
deadlines are of no value, and should therefore be aborted and discarded [Hari90a]. In the case of soft-
deadline workloads, however, there is some diminished value to completing a job even after its deadline has
expired [Abbo88b]. Financial and manufacturing applications usually have either firm or soft deadlines. In
this thesis, we will focus on providing database support for firm deadline applications. However, many of the
techniques developed here could be applied to soft RTDBSs as well since both firm and soft RTDBSs rely on

the same underlying mechanism, i.e. priority scheduling, to help jobs meet their deadlines.

The overall architecture of a centralized firm RTDBS is depicted in Figure 1.1. The system’s workload
consists of one or more job classes. Each job can either be a query or a transaction. The RTDBS is expected
to complete as many jobs on time as possible, discarding those that miss their deadlines. Since certain appli-
cations may require any missed deadlines to be distributed among all the classes in a controlled fashion, the

RTDBS must also include mechanisms to regulate the relative performance of the individual classes.

The Priority Mapper assigns a priority value to every job that is submitted to the system. This value
will determine the precedence of the job, relative to other submitted jobs, in receiving resources. In general,
the priority of a job depends on its deadline, and may also be contingent on the class that the job belongs to.
Furthermore, the priority of a job may remain fixed throughout its lifetime, or the priority may be altered
dynamically. Finally, the priority assignment policy may be adjusted over time as a result of feedback on the
performance of the system. This priority architecture separates priority assignment from priority usage,

shielding the internal database mechanisms from the details of the priority assignment process so as 10 minim-

WORKLOAD

Query Classes

Transaction Classes

N

[

wwme SN

DATABASE Priority Feedback
SYSTEM Mapper
Admission
Control
Resource
Server *
@ Concurrency
Control
®
[
[]
Disks Memory Pool

\

In Time

Y

Late

Figure 1.1: Firm Real-Time Database System Architecture

ize the changes that are needed to adapt the database system to a real-time context.

The database system regulates usage of its multiple resources through an admission control mechanism
and through its various resource schedulers. The admission control mechanism governs the number of jobs
that are allowed to compete for resources at any given time by deciding when (and which) jobs should be
admitted. The resources of the database system comprise disks, a CPU, and a memory pool that are shared by
the admitted jobs. In making their decisions, both the admission control mechanism and the various resource
schedulers take the priority of admitted jobs into consideration, hence making the database system priority-

driven.

1.2. Thesis Contributions

The RTDBS performance objective of minimizing the number of missed deadlines can be very
demanding. This is particularly so in firm RTDBSs, where a job loses all value once its deadline expires. In
order to accomplish their objective, RTDBSs must employ multiprogramming so that all of their resources
can be concurrently utilized to service incoming jobs. Any resource contention that stems from multipro-
gramming is resolved by the use of priority scheduling. Executing multiple real-time queries that require
large amounts of computational memory (e.g., hash tables for joins or tournament trees for external sorts) in
such an environment involves admission control and memory management issues that have yet to be
addressed. There are two inter-related aspects to the memory management issue: memory allocation, which
deals with the way that the RTDBS divides its memory among the admitted queries, and memory usage,

which concerns how each individual query takes advantage of its memory allotment.

An RTDBS that is priority-scheduled allots memory to admitted queries according to their relative
priorities. This necessitates the RTDBS to re-evaluate, and possibly revise, its memory allocation decisions
when a query enters or leaves the system. In order to consistently make the best possible use of its assigned
memory, an executing query needs to have the ability to adjust to any revisions in its memory allocation. The
research reported in this thesis is conducted in two phases. In the first phase, we investigate memory usage
strategies that allow queries to execute efficiently in the face of fluctuations in their memory allocations. This

investigation leads us to introduce memory-adaptive processing techniques for hash join and external sorting

queries. With these techniques in place, the next step is to equip the RTDBS with admission control and
memory allocation policies that exploit the memory-adaptation capabilities of the query processing tech-
niques. The study of these higher-level admission control and memory allocation issues constitutes the

second phase of our research. The details of the two phases are presented in the remainder of this section.

1.2.1. Memory-Adaptive Query Processing

A common practice in existing database systems is to allocate a fixed amount of memory to each query
(or subquery) throughout its lifetime. Unfortunately, this practice does not work well with priority scheduling
due to the fact that certain queries, particularly those that join or sort large relations, can hold on to a large
number of buffers for an extended period of time. If such large queries are permitted to hold on to their
buffers until they complete, higher-priority queries that arrive after a large query may not be able to execute
due to a shortage of memory. This can seriously impede the effectiveness of priority scheduling. Conse-
quently, during the lifetime of a large query, an RTDBS may wish to appropriate some of the query’s memory
to satisfy the memory requirements of higher-priority queries that arrive; buffers that are taken away may
subsequently be returned after those queries leave the system. Given the prospect of continually having
memory taken away and given back during its lifetime, it is desirable for a query to be able to continue its
execution after losing some of its buffers (and hence be partially preemptable) and to subsequently adapt its
buffer usage to take advantage of any extra memory that may become available. To simplify our discussion,

we shall henceforth refer to these changes in memory allocation as memory fluctuations.

One simple way for an RTDBS to deal with memory fluctuations would be to rely on virtual memory
techniques to page the buffers of an affected query into and out of a smaller region of physical memory. If
the system detects that this is causing too many page faults, it could suspend the query altogether. An advan-
tage of this approach is that it shields the query processing algorithm from the complexity involved in adapt-
ing to memory fluctuations. Unfortunately, paging the buffers of a query is likely to cause buffer pages to be
swapped into and out of memory repeatedly, resulting in high 1/0 overheads when the difference in the
amount of available memory and the number of buffers assumed in the query plan is significant. Moreover,

suspending queries that are affected by large memory fluctuations reduces the number of active jobs, which

may lead to under-utilization of systém resources. As we will show later, the performance drawbacks associ-
ated with such a paging/suspension approach far outweigh its benefits. In this thesis, we investigate a dif-
ferent approach, namely, to directly involve an affected query in adapting to memory fluctuations. We pro-
pose and study the performance of several alternative memory-change adaptation strategies for both hash
joins and external sorts, and we show that these adaptive techniques offer effective solutions to the memory

fluctuation problem in RTDBSs.

1.2.2. Admission Control and Memory Allocation

A query can execute in a single pass by reading its operand relation(s) and producing its results directly
if it is given enough memory. The amount of memory that a query needs in order to complete in one pass is
its maximum required memory. In memory-constrained situations, many queries can also trade memory for
disk I/Os by performing an additional pass. This allows the queries to execute with substantially less
memory, but requires the queries to write out temporary files and subsequently read them back in for further
processing. The minimum number of buffers that a query needs without having to resort to recursive process-
ing techniques is its minimum memory requirement. For instance, a hash join can either execute with its max-
imum required memory, which is slightly greater than the size of its inner relation, or it can run in an addi-
tional pass with as few buffer pages as the square root of its inner relation size [DeWi84, Shap86]. In order to
derive the benefits of multiprogramming, it may be necessary for an RTDBS to admit some queries with less
than their maximum memory allocations. If too many queries are admitted, however, the resulting additional
1/Os could increase the number of missed deadlines, leading to a thrashing condition that makes high con-
currency harmful instead of helpful. Multiprogramming is therefore a two-edged sword, and RTDBSs require

a priority-cognizant admission control mechanism to protect them against thrashing.

Having determined which queries to admit, the next issue that an RTDBS faces is memory allocation.
While the highest-priority query at a given CPU or disk will use that resource exclusively, memory must be
shared among all of the admitted queries. When the total maximum memory requirement of the admitted
queries exceeds the available memory, the RTDBS must decide on the amount of memory to give each query.

This decision needs to take into account queries’ timing requirements to ensure that queries receive their

required resources in time to meet their deadlines. In addition, the effectiveness of memory allocation in
reducing individual queries’ response times should be considered so as to make the best use of the available

memory [Corn89, Yu93].

This thesis introduces a priority-cognizant algorithm that dynamically chooses a target multiprogram-
ming level and a memory allocation strategy for queries to balance the demands on the system’s memory,
CPU, and disks. The algorithm is then augmented with a priority adaptation mechanism to enable it to better
handle the demands of multiclass workloads. This extended algorithm strives not only to minimize the
number of missed deadlines, but also to distribute the missed deadlines among all classes according to admin-

istratively defined workload expectations.

1.3. Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 provides a description of a detailed
simulation model of a firm RTDBS which has been used to obtain the performance results reported in this
thesis. The methodology employed in using the model for experimentation is also described. In Chapters 3
and 4, we introduce and evaluate memory-adaptive processing techniques for hash join and external sorting,
respectively. Chapter 5 presents a query scheduling algorithm that dynamically sets the system’s multipro-
gramming level and memory allocation strategy according to the characteristics of the workload. In Chapter
6, this algorithm is extended to better handle multiclass query workloads. Finally, Chapter 7 summarizes the

results of the thesis and outlines avenues for future work.

CHAPTER 2

MODEL AND METHODOLOGY

As described in Chapter 1, the goal of this thesis is the development of memory-adaptive query process-

ing primitives and query scheduling algorithms that are appropriate for use in firm real-time database systems.

To aid in evaluating the performance of the various algorithms that will be developed in subsequent chapters,

we have implemented a detailed simulation model of a firm real-time database system in the DeNet [Livn90]

discrete event simulation language. The simulation model captures a centralized database system, based on

the architecture depicted in Figure 1.1. This chapter describes the simulation model and concludes with a dis-

cussion of the experimental methodology and performance metrics that underly our experiments.

2.1. Database System Simulation Model

Our simulation model captures the constituents of a centralized real-time database system in seven

separate components:

a Database that models the data and its layout;
a Source that generates the workload of the system and collects statistics on completed queries;

a Query Manager that models the execution details of queries, including hash joins, external sorts

and sort-merge joins;

a Memory Manager that implements an LRU buffer replacement policy and the query scheduling

algorithm;

a CPU Manager and a Disk Manager that are responsible for managing the system’s CPU and

disks, respectively; and

a Concurrency Control Manager that regulates access to shared data.

10

Figure 2.1 depicts the overall structure of the database system model and summarizes the key interactions

between its components. The details of each component, together with its parameters, are presented below.

2.1.1. Database Module

The database consists of NumGroups groups of relations. Each group i has RelPerDisk; clustered rela-
tions per disk. The size of the RelPerDisk; relations are chosen at equal intervals from SizeRange;. For
example, if RelPerDisk; = 5 and SizeRange; = [100, 200] pages, group i will have 5 relations with sizes equal
to 100, 125, 150, 175, and 200 pages, respectively, on every single disk. To minimize disk head movement,
all relations assigned to the same disk are randomly placed on its middle cylinders; temporary files are allotted

either the inner cylinders or the outer cylinders. The parameters of the database module are summarized in

Table 2.1.

new
query CC Request
. e Query = Concurrency
Source - Manager < Control
processed CC Reply

query I
data \ CPU

request data page page CPU reply
reply request | |reply request
. Y N
Memory Manager page Disk Manager CpPU CPU Manager
request request
page % CPU SNe
reply - reply))
I
Data
Base

Figure 2.1: Database System Model

11

DB Model Parameters Meaning

NumGroups Number of relation groups in the database
RelPerDisk; Number of relations per disk for group i
SizeRange; Range of relation sizes for group i
TupleSize Tuple size of relations in bytes

Table 2.1: Database Model Parameters

2.1.2. Source Module

The Source module represents the real-time application that utilizes the services of the database system.
This module is responsible for generating queries for the workload, which are submitted to the Query
Manager, and for subsequently receiving the queries after they have been completed or aborted by the Query
Manager. The Source also gathers statistics on the returned queries and measures the performance of the sys-

tem from the application’s perspective.

The parameters of the system workload are listed in Table 2.2. It comprises NumClasses classes of
queries. Each class j has the following characteristics: It may be made up of external sorts, in which case
RelGroup; specifies a single group of database relations from which queries in class j draw their operand rela-
tions. Alternatively, the class may consist of hash joins. In the second case, every query in the class ran-
domly chooses two relations by taking one relation from each of two relation groups in the set RelGroup;.
The smaller of the two chosen relations is the inner relation, R, of the join, while its outer relation, S, is the
larger relation. We assume that each tuple in S joins with exactly one tuple in R, i.e. the join selectivity is
1/[R]. This is intended to model joins that involve the primary key of one relation and the foreign key of
another relation. The type of queries that form the class (sort or hash join) is indicated by the parameter

QueryType;. Query submissions from the class follow a Poisson process with a mean arrival rate of A;. The

Workload Parameters Meaning
NumClasses Number of classes in the workload
QueryType; Type of class j queries (hash join or external sort)
RelGroup; Operand relation group(s) for class j queries
; Arrival rate of class j queries
SRInterval; Range of slack ratios for class j queries
F Fudge factor for hash joins

Table 2.2: Workload Parameters

12

Source module assigns a deadline to each new query Q from class j in the following manner:
Deadlineg = StandAloney X SlackRatiog + Arrivaly

where Deadlineg, StandAlone, SlackRatiog and Arrivaly are the deadline, stand-alone execution time, slack
ratio and arrival time of query Q, respectively. The stand-alone execution time of a query is the time it would
take to execute alone in the system with its maximum memory allocation, i.e., without experiencing any con-
tention from other queries. The slack ratio, SlackRatiog, varies uniformly in the range specified by
SRinterval;, and it controls the tightness of the query’s assigned deadline. Finally, the parameter F represents
the overhead for a hash table. For example, a hash table for a relation R is assumed to require F||R|| pages,

where ||R]| is the number of pages in R.

2.1.3. Query Manager

The Query Manager component incorporates the Priority Mapper of the RTDBS, assigning a priority to
each newly-arrived query according to the underlying priority assignment policy. In addition, this component
implements the alternative external sorting and hash join query processing techniques that we will study. In
order to expedite the examination of different combinations of external sorting and hash join techniques, we
have a single module that is equipped with all of the alternative techniques, as opposed to writing a separate
module for each technique. The Query Manager executes each query until it completes or misses its deadline.
Queries that complete are labeled "In Time" and returned to the Source module. A query that misses its dead-
line is immediately "killed"; killing a query involves aborting its execution, marking it as "Late", and then
returning it to the Source. While the execution details vary from one query type (hash join versus external
sort) to another, and from one technique to a different technique, they all follow the general scheme that is

described below.

Upon receiving a query from the Source, the Query Manager first sends a message to the Memory
Manager listing the query’s minimum and maximum memory requirements and awaits the Memory
Manager’s admission permission. Once this permission is granted, CPU service is acquired from the CPU
Manager to initialize the query. Next, the Query Manager processes the operand relation(s) of the query by

carrying out the following sequence of actions for each operand relation page:

13

e seek access permission from the Concurrency Control Manager;

o ask the Memory Manager to fix the page in memory;

e obtain CPU service' to process the tuples in the page;
e allow the Memory Manager to unfix the page;

e issue write requests to the Disk Manager if any output buffers have become fuil and need to be
flushed.

Having processed the operand relation(s), the Query Manager then proceeds to work on any intermediate files
that were produced from the relation(s). This involves performing the following steps for each page in the

intérmediate files:
e ask the Disk Manager to fetch the page;
e obtain CPU service to process the tuples in the page;

e issue more disk requests to write any new output pages.

Finally, the Query Manager sends a commit request to the Concurrency Control Manager, procures CPU ser-
vice to terminate the query, then returns the query to the Source module. Table 2.3 gives the assumed costs of

the various CPU operations involved in the execution of hash joins and external sorts.

Operation # Instructions Operation # Instructions
Common Operations — Hash Joins —
Start an I/0 operation 1000 Hash tuple and insert into hash table 100
Initiate a sort or join 40,000 Hash tuple and probe hash table 200
Terminate a sort or join 10,000 Hash tuple and copy to output buffer 100
External Sorts —
Copy a tuple to output buffer 64
Compare two keys 50

Table 2.3: Number of CPU Instructions Per Operation

I The amount of CPU service required is algorithm-dependent, and could be for the purposes of sorting,
hashing, moving, etc.

14

In order to keep the per-page I/O cost low, if there are buffers that are not already designated for other
purposes, a query will spools its output pages and flush them to disk in blocks of BlockSize pages when the
spool area fills up. Moreover, the Query Manager capitalizes on the prefetch facility of the disks, fetching
BlockSize consecutive pages on each sequential /O that incurs a disk cache miss (see Section 2.1.5), except
during the merge phase of an external sort. Prefetching is not done for the sorted runs that participate in a

merge step because there are likely to be too many runs to make effective use of the disks’ limited caches.

Besides handling the data accesses of a query, the Query Manager is also responsible for managing the
query’s use of memory space. After processing each page of tuples for a query, the Query Manager checks
whether there is an outstanding request from the Memory Manager to change the memory allocation of the
query. If so, the request is complied with by adjusting the memory space of the query appropriately to free up

buffers or to incorporate the additionally allocated memory.

2.1.4. Memory Manager

The Memory Manager is responsible for managing the usage of the system’s memory. The memory
consists of a pool of M pages which are used for two purposes — to buffer data pages that are frequently
accessed, and to serve as the computational memory of admitted queries. Therefore, the Memory Manager
embodies the replacement policy for buffer pages and the memory management algorithm that determines
admission and computational memory allocation. The details of the buffer replacement procedure are

described below; the alternative memory management algorithms will be presented in later chapters.

In the RTDBS, buffers that are not reserved as computational memory are placed in a free list. When a
query requires a data page, it first requests that the page be fixed (or pinned) in memory. Upon receiving such
a request, the Memory manager checks its free list to see if the required page is there. If so, the buffer that
holds the page is fixed to prevent it from being replaced; otherwise a read request is issued to the Disk
Manager to fetch the required page into an unfixed buffer from the free list which is then pinned. When the
query has finished processing the data page, it informs the Memory Manager so that the buffer can be unfixed
and made available for replacement. Since the main concern of this dissertation is the management of

queries’ computational memory, we implemented a simple LRU replacement policy to manage free buffer

15
pages.

2.1.5. CPU and Disk Managers

The parameters that specify the CPU and disk resources of our model are listed in Table 2.4. A priority
head-of-the-line scheduling discipline [Klei76] is used for the CPU. The MIPS rating of the CPU is given by
CPUSpeed.

Turning to the disk model parameters, NumDisks specifies the number of disks attached to the system.
Every disk has its own queue that is scheduled by the priority head-of-the-line discipline [Klei76]; any disk
requests that share the same priority value are serviced according to the elevator algorithm. Each disk has a
256-KByte cache for use in prefetching pages. The access characteristics of the disks are also given in Table

2.4. Using the parameters in this table, the total time required to complete a disk access is computed as:

Disk Access Time = Seek Time + Rotational Delay + Transfer Time

As in [Bitt88], the time required to seek across n tracks is computed as:

Seek Time (n) = SeekFactor X n

The rotational delay is the spinning time that is needed for the start of the first requested page to be positioned
under the disk head. If the current disk access immediately follows an access to a page in the same cylinder,
the rotational delay is computed from the number of intervening pages between the current disk head position

and the first requested page, using the following formula:

Parameter Meaning
CPUSpeed MIPS rating of CPU
NumDisks Number of disks
SeekFactor Seek factor of disk
RotationTime Time for one disk rotation

NumCylinders Number of cylinders per disk
CylinderSize Number of pages per cylinder
DiskSurfaces Number of disk surfaces

PageSize Number of bytes per page
BlockSize Number of pages requested on each sequential /O
M Total number of buffer pages

Table 2.4: CPU and Disk Model Parameters

16

Number Of Pages Beiween Disk Head And Requested Page

Number Of Pages Per Track X RotationTime

Rotational Delay =

where the number of pages per track is obtained by dividing CylinderSize by DiskSurfaces. However, if the
current disk access does not immediately follow a disk access to the same cylinder, then the rotational delay is

simply set to half of RotationTime. Finally, the transfer time is computed as:

Number Of Requested Pages
Number Of Pages Per Track

x RotationTime

Transfer Time =

2.1.6. Concurrency Control Manager

The Concurrency Control Manager maintains database consistency by regulating access to shared data
pages. It services concurrency control requests according to a chosen protocol; these requests can be for read
access, Wwrite access, committing a job, or aborting a job. We have written separate Concurrency Control
Manager modules based on two-phase locking with high-priority conflict resolution [Abbo88b] and optimistic
concurrency control with broadcast commit [Mena82, Robi82, Hari90a]. These modules were used in our
transaction scheduling studies [Pang92]. For the purposes of this dissertation, which focuses on query
scheduling issues, the choice of concurrency control protocol does not matter. Hence, we arbitrarily chose the

module that is based on the locking protocol.

2.2. Experimental Methodology and Performance Metrics

As discussed in Chapter 1, there are two major steps in building a real-time database system that han-
dles queries effectively: equipping the RTDBS with memory-adaptive query processing techniques, and pro-
viding resource-efficient query scheduling algorithms. This section presents the methodology that we will
employ in our examination of alternative query processing techniques and scheduling algorithms, together

with the relevant performance metrics.

In Chapters 3 and 4, we develop hash join and external sorting techniques that enable queries to execute
efficiently in the face of memory fluctuations. To bring out the performance differences between alternative
techniques, we use workloads that are made up of a series of queries; a new query is submitted to the database

system only when the previous query has been completed, so that there is only one query in the system at a

17

given time. Random memory fluctuations are provided by a stream of memory requests. These memory
requests are deemed to have higher priority than an executing query, so they seize memory from the query
and return the memory only when they leave the system. We use the same combination of workloads and
memory request streams for each of the alternative techniques, comparing the Average Query Response Times
that they produce. The hash join and external sorting techniques that consistently yield the shortest average

response times are then identified and employed in our subsequent studies on query scheduling algorithms.

The next two research chapters, Chapters 5 and 6, address query scheduling issues, including admission
control, memory allocation, and priority assignment, in real-time database systems. There, we use an open
queueing model to study the effectiveness of different query scheduling algorithms in managing resource con-
tention among concurrently running queries. Chapter 5, which focuses primarily on single-class workloads,

uses the System Miss Ratio, defined as

Number of Late Queries
Number of Submitted Queries

System Miss Ratio =
as the primary performance metric. In Chapter 6, where multiclass query scheduling is the subject of our
investigation, the query scheduling algorithms are evaluated with respect to the Class Miss Ratios, computed
as

Number of Late Queries in Class i
Number of Class i Queries

Class Miss Ratio; =

as well as system-wide measures including the system miss ratio and the Weighted Miss Ratio. The weighted
miss ratio combines the successes and failures of all classes into a single number that reflects how well the
system performs as a whole, and is defined as

WeightedMissRatio = £ Weight; X Class Miss Ratio;
where Weight; is a weight assigned to class i according to an administratively defined performance objective.

The way in which class weights are derived from the performance objective is described in Section 6.1.

The performance studies in each chapter begin with a baseline experiment. The simulation parameters
for this experiment will be selected to force the system to operate in a region where memory contention is the

focal point. Subsequent experiments will then be constructed around the baseline experiment, by varying a

18

few parameters at a time, in order to demonstrate the sensitivity of the results of the baseline experiment to
these variations. To ensure the statistical validity of our results, we will verify that the 90% confidence inter-
vals for the primary performance metric (average query response times or system miss ratios), computed
using the batch means approach [Sarg76], are sufficiently tight. For the results presented, the size of the
confidence intervals turn out to be within a few percent of the mean in almost all cases, which is more than

sufficient for our purposes. Throughout the thesis we discuss only statistically significant performance differ-

ences.

CHAPTER 3

PARTIALLY PREEMPTIBLE HASH JOINS

As described in Chapter 1, queries executing in a priority scheduling environment, such as a real-time
database system, face the prospect of continually having memory taken away and given back during their life-
times. To optimize system performance, query operations that require substantial amounts of memory should
be able to adjust gracefully to reductions in their memory allotments; they should also be able to capitalize on
any additional memory that becomes available throughout the course of their execution. One important query
operation is the hash join, which is the algorithm of choice for processing equi-join queries when the join

attributes are not indexed and the query results do not have to be sorted on the join attribute values [Zel190].

To execute efficiently, a hash join requires a significant amount of main memory to hold its hash table
and input/output buffers. Depending on the specific algorithm used, the number of buffers that a hash join
utilizes ranges anywhere from the square root of the size of its inner relation up to its inner relation size
[DeWi84, Shap86], which can be a substantial portion of the system memory. Consequently, a real-time or
priority-driven database management system (DBMS) may have to preempt large hash joins in order to satisfy
the memory requirements of higher-priority jobs. Unfortunately, preempting a hash join is non-trivial, as
most hash join implementations simply allocate a large buffer area when the operation begins and retain the
area for the entire duration of the operation. While totally preempting such an implementation by saving and
restoring its buffer area is a possibility, doing so is likely to be expensive, particularly if memory fluctuations

are common. Thus, other approaches are needed to minimize the performance penalty of preemption.

In this chapter, we investigate alternative strategies for performing hash join operations in a preemptive
priority scheduling environment; our aim is to identify efficient strategies for real-time database query pro-
cessing. Besides studying approaches that deal with memory preemptions by totally suspending affected hash

joins or by paging their buffer areas, we also consider algorithms that actively involve the hash joins in

19

20

adapting to memory fluctuations. These algorithms range from relatively simple ones, which require few
extensions to the original hash join algorithm, to more sophisticated algorithms that dynamically adjust the
buffer usage of a hash join to reduce the performance penalty resulting from a memory fluctuation. The more
sophisticated algorithms form a family of hash join variants that we call Partially Preemptible Hash Join
(PPHY)) algorithms. The PPHJ variants are all capable of dynamically adjusting their buffer usage in reaction
to either a drop (hence the term partially preemptible) or an increase in the amount of memory available for
performing the join. They differ from one another in how they prepare for the event of a memory shortage
and how they make use of any excess memory. Together, these algorithms cover a wide range of choices in

dealing with fluctuations in memory availability.

3.1. Related Work on Hash Joins

In this section, we describe the studies reported in the literature that are related to our work. Before

doing so, however, we first introduce some notation that will be used throughout the chapter.

A hash join involves an inner relation R, and an outer relation S. Relation R has [|R]| pages and |R]
tuples. Similarly, relation S has ||S]} pages and |S] tuples. We assume that S is the larger relation, i.e. ||R]| <
IIl. We also use a "fudge factor", F, to represent the overhead for a hash table. For example, a hash table for

R is assumed to require F]|R|| pages. This notation is summarized in Table 3.1.

Some of the earliest work on joins using hashing is reported in [Kits83]. The GRACE Hash Join algo-
rithm was introduced in that study. In GRACE Hash Join, a join is processed in three phases. First, the inner
relation R is split into VF||R|| disk-resident partitions that are approximately equal in size. In the second

phase, the outer relation S is partitioned using the same split function. Finally, the R and S tuples of each

Notation Meaning
R Inner relation
S Quter relation
IRII Number of pages in R (similarly for S)
IR Number of tuples in R (similarly for S)
F Fudge factor

Table 3.1: Notation

21

disk-resident partition are joined in memory. In the variation of the GRACE algorithm that is presented in
[Shap86], a join requires only VF |[RW output buffers throughout its lifetime. Excess buffers are used to hold

subsets of R and/or S so they need not be written to disk.

A shortcoming of the GRACE Hash Join algorithm is that it does not effectively utilize memory that is
in excess of the minimum requirement of \/—ﬁ’—ll_ﬁl_l_ buffers. In [DeWi84], DeWitt et al proposed the Hybrid
Hash Join algorithm, which follows the same three phases that GRACE goes through but uses excess memory
more effectively. The Hybrid Hash Join algorithm divides the source relations into only as many disk-
resident partitions as are necessary to split R into subsets that can fit in memory. Each of these partitions is
assigned an output buffer. Instead of using the rest of the memory to hold subsets of R and/or S as in
GRACE, this memory is used to hold the hash table for the first partition; the R and S tuples that belong to
this partition can thus be joined in memory directly as S is being scanned. The Hybrid Hash Join algorithm

was shown to have performance superior to that of GRACE [DeWig4].

The Hybrid Hash Join algorithm is designed to make full use of the memory that a join has available
when it first starts execution. During the course of execution, however, there may be a mismatch between the
amount of memory that the DBMS can allocate to the join and the size of its R partitions. One possible cause
of this discrepancy is due to incorrect estimation of the hash attribute distribution. This results in a situation
where some R partitions are larger than the allocated memory, while other R partitions are under-sized. In
[Naka88], a modification of Hybrid Hash Join was proposed to deal with this memory misfit problem. Instead
of deciding on the number of partitions at the beginning, the proposed modification splits the inner relation
into smaller subsets, called buckets, which will later be grouped into partitions. The number of buckets is a
parameter of the algorithm. Each bucket is assigned a memory-resident hash table that is initially empty. As
R is scanned, the buckets gradually grow in size. Each time the memory requirement for the join tries to
exceed the available memory, a bucket is written out to disk and all but one of its pages are released. The
remaining page is then used as an output buffer for that bucket. After the inner relation R has been scanned,
there will be as many memory-resident buckets as is possible to fit into the available memory. These buckets
are then combined into a single R partition that is equivalent to the first partition in Hybrid Hash Join. The

disk-resident buckets are also grouped into partitions that will fit snugly in memory when they are brought

22

back in. The next two phases proceed exactly as in the Hybrid (or GRACE) Hash Join algorithm. Through a
series of experiments, this modified algorithm was shown to outperform Hybrid Hash Join when the hash

attribute distribution cannot be accurately determined [Kits89].

Another factor that can cause a discrepancy between the memory requirement of a join and the memory
that is available to it is memory contention due to other transactions or queries (as discussed in the beginning
of this chapter), or by other processes that are running in the system concurrently with the DBMS. Zeller and
Gray first addressed this situation in [Zell90]. Like the algorithm in [Naka88], the algorithm that they pro-
posed divides the inner relation into many buckets. Unlike the Nakayama et al algorithm, the Zeller and Gray
algorithm immediately groups these buckets into tentative partitions. The total number of buckets and the
number of buckets per partition are both parameters of the algorithm. Initially, these partitions are each given
a memory-resident hash table. As R is scanned and the partitions grow in size, the join may attempt to
acquire more memory than what is allocated to it. When this happens, a partition will be written out to disk,
and the memory that is used for its hash table will be deallocated. This partition now becomes disk-resident,
and it is given only an output buffer. Should a partition ultimately turn out to be too big for the allocated
memory, the buckets that make up this partition will be regrouped into two smaller partitions. After R has
been scanned, there will be one or more memory-resident R partitions, plus zero or more R partitions that
reside on disk. Moreover, each R partition will be small enough to fit into the allocated memory. The
remaining portion of the join proceeds as in phases 2 and 3 of the Hybrid (or GRACE) Hash Join algorithm.
The drawback of this algorithm is that when a disk-resident partition gets split (during phase 1), its existing
disk pages will contain tuples from the two new partitions. These disk pages will have to be fetched repeat-
edly during the third phase of the join when disk-resident partitions are processed. The proposed algorithm

was prototyped in NonStop SQL, and a preliminary evaluation showed the algorithm to be superior to sort-

merge join.

3.2. Memory-Adaptive Hash Join Algorithms

This section gives a detailed description of the memory-adaptive hash join algorithms that we have

developed. First, Partially Preemptible Hash Join (PPHIJ), a new family of hash join algorithms that dynami-

23

cally alter the memory usage of joins according to buffer availability, is introduced. We then relate the algo-
rithms proposed in [Naka88] and [Zell90] to PPHJ. Finally, we describe how our implementations of the

basic GRACE and Hybrid Hash Join algorithms cope with memory fluctuations.

3.2.1. Partially Preemptible Hash Join

In order to adapt effectively to memory fluctuations, a join has to respond quickly and work with a
smaller buffer space when memory is taken away; it must also utilize any additional memory that it is given

while executing. These are the main design considerations of PPHJ.

Like the GRACE and Hybrid Hash Join algorithms, PPHJ executes a join in three phases. Phases 1 and
2 partition the inner relation R and the outer relation S, respectively. During these two phases, the tuples of
some R partitions are held entirely in memory-resident hash tables, while the tuples of other R partitions are
stored partly or entirely on disk. To simplify our discussion, we shall henceforth refer to the memory-resident
partitions as expanded partitions, and the disk-resident partitions as contracted partitions. Finally, in the third
phase, S tuples that reside on disk are fetched and joined with the corresponding R tuples. The details of

these three phases will become clear shortly.

With PPHJ, the choice of the number of partitions has a significant performance implication. On one
hand, we could minimize the number of partitions, as in the Hybrid Hash Join algorithm, by making each con-
tracted partition as large as the initial amount of memory. This would enable the join to make full use of the
memory that it starts off with, but would also expose the join to memory fluctuations during phase 3; this is
because phase 3 of the join will still require all of the initially allocated memory to build a hash table for each
contracted partition. On the other hand, having many small partitions would make the join less vulnerable in
phase 3, but would introduce other problems: Since each partition requires at least one page of memory, hav-
ing more partitions leaves less space in which to expand partitions. To balance the benefit of smaller parti-
tions against the penalty of a larger number of partitions, PPHJ attempts to minimize both the number of parti-
tions and the average partition size. The desired minimum is achieved when the number of partitions is
\/-I:"_il_l—i’ﬁ-, making the partition size also about \[I'TII_EII— PPHT therefore divides the source relations into \IFH_IR_II—

partitions, the same number of partitions that GRACE Hash Join uses.

24

Besides rendering joins less vulnerable to fluctuations in memory availability during phase 3, having
\/In':l_lﬁﬁ" partitions rather than the minimum number of partitions has another advantage in that it enables PPHJ
to reduce the buffer usage of a join easily during phases 1 and 2 when the need arises. Instead of one big
expanded partition, PPHJ maintains several smaller expanded partitions, and each expanded partition has its
own hash table. To reduce buffer usage, PPHJ simply contracts one of these partitions by flushing its hash

table and freeing all but one page of its memory.

3.2.1.1. PPHJ: The Basics

Having given an overview of PPHI, we now present the algorithm in detail. The PPHJ algorithm
involves five steps. Step (1) initializes the join. Phases 1 and 2 of the join are implemented by steps (2) and
(3), respectively. Finally, in phase 3, the join iterates over steps (4) and (5) until all the partitions have been
fully processed. Note that the detailed algorithm entails ordering the \/—F—HRI_[partitions. The purpose of this

ordering will become clear shortly (once we introduce the variants of PPHI).

(1) Choose a hash function / and a partition of its hash values that will split R into Ry, .., R yfj and S into
S1, - SFjRj» so that each R partition will have approximately \/—fm pages. An R partition can either
be "expanded" or "contracted", with the restriction that partition i cannot be contracted before partition
i+1. In other words, when needed, we always contract the expanded partition that has the highest
index. Each expanded partition requires \/ITHTQII— pages for its hash table, and each contracted partition
needs one output buffer. Expand as many partitions as the allocated memory allows. Any leftover
buffers are used as a spool area for pages that are being flushed to disk. The spool area is managed by

the LRU policy. In order to reduce disk seeks, spooled pages are flushed out in blocks of several pages

each time'.

! In the experiments that are reported in this chapter, spooled pages are flushed out in blocks of 6 pages
if the size of the spool is greater than 6; if the spool size is smaller than 6, the entire spool is written out to
disk. We selected a block size of 6 pages because, for our system configuration, this choice gives a good
compromise between reducing the number of random 1/Os, and keeping pages around in the hope that these
pages will be fetched again while they are still in memory, thus eliminating some I/O operations. It should be
noted that, in [Pang93a], spooled pages are written out one page at a time. This accounts for the different per-
formance figures rteported there. ~ However, the relative performance between different
algorithms/mechanisms remains the same.

()

3)

25

Scan R. Hash each tuple with k. If the tuple belongs to an expanded partition, insert the tuple in the
hash table of that partition; otherwise the tuple belongs to a contracted partition, so copy it to the
corresponding output buffer. In the event that an output buffer becomes full, flush it. After R has been
completely scanned, flush all output buffers. During this step, memory may be taken away from the
join, and this may necessitate contracting more partitions. To contract a partition, flush its hash pages
and give away all but one of its allocated pages. The remaining page is then used as an output buffer.
When this step is finished, we have a hash table in memory for each expanded partition, and all the con-

tracted partitions are either on disk or in the spool area.

Scan S, hashing each tuple with /. If the tuple hashes to a partition of R that is currently expanded,
probe the corresponding hash table for a match. If there is a match, output the result tuple; otherwise
drop the tuple. If the tuple belongs to a contracted partition of R, copy the tuple to the corresponding S
partition’s output buffer. When an output buffer fills, it is flushed. After S has been completely
scanned, flush all output buffers. (Note that additional partitions of R can be contracted during this step

in response to changes in the amount of memory available to the join.)

Repeat steps (4) and (5) for each partition i that has a nonempty S i=1, ., VF||R]|. Partition S; will be

nonempty if partition i of R was contracted at the start of or at some point during step (3).

)

&)

If the hash table of R; is not already in memory, read in R; and build a hash table for it.

Scan S;, hashing each tuple and probing the hash table for R;. If there is a match, output the result
tuple, otherwise toss the S tuple away. (Note that some pages of R; and S; may be in the spool area,

thus avoiding I/Os.)

3.2.1.2. PPHJ: Variations on a Theme

When memory is taken away from a join, the basic PPHJ algorithm adapts by contracting partitions; the

DBMS suspends the join if fewer than VF|IR|| pages remain. Any additional memory that is given to the join

is assigned to a spool area. The following (optional) mechanisms are designed to make more effective use of

a join’s extra memory.

26

1. Contraction. In step (1) of PPHJ, instead of assigning all \/F—‘_l-l—R—II— pages to every expanded partition at
once, we could let each partition start off with only 1 page, and allocate additional pages to a partition
only when the pages that it currently owns are full; all the pages that a partition owns are linked to form
a hash chain, as in [Zel190]. This allows all partitions to be "expanded" initially. Under this variation,
contraction occurs when an expanded partition requires an additional page and none is available. To
distinguish between the original approach of contracting partitions at the start and this variation, we call
the former approach early contraction and this variation late contraction. An advantage of late contrac-
tion is that memory may be added after a join has begun execution, thus eliminating the need to contract

some partitions.

2. Expansion. Throughout step (3), whenever a join has enough free memory to expand the contracted
partition that has the lowest index, seize the opportunity and do so. (This is in contrast to just using the
additional memory for the spool area.) Expanding a partition involves fetching those of its R tuples that
have previously been written to disk, so that future S tuples that hash to this partition can be joined
directly. By arranging to have as many partitions expanded as possible during step (3), this mechanism

seeks to minimize the number of S pages that ever have to be written to disk.

3. Prioritized Spooling. Steps (2) and (3) of PPHJ flush filled output buffers of contracted partitions to
disk. These pages can be recalled either in step (3), to re-expand partitions, or in steps (4) and (5),
when contracted partitions are processed. Since partitions with lower index numbers are expanded (in
step (3)) and scanned (in steps (4) and (5)) before partitions with higher index numbers, we can priori-
tize the pages in a join’s spool area to ensure that pages will be protected from replacement until there
is no page belonging to a higher-index partition in the spool area. Moreover, to complement the expan-
sion mechanism, R pages are preferred over S pages in step (3), so that the spool retains as many R
pages as possible to facilitate partition expansion. This is expected to improve the effectiveness of

spooling as compared to the LRU spooling strategy.

Each of the above mechanisms can be used by itself or can be combined with the other two mechan-

isms, giving rise to eight PPHJ variants. To differentiate between the variants, we shall postfix a string of the

27

form X, X,X 5 to PPHJ, where X is either late or early (late contraction or early contraction), X, is either exp
or noexp (expansion or no expansion), and X ; is either prio or [ru (priority spooling or LRU spooling). Thus,
PPHI(early,noexp,lru) denotes the basic PPHJ, which uses early contraction, no expansion and LRU spooling;
PPHI(late,exp,prio) denotes the fully enhanced PPHJ, with late contraction, expansion and prioritized spool-

ing, and so on.

3.2.2. Other Algorithms

3.2.2.1. Nakayama et al

The algorithm proposed in [Naka88], which we will call NKT from here on, delays the decision to con-
tract buckets as long as possible. When a bucket has to be contracted, all of its memory-resident pages are
flushed to disk without going through the spool area. After contraction, filled output pages of this bucket are
spooled if space permits. Therefore, except for its failure to spool pages of contracting buckets, NKT com-
bines late contraction, no expansion, and LRU spooling, using the terminologies of PPHJ. Our context, where
the number of buffers allocated to a join may be reduced at any point during its lifetime, necessitates two
adaptations to NKT. First, the original NKT algorithm contracts buckets only during phase one of a join.
This is inadequate for our purposes, so we allow contractions all through phases 1 and 2. The next adaptation
is motivated by the need to keep the size of the R partitions as small as possible, so as to minimize the join’s
yulnerability to memory fluctuations when the R partitions are held in memory-resident hash tables. There-
fore, instead of grouping several buckets into bigger partitions, we let each bucket form a partition by itself.
Finally, the total number of buckets, a parameter of NKT, is set to \/'F_ﬂﬂ This parameter value is chosen to
minimize the number of buckets and the average bucket size (as discussed in the beginning of Section 3.2.1),
as well as to provide a consistent comparison between NKT and PPHJ. We shall refer to our implementation

as NKT to differentiate it from the original NKT algorithm.

3.2.2.2. Zeller and Gray

Like the Nakayama et al algorithm, the algorithm of Zeller and Gray (which we will refer to as ZG)

allows contractions to occur only during the first phase of a join [Zell90]. Our implementation relaxes this

28

restriction so that contractions may occur in both phase 1 and phase 2. The total number of buckets, a param-
eter of the algorithm, is set to \/'F_HI*?{T for the same reason as in NKT . The number of buckets that make up
each partition, another algorithm parameter, is chosen to be one. This choice is motivated by the need to keep
the size of the R partitions as small as possible, as in the case of NKT'. The resulting algorithm, which we

denote as ZG , is equivalent to PPHI(late,noexp,lry).

3.2.2.3. GRACE and Hybrid

Besides PPHJ, NKT and ZG', we will also include the GRACE and Hybrid Hash Join algorithms in our
performance study. Our implementation of GRACE uses \/1_7'.1[1?—" pages for the output buffer of the partitions,
and excess buffers are used as an LRU spool area. In the event that less than */_IFW pages can be allocated to
a join, the DBMS suspends the join altogether. For Hybrid Hash Join, we have implemented two different
versions. In the first version, the DBMS suspends a join if it loses any of the buffers that it starts off with;
therefore, this version is not partially preemptible. In contrast, the second version resorts to LRU paging
whenever the memory available to the join is insufficient to hold its entire hash table. In this case, the join
remains executable, so the second hybrid hash join version is partially preemptible. These two versions are
denoted by Hybrid(Suspend) and Hybrid(Paging), respectively. With Hybrid(Suspend), all the pages of a join
that are written to disk while the join is suspended will be fetched together when the join resumes. This
results in sequential I/Os, as opposed to random I/Os which would occur if the disk-resident pages were to be
paged in on demand. Hybrid(Paging) does the following for each page that is read in while
partitioning/processing relation S: Tuples in this S page which hash to contracted partitions are copied to the
output buffers, while tuples that belong to the (single) expanded partition are joined with tuples in the R
partition’s hash table in two stages. Stage 1 processes those tuples in the current S page that hash to pages in
the memory-resident portion of the hash table and then discards these processed S tuples. S tuples that hash
to hash table pages that have been paged out to disk are not processed in stage 1. In the second stage of pro-
cessing an S page, all of the disk-resident hash table pages that are required are fetched in order to process the
remaining tuples in the current S page. During this stage, hash table pages that are replaced are no longer

useful to the current S page, as the S tuples that need these pages of the hash table have already been pro-

29

cessed. This two-stage strategy requires knowledge about which hash table pages have been swapped out,
and which pages still remain in memory. However, this strategy is superior to a simple strategy that fetches a
missing hash table page each time it is demanded by an S tuple, as the simple strategy may repeatedly swap

out hash pages that will be used by subsequent S tuples. This would lead surely to unacceptable performance.

3.3. Experiments and Results

In this section, the database system simulator described in Chapter 2 is used to evaluate the perfor-
mance of the alternative memory-adaptive hash join algorithms. We begin with a baseline model, and further
experiments are carried out by varying a few parameters each time. The performance metric of interest here
is the average join response time. For ease of reference, the indicator for the algorithms are summarized in

Table 3.2. Before we delve into the experiments, however, we first describe how we generate the memory

fluctuations.

3.3.1. Source of Memory Fluctuations

To investigate how different join algorithms adapt to fluctuations in the amount of available memory,
we simulate an environment where joins have to contend for memory with other jobs that have small memory
requirements and, occasionally, with jobs that have large buffer demands. The memory contention experi-
enced by the active joins is modeled here by a simple stream of high-priority memory requests. The duration
of the memory requests follows an exponential distribution with a mean of Durationyemge,- With a probabil-

ity of Prob (SmallMemReq), a memory request takes up a small number of memory pages; otherwise a large

Indicator Algorithm

PPHJ Partially Preemptible Hash Join

early versus late Early versus Late Contraction

noexp versus exp No Expansion versus Expansion

lru versus prio LRU versus Priority Spooling
G Zeller and Gray algorithm, same as PPHI(late,noexp,lru)
NKT Nakayama et al algorithm
GRACE GRACE Hash Join algorithm
Hybrid(Suspend) Hybrid Hash Join with Suspension
Hybrid(Paging) Hybrid Hash Join with Paging

Table 3.2: Algorithm Indicators

30

portion of memory is demanded. The proportion of the total memory that a small request takes up varies uni-
formly between 0% and MemReqThreshold. In the case of a large request, between 0% to 100% of the total

memory is taken up.

3.3.2. Baseline Experiment

In our first experiment, we simulate an environment where, except for occasional shortages, there is
abundant memory for joins to execute. This environment is simulated by a steady stream of small memory
requests and some occasional large memory requests. To achieve this, the mean duration of memory requests
is set to 1 second, and MemReqThreshold and Prob(SmallMemReq) are set to 20% and 0.8, respectively. In
other words, 80% of the time a memory request takes up 0-20% of the total memory, and the other 20% of the
time the request takes up between 0% and 100% of the total buffer space. A new join is submitted to the sys-
tem only when the previous join has completed, so that there is only one active hash join at any given time.
Moreover, to model primary key-foreign key joins, we let ||Rl| and ||S|| be 256 pages (2 MBytes) and 2560
pages (20 MBytes), respectively, and M be 410 pages (3.2 MBytes). (These parameter values were chosen by
scaling the combination ||R]| = 10 MBytes, 1] = 100 MBytes, and M = 16 MBytes down, by a factor of 5, so
as to keep the simulation cost down.) Since we are primarily interested in the response times produced by the
various algorithms, we set the SRInterval parameter to [9999, 9999] so deadline considerations do not enter
into the picture here. The resource parameter settings for this experiment are summarized in Table 3.3, while

Table 3.4 lists the database and workload parameter settings.

Parameter Meaning Setting
CPUSpeed MIPS rating of CPU 20 MIPS
NumDisks Number of disks 1
SeekFactor Seek factor of disk 0.000617
RotationTime Time for one disk rotation 16.7 msec
NumCylinders Number of cylinders per disk 1500
CylinderSize Number of pages per cylinder 90 pages
DiskSurfaces Number of disk surfaces 15
PageSize Number of bytes per page 8 KBytes
BlockSize Number of pages requested on each sequential /'O 6
M Total number of buffer pages 410 pages

Table 3.3: Resource Parameter Settings for Baseline Experiment

31

Database Meaning Setting
NumGroups Number of relation groups in the database 2
RelPerDisk Number of relations per disk for group / 5
SizeRange Range of relation sizes for group / [256, 256] pages
RelPerDisk, Number of relations per disk for group 2 5
SizeRange, Range of relation sizes for group 2 [2560, 2560] pages
TupleSize Tuple size of relations in bytes 256 bytes
Workload Meaning Setting
NumdClasses Number of classes in the workload 1
QueryType Type of class I queries Hash join
RelGroup Operand relation groups for class I queries {1,2}
M Arrival rate of class I queries (single)
SRinterval | Range of slack ratios for class / queries 9999, 9999]
F Fudge factor for hash joins 1.1
Durationyeyreq Mean duration of memory requests 1 second
MemReqThreshold Max. % buffer demand of a "small" memory request 20%
Prob(SmallMemReq) Probability of "small" memory request 0.8

Table 3.4: Database and Workload Parameter Settings for Baseline Experiment

Figure 3.1 gives the response time of the various algorithms for this experiment. In the figure, the four
PPHJ variants with expansion, i.e. early,exp,lru, early,exp,prio, late,exp,lru, and late,exp,prio, deliver the best
performance, followed by the two hybrid hash join algorithms. The response time of the remaining four PPHJ
variants, i.e. early,noexp,lru, early,noexp,prio, late,noexp,lru, and late,noexp,prio, are roughly twice as long
as those of the first four PPHJ variants. Finally, the GRACE Hash Join algorithm produces unacceptably long
response times —- its average response time is more than three times those of the best PPHJ variant. We also
collected statistics on the average memory that a join gets upon startup, and found this to be roughly the same
for all the algorithms. Hence the behaviors observed here are due to the mechanism(s) of the join algorithms,
and not because of a systematic bias in memory allocation. To understand the reason behind these behaviors,
we shall analyze each algorithm in turn. In the case of the eight PPHJ variants and ZG', which is equivalent
to PPHI(late,noexp,lru), since their response times are determined by three different mechanisms, we shall
examine the impact of each of these mechanisms instead. Before doing so, however, we shall first introduce a

few terms that will be used to characterize the detailed behavior of the algorithms.

We denote the number of I/Os that a join incurs, excluding those I/Os for reading in the source relations
and writing out the results, as "Overhead-I/Os". Overhead-I/Os consist of two components — those associ-

ated with R partition pages, which we denote as R-/Os, and those associated with S partition pages, which

32

50 GRACE
£
2
g carly, late,
= noexp, early, P Jate
2 25 - Iru noexp, Gl 1OeXP,
e prio prio
g early, early, late, late,
& exp, exp, exp, exp,
Ira prio lra prio
Y
0- = /

Figure 3.1: ||R|| = 2 MBytes, [|S|| = 20 MBytes, M = 3.2 MBytes
are denoted as S-I/Os.

Let us first evaluate the expansion mechanism (noexp vs. exp). Recall that expansion attempts to
expand as many partitions as possible during the second phase of a join so as to maximize the number of S
tuples that are joined directly during this phase. The detailed performance results are listed in Table 3.5,
which highlights the performance trade-offs associated with expansion. These results show that expansion is
clearly beneficial under the baseline’s set of experimental conditions. The reason is as follows: Comparing
each set of performance results for no expansion with those for expansion in the same row, we observe that
expansion results in slightly more R-1/Os. For example, with late contraction and priority spooling, the last
row of Table 3.5 shows that PPHJ requires 275 R-I/Os when there is no expansion and 304 R-I/Os when
expansion is activated. This increase is expected because expansion brings in disk-resident pages of R parti-
tions during the second phase of a join. These R pages may subsequently be swapped out due to another
memory shortage, and thus have to be refeiched later. Consequently, some R partition pages are fetched
more than once, resulting in the observed increase in R-1/Os. However, by arranging to expand as many par-
titions as possible during phase 2 of a join, few S pages need to be written out to disk and then processed in

phase 3. As an example, refer to the last row of Table 3.5 again. With expansion, the number of S-I/Os is

33

No Expansion (noexp) Expansion (exp)
Overhead Resp. Overhead | Resp.
R-IO S-10 -1/0 Time R-IO | S-I0 -1/0 Time
early,lru 310 1901 2211 22.5 322 77 399 10.9
early,prio 290 1724 2014 19.1 302 77 379 104
late,lru 304 1790 2094 20.2 310 72 382 10.7
late,prio 275 1675 1950 18.1 304 75 379 10.3

Table 3.5: Expansion Mechanism
only 75, compared to the 1675 S-1/Os in the case where there is no expansion. This large reduction in S-I/Os

more than offsets the drawback in increased R-I/Os, reducing the join response time by more than 40%!

We now examine the priority spooling strategy (Iru vs. prio). To facilitate interpretation of the results,
we reorganize Table 3.5 into Table 3.6 to highlight the relative contributions of LRU spooling versus priority
spooling. Table 3.6 shows that priority spooling produces some performance improvement over LRU spool-
ing. However, for the two better combinations involving expansion, i.e. early,exp and late,exp, the perfor-
mance difference between the two spooling strategies is marginal. The ineffectiveness of priority spooling,
when expansion is in effect, is explained as follows: In an environment where there is ample memory and
memory shortages are rare, most of the spooled R pages are recalled for expansion before they are forced out
by occasional memory shortages. Moreover, since expansion keeps most of the R tuples in memory-resident
hash tables, few S tuples need to be written out. The strategy that is used to manage the spool area thus has

little impact on performance.

Next, we evaluate the relative merits of early versus late contractions (early vs. late). Table 3.7 focuses

on the impact of the timing of contraction. Late contraction consistently produces lower R-I/Os and S-1/Os

LRU Spooling (Iru) Priority Spooling (prio)
Overhead Resp. Overhead | Resp.
R-VO | S-I/O -1/O Time R-/O | S-I/O -1/0 Time
early,noexp 310 1901 2211 22.5 290 1724 2014 19.1
early,exp 322 77 399 10.9 302 77 379 10.4
late,noexp 304 1790 2094 20.2 275 1675 1950 18.1
late,exp 310 72 382 10.7 304 75 379 10.3

Table 3.6: LRU versus Priority Spooling

34

than early contraction, leading late contraction to have lower response times than early contraction. The
superior performance of late contraction is explained by the following: By keeping the partitions of a join
expanded as long as possible, it may turn out that some partitions need not be contracted after all because
additional memory is allocated to the join. Moreover, in the worse case, late contraction will contract only as
many partitions as early contraction does. Late contraction thus outperforms early contraction. However, the
difference in performance between the two contraction strategies is not substantial, especially when there is
expansion. The reason for this is as follows. In phase 1 of a join, early contraction may result in more parti-
tions being contracted than is necessitated by the subsequently available memory. If this bappens, however,
the excess memory is used to spool the pages of the contracted R partitions. Once phase 2 begins, these
spooled pages are then recalled to expand partitions so, shortly after the beginning of phase 2, the join is
operating with just as many expanded partitions as it would have been with late contraction. As a result,

expansion enables early contraction to stay competitive with late contraction.

Turning to NKT in Figure 3.1, we note that it is similar to PPHI(late,noexp,lru), except that NKT’
writes pages of contracting buckets directly to disk. Thus NKT loses some of the benefits of spooling if
excess memory is not fully utilized. This explains the slightly longer response time of NKT' compared to
PPHI(late,noexp,lru). Clearly, neither PPHJ(late,noexp,lru) nor NKT' is the method of choice for this experi-

ment.

As expected, GRACE Hash Join has the largest response time. Although its small buffer requirement
makes GRACE the least vulnerable to memory variability, it fails to exploit the available memory effectively.

Instead of joining most of the partitions directly in phases 1 and 2 as in the other algorithms, GRACE simply

Early Contraction (early) Late Contraction (late)
Overhead Resp. Overhead Resp.
R-1/0 S-1/0 -1/0 Time R-I0O | S-I/O -1/0 Time
noexp,iru 310 1901 2211 22.5 304 1790 2094 20.2
noexp,prio 290 1724 2014 19.1 275 1675 1950 18.1
exp,lru 322 71 399 10.9 310 72 382 10.7
exp,prio 302 77 379 104 304 75 379 10.3

Table 3.7: Early versus Late Contraction

35

partitions the source relations during these two phases, and it starts joining the partitions only in phase 3. This
approach results in many extra I/Os, of course, which accounts for the relatively poor performance of

GRACE.

Finally, we analyze the behavior of Hybrid(Suspend) and Hybrid(Paging). Recall that when a join loses
any of the memory that it starts off with, Hybrid(Suspend) allows the DBMS to suspend the join until the lost
memory is returned; Hybrid(Paging) pages the hash table of the join within the remaining memory. Since
there is ample memory in this experiment, the memory that a join loses is quickly returned. Thus, both ver-
sions of the Hybrid Hash Join algorithm perform much better than NKT', ZG' and the PPHJ variants without
expansion, as these algorithms contract partitions in response to occasional memory shortages and do not
recover from these contractions. However, since a hybrid hash join is not able to utilize extra memory that is
allocated during its execution except for spooling, a join that arrives when there is a memory shortage will run
with a sub-optimal allocation throughout its lifetime. This is why both Hybrid(Suspend) and Hybrid(Paging)

are worse than the PPHJ variants that allow expansion.

To summarize the results of this experiment, we can derive the following conclusions about environ-
ments where memory is abundant and the inner and the outer relations differ in size. First, expansion is
clearly beneficial, as it produces a considerable reduction in response time by avoiding many I/0s for the
larger relation. Second, early contraction and LRU spooling perform only slightly worse than late contraction
and priority spooling, respectively, when the expansion mechanism is in effect. Therefore, while Partially
Preemptible Hash Join with late contraction, expansion, and priority spooling clearly yields the best perfor-

mance, all the PPHJ variants with expansion provide feasible alternatives to deal with memory fluctuations.

3.3.3. Memory Contention

In the next experiment, we investigate how the trade-offs between the different algorithms change when
we move from an environment where there is ample memory to a situation where memory contention is a
severe problem. The total memory size is reduced here to only 40% of ||R}|, while the rest of the parameters
are set as in the baseline experiment. Figure 3.2 gives the performance results. We will focus only on

behaviors that differ significantly from those observed in the previous experiment.

36

90 - }(g"?s‘;‘f Hybrid
654sec (Page)

S late,
@ 60 — early, nOEXp,
P noexp, €1y, early, early, Iru late,
E Iru MOEXP, exp, exp, (ZG) noexp,
Eé e prio pnO rl
=
@
&
e 30+

0 ‘

Figure 3.: [IRl} = 2 MBytes, {ISl| =20 ytes, M = 0.8 MBytes

First, we observe that expansion (noexp vs. exp) now produces only a slight reduction in response time,
compared to the 40% performance gain that we obtained in the baseline experiment. To understand this
change, we examine the detailed performance results that are presented in Table 3.8. Due to severe memory
contention, many of the R partition pages that expansion brings in during phase 2 have to be removed when
memory availability falls again. These pages will have to be refetched subsequently, which leads to a large
increase in R-I/Os with expansion. In fact, expansion roughly doubles the number of R-I/Os. In addition,
since the buffer space that is available to expand partitions is limited here, expansion is unable to obtain its
previous large increase in the number of S tuples that can be directly joined in phase 2. Still, the decrease in

S-1/0s more than compensates for the increased R-1/Os.

No Expansion (noexp) Expansion (exp)
Overhead Resp. Overhead | Resp.
R-I/O | S-I/O -J/O Time R-I/O | S1/O -1/0 Time
early,lru 473 4571 5044 48.3 897 3367 4264 434
early,prio 472 4570 5042 43.9 816 3360 4176 42.0
late,lru 472 4549 5021 47.8 887 3306 4193 43.1
late,prio 471 4522 4993 43.5 796 3310 4106 41.8

Table 3.8: Expansion Mechanism

37

Turning our attention to spooling (Iru vs. prio) in Figure 3.2, we again see that priority spooling pro-
duces only a slight performance improvement over LRU spooling. In this experiment, where memory shor-
tages occur frequently, few pages are able to remain in the spool area until they are recalled by the joins. This
is evident from the large R-I/O and S-I/O values here. For example, with late contraction, no expansion, and
priority spooling (late,noexp,prio), each join requires an average of 471 R-I/Os. This indicates that about 236
R partition pages are written to disk (since each written page involves two I/Os — one to write the page to
disk, and another to fetch the page in later for processing); this is more than 90% of the R pages. As a result,

the spooling policy does not impact performance significantly.

Next, we compare early contraction and late contraction (early vs. late). As in the previous experiment,
late contraction leads to only a small performance gain over early contraction here, but for a different reason.
In this experiment, due to the more severe memory contention, few joins are able to retain any large amount
of memory for very long. Thus, early contraction and late contraction result in about the same number of

expanded partitions, which accounts for their similar response times.

Whereas PPHJ(late,noexp,lru) outperformed NKT' in the previous experiment, in this experiment NKT'
has a slightly lower response time than PPHI(late,noexp,lru). Since NKT' loses the opportunities to spool
pages from contracting partitions, this outcome surprised us initially. A closer examination, however, reveals
that this is precisely why NKT performs better. The reason for this is because, in a memory-constrained
situation, most of the spooled pages are eventually written to disk. Instead of writing a few pages out at a
time, as in PPHI(late,noexp,lru), NKT writes out the entire partition that is being contracted, thus resulting in

fewer random I/Os than PPHI(late,noexp,lry).

A comparison of GRACE with the other algorithms in Figure 3.2 shows that it is only 20% worse than
the best PPHJ variant. Since the main shortcoming of GRACE is its ineffective utilization of excess memory,
and the level of memory contention here leaves little excess memory for the active joins, GRACE’s conserva-
tive use of buffer space yields satisfactory performance. In contrast, Hybrid(Suspend) and Hybrid(Paging)
both produce very long response times. In the case of Hybrid(Suspend), joins have long response times

because they are often suspended for long periods of time due to memory contention. To understand the poor

38

performance of Hybrid(Paging), consider the following scenario: Suppose an active join just lost some of its
memory and, as a result, part of its hash table has been flushed out. The join then fetches the next page of S
tuples and proceeds to probe the part of the hash table that is in memory. After this, the missing hash table
pages have to be fetched in to process this S page completely. Before the fetch can be carried out, however,
some dirty hash table pages that are currently residing in memory must be paged out to make space for the
pages that are about to be fetched in. This at least doubles the number of hash table pages that are written out

to disk.

The results of this experiment confirm our previous conclusions that expansion should definitely be
attempted when the two source relations differ in size. Moreover, late contraction and priority spooling again

produce only slight performance gains over early contraction and LRU spooling.

3.3.4. M to ||R|| Ratio and ||S]| to ||R]| Ratio

The first two experiments lead us to conclude that expanding partitions during the second phase of a
join produces a considerable reduction in its response time, and that late contraction and priority spooling lead
to some additional savings. We now verify these conclusions by examining the sensitivity of the expansion
mechanism to buffer availability and the size of the outer relation. This is achieved by varying M, the total
number of buffers, while keeping the other parameters constant. The value of those parameters, except for
ISl which will be specified later, are those listed in Tables 3.3 and 3.4. For this experiment, we will present
only NKT', PPHI(late,noexp,lru)lZG", PPHI(early,exp,lru), PPHI(late,noexp.prio) and PPHI(late,exp,prio).
The other PPHJ variants will not be examined further because their performance was found to be consistently
inferior to that of the last three PPHJ algorithms that we have selected to show. GRACE, Hybrid(Suspend)

and Hybrid(Paging) are also excluded because they consistently provide unacceptable response times.

In the first part of this experiment, ||S]| is set to 2 MBytes, the same size as ||R]|. This is intended as a
worst case scenario for expansion since a smaller [|S]| (relative to ||R||) lowers the number of S partition page
/Os that expansion can save. Figure 3.3 plots the response time of the five algorithms against M. This figure
shows that no algorithm clearly dominate the others in this case. Since the inner relation and the outer rela-

tion have the same size, the reduction in S-I/Os that expansion produces just about balances out against the

39

extra R-I/Os that are incurred in expanding partitions, thus explaining the similar response times of
PPHI(late,exp,prio) and PPHI(late,noexp,prio). The response times of NKT and PPHJ(late,noexp,lru)/ZG'
are almost the same as those of PPHI(late,noexp,prio) in this experiment because, as we have seen in the pre-
vious experiments, the choice of LRU versus priority spooling has little influence on performance. Finally,
PPHI(early,exp,lru) is comparable to PPHI(late,exp,prio) because there is little difference in performance due

to early versus late contraction when expansion is in effect.

For the second part of this experiment, we increase ||S]| to 20 MBytes to simulate a condition that is
more favorable to expansion (and arguably more typical as well). Figure 3.4 shows the algorithms’ response
times as a function of M. In this case, expansion starts to pay off even for small M values. This is because
every R page that is read in to expand a partition produces, on the average, a ten-fold reduction in S-I/O.
Expansion is therefore worthwhile so long as the average number of times that an R page bas to be refetched
due to memory fluctuations is less than the reduction produced for S. This is supported by the results for
PPHI(late,exp,prio) and PPHI(early,exp,lru), which clearly outperform all of the other algorithms in Figure

3.4. Moreover, the curves for PPHI(late,exp,prio) and PPHI(early,exp,lru) are almost the same, which lends

15 —o— PPHI(early,exp,Iru) —o— PPHI(early,exp,lru)
—»— PPHI(late,noexp,lru)/ZG’ —>— PPHJ(late,noexp,lrg)/ZG’
—e— PPHJ(late,noexp,prio) —— PPHJ(late,noexp,.pno)
n —a— PPHIJ(late,exp,prio) g 60 —s— PPHI(late,exp,prio)
& 0d \ —+—MNKT 2 —— NKT’
Q o
E E
& %
g g 30
2 5 :
L
o &
0 ! T I 0 I T |
0 1 2 3 0 1 2 3
M (MBytes) M (MBytes)

Figure 3.3: ||R|| = |IS|| = 2 MBytes Figure 3.4: ||R|| = 2 MBytes, ||S]| = 20 MBytes

40

further support to our previous conclusions that late contraction and priority spooling produce only a slight
performance improvement when the expansion mechanism is employed. As for the remaining three algo-
rithms, PPHI(late,noexp prio) dominates NKT and PPHI(late,noexp,lru)/ZG because of the gains from prior-
ity spooling, while NKT' is slightly better than PPHJ (late,noexp,lru)/ZG' due to the NKT ’s use of sequential

1/Os.

To surmmarize, the results of this experiment show that PPHI with late contraction, expansion, and
priority spooling has the best performance over a wide range of M to ||R]| and ||S|| to [[R]| ratios. When the [|S]|
to ||R]| ratio is at its minimum, i.e. [|R|[=iSlI, PPHI(late,exp,prio) performs as well as any other algorithm that
we have examined. As the ||S]| to ||R]} ratio increases, the performance difference between PPHI(late,exp,prio)
and the other algorithms starts to widen. The only exception to this is PPHJ with early contraction, expan-
sion, and LRU spooling, which emerged as a close second to PPHI(late,exp,prio) here. Therefore expansion

should definitely be attempted.

3.3.5. Magnitude of Memory Fluctuations

Our next experiment is designed to explore the sensitivity of the memory-adaptive algorithms to dif-
ferent memory fluctuation magnitudes. Instead of an environment where most of the contenders for system
memory are small memory requests, as in previous experiments, here we examine a situation where most of
the memory requests are large. We set the parameter Prob(SmallMemReq) to 0.2, and keep all the other
parameter values as in the previous experiment. In other words, now 80% of the time a memory request takes
up 0-100% of the total memory, and the remaining 20% of the time the request takes up between 0% and 20%
of the total buffer space. Figure 3.5 gives the resulting response times for 1Sl = 2 MBytes, while Figure 3.6

presents the performance results for the case where ||S]| = 20 MBytes.

Turning our attention first to the case where R and S have the same size, we observe that, as in the pre-
vious experiment, no algorithm dominate the others. The most significant difference between Figure 3.5 and
the response times obtained in the previous experiment (Figure 3.3) is that here the response time rises more
steeply as M goes below 0.8 MBytes. This is because the increased frequency of large memory requests

reduces the number of buffers that are available to the hash joins. As M is reduced, the average available

41

memory gradually approaches the minimum \/I—?ﬂﬂ buffers that the hash joins require until, at M = 0.2
MBytes, the average number of available buffers (15 pages) becomes smaller than \/I—*:H—IEIT (about 18 buffers).
As a result, the hash joins get suspended more frequently, leading to the sharp rise in response time. Another
difference between the results obtained from this experiment and the previous experiment is that here the

response times are consistently longer, due to the smaller number of available buffers.

Next, we examine the performance results for ||S|| = 20 MBytes, and compare the results in Figure 3.6
with that obtained in the previous experiment (Figure 3.4). Here again the two expansion-based algorithms,
PPHI(early,exp,lru) and PPHI(late,exp,prio), are the clear winners. Other than the steeper increase in
response time for M < 0.8 MBytes and the generally longer response times, the only feature in Figure 3.6 that
has not been observed previously is that here the performance gain from priority spooling over LRU spooling
is much more pronounced when expansion is not employed, as evident from the curve that corresponds to
PPHI(late,noexp,prio) and the curves for PPHJ(late,noexp,lru)/ZG' and NKT . This behavior can be
explained as follows: In this experiment, where the increased frequency of large memory requests results in a

smaller memory for the hash joins, there is less space to expand partitions. Hence fewer R and S tuples can

—o— PPHI(early,exp,lru) —o— PPHIJ(early,exp,Iru)
20 —s— PPHI(late,noexp,lru)/ZG’ —x»— PPHI(late,noexp,lru)/ZG’
—o— PPHIJ(late,noexp,prio) 90 -1 —— PPHI(late,noexp,prio)
;o: —e— PPHI(late,exp,prio) ’g —a— PPHI(late,exp,prio)
RS = NKT’ RS —+— NKT’
: :
= g 00
g 107 2
))
& &
& g 0
0 I T ! 0 - T T 1
0 1 2 3 0 1 2 3
M (MBytes) M (MBytes)

Figure 3.5: ||R|| = ISl = 2 MBytes Figure 3.6: ||R]| = 2 MBytes, ||S|| = 20 MBytes

42

be joined directly in phase 2. This leads to an increase in the number of R and S pages that have to be written
out to disk during phases 1 and 2, and also to a larger number of disk reads during phase 3. The resulting
increase in disk I/Os magnifies the performance difference between priority and LRU spooling. Since priority
spooling flushes spooled pages by partition, and pages from the same partition reside on contiguous disk
pages, priority spooling produces fewer random I/Os than LRU spooling, which accounts for the performance
difference observed here. The reason why this difference was not more apparent in Figure 3.5 is because

there ||S]| is only 2 MBytes, so the total number of I/Os is smaller.

The most important conclusion that we can derive from the results of this experiment is that algorithms
based on the expansion mechanism are the clear performance winners. Moreover, the expansion mechanism
is robust towards different memory fluctuation sizes. Finally, we also noted that when expansion is not

employed, priority spooling outperforms LRU spooling in situations where the contenders for system memory

are predominantly large memory requests.

3.3.6. Rate of Memory Fluctuations

The expansion mechanism attempts to expand as many partitions as memory permits while the outer
relation S is being scanned. In expanding a partition, the DBMS may have to incur some R-1/Os to bring in
disk-resident pages of the partition. If the partition remains expanded for a while, the reduction in S-I/Os that
result from expanding the partition will gradually offset the cost of expansion. If a memory shortage forces
out a partition soon after it is expanded, however, the expansion would not be worthwhile. There is therefore
a minimum value for Durationyengeq, the average time between consecutive memory fluctuations, in order for
expansion to be worthwhile. This section examines the relationship between the cost-effectiveness of expan-
sion and the value of Durationyemg.q- For the experiments here, M is set to 0.8 MBytes to simulate an
environment where memory requests have a pronounced effect on the number of buffers that are available for
executing joins. Moreover, Duratiofiyemgeq is varied between 0.1 second and 10.0 seconds to generate a wide
range of memory request interarrival times. The value of the other parameters, except for |IS|} (discussed

later), are those listed in Tables 3.3 and 34.

43

For the first experiment, ||S]| is set to 2 MBytes, the same size as ||R}|. Figure 3.7 presents the response
times of the different algorithms. This figure shows that all five algorithms deliver similar performance when
Durationyempeq is greater than 1 second, for the same reasons as in previous experiments. When
Durationye,ge, goes below 1 second, however, expansion has a detrimental effect on system performance, as
evident from the curves in Figure 3.7 that correspond to PPHI(late,noexp,prio) and PPHI(late.exp,prio).

Hence the minimum Durationyemge, for expansion to be worthwhile is about one second for this experiment.

Next, we increase S to 20 MBytes while keeping the other parameters constant. The resulting perfor-
mance results are given in Figure 3.8. This figure shows that the two expansion-based algorithms, namely
PPHI(early,exp,ire) and PPHI(late,exp,prio), outperform the non expansion-based algorithms when
Durationyemgeq is greater than 0.6 second, whereas the reverse is true when Durationyemge, is less than 0.6
second. This, together with the first experiment, confirm that there is a minimum value for Durationyenpeq in
order for expansion to be worthwhile. To understand why the minimum Durationyenmge, for expansion to be

worthwhile occur in the region of 0.5 second to 1 second for both experiments, we shall analyze the detailed

/O costs of partition expansion.

’ W
P~~~ o~ ___i
9 g 40
N N
]]
5 —o— PPHI(early,exp,lru) 5 —o— PPHJ(early exp,lru) ,
2 4 —— PPHI(late,noexp,Iru)/ZG’ 2 —— PPH(late,noexp,lru)/ZG
g —o— PPHIJ(late,noexp,prio) g 20 — PPHJ(late,noexp,.pno)
& —=— PPHI(late,exp,prio) g —s— PPHI(late,exp,prio)
& —+— NKT’ & —+— NKT
O | | 1 | 1 0 1 I i i 1
0 2 4 6 8 10 0 2 4 6 8 10
Interarrival Time (sec) Interarrival Time (sec)

Figure 3.7: |R]| = |||l = 2 MBytes Figure 3.8: ||R|| = 2 MBytes, ||S]| = 20 MBytes

44

PPHIJ splits each relation into \F|[R]| partitions. Hence each R partition has an average of VF|IR]|
pages. Denoting the average seek time plus rotational delay by Seek, the time to transfer one disk page by

Transfer, and assuming that the pages of each partition are stored on consecutive disk pages, the cost of
expanding one R partition is”

expandCost = Seek + \/ﬂ_l_?[_l Transfer
Suppose a reduction of # S pages of this partition is necessary to offset the cost of expansion; 7 is the
quantity we wish to estimate. This reduction results in a saving of # random I/Os, which would otherwise be
needed to write out these n S partition pages, plus n sequential I/Os to read these pages back from disk when

joining the R and S partitions. Therefore,

costReduction = (n + 1) Seek + 2n Transfer

In order for the cost reduction to offset the expansion cost,

costReduction 2 expandCost

0> NF|IRl| Transfer
= Seek + 2 Transfer

=

Since each S page that is scanned may hash to any of the \fﬁlﬁ?ﬁ partitions, the DBMS needs to scan
n\/fl_l_i?l—l S pages to realize a reduction of n pages from expanding one particular partition. We now attempt to
quantify the time required to scan n\/ﬁlI_ﬂT S pages. The cost of reading n\/}—'"ﬁ—R_n— pages is one Seek plus
n\/ﬁl—éﬂ Transfer. Assuming half of the partitions are expanded and the rest are contracted, n\/I}W 12 of
these S pages would hash to contracted partitions and have to be written out. Each page that has to be written
out while processing S incurs one Seek to move the disk head from the cylinder that the current S page resides
on to the cylinder that holds the contracted S partition, one Transfer to write out the page, and another Seek to

move the disk head back so that the next S page can be read. The time to scan nVF IR}l S pages is therefore

2 To simplify the analysis, we will ignore the effect of spooling here.

45

scanCost = 1 Seek + n NF||R|| Transfer + %VF [IRll (2 Seek + 1 Transfer)

= (nVF||R|| + 1) Seek + 1.5n VF|IR|| Transfer

Thus the minimum time needed to expand a partition and then realize enough savings to offset the cost
of expansion is
minTime = expandCost + scanCost = (n NF|R|| +2) Seek -+ VF IRl (1.5n + 1) Transfer
Hence, for expansion to pay off, memory shortages should not occur more frequently than minTime. Since a
memory fluctuation is equally likely to be a decrease or an increase in memory allocation, Durationyemgeq has

to be at least half of minTime.

With our resource parameter settings, reasonable values for Seek and Transfer are 16 msec and 6 msec,
respectively. With an R of 2 MBytes and a page size of 8 KBytes, \/’ﬁ'TI—IE]—I_ works out to be 16. Substituting
these values into the above equations, minTime is about 1.5 seconds. Thus, Durationyemg.q has to be at least
0.75 second for expansion to be worthwhile. This explains why, in the above experiments, expansion

becomes harmful when Durationyemr.q goes below this value.

To summarize, this section demonstrates that expansion is almost always beneficial; the exception is
when memory availability fluctuates very rapidly. Given that typical transactions take on the order of a
second to complete, and that sorts and joins requiring significant amounts of memory take much longer, it
seems unlikely for buffer availability to change so fast as to cause expansion to perform badly in practice.

Thus expansion appears to be a generally useful mechanism.

3.3.7. Discussion of Other Alternatives

As described in Section 3.2.2, we have extended the algorithms in [Naka88] and [Zel190] to allow parti-
tion contractions during the second phase of a join. An alternative would have been to restrict contractions to
only the first phase of a join and, if additional memory is lost during phase two, to suspend the join or to page
its hash tables into and out of the remaining memory. We have shown that Hybrid(Suspend) and
Hybrid(Paging) both result in long resI')onse times, so it is clear that doing suspension or paging with NKT,

the Nakayama et al algorithm, and ZG, the Zeller and Gray algorithm, would only worsen their performance.

46

We therefore did not include those alternatives in our performance study.

In the algorithms studied here, a join is always cognizant of which of its pages are in memory. Another
possible approach to dealing with memory fluctuations, as mentioned in Chapter 1, would be to let the DBMS
(or the operating system) page the hash table of an affected hash join without informing the join operator.
Since a replaced page could be allocated a different memory address space when it is subsequently read in,
this approach precludes the possibility of using memory pointers for the hash tables. Instead, logical
addresses have to be used, thus resulting in extra overheads for pointer dereferencing. Moreover, using this
simple approach, the system could appropriate any of the join's buffers. Since the join operator would have
no knowledge of which buffers are paged out, it would access its buffers without attempting to first make use
of those buffers that are in memory. This approach would result in even longer response times than
Hybrid(Paging), and was therefore not considered. Similarly, the DBMS could simply suspend a join without
informing it. This simple approach would be worse than Hybrid(Suspend), which fetches all the pages that
have been swapped out when a join resumes execution, as fetching these pages together results in sequential

1/Os and lower overheads. This alternative was therefore ruled out too.

3.4. Conclusion

In this chapter, we have addressed the issue of join execution in situations where the amount of memory
available to a query may be reduced or increased during its lifetime. These situations will arise in real-time
database systems where memory may be appropriated from a join to meet the buffer requests of higher-
priority queries, and where additional memory may be made available when other queries complete and free
their buffers. In particular, we considered the specific problem of scheduling hash joins, which require large
numbers of buffers to execute efficiently and are thus especially susceptible to fluctuations in memory availa-
bility. Our study demonstrated that simple approaches that react to a reduction in a join’s allocated memory
by suspending the join altogether or by paging the hash table of the join into and out of the remaining memory
will not produce acceptable performance. There is therefore a need for more sophisticated approaches that

enable the join to adapt itself to these memory fluctuations.

47

To investigate the effectiveness of adapting the buffer usage of hash joins to memory fluctuations, we
proposed a family of memory-adaptive hash join algorithms, called Partially Preemptible Hash Join (PPHI).
All the PPHJ algorithms split the source relations of a join into a number of partitions that are initially
expanded, i.e. held in memory-resident hash tables. When the allocated buffers become insufficient to hold
all of the partitions, PPHJ responds by contracting one of the expanded partitions, i.e. by flushing its hash
table to disk and by deallocating all but one of its buffer pages. The remaining page is used as an output

buffer for the contracted partition.

Each of the PPHJ variants utilizes additional memory through a (fixed) combination of three mechan-
isms: late contraction, expansion, and priority spooling. Late contraction keeps the partitions of a join
expanded as long as possible, i.e. until the buffer usage of the join actually exceeds the allocated memory. In
contrast, early contraction starts a join by expanding only as many partitions as it estimates will fit into the
available memory; the rest of the partitions are immediately contracted. The advantage of late contraction is
that additional buffers may be given while the join is executing, thus avoiding the need to contract some parti-
tions altogether. If memory permits, expansion fetches contracted partitions of the inner relation R into
memory-resident hash tables while the outer relation S is being partitioned, thereby increasing the number of
S tuples that can be joined directly without further /Os. The last mechanism, priority spooling, concerns how
excess memory is utilized. PPHJ utilizes excess buffers to spool pages that are being flushed to disk, in the
hope that these pages will be fetched again while they are still in memory, thus eliminating some I/O opera-
tions. By default, the LRU policy is used to manage this spool area. If priority spooling is activated, pages in
the spool area are prioritized according to the page access pattern of the join so that pages that are likely to be
needed first are kept in the spool area. Each of these three mechanisms can be used independently or in con-

junction with the other two mechanisms, thus resulting in eight different PPHJ variants.

To understand the performance trade-offs of different hash join algorithms, we carried out a series of
experiments using the detailed DBMS simulation model described in Chapter 2. Through these experiments,
we confirmed that hybrid hash join with suspension or paging is not satisfactory. Our experiments also
revealed that, with one exception, expansion produces a substantial reduction in the response time of a join

over a wide range of memory availability and outer versus inner relation sizes. The exception was when

48

memory availability fluctuates extremely rapidly. Moreover, further savings can be achieved by late contrac-
tion and priority spooling, though the savings are not nearly as significant as those due to expansion. These
findings are important in two ways. First, previous studies [Naka88, Zell90] have proposed algorithms that
rely solely on late contraction. Our study showed that expanding partitions while the outer relation S is being
scanned leads to more effective utilization of excess memory, and hence to lower response times. Second,
PPHJ with early contraction, expansion, and LRU spooling was shown to produce response times that were at
most 10% longer than that of the best PPHIJ variant. Thus for practical reasons it might be desirable to adopt
this alternative; this would avoid complicating further the code for the hash join algorithm by incorporating
late contraction and priority spooling. However, we will adopt the best variant, namely PPHJ with late con-

traction, expansion, and priority spooling, for the remainder of this thesis because of its superior performance.

CHAPTER 4

MEMORY-ADAPTIVE EXTERNAL SORTING

As shown in the previous chapter, suspending a hash join or paging its computational memory area are
not effective ways for dealing with memory fluctuations during join operations in a priority scheduling
environment. Instead, memory-adaptive techniques were introduced to allow a hash join to adjust gracefully
to reductions and increases in the amount of allocated memory during its course of execution. This finding
leads us to study the memory fluctuation problem for external sorting, another common query operation that
requires a large buffer area, in our attempt to furnish the necessary mechanisms for efficient real-time data-

base query processing.

Sorting is frequently used in database systems to produce ordered query results. It is also the basis of
sort-merge join [Blas77], a join algorithm employed by many existing database systems, and it is used in
some systems for processing group-by queries. An external sort consists of two steps: In the first step, por-
tions of the relation to be sorted are fetched into memory, sorted, and written out in the form of sorted sub-
runs. In the second step, which may involve several sub-steps, these sub-runs are merged into a single sorted
result. For a large relation, both the sort step and the merge step can potentially utilize many memory pages,
and sorting a large relation may take a long period of time. Consequently, as was the case for hash joins in
Chapter 3, it may be necessary for memory to come and go throughout the lifetime of a large external sort
operation in order for a real-time database management system to satisfy the memory requirements of

higher-priority jobs that arrive and leave during the execution of the sort.

In this chapter, we focus on the problem of adapting external sorts to fluctuations in their memory allo-
cations. We propose and study the performance of a memory-change adaptation strategy called dynamic
splitting. Dynamic splitting adjusts the buffer usage of external sorts, both to reduce the performance penalty

resulting from memory shortages and to take advantage of any excess memory that becomes available. In

49

50

addition, we study how dynamic splitting works with several different in-memory sorting and merging stra-
tegies that external sorts can employ. We also show how these techniques can be extended to handle sort-

merge joins.

4.1. Standard External Sort Algorithms

An external sort involves two distinct phases. The first phase is a splir phase, which employs an in-
memory sorting method to divide the source relation into a number of sorted runs. The second phase, the
merge phase, consists of one or more merge steps, each of which combines a number of runs into a single
sorted run. The merge phase terminates when only one run remains. Within this framework, the choice of the
in-memory sorting method for the split phase is independent of the choice of the merging strategy. This sec-

tion reviews the common sorting methods and merging strategies that are found in the literature.

4.1.1. In-Memory Sorting Methods

Quicksort and replacement selection are two in-memory sorting methods that are commonly used in
external sorts. An external sort that employs Quicksort first fills the available memory with as many pages of
the source relation as will fit at a time, sorts the tuples in the memory-resident pages, and then writes the
result out as a sorted run. This process is repeated until the entire source relation has been scanned. With

Quicksort, the length of the runs produced is the size of the memory that is allocated for the split phase.

The second sorting method, replacement selection, works as follows: Pages of the source relation are
fetched, and the tuples in these pages are copied into an ordered heap data structure. As more pages are
fetched, the heap gradually grows in size until it occupies all of the available memory. At this point, a page of
tuples is repeatedly removed from the heap and written to the current run so as to make space for the next
incoming page of tuples. The tuples that are removed are those that have the smallest key values (assuming
the source relation is to be sorted in ascending order) in the heap, subject to the condition that these tuples
must have greater key values than the latest tuple written out in the current run. When none of the tuples in
the heap satisfy this condition, the current run ends and a new run is started. On the average, the length of the

runs produced by replacement selection is twice the memory allocated for the split phase [Knut73], i.e. twice

51

as long as the runs generated with Quicksort. Hence, replacement selection creates only half as many runs as
Quicksort. This could significantly shorten the merge phase that follows. A nice discussion of the details

involved in implementing replacement selection can be found in [Salz90].

Although using replacement selection instead of Quicksort can shorten the merge phase, replacement
selection is not always the preferred choice because it can also lead to a longer split phase [Grae90, DeWi91].
With Quicksort, there is a cycle of reading several pages from the source relation, sorting them, and then writ-
ing them to disk. In contrast, replacement selection alternates between reading a page from the source rela-
tion and writing a page to the current run. When the source relation and the run reside on the same disk, this
results in many more disk seeks than in the case of Quicksort [Grae90]. In order to reduce disk seeks in
replacement selection, a third possible in-memory sorting method is to use replacement selection, but to do
block writes, i.e. to write several pages (say N) out to the run each time, instead of only one page at a time as
in the original replacement selection procedure. A large N will result in fewer disk seeks, but at the same
time it will reduce the average length of the runs. In the extreme case where N is equal to the amount of
available memory, this replacement selection variant will fill all of the available buffers with relation pages,
then write the sorted pages out together. In this case, the benefit of replacement selection is lost, since the
length of the runs becomes the number of available buffers. Thus, the value of N has to reflect a compromise
between reducing disk head movements and increasing the average length of the sorted runs. Whether the
original replacement selection, Quicksort, or replacement selection with block writes is preferable depends
not only on the hardware characteristics of the system, but also on memory allocation and the size of the rela-

tion to be sorted.

4.1.2. Merging Strategies

The split phase generates a set of n runs which have to be combined into a single sorted run in the
merge phase. The merge phase consists of one or more steps; a merge step takes as input a number of sorted
runs and combines them into a longer sorted run. Each input run of a merge step requires an input buffer, and
an output buffer is needed for the output run. If at least n + 1 pages of memory are available for the merge

phase, a single step suffices to combine all of the n runs.

52

When the source relation is large relative to the available memory, the database system may not be able
to allocate enough buffers to a sort operator for it to merge all of its runs in a single step. In this case, prelim-
inary merge steps are required to reduce the number of runs before the final merge can be carried out. Every
preliminary merge step incurs extra I/O operations to fetch its input runs from disk and to write out its output
run, and there is also extra CPU cost associated with each preliminary step. For this reason, it is desirable for
every preliminary step to combine as many runs as the available memory allows, so that there will be as few
merge steps as possible. A simple strategy, then, is for each step to merge m - 1 runs, where m is the number
of available buffers. Figure 4.1(a) illustrates this strategy for the case where n = 10 and m = 8. The 10 runs
are denoted by R, .., R1g, and R _jo denotes the run that results from merging R, to Ryo. In this case, the 10
runs are merged in two steps. The first step merges all the tuples in Ry to R, into R;_;. Step two, which
merges Ry_7, Rg, Ry and R into the final result, begins only after the first step is completed. An alternate
strategy is to merge just enough runs in the first step so that each of the subsequent steps merges m - 1 runs.
Figure 4.1(b) illustrates the second strategy. The first merging strategy is called "naive" merging, and the
second strategy is called "optimized" merging [Grae90]. From Figures 4.1(a) and 4.1(b), it should be
apparent that "naive" merging is more expensive than "optimized" merging, as the final step has to process all
of the tuples in the relation in both strategies. The preliminary steps incur extra cost, and should therefore
merge as few runs as possible (without increasing the number of merge steps) to keep the extra cost down.

By merging more runs, "naive" merging increases the cost of the preliminary steps unnecessarily. Thus, the

‘ Ri-10 R1-10
Step // T \\\\'\ p of 7 A
yd \ Y \
%
Step 1: /l \ / \\
\ / \
Ry = Ry Ry ¢ Ry
(a) "Naive" Merging (b) "Optimized" Merging

Figure 4.1: Merging Strategies

53

general rule is to adopt "optimized" merging [Grae91].

Another important aspect of the merging strategy concerns the choice of input runs. All of the merge
steps, other than the final merge, have a choice of input runs and should thus merge the shortest possible runs.
Such a choice minimizes the cost of the preliminary merges in two ways: Firstly, choosing the shortest runs
for a given merge step obviously minimizes its cost. Secondly, the output run of an early merge step may be
selected as one of the input runs of a subsequent preliminary merge step. By minimizing the size of the input
runs of the early merge step, and hence the size of its output run, the cost of the later merge step is also
reduced because it needs to merge fewer tuples. For these reasons, all of the algorithms studied in this paper

adopt the policy of merging the shortest possible runs at any given step.

4.2. Memory-Adaptive External Sort Algorithms

In the previous section, we assumed that the amount of available memory remains the same throughout
the lifetime of an external sort. As discussed in Chapter 1, however, it is desirable for a sort operator to be
able to execute with a varying number of buffers. This section gives a detailed description of a set of alterna-
tive memory-adaptive external sort algorithms. Since the in-memory sorting methods for the split phase are
independent of the merging strategies for the merge phase, we shall first treat the in-memory sorting methods
separately before addressing the merging strategies. Finally, we end the section by introducing some notation

that will be used to denote different external sort algorithms throughout the rest of the chapter.

4.2.1. Split-Phase Adaptation .

If an external sort is in the split phase when it is asked by the DBMS to release a page, the sort can
immediately do so if it has unused buffers, i.e. buffers that are not currently occupied by tuples from the rela-
tion. If all of its buffers are in use, however, it will have to clear some of the memory-Tesident tuples by writ-
ing them to output runs, then rearrange the remaining tuples to free up the requested buffers. Next, we con-
sider the case where an external sort is given additional buffers in the split phase. With replacement selection,
the new buffer can immediately be used to fill the next incoming page of tuples. In the case of Quicksort, if

the external sort is in the process of filling its memory with relation pages, the sort can immediately fill the

54

newly allocated buffers with more relation pages. If the external sort has already started sorting its tuples to
create a run, however, the new page will remain unused until the run has been written out and the external

sort resumes fetching relation pages.

4.2.2. Merge-Phase Adaptation Strategies

In contrast to the split phase, the merge phase does not adapt to memory fluctuations as easily. One
possible solution is to adopt hybrid approaches that allow a sort operator to adapt to memory fluctuations only
in the split phase, leaving the DBMS to either suspend an affected external sort or else page its buffers when
it is in the merge phase. Besides the drawbacks of suspension and paging that we discussed in Chapter 1,
these hybrid approaches would also prevent an external sort from taking advantage of extra memory (beyond
the initially allocated amount) that may become available while the sort is in the merge phase. In this thesis,
we will therefore explore an alternative, called dynamic splitting, that actively involves an affected sort in

adapting to memory fluctuations that occur during the merge phase.

4.2.2.1. Suspension

The most straightforward approach to deal with memory shortages that occur during the merge phase of
an external sort is for the DBMS to suspend the external sort altogether. The buffers of the external sort can
be taken away once it has been suspended. The only information that is needed to resume the merging is the
position of the next tuple in each input run. Since the sort operator already keeps track of this information for
normal merging operations, no special mechanisms are necessary for suspension. Our implementation of
suspension fetches all of the input buffers together when the external sort resumes. This reduces disk seek

costs, as opposed to fetching the buffers on demand.

4.2.2.2. Paging

Another obvious way to deal with memory fluctuations during the merge phase is to resort to MRU
paging whenever the memory available to an external sort is insufficient to hold all of the input buffers for its
current merge step. Our implementation of paging works as follows: The external sort keeps a copy of the

current tuple of each input run in its private work space, where the tuples are merged. After writing out the

55

smallest tuple to the output run, the external sort determines which input run this tuple came from, and then
attempts to copy the next tuple from this input run. If the buffer for this input run is no longer in memory, the
most recently used buffer is selected for replacement, and a disk read is issued to bring the required buffer
back in. As with suspension, paging enables an external sort to relinquish its buffers as and when they are

needed for replacement or for release to the DBMS.

4.2.2.3. Dynamic Splitting

Dynamic splitting is a strategy that is designed to adapt the merge phase of external sorts to varying
memory allocation. When a shortage causes the available memory to go below the memory requirement of an
executing merge step, this strategy adapts by splitting the merge step into a number of sub-steps that each fit
within the remaining memory. Conversely, when additional buffers are given, the merge steps can be com-
bined into larger steps, i.e. steps that have more input runs, to take advantage of the now-larger memory. The

details of the dynamic splitting strategy are presented below.

Suppose that a sort operator is currently executing a merge step, which can be either the final merge of
all existing runs or a preliminary merge step. If a memory shortage occurs, causing the available memory to
become less than the buffer requirement of the current merge step, the sort operator can immediately stop the
current step, split the step into a number of sub-steps, and then start executing the first sub-step. To illustrate
this, suppose that the merge phase of an external sort started with 10 runs and 11 buffers, which allowed all
runs to be merged at once as in Figure 4.2(a). While the sort is executing this merge step, the available
memory is reduced to 8 buffers. The sort operator responds by splitting the merge into a preliminary step that
merges Ry to R, into R4 (assuming "optimized" merging), and a final step that merges R4 with Rs to Ryo
into Ry_jg- After the split, the sort immediately starts to work on the preliminary step. (Note that some of the
tuples from R to R4 have already been merged into R 10 prior to the split, so only the tuples that still remain
in R, to R, will be merged into R4 by the preliminary step.) This is illustrated in Figure 4.2(b), where the
preliminary step, the merge step with the solid arrows, is the one that is being executed. The final step, which
has dotted arrows, is inactive. Suppose that no further changes in memory allocation take place, and that the

external sort completes the preliminary step without interruption. There are now only 7 runs, and the sort is

56

R1-10 }1-1& R1-10
Ry -+ R0 /R1-—€\ R5 -+ R10 Ri_4 Rs *** Rq0
l{1 .o R4
(a) (b) (©)

Figure 4.2: Splitting
ready to resume the final merge step. This is achieved by merging R, with whatever is left in Rs to R0,
appending the result to R_;o (Figure 4.2(c)). At this stage, R |_;o contains some of the tuples from R; to Ry
that were merged prior to the split, R5 to R o each contain some remaining tuples, and the remaining tuples of

R, to R, are now in Ry_4. To get the entire sorted result, the sort needs to complete R_o-

Having discussed how dynamic splitting breaks a merge step into sub-steps in response to a memory
reduction, we now present the provision in the dynamic splitting strategy that allows an external sort to com-
bine existing merge steps to take advantage of extra buffers as they become available. We shall introduce this
provision by continuing our earlier example. Suppose that, while the sort is executing the preliminary step
(the step with the solid arrows) in Figure 4.2(b), the available memory increases to 11 pages again. Instead of
completing this step before performing the final merge as discussed previously, the sort operator can switch to
the final merge directly. Figure 4.3 illustrates the process involved. At this stage, R _jo contains some of the
tuples from R, to R;q that were merged prior to the split. To produce the final result, the sort operator needs
to append to R_jo the rest of the tuples that were originally left in R; to Ro. However, since the sort has
already been executing the preliminary step, some of the leftover tuples in Ry to R4 are now in R 4. It is
therefore necessary for the external sort to first merge R4 with R to Rg, appending the result to Ry_jo.
This is shown in Figure 4.3(a), where the final step, which has solid arrows, is now active and the preliminary
step is inactive. Once R;_4 becomes empty, the sort operator can proceed to combine the final step with the

preliminary step to produce a new final step that again merges the tuples remaining in R to R 1o, adding them

57

/JRFQ\ /ﬁM\O\
Ri_4 Rz ' Ryo R R10
d >
/ \\
R1 R4
(a) (b)

Figure 4.3: Combining Merge Steps
to R 10 as well (Figure 4.3(b)).

Although our only example shows a split that breaks a merge step into two sub-steps, the splitting pro-
cedure can be recursively applied to break a merge step into more than two sub-steps. For example, the prel-
iminary step in Figure 4.2(b) can be split again if memory decreases further while the step is being executed.
Similarly, it is possible to combine more than two merge steps by applying the combining procedure recur-
sively. To fully exploit the capabilities of dynamic splitting, the merge phase always starts with a step that
combines all of the runs produced in the split phase. If the available memory is insufficient to execute this
step, it is immediately split into sub-steps that fit in memory. This enables an external sort to take advantage
of excess memory that may become available later by combining existing merge steps into steps that merge
more runs, thus helping the sort to recover from a low initial memory allocation if memory happens to be in

short supply at the beginning of the merge phase.

There is an important difference between dynamic splitting and the splitting process that was described
in Section 4.1.2, which we will call static splitting to distinguish it from dynamic splitting. When an external
sort has more runs to merge than its memory allows, static splitting is used to initiate preliminary merge steps
to reduce the number of runs. Once started, a merge step has to execute to completion before another merge
step can be executed. In contrast to static splitting, dynamic splitting allows an external sort to switch
between merge steps, if it so desires, without having to wait for any step to complete. This ability to switch to

a different merge step immediately is essential if an external sort is to effectively adapt its buffer usage to

58

both increases and reductions in its allocated memory during the merge phase.

4.2.3. Notation for External Sort Algorithms

In this section, we have discussed three in-memory sorting methods and three merge-phase adaptation
strategies. These in-memory sorting methods and merge-phase adaptation strategies will be evaluated in the
performance study that follows. In addition, we will compare the relative merits of "naive" merging versus
“optimized" merging for the following reason: While "optimized" merging always performs at least as well as
“"naive" merging for a fixed memory allocation, it is not obvious that this is still the case if the amount of
memory allocated to a sort operator may be reduced while it is executing. In such situations, "naive" merging
may turn out to be better because it utilizes all of the currently available buffers right away (while the sort
operator still has them). Since the choice of in-memory sorting method, merging strategy and merge-phase
adaptation strategy are all independent, there are 18 possible external sort algorithms, each employing a dif-
ferent combination of in-memory sorting method, merging strategy, and merge-phase adaptation strategy. To
differentiate between the algorithms, we shall denote each algorithm by a string of the form XX, X3, where
X, is either repll, quick, or repiN (replacement selection, Quicksort, or replacement selection with N-page
block reads and writes), X, is either naive or opt ("naive" merging or "optimized" merging), and X3 is either
susp, page, or split (suspension, paging, or dynamic splitting). Thus, for example, quick,opt,susp denotes

external sort with Quicksort, optimized merging, and suspension. This notation is summarized in Table 4.1.

Parameter Meaning

In-Memory Sorting Method

repll Replacement selection

quick Quicksort

repIN Replacement selection with N-page reads and writes
Merging Strategy

naive "Naive" merging

opt "Optimized" merging
Merge-Phase Adaptation Strategy

susp Suspension

page Paging

split Dynamic Splitting

Table 4.1: Notation for External Sort Strategies

59

4.3. Experiments and Results

In this section, the database system simulator described in Chapter 2 is used to evaluate the perfor-
mance of the alternative memory-adaptive external sort algorithms. We first discuss how the fluctuations in
active queries’ memory allocations are generated. Next, we begin with an experiment where the amount of
memory that is allocated to each external sort remains unchanged throughout its lifetime. This experiment is
intended to give us an initial understanding of the trade-offs between different in-memory sorting methods
and merging strategies before we delve into the complexities introduced by memory fluctuations. We then
present a baseline model that is used to study the performance impact of memory fluctuations, and further
experiments are carried out by varying a few parameters each time. The performance metric of interest here

is the average sort response time.

4.3.1. Source of Memory Fluctuations

To investigate how different memory-adaptive mechanisms react to fluctuations in the amount of avail-
able memory, we again simulate an environment where queries commonly have to contend for memory with
other jobs that have small memory requirements and, occasionally, with jobs that have large buffer demands.
In contrast to hash joins, which can react to a request to change their memory allocations immediately after
processing the tuples in an incoming page, an external sort requires a much longer reaction time if it is in the
split phase since it would have to write its memory-resident tuples out to sorted runs and rearrange the
remaining tuples before it can free its buffer pages. In order to account for such extended delays, here we
explicitly model the high-priority memory requests that compete for memory with the active queries. There
are two streams of memory requests, one small and the other large. The generation of small memory requests
follows a Poisson distribution with a mean rate of Agy,y, and the proportion of the total memory that a small
request takes up varies uniformly between 0% and MemReqThreshold. Moreover, the duration that a small
request remains in the system after receiving its required memory is modeled using an exponential distribu-
tion with a mean of |ig,qy. Similarly, large memory requests arrive at a mean rate of Ay, and have a mean

duration of ;... Each large request occupies between 0% and 100% of the total memory.

60

4.3.2. No Memory Fluctuation

As mentioned above, our first experiment is designed to study the trade-offs of different in-memory
sorting methods and merging strategies in the context of fixed memory allocation. For this experiment, we let
[IR]] be 2560 pages (20 MBytes), and vary M, the total system memory. Every external sort will execute with
all of the system memory throughout its lifetime. Agygy and Ay, are both set to 0 request/second, so that
there is no memory fluctuation. The CPU and disk model parameters are set according to the values given in
Table 3.3. Finally, for the in-memory sorting method repIN, we let N be 6 (meaning that tuples are removed
from the heap and written out in blocks of 6 pages). This choice was made because, for our system
configuration, N = 6 leads to a considerable reduction in the average per-page disk access time over N =1, as
indicated in Table 4.2!, without incurring the penalty of a significant increase in the number of sorted runs

that the split phase generates, as will be evident from our experimental results.

Figure 4.4 presents the response times for the various combinations of in-memory sorting methods and
merging strategies. The average number of sorted runs produced by each in-memory sorting method, together
with the corresponding average number of merge steps and split-phase duration, are given in Table 4.3. Since
there is no memory fluctuation in this experiment, the merge-phase adaptation strategies do not come into
play here. The figure shows that all of the response times drop sharply initially as M is increased. As M
grows beyond 0.6 MBytes, however, all of the curves level off. This behavior can be attributed to the reduc-
tion in the number of merge steps that takes place as the average number of generated runs decreases. As is
evident from Table 4.3, the number of required merge steps initially drops drastically. However, once M

reaches 0.6 MBytes, all three in-memory sorting methods produce fewer runs than the number of available

N 1 2 4 6 8 10 12
Time 62 36 26 23 22 21 21

Table 4.2: Average Per-Page Disk Access Time (msec)

| The average per-page disk access time shown in the table includes the time spent waiting for service,
i.e., including waits for completions of previously issued asynchronous disk write requests.

61

buffers; thus, there can be no further reduction in the number of merge steps (until M grows to 20 MBytes, at
which point there will be a sudden drop in response time because it will then be possible to sort the entire
relation all at once in memory). In this region, increasing M leads to fewer sorted runs at the end of the split
phase, and hence lower disk seek costs when the runs are merged; this accounts for the slight reductions in

response time at the right-hand side of Figure 4.4.

300 - -0-- quick, naive
—o— quick, opt
- %~ repll, naive
’g \ —x— repll, opt
< 200+ - -~ repl6, naive
°é —o— repl6, opt
=
@
2
% 100+
[~
0 T T T
0.0 0.4 0.8 1.2
M (MBytes)
Figure 4.4: No Memory Fluctuation
M MBytes 0.07 0.14 0.20 0.31 0.41 0.61 0.82 1.36
(pages) O (18 | @n | @n | &9 | @n | (108) | (179)
of Runs
quick 280 149 101 65 52 34 25 15
repl1 141 75 52 33 27 18 13 8
repl6 202 89 57 35 28 19 14 9
of Merge Steps
quick 32.0 9.0 4.0 2.0 1.0 1.0 1.0 1.0
repl 1 15.7 4.2 1.9 1.0 1.0 1.0 1.0 1.0
repl 6 22.4 49 2.1 1.0 1.0 1.0 1.0 1.0
Split-Phase Duration (sec)
quick 34 31 29 29 28 27 27 27
repl 1 89 86 85 84 83 83 82 82
repl6 34 31 31 31 30 30 30 30

Table 4.3: Performance Results for No Memory Fluctuation

62

Comparing the response times of the three in-memory sorting methods, it is clear that repl1 con-
sistently yields the worst performance. This is due to the large number of random I/Os that repl 1 produces,
as the external sort alternates between reading a relation page and writing a page to the output run. In con-
trast, Quicksort writes out an entire run each time, thus producing considerably fewer random I/Os. Quicksort
therefore has a much shorter split phase than repl 1, which more than offsets the longer merge phase that
results from the larger number of runs that Quicksort generates. (Similar observations about the relative
trade-offs between Quicksort and repl 1 were made in [Grae90] and [DeWi91].) By writing multiple pages
instead of only a single page each time as in repl1, repl6 is able to significantly reduce the number of disk
seeks in replacement selection, bringing the duration of its split phase much closer to that of quick. Moreover,
the number of Tuns that repl 6 creates is only marginally more than repl1 in almost all cases. Thus, repl6 is
clearly superior to repl 1 as a replacement selection procedure. Between quick and repl6, repl 6 is the winner
when M < 0.6 MBytes, whereas guick is just slightly faster for M > 0.6 MBytes. The trade-off between quick
and repl 6 is again due to the number of runs that the two approaches generate, relative to the amount of allo-
cated memory. Table 4.3 shows that for M < 0.6 MBytes, quick results in more merge steps, and conse-
quently a longer merge phase, than repl6. This is why repl6, which creates significantly fewer runs than
quick, is superior there. For M 2 0.6 MBytes, there is enough memory to merge all of the runs produced by
quick in a single step, so repl 6’s fewer runs gives it little advantage over guick. In this region, the duration of
the split phase becomes the dominant factor. Since Quicksort incurs fewer disk seeks than replacement selec-
tion, which writes out the pages of each run in several blocks, quick is marginally faster than repl6 in this
region.

Next, we turn our attention to the two merging strategies, optimized merging (opt) and naive merging
(naive). Figure 4.4 shows that opt consistently leads to shorter response times than naive for M < 0.4
MBytes, whereas the two merging strategies yield identical performance when M > 0.4 MBytes. Recall that
naive and opt differ in the number of runs that they combine in the first preliminary merge step. The output
run of the first preliminary merge step may in turn be combined by a subsequent merge step, the output run of
which may be the input of yet another merge sfep, and so on. The decision of naive to include more runs in

the first preliminary step thus leads to an increase in the cost of each of these affected steps [Grae91]. The

63

more merge steps there are, the larger the number of affected steps becomes, and consequently the higher the
penalty of naive gets. For small M values, the number of sorted runs that the merge phase has to combine is
large relative to the available memory, as shown in Table 4.3. This results in many merge steps, causing the
observed differences in response time between naive and opt in Figure 4.4. Conversely, when M is large, the
number of merge steps required is small, and so is the penalty of choosing naive over opt. As M increases,
the number of merge steps reduces gradually until, when only a single merge step suffices to combine all of

the runs, there is no difference between the two merging strategies.

Having now gained initial intuition regarding the performance characteristics and the relative merits of
the in-memory sorting methods and merging strategies for fixed memory allocation, we can now proceed to
evaluate their performance in the face of memory fluctuations. We will also explore how they interact with

the merge-phase adaptation strategies described in Section 4.2.2.

4.3.3. Baseline Experiment

In our baseline experiment, we simulate a situation where the relation to be sorted is much larger than
the available memory. This is done by setting ||R]] to 2560 pages (20 MBytes) and M to 41 pages (0.31
MBytes). Small memory requests arrive at an average rate of Agman = 1 Tequest/second and stay in the system
for an average of M. = 0.8 second. MemReqThreshold is set to 20%. Large mémory requests arrive at
Marge = 0.1 request/second, and each large request lasts an average oOf |y, = 5 seconds. The parameter set-
tings for this experiment are summarized in Tables 3.3 and 4.4.

Figure 4.5 gives the response time of the various external sort algorithms for this experiment. The
figure shows a wide spread of response times, from a high of 320 seconds produced by quick,opt,susp down
to a low of 141 seconds, using repl 6,0pt,split. This indicates that the choice of external sort algorithm can
have a very significant performance impact. We observe that the four shortest response times are all pro-
duced by external sorts that employ split. Moreover, the five worse performers all employ susp. To under-

stand the reason behind these behaviors, we shall analyze the merge-phase adaptation strategies before con-

sidering the in-memory sorting methods and the merging strategies further, as the merge-phase adaptation

Database Meaning Setting
NumGroups Number of relation groups in the database 1
RelPerDisk Number of relations per disk for group / 10
SizeRange | Range of relation sizes for group / {2560, 2560] pages
TupleSize Tuple size of relations in bytes 256 bytes
Workload Meaning Setting
NumClasses Number of classes in the workload 1
QueryType, Type of class I queries External sort
RelGroup Operand relation groups for class I queries {1}
1 Arrival rate of class I queries (single)
SRInterval Range of slack ratios for class I queries [9999, 9999]
F Fudge factor for hash joins 1.1
Asmall Aurrival rate of small memory requests 1 request/second
Wemait Duration of small memory requests 0.8 second
MemReqThreshold Max. % buffer demand of a "small" memory request 20%
MNarge Arrival rate of large memory requests 0.1 request/second
Wiarge Duration of large memory requests 5 seconds
Table 4.4: Database and Workload Parameter Settings for Baseline Experiment
. uick,
du oo el
susp’ susp repll, opt,
susp
300 -] repl6,
A
;)?: page :::‘i)ve’, 6 SSP 6
° rg[;ltl, Sp flzlljve,, r?)%t,’
é 200 split
g
Z
3
% 100
0-

64

Figure 4.5: Response Times for Baseline Experiment
strategies appear to exert the greatest influence on performance.
The response times given in Figure 4.5 are also listed in Table 4.5, which is organized to highlight the
performance trade-offs associated with the different merge-phase adaptation strategies. For example, with

Quicksort and naive merging, the first row of Table 4.5 shows that the average response times are, respec-

tively, 307 and 228 seconds when suspension and paging are used, while only 178 seconds are required in the

65

case of dynamic splitting, as indicated by the third column of the same row. This table clearly shows that
there is a marked difference between the performance of the three merge-phase adaptation strategies. Among
the three, suspension (susp) has the worst response times because it does not allow an external sort to make
any progress when there is a memory shortage. Paging (page) and dynamic splitting (spliz), in contrast, both
enable an external sort to keep progressing, which is why they are faster than susp. When there is a memory
shortage, page incurs extra I/Os in paging its input buffers. This is a better alternative than susp, but the
penalty of paging can be high because the number of extra I/Os is proportional to the extent of the memory
shortage. In the case of split, an external sort deals with memory shortages by initiating a merge step that fits
the remaining memory. This reduces the number of input runs for subsequent merge steps, thereby making
them less vulnerable to memory fluctuations. Moreover, split is able to take advantage of excess buffers
when they become available by switching to a merge step that combines more runs. This is why, as expected,

split is able to produce shorter response times than page.

Next, we evaluate the trade-offs among the in-memory sorting methods. To facilitate interpretation of
the results, we reorganize Table 4.5 into Table 4.6 to highlight the impact of the different in-memory sorting
methods. Also included in the table are the average duration of the split phase and the average number of
sorted runs produced in this phase. In the table, all the algorithms that employ the same in-memory sorting
method have the same average number of runs and split-phase duration, as the merging strategies and merge-
phase adaptation strategies concern only the merge phase and not the split phase. Due to the much longer
split-phase durations that result from excessive disk seeks, as seen in Section 4.3.2, replacement selection

(repl1) is almost always slower than Quicksort (quick) and replacement selection with block writes (repl6).

susp page split
Response Time (sec)

quick,naive 307 228 178
quick,opt 320 223 156
repl 1,naive 287 239 200
repl 1,opt 302 238 184
repl 6,naive 218 186 160
repl 6,0pt 244 183 141

Table 4.5: Performance of Merge-Phase Adaptation Strategies

66

The only exceptions occur when guick is used in conjunction with susp, which produces the worst response
times. The reason is because guick generates many more sorted runs than repl 1, making the external sorts
much more vulnerable to memory shortages. When used with susp, the much slower merge phase thus
overwhelms any savings that guick derives from a shorter split phase. The results also clearly indicate that, as
for fixed memory allocations, repl6 outperforms both repl1 and quick: repl6 is faster than repl1 due to
repl 6’s much shorter split-phase duration, while repl 6 outperforms quick because quick generates more runs

and hence necessitates more merge steps in the merge phase.

We now examine the two alternative merging strategies. Table 4.7 focuses on the relative merits of
naive merging (naive) versus optimized merging (opf). The table shows that opt is better than naive when
used in conjunction with paging or dynamic splitting, while the reverse is true when the merge-phase adapta-
tion strategy is suspension. Recall that naive combines more runs in the first merge step, leaving fewer runs
to the final merge step. This makes the external sort more vulnerable to memory shortages in the first step
than in the final step. In contrast, opt attempts to minimize cost by merging as few runs in the first step as
possible without increasing the number of merge steps. The result is that the external sort is less vulnerable to
memory shortages in the first step, but becomes more vulnerable in the final step due to the larger number of
runs that are left until the final step. Since the final step (which has to process all of the tuples in the relation)
typically lasts longer than the first step, the net effect is that opt makes an external sort more vulnerable to
memory shortages than naive. Thus, whether opt is better than naive depends on how much time opt saves by

merging fewer runs in the first step, as compared to the penalty incurred from exposing the external sort to

quick repll repl6
of Runs 154 99 103
Split-Phase Duration (sec) 28 77 33
Response Time (sec)
naive,susp 307 287 218
naive,page 228 239 186
naive,split 178 200 160
opt,susp 320 302 244
opt,page 223 238 183
opt,split 156 184 141

Table 4.6: Performance of In-Memory Sorting Methods

67

memory shortages for a longer period of time. With suspension, an external sort does not make any progress
at all when there is a memory shortage, so the penalty of opt outweighs its advantage; this explains why opt
performs bﬂadly with susp. In contrast to suspension, paging and dynamic splitting enable an external sort to
keep progressing during periods of memory shortages. Thus, the penalty of opr is not as high, leading op? to

be beneficial with both paging and dynamic splitting.

To summarize the results of this experiment, we can reach the following conclusions about cases where
the relation to be sorted is significantly larger than the available memory. First, dynamic splitting is superior
to paging, while suspension results in very large response times and should be avoided. Second, among the
three in-memory sorting methods, repl 6 combines repl 1’s advantage of producing long sorted runs and the
short-split-phase-duration characteristic of quick, making repl 6 the in-memory sorting method of choice here.
Finally, provided paging or dynamic splitting is used, opt is beneficial and preferable to naive. Overall,

repl 6,0pt,split appears to be the most promising algorithm, followed by repl 6,naive, split and quick,opt,split.

4.3.4. M to ||R|| Ratio

In the next experiment, we study the sensitivity of the external sort algorithms to different ratios of
memory size to relation size. This is achieved by varying M, the total number of buffers, while keeping the
other parameters constant at their settings of the baseline experiment. In particular, the memory fluctuation
rates are the same as in the baseline experiment, and ||R]| remains at 20 MBytes so that an increase in M

results in an increase in the memory to relation size ratio. For this experiment, the in-memory sorting

naive opt
quick,susp 307 320
quick,page 228 223
quick,split 178 156
repl 1,susp 287 302
repl1,page 239 238
repl 1,split 200 184
repl 6,susp 218 244
repl 6,page 186 183
repl 6,split 160 141

Table 4.7: Response Time (seconds) for Merging Strategies

68

methods examined will be limited to Quicksort (guick) and replacement selection with block writes (repl6);
repl 1 will not be considered further because it produces only slightly fewer runs than repl 6 while incurring
the penalty of a much longer split phase. We will also exclude suspension, since it renders an external sort
inactive when memory shortages occur, and is therefore not as effective as paging or dynamic splitting as the

baseline experiment showed.

We first examine the performance of the two remaining merge-phase adaptation strategies, dynamic
splitting (splir) and paging (page). Figure 4.6 plots the response times for the algorithms that employ replace-
ment selection with block writes (repl6) as a function of M. The algorithms that use Quicksort follow the
same trends as those in Figure 4.6 and are not shown here. Note that, with the workload parameter settings
for this experiment, the range of the average amount of memory available for external sorts here is the same
as the range of memory sizes used in Section 4.3.2. Figure 4.6 shows that split consistently performs at least
as well as page: for M = 0.1 MBytes, split is about 30% faster than page, but the difference between their
response times narrows considerably when M increases; for M > 0.6 MBytes, the difference is insignificant.
The reason for this trend is that an increase in M leads to an increase in the average Iength of the sorted runs
produced in the split phase, producing a corresponding decrease in the number of runs that have to be merged.
This makes the external sorts less vulnerable to memory shortages during the merge phase, so there are fewer
occasions when paging or dynamic splitting are required. In contrast, a small M will increase an external
sort’s reliance on its merge-phase adaptation strategy, which is why the performance differences between split

and page are more pronounced for smaller M values.

We now turn our attention to the in-memory sorting methods, Quicksort (quick) and replacement selec-
tion with block writes (repl6). The response time of the algorithms based on dynamic splitting, the most
promising merge-phase adaptation strategy, are shown in Figure 4.7. The results indicate that repl6 is about
5% faster than quick when M = 0.1 MBytes. As M increases, the response times of the two in-memory sort-
ing methods converge gradually; beyond M = 0.9 MBytes, repl6 and quick have about the same response
times. This trend was also observed in the first experiment (see Section 4.3.2) where external sorts executed
with fixed memory allocations throughout their lifetimes. Compared to Figure 4.4 for the first experiment,

however, the response time difference between quick and repl6 at the left-side side of Figure 4.7 is noticeably

69

Q Q
400 - 300 . :
- o-- naive, page - -0-- quick, naive
’ Y —o— quick, opt
~—o— opt, page \ .
9 - x-- naive, split 0} \ - %= 1epl6, naive
& 300 oot ’ 1.1; g \ —*— repl6, opt
o pt, Spit o 200
k= E
B b
2 2
2 2
))
g % 100+
=4 & —®
O I | i 1 O 1 I ! 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
M (MBytes) M (MBytes)
Figure 4.6: repl6 (M to ||R]| Ratio) Figure 4.7: split (M to ||R|| Ratio)

smaller. The reason is because, by sorting and writing out the entire contents of its memory in response to a
memory shortage, guick frees up all of its buffers so that additional memory requests that arrive while the
current run is being generated can be satisfied without requiring further actions on the part of the external sort.
repl 6, in contrast, frees up just enough memory to meet the demands of a waiting memory request. When the
next memory request arrives, repl6 is forced to write out another block of buffers. Consequently, repl6
experiences more interference from competing memory requests than quick. This explains quick’s perfor-
mance gains on repl 6 for M < 0.9 MBytes where external sorts are sensitive to memory fluctuations, though

repl 6 still yields faster response times than quick here.

Finally, we evaluate the two alternative merging strategies. Figures 4.6 and 4.7 (shown previously)
show the response times for both algorithms that employ naive merging (naive) and algorithms that employ
optimized merging (opf). While these figures cover only a subset of the entire space of eight alternative algo-
rithms, the remaining algorithms give similar results and are not shown. Like the difference between split and
page, there is a significant difference between naive and opt for small M values. When M = 0.1 MBytes,
naive results in a slightly over 5% increase in response time compared to opt. The difference between the two

merging strategies diminishes steadily as M increases until, at M = 0.9 MBytes, both strategies yield identical

70

performance. Again, this behavior is similar to what we observed in the static memory allocation case, so we

shall not elaborate further on the cause.

The results of this experiment support our baseline experiment’s conclusion that, overall, dynamic split-
ting yields better performance than paging. Moreover, repl6 leads to shorter response times than quick.

Finally, among the two merging strategies, optimized merging is the preferred choice.

4.3.5. Magnitude of Memory Fluctuations

Our next experiment is designed to explore the sensitivity of the memory-adaptive mechanisms to dif-
ferent memory fluctuation magnitudes. Instead of an environment where most of the contenders for system
memory are small memory requests, as in previous experiments, here we examine a situation where most of
the memory requests are large. To achieve this, we interchange the arrival rate and duration of the small and
the large requests, so that now Agy,y = 0.1 request/second, Wyman = 5 seconds, Ay = 1 request/second, and

iarge is 0.8 second. All the other parameters are set as in the previous experiment.

Figure 4.8 highlights the performance difference between dynamic splitting (split) and paging (page).
Compared to the performance results obtained for the previous experiment (shown in Figure 4.6), we note that
here both split and page produce longer response times. Moreover, the difference in response timne between
split and page is greater here. These changes are due to the increased frequency of large memory requests,
which reduces the number of buffers that are available to the external sorts. This leads to an increase in the
number of merge steps in the merge phase, and lengthens the response time of split. For example, for M =
0.1 MBytes, split's response time is now 345 seconds, whereas it was only 280 seconds previously. In the
case of page, there are additional factors that adversely affect the performance of the external sorts: When the
actual number of buffers that an external sort has is smaller than the buffer requirement of an executing merge
step, the penalty in extra /Os that paging incurs is proportional to the extent of the memory discrepancy. In
this experiment, where memory availability fluctuates more widely, the penalty of paging is magnified by the
larger memory discrepancies. Moreover, an external sort based on paging is unable to utilize memory that is
in excess of its initial memory allocation. This handicap causes paging to suffer from memory fluctuations;

moreover, the larger the memory fluctuations, the greater an impact this handicap exerts on sort performance.

71

Together, these two factors slow down the performance of page over and above the performance penalty
already imposed by the larger number of merge steps. In particular, they account for the 120-second hike in
page’s response time, from an average of 410 seconds in Figure 4.6 to an average of 530 seconds here, com-

pared to the smaller 65-second increase in the case of split.

The performance results for the two in-memory sorting methods, Quicksort (quick) and replacement
selection with block writes (repl 6), are shown in Figure 4.9. From the figure, it is apparent that the increase
in the magnitude of memory fluctuations narrows the performance difference between quick and repl6 as
compared to the previous experiment (Figure 4.7). The reason is because here frequent large memory shor-
tages force repl 6 to write out many memory-resident tuples each time. This hampers repl 6’s ability to keep a
large selection of tuples in memory and to write out only those tuples that have small key values, leading to

shorter output runs. As a result, the number of runs that repl 6 produces becomes much closer to that of quick.

Finally, we examine how the change in memory fluctuation magnitude impacts the merging strategies.
The response times of some algorithms that employ naive merging (naive) and others that are based on optim-

ized merging (op?) are given in both Figures 4.8 and 4.9. In this experiment, where external sorts frequently

Q 400
500 - -0-- naive, page : - -o- - quick, naive
—o-— opt, page —o— quick, opt
O} - - naive, split 2 300 - %= repl6;, naive
3 —x— opt, split 2 —»— repl6, opt
2)
E :
b= -
v 950 2 200
2 2
e)
& =
S g 100
=2 =2 —
0 i | 1 | O]] i 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
M (MBytes) M (MBytes)

Figure 4.8: repl 6 (Memory Fluctuation Magnitude) Figure 4.9: split (Memory Fluctuation Magnitude)

72

experience large fluctuations in their allocated memory, the number of runs that an external sort selects for the
first preliminary merge step during a split, whether according to naive or based on opt, often turns out to be
sub-optimal because of significant changes that occur in the external sort’s memory allocation during the prel-
iminary merge steps. Thus, opt is not that much better than naive here, in contrast to the previous experiment

where memory allocation was less volatile.

In summary, this experiment reveals that large fluctuations in memory availability accentuate the
importance of the merge-phase adaptation strategy, while diminishing the differences between the alternative
in-memory sorting methods and merging strategies. Again, the results reinforce our previous conclusions

about the usefulness of dynamic splitting in dealing with memory fluctuations.

4.3.6. Rate of Memory Fluctuations

Our last experiment for external sorts is designed to investigate how different memory fluctuation rates
might affect the relative performance of the merge-phase adaptation strategies and the in—memory sorting
methods. We vary the fluctuation rates by first lowering them to Agpgy = 0.2 request/second and Ay, = 0.02
request/second. To ensure that this does not change the average available memory from that in the baseline
experiment, the duration of the memory requests are prolonged by the same factor, i.e. Wguqy = 4 seconds and
Hygrge = 25 seconds. Next, we raise the rate of fluctuation by a factor of 25, setting Ag,qy = 5 requests/second,
Weman = 0.16 second, Mg, = 0.5 request/second, and {4, = 1 second.

Figures 4.10 and 4.11 show the performance results of four of the external sort algorithms for both the
fast and slow memory fluctuations (labeled fast and slow, respectively, in the figures). In the figures, the solid
lines show the response times of the algorithms, while the dotted lines give the split-phase durations. The
solid curves in these two figures show that, while the relative performance of the algorithms remains the same
as in our previous experiments, the change in memory fluctuation rate does have an impact on the response
time of the algorithms for small M values. The figures also indicate that when M is large, increasing fluctua-
tion rate has little impact on the response time because external sorts are not sensitive to memory fluctuations
in this region, as discussed in previous experiments. As M is decreased, external sorts become vulnerable to

memory fluctuations, and switching the fluctuation rate parameters from their slow settings to their fast

73

settings increases the response times of all four external sort algorithms shown here. For paging, the reason is
that, when memory allocation increases after a shortage, paging requires some time before the pages that have
been swapped out can be brought back in to fill the newly allocated memory. During this time, the effective
number of buffers used is less than the allocated memory. Therefore, when the memory fluctuation rate
increases, the effective memory utilization goes down and this leads to longer response times. In the case of
dynamic splitting, external sorts react to changes in memory allocation by switching merge steps. Each
switch incurs some overhead in bringing the input and output buffers of the new step into memory, so
dynamic splitting is also adversely affected by increased memory fluctuations. After M = 0.3 MBytes, how-
ever, further reduction in M narrows the gap between the response times for the slow and the fast fluctuation
settings. This phenomenon is due to the fact that, as M decreases, so does the magnitude of the memory
fluctuations, and hence the performance penalty imposed by these fluctuations. This is why external sorts
suffer less from the more frequent fluctuations when the buffer size is very small than when M is slightly
larger. In contrast to the merge-phase adaptation strategies, the in-memory sorting methods are insensitive to
changes in the fluctuation rate, as indicated by the dotted lines in Figures 4.10 and 4.11, since the average

available memory remains the same despite changes in the fluctuation rate.

400
400 —a— opt, page; fast —a— opt, page; fast
—a— opt, page; slow —a— opt, page; slow
i —o— opt, split; fast i~ —o— opt, split; fast
& —&— opt, split; slow & —&— opt, split; slow
@ - -0- - gplit phase; fast) - -0~ - gplit phase; fast
5 - -~ split phase; slow E - -o- - split phase; slow
© 200- o 200 -
8 z
e S
Y =5
g g
& =
66-6 -8 --6--@-mmmm——- ® $66-6-0-=-=-@==@um======@
O i I | i O I ! 1 I
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
M (MBytes) M (MBytes)

Figure 4.10: quick (Memory Fluctuation Rate) Figure 4.11: repl 6 (Memory Fluctuation Rate)

74

To summarize, the results of this experiment lead us to conclude that, over a wide range of memory
fluctuation rates, the algorithm repl 6,0pt, split delivers the best overall performance among those that we con-

sidered. Dynamic splitting therefore appears to be a promising merge-phase adaptation strategy in practice.

4.4. Sort-Merge Joins

Sort-merge join is a join algorithm employed by many existing database systems. Although recent
work has shown hash join to often be superior to sort-merge join in performing ad-hoc join operations
[Brat84, DeWi84, Shap86], sort-merge join is still useful under certain conditions, e.g. when significant data
skew is present, or when the results need to be presented in sorted order [Grae91]. Hence sort-merge join is
likely to continue to be offered as one of the alternative join algorithms in future DBMSs. In this section, we

address the issue of extending the techniques that we have explored earlier to handle sort-merge joins, thus

making them memory-adaptive.

4.4.1. Memory-Adaptive Sort-Merge Joins

Like the external sort algorithm, a sort-merge join consists of a split phase and a merge phase. The split
phase divides the two source relations into two separate sets of sorted runs. This is exactly as in the case of
external sorts, except that now there is an additional relation to split. The in-memory sorting methods that we
have examined, namely replacement selection, Quicksort and replacement selection with block writes, can
thus be used here without any changes. In the merge phase, runs from both relations are merged concurrently,
and sorted tuples from the two relations are joined directly as they are merged. In the event that the total
number of runs from the two relations exceeds the available memory, the final merge step, i.e. the step that
combines all the runs from both relations and produces the join results, has to be split. The preliminary step
that is created as a result of this split will work on one of the relations, merging some of its existing runs into a
longer sorted run. Since there are two relations, the preliminary step has a choice of which relation to merge.
To minimize the cost of the preliminary step, the chosen relation is the one that will lead to a smaller total
input size for the merge step. For example, if the preliminary step has to merge 15 runs, the number of pages
in the smallest 15 runs from each individual relation is summed, and the relation with the smaller sum is

selected. Any of the three merge-phase adaptation strategies, i.e. suspension, paging and dynamic splitting,

75

can be used to adapt the sort-merge join to memory fluctuations during the merge phase. However, the naive
and optimized merging strategies have to be modified slightly in order to comply with the requirement that

each preliminary step merges only runs from the same relation.

During a split, the desired number of runs to be merged in the preliminary step is determined by either
the naive or the optimized merging strategy. In some cases, one or both of the relations may not have that
many runs. To illustrate this point, consider a situation where a sort-merge join has 11 buffers, and the two
relations are split into 5 runs and 14 runs, respectively. Both naive merging and optimized merging will
attempt to merge 10 runs in the preliminary step so that the remaining runs can be merged all at the same
time. Unfortunately, the first relation has only 5 runs, so it cannot be chosen for the preliminary step. In such
cases, we modify the naive and optimized merging strategies to select the relation that has more runs for the

preliminary step, in order not to introduce more steps to the merge phase.

4.4.2. Experiment and Results

Since the same basic mechanisms work for both external sorts and sort-merge joins, we expect the rela-
tive performance trade-offs between the different in-memory sorting methods, merging strategies and merge-
phase adaptation strategies to be the same in both cases. To confirm this, we present one set of experimental
results. In this experiment, each sort-merge join involves two relations, R and S, of sizes ||R]| and ||S]}, respec-
tively. We let [IR|| be 256 pages (2 MBytes) and ||S]| be 2560 pages (20 MBytes) to simulate a primary key-
foreign key join. Moreover, M, the total number of buffers, is varied while the other parameters are kept con-

stant at their settings of the baseline experiment.

The join response times for this experiment are plotted in Figures 4.12 and 4.13. As expected, the per-
formance trends for each algorithm, as well as the relative trade-offs between the different algorithms, are vir-
tually identical to what we saw for external sorts in Figures 4.6 and 4.7: Dynamic splitting is clearly the
merge-phase adaptation strategy of choice, while replacement selection with block writes is the winner among

the in-memory sorting methods. Moreover, optimized merging outperforms naive merging.

In summary, the results of this experiment confirm that the merge-phase adaptation strategies, in-

memory sorting methods and merging strategies that we have explored in the context of external sorts are

76

500+ Q
- <0~ naive, page - -0—- quick, naive
—0— opt, page. 300 % —o— quick, opt
S - X~ paive, split ’g - %~ repl6, naive
@ y —x— opt, split & \ —x%— repl6, opt
- o
g E 200-
= 250 o
n w
= £
o e
g % 100-
2 & —a
0 | T T 1 0 T T | 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
M (MBytes) M (MBytes)
Figure 4.12: repl 6 (Sort-Merge Joins) Figure 4.13: split (Sort-Merge Joins)

equally applicable to sort-merge joins. Therefore the combination of repl6,0pt,split provides an effective

means to do sort-merge joins in the face of fluctuations in memory availability.

4.5. Conclusion

In this chapter, we have addressed the problem of performing external sorts in situations where the
amount of memory available to a query may be reduced or increased during its lifetime. Since external sorts
typically require large numbers of buffers to execute efficiently, they are very susceptible to fluctuations in
memory availability. Simple approaches that react to a reduction in an external sort’s allocated memory by
suspending the sort altogether, or by paging the buffers of the sort into and out of the remaining memory, may
lead to under-utilization of system resources or thrashing. Furthermore, these approaches do not allow exter-
nal sorts to make use of extra memory (beyond their initial memory allocation) that may become available
during their lifetime. There is therefore a need, as we saw for hash joins in Chapter 3, for more sophisticated

approaches that enable external sorts to adapt to memory fluctuations.

An external sort consists of two phases: the split phase fetches portions of the relation into memory,

where they are sorted and then written out as sorted runs, and the merge phase combines the resulting runs

77

into the sorted result. The merge phase consists of one or more merge steps, each of which combines a
number of runs into a single, longer run. We studied Quicksort and replacement selection, two common in-
memory sorting methods that are used for the split phase. In addition, we studied a variation of replacement
selection that uses block writes to reduce disk seeks. All three in-memory sorting methods allow external
sorts to respond to memory shortages by writing sorted tuples out to reduce their buffer usage; when memory
increases, the newly allocated memory is used to fill more relation pages. In contrast to the in-memory sort-
ing methods, the merge phase is not as easily adapted to memory fluctuations. We therefore examined hybrid
approaches that allow external sorts to adapt to memory fluctuations only in the split phase, letting the data-
base management system suspend the external sorts or page their buffers if memory shortages occur while
they are in the merge phase. In addition, we proposed a merge-phase adaptation strategy, called dynamic
splitting, that enables external sorts to better respond to memory shortages and to exploit excess memory in
the merge phase by involving the sorts in adapting to memory fluctuations. This strategy splits an executing
merge step into sub-steps that fit within the remaining memory when a shortage occurs, and it combines exist-
ing merge steps into larger steps (i.e. steps that merge more runs at once) to take advantage of excess buffers

when they become available.

To understand how effective the different in-memory sorting methods and merge-phase adaptation stra-
tegies are in dealing with memory fluctuations, we undertook a series of experiments using the detailed simu-
lation model described in Chapter 2. A series of experiments revealed that, when the available memory is
small relative to the relation to be sorted, the merge-phase adaptation strategy is the dominant performance
factor. Among the merge-phase adaptation strategies, dynamic splitting outperforms paging; the smaller the
size of memory is relative to the relation, the more significant the performance difference between the two
strategies becomes. The third merge-phase adaptation strategy, suspension, consistently yields unsatisfactory
response times. Thus dynamic splitting appears to be an attractive strategy for sorting large relations. Our
results also showed that replacement selection with block writes is the preferred in-memory sorting method
since it consistently produced response times that were at least as fast as Quicksort. Overall, our results indi-
cate that the combination of dynamic splitting and replacement selection with block writes enables external

sorts to deal effectively with memory fluctuations.

78

Like external sorts, sort-merge joins are vulnerable to memory fluctuations due to their large memory
requirements. The sort-merge join algorithm is also made up of a split phase and a merge phase. The split
phase divides each of the two operand relations into sets of sorted runs. In the merge phase, runs from both
relations are combined concurrently, and the sorted tuples from the two relations are joined directly. If there
are too many runs to be merged at the same time, preliminary steps are created to merged some of the existing
runs from one (or both) relation(s) into longer sorted runs. The same techniques that we examined in the con-
text of external sorts can be applied to sort-merge joins in order to make them memory-adaptive. Moreover,
the same relative performance trade-offs apply to both external sorts and sort-merge joins. We will therefore
adopt the combination of dynamic splitting and replacement selection with block writes to process both exter-

nal sorts and sort-merge joins in the second half of this thesis, which studies higher-level query scheduling

issues.

CHAPTER 5

MANAGING MEMORY FOR REAL-TIME QUERIES

In Chapters 3 and 4, we were concerned with developing techniques to allow queries to execute
efficiently in the face of memory fluctuations. In particular, we identified Partially Preemptible Hash Join
(PPHI) with late contraction, expansion, and priority spooling as the memory-adaptive technique of choice for
hash joins. For external sorting, we identified the combination of dynamic splitting and replacement selection
with block writes as the technique of choice. With these low-level query primitives in place, we are now

ready to move on to higher-level query scheduling issues.

As discussed in Chapter 1, real-time database systems (RTDBS) need to employ multiprogramming so
that all of their resources can be utilized productively to service incoming queries. However, admitting too
many queries at the same time can lead to thrashing, making high concurrency harmful instead of helpful.
Multiprogramming is therefore a two-edged sword, and RTDBSs require an admission control mechanism to
protect them against thrashing. Once the degree of multiprogramming has been determined, another impor-
tant issue must be addressed, i.e., how much memory to give each admitted query. These are the concerns

that we now turn our attention to.

In this chapter, we introduce a Priority Memory Management (PMM) algorithm that is designed to
schedule queries in firm RTDBSs. PMM does not assume any advance knowledge of workload characteris-
tics or query execution times, as such knowledge is usually not avaiiable in a database system. Instead, the
PMM algorithm controls the number of queries that may gain admission at any given time by dynamically
choosing a target multiprogramming level (MPL) to balance the demands on the system’s memory, CPU, and
disks. Moreover, PMM can either insist that queries be admitted only with their maximum memory alloca-
tions, or it can give higher-priority queries their maximum required memory while allowing lower-priority

queries to run with their minimum requirements. Both the target MPL and the memory allocation policy are

79

80

chosen based on past system behavior. The Earliest Deadline policy [Liu73], which gives higher priority to
queries whose deadlines are more imminent, is used to guide the admission and memory allocation decisions

of PMM.

5.1. Related Scheduling Work

While a number of studies have addressed real-time transaction scheduling [eg., Abbo88b, Hari90a,
Huan89] and disk scheduling [Abbo89, Abbo90, Care89, Chen91, Kim91], to the best of our knowledge no
work has dealt with query scheduling issues in RTDBSs. The work that is most relevant to our work here is
reported in [Corn89, Yu93]. In that work, the authors examined the effect of memory allocations on query
response times in traditional (non-real-time) database systems, and they concluded that giving some of the
queries their maximum required memory, while allocating the minimum possible memory to the rest, leads to

near-optimal memory usage. This result is incorporated in the memory allocation strategies of PMM.

5.2. Priority Memory Management

In firm real-time database systems [Hari90a], queries become worthless if they fail to complete by their
deadlines. Consequently, the primary performance objective of an RTDBS is to minimize the number of
missed deadlines without intentionally discriminating against any particular type of queries. In order to
achieve this objective, resource scheduling decisions in these systems have to be priority-driven. The Priority
Memory Management (PMM) algorithm is a priority-cognizant algorithm designed to regulate memory usage

for firm real-time query workloads.

The PMM algorithm consists of an admission control component and a memory allocation component.
Both components employ the Earliest Deadline (ED) scheduling policy [Liu73], so queries that are more
urgent are given higher priority in admission and memory allocation decisions than queries whose deadlines
are further away. The ED policy is adopted here, instead of policies that take into account query execution
times, because (accurate) execution time information is usually not available a priori in a database system.
The admission control component sets the target multiprogramming level (MPL) by statistical projection from

past miss ratios and their associated MPL values. In cases where the statistical projection method fails, PMM

81

falls back on a heuristic that chooses the MPL based on desirable resource utilization levels. The memory
allocation component operates using one of two strategies — a Max strategy that assigns to each query either
its maximum required memory or no memory at all, and a MinMax strategy that allows some low-priority
queries to run with their minimum required memory while the high-priority ones get their maximum. The
current choice of memory allocation strategy is based on statistics about the workload characteristics that
PMM gathers. Since both the MPL setting and memory allocation strategy choices have to be tailored to the
characteristics of the workload, PMM constantly monitors the workload for changes that may necessitate
adjustments to its decisions. The details of the algorithm are presented below. The key parameters of PMM,

which will be explained as they appear in the following description, are summarized in Table 5.1.

5.2.1. Admission Control

The task of the admission control mechanism is to determine the MPL based on current operating con-
ditions. In order to minimize the miss ratio, defined as the proportion of queries that fail to complete by their
deadlines, the MPL has to be high enough so that the CPU and disk resources can be fully exploited. How-
ever, the MPL. should not be so high as to cause the system to experience thrashing. The relationship between
MPL and miss ratio thus follows the shape of a concave curve. PMM attempts to locate the optimal MPL,
i.e., the MPL that leads to the lowest miss ratio on this curve, through a combination of miss ratio projection
and a resource utilization heuristic, revising its MPL setting after every SampleSize queries are served by the

system. The two components of the MPL determination method are presented below.

Parameter Meaning Default
SampleSize Re-evaluation frequency (number of query completions) 30
[Utily g, Utilyign] Range of "desirable" CPU/disk utilization levels [0.70, 0.85]
Adapt confrevel Confidence level of statistical tests for PMM adaptation 95%
Changeconpevel Confidence level of statistical tests for workload changes 99%

Table 5.1: PMM Algorithm Parameters

82

5.2.1.1. Miss Ratio Projection

The miss ratio projection method approximates the relationship between MPL and miss ratio by a con-
cave quadratic équation; this equation is used to set the system’s target MPL. A quadratic equation is used
here because it stabilizes faster than higher-order equations, while still capturing the general shape of the con-
cave curve. After every SampleSize query completions, PMM measures the miss ratio, miss;, that the current
MPL, mpl;, produces. Based on this pair of values, together with past miss ratios and their associated MPL
settings, a new quadratic equation is calculated according to the least squares method {Drap81]. It is impor-
tant to note that PMM does not actually have to keep track of individual miss ratio readings, but only the
values of k, Z mpl;, £ mpl?, Z mpl3, Impl}, T miss;, £ mpl; X miss;, and Z mpl? x miss;, where k is the number
of times PMM is invoked. After approximating the equation, a new MPL value is chosen according to the

type of curve obtained:

Type 1: The curve has a bowl shape. In this case, the curve has a minimum. Therefore, the target MPL is set

to the minimum of the curve. (This is the expected case after the algorithm has been operating for a while.)

Type 2: The curve is monotonic decreasing, i.e. higher MPLs lead to lower miss ratios. This indicates that
the optimal MPL is beyond the highest MPL tried so far. Since the curve may not be valid if extrapolated too
far, the projection method selects an MPL that is one above this largest attempted MPL. Next, PMM applies
the resource utilization heuristic (described below) to see if an even higher MPL may be warranted. If so, the
MPL suggested by that heuristic is adopted; otherwise PMM sticks to the MPL that the miss ratio projection

method picked.

Type 3: The curve is monotonic increasing. The MPL computation procedure for this case is just the opposite
of the procedure for Type 2 curves. Here the projection method tentatively selects an MPL that is one unit
below the smallest MPL that has been tried so far. Next, a second MPL is obtained using the resource utiliza-

tion heuristic. The two MPLs are then compared, and the smaller of the two is adopted.

Type 4: The curve has a hill shape. Occasionally the fitted curve takes on this shape due to randomness in the
observed miss ratios caused by inherent workload fluctuations. When this happens, the projection method

fails and PMM resorts to the resource utilization heuristic.

83

An attractive feature of the miss ratio projection method is that the MPL values that it picks improve
over time: Initially, the shape of the fitted curve is largely influenced by random workload fluctuations. As
time progresses and more miss ratio readings are obtained, the fitted curve will gradually stabilize and its
optimum will close in on the optimal MPL. At this point, the system can be expected to deliver good perfor-
mance so ldng as there are no significant changes in the workload characteristics. (Workload changes will be

addressed in Section 5.2.3).

5.2.1.2. Resource Utilization Heuristic

The resource utilization (RU) heuristic attempts to help the system achieve low query miss ratios by
keeping the utilization of the most heavily loaded resource among the CPUs and disks within some "desir-
able" range, [Utilypy, Utilpig], thus avoiding situations where the bottleneck resource is either under-utilized
or near saturation. The heuristic extrapolates from the current MPL and utilization to predict a new MPL that
is likely to bring the utilization into the middle of the [Utily,,, Utilpgy) range by applying the following for-

mula:

Utilp,,, + Utilyign

. X MPLcyrrent
2x UtllCurrenl

MPLy,,, =

The linear dependency between MPL and utilization that this formula assumes is based on the observation
that the utilization of a resource increases approximately linearly with the MPL until the resource is near
saturation, at which point the utilization levels off. Since neither the RU heuristic nor the miss ratio projec-
tion method are likely to push the utilization way above Utilyg, to the saturation point, the above formula
should provide satisfactory MPL estimates most of the time. Even in regions where the linear dependency
assumption does not hold, the RU heuristic is still useful in steering the MPL setting in the direction of the

optimal MPL since utilization increases monotonically with MPL.

As described, one of the values that the RU heuristic uses to compute the new MPL is the utilization of
the most heavily loaded resource at the current MPL. Due to random workload fluctuations, the utilization
over the duration of the current batch of SampleSize queries may not be indicative of the resource’s overall

average utilization at that MPL.. For this reason, the heuristic actually averages the utilization values that have

84

been obtained so far instead of relying only on the most recent utilization reading. Conceptually, PMM com-
putes the average utilization at the current MPL, denoted as Utilcyrrens in the formula above, by first obtaining
a straight line from every pair <util;, mpl;> of observed utilization values and their associated MPLs by using
the least squares method [Drap81], again applying the linearity assumption. The average utilization is then
taken from the fitted line as the rate that corresponds to the current MPL. For the purposes of computing the
straight line, PMM records the values of k, Z mpl;, mpl?, util;, and T mpl; X util;, where k denotes the

number of times PMM is invoked.

An alternative to using the formula given above to determine MPLye,, would have been to simply
choose the MPL value on the fitted line that corresponds to the desired utilization level. The drawback of this
alternative is that, due to workload fluctuations, the fitted line may not reflect the true relationship between
MPL and utilization very well. This is especially a problem at the start, where few statistics are available, and
where, unfortunately, PMM has to rely on the RU heuristic because it does not yet have sufficient statistical

data to apply the miss ratio projection method. We therefore ruled out this alternative from further considera-

tion.

5.2.2. Memory Allocation

As described above, queries like hash joins and external sorts each have a maximum and a minimum
memory requirement. Given its maximum required memory, such an operation can read its operand
relation(s) and generate results directly. Given only its minimum required memory, which is typically much
Jower than its maximum, the operation instead has to process its operand relation(s), write out intermediate
results to temporary files, and then read these files back for further processing before the final results can be
produced. The maximum memory requirement of an external sort is the size of its operand relation [Shap86},
whereas it can run with as few as three memory pages by doing multiple merge passes. In the case of a hash
join, the maximum memory requirement and the minimum memory demand for two-pass operation are FJ|R]|
and \fﬁﬂ , respectively, where ||R|| is the inner (building) relation size and F is a fudge factor that reflects the

overhead of a hash table [Shap86].

85

When the total maximum memory requirement of the admitted queries exceeds the available memory,
the memory allocation component is responsible for determining the amount of memory to allot to each
query. As mentioned previously, the memory allocation decisions of PMM are based on the ED policy, so
queries that are more urgent are always given buffers ahead of queries with looser deadlines. At any given
time, PMM adopts one of two memory allocation strategies: the Max strategy or the MinMax policy. With
the Max strategy, queries are either allocated enough memory to satisfy their maximum demands or else they
are given no buffers at all. When operating in MinMax mode, however, PMM is able to admit more queries
by meeting the maximum memory demands for only some of the more urgent queries, allowing the rest of the
queries to execute with their minimum required memory. The reason for doing MinMax allocation, as
opposed to simply dividing the available memory proportionally among the admitted queries, is that MinMax
leads to more effective use of memory then proportional allocation (as was shown in [Corn89, Yu93]); this

will be verified quantitatively in Section 5.3.1.

The MinMax allocation process is conceptually carried out in two passes. Starting from the highest-
priority query, PMM first gives each query just enough memory for it to begin execution. If there are leftover
buffers at the end of this pass, PMM miakes another pass through the list of admitted queries, again beginning
with the highest-priority query. In the second pass, the allocation of each query in turn is topped up to its
maximum. The allocation process terminates when either all of the available memory has been allocated or
all of the queries have received their maximum allocations. Consequently, at the end of this memory alloca-
tion process, the higher-priority queries will have their maximum allocations while the lower-priority queries
just have their minimum. The only possible exception is the query that gets the last few memory pages in the
second pass, which may receive an allocation somewhere in between its minimum and maximum demands.
In a running system, of course, queries do not arrive all at once; rather, they come and go over time. Since the
ED policy assigns priorities to queries according to their urgency, the memory allocation of a query can there-
fore vary between maximum, minimum, of N0 mMemory allocation as higher-priority queries enter and leave
the system, but over time it will settle on the maximum allocation as the query’s deadline draws close. The
initial variations are the reason why we require the dynamic query processing techniques described in the

preceding two chapters.

86

The Max strategy, by insisting on the maximum memory allocation, eliminates the thrashing problem
that can result when additional (lower-priority) queries are admitted at the expense of requiring some of the
higher-priority queries to run with less than their maximum memory allocations. Consequently, PMM does
not need to explicitly limit the MPL when it is in Max mode. Instead, PMM sets the target MPL in this mode
to o, admitting as many queries — at their maximum allocations — as the available memory permits. A pos-
sible pitfall of Max is that it may severely restrict the MPL if every query requires a substantial portion of the
system memory in order to run at its maximum allocation. In contrast to Max, MinMax assigns to some or all
of the admitted queries as little as their minimum memory demand, thus enabling the system to achieve the
target MPL that the admission control component sets. Whether Max or MinMax performs better depends on
the workload characteristics and the system configuration —- Max is preferable if memory is abundant and the
bottleneck resource type is CPU or disk, whereas MinMax is more suitable for memory-constrained situa-

tions.

The PMM algorithm uses a feedback mechanism to monitor the state of the system, and it revises its
choice of allocation strategy as necessary. Initially, the Max mode is selected. After serving every Sam-
pleSize queries, PMM checks the system state and switches to the MinMax strategy if all of the following
conditions are met: (1) one or more queries in this batch missed their deadlines; (2) the utilizations of all
CPUs and disks are below Util;,,,, which indicates that none of these resources are likely to be a bottleneck;
(3) there is a non-zero admission waiting time, suggesting that there is memory contention; and (4) on the
average, the execution time of a query is shorter than its time constraint (the difference between its deadline
and its arrival time) so that the longer execution times that will result from switching to the MinMax strategy
are likely to be feasible. In checking for condition (3), PMM carries out a large-sample test [Devo91] for the
mean waiting time at a confidence level of Adaptconsievet- Condition (4) is tested in a similar fashion, except
that here the test is performed on the difference between the execution time and time constraint. After switch-
ing to MinMax, PMM then monitors the target MPL. If the target MPL setting drops to or falls below the
average MPL that was realized in Max mode, PMM reverts to the Max strategy. This entire process is

repeated continuously.

87

5.2.3. Dealing with Workload Changes

PMM attempts to minimize query miss ratios by tailoring its MPL setting and memory allocation stra-
tegy to the system’s workload and resource configuration. Consequently, it is necessary for PMM to discard
the statistics that it has gathered and to re-adapt itself when the workload undergoes a significant change. In
order to detect workload changes, PMM constantly monitors the following workload characteristics: (1) the

average maximum memory demand of queries; (2) the average number of I/Os that each query issues to read

its operand relation(s)"; and (3) the average normalized time constraint, defined as the ratio of the time con-
straint to the number of /Os needed to read the operand relation(s). After every SampleSize query comple-
tions, PMM carries out a large-sample test with a confidence level of Changecongrever [Devo91] on each moni-
tored workload characteristic to see if its present value differs significantly from its last observed value. If so,
PMM concludes that a workload change has taken place. Since every workload change prompts PMM to res-
tart itself, Changecypfever 1S Set 0 a high value (see Table 5.1) to reduce the chances of PMM wrongly react-

ing to inherent workload fluctuations.

5.2.4. An Example

Having presented the PMM algorithm in detail, we now finish by illustrating it with a simple example.
Suppose that the first batch of SampleSize queries produces point a in Figure 5.1(a) under the Max strategy,
and suppose that PMM concludes that Max is inappropriate and decides to switch to MinMax. At this point,
the RU heuristic suggests a higher MPL, from which we derive the point b after the next batch of query com-
pletions. Once more, the RU heuristic leads PMM to raise its MPL setting, which results in point ¢ after the
third batch of queries. Having collected three observations, PMM can now apply the miss ratio projection
method. The quadratic equation that is computed from the three points is shown by the Type 2 curve (see
Section 5.2.1.1) in Figure 5.1(a). This curve causes PMM to experiment with an even higher MPL, the conse-

quence of which is indicated by point d in Figure 5.1(b). Applying the projection method again, PMM now

I The number of /Os that are expended to write and read intermediate results depends on memory allo-
cation decisions, and thus is not an inherent characteristic of the workload.

88

obtains a Type 1 curve. Since the optimum of the curve is likely to be near the optimal point, PMM adopts
the MPL value associated with this optimum for its next MPL setting. As this process continues and more

observations are gathered, the fitted curve will gradually stabilize and lead PMM to the best MPL for the

given workload.

5.3. Experiments and Results

In this section, our database system simulator will be used to evaluate the performance of the Priority
Memory Management (PMM) algorithm. For comparison purposes, we shall also examine three static
memory allocation algorithms: Max, MinMax-N, and Proportional-N. The Max algorithm always employs
the Max strategy in its memory allocation decisions. MinMax-N admits the N highest-priority queries, divid-
ing the available memory among these N queries according to the MinMax policy. A special case of
MinMax-N is MinMax-co, which admits as many queries as the available memory allows by not explicitly
limiting the MPL. In this section, MinMax-eo will be frequently used to compare against PMM, so we shall
refer to MinMax-co simply as MinMax. Note that PMM is an adaptive algorithm that dynamically chooses
between the Max algorithm and the MinMax-N algorithm, where N is the target MPL setting. The final algo-
rithm to which PMM will be compared, Proportional-N, behaves like MinMax-N, except that Proportional-N

gives the N admitted queries the same percentage of their maximum buffer requirements subject to the

+b

Miss Ratio (%)
o
Miss Ratio (%)

Cc C + |
]

MPL mpld MpL, ™ple
(@ (b)

Figure 5.1: Admission Control Decision Making

89

condition that the memory allocation of an admitted query must at least equal, if not exceed, its minimum
requirement. As in the case of MinMax, we shall simply refer to Proportional-cc as Proportional. For ease of

reference, the various algorithms are listed in Table 5.2.

We will begin our evaluation of PMM with a baseline experiment, with further experiments being car-
ried out by varying a few parameters each time. The performance metric of interest here is the average query
miss ratio, which is the percentage of queries that the system fails to complete by their deadlines. Unless
stated otherwise, each experiment was run for 10 hours of simulated time, allowing a minimum of 2000 query
completions. We also verified that the size of the 90% confidence intervals for miss ratios (computed using

the batch means approach [Sarg76]) was within a few percent of the mean in almost all cases, thus ensuring

that our results are statistically valid.

5.3.1. Baseline Experiment

In the first experiment, we simulate an environment where, except for occasional overloads, there are
abundant CPU and disk capacities for the given workload; thus, memory is the bottleneck resource. This is
achieved by letting CPUSpeed and NumDisks be 40 MIPS and 10, respectively, and by setting M to 2560
pages (20 MBytes). The rest of the resource parameters are kept at their settings of Table 3.3. The workload
consists of one class of hash join queries. Each join has two operand relations, R and S, where |IR|] varies uni-
formly between 600 and 1800 pages and)S]| is selected from the range [3000, 9000] pages. Moreover, the

slack ratio interval is set to [2.5, 7.5]. The database and workload parameters are summarized in Table 5.3.

Figure 5.2 plots the miss ratios for Max, MinMax, Proportional, and PMM as a function of the arrival

rate. The figure shows that MinMax consistently delivers the lowest miss ratio for this experiment, followed

Indicator Algorithm
Max Max algorithm
MinMax-N MinMax algorithm with an MPL limit of N
MinMax MinMax algorithm with no MPL limit
Proportional-N Proportional algorithm with an MPL limit of N
Proportional Proportional algorithm with no MPL limit

Table 5.2: Algorithms for Comparison with PMM

90

Database Meaning Setting
NumGroups Number of relation groups in the database 2
RelPerDisk | Number of relations per disk for group / 3
SizeRange Range of relation sizes for group / [600, 1800] pages
RelPerDisk , Number of relations per disk for group 2 3
SizeRange’, Range of relation sizes for group 2 [3000, 9000] pages
TupleSize Tuple size of relations in bytes 256 bytes
Workload Meaning Setting
NumClasses Number of classes in the workload 1
QueryType Type of class I queries Hash join
RelGroup Operand relation groups for class / queries {1,2}
M Arrival rate of class / queries varied (0.04 to 0.08)
SRInterval , Range of slack ratios for class / queries [2.5,7.5]
F Fudge factor for hash joins 1.1

Table 5.3: Database and Workload Parameter Settings for Baseline Experiment
very closely by PMM. Proportional performs satisfactorily initially, achieving a near 0% miss ratio at A =
0.04 queries/second. As the arrival rate increases, however, the performance of Proportional deteriorates
rapidly until, at A = 0.08 queries/second, Proportional produces a hefty 25% miss ratio, which is almost dou-
ble that of MinMax and PMM. The worst algorithm is Max, which manages to match the performance of
Proportional only under lighter load conditions. As the workload mounts, Max degenerates even faster than
Proportional, missing four times as many deadlines as MinMax and PMM. These observations clearly show
that the choice of memory allocation algorithm can have a very significant impact on the system miss ratio.
To understand the behaviors of the four algorithms, we shall analyze each algorithm in turn with the aid of
Figures 5.3 and 5.4, which give the disk utilizations and average observed MPLs (as opposed to the target
MPL set by PMM, which serves to limit the maximum MPL in the system) respectively, and Table 5.4, which

lists the admission waiting time, execution time and total response time for the various algorithms.

Let us first examine the Max algorithm. This algorithm admits queries only if they can be allotted
enough buffers to satisfy their maximum requirements. For the workload used in this experiment, Max allows
less than 2 queries to be admitted at the same time (see Figure 5.4) since each query requires an average of
1321 buffers (Fx1200 pages for R plus one /O buffer). This makes memory the bottleneck for Max, as evi-
denced by the high admission waiting times recorded in Table 5.4. The tight MPL limit imposed by Max

prevents the RTDBS from exploiting its disk and CPU resources to cope with the heavier load as the arrival

Miss Ratio (%)

91

—t— Max —t— Max
50 —a—- MinMax 50 —a— MinMax
—uo— Proportional —o— Proportional
—a— PMM —a— PMM
40 ~ 407
5
g
30 g 309
B
=
= 20
- %2
: 1/0—/4/*—_—'——_ : '
10- 10
0 i i T T T 0 T T T T
0.04 0.05 0.06 0.07 0.08 0.04 0.05 0.06 0.07 0.08
Arrival Rate (Queries / Sec) Arrival Rate (Queries / Sec)
Figure 5.2: Miss Ratio (Baseline) Figure 5.3: Disk Utilization (Baseline)
94 ——t— Max
—a— MinMax
—o— Proportional
—a— PMM

[,

Observed MPL

w
1

0
0.04 0.05 0.06 0.07 0.08
Arrival Rate (Queries / Sec)
Figure 5.4: MPL (Baseline)

92

Arrival Rate 0.040 | 0.045 | 0.050 | 0.055 | 0.060 | 0.065 | 0.070 | 0.075 | 0.080
Max

Waiting 124 22.4 36.4 57.2 814 976 | 107.3 | 1135 | 1173
Execution 39.5 379 354 34.5 329 |- 28.1 25.9 23.9 224
Total 51.9 60.3 71.8 91.7 | 1143 | 125.7 | 1332 | 1374 | 139.7
MinMax

Waiting 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Execution 409 43.2 455 49.2 53.1 59.6 68.3 78.8 92.1
Total 40.9 43.2 45.5 49.2 53.1 59.6 68.3 78.8 92.1
Proportional v

Waiting 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Execution 52.9 56.0 61.2 67.3 75.8 84.0 92.4 99.7 | 110.8
Total 52.9 56.0 61.2 67.3 75.8 84.0 924 99.7 | 110.8
PMM ‘

Waiting 3.0 3.2 33 3.5 3.7 3.8 3.9 4.0 4.0
Execution 40.2 42.3 45.1 48.2 52.5 58.5 66.3 76.4 894
Total 43.2 45.5 48.4 51.7 56.2 62.3 70.2 80.4 934

Table 5.4: Average Timings (seconds) for Baseline Experiment
rate increases from 0.04 to 0.08 queries/second, which explains why, unlike the other three algorithms, Max’s
disk utilization barely rises. This ineffective resource usage leads to the observed sharp growth in the miss

ratio of Max.

In contrast to Max, MinMax attempts to reduce query miss ratios by increasing the system’s MPL. This
is achieved at the expense of running queries with memory allocations that are less than their maximum,
which increases the demands on the CPU and the disks. By giving queries their minimum required memory,
MinMax could admit up to an average of 69 queries at the same time (on the average, the minimum memory
requirement per query is Wﬁ pages + 1 /O buffer = 37 pages), thus allowing much higher average MPLs
as Figure 5.4 shows. Moreover, the increased CPU and disk demands that result have little harmful effect
here, as the disk utilization barely exceeds 45% even at an arrival rate of 0.08 queries/second, indicating that
there are abundant CPU and disk capacities to service all the admitted queries. The overall result is that Min-
Max uses the system’s resources in a much more effective fashion than Max. As shown in Table 5.4, the
higher execution times that MinMax produces are more than compensated for by the large reduction in admis-
sion waiting times, thus resulting in total response times that are significantly lower than the response times of

Max. This accounts for MinMax’s superior miss ratios in Figure 5.2.

Like MinMax, Proportional attempts to reduce query response times by not insisting on maximum

memory allocation as an admission criterion. This is why Proportional also produces higher MPLs than Max.

93

The difference between Proportional and MinMax is that Proportional divides up the available memory
among the admitted queries in proportion to their demands, rather than running low-priority queries with
minimum allocations while giving high-priority queries their maximum required memory (as in MinMax).
Unfortunately, the faster execution times that the low-priority queries enjoy from receiving more than their
minimum required memory are overwhelmed by the execution time penalty that the high-priority queries pay
as a result of being forced to run with less-than-maximum memory allocations. The average execution time
that Proportional produces is therefore higher than that of MinMax. The longer query execution times also
cause an increase in the number of queries that are running concurrently, as shown in Figure 5.4, which in
turn reduces the amount of memory that each query receives. This increases the queries’ reliance on the CPU
and disks, resulting in further increases in the queries’ execution times. Consequently, Proportional utilizes
memory much less effectively than MinMax. As mentioned earlier, similar observations about the inferiority

of Proportional—style policies were made in [Corn89, Yu93] in a non-real-time context.

We now turn our attention to the PMM algorithm. In order to understand how PMM adapts itself to the
workload, we examine Figure 5.5, which traces the target MPL settings of PMM over the initial 10 hours of
operation at an arrival rate of 0.075 queries/second. PMM starts with Max, but it quickly detects that this
allocation strategy is not satisfactory because it leads to a very limited MPL while leaving the CPU and disks
grossly underutilized. This causes PMM to switch to MinMax mode to make a higher MPL possible. The
target MPL. is first set to 25, following the suggestion of the Resource Utilization heuristic. Once PMM has
gathered three miss ratio observations, it invokes the miss ratio projection method, which quickly steers the
target MPL to the vicinity of 10 where it stabilizes. This MPL is sufficiently loose to admit all of the queries
into the system most of the time, as the low 4-second admission waiting time in Table 5.4 suggests. Indeed,
Figure 5.4 shows that PMM consistently achieves high MPL settings, thus enabling it to behave like the Min-
Max algorithm. This is why PMM manages to closely match the performance of MinMax, which offers the
best miss ratios for this experiment.

Having studied the relative performance trade-offs of the memory allocation algorithms, we now briefly

examine the demand that these algorithms place on the system’s underlying memory-adaptive query process-

ing primitives. Figure 5.6 shows, as a function of the arrival rate, the average number of times that a query’s

94

memory allocation changes under each of the memory allocation algorithms. The Max algorithm does not
require queries to adapt to memory fluctuations, as it only executes queries with their maximum required
memory (suspending them otherwise). In contrast, the other three algorithms do expose executing queries to
changes in their memory allocations. Under MinMax (and hence PMM, since it mimics the MinMax algo-
rithm in this experiment), the allocation of a query may vary anywhere from its minimum to its maximum
memory requirements initially, gradually stabilizing at the maximum only as its deadline draws near. The
number of memory fluctuations that a query experiences during this initial period is determined by the fre-
quency at which higher-priority queries enter and leave the system, which explains why the number of
memory fluctuations increases with the arrival rate (growing from a mere 5 changes per query at an arrival
rate of 0.04 queries/second to an average of 10 fluctuations per query at 0.08 queries/second). The algorithm
that generates the most memory fluctuations is Proportional, which produces up to 2.5 times as many memory
fluctuations per query as MinMax. This occurs because Proportional always distributes memory proportion-

ally among all admitted queries, therefore subjecting queries to memory changes throughout their entire life-

times.
-—t— Max
25 . .
1 25 ~a— MinMax
~o— Proportional
o —&— PMM
204 S 20-
o
=]
E 154 2 154
&
e 2
= 10~ : 10 4
e
=
&
5+ 2 54
0 e U LA A S | 0 *] t t t] y i
0 12000 24000 36000 0.04 0.05 0.06 0.07 0.08
Time (Sec) Arrival Rate (Queries / Sec)

Figure 5.5: PMM MPL, A = 0.075 (Baseline) Figure 5.6: Memory Fluctuations (Baseline)

95

To summarize the results of this experiment, we can derive the following conclusions about sitnations
where memory is the bottleneck resource of an RTDBS: First, insisting on maximum memory allocation as an
admission criterion is undesirable. Instead, an RTDBS needs to be willing to run queries at memory alloca-
tions that are below their maximum requirements so that enough queries can be admitted to take advantage of
the RTDBS’s disk and CPU resources. This is facilitated by memory-adaptive query processing techniques
(such as those of [Pang93a, Pang93b]) that permit queries to execute efficiently in the face of memory fluctua-
tions. Among the algorithms that do not insist on maximum memory allocations, Proportional allocation
leads to very large miss ratios and should be avoided. This is why PMM employs MinMax, instead of Pro-
portional, allocation, when it detects that running queries with sub-maximal memory allocations is beneficial.
Finally, PMM seems to be capable of finding the right MPL setting and memory allocation strategy within a

few iterations, achieving low query miss ratios by balancing the load on the system’s various resources.

5.3.2. Moderate Disk Contention

In the next experiment, we investigate how PMM performs when disk contention becomes more of a
consideration in memory allocation decisions, though memory is still the bottleneck resource. The number of
disks is reduced here to 6, while the rest of the parameters remain at their settings from the baseline experi-
ment. We will exclude the Proportional algorithm since it has already been demonstrated to be inferior to
MinMax. The performance statistics for the remaining three algorithms, Max, MinMax-N and PMM, are
given in Figures 5.7, 5.8 and 5.9, which plot as a function of the arrival rate their miss ratios, disk utilizations,
and observed MPLs, respectively. These figures show that the behavior of Max is essentially the same as in
the baseline experiment. We shall therefore not discuss Max here, instead focusing on MinMax and PMM,

both of whose behaviors differ significantly from those observed previously.

We first analyze the performance of the MinMax algorithm. Figure 5.7 shows that MinMax no longer
provides the best performance. In fact, MinMax now misses many more deadlines than PMM when the sys-
tem is heavily loaded. The performance deterioration of MinMax here is due to its unrestrained admission
policy. In this experiment, where disk contention is not negligible, the system does not always have enough

disk capacity for all of the queries that MinMax admits. This is evidenced by the higher average disk utiliza-

96

50- 75 —t— Max
—a— MinMax
—a— PMM
40 —o— MinMax-10
s R 50
E 301 é
w R
R B o]
=% % 25+ . —
o ‘/"'
10+
O 1 i i 1 0 ¥ | i I
0.04 0.05 0.06 0.07 0.08 0.04 0.05 0.06 0.07 0.08
Arrival Rate (Queries / Sec) Arrival Rate (Queries / Sec)
Figure 5.7: Miss Ratio (Disk Contention) Figure 5.8: Disk Utilization (Disk Contention)

tions in Figure 5.8, which exceed 70% under heavy load conditions. As a result, some of the low-priority
queries remain essentially inactive even after being allotted memory because they do not get the opportunity
to access the disks under the priority disk scheduling policy. This unproductive use of memory unnecessarily
forces higher-priority queries to run below their maximum memory allocations and increases their depen-

dence on the CPU and disks, resulting in the observed rise in MinMax’s miss ratios.

Since MinMax’s unsatisfactory performance in this experiment stems from its unrestrained admission
policy, we must examine other MinMax-N variants in order to explain PMM’s performance. Figure 5.10
plots the miss ratios produced by MinMax-N as a function of N for an arrival rate of 0.07 queries/second.
The MinMax-N variants that are included in this figure cover the entire spectrum of trade-offs. At one end of
the spectrum, the MinMax-N algorithms with low N values are similar to Max, as every admitted query is

able to run with maximum memory allocation due to the low MPL settings. At the other end of the spectrum

is MinMax-20, which essentially performs like MinMax (not shown)?. Figure 5.10 shows that the best

2 Theoretically, MinMax allows up to an average MPL of 69 for this workload. In practice, the chances
of having more than 20 queries in the system at the same time here is so rare that, for all practical purposes,
MinMax-20 is the same as MinMax.

97

10"'\ U S Max 75' —+—Max
—a— MinMax —— MinMax-N
—+— PMM —+— PMM
8 —o— MinMax-10
50
,_] ~
& 6- g
o 2
2 4- 2
S S s
..) , — -/A/A/d————‘j
O 1 i 1 1 O i 1 i 1
0.04 0.05 0.06 0.07 0.08 5 10 15 20
Arrival Rate (Queries / Sec) N
Figure 5.9: MPL (Disk Contention) Figure 5.10: MinMax-N, A = 0.07 (Disk Contention)

performance for this workload is achieved by MinMax-10, which utilizes the CPU and disks much more
effectively than Max by admitting more queries into the system — but not so many queries that thrashing
occurs, as is the problem with the unrestrained approach of MinMax. We also conducted a series of experi-
ments like Figure 5.10 at other arrival rates, and the results of those experiments unanimously confirmed that

MinMax-10 indeed delivers the best performance for the present workload.

Having identified MinMax-10 as the best MinMax-N algorithm for this experiment, we now proceed to
evaluate PMM against MinMax-10. The curves in Figure 5.9 show that the observed average MPLs for PMM
remain consistently close to those of MinMax-10. This indicates that the MPL search mechanism of PMM
succeeds at bringing its MPL setting to the proximity of the best MPL value, which explains why PMM out-
performs both Max and MinMax. In fact, Figure 5.7 shows that PMM manages to meet almost as many dead-
lines as MinMax-10 over the entire range of arrival rates that we investigate, delivering miss ratios that are

worse than those of MinMax-10 by at most 2%.

The results of this experiment show that, while Max leads to under-utilization of the CPU and disks in
memory-constrained situations, MinMax can produce thrashing when disk contention is not negligible.

Therefore, some trade-off between Max and MinMax has to be reached, i.e., a MinMax-N algorithm is

98

needed. Since the best MinMax-N algorithm depends on the system configuration and workload characteris-
tics, which are usually not known in advance, the right MinMax-N algorithm to employ has to be dynamically
selected. PMM demonstrated its ability here to quickly find the appropriate MinMax-N algorithm by steering

itself to the best MPL setting.

5.3.3. Workload Changes

The first two experiments lead us to the conclusion that PMM performs well for relatively stable real-
time workloads. The objective of this experiment is to find out how quickly PMM can adapt to workload
changes. This is achieved by subjecting the various memory allocation algorithms to a workload that alter-
nates between two classes of hash joins, Small and Medium, every 2 to 5 simulated hours. For the Small
class, ||R]| ranges between 50 and 150 pages, while [|S]| ranges from 250 to 750 pages. The characteristics of
the Medium class are the same as those of the baseline workload. These two classes pose different demands
on the system’s resources. On one hand, it takes an average of only 111 memory pages to satisfy the max-
imum demand of each hash join from the Small class. Thus the disks, rather than the memory, are the
bottleneck for the Small class, and the Max algorithm is therefore appropriate for this class. On the other
hand, the system is memory-constrained with the Medium class, making a MinMax-N algorithm more desir-
able, as we saw previously. In order to highlight the performance trade-offs between the various algorithms,
the arrival rates of the two classes are chosen so that the RTDBS is forced to operate under relatively heavy
load conditions. The database and workload parameters are listed in Table 5.5. For this experiment, the

number of disks is again set to 6, with the rest of the resource parameters set as in the baseline experiment.

Figures 5.11, 5.12, and 5.13 display the miss ratios of the three algorithms as a function of time, while
Figure 5.14 traces the observed MPL under PMM. Figures 5.11 to 5.13 also give the average miss ratio over
each interval along the top of each figure. Comparing the two static algorithms, we notice that MinMax’s

unrestrained admission policy again causes it to perform poorly: Whereas Max produces average miss ratios

Database Meaning Setting
NumGroups Number of relation groups in the database 4
RelPerDisk Number of relations per disk for group / 3
SizeRange | Range of relation sizes for group / {600, 1800] pages
RelPerDisk , Number of relations per disk for group 2 3
SizeRange Range of relation sizes for group 2 [3000, 9000] pages
RelPerDisk 5 Number of relations per disk for group 3 3
SizeRange 3 Range of relation sizes for group 3 [50, 150] pages
RelPerDisk 4 Number of relations per disk for group 4 3
SizeRange 4 Range of relation sizes for group 4 [250, 750] pages
TupleSize Tuple size of relations in bytes 256 bytes
Workload Meaning Setting
NumClasses Number of classes in the workload 2
QueryType Type of class I queries Hash join
RelGroup Operand relation groups for class / queries {1,2}
M Arrival rate of class / queries 0.07
SRInterval Range of slack ratios for class / queries [2.5,7.5]
QueryType, Type of class 2 queries Hash join
RelGroup, Operand relation groups for class 2 queries {3,4}
Ay Arrival rate of class 2 queries 2.8
SRInterval, Range of slack ratios for class 2 queries [2.5,7.5]
F Fudge factor for hash joins 1.1

Table 5.5: Database and Workload Parameter Settings (Workload Changes)

99

of 16% and 33% for the Small and Medium classes’, respectively, MinMax produces average miss ratios of
37% and 23% for the two classes. In contrast to MinMax, PMM is able to capitalize on the system’s disk and
CPU resources without suffering from thrashing. By dynamically selecting its MPL setting and memory allo-
cation strategy based on the workload characteristics, PMM outperforms both Max and MinMax for the
Medium class, missing only 15% of its queries on the average. Moreover, PMM successfully detects work-
load changes, switching back to Max mode for the Small class, so its average miss ratio for Small queries is
just as low as that of the Max algorithm. Similar experiments under lighter loads revealed essentially the
same trade-offs between the three algorithms; while the magnitudes of the differences were smaller there, the
relative performance of the algorithms was the same as that seen here. We therefore conclude that PMM not

only performs well under stable workloads, but is also capable of adapting to workload changes.

3 The average miss ratio of the Medium class is derived by averaging the miss ratios over the three time
intervals where the workload is made up of Medium queries.

‘100

Medium Small Medium Small Medium Medium Small Medium Small Medium
100 (33%) (16%) _ (35%) (16%) (31%) 100 (25%) (37%) (24%) (37%) ‘(2()%)
- —_ Al
1 § 75 il
e ° i
g g i
= -
w »n 50 |
.m .m o
254 :!
ol ’l
iy] 0 I |) n L nm’lhlﬂl]l —
24000 43000 72000 0 24000 48000 72000
Time (Sec) Time (Sec)

Figure 5.11: Max Miss Ratio (Workload Changes) Figure 5.12: MinMax Miss Ratio (Workload Changes)

Medium Small Medium Small Medium Medium Small Medium Small Medium
(15%) (16%) (22%) (16%) (9%) t + + t +
100 4 t t 3 : 30 -
S 75- >
S 2 20+
<] 4]
% 50- g
4 @
g 2
© 10
0 h ? ¥ v - o H 0
0 24000 48000 72000 0 24b00 | asdo0 72000
Time (Sec) Time (Sec)
Figure 5.13: PMM Miss Ratio (Workload Changes) Figure 5.14: PMM MPL (Workload Changes)

5.3.4. Desirable Resource Utilization Levels

One of the input parameters of the PMM algorithm is the range of desirable resource utilization levels,
[Utily oy, Utilggy]. Until PMM has gathered sufficient statistics to estimate the MPL that leads to the lowest
miss ratio, this input parameter is used to guide the MPL setting: If the observed resource utilization is below
Utily,,,, PMM increases its MPL, while an observed utilization in excess of Utily,, prompts PMM to lower
its MPL setting. Up to this point, all of our experiments have used the range [0.70, 0.85] for this parameter.
The choice of 0.85 for Utilyg, is reasonable because, with resources being more than 85% utilized, the sys-

tem most probably does not have enough capacity to service all of the admitted queries, so thrashing is likely

101

to occur. The appropriate setting for Utily,,, is not as obvious, however. This experiment is designed to test
the sensitivity of PMM to the Utily,, setting. To do so, we vary Utily,, from 0.50 to 0.80. The rest of the

parameters are set as in the baseline experiment.

Figure 5.15 plots the miss ratios for PMM as a function of the arrival rate for different Utily ,,, settings.
This figure clearly shows that PMM delivers approximately the same performance over a wide range of
Util;,,, values. This is not surprising, as PMM relies on the desirable resource utilization levels to set its MPL.

only during the initial period after startup. Since the precise value of Utily,,, does not matter, the default set-

ting of 0.70 suffices.

5.3.5. Other Query Types

While we have demonstrated the capability of PMM for handling workloads that consist of hash joins,
the PMM algorithm is designed to be a general memory management algorithm for RTDBSSs; it is not limited
to handling only hash joins. To verify that PMM is capable of handling other types of queries, we repeat the
baseline experiment using external sorts. Each query in this new workload sorts a single relation R, where

|IR|l ranges from 600 to 1800 pages. All of the other workload and resource parameters (except arrival rates)

1549 ——50%
—o— 60%
—ae— T0%
—— 80%
~ 10
S
=
=
-1
&
2
s .
0 I'lm 1] 1 I
0.04 0.05 0.06 0.07 0.08

Arrival Rate (Queries / Sec)
Figure 5.15: PMM Miss Ratio (Utily,,)

102

remain as they were in the baseline experiment. Here we include the Proportional algorithm once again for

completeness of our evaluation.

The miss ratios of Max, MinMax, Proportional, and PMM for this workload are shown in Figure 5.16.
Comparing this figure with Figure 5.2, we notice that Max performs much worse here than MinMax, Propor-
tional and PMM. This is because the load that they place on the disks and CPU is lighter here, while the
memory demands of the queries are about the same as before; on the average, each external sort only has to
read in a 1200-page relation, whereas the average hash join in the baseline experiment had to deal with a
1200-page inner relation plus a 6000-page outer relation. Consequently, memory is a much more critical
resource here, thus resulting in a situation that is even more favorable to the liberal admission policies
employed by the other algorithms. Again, we see that PMM is able to select the appropriate MPL setting and

allocation strategy, achieving miss ratios that are just about as low as those obtained by MinMax.

et Max

—r— MinMax
60 —ao— Proportional
—t— PMM

Miss Ratio (%)

0
0.04 0.06 0.08 0.10 0.12
Arrival Rate (Queries / Sec)
Figure 5.16: Miss Ratio (External Sort)

103

5.3.6. Multiclass Workload

Our last experiment is designed to study how the PMM algorithm performs when presented with a mul-
ticlass workload. We again simulate a workload that consists of two classes of hash joins, Small and
Medium. The characteristics of the two classes are as listed in Table 5.5. However, instead of alternating
between the two classes as in the "Workload Changes" experiment, here we activate both classes together.
We fix the arrival rate of the Medium class at 0.065 queries/second and vary the arrival rate of the Small
class. With the exception of the number of disks, which is raised to 12 to accommodate the heavier load here,

the resource parameters remain as in the baseline experiment.

Figure 5.17 shows the overall system miss ratios produced by the Max, MinMax, and PMM algorithms.
Interestingly, here the system miss ratio curve of PMM resembles that of MinMax initially, but gradually
switches to follow that of Max as A,y increases. This behavior arises because PMM chooses its MPL and
memory allocation strategy according to the average characteristics of the workload, which naturally affords
the class that has a higher arrival rate a greater influence on its choices. Consequently, PMM adopts the Min-
Max strategy, which is more suitable for Medium queries, only when Ag,,y is low. As Asman Tises, PMM
allows the increasing influence of Small queries to sway it to Max mode. While operating in this mode is
very effective in minimizing the system miss ratio, as Figure 5.17 shows, it severely limits the MPL of the
Medium class and causes a disproportionally large number of Medium queries to miss their deadlines. This
bias is clearly evident in Figure 5.18, which plots the miss ratios of the individual classes. Such biased
behavior may not be acceptable for certain applications. In the next chapter, we will examine the possibility
of augmenting PMM with a mechanism to allow an RTDBS system administrator to specify the desired rela-

tive class miss ratios to support applications that require "fairer" real-time query services.

5.3.7. Scalability of Results

In order to limit simulation costs, we intentionally chose to use small relation and memory sizes in our
experiments. This raises questions about the scalability of our results to larger systems: How would larger
memory and relation sizes affect the performance of the various algorithms? In particular, would PMM still

be able to choose appropriate MPL settings and memory allocation strategies quickly? To explore these

104

25] —+— Max 807 - +-. Max (Small)
—+— MinMax —+— Max (Medium)
+— PMM - a-- MinMax (Small)
- —a—— MinMax (Medium)
20
§ - 60- --a--PMM (Small)
< § —a— PMM (Medium)
= °
n‘g 151 §
é w 40
S

g 101 2
7] &
>' Q
w / 20 -

5 o

_____ - 2 - I
0 T T T T y | (R e S]
0.0 0.4 0.8 1.2 0.0 04 0.8 1.2
Small Arrival Rate (Queries / Sec) Small Arrival Rate (Queries / Sec)
Figure 5.17: System Miss Ratio (Multiclass) Figure 5.18: Class Miss Ratio (Multiclass)

issues, let us consider a scenario with the memory and relation sizes of Experiment 2 (the moderate disk con-
tention case) scaled up by a factor of 10, and with the arrival rates reduced by the same factor in order to

maintain the resource utilizations at their previous levels.

In the case of the Max algorithm, which admits queries only with their maximum memory allocations,
these changes should have no impact on the miss ratios since the maximum allocation of each query, FJ|R||, is
unchanged relative to the memory size. In contrast to Max, the MinMax algorithm, which gives some queries
their maximum required memory and others their minimum, would be affected by the larger sizes. This is
because the minimum required memory is only V10 times larger than before, while the average query’s max-
imum required memory and the system memory have both been increased by a factor of 10. Admitting extra
queries with their minimum allocations would thus have a lesser impact on the memory allocations of high-
priority queries. Consequently, the detrimental effect of MinMax would be reduced considerably, leading
MinMax to deliver miss ratios that are much closer to those of the optimal MinMax-N algorithm. However,
as we increase the arrival rate, the disadvantage of MinMax will still eventually overwhelm its benefits. For

this reason, there is still a need for a mechanism to regulate query admissions.

105

Turning our attention to PMM, we first observe that PMM will still decide against using Max, as the
behavior of the Max strategy is not affected by the larger sizes. Once in MinMax mode, the length of the
MPL searching period should be about the same as before as a proportion of the (longer) query response
times. This is because PMM will require roughly the same number of query completions to find the right
MPL setting. Therefore, the qualitative behavior of PMM should remain the same as in Experiment 2. To
verify this, we carried out two different sets of experiments — a set of medium-scale experiments, reported in
this chapter, and a set of small-scale experiments that involved database and memory sizes that were ten times
smaller. The two sets of experiments produced essentially the same qualitative algorithm behavior. We
therefore expect our results to scale up to even larger memory and relation sizes; PMM should be just as

effective for larger systems as it was for the workloads and configurations that we have experimented with

here.

5.4. Conclusion

In this chapter, we have focused on the problem of scheduling queries in firm real-time database sys-
tems (RTDBS). As a solution to this problem, we have proposed a Priority Memory Management (PMM)
algorithm that aims to minimize the number of missed deadlines by adapting both the multiprogramming level
(MPL) and the memory allocation strategy of an RTDBS according to feedback on system behavior. This
eliminates the need for any advance knowledge of workload characteristics or query execution times, which is
usually not available in a database system. Instead, the setting of the MPL is determined primarily by a sta-
tistical projection method, called miss ratio projection, which is supplemented by a resource utilization heuris-
tic when the statistical method fails. PMM incorporates two memory allocation strategies — a Max strategy
under which each query receives either its maximum required memory or no memory at all, and a MinMax
strategy that allows some queries to run with their minimum required memory while others get their max-
imum. Both strategies employ the Earliest Deadline (ED) policy so that queries whose deadlines are more
imminent are given memory ahead of queries that are less urgent. The choice of memory allocation strategy
is based on statistics about the workload characteristics that PMM gathers; in order to ensure that its MPL set-

ting and memory allocation strategy choices remain appropriate, PMM constantly monitors the workload for

106

changes that may necessitate adjustments to those decisions.

Using the detailed RTDBS simulation model described in Chapter 2, we studied the performance of
PMM under workloads that comprised both hash joins and external sorts. For comparison purposes, we also
examined two static algorithms based purely on the Max and MinMax allocation strategies. Our experiments
revealed that while the static algorithms perform satisfactorily under very light loads, neither algorithm is ade-
quate in overload situations. In contrast, PMM is able to dynamically reach the right compromise between
Max and MinMax, consistently delivering low miss ratios. Moreover, PMM achieves this quickly enough so
that it works well even for fluctuating workloads. While we only experimented with queries that perform
either external sorting or hash join operations, PMM is designed to schedule general query workloads effec-
tively by balancing their demands on the system’s memory, CPU, and disks. In particular, PMM can be
extended to handle complex database queries that use external sorting and hash joins as building blocks, such
as queries with aggregates, group-by clauses, and/or order-by clauses. Therefore, we conclude that the
admission control and memory allocation mechanisms of PMM should be very useful for RTDBS query
scheduling. However, when presented with a multiclass workload, PMM tends to produce skewed class miss
ratios that may not be acceptable for certain applications. In the next chapter, we will investigate mechanisms

that can help PMM to achieve class miss ratios that conform to administratively defined workload objectives.

CHAPTER 6

MULTICLASS QUERY SCHEDULING

As demonstrated in the previous chapter, the Priority Memory Management (PMM) algorithm is very
effective in reaching appropriate multiprogramming levels (MPL) and memory allocation policies to minim-
ize the system miss ratio. PMM is also capable of handling workload mixes that consist of classes with dif-
ferent average sizes, but it tends to favor some classes of queries while discriminating against other classes in
such cases. Such a bias may not always be acceptable; for some applications, it may be desirable to distribute
missed deadlines proportionally among all classes according to administratively-defined workload objectives.
In order to achieve such controlled performance, the query scheduler must intervene on behalf of classes that,
cither because of stricter timing requirements or larger resource demands, are in a disadvantaged position if
allowed to compete unaided for resources (e.g., see [Pang92]). Since resource allocation decisions are
priority-driven, the most effective way to help disadvantaged classes is to boost their priorities relative to the
advantaged classes. PMM therefore needs to be equipped with a mechanism that allows it to elevate or

demote the priority of a query based on the observed relative performance of the class that it belongs to.

In this chapter, we augment the PMM algorithm with a class-priority adaptation mechanism, producing
a Priority Adaptation Query Scheduling (PAQS) algorithm that is intended for handling multiclass query
workloads where the natural biases of PMM are not acceptable. PAQS relies on PMM to set a system-wide
MPL and a global memory allocation strategy; it then regulates the MPL and memory allocation of individual
classes indirectly by controlling the priority of their queries. Roughly speaking, PAQS accomplishes this
regulation using a multi-class variant of the Adaptive Earliest Deadline scheduling policy proposed in
[Hari91]. PAQS divides all queries into two priority groups — a regular group and a reserve group — and a
quota of regular queries is chosen for each class of query. Priority values are assigned to regular queries

based on the Earliest Deadline policy [Liu73], while reserve queries are assigned random priorities that are

107

108

Jlower than those of any regular query; regular queries are always admitted and allotted resources ahead of
reserve queries. By raising the quota of regular queries for classes that would naturally miss more deadlines
than desired, and by limiting the number of regular queries from classes that would otherwise tend to miss

fewer deadlines, PAQS is able to distribute missed deadlines among the query classes according to the

specified workload objectives.

6.1. Priority Query Scheduling

This section presents two algorithms, PM3 and PAQS, for scheduling multiclass query workloads. The
first algorithm, PM3, modifies the PMM algorithm (introduced in the previous chapter) to choose a multipro-
gramming level and a memory allocation strategy based on the multiclass workload objective. PM3 is likely
to be adequate for some workload objectives, but it will not be sufficient for objectives that are more demand-
ing since it lacks a mechanism to control the performance of individual classes. The PAQS algorithm, which
augments PM3 with a class-priority adaptation mechanism, is intended to bridge this gap. Both algorithms
accept as input a list of values, RelMissRatio = {relMissRatio: ... : relMissRatioN,mciasses }» that states the
desired miss ratio distribution among the classes in the workload. As an illustration, suppose that the work-
load is made up of two classes. If RelMissRatio = {3 : 1}, then the target miss ratio distribution would be of
the form MissRatio = 3x% and MissRatio, = x%. The details of the algorithms are presented below. The
input parameters and the variables used by the two algorithms, which will be explained as they appear in the

following description, are summarized in Table 6.1.

6.1.1. Priority Memory Management for Multiclass Workloads

As mentioned above, the Priority Multiclass Memory Management (PM3) algorithm is essentially an
adaptation of PMM that is tailored to choose a system-wide target MPL and a global memory allocation stra-
tegy that are conducive to meeting the workload’s multiclass performance objective. PM3 does this by basing
its MPL selection decisions on a system-wide performance measure that better reflects the desired miss ratio
distribution, and by picking its memory allocation strategy according to the level of memory contention

experienced by individual classes.

109

Parameter Meaning Default
RelMissRatio Target relative class miss ratios {1:...:1}
SampleSize cigss Re-evaluation frequency (# completions per class) 10
SampleSizer,al Re-evaluation frequency (total # completions) 30
Change confreve! Conf. level of statistical tests for workload changes 99%

Variable Meaning Default
RegQuota; Class i’s quota of regular queries -
MissRatio; Measured miss ratio of class i -
Weight; Weight of class i in computing weighted miss ratio derived from RelMissRatio
Py Priority of query Q -
Dy Deadline of query Q -
Ry Random key assigned to query Q [0, 1]

Table 6.1; Notation for PM3 and PAQS
The primary mechanism that PMS3 relies on to pick its target MPL seitings is a statistical projection
method that predicts the MPL value that will fead to the lowest "average" miss ratio. Thus, we need an "aver-
age miss ratio" computation procedure that suitably reflects the desired influence of the individual classes.
Intuitively, if we want relMissRatio; = ¢ X relMissRatio; for two classes i and j, then class i should exert ¢
times as much influence as class j on the "average” miss ratio. This is achieved by first transforming the

values in RelMissRatio into class weights:

1
relMissRatio;

1
7 relMissRatio;

Weight; =

and then computing a weighted miss ratio for the projection method from the individual classes’ miss ratios

and their corresponding weights:

WeightedMissRatio = X Weight; X MissRatio;

To illustrate how this procedure works, let us again consider a two-class workload with RelMissRatio = {3 :
1}. Applying the above procedure, the two classes would be assigned weights of 0.25 and 0.75, respectively,
making class 2 three times as influential as class 1. An important property of the class weights is that they add
up to 1.0. This property ensures that the weighted sum of the class miss ratios, each of which ranges from 0%

to 100%, remains within the interval [0%, 100%].

110

Having adjusted the MPL selection mechanism, we now turn our attention to the way that PM3 chooses
its memory allocation strategy. To adapt better in a multiclass context, PM3 needs to replace the system-wide
performance measures that PMM uses with class-specific measures. PM3 starts with the Max allocation stra-
tegy and then switches to MinMax mode if the utilization of all CPUs and disks are below Util;,,, and some
class i satisfies the following conditions: (1) one or more queries from that class have missed their deadlines
since PM3 was last activated; (2) class i has a non-zero admission waiting time; and (3) on the average, the
execution time of a query belonging to class i is significantly shorter than its time constraint (the difference
between its deadline and its arrival time). In other words, PM3 switches to MinMax mode if some class
appears to be missing deadlines unnecessarily because its queries are made to wait for memory. Since the
above tests require performance statistics for all of the classes, PM3 is invoked to revise its choices of MPL
and memory allocation strategy only after the system has served at least SampleSizecy, s queries from every
class, in addition to the original requirement of SampleSizeryq total query completions, subsequent to PM3’s

last activation.

Finally, to ensure that its choices of MPL setting and memory allocation strategy remain suitable for the
workload, PM3 constantly monitors the following statistics for each class: (1) the average maximum memory
demand of queries in that class; (2) the average number of I/Os that each query in that class issues to read its
operand relation(s); and (3) the average normalized time constraint, defined as the ratio of the time constraint
to the number of I/Os needed to read the operand relation(s), for that class. Upon activation, PM3 carries out
a -test on each monitored class characteristic to see if its present value is different from its last observed
value at a confidence level of Changec,pever [Devo91]. If so, PM3 reacts to the workload change by discard-
ing the statistics that it has gathered and by re-adapting itself to the new workload composition. The differ-

ences between PM3 and PMM are summarized in Table 6.2.

6.1.2. Priority Adaptation Query Scheduling

While PM3 is designed to pick its MPL and memory allocation strategy according to the target miss
ratio distribution, it does not control the bias of the Earliest Deadline (ED) scheduling policy [Liu73] that

RTDBSs use to prioritize their queries. As we will soon see, this bias can prevent PM3 from meeting its

111

PMM PM3
Miss ratio projection AvgMissRatio = M WeightedMissRatio =
queries
Z MissRatio; x Weight;

Memory allocation Switch from Max to MinMax if Switch from Max to MinMax if queries

queries in the workload experience in some class experience significant

significant unnecessary memory unnecessary memory waiting time

waiting time
Re-activation SampleSizetom query completions (1) = SampleSizer,, completions; and
frequency (2) 2 SampleSizecy,,; completions/class
Restart condition Changes in average workload Changes in the characteristics of some

characteristics class i

Table 6.2: Summary of Differences between PMM and PM3
given multiclass objective. To rectify this shortcoming, the Priority Adaptation Query Scheduling (PAQS)
algorithm augments PM3 with a priority adaptation mechanism. This mechanism is intended to regulate the
relative priority of individual classes, helping classes that would otherwise miss more deadlines to attain

acceptable relative miss ratios.

As mentioned earlier, PAQS divides queries into a regular group and a reserve group. Each class i is
given a quota of regular queries, RegQuota;, that limits the maximum number of regular queries that the class
may have at any given time. Upon arrival, a query belonging to class i is assigned to the regular group if that
class has not used up its quota of regular queries; otherwise the query is relegated to the reserve group of the

class. Having determined the query’s grouping, the following scheme is used to compute a priority for the

query:

(1, 1/Dg) if Group = regular

Py ={ (0, Rg) if Group =reserve
where Py, D, and Ry denote, respectively, the query’s priority, deadline, and a randomly assigned value in
the range [0, 1]. This scheme defines a lexicographical priority order in which higher Py values reflect higher
priorities. All regular queries have higher precedence than queries in the reserve group. Among queries in
the regular group, priority rankings are established according to the ED policy. Priority ordering within the

reserve group follows the Random Priority (RP) policy, which is why the Ry values are selected randomly.

The reason that RP is chosen for the reserve group is because its queries essentially "see" a heavily loaded

112

system due to their lower priorities, and RP delivers good performance under heavy loads [Hari91].

PAQS attempts to meet the target miss ratio distribution by elevating the priority of classes that suffer
from higher-than-desired miss ratios, thus helping their queries to gain admission and compete for system
resources. This is accomplished by increasing the regular query quota, RegQuota;, of those disadvantaged
classes, and by reducing RegQuota; for classes that are overachieving at the moment. At system start-up
time, all RegQuota;’s are first initialized to o so that all queries are assigned to the regular group initially.
When PAQS is next activated, it first resets RegQuota; for each class to the highest number of concurrent
queries that the class experienced during the intervening period and then adjusts the RegQuota;’s according to
the relative performance of the classes. If the target miss ratio distribution is achieved, all of the classes
should bear an equal share of the weighted miss ratio. For example, if the target miss ratio distribution Rel-

MissRatio = {3 : 1} for a two-class workload is reached, the weighted miss ratio should be:

WeightedMissRatio = Weight | X MissRatio + Weight; X MissRatio
=0.25 % 3x% + 0.75 X x%
=0.75x% + 0.75x%

In other words, Weight; X MissRatio; should be equal to WeightedMissRatio / NumClasses for all classes i. If
the current miss ratio distribution is different from the target, PAQS adjusts the RegQuota; of each class based
on how its Weight; x MissRatio; value compares to its share of WeightedMissRatio / NumClasses, using the

following formula:

Weight; X MissRatio;
WeightedMissRatio / NumClasses

RegQuota; = RegQuota; X

Returning to our RelMissRatio = {3 : 1} example, if currently the miss ratio of classes 1 and 2 are 20% and
10%, respectively, PAQS will reduce RegQuota; by 20% and increase RegQuota, by 20% in an attempt to
bring the class miss ratios closer to the target distribution. After that, PAQS continues to monitor the relative

performance of the classes, applying the above formula to dynamically adapt the RegQuota;’s as needed.

Admission control for PAQS is straightforward once the MPL has been determined — the m highest-
priority queries get admitted, where m is the target MPL. However, the use of PAQS’ two-tier priority
scheme introduces some difficulty in memory allocation. In particular, if MinMax mode is selected, should

reserve queries be given their minimum required memory before the allocation of regular queries are topped

113

up to their maximum, or should the memory manager start giving buffers to reserve queries only after all of
the regular queries have received their maximum required memory? Since the purpose of the two-tier priority
scheme is to help disadvantaged classes compete for system resources by relegating some queries from the
advantaged classes to the reserve group, we adopt the second alternative to maximize the effectiveness of the
scheme, i.e. reserve queries are not allowed to compete for memory with regular queries. To implement this
alternative, we extend the MinMax allocation procedure of PMM to a two-step procedure. In the first step,
the MinMax allocation procedure is applied to distribute memory to the regular queries; reserve queries are
not eligible for allocation in this step. Step two, which uses MinMax to assign memory to the reserve queries,
is activated only if there are leftover buffers at the end of step one (which only happens when all regular

queries have been given their maximum required memory).

As noted earlier, the two-tier priority assignment scheme adopted by PAQS follows the same concept
as the Adaptive Earliest Deadline (AED) algorithm proposed in [Hari91]. AED maintains a "hit" group and a
"miss" group, which correspond to the regular group and reserve group in PAQS, and AED controls "hit"
group assignments by a HitSize parameter. The distinction between the two algorithms lies in the goals that
they hope to reach with the two-tier scheme. In the case of AED, the single HitSize parameter serves to sta-
bilize the overload performance of the ED policy, whereas PAQS uses its RegQuota; values to influence the
relative class miss ratios. Consequently, the procedures that the algorithms employ to set their control param-

eters are quite different.

6.2. Experiments and Results

This section presents the results of a series of experiments designed to evaluate the performance of the
Priority Adaptation Query Scheduling (PAQS) algorithm and the Priority Multiclass Memory Management
(PM3) algorithm. For comparison purposes, we shall also examine the original Priority Memory Management
(PMM) algorithm, which does not distinguish between queries from different classes, i.e. which treats all
queries like they belong to the same class. PMM is included here to highlight PAQS’ effectiveness in achiev-
ing targeted relative class performances, and also to reveal any price (in terms of system-wide performance

metrics) that PAQS may have to pay in the process. The performance of PM3 serves to illustrate the relative

114

effectiveness of the priority adaptation mechanism that PAQS employs in attempting to meet its targets. As
always, we will begin with a baseline experiment, with further experiments being carried out by varying a few
parameters each time. The primary performance metrics for these experiments are the class miss ratio,

weighted miss ratio, and system miss ratio (defined in Section 2.2).

6.2.1. Baseline Experiment

A We begin our investigation of the performance of PAQS and PM3 with the multiclass workload that
was used in the last experiment of the previous chapter. The detailed database and workload characteristics
are repeated in Table 6.3 for ease of reference. The workload consists of two classes of hash joins, Medium
and Small. Each join in the Medium class has two operand relations, R and S, where ||R|| varies uniformly
between 600 and 1800 pages and ||5]| is selected from the range [3000, 9000] pages. Moreover, the slack ratio
interval of this class is set to [2.5, 7.5], and its arrival rate is fixed at 0.065 queries/second. For the Small
class, ||R|| ranges between 50 and 150 pages, while ||S|| ranges from 250 to 750 pages. The slack ratio interval
for Small joins is also set to [2.5, 7.5], and the arrival rate of this class, Ag,qy. ranges from O to 1.2
queries/second. The performance objective here is to balance the miss ratio of the two classes, i.e., Rel-
MissRatio = {1 : 1}. In order to bring out thf: importance of memory management, we simulate an environ-
ment where, except for occasional overloads, there are abundant CPU and disk capacities; thus, memory is the
bottleneck resource. This is achieved by letting CPUSpeed and NumDisks be 40 MIPS and 12, respectively,
and by setting M to 2560 pages (20 MBytes). The rest of the RTDBS resource parameters are kept at their

settings of Table 3.3.

Figures 6.1 and 6.2 plot the class miss ratios and system miss ratios produced by PMM, PM3, and
PAQS as a function of the arrival rate of the Small class. The figures show that while PMM clearly delivers
the lowest system miss ratios, it is also extremely biased, penalizing the Medium class as the load from the
Small class increases: as Agyqy increases from 0 to 1.2 queries/second, the miss ratio of the Small class barely
rises, but the miss ratio of the Medium class increases dramatically, growing from a low of near-zero misses
to a high of 70%. In comparison, PM3 and PAQS come much closer to achieving the objective of balanced

miss ratios, though at the expense of higher system miss ratios. In fact, PAQS exhibits virtually no skewed

60 -

40 -

Class Miss Ratio (%)

Database Meaning Setting
NumGroups Number of relation groups in the database 4
RelPerDisk Number of relations per disk for group 7 3
SizeRange | Range of relation sizes for group / [600, 1800] pages
RelPerDisk, Number of relations per disk for group 2 3
SizeRange, Range of relation sizes for group 2 [3000, 9000] pages
RelPerDisk Number of relations per disk for group 3 3
SizeRange s Range of relation sizes for group 3 [50, 150] pages
RelPerDisk 4 Number of relations per disk for group 4 3
SizeRange 4 Range of relation sizes for group 4 [250, 750] pages
TupleSize Tuple size of relations in bytes 256 bytes
Workload Meaning Setting
NumClasses Number of classes in the workload 2
QueryType Type of class / queries Hash join
RelGroup Operand relation groups for class / queries {1,2}
M Arrival rate of class / queries 0.065
SRinterval | Range of slack ratios for class / queries [2.5,7.5]
QueryType, Type of class 2 queries Hash join
RelGroup, Operand relation groups for class 2 queries {3, 4}
A Arrival rate of class 2 queries vary from O to 1.2
SRiInterval, Range of slack ratios for class 2 queries [2.5,7.5]
F Fudge factor for hash joins 1.1

Table 6.3: Database and Workload Parameter Settings for Baseline Experiment

115

- -+-- PMM (Small)
—+— PMM (Medium)
- A~ PM3 (Small)
—— PM3 (Medium)
- a--PAQS (Small)
~g— PAQS (Medium)

-t PMM
12 1 —a— PM3
—a-- PAQS
S
.g g -
o
&
8
S
g
2 4-
wn
e 0 T y] T 1
0.8 0.0 0.4 0.8 1.2

0.4

Small Arrival Rate (Queries / Sec)
Figure 6.1: Class Miss Ratio (Baseline)

Small Arrival Rate (Queries / Sec)

Figure 6.2: System Miss Ratio (Baseline)

behavior at all. These results clearly demonstrate that the choice of a query scheduling algorithm can have a

very significant impact on class miss ratios. To understand the behavior of the three algorithms, we shall

analyze each algorithm in turn with the aid of Figures 6.3 to 6.7, which give the weighted miss ratios,

116

observed MPLs, disk utilizations, waiting time ratios (the ratio of the waiting time to the time constraint) and
response time ratios (the ratio of the total response time to the time constraint) for both the Small and Medium
classes. In computing the average response time ratios, a late query is considered to have a response time
ratio of 100% since the query is aborted only after its deadline expires. We shall henceforth refer to waiting

time ratios and response time ratios collectively as timing ratios.

Let us first examine the PMM algorithm, which treats queries as if they all belonged to a single class.
There are two reasons why this leads to a biased treatment of classes. The first reason is that the Small class,
by virtue of its higher arrival rate, exerts a disproportional influence on the various measurements that PMM
relies upon when making its target MPL and memory allocation strategy choices, thus resulting in choices that
favor Small queries. Since a Small join query requires an average of only 111 memory pages (FYIR|| pages + 1
/O buffer = 111 pages) to satisfy its maximum demand, memory contention becomes an issue for the Small
class only when the number of queries in the system exceeds 23 at a time (2560 memory pages divide by 111
pages per query). However, as the low observed MPLs in Figure 6.4 show, this is unlikely to happen. PMM
therefore concludes that memory contention is negligible and that Max is the preferred memory allocation

strategy. This severely limits the MPL of the Medium class. In fact, on the average only two Medium queries

—= PMM
—tr— PM3
i PAQS

324

Weighted Miss Ratio (%)

00 04 08 12
Small Arrival Rate (Queries / Sec)
Figure 6.3: Weighted Miss Ratio (Baseline)

117

8 -+~ PMM, Small 609 ——PMM
—+— PMM, Medium —a— PM3
- - PM3, Small —a— PAQS
—a— PM3, Medium
6 -=- PAQS, Small -
—a— PAQS, Medium ® 404
o A 2
E ’ - ’ B 5
LA
E 4 7 e ,K Id //// ‘ §
ot , 9 =
Gm) e - s jon]
6 - ’;, //,/ -
o0 2 20
/-': l:’ z + S of Q 20
2 ™ . I /4’,/’
AT, z
o
- = ’
0 ’7;/ " T y T y 1 0 " T 4 T i 1
0.0 04 0.8 1.2 0.0 0.4 0.8 1.2
Small Arrival Rate (Queries / Sec) Small Arrival Rate (Queries / Sec)
Figure 6.4: Observed MPL (Baseline) Figure 6.5: Disk Utilization (Baseline)
40+

201 - +- PMM, Waiting
—i— PMM, Response

Timing Ratios for Small Class (%)
Timing Ratios for Medium Class (%)

- - PM3, Waiting 30- <"+ PMM, Waiting

—a— PM3, Response .-~ —+— PMM, Response
104 - PAQS, Waiting T - 2= PM3, Waiting

—a— PAQS, Response e " et ~t— PM3, Response

'__,,.——' JPied - a-- PAQS, Waiting
U I Seo —a— PAQS, Response
0 S e - ? OIT S 8 > 7

0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2
Small Arrival Rate (Queries / Sec) Small Arrival Rate (Queries / Sec)
Figure 6.6: Small Timings (Baseline) Figure 6.7: Medium Timings (Baseline)

get to execute concurrently, as each Medium join query’s expected maximum memory requirement is 1321
pages. Consequently, Medium queries suffer long admission waiting times that cause many of them to miss
their deadlines, despite the disks’ having excess capacity as the lower PMM disk utilizations in Figure 6.5
suggest. In contrast, the Small class benefits tremendously from the choice of the Max strategy. This is

because the low concurrency of the Medium class leaves the Small queries with ample memory and virtually

118

all of the CPU and disk capacity that they require. As a result, Small queries are able to enjoy relatively short

admission waiting and response times at the expense of the Medium class under PMM.

Another source of PMM’s biased behavior is the Earliest Deadline policy used for resource scheduling
[Pang92]. When treated on par with the Small queries, Medium queries are assigned lower priorities by ED
most of the time because their deadlines are much further in the future. Consequently, Medium queries are
not able to compete for resources early in their lifetimes; many of them only gain enough priority after their
deadlines become infeasible, thus wasting the resources that they consume. Figures 6.6 and 6.7 provide evi-
dence of this inherent bias in the ED policy. Even at a low load of A, = 0.2 queries/second, Medium
queries spend more than 10% of their deadlines waiting for admission and another 35% of their time con-
straints executing in the system (see Figure 6.7). In contrast, Small queries have negligible admission waiting
times and finish way ahead of their deadliﬁes (Figure 6.6). As the load mounts, the response times of Medium
queries rapidly approach their deadlines, while the response times of Small queries rise much more slowly.
For example, at Ag,qy = 1.2 queries/second, where about 70% of the Medium queries miss their deadlines, the
average Small query still manages to complete before even 30% of its time constraint has elapsed. This bias
in ED, together with PMM’s biased MPL and memory allocation strategy choices, accounts for the disparity

in miss ratios between the two classes.

Having understood the forces that cause PMM to be biased, we now investigate the extent to which
PM3 is able to make MPL and memory allocation strategy choices that are more conducive to achieving bal-
anced class miss ratios, which is the workload objective for this experiment. The higher observed MPLs for
both Small and Medium queries in Figure 6.4 show that PM3 decides to admit more queries and does not
insist on maximum allocations here. This virtually eliminates admission waiting time for the Medium class,
allowing its queries to enjoy CPU and disk services early in their lifetimes. The heavier disk utilizations in
Figure 6.5 suggest that the disks are utilized more productively now. As a result, Medium queries are able to
complete so much earlier that their miss ratios plummet from PMM’s high of nearly 70% at Agpay = 1.2
queries/second to just over 20% for PM3. However, the improved performance of the Medium class is
achieved at the expense of somewhat higher miss ratios for Small queries, whose response times are pro-

longed by the heightened resource contention. This loss suffered by the Small class to the benefit of the

119

Medium queries is the reason that PM3 delivers a more balanced miss ratio distribution and a much lower
weighted miss ratio than PMM does. The higher system miss ratio that PM3 produces can be explained as
follows: Since a Medium query consumes significantly more resources than a Small query, the system is
likely to have to sacrifice several Small queries in order to help a Medium query meet its deadline, especially
when the load is heavy. This naturally results in higher system miss ratios because every late query, regard-
less of its class, contributes equally to the system miss ratio. Note that PM3 would have been discouraged
from helping the Medium class had it not adopted the weighted miss ratio to measure overall system
efficiency. Instead, being driven by the lower weighted miss ratio measurements that result, PM3 is able to

arrive at the right MPL and memory allocation strategy.

Finally, we turn our attention to the PAQS algorithm. Besides possessing the MPL and memory alloca-
tion policy selection mechanisms of PM3, PAQS is also equipped with a priority adaptation mechanism to
counteract any undesirable behavior due to the Earliest Deadline scheduling policy. Figure 6.8, which traces
the percentage of queries in each class that are assigned to the PAQS reserve group, shows that this mechan-
ism relegates more and more of the Small queries to the reserve group as Agman increases. This raises the

average admission waiting time of the Small class and leads to a decline in its MPL, as reserve queries are

20
—+— Small
—— Medium
15 4
S
@
E 10 -
H
[
54
0 * A & # * 3
0.0 04 0.8 1.2

Small Arrival Rate (Queries / Sec)
Figure 6.8: PAQS Reserve Group (Baseline)

120

granted admission only after the regular queries from all classes have received their maximum required
memory. The higher fraction of reserve queries also lowers the average priority of the Small class, which in
turn lengthens its average response time (over and above the delay it already suffers under PM3 from the
Medium class’ higher concurrency) and pushes up its miss ratio. However, as a result of the Small class’
lower average priority, Medium queries can now run with more memory. This reduces the amount of tem-
porary (hash bucket) data that Medium queries must write out, which explains why PAQS’ disk utilizations
are lower than those of PM3 in Figure 6.5. This also helps Medium queries to execute faster and complete
earlier, bringing their miss ratios down further to match those of the Small class. For example, at Asman = 1.2
queries/second, a Medium query requires an average of just over 60% of its time constraint to run under
PAQS, whereas it takes more than 70% of its deadline when PM3 is employed. Consequently, PAQS is able
to completely balance the class miss ratios, successfully meeting the workload objective. Interestingly,
despite producing lower miss ratios for the Medium class than PM3, PAQS does not improve significantly
upon PM3’s weighted miss ratios. This is because PM3 already allows the system resources to be utilized
productively, so PAQS has to achieve further reductions in the number of late Medium queries by sacrificing

(many more) Small queries rather than by improving the efficiency of resource usage.

To summarize the results of this experiment, we can draw the following conclusions: First, while PMM
is very effective in minimizing the system miss ratio, it is also biased in its treatment of different classes. This
will be unacceptable for those applications that require controlled miss ratios. Second, by setting the target
MPL and memory allocation strategy according to administratively defined workload objectives, PM3 can
come considerably closer to achieving balanced class miss ratios than PMM. Finally, by also manipulating
the individual class quotas for regular queries, PAQS is able to influence their relative miss ratios enough to

successfully eliminate any remaining shortcomings of PM3 in terms of accomplishing equitable miss ratios.

6.2.2. Skewed Class Objectives

Having demonstrated in the previous experiment that PAQS can successfully achieve balanced class
miss ratios, we:now explore its ability to meet skewed workload objectives. This is accomplished by varying

the algorithm parameter RelMissRatio. We first set it to favor the Small class; we then reverse the setting so

121

that Medium queries become more valuable. All of the database and workload parameters remain as they

were in the baseline experiment.

For the first part of the experiment, we set RelMissRatio to {2 : 1}, so the target miss ratio distribution
is of the form MissRatioyeqium = 2x% and MissRatiog,.y = x%. Figures 6.9 and 6.10 present the resulting
class miss ratios and weighted miss ratios, while Figure 6.11 plots the ratio of MissRatiog,,; to
MissRatiopegium 2s 2 function of Ag,.y. The figures show that the behavior of both PMM and PM3 are virtu-
ally the same as those observed in the baseline experiment. In the case of PMM, this is to be expected, as
PMM is not designed to discern class distinctions or to meet multiclass objectives; changes in the RelMissRa-
tio parameter naturally have no effect on PMM’s behavior. In the case of PM3, its behavior remains essen-
tially unchanged because, even for the {2 : 1} target miss ratio distribution, it still misses more Medium
queries than desired. Consequently, PM3 is already operating in a region where it is using the MPL setting
and the memory allocation strategy that are most favorable to the Medium class, as it was in the previous
experiment. We now examine PAQS. Not surprisingly, this algorithm successfully achieves the {2 : 1} tar-
get distribution; in fact, it is an easier target than the objective of balanced miss ratios in the previous experi-

ment since it requires a smaller improvement in the miss ratio of the Medium class.

For the second part of the experiment, we reverse the target miss ratio distribution to the more challeng-
ing setting of RelMissRatio = {1:2}. The resulting class miss ratios, weighted miss ratios, and MissRatiogmay
to MissRatiopyegium T2tios are presented in Figures 6.12 to 6.14. These figures show that while selecting the
appropriate target MPL and memory allocation strategy almost enabled PM3 to meet the target miss ratio dis-
tribution of RelMissRatio = {2 : 1} earlier, PM3 is not able to improve the relative miss ratio of the Medium
class any further when the workload objective necessitates it. PM3 fails miserably here, producing
MissRatiogya | MissRatiopeqim values that are far short of the target. In contrast, PAQS again attains the tar-
get distribution. Even at high Ag,y values, where the workload consists predominantly of Small queries, and
where Medium queries are in a very disadvantaged position due to heavy contention from Small queries that
have nearer deadlines, PAQS still manages to bring the miss ratios of the Medium class down to meet the
demanding workload objective. However, PAQS produces only slightly lower weighted miss ratios than PM3

here (Figure 6.13). As discussed in the baseline experiment, this is because the resource consumption of

122

~-+-- PMM (Small) 25+
—+— PMM (Medium)
60 —=--PM3 (Small)
—a— PM3 (Medium) 20
— -~ -a-- PAQS (Small) s
§ —u— PAQS (Medium) 2
=) =
£ 40- & 15
& 2
g S
. 2 104
8 5
O 20- ‘2
B
5 o]
——1:::iiii+::——+
0 + T T 1 0 T T y T T]
0.0 04 0.8 1.2 0.0 0.4 0.8 1.2
Small Arrival Rate (Queries / Sec) Small Arrival Rate (Queries / Sec)
Figure 6.9: Class Miss Ratio (1:2) Figure 6.10: Weighted Miss Ratio (1:2)
054---- Boeg o i S
w 0.4
_m
S
g
= 034
QL
3 /A—/o\é\o_ﬂ
p
E 0.2 -0~ Target
= —+— PMM
£ —a—PM3
“ 0.1+ —a—PAQS
/\F“"—q_____*
0.0 v T v T v 1
0.0 04 0.8 1.2

Small Arrival Rate (Queries / Sec)
Figure 6.11: Class Miss Ratio Dist. (1:2)

Medium queries is much more than that of the Small queries, so the system has to sacrifice many more Small

queries to achieve a reduction in the number of late Medium queries.

To summarize, the results of this experiment confirm that neither PMM nor PM3 are capable of achiev-

ing the target miss ratio distribution of multiclass workloads. In contrast, PAQS has demonstrated the ability

60

40

Class Miss Ratio (%)

-+~ PMM (Small)

123

50 —+— PMM
—+— PMM (Medium)
- -a—-PM3 (Small)
—a-~ PM3 (Medium) 40
- a--PAQS (Small) S
—a— PAQS (Medium) z
E 304
17
S
T 20-
=
20
]
=
10
P
___,_::::‘:-——-4—-—---'- 0
i N i v 1 N | i i N i
0.4 0.8 1.2 0.0 0.4 0.8 1.2
Small Arrival Rate (Queries / Sec) Small Arrival Rate (Queries / Sec)
Figure 6.12: Class Miss Ratio (2:1) Figure 6.13: Weighted Miss Ratio (2:1)
- 2.0
g 1.5
E
% - -e-- Target
é’ —t— PMM
~ 1.0 —— PM3
é —u— PAQS
3
& 05-
U £ £ £ A
0.0 et = i : i
0.0 04 0.8 1.2

Small Arrival Rate (Queries / Sec)

Figure 6.14: Class Miss Ratio Dist. (2:1)

to consistently meet multiclass performance objectives, whether balanced or skewed.

6.2.3. Identical Classes

In the first two experiments, we saw that the priority adaptation mechanism of PAQS is very effective

in regulating per-class performance to achieve a desired target miss ratio distribution, even despite the

124

classes’ very different characteristics. However, the priority adaptation mechanism of PAQS could impose a
cost, as it may be overly conservative in setting its regular query quotas; this would cause too many queries to
be assigned to the reserve group, resulting in unnecessary deadline misses. To explore this potential draw-
back, we now replace the Small class in the baseline experiment with another class that is identical to the
Medium class, and we equate the mean arrival rates of the two classes. The rest of the parameters are set as
in the baseline experiment. Finally, RelMissRatio is set to {1 : 1}, i.e., the target is to balance the miss ratios

of the classes.

Figure 6.15 plots the system miss ratios produced by the three query scheduling algorithms as a func-
tion of Agny- This figure shows that the performance of PMM and PM3 is, for all practical purposes, identi-
cal. The reason for this behavior is that PMM and PM3 both adopt the MinMax strategy to alleviate the
memory bottleneck after detecting the memory contention experienced by queries in the two classes. More-
over, since both classes have identical characteristics, the system miss ratios that PMM uses and the weighted
miss ratios that PM3 depends on yield very similar values, thus leading both algorithms to choose target
MPLs that are almost the same. In contrast to PM3, PAQS produces slightly higher system miss ratios than

PMM, indicating that the priority adaptation mechanism of PAQS indeed becomes a slight liability here. This

30+ —— PMM
—a&— PM3
-~ PAQS
9
< 20
=
o
&
@
=
£
E. 10 4
75}
O 1 [} i 1
0.02 0.03 0.04 0.05 0.06

Class Arrival Rate (Queries / Sec)
Figure 6.15: System Miss Ratio (Identical)

125

occurs because the two classes only experience similar average miss ratios. At any particular instant, work-
load fluctuations will inevitably cause the two class miss ratios to deviate from each other; in reaction to these
deviations, PAQS will relegate some queries from the class that appears to be overachieving to the reserve
group. While only a small percentage of the queries are affected, there is nonetheless some overhead
involved. Fortunately, PAQS suffers only a slight performance deterioration as a result. For example, at
arrival rates of 0.06 queries/second, where both classes are missing as many as 29% of their queries under
PMM and PM3, PAQS misses just about 30% of the queries. Consequently, while activating the priority
adaptation mechanism unnecessarily can lead to some small overhead, PAQS’s benefit of ensuring that the

target miss ratio distribution is met appears to more than justify its use.

6.2.4. Workload Changes

The preceding experiments lead us to the conclusion that PAQS is very effective for relatively stable
real-time workloads. The objective of this next experiment is to find out how well PAQS reacts to workload
changes. This is done by subjecting the various query scheduling algorithms to a workload whose composi-
tion changes every 2 to 5 simulated hours. At any given time, the workload consists of two of the following
query classes — Small, Medium, and Sort. The Small and Medium classes are the same as in the first two
experiments. The Sort class is made up of external sorts. Each query in the Sort class sorts a single relation
R, where ||R]| ranges from 600 to 1800 pages. Table 6.4 summarizes the database and workload parameters
(except arrival rates). The class arrival rates vary from one workload mix to another. To highlight the perfor-
mance trade-offs between the various algorithms, they are chosen so that the average miss ratios produced by
the best algorithm(s) in each case are in the neighborhood of 5 to 10%. The chosen arrival rates are listed in
Table 6.5, while the resource parameters are the same as in the baseline experiment. To ensure that all of the
workload mixes are tried in a relatively short simulated time period of 45 hours, the workload repeatedly
cycles through the three possible mixtures, i.e., it starts with mixture #1, goes on to mixture #2, which is fol-
lowed by mixture #3, then returns to mixture #1, and so on. Our target is to balance the miss ratios of the two

classes within each workload mix.

Database Value Workload Value
NumGroups 4 QueryTypeyedium Hash join
RelPerDisk 3 RelGroupypedium {1,2}
SizeRange {600, 1800] pages SRIntervalp,givm [2.5,7.5]
RelPerDisk , 3 QueryIypeg,a Hash join
SizeRange , {3000, 9000] pages RelGroupg,y {3,4})
RelPerDisk 4 3 SRintervalg,.; [2.5,7.5]
SizeRange 3 [50, 150] pages QueryTypes,. External Sort
RelPerDisk 4 3 RelGroupg,,, {1}
SizeRange 4 [250, 750] pages SRIntervalg,,, [2.5,17.5]

Table 6.4: Database and Workload Parameter Settings (Workload Changes)

Workload Mix Small Medium Sort
1 1.0 0.065 -
2 1.0 - 0.08
3 - 0.045 0.06

Table 6.5: Class Arrival Rates in queries/second (Workload Changes)

126

Table 6.6 summarizes the performance of the three classes in the form of average class miss ratios. We

shall examine these results according to workload mixes. Although workload- mixture #1 has exactly the

same composition as the workload used in the baseline experiment, all three algorithms produce higher miss

ratios here than they did previously. This is due to the introduction of workload changes, which cause each of

the algorithms to reset themselves. Consequently, the algorithms need to adapt to the workload repeatedly,

and inefficient resource usage during the adjustment periods pushes up the miss ratios. Other than the higher

miss ratios, the qualitative trade-offs between the three algorithms remain the same. In particular, PAQS is

still the only algorithm that achieves the target miss ratio distribution. Turning our attention to workload mix-

ture #2, we first note that PMM again unfairly discriminates against the Sort queries that have larger memory

demands. In fact, the Sort queries in this workload mix perform significantly worse than the Medium queries

in workload mixture #1. This is because while the memory demands of the Sort queries and Medium queries

Workload PMM Avg. Miss Ratio PM3 Avg. Miss Ratio PAQS Avg. Miss Ratio
Mix Small | Medium Sort Small | Mediam Sort Small | Medium Sort
1 1.6% 44.3% - 4.7% 16.5% - 9.1% 9.6% -
2 1.3% - 79.0% || 3.3% - 9.6% || 7.4% - 7.3%
3 - 11.4% 10.1% - 11.4% 10.2% - 10.9% 10.8%

Table 6.6: Average Class Miss Ratios (Workload Changes)

127

are about the same, the load that the Sort queries place on the disks and the CPU is considerably lighter; on
the average, each Sort query only has to read in a 120-page relation, whereas the average Medium query has
to join a 120-page relation with a 600-page relation. Consequently, memory is a much more critical resource
for workload mixture #2, thus amplifying the biased behavior of the Max allocation strategy that PMM
chooses. In contrast, PM3 chooses MinMax and is considerably less biased, while PAQS again manages to
balance the class miss ratios. Finally, PMM and PM3 generate similar miss ratios for workload mixture #3, as
both adopt the MinMax mode and high MPL settings to service the two memory-intensive classes. Their
slightly skewed miss ratios are a result of ED’s favoring the Sort queries, which are somewhat shorter than
the Medium hash join queries. This biased behavior is rectified by the priority adaptation mechanism of
PAQS. This experiment shows that PAQS not only performs well under stable workloads, but is also capable

of adapting to workload changes.

6.2.5. Three-Class Workloads

Up to this point, we have examined the performance of PAQS using workloads that consisted of only
two classes in order to simplify our discussions. However, PAQS is intended to be a general multiclass query
scheduling algorithm, and is not limited to handling only simple workloads. To demonstrate that PAQS is
capable of managing more complex workloads well, we conclude this chapter by repeating the baseline
experiment using a workload that is made up of three different classes. We use the same three classes that we
used in the previous experiment; instead of choosing only two out of three classes at a time, however, we
activate all three classes concurrently. The arrival rate of the Sort and Medium classes are both set to 0.045

queries/second, while the arrival rate of the Small class is varied.

The class miss ratios of the three query scheduling algorithms for this workload are shown in Figures
6.16 t0 6.18. The performance trends in these figures reveal no surprises: PMM still affords the Small class
favored treatment at the expense of the two memory-intensive classes. Among these two classes, the more
resource-demanding Medium class suffers a higher miss ratio because of the inherent bias of the Earliest
Deadline scheduling policy. As for PM3, its miss ratios are quite balanced initially. Unfortunately, as Aguan

increases, the ED policy again causes PM3 to produce skewed class performance, though the performance

128

20 —+— Small 80 —-— Small
-a— Medium —t— Medium
-—i— Sort —a-— Sort

60 - 60 -

Class Miss Ratio (%)
£
S
i

Class Miss Ratio (%)
S
T

3]
(=]
1
N
o
i

et

Y —

00 02 04 06 08 10 00 02 04 06 08 10
Small Arrival Rate (Queries / Sec) Small Arrival Rate (Queries / Sec)
Figure 6.16: PMM (3 Classes) Figure 6.17: PM3 (3 Classes)
80 - ~—t— Small
—a— Medium
—a#— Sort
60 -

Class Miss Ratio (%)
N
T

[
(=)
]

00 02 04 06 08 10
Small Arrival Rate (Queries / Sec)
Figure 6.18: PAQS (3 Classes)
disparities between the classes are significantly less pronounced for PM3 than for PMM. Again, we see that

PAQS is able to manipulate the priority of the classes appropriately to achieve the target miss ratio distribu-

tion.

129

6.3. Conclusion

In this chapter, we have addressed the problem of scheduling queries in firm real-time database systems
(RTDBS) to meet multiclass performance objectives that are expressed in the form of target miss ratio distri-
butions. As a solution to this problem, we have introduced a Priority Adaptation Query Scheduling (PAQS)
algorithm. PAQS modifies the multiprogramming level (MPL) and memory allocation strategy selection
mechanisms of the Priority Memory Management algorithm to pick a global MPL setting and a system-wide
memory allocation strategy that are conducive to achieving the given target miss ratio distribution; it then
regulates the MPL and memory allocation of individual classes indirectly by controlling the priority of their
queries. This regulation is accomplished by dividing the queries in an RTDBS into two priority groups — a
regular group and a reserve group — and by setting a quota of regular queries for each class. All regular
queries are assigned higher priorities than any reserve query, so PAQS manipulates the relative priority of
individual classes simply by adjusting their regular query quotas. By appropriately setting these quotas,

PAQS is able to influence the miss ratios of the classes to conform to the target distribution.

Using the RTDBS simulation model presented in Chapter 2, we studied the performance of PAQS
under a variety of workloads. Our experiments demonstrated that the priority adaptation mechanism of PAQS
is very effective in helping it to attain the desired miss ratio distribution. Moreover, the modified MPL and
memory allocation strategy selection mechanisms of PAQS enable it to utilize the system resources efficiently
to reduce the overall number of deadline misses. Finally, PAQS was shown to be able to adapt to the offered
workload quickly enough so that it works well even when there are workload changes. Overall, our results

indicate that PAQS should be very useful for scheduling complex query workloads in an RTDBS.

CHAPTER 7

CONCLUSIONS

This thesis has focused on the problem of processing queries in firm real-time database systems
(RTDBS), where jobs lose all value once their deadlines expire. The primary performance objective in an
RTDBS is to minimize the number of missed deadlines. Due to the demanding nature of this objective, tradi-
tional first-come-first-serve or round-robin resource scheduling policies are inadequate for such systems.
Instead, the resource schedulers of an RTDBS have to be priority-driven to ensure that queries receive their
required resources in time to meet their deadlines. The adoption of priority scheduling in a database manage-
ment system requires several changes in the ways that queries are processed. First, to facilitate query process-
ing in an RTDBS, algorithms must be developed for query operators that allow queries to gracefully adjust to
priority-induced reductions and increases in their memory allocations. Given such memory-adaptive algo-
rithms, higher-level query scheduling algorithms must then be designed to efficiently handle the tasks of
admission control, memory allocation, and priority assignment. These are the challenges that have been

addressed in this dissertation.

7.1. Memory-Adaptive Query Processing Results

In the first two research chapters of this thesis, we investigated issues related to query execution in
situations where the amount of memory available to a query may be reduced or increased during its lifetime.
Chapter 3 studied the memory fluctuation problem in the context of hash joins. Our study demonstrated that
simple approaches that react to a reduction in a join’s allocated memory by suspending the join altogether or
by paging the hash table of the join into and out of the remaining memory will not produce acceptable perfor-
mance. This finding led us to propose a family of memory-adaptive hash join algorithms, called Partially

Preemptible Hash Join (PPHI). PPHI splits the pair of input relations into a set of partitions, as is done in

130

131

traditional hash joins as well. At any one time during join execution using PPHJ, some of these partitions
may be expanded, i.e., held in hash tables in memory, while others are contracted, i.e., resident on disk.
When asked by the memory manager to free up buffers, PPHJ can do so by reducing the number of expanded
partitions. The different PPHJ variants were derived by combining the following three techniques: (1) avoid-
ing contracting the partitions of a join until it runs out of memory; (2) expanding contracted partitions while
the outer relation is being divided; and (3) spooling output pages according to the page access pattern of the
join. Performance studies revealed that although techniques (1) and (3) yield some performance gains, the
biggest improvements come from the second technique. Overall, our results showed PPHJ with expansion to

be a very effective technique for dealing with memory fluctuations.

Having understood how to efficiently adapt hash joins to fluctuations in their memory allocations, we
then turned to the same problem for external sorts. In Chapter 4, we introduced an external sorting algorithm
that begins by using a variation of replacement selection to split the operand relation into sorted runs; this
replacement selection variant employs block writes to reduce the cost of disk seeks. Next, the sorted runs are
repeatedly merged into longer runs until only a single run remains. These are the usual phases of an external
sorting algorithm. What makes the algorithm adaptive is that, during the merging process, an executing
merge step can be split into sub-steps that fit within the remaining memory if memory reductions occur. Con-
versely, existing merge steps can be combined into larger steps (i.e., steps that merge more runs at once) to
take advantage of any excess buffers that become available. Our performance evaluation indicated that this
algorithm allows external sorts to execute efficiently in the face of memory fluctuations. The chapter also
demonstrated how these techniques can be extended to sort-merge joins in order to make them memory-

adaptive as well.

7.2. Real-Time Query Scheduling Results

With the low-level query primitives in place, we then turned our attention to developing high-level
query scheduling policies that use the system’s resources productively to meet query deadlines. The issues
that arise here include admission control, memory allocation, and priority assignment. The last two research

chapters of this thesis were devoted to meeting these higher-level query scheduling challenges.

132

In Chapter 5, we proposed a Priority Memory Management (PMM) algorithm that aims to minimize the
number of missed deadlines by adapting both the multiprogramming level (MPL) and the memory allocation
strategy of an RTDBS to its offered workload. The setting of the MPL is determined primarily by a statistical
projection method, called miss ratio projection, which is supplemented by a resource utilization heuristic
when the statistical method fails. PMM incorporates two memory allocation strategies — a Max strategy
under which each query receives either its maximum required memory or no memory at all, and a MinMax
strategy that allows some queries to run with their minimum required memory while others get their max-
imum. The choice of memory allocation strategy is based on statistics about the workload characteristics that
PMM gathers. Performance studies using a wide range of workloads demonstrated that PMM is able to
dynamically reach the right compromise between Max and MinMax, consistently delivering near-optimal

miss ratios. Moreover, PMM achieves this quickly enough so that it works well even for fluctuating work-

loads.

Finally, Chapter 6 extended PMM to a Priority Adaptation Query Scheduling (PAQS) algorithm that is
designed to meet multiclass performance objectives that are expressed in the form of target miss ratio distri-
butions. PAQS divides the queries in an RTDBS into two priority groups — a regular group and a reserve
group — and sets a quota of regular queries for each class. All regular queries are assigned higher priorities
than any reserve query, allowing PAQS to manipulate the relative priority of individual classes simply by
adjusting their regular query quotas. The PAQS algorithm was demonstrated to be capable of appropriately

setting these quotas to meet the objectives of complex query workloads.

7.3. Future Work

A number of open issues remain in the area of real-time query scheduling. To begin with, there are at
least two distinct avenues for further research on real-time query processing techniques: The first avenue is to
explore additional strategies for adapting queries to memory fluctuations. One possible strategy would be to
dynamically adjust the buffer size (i.e., the I/O block size) according to memory availability. Since the use of
larger buffer sizes can lead to significant reductions in queries’ response times [Haas93], a combination of

buffer size adjustment and our proposed memory-adaptive techniques would likely yield even more effective

133

solutions to the memory fluctuation problem. Another avenue for future work on query processing techniques
is to introduce intra-query parallelism. While intra-query parallelism is not likely to be beneficial for systems
that operate under heavy loads [Care88], it can be extremely useful in harnessing an RTDBS’s resources
under light load conditions. In fact, parallel query execution may be the only feasible alternative in situations
where an RTDBS is presented with queries that have very tight deadlines. For this reason, it is important to
investigate how an RTDBS should decide on the number of parallel processes to create for a given query,
based on its operand relation sizes, its deadline, the system load, and so on. A related problem is that of phy-
sical data placement in RTDBSs. In a multi-disk RTDBS, relations can be declustered [Ries78, Livn87] to
exploit the /O bandwidth of the disks and to achieve load balancing. Issues that need to be addressed in
declustering a relation include the choice of the number of disks on which to decluster the relation, i.e., the
degree of declustering, and the choice of which particular disks to participate in the declustering. These
choices need to take into account the timing requirements of individual classes in the workload. In addition,

the decisions should consider the effectiveness of declustering in improving overall system performance.

There are several interesting possibilities at the query scheduling level as well. We have considered
only workloads involving mixes of queries in this thesis; RTDBS workloads are likely to contain transactions
as well as queries. Thus, it would be useful to combine long-term data buffering techniques, such as those
proposed in [Brow93], with PAQS in order to provide a truly complete memory manager for RTDBSs. The
concurrent execution of long-running queries and short transactions also raises concurrency control issues that
need to be resolved. Finally, PAQS typically takes 5 to 6 iterations to decide on the best MPL setting and
memory allocation strategy (see Figures 5.5 and 5.14 for examples); it may be possible to shorten the adjust-
ment time of the PAQS algorithm further by incorporating more sophisticated MPL control and memory allo-

cation heuristics.

[Abbo88a]
[Abbo88b]
[Abbo89]
[Abbo90]

[Baru91]

[Bitt88]
[Blas77]
[Brat84]
[Brow93]
[Care88]
[Care89]

[Chen91]

[Corn89]
[Dert74}
[Devo91]

[DeWig4]

[DeWio1]

[Drap81]

134

REFERENCES

R. Abbott, H. Garcia-Molina, "Scheduling Real-Time Transactions", ACM SIGMOD Record,
Vol. 17, No. 1, March 1988.

R. Abbott, H. Garcia-Molina, "Scheduling Real-Time Transactions: A Performance Evalua-
tion", Proc. of the 14th Int. Conf. on Very Large Data Bases, August 1988.

R. Abbott, H. Garcia-Molina, "Scheduling Real-Time Transactions with Disk Resident Data",
Proc. of the 15th Int. Conf. on Very Large Data Bases, August 1989.

R. Abbott, H. Garcia-Molina, "Scheduling /O Requests with Deadlines: A Performance
Evaluation”, Proc. of the 11th IEEE Real-Time Systems Symposium (RTSS), December 1990.

S. Baruah, L. Rosier, "Limitations Concerning On-Line Scheduling Algorithms for Overloaded
Real-Time Systems", Proc. of the 8th IEEE Workshop on Real-Time Operating Systems and
Software, May 1991.

D. Bitton, J. Gray, "Disk Shadowing", Proc. of the 14th Int. Conf. on Very Large Data Bases,
August 1989.

M.W. Blasgen, K.P. Eswaran, "Storage and Access in Relational Databases", IBM Systems
Journal, Vol. 16, No. 4, 1977.

K. Bratbergsengen, "Hashing Methods and Relational Algebra Operations”, Proc. of the 10th
Int. Conf. on Very Large Data Bases, August 1984.

K.P. Brown, M.J. Carey, M. Livny, "Managing Memory to Meet Multiclass Workload
Response Time Goals", Proc. of the 19th Int. Conf. on Very Large Data Bases, August 1993.

M.J. Carey, M. Livny, "Parallelism and Concurrency Control Performance in Distributed Data-
base Machines", Proc. of the 14th Int. Conf. on Very Large Data Bases, August 1988.

M.J. Carey, R. Jauhari, M. Livny, "Priority in DBMS Resource Scheduling”, Proc. of the 15th
Int. Conf. on Very Large Data Bases, August 1989.

S. Chen, J.A. Stankovic, J.F. Kurose, D. Towsley, "Performance Evaluation of Two New Disk
Scheduling Algorithms for Real-Time Systems", The Journal of Real-Time Systems, Vol. 3, No.
3, September 1991.

D. Cornell, P. Yu, "Integration of Buffer Management and Query Optimization in a Relational
Database Environment", Proc. of the 15th Int. Conf. on Very Large Data Bases, August 1989.
M. Dertouzos, "Control Robotics: the procedural control of physical processes”, Proc. of IFIP
Congress, 1974.

J.L. Devore, Probability and Statistics for Engineering and the Sciences, Brooks/Cole Pub. Co.,
1991, pp. 283-301, 326-335.

D.J. DeWitt, R.H. Katz, F. Olken, L.D. Shapiro, M. Stonebraker, D. Wood, "Implementation
Techniques for Main Memory Database Systems", Proc. of the ACM SIGMOD Conf., June
1984.

D.J. DeWitt, J.F. Naughton, D.A. Schneider, "Parallel Sorting on a Shared-Nothing Architec-
ture using Probabilistic Splitting”, Proc. of the Int. Conf. on Parallel and Distributed Informa-
tion Systems, December 1991.

N.R. Draper, H. Smith, Applied Regression Analysis, 2nd Edition, John Wiley & Sons, Inc.,
1981.

[Eswa76]
[Grae90]
[Grae91]
[Gray79]
[Haas93)
[Hari90a]
[Hari90b]
[Hari91]
[Hario2]
[Hari93]
[Hong93]

[Huan89]

[Huan91]

[TJauh90}]
[Jens85]

[Kim91]

[Kits83]

[Kits89]

[Klei76]
[Knut73]

[Kort90]

135

K. Eswaran, et al, "The Notions of Consistency and Predicate Locks in a Database System",
Communications of ACM, November 1976.

G. Graefe, "Parallel External Sorting in Volcano", Technical Report CU-CS-459-90, University
of Colorado, Boulder, March 1990.

G. Graefe, A. Linville, L.D. Shapiro, "Sort versus Hash Revisited", Technical Report CU-CS-
534-91, University of Colorado, Boulder, July 1991.

J. Gray, "Notes on Database Operating Systems", in Operating Systems: An Advanced Course,
R. Bayer, R.Graham, G. Seegmuller, eds., Springer-Verlag, 1979.

L. Haas, M.J. Carey, M. Livny, "SEEKing the Truth About Ad Hoc Join Costs", Technical
Report #1148, Computer Sciences Department, University of Wisconsin - Madison, May 1993,

J.R. Haritsa, M.J. Carey, M. Livny, "On Being Optimistic about Real-Time Constraints”, Proc.
of the ACM PODS Symposium, April 1990.

J.R. Haritsa, M.J. Carey, M. Livny, "Dynamic Real-Time Optimistic Concurrency Control”,
Proc. of the 11th IEEE Real-Time Systems Symposium (RTSS), December 1990.

J.R. Haritsa, M. Livny, MLJ. Carey, "Earliest Deadline Scheduling for Real-Time Database Sys-
tems", Proc. of the 12th IEEE Real-Time Systems Symposium (RTSS), December 1991.

J.R. Haritsa, M.J. Carey, M. Livny, "Data Access Scheduling in Firm Real-Time Database Sys-
tems", Real-Time Systems Journal, Vol. 4, No. 3, September 1992.

T.R. Haritsa, M.J. Carey, M. Livny, "Value-Based Scheduling in Real-Time DBS", VLDB Jour-
nal, Vol. 2, No. 2, April 1993.

D. Hong, T. Johnson, S. Chakravarthy, "Real-Time Transaction Scheduling: A Cost Conscious
Approach”, Proc. of the ACM SIGMOD Conf., May 1993.

J. Huang, J.A. Stankovic, D. Towsley, K. Ramamritham, "Experimental Evaluation of Real-
Time Transaction Processing”, Proc. of the 10th IEEE Real-Time Systems Symposium (RTSS),
December 1989.

J. Huang, J.A. Stankovic, D. Towsley, "Experimental Evaluation of Real-Time Optimistic Con-
currency Control Schemes", Proc. of the 17th Int. Conf. on Very Large Data Bases, September
1991.

R. Jauhari, M.J. Carey, M. Livny, "Priority Hints: An Algorithm for Priority-Based Buffer
Management", Proc. of the 16th Int. Conf. on Very Large Data Bases, August 1990.

E. Jensen, C. Locke, H. Tokuda, "A Time-Driven Scheduling Model for Real-Time Operating
Systems", Proc. of the 6th IEEE Real-Time Systems Symposium (RTSS), December 1985.

W. Kim, J. Srivastava, "Enhancing Real-Time DBMS Performance with Multiversion Data and
Priority Based Disk Scheduling”, Proc. of the 12th IEEE Real-Time Systems Symposium
(RTSS), December 1991.

M. Kitsuregawa, H. Tanaka, T. Moto-oka, "Application of Hash to Data Base Machine and Its
Architecture”, New Generation Computing, Vol. 1, No. 1, 1983.

M. Kitsuregawa, M. Nakayama, M. Takagi, "The Effect of Bucket Size Tuning in the Dynamic
Hybrid GRACE Hash Join Method", Proc. of the 15th Int. Conf. on Very Large Data Bases,
August 1989.

L. Kleinrock, Queueing Systems, Volume II: Computer Applications, John Wiley & Sons, Inc.,
1976, pp. 166-170.

D. Knuth, The Art of Computer Programming, Vol. IIl: Sorting and Searching, Addison-
Wesley, Reading, MA., 1973.

H.F. Korth, N. Soparkar, A. Silberschatz, "Triggered Real-Time Databases with Consistency
Constraints", Proc. of the 16th Int. Conf. on Very Large Data Bases, August 1990.

[Liu73]
[Livn87]
[Livn90]
[Lock86]
[Mena82]
[Mok78]
[Naka88]
[Pang92]
[Pang93al
[Pang93b]
[Pang94]
[Panw88]
[Pete86]
[Ries78]
[Robi82]

[RTS92]
[Salz90]

[Sarg76]
[Sha90]
[Shap86]
[SIGM8S]
[Stan88]

[Ston81]

136

C. Liu, J. Layland, "Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment", Journal of the ACM, January 1973.

M. Livny, S. Khoshafian, H. Boral, "Multi-Disk Management Algorithms", Proc. of the ACM
SIGMETRICS Conf., May 1987.

M. Livny, "DeNet User’s Guide, Version 1.5", Computer Sciences Department, University of
Wisconsin - Madison, 1990.

C. Locke, "Best Effort Decision Making for Real-Time Scheduling”, Ph.D. Thesis, Department
of Computer Science, Carnegie-Mellon University, May 1986.

D. Menasce, T. Nakanishi, "Optimistic versus Pessimistic Concurrency Control Mechanisms in
Database Management Systems", Information Systems, Vol. 7, No. 1, 1982.

A. Mok, M. Dertouzos, "Multi-processor Scheduling in a Hard Real-T. ime Environment", Proc.
of the 7th Texas Conf. on Computing Systems, October 1978.

M. Nakayama, M. Kitsuregawa, M. Takagi, "Hash-Partitioned Join Method Using Dynamic
Destaging Strategy", Proc. of the 14th Int. Conf. on Very Large Data Bases, August 1988.

H. Pang, M. Livny, M.J. Carey, "Transaction Scheduling in Multiclass Real-Time Database
Systems", Proc. of the 13th IEEE Real-Time Systems Symposium (RTSS), December 1992.

H. Pang, M.J. Carey, M. Livny, "Partially Preemptible Hash Joins", Proc. of the ACM SIGMOD
Conf., May 1993.

H. Pang, M.J. Carey, M. Livny, "Memory-Adaptive External Sorting", Proc. of the 19th Int.
Conf, on Very Large Data Bases, August 1993.

H. Pang, MLJ. Carey, M. Livny, "Managing Memory for Real-Time Queries", Proc. of the ACM
SIGMOD Conf., to appear, 1994.

S. Panwar, D. Towsley, "On the Optimality of the STE Rule for Multiple Server Queues that
Serve Customers with Deadlines”", COINS Technical Report 88-81, University of Mas-

sachusetts, Amherst, July 1988.
J.L. Peterson, A. Silberschatz, Operation System Concepts, Addison Wesley, 1986.

D. Ries, R. Epstein, "Evaluation of Distribution Criteria for Distributed Database Systems",
UCB/ERL Technical Report M78/22, UC Berkeley, May 1978.

J. Robinson, "Design of Concurrency Controls for Transaction Processing Systems", Ph.D.
Thesis, Carnegie Mellon University, 1982.

Real-Time Systems, 4(3), Special Issue on Real-Time Databases, September 1992.

B. Salzberg, A. Tsukerman, J. Gray, M. Stewart, S. Uren, B. Vaughan, "FastSort: A Distributed
Single-Input Single-Output External Sort", Proc. of the ACM SIGMOD Conf., May 1990.

R. Sargent, "Statistical Analysis of Simulation Output Data", Proc. of the 4th Annual Sympo-
sium on the Simulation of Computer Systems, August 1976.

L. Sha, R. Rajkumar, J.P. Lehoczky, "Priority Inheritance Protocols: An Approach to Real-
Time Synchronization", IEEE Transactions on Computers, Vol. 39, No. 9, September 1990.

L.D. Shapiro, "Join Processing in Database Systems with Large Main Memories", ACM Tran-
sactions on Database Systems, Vol. 11, No. 3, September 1986.

ACM SIGMOD Record, Vol. 17, No. 1, Special Issue on Real-Time Data Base Systems, S. Son,
editor, March 1988.

J.A. Stankovic, W. Zhao, "On Real-Time Transactions", ACM SIGMOD Record, Vol. 17, No. 1,
March 1988.

M. Stonebraker, "Operating System Support for Database Management”, Comm. of the ACM,
Vol. 24, No. 7, 1981.

137

[Yu93] P.S. Yu, D.W. Cornell, "Buffer Management Based on Return on Consumption In a Multi-
Query Environment", VLDB Journal, Vol. 2, No. 1, January 1993.

[Zel190] H. Zeller, J. Gray, "An Adaptive Hash Join Algorithm for Multiuser Environments", Proc. of
the 16th Int. Conf. on Very Large Data Bases, August 1990.

