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Abstract

The performance potential of run-to-completion (RTC) parallel
processor scheduling policies is investigated by examining
whether (1) application execution rate characteristics such as aver-
age parallelism {avg) and processor working set (pws) and/for (2)
limited preemption can be used to improve the performance of
these policies. We address the first question by comparing policies
(previous as well as new) that differ only in whether or not they
use execution rate characteristics and by examining a wider range
of the workload parameter space than previous studies. We address
the second question by comparing a simple two-level queueing
policy with RTC scheduling in the second level queue against
RTC policies that don’t allow any preemption and against dynamic
equiallocation (EQ).

Using simulation to estimate mean response times we find that for
promising RTC policies such as adaptive static partitioning (ASP)
and shortest demand first (SDF), a maximum allocation constraint
that is for all practical purposes independent of avg and pws pro-
vides greater and more consistent improvement in policy perfor-
mance than using avg or pws. Also, under the assumption that job
demand information is unavailable to the scheduler we show that
the ASP-max policy outperforms all previous high performance
RTC policies for workloads with coefficient of variation in pro-
cessing requirement greater than one. Furthermore, a two-level
queue that allows at most one preemption per job outperforms
ASP-max but is not competitive with EQ.

1. Introduction

In this paper we consider issues related to the performance poten-
tial of run-to-completion (RTC) processor scheduling policies for
multiprogrammed parallel systems. By RTC policies we mean the
class of non-preemptive scheduling policies in which each job runs
to completion without interruption on the set of processors initially

allocated to it."! Al other policies are dynamic.

RTC policies are attractive because they are simpler to implement
and have lower overhead (i.e. process preemption and data move-
ment) than dynamic policies. On the other hand, dynamic policies
may adjust the spatial and/or temporal allocations of processing
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power to executing jobs when a given job completes or a new job
arrives, whereas RTC policies cannot. Thus, the question of how
many processors to allocate to a job is a particularly crucial issue
in RTC scheduling.

The optimal parallel processor scheduling policy is unknown
except for a few very specific workload and system assumptions
[AMV93,5e93]. Thus, many recent studies have compared
specific policies to understand, for given workloads, which parallel
scheduling policies perform better than others as well as which
characteristics of scheduling policies lead to improved perfor-
mance. For example, several studies have shown that among
dynamic policies that do not use job demand information, policies
that allocate processing power approximately equally among exe-
cuting jobs (i.e,. EQ policies) have high performance when the
coefficient of variation, Cp, in cumulative job processing require-
ment is greater than one [LV90, ST91, NS593a, NSS93b, MVZ93,
MV93b]. Also, several studies have shown that particular RTC
policies have poorer performance than particular dynamic policies
[ZM90, MEB91, ST91, NSS93b]. As a third example, there is
consensus in the literature that RTC policies have higher perfor-
mance if they allocate fewer processors to a job as (instantaneous
or average) system load increases [Se89, GST91, NSS§93a,
NSS93b, ST93]. (The data in [ZM90, MEB91, RSDS93,
SRDS93] aiso support this conclusion.)

Questions that remain unresolved in the literature include:

(1) Should RTC policies use application execution rate characteris-
tics, such as average parallelism (avg) or processor working
set (pws) (defined in section 2) in determining processor allo-
cations? Several studies [EZL89, Se89, MEB91, GST91] have
concluded that using execution rate characteristics is
beneficial, other studies have assumed that using these charac-
teristics leads to better performance (e.g., [ZM907), and still
other studies [ST93, SRDS93] have reached the opposite con-
clusion.

(2) The benefit of application characteristics for dynamic policies
is also an open question that to the authors’ knowledge has not
been studied before.

(3) Another possible approach to improving the performance of
RTC policies is to use limited preemption of executing jobs.
How much benefit can be obtained for RTC scheduling by the
simple extension that allows at most a single preemption?

'Note that we are focusing on policies for allocating processors to
the active jobs in the system, rather than on how the processes or threads of
a job are scheduled on the processors allocated to the job.
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This paper addresses the above open questions. The results should
be useful for determining the best RTC policies, interpreting and
generalizing from comparisons of particular RTC and dynamic
policies, and understanding more precisely the performance dif-
ferential between RTC and dynamic policies. The approach pur-
sued is as follows.

o The issue of whether avg and pws are beneficial to RTC schedul-
ing is examined by comparing policies that differ only in this
dimension, over a wider range of the workload parameter space
than previous studies. This leads to new observations as well as
explanations that unify previous results. In particular, we dis-
cover that a different characteristic that hasn’t received as much
attention in the previous literature is important for high perfor-
mance RTC scheduling.

e We then investigate whether the performance of the smallest
demand first (SDF) policy and a dynamic EQ policy, which can
each be viewed as providing a target for RTC policy perfor-
mance, can be improved by using the avg measure.

e To examine the RTC policy performance improvement achiev-
able from a single preemption, we compare the performance of
a two-level queueing policy that uses RTC scheduling in the
second level queue against the performance of strict RTC poli-
cies and the EQ policies.

The remainder of this paper is organized as follows. Section 2
describes the system and workload model. Section 3 defines the
processor scheduling policies evaluated in this paper. Section 4
examines whether measures such as avg and pws improve policy
performance under various workload parameter values. Section 5
studies the impact of limited preemption on the performance of the
best RTC policy from section 4. Finally, section 6 summarizes the
conclusions of this paper.

2. System and Workload Model

To study the behavior of scheduling policies with respect to work-
load parameters over a wide range of workloads, we use the sys-
tem and workload model of [MV93a], reviewed below.

2.1. System Model

We consider an open system with P identical processors and a cen-
tral job queue. Jobs arrive to the system according to a Poisson
process with rate A as shown in Figure 2.1. The centralized queue
is only conceptual; practical implementations of the policies con-
sidered may in general allow for distributed queue access.

Processor 1

Job Queue

Processor P

Figure 2.1: Open System Model

Scheduling and preemption overheads are highly system specific.
We thus assume zero scheduling and preemption overhead and
then allow evolving intuition and experience with actual system
overhead to be used in interpreting the performance resuits. For
example, the performance of an EQ policy with zero scheduling
and preemption overhead can be a target for RTC performance
with the caveat that the preemption overhead of the EQ policy
must be qualitatively factored into the comparisons. We also note
that efficient implementations of dynamic policies can reduce

preemption frequency such that preemption overhead is a small
fraction (i.e., <5%) of response time [NSS93a, NSS93b].

2.2. Workload Model

The following workload model attempts to capture in a few param-
eters the essential features of parallel applications with respect to
relative scheduling discipline performance. These features include
distributions of available parallelism and total processing require-
ment (demand), task synchronization and communication over-
heads, and correlation between parallelism and demand.

For most of the simulations in this paper all jobs are assumed to be
statistically identical. Multiclass workloads that are assumed in a
few experiments will be described in section 4.5. Each job is
characterized by the following random variables:

(1) D, the job’s total processing requirement (i.e., execution time
on one processor),

(2) Ne(1,2,...,P}, the job’s available parallelism,

(3) E:[0,P]-[0,P], the job’s execution rate function (ERF)
which satisfies the constraint that Efx] = E[N], x=2N.

The system operates as follows. Each arriving job joins the central
job queue. At each time, t, processors are allocated to jobs present
in the queue according to some processor allocation policy. If a(f)
processors (possibly fractional) are allocated to a job at time ¢, then
its demand is satisfied at rate E (a(¢)). The job leaves the system
upon completion of its total demand, D. The available parallelism,
N, of a job is the number of processors the system scheduler
believes the job can productively use. For example, this may be
the number of processors the user requests when submitting the
job, or it may be the number of processes that the job forks at the
beginning of it’s execution. The model assumes that the job can-
not use more than N processors productively and that N is fixed
throughout the lifetime of the job.

The following specific workloads will be used in the experiments:

o Three distributions of N are considered:
(1) the constant distribution, i.e., N=k for a fixed k € {1,...,P},

(2) a 2-point distribution, where N=1 with probability p, and N=P
with probability 1-p, and

(3) the spread N distribution, a bounded-geometric distribution
[LV90] given by N=min(X,P), where X = Geometric(p),
Osp<l.

Cy denotes the coefficient of variation of N, For a given N, the
constant distribution has lowest Cy (i.e., zero), the 2-point distri-
bution has highest Cy among all distributions of N, and the spread
distribution has Cy in between.

e Eis derived from a deterministic functiony:

vk), k=1,2,..,N,
E® =1y, k=N+1,...P.

We use the following functional form derived from [Do88] for v

yio=LRE

, k=1,2,....P.
k+B

Figure 2.2 plots this nondecreasing ERF for several values of .

e As in [MEBS88], two extremes of correlation between job
demand and parallelism are considered: no correlation (r=0),
in which case D and N are independent, and full correlation
(r=1), in which mean demand is linearly correlated with N.
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More precisely, under full correlation if a job has available
parallelism k then its demand is drawn from a distribution with
mean c¢-k and coefficient of variation C,, where ¢ is a suitable
constant. It can be verified that the unconditional mean demand
D =cN and thus ¢ = D/N.

e As in [MEB88] we assume a two-stage hyperexponential distri-
bution (H,) for job demand with mean as explained above (for
r=0 and r=1) and coefficient of variation C,. When r=0, the
overall coefficient of variation in demand Cp equals C,. When
r=1 it can be verified that

Ch = (1+C3H(U+CH-1. (2.1)

The hyperexponential distribution allows us to test the sensitivity
of policy performance to Cp. The performance of many policies is
sensitive to Cp (cf. [MEB88,LV90, MV93a)). Furthermore, com-

puter system workloads often have Cp > 1. ?

2.3. Comments on the Workload Model

The ERF is assumed to be nondecreasing since the user is unlikely
to request more processors (either explicitly or by forking more
processes) if this will increase program execution time. The deter-
ministic ERF vy allows us to examine policy performance with
respect to ERF sublinearity by varying a single parameter B. In
section 4.5 we also consider multi-class workloads in which each
class has a different ERF sublinearity (i.e., a different value for B).

The parallelism parameter N is known to the scheduler. Some
schedulers are also given the average parallelism (avg) or proces-
sor working set (pws), each of which is a function of N and [ as
follows. Since avg is the speedup of the job on an unbounded
number of processors [EZL89), it follows that avg =Y(N) for
N < P. For N=P we let avg =Y(P). The pws measure [GST91],
coincides with the knee of the execution-time efficiency profile
[EZL89,MEB911. For the specific ERF y(k)=(1+B)k/(k-+f) it can
be verified that the pws =min(N,B). Note that for workloads
where N varies, different jobs will have different avg and pws
values even though they have the same ERF v. Furthermore, for
policies that do not use execution rate characteristics processor
allocations are independent of B.

2C,, on one partition of our local CM-5, measured on a weekly basis
for 22 weeks, ranges from approximately 2.5 to about 6, with 40% of the
measures above 4.0. Moreover, measurements of Cray YMP sites have re-
ported C, to be in the range of 30-70 [Cr91].

3. Processor Scheduling Policies

In this section we give the definitions for several previous proces-
sor scheduling policies as well as several new policies that will be
compared in section 4. The previous policies have been shown to
have high performance for various workloads. The new policies
are constructed to enable equitable comparisons between policies
that do and do not use execution rate characteristics.

3.1. Previous Policies

ASP (Adaptive Static Partitioning): When a job arrives it is allo-
cated the lesser of the number of idle processors in the system and
its available parallelism. If no free processors are available, the job
queues behind waiting jobs, if any. When a job completes, the
released processors are allocated one at a time to the waiting jobs
in round robin order (starting from the first waiting job), under the
constraint that no job is allocated more processors than its avail-
able parallelism. This policy was first defined in [ST91].

PWS: A FCFS policy in which each job is allocated the minimum
of pws and the number of idle processors. This is equivalent to the
FF+FIFO policy defined in [GST91] and renamed PWS in [ST93],
with window size equal to one.

AVG: The same as PWS except the measure avg is used in place
of pws. We also consider a smallest-average-parallelism-first
scheduling policy, denoted by SAVG, because of its potential for
high performance under correlated workloads and because it
allows for more jobs to be in service simultaneously.

A+&mM: Jobs are scheduled in FCFS order. A job is allocated
the minimum of o and the number of free processors if there is
any. The parameter o is a function of the system load and the
job’s average (avg), minimum (m), and maximum (M = N) paral-
lelism [Se89]. If a job’s execution profile contains only sequential
(m = 1) and fully parallel phases, o is computed as follows :

N-— p———--—(N -navg) ifp<m
o= - (3.1
1+(1—p)(“—"]<‘>’:;{]—) ifp2n

where 7 is set to be 0.25 in [Se&9].

SDF (Smallest Demand First): Jobs are scheduled in order of
increasing demand (D), without preemption. A job is allocated the
minimum of its parallelism (V) and the number of idle processors.

EQ: Dynamic EQuiallocation policies allocate an equal fraction of
processing power to each job in the system unless a job has
smailer available parallelism than the equipartition value, in which
case each such job is allocated as many processors as its available
parallelism, and the equipartition value is recursively recomputed
for the remaining jobs. The EQ policy simulations spatially parti-
tion the processors (with temporal sharing for the fractional part of
processing power if any). Spatial equi-allocation policies have
been considered in [TG89, MVZ93] and temporal versions in
[LV90, LN91,MV93b].

3.2. New Policies

Adaptive-AVG: Upon an arrival, the job is allocated the lesser of
its avg and the number of idle processors in the system. If no free
processors are available, the job joins the end of the queue. When
a job completes, the released processors are allocated to waiting
jobs approximately in proportion to their avg (pws) such that each
job is allocated an integral number of processors that is at least one
but no more than avg (pws). As before we use the prefix S (e.g.,
Adaptive-SAVG) to indicate smallest avg first scheduling.
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SDF-AVG: Jobs are scheduled as under SDF except that avg pro-
cessors are allocated rather than N.

EQ-AVG: Processor allocation proceeds in two phases. In the first
phase processors are assigned to jobs as per EQ except that avg is
used instead of available parallelism (N). If there are idle proces-
sors left after phase one, the idle processors are allocated to jobs in
an EQ fashion using N —avg instead of N.

4. Use of avg and pws in Processor Scheduling

In this section we examine the use of avg and pws in processor
scheduling. The ASP policy, which has been studied in several
papers [ST91, ST93, NSS93a, NSS93b, RSDS93]* and is among
the most promising RTC policies to date [ST93], decreases proces-
sor allocations as instantaneous load increases but does not use job
demand or execution rate characteristics. The AVG and PWS pol-
icies, which have been widely studied under specific workload
assumptions [Se89, MEB91, GST91, ST93, SRDS93], serve as
starting points for understanding whether execution rate charac-
teristics are beneficial.

In section 4.1 we compare the performance of ASP against AVG
and PWS policies under similar workload assumptions as in
{ST93], as well as under new workloads. We then modify AVG to
decrease processor allocations as queue length increases (i.e.,
Adaptive-AVG), in order to compare policies that do and do not
use execution rate characteristics on a more equitable basis. Sec-
tion 4.2 compares ASP with Adaptive-AVG. Finally, to enable an
unbiased comparison of ASP and Adaptive-AVG we extend ASP
to include a maximum allocation constraint as in [RSDS93]. Sec-
tions 4.3 and 4.4 evaluate whether the maximum allocation con-
straint improves the performance of ASP and provide a simple rule
of thumb for the "max" value. A policy that uses a load-adaptive
formula for "max", ASP-max+, is also considered and is compared
against the A+&mM policy [Se89].

Section 4.5 provides results for additional workloads not con-
sidered in sections 4.1-4.4. Section 4.6 discusses how the results in
sections 4.1-4.5 can be used to explain apparent discrepancies in
the previous literature. Finally, in section 4.7 and 4.8 we investi-
gate the potential benefit of avg or a maximum allocation con-
straint for SDF, an RTC policy that uses job demand information,
and the dynamic EQ policy, which is used throughout the section
as a target for RTC policy performance.

The mean system response times reported in this section were
estimated using discrete event simulation. All simulation esti-
mates have 95% confidence intervals with half-widths typically
less than 5%. The regenerative method was used to compute
confidence intervals whenever possible. Otherwise, the method of
batch means was used.

Most experiments consider systems with P=100, although systems
with P=16 and P =64 are also considered when the impact of P is
relevant. We set D =P so that offered load p=AD/P =A. Since
parallel systems often have high load and since distinctions among
policies are more pronounced at high load, p is typically held fixed
at 0.7 when studying the sensitivity of mean response time to other
workload characteristics. Other loads are also considered when p
is varied between 0 and 0.9. In most experiments we set C,=5.
Initially results are provided for exponential demands (C,=1),
whereas section 4.5 provides results for C,=30. Two ERFs in

3Under the workload assumptions of [RSDS93] their EPM policy
with maximum allocation equal to number of system processors reduces to
the ASP policy

figure 2.2 are used in most of the experiments: the highly sublinear
ERF B=70, or the more nearly linear execution rate =300.
Workloads that allow different classes of jobs to have different
ERFs are defined in section 4.5.

4.1. ASP versus PWS and AVG

Setia and Tripathi [ST93] show that ASP outperforms PWS at
moderate to high loads for a two-class workload with exponential
demands per class, constant available parallelism N=P=7 in each
class, with one class having close to linear ERF and the other class
having a highly sublinear ERF. The overall coefficient of variation
in demand, Cp, in their experiments was close to 1. We obtain
similar results using our model for a similar workload except that
N =P =100 and all jobs have highly sublinear ERFs (B=70). We
also compare the policies at a higher Cp. In addition to ASP and
PWS, we also consider the AVG policy.

Figures 4.1a and b plot the mean response times of PWS, AVG,
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ASP, and EQ versus offered load for a 100-processor system with
N=P, B=70, and Cp=1 and 5 respectively. The data in figure 4.1a
is in agreement with the results in [ST93], namely that for a work-
load with Cp, close to 1, N=P, and a sublinear ERF, ASP outper-
forms PWS at moderate to high load, and the PWS system
saturates before ASP. We also note that AVG outperforms PWS
for the given workload, but has similar saturation behavior.
Finally, we observe that the mean response times of all three RTC
policies are substantially higher than Rz when p > 0.5. In figure
4.1b we see similar trends for Cp=5, but the response time differ-
ences are more pronounced since the performance of the RTC pol-
icies has degraded with Cp, but that of EQ has not.

We now examine the sensitivity of the relative performance of
PWS, AVG, and ASP to the distribution of N, ERF sublinearity
(B), and workload correlation. We consider constant, 2-point, and
spread N distributions with N varying from 1 to P. We consider B
= 70,300 and both uncorrelated (r=0) as well as fully correlated

(r=1) workloads, and we set p=0.7 and C,=5. Figures 4.2a and b
plot the ratio of mean response times of AVG to ASP versus N for
the uncorrelated workload. Figures 4.2c and d give the same for
the correlated workload. For the correlated workioad the SAVG
policy performance is shown as well. The curves for PWS are not
given since they depict trends similar to the AVG curves, and
since AVG outperforms PWS for all the given parameter settings.

Figures 4.2a and b show that the relative performance of AVG and
ASP is sensitive to the distribution of N. In fact, for the constant N
distribution (considered in [ST93]), ASP outperforms AVG and
PWS for all N. However for the 2-point N workload ASP and
AVG are roughly equivalent for N <0.5 P, and for the spread N
distribution AVG has higher performance than ASP for a large
range of N. Figures 4.2¢ and d show that the relative performance
of AVG and ASP under =1 is similar to that under r=0, except
for the 2-point N distribution at low N,
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When r=0 AVG and SAVG have roughly equal mean response
times (not shown). However when r=1, SAVG performs notice-
ably better than AVG. Furthermore, the performance improve-
ment of SAVG compared with AVG increases with Cy, as SAVG
more accurately differentiates small and large demand jobs.

The curves in figure 4.2 indicate that the system saturation point
for AVG and SAVG decreases with increase in N, decrease in f3,
and decrease in the spread of N (i.e., as we move from spread N to
2-point N to constant N).

4.2. ASP versus Adaptive AVG

AVG and ASP differ both in whether or not they use application
execution rate characteristics and in whether or not they decrease
processor allocation as queue length increases. (The latter differ-
ence is the reason that the AVG system saturates much sooner than
ASP, which in turn is a major factor in its poorer performance.)
To more accurately assess the benefits of using execution rate

characteristics in scheduling, we next compare ASP against the
Adaptive-AVG policy, both of which adapt to queue length. (As
before, Adaptive-PWS performs somewhat worse than Adaptive-
AVG under the assumed workload conditions, and_thus is not
shown.) Figure 4.3 plots the ratio of Rayupive-ave 0 Rasp, for the
same workloads as in figure 4.2. Comparing figure 4.3 with figure
4.2, the relative performance of Adaptive-AVG is much less sensi-
tive to the distribution of N than that of AVG, and has qualita-
tively similar or higher performance than AVG except for spread
N workloads with B=300. More importantly, Adaptive-AVG has
roughly the same stability as ASP and generally performs as well
as or better than ASP for all the given workloads. In particular,
the performance of Adaptive-AVG is noticeably better than that of
ASP for more sublinear ERFs (B=70). As in SAVG versus AVG,
Adaptive-SAVG has higher performance than Adaptive-AVG
when r=1, especially as Cy (and Cp) increases.



2.0 |
ke
G
o
[0
£
|.—.
(]
(723
o
[e]
Q.
3
x 02F A ASP50 --- 2-ptN
g o ASP10 spread N
o -— constant N
=

0.1}

I ! [ { ]
0 20 40 60 80 100
E[N]
(a) p=300, r=0

2.0+
ie]
©
o
(0]
£
!_
()]
(2]
o
[e]
% Oy -
¢ 02| » Aspso  — constantN
& o ASP10 spread N
8 --- 2-ptN
=

0.1

I I i I !
0 20 40 60 80 100
E[N]
(c) B=300, r=1

2.0 |-
Q
T
o
03]
£
I._.
[¢5]
[ ]
[
o]
Q.
3
T 02} o ASP50  --- 2PptN
g o ASP10 spread N
@ - constant N
=

0.1

I [ [ I 1
0 20 40 60 80 100
E[N]
(b) B=70, r=0

2.0 -
Q
©
o
<]
£
(....
(0]
w
s
[]
Q.
w
[0
o
§ A ASP50 —— constant N
= o ASP10 spread N

0.1 === 2-ptN

I { § { i
0 20 40 60 80 100
E[N]
(d) B=70, r=1

Figure 4.4: Mean Response Time Ratios of ASP-max to ASP

P=100; D=P
p=0.7; C,=5

4.3. Performance of ASP-max

The comparison in section 4.2 suggests that using application
characteristics such as avg improves the performance of processor
scheduling. However, we note that Adaptive-AVG contains a max-
imum allocation constraint i.e., avg, whereas ASP contains no
such constraint. This motivates adding a maximum allocation con-
straint to ASP (possibly independent of execution rate characteris-
tics) in order to perform a still more careful examination of this
issue.

The ASP-max family of policies has a maximum allocation

“The difference between EPM and ASP-max arises when a job com-

pletes and the number of free processors is not a multiple of the number of

waiting jobs. In this case ASP-max allocates the excess processors to jobs
that arrived earlier whereas EPM does so for jobs that arrived later.

constraint equal to "max" and schedules jobs just like ASP except
that for a job with available parallelism N it does not allocate more
than min (N,max) to the job. The EPM policy in [RSDS93] is very

similar and has the same mean response time as ASP-max.>

Figure 4.4 plots the ratio of Ryspyg and Ryspsy to Ragp for a 100
processor system and the same workloads as in figures 4.2 and 4.3.
We observe that (1) the performance of each ASP-max policy rela-
tive to ASP is insensitive to B, (2) ASP50 has very similar perfor-
mance to the Adaptive-AVG policy at both =300 and B=70, and
(3) ASP10 significantly outperforms ASP, Adaptive-AVG, and
Adaptive-SAVG for the entire parameter space in the figure. We
also ran experiments with a fixed maximum allocation constraint
on Adaptive-AVG but found no improvement over the perfor-
mance of ASP-max. Hence, for these policies that differ only in
whether or not job execution rate characteristics are used in decid-
ing how many processors to allocate to a job, it appears that using
the job execution rate information does not improve policy perfor-
mance.
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For the uncorrelated workloads in figure 4.4, the performance of
ASP-max relative to ASP improves gradually with N for all three
distributions of N. When r=0, the relative performance of ASP-
max improves with decrease in Cy. When r=I, the trend is
reversed since as seen from equation (2.1) when r=1 a high Cy
implies a high Cp.

4.4. Selecting the value of max

A key point from Figures 4.4a-d is that the relative order of
ASP10, ASP50, and ASP is insensitive to the distribution of N, the
correlation (1) between demand and parallelism, and P in the range
(70,300). In this section we further explore the extent to which the
optimal value of "max" is sensitive to these parameters, as well as
to load (p) and C, which were held fixed in Figure 4.4.

The solid curves in Figures 4.5(a) depict the ratio of Rusp.pax 10
R,sp versus p for various values of "max", assuming a 2-point dis-
tribution of N, N=75, P =100, B=300, and C,=5. Figure 4.5(b)
shows the corresponding curves for the spread N distribution. As
expected, the optimal value of "max" decreases as p increases.
However, the performance of the ASP-max policies for a given
load in Figure 4.5 is not highly sensitive to variations in "max"
near the optimal value, and thus the ASP20 policy performs very
well for p=0.3. This conclusion holds, and the curves are qualita-
tively very similar, for other values of N (N=25,50), a constant dis-
tribution of N (N = 100), higher sublinearity in the ERF (=70,
as well as correlated workloads (r=1). We also ran experiments
for a system with P =64 processors and C, =5, and found that the
ASP12 policy performed very well for all experiments conducted,
which included constant, 2-point and spread N distributions, and B
in the range of 50 to 200. Finally, we ran a small number of
experiments for P =16 under constant N as in [RSDS93] and
found that when C, =35, the ASP3 and ASP4 policies have high
performance. Thus, for C,=5 and p20.3, a very simple rule of
thumb, "max"=0.2 P, appears to give near-optimal performance
unless the ERF is extremely sublinear {(e.g., §=20 for P= 100).3
Experiments for other values of C, show that the value of max
should increase for lower C, (results omitted to conserve space)
and decrease for higher C, (as will be shown in section 4.5).

An alternative to the simple rule of thumb, "max"=0.2 P, is to let
the value of "max" vary with the measured average system load.
To investigate this approach, the ASP-max+ policy uses equation
(3.1) with avg replaced by 0.2 P (and ©=0.5) to compute a load-
dependent value for "max". Note that this policy can be compared
against the A+&mM policy [Se89] reviewed in section 3.1 to
determine the benefits of using application execution rate charac-
teristics in a new context. The performance of the ASP20+ and
the A+&mM policies are shown with dashed and dotted curves,
respectively in Figure 4.5. Both policies perform nearly as well as
the optimal ASP-max policy at all values of p, although the
A+&mM policy performs somewhat less well for the 2-point dis-
tribution of N. In any case, the ASP20+ policy which allocates
processors independently of B, performs at least as well as the
A-+&mM policy which requires knowledge of avg (i.e., B) and m.

5The experimental data in [RSDS93] (figure 4) show that the EPM4
policy (max=0.25P) is close to the optimal EPM policy at moderate to
high loads for sublinear ERFs and at high loads for close to linear ERFs.
Thus their data corroborates the stated rule of thumb regarding the optimal
value of "max™.

4.5. Comments on C,=30 and Multi-class workloads

The experiments in previous sections assume a fixed value of B
and C,=5. In this section we consider multi-class workloads
where each class has the same distribution of N and D, but a dif-
ferent value for B. We have observed that for a wide range of
uncorrelated 2-class workloads with C,=5, the relative perfor-
mance of various policies (not shown) is qualitatively the same as
for the corresponding single-class workloads.

Figure 4.6 gives the mean response time ratios of AVG,
Adaptive-AVG, A+&mM, ASP10, ASP20, ASP20+, and EQ to
ASP as a function of p for C, =30, P =100, the spread N distribu-
tion with N=75, and B defined by the following pmf: P(70)=0.15,
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Figure 4.5: Selecting "max" for ASP-max
(Ry/Rusp, ¥ € {ASP—max,ASP20+,A+&mM} )
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N=75; B=300; C,=5; r=0



P(200)=0.2, P(300)=0.45, and P(10000)=0.2. (Note the new scale
on y-axis in this figure.) Due to the time consumed in the simula-
tions most curves are plotted only for p<0.7. The results show
essentially the same relative policy performance as for the single-
class workloads with C,=35. In particular, ASP-max significantly
outperforms Adaptive-AVG which outperforms ASP, and EQ
significantly outperforms all of the RTC policies. We conclude
that 2 maximum allocation constraint that depends only weakly on
average system load and/or C, is an important characteristic of
high performance RTC scheduling. We also observe that the sim-
ple rule of thumb for "max" should be somewhat smaller (i.e., less
than 20% of P) for larger C,, as mentioned in section 4.4.

The A +&mM policy outperforms the Adaptive-AVG policy, but is
significantly poorer than the ASP-max and ASP20+ policies,
perhaps because it allocates proportionately more processors to the
class of jobs with nearly linear execution rates yet some of these
jobs will have very long service times. We have not investigated
this issue in detail.

o AVG

< Adaptive-AVG
1.00 X ASP20
o ASP10
050 | ¢ EQ
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Mean Response Time Ratio
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Figure 4.6: Performance Comparison at C,=30
( E\I‘/I_QASP, ¥ e ({AVG,AAVG,A+&mM,ASP~max] )

_ P=100;D=P
spread N; N=75; B & {70,200,300,10000}; =0

4.6. Unification of Previous Results

The experiments in sections 4.1-4.5 indicate that, for C, > 1 appli-
cation execution rate characteristics are not very useful for deter-
mining processor allocations in RTC policies. This is also true for
exponential demands [AMV93]. In retrospect, the intuition behind
this result is that policy performance degrades when jobs with long
execution times are allocated too many processors. Since execu-
tion rate characteristics have not been shown or assumed to be
correlated with demand, they are poor predictors of this behavior.

As shown in sections 4.1-4.2, [ST93] reached similar conclusions
by comparing the PWS and ASP policies for workloads with con-
stant available parallelism and exponential job demands. Four stu-
dies have reached the opposite conclusions [EZL89, Se89,
MEB91, and GST91], based on the following detailed results.
Sevcik [Se89] shows that policies that use application characteris-
tics and adapt to load (i.e., A+&mM and a simpler policy A+) are
superior to policies that do neither. Sevcik [Se89] and Majumdar
et. al. [MEB91] show that AVG is nearly as good as the load-
dependent optimal fixed partitioning policy at low to moderate

load. Note that in this case neither policy decreases the processor
allocations when instantaneous load increases, but both policies
have a maximum allocation constraint. Finally, Ghosal et. al
[GST91] compare four pws-based policies, and show that the two
policies that have a maximum allocation constraint equal to pws
outperform the two policies that have no maximum. Each of these
detailed results makes sense in the context of the experiments
presented in sections 4.1-4.3.

Rosti et al. [RSDS93] give experimental data under exponential
demands (C,=1) to show that an adaptive partitioning policy
named AP that does not have a maximum allocation constraint
performs almost as well as the optimal EPM (i.e., ASP-max) pol-
icy. However, their data for non-exponential demands (C,=3)
shows that the AP policy performs worse than ASP-max (EPM in
their paper) as C, increases.

We note the A+ policy of [Se89] was shown to have poor perfor-
mance by Smirni et al. [SRDS93]. Under their workload assump-
tion that the maximium and minimum parallelisms are P and 1,
respectively, for all jobs, A+ is equivalent to A+&mM. We
remark that our implementation of A+&mM is work-conserving,
while their implementation of A+ is not.

Smirni et al. proposed a heuristic estimate of the lower bound on
the performance of RTC policies [SRDS93]. The lower bound
estimate is derived by using the best fixed partitioning policy with
equal size partitions and FCFS scheduling at each value of system
load. We have verified that the performance of ASP-max lies
within this envelope for exponential demands. However, for C,=5
the ASP-max policy has better performance than the envelope at
moderate to high loads (p20.5). Also, Naik et al. [NSS93b] have
observed that for a workload with high C,, ASP performs as well
as the envelope of best fixed partitioning policy performance.
Thus, of all the RTC policies proposed to date that do not use job
demand information, ASP-max appears to have highest perfor-
mance for C, 2 1.

4.7. Use of avg and max for SDF

We now investigate the use of avg or an independent maximum
allocation constraint for the RTC policy known as shortest demand
first (SDF). We compare the SDF policy with the SDF-AVG pol-
icy that allocates at most avg processors to a job, the SDF-max
policy that allocates at most "max" processors to a job, and the
ASP-max policies which do not make use of demand information.

Figure 4.7 plots the ratios of mean response time for SDF, SDF-
AVG, SDF20, ASP20, and EQ to the mean response time for ASP
as a function of N for 2-point and spread N distributions, assuming
a 100 processor system, p=0.7, C,=35, and B=300. For constant
N (not shown) the relative performance of policies was similar to
figure 4.7b. Note that for the 2-point N workloads, SDF and SDF-
AVG have poorer performance than ASP-max over a wide range
of N. However, for all the given workloads, SDF20 performs
appreciably better than SDF-AVG and SDF, and is always com-
petitive with or better than ASP-max. Thus, for the SDF policy,
using a fixed value of "max" such as 20% of P for the maximum
allocation provides better performance than using avg, and is criti-
cal to the policy’s competitiveness. We found this to be true for a
range of values of B (50 to 500), for correlated workloads, and at
higher system loads as well. For extremely sublinear ERFs (i.e.,
B < 50) SDF10 outperforms SDF20. Thus, the optimal value of
"max" is weakly correlated with avg, but this is only significant for
highly sublinear ERFs. We also ran experiments for C,=1 and
B=300 and found that, as with the ASP policies, the optimal value
for "max" increases as C, decreases if the ERF is close to linear.
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4.8. Use of avg and max for EQ

In this section we report on experiments that examined using avg
and/or a maximum allocation constraint to improve the perfor-
mance of EQ. Related work shows that limiting the maximum
allocation under EQ degrades performance [MV93bl. This
motivated us to use avg for EQ in a way that the allocation to jobs
should increase beyond their avg if processors are idle, which led
to the EQ-AVG policy defined in section 3.2. We however, found
that for a variety or workloads with very sublinear as well as close

to linear ERFs Rpg_ave = Rpo® Thus, as for ASP and SDF, we

6We also observed similar behavior for a two class workload with
class dependent ERFs.

have not found avg to be useful for the EQ policy.

5. Benefits of Limited Preemption

In section 4 we found that SDF-max and ASP-max+ are among the
highest performance RTC policies that use and don’t use job
demand information, respectively. However, neither of these poli-
cies is competitive with the idealized EQ policy, as was shown in
Figures 4.5-4.7. One reason is that under RTC policies processor
allocation cannot be increased in the middle of a job’s execution to
make use of idle processors. Another reason is that large demand
jobs cannot be preempted in favor of smail demand jobs. As a
result the performance of RTC policies degrades with increase in
coefficient of variation of service demand. This motivates the use
of a single preemption to improve the performance of RTC poli-
cies. In this section we investigate this alternative by defining an
appropriate class of policies, discussing choice of policy parame-
ters, and evaluating policy performance with respect to EQ.

5.1. The Two-level, FCFS/ASP-max Policy

One way to implement limited preemption is to use a multilevel
(ML) queueing discipline [K176] in which arriving jobs join the
highest priority queue and thereby quickly receive a small amount
of service. Leutenegger [Le90] has studied the behavior of two-
level queues for specific dynamic parallel processor policies. Here
we consider a two level queue with FCFS scheduling in the first
queue and ASP-max scheduling in the second level queue. Thus,
each job is preempted at most once during it’s execution.

The two-level (TL) system operates as follows. P processors are
reserved for the first level queue. (We denote this set of proces-
sors as the "first”" partition). The remaining P,=P—P, processors
(i.e., the "second" partition) can serve either queue, with the first
level having non-preemptive priority over the second. An arriving
job joins the first level FCFS queue. When it reaches the head of
the queue, it is scheduled on the partition with the greater number
of available processors and is allocated the maximum of its avail-
able parallelism N and the number of available processors in the
partition. The job receives uninterrupted service up to a quantum
of O units of cumulative demand. If the job requires further ser-
vice it is preempted and placed in the second level queue where
the scheduling policy is ASP-max on the second partition. Once
scheduled from the second level queue, the job runs to completion.

5.2. Guidelines for Choosing Q and P,

The key issues in obtaining high performance for the TL. system
are: the choice of the quantum size (J, and the choice of partition
size P, (or equivalently P,). Below we propose a specific method
to choose Q and P . Further investigation is needed to fully evalu-
ate the viability of the approach. For the following discussion, let
D, be the service requirement of jobs in the first level queue and
likewise D, in the second level queue. (Note that D is undefined
if total processing demand D<Q.)

Since scheduling is non-preemptive in each level of the TL queue
it is desirable to keep the coefficients of variation of each of D,
and D, as low as possible. If Q is close to zero then Cp, 18 close to
zero and Cp,is close to Cp. As Q increases Cp, increases until it
reaches the limiting value of Cp. By increasing Q we likewise
expect Cp, to decrease until it reaches a limiting value.

Due to the opposing trends of Cp, and Cp, with increase in Q itis
not possible to minimize both of them simultaneously. A possible
heuristic, and the one used in the reported experiments, is to
choose that value of Q at which Cp, and Cp,Cross over. This bal-

ances the coefficients of variation across both phases of service in



the TL system, but results in a value of @ that can be very sensi-
tive to the distribution of demand. Alternative approaches are pos-
sible, e.g., choosing a Q that is biased towards keeping Cp, low or
towards keeping Cp,low. These did not result in better perfor-

mance for the specific demand distributions that we examined.

Choosing P, appropriately generally requires experimental results
for a range of possible values. The search can be reduced by
deriving a lower bound on P, for a given Q. The job arrival rate
for the second phase of service is A,=A-P[D>Q]. Thus, the
minimum requirement for stability in the second partition is that
MD,/Py<1, or Py>AD,. To determine a suitable choice for P,
we first computed the lower bound for P, at the maximum value
for A and then simulated the system for a range of values of P,
between the lower bound and P.

5.3. Performance of TL-FCFS/ASP-max

We provide experimental data comparing the performance of the
TL-FCFS/ASP-max policy against that of ASP, ASP-max, and EQ
for a system with P=100, D =P and C,=5. We use the 20% rule
of thumb for the value of "max" when p20.3 and use max=F (i.e.,
ASP) to obtain higher performance at lower loads. For the specific
H, distribution our heuristic for O yielded Q=175 and using simu-
Jation we found a good choice of P, to be 80 for B=70 and p=300,
-=0 and r=1, across different values of N and for all three distri-
butions of N. As a result we considered the use of ASP16 in the
second level queue at moderate to high loads and ASP (e,
"max"=P,) at low loads.

Figure 5.1 plots the mean response time ratios of ASP-20, TL-
FCES/ASP-16, TL-FCFS/ASP, and EQ to ASP, as a function of p,
for the spread distribution of N. Similar results were obtained for
the other two distributions of N. We observe that the TL-
FCFS/ASP-max policy (combination of TL-FCFS/ASP at p < 0.5
and TL-FCFS/ASP16 at p>0.5) has higher performance than
ASP-max. More specifically, if Ry is viewed as the target mean
response time for RTC policies, the relative gain of ASP-max over
ASP is at most 1/2 the relative gain of EQ over ASP, and the max-
imum relative improvement is at p=0.3-0.5. On the other hand,
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the relative gain of the TL-FCFS/ASP-max policy is at least 1/2 of
the relative gain of EQ for all p<0.9.

In spite of the improved performance of the TL-FCFS/ASP-max
policy relative to ASP-max, this simple limited preemption policy
is not competitive with EQ. Thus, it appears likely that the EQ
policy with a lower bound on the time between preemptions
[NSS93a, NSS93b] has higher performance than is achievable
with policies that allow at most one preemption per job. Further
experimentation is needed to confirm this conjecture.

6. Conclusions

This paper has examined the issues of whether application execu-
tion rate characteristics and/or limited preemption can be used to
improve RTC policy performance, and has compared the perfor-
mance of RTC policies to that of the idealized dynamic EQ policy.
The experiments have included a wide range of workioad charac-
teristics, including Cp =5 as well as Cp =1 and Cp = 30, various
distributions of job parallelism, zero as well as full correlation
between job demand and parallelism, and highly sublinear as well
as nearly linear execution rates. Note that most previous studies of
RTC policies have assumed workloads where Cp =1 and all jobs
have parallelism equal to the number of processors.

Wherever applicable, our results are in agreement with and serve
to unify previous results in the literature. In particular, apparent
contradictions in the literature were shown to be due to the particu-
lar policies and/or workloads examined. We have also provided
new observations and reached different overall conclusions in
some cases, due to the additional workloads and policies we have
considered. For example, we have shown that the AVG and PWS
policies can outperform ASP (even at moderate to high load) and
that the relative performance of these policies is sensitive to the
distribution of parallelism. We have also shown that when Cp = 5,
Adaptive-AVG consistently outperforms ASP, but ASP-max and
ASP-max+ outperform Adaptive-AVG and appear to have highest
performance among all RTC policies that do not use job demand
information to date. Likewise, results were obtained that show
SDF-AVG performs only slightly better than SDF (at high N), but
SDF-max consistently outperforms SDF-AVG.

We conclude that a maximum allocation constraint that depends
very weakly on system load and/or on C,, rather than the use of
application execution rate characteristics, is an important charac-
teristic of high-performance RTC scheduling. Experimental
results for the EQ policy also showed that a particular approach to
using the avg measure to improve policy performance did not in
fact lead to improved performance. The intuitive explanation for
why the use of application execution rate characteristics does not
improve policy performance at Cp > 1 is that system performance
degrades when jobs with long execution times are allocated too
many processors and job execution rate characteristics are poor
predictors of this behavior. Thus, for example, when processors
are allocated in proportion to avg, large demand jobs with high avg
can consume an unreasonable fraction of processing power,
outweighing the benefit of avg being an efficient operating point.

Concerning limited preemption, we studied a relatively simple
two-level queueing discipline, with non-preemptive scheduling at
each level (i.e., FCFS and a load-adaptive ASP-max, respectively).
Preliminary results show that this policy has better mean response
time than the ASP-max policy over the workloads we have con-
sidered, but is not competitive with dynamic equiallocation poli-
cies.
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