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Abstract

The origins and some motivational details of a collection of nonlinear mixed complementarity
problems are given. This collection serves two purposes. Firstly, it gives a uniform basis
for testing currently available and new algorithms for mixed complementarity problems.
Function and Jacobian evaluations for the resulting problems are provided via a GAMS
interface, making thorough testing of algorithms on practical complementarity problems
possible. Secondly, it gives examples of how to formulate many popular problem formats
as mixed complementarity problems and how to describe the resulting problems in GAMS
format. We demonstrate the ease and power of formulating practical models in the MCP
format. Given these examples, it is hoped that this collection will grow to include many
problems that test complementarity algorithms more fully.

The collection is available by anonymous ftp. Computational results using the PATH
solver covering all of these problems are described.

1 Introduction

Recently, an extension to the GAMS modeling language has been developed which allows
the formulation and solution of complementarity problems via GAMS. The use of GAMS
speeds both the formulation of new models and the application of new algorithms to existing
problems. As an aid to those developing new algorithms and to those wishing to formulate
their own complementarity problems, we have developed a library of test problems. This
report describes the origin and structure of the problems in the library. It is our intention
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that those developing complementarity solvers use the models in MCPLIB both to test their
solvers and as a standard of comparison with other algorithms.

Several of the problems in the library have arisen from problems in economics. While
an understanding of the underlying economics is not necessary in order to use the problems,
it can be helpful; some of the problems have characteristics best understood in the context
of the economics which determine them. Since this is the case, the economic background
behind some of the models is given in this report; this has been done at a level which assumes
little, if any, knowledge of economics.

While a GAMS model should be as self-documenting as possible, this report provides
documentation which one could not hope to include with the code. It is hoped that by using
this report, a user can gain a deeper understanding of the models in MCPLIB; references
are provided as well.

Regardless of the origin of a complementarity problem, it must be correctly expressed
as a mixed complementarity problem, or MCP, in order to be solved using GAMS. Letting
R :={IR, —00, 00} denote the extended reals, we have the following:

Definition 1 (MCP) Given a function F': R* — R" and bounds I,u € R™,

find zeR", u,velR}

F(z) =w - (1a)

» I<z<u (1b)
o (z—D"w= (1c)
(u—z)v= (1d)

In contrast to the standard complementarity problem, lower and upper bounds on the vari-
ables z are explicitly included in MCP. This is of critical importance in developing efficient
solution algorithms.

In Section 2, we describe some basic types of problems which serve as source problems
for the models in the library. The relationship between the source problems and the MCP
is summarized briefly and will be used in discussing the derivation of the models in the MC-
PLIB library. Included in the library are all the problems attempted in [13], [26], and [8].
Furthermore, new problem classes such as extended linear-quadratic programming and gen-
eral equilibrium models are also included. In addition, a number of large general equilibrium
models have been formulated by Rutherford [34] and are available directly from GAMS. The
wide range of disciplines from which the MCPLIB models are drawn shows the versatility of
the MCP format and the ease with which these models can be coded in GAMS. Currently,
two solvers are available for solving these models, and new ones can easily be included.
An AMPL version of the library, complete with solver interface routines, is currently under
development.

Section 3 contains the descriptions of the larger, more complex models in the library,
and a discussion of their derivation, where appropriate. The details of how to express these



MCP’s in the GAMS language are not discussed in this paper, but the actual GAMS files
are publicly available via anonymous ftp from ftp@cs.wisc.edu:”/pub/mcplib/. Section
4 contains numerical results for some of the problems in the library; these augment the
numerical results given in [8].

A word about notation is in order. The transposition of a matrix or vector A is denoted
by AT. The inner product of two vectors in IR" is defined as

n
(@,y) =Ty =3 Tt

7=1

If B is a subset of {1,...,n}, g := (z;),¢ € B. The concept of complementarity is central
to our discussion. We will use the following notation to indicate a complementary function
/ variable pair and its associated bounds:

f(z) >0, z >0, L (2)

This should be understood to mean that as well as satisfying the indicated constraints,

(f(z),z) = 0.

2 Problem Types

A number of well-known problem classes can be formulated as MCP’s. The models in
MCPLIB are drawn from nonlinear equations, nonlinear programming, nonlinear comple-
mentarity problems, and variational inequalities.

2.1 Nonlinear Equations

The nonlinear equations problem is that of finding a zero of a function F' : IR™ — IR", where
the argument to F is unconstrained. If the bounds ! and u in the MCP are set to —co and
oo respectively, the MCP variable z is unconstrained. Conditions (1c) and (1d) imply that
both w and v are 0, so that (1a) reduces to requiring that z be a zero of F.

Nonlinear equations are of crucial importance in applications, and examples abound in
the literature (e.g. the CUTE problems [3] and the Minpack-2 problems [1]). We include in
MCPLIB examples of a distillation column model contributed by R. Fletcher and described
in [23]. In this model, a steady state solution is sought in which a feed stream supplies
material near the middle of a column and liquid and vapor are drawn out of the bottom
and top of the column, respectively. GAMS models corresponding to each of three data sets
(hydrocarbon-6, hydrocarbon-20, and methanol-8) are given. The damped Newton method
employed by the PATH solver solves each of these problems. These problems are included
as examples of how the many nonlinear equations models in the literature can be put into
GAMS/MCP format.



2.2 Nonlinear Programming

Nonlinear programs consist of minimizing a smooth function of several variables over a
feasible set defined by a number of constraints on these variables, as follows:

minimize f(x)

subject to ze€X ={z|g(x) <0, z>0}

(P)

Here z € IR, while f : R" — IR and ¢ : R" — IR™ are continuously differentiable functions.
The Karush-Kuhn-Tucker conditions [20] for (P) are

Vflz)+u'Vg(z)>0, x>0, L

K
—g(®)>0, w>0, L (KKT)

When f and g are convex functions, it is well known that solving (KKT) is sufficient for
(P), in the sense that a solution (z,u) for (KKT) yields a solution z for (P). However, under
slightly more restrictive assumptions, this equivalence can be made complete.

Theorem 2 ([20]) Let f and g be convez, continuously differentiable functions defined on
an open, nonempty subset X° of R™, and let g satisfy a suitable constraint qualification
([20]). Then T solves (P) if and only if there ewists @ > 0 such that (Z,%) solves (KKT).

The simplest example of a nonlinear program is the quadratic program:

minimize 0T Qr+c'x OP)
subject to Az <b
Here Q@ € R™™, A € R™", ¢ € R", and b € R™, with @ symmetric. If Q is positive
semi-definite, the KKT conditions for (QP) are necessary and sufficient for a solution of
(QP). Since (QP) does not bound « explicitly, its KKT conditions differ from those given
for the problem (P):
Qr+c+ATu=0, z free, 1
b— Ax >0, u > 0, il

These conditions constitute an MCP. If, in addition, z > 0, the problem has the form (KKT).

2.3 Nonlinear Complementarity Problems

Given a function F : IR" — IR™ of z, the nonlinear complementarity problem (NCP) is to
find x such that

F(z)>0, z>0, L. (NCP)

The NCP is formulated as an MCP by setting u = +o0 and [ = 0. In this case, (1d) implies
that v = 0, while the rest of (1) implies that F'(z) and z are non-negative and complementary.
When F is affine, we have a linear complementarity problem (LCP).



A small example of an NCP, due to Kojima and Shindo [18], is defined by the polynomial
function

322 + 22129 + 273 + 23 + 374 — 6
222 + 25 + x1 + 1023 + 214 — 2 3)
322 + 2179 + 205 + 223+ 974 — 9 |
LE% -+ 3113% + 21133 -+ 31}4 -3

F(z) =

This problem has two solution points,

V6

gt = (-—2—, 0, 0, 0.5), =z*=(1,0, 3, 0),

and is difficult for simple Newton-type methods, since the LCP formed by linearizing F
around z = 0 has no solution. Josephy [16] reports computational experience with a similar
problem due to Kojima [17].

2.4 Variational Inequalities

An important and interesting problem, intimately related to the MCP, is the variational
inequality, or VI: find Z € X such that

F(z)"(z—2)>0, VzelX (VI)

where F : IR™ — IR™ and X C IR™ is convex. If the feasible set X in VI(F, X) is rectangular
(ie. X :={z |l <2z < u}), then MCP and VI are completely equivalent, as their solution
sets are identical. The proof of this is elementary. When X is polyhedral rather than
rectangular, VI(F, X) can be reduced to an MCP by explicitly including the dual variables
to the constraints defining X. Let B := {z | | < z < u} and X := {z | Az < b}, where
A € R™™. Tt can be shown that VI(F, BN X) is equivalent to VI(H, B x IRT"), where

H(z,u) = [ F@Jfg“ ] |

When equality constraints are used to define X, the associated dual variables u are free.

3 The Model Library

The models discussed in this section have all been formulated in GAMS/MCP format. While
many of the models are discussed in some detail, parameter values are not given in this report,
since they can be found in the GAMS files. Table 1 lists the models currently contained in
the library. In addition, some of the model types are described below.



Table 1: MCPLIB models

Model origin GAMS file | Size
Nonlinear equations
Distillation column modelling hydroc20.gms | 99
wen hydroc06.gms | 39
wen methan08.gms | 39
Nonlinear programming
Quadratic programming gp.gms 4
NLP test problem from Colville colvncp.gms 15
Dual of Colville problem colvdual.gms | 20
Obstacle problems obstacle.gms N
Obstacle Bratu problems bratu.gms N
Nonlinear complementarity
josephy.gms 4
kojshin.gms 4
Elastohydrodynamic lubrication ehl_kost.gms N
Variational inequalities
Nash equilibrium nash.gms 10
e choi.gms 14
Spatial price equilibrium sppe.gms 27
nen tobin.gms 42
Walrasian equilibrium mathi*.gms 4
won scarfa™.gms 14
won scarfb*.gms 40
Traffic assignment gafni.gms 5
Invariant capital stock hanskoop.gms | 14
Project Independence energy system (PIES) pies.gms 42
Von Thiinen land use vonthun.gms | 186
Extended linear-quadratic programming
Optimal control opt_cont.gms | N




3.1 Computing a Nash Equilibrium - nash.gmns

The problem of computing a Nash equilibrium appears often in the literature (see [25, 12,
13]). The problem concerns a number of firms, each competitively producing a common
good. We define the following:

N number of firms, indexed i =1,... ,N
¢ = (z;) production vector; firm ¢ produces a quantity z; of the good
¢ €'z, the sum total of the quantity being produced
p(€) inverse demand function; p(§) is the unit price at which consumers will
demand (and actually purchase) a quantity &
C;(z;) the production cost for firm ¢; note that this is the total cost, not a per—unit
cost.

The firms comprise a market which we assume evolves over a number of time periods.
At the beginning of each period, each firm sets its production level z; so as to maximize its
own profit, under the assumption that the production for all other firms remains constant
at some level x7,7 # i. (These firms are said to operate in a Nash manner.) Intuitively, a
Nash equilibrium point z* is a production pattern in which no firm can increase its profit by
unilaterally changing its level of production. Since no firm chooses to change its production in
the current period, there is no change in the market, hence the equilibrium. Mathematically,
a Nash equilibrium is a vector z* such that

i 5* ¢ ergmax i p(a; + ) 7}) — Ci(zi) (4)
3 2 z;>0 Ve

The KKT conditions for (4) take the following simple form:
Vi, VOCi(z) —p€)—2:Vp(€) >0, 20, L (NE)

which we call the Nash equilibrium conditions. In conformity with generally accepted eco-
nomic behavior, the inverse demand function p is assumed to be strictly decreasing, the cost
function C to be convex, and the “industry revenue curve” ép(€) to be concave for § > 0.
Under these assumptions, the objective function in (4) is concave [25]. By Theorem 2, the
Nash equilibrium conditions (NE) are both necessary and sufficient for 2* to maximize (4).
By combining the Nash equilibrium conditions for each 4, we get an NCP in N variables.

The functions p and C used in the GAMS file nash.gms are defined below; ¢;, L;, B,
and vy are parameters, with v > 1.

p(€) = 50007 €5

5. 1 Bl
? Lf’i x‘ﬁi

rrpt

CZ(.’IJZ) = C;T; +



Another Nash equilibrium problem is given by Choi et. al. in [4]. In this problem, the
firms are differentiated by the characteristics of the analgesic pain relievers they produce,
rather than by production costs, while demand is determined by the prices and ingredient
lists of the pain relievers. Data for this problem, and a description of the demand function,
are given in the file choi.gms.

3.2 A Spatial Price Equilibrium Model - sppe.gmns

In [11], Harker gives a number of models which describe the spatial and competitive structure
of markets embedded in a network (i.e. a set of nodes and the arcs connecting them). Each
node represents a unit or site separated spatially from the others. In each model, a spatial
price equilibrium is sought. One competitive structure modeled is an oligopoly, a market
situation in which a few producers control the deliveries to and demands from a large number
of buyers. In our example, each producer tries to maximize the profit associated with his
production of a single commodity common to all producers. We define the following:

L set of distinct production units or sites
W c L x L set of transportation arcs between the sites in L
Q set of producers, or firms, operating in the market
I, € L set of sites controlled by firm ¢ € Q. The set of sites L is partitioned
among the sets I,,q € Q.

Example 3 Eight sites partitioned among 8 producers.

L=A{a,...,g}

Q=1{1,2,3}
a e fe I = {a,b}

I, = {c,d, e}

Iy = {f, g}

s;,1 € I amount of commodity supplied (produced) by site /
Ci(s;) total cost of producing s; units of output at site | (integral of inverse
supply function)
d;,l € I, amount of commodity delivered (demanded) at site
6,(d;) purchase price dictated by the delivery to site [ (inverse demand func-
tion)
tij,1j € W flow from site ¢ to site j
cij(ti;),1j € W unit transportation cost at level 2;;
dj; amount of commodity produced by firm q delivered to site [.

We will assume that each firm ¢ acts in a Nash manner (see Section 3.1) when making
decisions regarding the following quantities:



s;,% € I, the amounts produced at the sites ¢ controls
dig,! € L amount of firm ¢’s production delivered to each site in L
tij,i € I, 5 € L flow from sites under firm ¢’s control to each site in L.

The aggregation of these variables is firm ¢’s strategy vector z. The constraints on z,
are those which ensure a conservation of flow at each site. Constraints for sites which firm
g controls are more complicated than those for sites outside of firm ¢’s control. The supply,
delivery, and transportation variables are subject to lower and upper bounds, which we have
taken to be 0 and 400, respectively. Thus, the set X, of feasible strategies for the firm ¢ is

55 dg+ >ty =5+ ta (Viel,) (5a)
Xq _ Ty = d{q > 0 JEL i€y
tij dlq = :/_?4 til (\V/l €L \ Iq) (Sb)
1Ciq

Let X := [Tyeq Xy, 80 that z € X is a feasible strategy for all firms. Firm ¢’s profit is then
given by the function f;:

fol@) =22, 000 ta)dig — > Cilsi) = > > cii(t)tiy, (6)

JEL i€ly iel, jEL
so that firm ¢ wishes to find a strategy z, which solves the following problem:

maximize fq(z)
zg€Xq (7)
subject to Ty =TI, YVDPF#q

where 7, is the current strategy employed by firm p. If we assume that, foralll,4,5 € L, 6,(d;)
is a decreasing function, Cj(s;) is a convex function, and ¢ij(tij) is an increasing function,
then f, is convex. If f, is defined on the feasible set X and X contains a positive point,
then, by applying a theorem from Rockafellar ([27], Theorem 27.4), we see that problem (7)
is equivalent to VI(V f,, X,), where f, is differentiated with respect to z,. A spatial price
equilibrium [11] is therefore a point & which solves the following VI

find zelX

.. m (8)
8.b. e V(@) (3, - %) 20 VrelX

The GAMS model for this problem can be obtained from (8) or, more directly, from the
KKT conditions for (7). The particular model formulated contains 3 sites and 3 firms, so
that each firm controls only one site; the relevant functions are defined as follows:

Ci(s) = aus,+ fisi, O(dy) == pi— md, cijltis) == i + pagtly-
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While this particular example is somewhat limited, the GAMS model is coded for the general
situation, where each firm controls multiple sites.

In [36], Tobin describes a spatial price equilibrium in a multi-commodity market modeled
as a network. In this example, the variables are the prices at the various nodes in the network.
These prices determine supply and demand, and not conversely, as in Harker’s SPPE model.
The competitive structure assumed in this example is one of perfect competition; it’s “every
node for itself”. We define the following:

l=1,...,n the nodes (markets) in the network
k=1,...,p the commodities being traded in the network
7 = (my) price vector; for each node-commodity pair (I, k), my is the unit price of
commodity k at node [
Dy (7) demand for commodity k at node {
SM(W ) supply of commodity & at node [
= (45) an arc in the network, from node ¢ to node j
= [Aj;,] the standard node-arc incidence matrix. A is mainly zeros, with these
exceptions: if a = (1)), Aia =1 & Ajo = —1
t = (tar) flow vector; for each arc-commodity pair (a, k), tex is the flow of com-
modity k£ on arc a
Car(ter) unit cost of tranportation service for commodity k£ on arc a

Section 2 of [36] gives the following conditions for a spatial price equilibrium (SPE):

Nonnegative flows, prices, demands, & supplies:

teg >0, T >0, Dyp >0, Sy >0  Va,lk (9a)
Conservation of flow at each node:

S+ 2tk = Du+ D tape Vik (9b)
Delivered price exceeds local price: ’

Tk + capu(t) = me Ya = (i), k (9¢)
Delivered/local price difference or path flow = 0

<7rzk + Clj)k — Tk ak> 0 Va :=(),k (9d)

A set of flows and prices are feasible if they satisfy conditions (9a) and (9b). Condition
(9¢) and the complementarity condition (9d) imply that if the delivered price strictly exceeds
the local price, no commodity is being delivered, and that if there is a commodity being
delivered, its delivered price equals the local price.

If we relax the conservation of flow constraint (9b) to allow excessive supply, we get the
following NCP:

c(t)+ ATm >0, t >0, 1 (10a)
S(m)—D(m)— At >0, 7w2>0, 1 (10Db)
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The following lemma gives conditions under which the conditions for a SPE are equivalent
to the NCP defined in (10).

Lemma 4 ([9]) Suppose the arc cost functions c(t) > 0 and the demand and supply func-
tions are such that

mr =0 = Dy(r) = Sy(r) >0 (11)

Then a set of flows and prices (£, 7) is a spatial price equilibrium iff it solves the NCP defined
by (10a) - (100).

In the GAMS model tobin.gms, the relevant functions are defined as follows:

Cak (t) = Pak + Qaktik + Z Acu’cmta,m

m#k
Si(m) == Bu + Jumiy, + Y Tk
i
Dy() := By — Guerjyy + > wWiskTin
il

3.3 A Walrasian Equilibrium Model - mathi*.gms

An equilibrium can be characterized as Walrasian if there are no goods for which demand
strictly exceeds supply [37]. In [21], an economy containing a number of goods, a number
of utility-maximizing consumers, and a number of profit-maximizing producers is described.
Both consumers and producers act as price-takers, that is, they assume that the market price
for each good does not change as a result of their actions. The role of the consumers here is
to demand goods; this demand is determined by the prices. The producers determine their
optimal levels of production based on these demands. Our objective is to find an equilibrium,
or a steady state, for the economy. More specifically, we define the following:

i=1,...,m indices corresponding to the m types of goods or commodities in the
economy
j=1,...,n index corresponding to the n sectors or types of production processes

in the economy

) vector of prices for the goods

= (b;) vector of initial endowments for the goods (i.e. the amount of each

good initially available)

d(p) = (di(p)) consumer demand functions; given a price vector, the demand for good

i is di(p)
y = (y;) vector of activites; y; is the activity or production level in sector j
A = (a;;) technology matrix; a unit production level in sector j results in an

output of a;; units of good 4. Negative values of a;; indicate an input
of good i is required for activity j. Column A ; describes the process of
sector 7, while row of A; indicates where good i is used and produced.
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The equilibrium conditions ([35], Definition 5.1.3) are as follows:

No activity earns a positive profit: ATp <0 (12a)
No good is in excess demand: b+ Ay —d(p) >0 (12Db)
No prices or activity levels are negative: p>0 y>0 (12c)

An activity earning a deficit is not run, and

T AT 0
an operated activity runs at zero profit: y'A'p=0 (12d)

A good in excess supply has a zero price, and

T R -
a positive price implies market clearance: p'(b+ Ay = d(p)) =0 (12e)

At equilibrium, no activity earns a positive profit; if this were the case, others would
step in to duplicate the activity, driving the profit to zero. Condition (12b) characterizes the
equilibrium as Walrasian; there is no excess demand for any good. Condition (12e) implies
that goods in excess supply have a zero price; if we assume that the goods are “desirable”,
(i.e. any good with a zero price must be in demand), then (12e) implies that all markets
clear, or that supply equals demand.

A noteworthy property of Walrasian models is the assumption that the demand function
d(p) is homogeneous of degree 0 (i.e. d(p) = d(tp) Vit > 0). As a consequence, the
equilibrium price vector is not unique; if p* is an equilibrium price vector, so is tp* for ¢ > 0.
An additional consequence of the homogeneity of d, shown in [21], is the singularity of the
matrix Vd(p). This singularity can make finding a solution difficult. Two customary ways
of avoiding this singularity are normalizing the price vector or fixing one of the prices, called
the numéraire price.

In the example given by Mathiesen [21], the consumer demand function d(p) is determined
by a single consumer; there is one production activity, and 3 goods. The problem is a difficult
one because of the singularity of the Jacobian of the NCP formulation when no “fix” is
applied, and because of the form of d:

a2y bem
T

di(m) -

If we require that 3°; a; = 1, then a; determines the fraction of the budget 3_ by spent
on good 1.

In [35], Scarf describes two similar Walrasian models, the smaller of which contains six
commodities, eight activity sectors, and 6 consumers. Each consumer n has an initial asset
e:n of each good 4; the initial endowment b; of good ¢ is given by summing over all the
consumers n. The individual initial assets are used in computing the demand function d,
which is the sum of the individual consumers’ demands. The equilibrium conditions (12) are
the optimality conditions for this problem as well.
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If oy, is the demand share parameter for good ¢ and consumer n, and 3, is the elasticity
of substitution for consumer 7, then the demand function for this problem is
W 2k CknTk
dz(ﬂ) = Z&m’ﬂ'i ek hn ko
T

1-f8
Zk Qpn T, "

3.4 A Traffic Assignment Model - gafni.gms

In [2], a traffic assignment problem is given where there are 5 cities connected by a network
of one-way links (see Figure 1). In each city 4, there is a shipper who must ship d; units of
a commodity to city (i +3). Thus, there are 5 origin-destination (OD) pairs in the network.
There are only two paths or routes linking each OD pair, the inside and the outside paths.
On each of these paths, a delay is incurred, which is equal to the sum of the delays on
the links in that path. The delay on a link k is determined by the flow on and near link
k, and is given in terms of a convex function g and a parameter v > 0; we have taken
g(z) = 1+ z+2? Figure 1 gives the configuration of the network, and the link delay
functions. It is assumed that all flow not intended for a city will bypass that city.

Let z; denote the amount shipped from city ¢ via the outside path, and y; the amount
shipped via the inside path. Then the vectors = (z;) and y = (y;) determine the flow on
the paths, and also on each of the links. A flow is said to be feasible if

(3)ex=1(0)

Given a flow < Z >, we define the effective delay between two cities in an OD pair to be

z; + Y = dj, 377920}

the maximum delay among paths with non-zero flow between the two cities. The problem
is to find a feasible flow in which each user has minimized her effective delay, subject to
all other users’ flows remaining constant. This occurs when the delay on every path with
non-zero flow is the minimum among all paths between the corresponding OD pair. This
flow is optimal in the sense that no user can reduce her effective delay by adjusting the flows
she controls, while remaining feasible.

The conditions described in the above paragraph can be encapsulated by the optimality

conditions VI(T, X'), where
z \ [ outside-delay(z)
T( Y > o < inside-delay (y) ) ' (13)

This VI in 10 variables and 5 demand constraints can be written simply as an NCP in
15 variables, if the demand constraints are relaxed to permit excess flow (there is no excess
flow at the solution; clearly, sending excess flow increases any user’s effective delay.) The
simple demand constraints lead to NCP(G), where

x outside-delay(z) — u
G| y | :=| inside-delay(y)—u
U z+y—d



highway links
exit ramps
entrance ramps

bypass links

An arrow near midpoint indicates direction of flow. Delay on highway
link k: 1og[fl0wk] + 27g[flowexit from A]

An arrowhead indicates flow from a highway to a city. Delay on exit
ramp k: g flowy].

An arrowhead indicates flow from a city to a highway. Delay on exit
ramp k:  g[flowg] + vg[flowsypass of &)-

No arrows; flow direction clear from figure. Delay on bypass link k:
gl flowg).

Solid lines indicate positive flow.

Figure 1: Traffic Network
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The problem can be expressed even more compactly by taking advantage of the constraint
2 +y = d and the generality of the MCP model. Let B := {2 | 0 < z < d}, then

xorastzeny o=] ] a=[ 1]

Expressing VI(T, X) in term of z, we have the condition
(T(a+ AZ), (a + Az) — (a+ AZ)) = (ATT(a+ A2),2-2) 20 Vze€B,

so that for F(z) :== AT (a + Az), VI(T, X) is equivalent to VI(F, B).

The intuition behind this latest VI is the clearest of any yet offered: Fj(Z) represents the
difference in delay between the outside and inside paths from node ¢ at optimality. When
the difference is positive, the outside path is more expensive; all flow from node 7 should go
to the inside. When the difference is negative, the inside path is more expensive; all flow
from node i should go to the outside. When the difference is 0, any flow pattern from node %
which satisfies the demand constraints is acceptable. Since the feasible set B is rectangular,
the VI(F, B) is an MCP. Thus, we need only solve an MCP in 5 variables, rather than the
forty-plus variables in the problem on the links, or the 15 variables in NCP(G).

3.5 Computing an Invariant Capital Stock - hanskoop.gms

Hansen and Koopmans [10] consider the problem of determining an invariant optimal capital
stock. In this problem, an economy is assumed to grow over an infinite number of time
periods. The technology (i.e. the production processes which can be run) and the available
resources are assumed constant over all time periods. At the beginning of each time period,
the economy invests its capital goods into the production processes, which produce both
capital goods and consumption goods. The capital produced will be invested in the next
period, while the consumption goods produced determine the utility of the investment. The
total utility is a discounted sum; that is, the utility earned by an investment of capital at
time t is discounted by a factor of af, where the discount factor o € (0,1). We wish to find
an initial endowment of capital for which the investment strategy necessary to maximize the
discounted sum of the utilities is constant. More formally, we have the following:

r index for the set of resources types
index for the set of capital good types to be invested in production.
j  index for the set of production processes to run; each process consumes
capital and resources, and produces capital and consumption goods.
w = (w,) The resources available at the beginning of each time period; this is
assumed constant over time.
z = (z1), A capital stock; the amount of capital goods available for investment
at the beginning of time period £.
z; = (z;), The level at which to run the production processes during time period
t. This effectively determines the investment of the capital stock .
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Il

v(z) Utility derived from the production/investment specified by z.

A = (a;;) capital input matrix; running production process j at unit level re-
quires a;; units of capital good i (A > 0)

B = (b;;) capital output matrix; running production process j at unit level pro-
duces b;; units of capital good i (B > 0)

C = (¢;j) resource input matrix; running production process j at unit level re-

quires c,; units of resource good r (C' > 0)
0 < a<1 discount factor for future utility

Assuming an integer time variable ¢, and given an initial capital stock zg, we might wish
to optimize our growth by solving the following:

o0
e t
maximize > atv(zy)
=0
Az < oz (14)
. B$t > 21
subject to ~
ha Cil?t S w
Ty _>__ 0

A solution of (14) maximizes the discounted sum of the utilities v; the feasibility condi-
tions ensure that the growth path {(z,x;)} determining these utilities is consistent with the
given technology and resource constraints. Notice that in (14), the initial capital stock z is
given; this stock determines the optimal growth path. Note also that the sequence of capital
stocks {2} is not fixed explicitly by the constraints in (14). However, it is likely that, over
time, some optimal pattern of investment and return may evolve; that is, the growth path
approaches a constant value.

This motivates the following problem. An initial capital stock 2o is desired for which the
optimal growth path does not vary. It should be noted that one cannot merely require that
the path be constant, and optimize the choice of z. The invariance of the path must be a
result of the optimality conditions in (14) and the choice of 29, not of any explicit constraint.
We will not derive here the conditions for a zp with a constant optimal growth path, since
the motivation for the result is rather lengthy, and the proof is longer still. The interested
reader is referred to [10], or to [7] for an example where v is linear.

We will assume that the utility function to be maximized in (14) is concave and continu-
ously differentiable. Under some reasonable constraints on the technology, and a regularity
condition on zp, an initial capital stock z; whose optimal growth path (24, x¢) is constant
satisfies the following NCP:

~Vou(z) + (A—aB) y+CTu>0, z >0, 1 (15a)
(B—A)z >0, 0, L (15Db)
~Cz+w >0, u >0, L (15¢)
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A solution to NCP (15) suffices to determine an initial capital stock whose optimal growth
path is constant; no regularity condition on zy is necessary in this direction. If (z, @, 7) satisfy
(15), the capital stock zy = AZ.

3.6 Extended Linear-Quadratic Programming - opt_cont.gms

A number of recent papers have proposed an extended linear-quadratic programming (ELQP)
model [29, 30] as a means of taking advantage of the special structure found in large-scale
problems in multi-stage optimization [31], stochastic programming [32], and optimal control
[29]. While problems formulated in this way are generally more difficult to solve than the
conventional quadratic program, there exists an elegant duality theory for ELQP, which can
be exploited in solution procedures. In this section, the ELQP is defined, and a significant
special case is shown to be an instance of the MCP.

A problem in extended linear-quadratic programming is defined using the primal variables
u € IR™, the dual variables v € IR™, and the nonempty, polyhedral sets U C IR™ and V' C IR™.
Let p € R and P € R*™", and let ¢ € R™ and @ € IR™ ™ where ) and P are both
symmetric positive semi-definite. In the ELQP model, some constraints are incorporated
into a penalty or monitoring function added to the objective, rather than being considered
explicitly. Given the set V and the matrix @), this monitoring function is defined as

pvo(w) :=sup wv—3v"Qu  forweR” (16)
veEV

An extended linear-quadratic program may be defined using either a primal or dual form,
both of which follow:

minimize f(u) :=pTu+ tuTPu+ pyg(g — Ru) (P)
maximize  g(v):=q'v - L"Qu — pyp(Rv — p) (D)

The difficulties in solving problems (P) and (D) arise from the monitoring functions p.

Theorem 5 ([28], Proposition 2.3) The function pvq 15 lower semicontinuous, conves,
and piecewise linear-quadratic: its effective domain

dom pyg = {w € R™ | pyo(w) < oo}

is a monempty convex polyhedron that can be decomposed into finitely many polyhedral convez
sets, on each of which pygq 5 quadratic (or linear); a similar result holds for pyp and 1ts
effective domain.

Thus, the objective function f is convex and piecewise linear-quadratic, as is —g. This
makes it difficult to apply techniques from smooth optimization in a straightforward manner.
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However, duality theory can be used to show that problems (P) and (D) above are related
through the following Lagrangian function:

L(u,v) :=p u+su Pu+q'v— 20"Qu — v Ru, (17)

with f(u) = supyey L{u,v) and g(v) = infuer L(u, v). The following theorem from Rock-
afellar [28] characterizes a pair of solutions to (P) and (D) as a saddle point of L.

Theorem 6 I is always true that inf(P) > sup(D). Furthermore, a pair (4, ) is a saddle
point of the Lagrangian L(u,v) on U x V if and only @ solves (P), © solves (D), and the
optimum values are equal.

The characterization of an optimal solution pair (&, %) as a saddle point leads to a char-
acterization in terms of a VI. We define

u\ [ VuL(u,v (P —RT u P
r(v)=( %) -(R ) 0)=(%)
and note from Theorem 6 that the pair (&,7) is optimal for (P) and (D) if and only if (g, )
solves VI(T,U x V).

Any ELQP can be reformulated as a conventional QP, and hence as a complementarity
problem [32]. Unfortunately, this may greatly increase the problem size and disguise any
special problem structure. Although specialized techniques can solve ELQP’s quickly, we
show that a frequently occurring special case of ELQP can be reformulated as an equivalent
MCP, without any increase in size or loss of special structure. In a common practical situation
33, 32, 30], the feasible sets U and V' are rectangular. In this case, the VI(T, U x V') defined
by (18) is one involving only rectangular constraints, so that no reformulation is necessary to
solve the problem as an MCP. In the remainder of this section, we discuss a continuous-time
optimal control problem whose discretization results in a problem of this type.

Given a fixed time interval [to,#1], we define the primal problem in terms of the instan-
taneous control variables u(t) € U C IR* and the left endpoint control variables ur, € Uy C
IR*:: the free state variables x(j) € IR"” depend on these control variables. The data for the
problem (i.e. the matrices A,B,C, D, P, and Q, the vectors b, ¢, p, and ¢, and the feasible
sets U and V) are generally assumed to vary continuously in #; we will assume that these
matrices are constant as well. We seek to minimize the functional

t 1 ~ 1
Flub,u) = | pu(t) + SulPult) — a(t)] di + phut+ S Pt — ca(h)
0

+ /: pva(d— Ca(t) — Du(t)) dt + pveeal(d”™ — Cra(tr))

over the state trajectory

%(t) _ Au(t) + Bu®)+5,  alte) = Byub + o, (19)
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where the subscripts L and R denote data and variables used to define boundary conditions
at the left and right endpoints, respectively. In this model, the feasible sets U, Uy, V, and Vr
are bounded rectangular sets.

The ELQP mode] arises as a discretization of the continuous problem above. The interval
[tq, t1] is divided into N segments, so that the variables u(t) and z(t) are discretized as follows,

ul ul u? u®
x! x? g8 s

to 7f1

where the arrows indicate the dependence of the state variables on previous states and
controls, as determined by (19). If we assume that t; — % = 1, the resulting discrete-time
ELQP is that of minimizing

| R T 1
~ > [put + §u“Pu7’ —et] + plul+ —Z—u[’PLuL — Rk
’ 1

1 o
+]_\/-"va@((]‘-0$ “D'LL) -+ pVRQR(qR“OR.’I}R)
1

subject to the state constraints

ajl pi BLul’+bL (20)
# = o'+ o (Bu'+ Adt+b) =1 N1 (21)
N ) )
B = ajN-i*—]\—[(BuN—i—ACUN"*‘b)- (22)
IfwedeﬁneA::I—F%/i,B:: }ﬁB,b:: %B,C':‘—‘%CZC :%5:D::%D’P::%P’
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pi=+D0, Q= 1@, and q := q, we obtain the following ELQP:

minimize  Fp(uf,ut, 2, ) =
ul ut xt o h

N
A : 1
> oyt + 51&’1!7’uZ —ca'] + plub+ iuLPLuL ~ Rk
1

N
+>  pvolg — Ca' = Du’) + pvnan(a® — Crz™)
1

subject to the constraints

' = Bpu® +0b"
¢t = Bul+ Art+b i=1,...,N—-1
o2 = Bul + AzV + 0.

Using (18), we can express the optimality conditions for the discrete-time minimization
problem as the VI(F, Uy, x UV x RMUVD x VN x Vi x RMVHD), with

— BT

u P 0 =D U D
z 0 0 —CT I-A"| |z —C
Flul=lp ¢ @ o ||v] |-
Y B A-1 0 0 Y b
where
Py 1 0 D By,
_ P _ 0 _ B
P = , D= , B:= ,
D
! P 0 B
C ) [0 Q
o i A 0 3
- C 9 T ) . ’ - Q )
L Cr] i A0 Qr
p" c q bt
: : _ b
]5 - p 3 c:= 3 (7:: BE b= 3
: c q
D cft gt b

and the dots represent replication /N times.
In the GAMS implementation, the data elements for the continous-time problem are
generated randomly, where the matrices P and () are generated to be positive (semi)definite.
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The division by NN takes place during the formation of the discretized problem. Note that the
discrete-time problem makes use of the function Fp(u”,u’,2*,2®) in the variables u and z,
while the continuous problem is expressed as a minimization over u only. While it is possible
to express the discrete time problem without using the z variables, this results in a dense
problem. For this reason, the state variables = and y are retained in the MCP formulation.

3.7 An Obstacle Problem - obstacle.gnms

The obstacle problem [5] consists of finding the equilibrium position of an elastic membrane
subject to a vertical force f pushing upwards. In our example, we consider a membrane with
height v on a domain D = (0,1) x (0,1). We restrict our attention to those functions v in
the space H(D) of functions with compact support in D such that v and |V|)* belong to
the square integrable class L?(D). Note that this implies that v =0 on the boundary of D.
In addition, we have lower and upper bounds v; and v, on v which represent the position
of solid objects below and above the membrane, respectively. The membrane’s equilibrium
position is its position of minimum energy, where the energy of the membrane is given by
the quadratic functional ¢(v) in the following quadratic program:

minimize  ¢(v) = %/ 1Vv]|* dD — /vadD
v D X
subject to ve€ HYD) vy <v< oy

(23)

In [24], the force f is taken to be the constant ¢ = 1.

In order to solve this problem numerically, the domain D is discretized by a triangulation
of a rectangular grid with grid spacing h := N%ﬁ in both the X and Y axes. The function v is
then approximated by a piecewise linear function which can be represented by its values v; 5,
fori,j =1,..., N, at the N? interior vertices of the triangulation. Using this approximation,

the objective function g in (23) can be reduced (see for example [24]) to a quadratic function
g(v) = 2v"Mv — qv, (24)

where the components of v € RY * are the values v; ; at the vertices of the triangularization,
gi; = ch?, and M is the usual pentadiagonal matrix obtained via a difference approxima-
tion of the Laplacian operator (diagonal entries of 4, off-diagonal entries of -1). Given the
constraints v; < v < vy, the optimality conditions for minimizing the discretized g(-) can be
written as the following MCP:

f(v) == Mv+q free, v < v < vy, 1. (25)

If the force f acting on the membrane is taken taken to be the nonlinear function Ae?,
the obstacle Bratu problem results. This problem, solved in [22, 15}, differs from the one just
described in that the components of the vector g are no longer constant but are a function
of v, i.e., g;; = Ae¥i.
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3.8 The Elastohydrodynamic Lubrication Problem - ehl kost.gms

The problem of the elastohydrodynamic lubrication of cylinders in line contact is considered
by Kostreva [19]. A particular example would consider (cylindrical) roller bearings lubricated
by oil. The standard mathematical model for this problem is governed by 3 equations: a
linear integral equation for the deformation of the cylinders, Reynolds’ differential equation
for the pressure in the lubricant, and a linear integral equation which represents a balance
of load constraint. If the lubricant pressure at position x is represented by p(z), then the
thickness & of the lubricant film between the cylinders at position z is given by

b
h(z) = 2%+ k — % / p(s)In|z — s|ds, (26)
a

where k is a free variable of the model, z, is an inlet point and z} is an outlet point to be
determined from the model solution, with z, < z;. The pressure will be positive between
the inlet and outlet points, while the boundary conditions are p(z4) = p(zy) = p' (zp) = 0.
In the region of positive pressure, Reynolds’ equation, which relates lubricant pressure to
lubricant film thickness, holds:

Rip, k) 1= -2 <h(x)35@> ad_yg, (27)

Tde \ e dz dz

Downstream of z;, the pressure will be 0, so that Reynolds’ equation need not be satisfied;
in this area, R(p, k) is allowed to become positive and reduces to )\%. Since A > 0, this
represents a divergence of the cylinders downstream of the outlet point. The final equation
represents a constraint placed on the cumulative pressure required by the specified load on
the cylinders:

T(p k) =1 — %pr<s)ds — 0, (28)

Given the inlet point z,, the complementarity form of this problem makes use of finite
difference approximations to R and T on the interval [2,, Tr], where zr is chosen to be far
downstream, so that zr > z,. Given a uniform grid of N intervals such that x5 = z,+ NAx,
let p; = p(xa + 1Ax) and let h; = h(z, + jAz) fori=1,... N, j=1i=% % The values of
h; at the intermediate points can be approximated by numerical integration of (26) or by
the following, computationally recommended, integral obtained from (26) via integration by
parts:

h(:c)=x2+k+1+%/mjb(s—m)lnlx~—sl (%) ds. (29)

In the GAMS model, both h; and T are approximated using the trapezoidal rule. The
formula for h; is substituted into the finite difference approximation to Reynolds’ equation
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at the points z; for i =1,... , N as follows:
1 (hiy)’ (hi1)?
Ri(k,p) :=— 2 i1 — Di) — ————— (i — Pi-
(k,p) (Az)? exp(apH%) (it ) exp(ap; 1) Di — Di-1)
+ ‘A—(hw% = hi_1) (30)
The final MCP is given by
T(k,p) =0, k free, L (31a)
R;(k,p) > 0, p; > 0, 1, fori=1,...,N. (31b)

As mentioned earlier, the location of the free boundary z, is not known a priori; it is
determined as part of the solution to the complementarity problem. This is in contrast to
other methods proposed for this problem, which rely on heuristics to locate the free boundary.
In [19], Kostreva considers examples where the free boundary has been mislocated by these
techniques, as well as other examples where the computed film thickness h differs from
previous results.

The elastohydrodynamic lubrication model is interesting both because of its highly non-
linear nature and because of its potentially large size. Unfortunately, it is a fully dense, so
that sparse techniques cannot be used to improve performance. In his computational work,
Kostreva [19] used a grid of size 0.05 on an interval of length 5, resulting in a highly nonlinear
model with 100 equations. However, for higher pressure and load conditions, the solution to
this problem develops a large pressure spike, which can be difficult to compute, and leads to
finer grid approximations and larger problems.

4 Numerical Results

Tn this section, we give numerical results obtained by solving some of the models described
above. Unless otherwise indicated, these results were obtained through the use of the PATH
solver for MCP, described in [8] and running as a GAMS subsystem on a DECstation
5000/125. Solution times given are those reported as the resource usage in the GAMS listing
file. Computational results for the models not considered in this section, and comparisons
of the PATH solver to other MCP algorithms, are found in [8].

We consider first the optimal control problem described in Section 3.6. This problem
can be expressed and solved as both an MCP or a QP; we have taken both approaches in
solving this problem. In our computational tests, we have solved a single continuous time
problem with 8 control and 8 state variables and 8 dual control and 8 dual state variables.
By varying the number of points /N in the discretization of the continuous interval, we vary
the problem size. The table below shows the times required to solve the problem for different
values of N. The MCP’s were solved using the PATH solver, while the QP’s were solved
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using GAMS/MINOS 5.3 with the default parameters. The solution times and pivot counts
were obtained by averaging the results of several runs using different random number seeds.
A time limit of 10 hours was placed on all the runs, as the larger problems were not solvable

using MINOS.

Table 2: Solution Times - Optimal Control Model

MCP QP
N size nonzeros | pivots | time (sec) size time
15 512x512 8448 220 12 257%x641 54
31 10241024 17152 432 45 513 %1281 953
127 | 4096 %4096 69376 1828 717 2049x5121 | 28423
255 | 8192x8192 139008 | 3967 3550 na na
350 | 11232x11232 | 190687 | 5549 7417 na na

Table 2 illustrates the effectiveness of the PATH solver in solving large complementarity
problems, and also provides further evidence for the validity of the MCP model. In the case
of the ELQP given in Section 3.6, the QP formulation has proven much more difficult to

solve than an equivalent formulation as an MCP.

Table 3: Solution Times - Obstacle Model A

MCP

N | v size nonzeros | pivots | time (sec)
75 | £ | 5625x5625 | 28124 2123 544

75 | e | 5625x5625 | 28124 3505 2713

Table 4: Solution Times - Obstacle Model B

MCP

N | v size nonzeros | pivots | time (sec)
75| £ | 5625x5625 | 28124 6367 2692
75| u | 5625x5625 | 28124 4835 1623
75 W"T“l 5625x5625 | 28124 1455 1202
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Table 5: Solution Times - Obstacle Model C

MCP

N | v size nonzeros | pivots | time (sec)
75 4 5625x5625 | 28124 6205 3073
75| uw | 5625x5625 | 28124 5047 1850
75 ng;y) 5625%x5625 | 28124 1942 1782

The MCP arising from the obstacle problem considered in Section 3.7 was solved using
the PATH solver for N = 75 and with the obstacles A, B, and C, where the lower and upper
bounds for obstacle A are

ve(z,y) = sin(3.2z) sin(3.3z), wvu(z,y) = 2000,
for obstacle B,
ve(z, y) = (sin(9.2z) sin(9.32))°%, wvu(z,y) = (sin(9.22) sin(9.3z))* + .02,
and for obstacle C,
velz,y) = (162(1 — 2)y(1 — ), vulz,y) = (162(1 — z)y(1 — y))* + .01

The data in Tables 2, 3, 4, and 5 indicate that the PATH solver performs a large number of
pivot steps when solving these large problems. This is to be expected: the pivotal techniques
employed by the PATH solver place it among those QP solvers which use an active set
strategy. For solvers that add or subtract one constraint at a time from the active set, the
number of pivots required is bounded below by the difference in size between the optimal
and initial set of active constraints. This bound can be expected to grow with the size of
the problem, as is seen in the computational examples presented in Table 2.

Table 6: Solution Times - EHL Model

N o A po | major | pivots | time (sec)
100 | 2.832 | 6.057 | hertz 6 89 20
100 | 3.746 | 9.889 | hertz 21 927 98
100 | 4.477 | 9.692 | hertz 13 381 02

The nonlinear nature of the elastohydrodynamic lubrication model makes it particularly
amenable to solution by the PATH solver. The stabilization techniques used by this solver
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enable the solution of models representing high load and speed with a minimum amount of
dependence on the starting point used. Table 6 gives the solution times, major iterations
and total pivots used to solve the EHL model for the indicated values of the parameters «
and ). The parameter values represent increasing load and speed conditions for the bearing
being modeled. The starting points were all taken to be the solution to the Hertzian (dry)
case. It was not necessary to use solution points for lower values of o and A as initial points
when solving for higher parameter values, as was done by Kostreva in [19].
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