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Abstract

Future parallel computers must efficiently execute not
only hand-coded applications but also programs written in
high-level, parallel programming languages. Today’s
machines limit these programs to a single communication
paradigm, either message-passing or shared-memory,
which results in uneven performance. This paper addresses
this problem by defining an interface, Tempest, that
exposes low-level communication and memory-system
mechanisms so programmers and compilers can customize
policies for a given application. Typhoon is a proposed
hardware platform that implements these mechanisms with
a fully-programmable, user-level processor in the network
interface. We demonstrate the utility of Tempest with two
examples. First, the Stache protocol uses Tempest’s fine-
grain access control mechanisms to manage part of a pro-
cessor’s local memory as a large, fully-associative cache
for remote data. We simulated Typhoon on the Wisconsin
Wind Tunnel and found that Stache running on Typhoon
performs comparably (+30%) to an all-hardware DiryNB
cache-coherence protocol for five shared-memory pro-
grams. Second, we illustrate how programmers or compil-
ers can use Tempest’s flexibility to exploit an application’s
sharing patterns with a custom protocol. For the EM3D
application, the custom protocol improves performance up
to 35% over the all-hardware protocol.

1 Introduction

Consensus is emerging on two aspects of massively-
parallel supercomputing. At the application level, these
systems increasingly will be programmed in high-level
parallel languages—such as HPF [17]—that support a
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shared address space in which processes uniformly refer-
ence data. At the lowest level, the machines are converging
on workstation-like nodes connected by a point-to-point
network. Unfortunately, no consensus has emerged on the
communication model-—shared memory or message pass-
ing—for parallel languages.

Current parallel machines take an all-or-nothing
approach to providing a shared address space. Message-
passing machines, such as the Thinking Machines CM-5
[44] and Intel Paragon [20], have no hardware support, so
compilers for these machines synthesize a shared address
space by generating code that copies values between pro-
cessors in messages. In the best case, this approach per-
forms well and efficiently uses a machine’s memory and
communications network. Unfortunately, the approach
relies on static program analysis and performance degrades
dramatically when a compiler (or programmer) cannot
fully analyze a program.

On the other hand, shared-memory machines, such as
the Kendall Square KSR-1 [21] and Stanford DASH [27],
implement cache-coherent shared-memory policies and
mechanisms entirely in hardware. Although these
machines share a common hardware base with message-
passing machines (workstation-like nodes and point-to-
point message passing), compilers for shared-memory
machines have been constrained to use memory loads and
stores for communication, even when static analysis could
identify better approaches [24].

This paper describes Tempest and Typhoon. Tempest is
an interface that permits programmers and compilers to use
hardware communication facilities directly and to modify
the semantics and performance of shared-memory opera-
tions. It enables an application’s user-level code to support
shared memory and message passing efficiently, along with
hybrid combinations of the two. Typhoon is a proposed
hardware implementation of this interface.

At one extreme, programs with coarse-grain, static com-
munication can send messages. Tempest does not impose
shared-memory overhead on these message-passing pro-
grams. At the other extreme, programs with unanalyzable,



dynamic behavior can rely entirely on transparent shared-
memory using the Stache protocol constructed on Tempest
(see Section 3). Stache employs part of each processor’s
local DRAM memory as a large, fully-associative “level
three cache,” similar to the caches in cache-only memory
architecture (COMA) machines. Unlike the extensive, cus-
tom hardware in a COMA machine, Stache runs in user-
level software using the Tempest interface.

However, the real benefits of Tempest lie between these
extremes, where programmers and compilers implement
hybrid protocols that exploit an application’s semantics to
improve performance. For example, computing on
dynamic, irregular grids requires run-time support, since a
grid’s structure is unknown at compile time. Software
inspector-executor schemes incur large overheads to deter-
mine communication patterns. Transparent shared memory
incurs large overheads to communicate modified values by
invalidating and re-requesting them. In a hybrid protocol, a
programmer or compiler could use Tempest’s mechanisms
to detect remote accesses dynamically, thereby eliminating
most of the inspector. Furthermore, a delayed update proto-
col, similar to the one implemented for EM3D (Section 4),
can eliminate non-essential communication by transmitting
only modified values.

The Tempest interface defines an efficient set of mecha-
nisms that compilers and run-time systems can use to
implement shared-memory policies. User-level access to
these building blocks is essential because the range of
future applications, algorithms, data structures, and optimi-
zations is impossible to anticipate. With the user-level
facilities provided by Tempest, a programmer or compiler
can tailor memory semantics to fit a particular program or
data structure, much as RISC processors enable compilers
to tailor instruction sequences for a particular function call
or data reference [46].

Tempest contains the following four types of user-level
mechanisms:

e Low-overhead messaging, which permits the fast com-
munication fundamental to the performance of many
parallel programs.

e Bulk data transfer, which allows large data transfers to
overlap computation.

¢ Virtual memory management, which enables a compiler
or run-time system to manage a program’s address
space efficiently and to migrate and replicate data with-
out renaming.

e Fine-grained memory access control, which permits

efficient run-time detection of memory access patterns
and enforcement of memory consistency.

Typhoon is a proposed implementation of Tempest that
provides hardware support for these mechanisms using a

network interface device (dubbed the NP), which contains
a fully-programmable, user-level processor. This processor
is invoked either upon receipt of a message or by a local,
fine-grain memory access fault. In either case, the NP pro-
cessor uses a hardware-assisted dispatch mechanism to
invoke a user-level procedure to handle the event. Protec-
tion is maintained by running the network interface proces-
sor in user mode and translating all addresses through a
standard translation lookaside buffer (TLB).

We have implemented a virtual prototype of Typhoon
using a modified version of the Wisconsin Wind Tunnel
[36]. Existing shared-memory programs only need to be
linked with the Stache library to run on Typhoon. Measure-
ments of five benchmarks indicate that Stache performs
comparably (£30%) to a conventional, all-hardware
DiryNB shared-memory system, despite Typhoon’s greater
flexibility. Furthermore, we show how customizing shared
memory semantics to exploit sharing patterns can improve
performance significantly. The EM3D application [7] runs
up to 35% faster with a customized user-level protocol than
on the all-hardware shared-memory system.

In the next section, we present the user-level communi-
cation and memory management mechanisms that com-
prise the Tempest interface. Section 3 shows how these
mechanisms support transparent shared memory in the
Stache protocol. Section 4 uses the EM3D application to
illustrate the potential of user-customized memory seman-
tics. Section 5 presents the detailed design of Typhoon,
which illustrates the hardware necessary to implement the
user-level mechanisms efficiently. Section 6 presents simu-
lation results comparing Typhoon, using both Stache and a
customized protocol, to an all-hardware shared-memory
implementation. Finally, Section7 surveys related work
and Section 8 presents our conclusions.

2 Tempest: An Interface for User-Level
Shared Memory

This section describes Tempest, a parallel machine
interface that consists of four types of user-level mecha-
nisms—Ilow-overhead messages, bulk node-to-node data
transfers, virtual memory management, and fine-grain
access control—that we believe are both necessary and suf-
ficient to implement the full range of shared-memory
semantics in user-level software.! Fine-grain access con-
trol is an unusual mechanism, but is essential for transpar-
ent shared memory. All mechanisms are accessible from a
user-level program.

Tempest can be realized in a variety of ways. Typhoon
implements these mechanisms with a custom network
interface processor. Other hardware implementations are,

1. We are investigating adding a set of synchronization primitives, to
allow aggressive hardware implementations of common operations.



however, possible. Tempest can also be implemented in
software for existing machines. We are currently investi-
gating a “native” version for the CM-5. By abstracting
from the implementation details, the Tempest interface
provides portability between these different systems.
Section 3 shows how software can use these mecha-
nisms to support transparent shared-memory semantics
using the Stache protocol. Section 4 presents an example
hybrid protocol, which exploits the sharing patterns of the
EM3D application to improve performance. Section 5
describes Typhoon, an implementation of these mecha-
nisms under current technical and economic constraints.

2.1 Low-Overhead Messages

Parallel machines typically communicate with point-to-
point messages. Low overhead messages are fundamental
to the performance of most programming models. The
Active Messages model, where a message specifies a user-
level handler to be invoked on its reception, provides an
efficient building block for many paradigms, including
shared memory [45]. With user-level access to fast mes-
sages, compilers can exploit the statically-determinable
properties of data structures and program communication
by explicitly communicating values. In addition, low-
latency message handling is critical for transparent shared
memory performance.

In Tempest, a processor sends a message by specifying
the destination node, handler address, and data. The arrival
of the message at its destination creates a thread that exe-
cutes the handler, using the remainder of the message as
arguments. Each handler executes atomically with respect
to other message handlers, reducing synchronization
requirements.

Our message model differs from similar systems
[8,9,34] in that our message threads logically run concur-
rently with the primary computation thread. As in systems
in which message handlers interrupt the main thread,
shared resources must be protected; however, critical sec-
tions are sufficient since truly concurrent threads do not
suffer from a “priority inversion” problem [41].

2.2 Bulk Node-to-Node Data Transfers

When compilers can fully analyze a program’s commu-
nication pattern, they can improve performance by exploit-
ing hardware mechanisms to overlap communication with
computation. Furthermore, transferring bulk data via
explicit messages is more efficient than using shared mem-
ory [23]. In Tempest, a processor initiates a bulk data trans-
fer much like it would start a conventional DMA
transaction, by specifying virtual addresses on both source
and destination nodes. The transfer executes asynchro-
nously with the computation thread. Completion of a trans-
fer can be detected either by polling or with an interrupt.

2.3 Virtual Memory Management

Data replication and migration is required to eliminate
unnecessary remote memory accesses. For dynamic and
pointer-based data structures—for example, the tree used
in the Barnes-Hut N-body simulations [4]—this replication
and migration must be managed transparently at runtime.
User-level memory management has two components: vir-
tual address space management and access control. The
mechanisms in this section enable user-level code to man-
age its address space. The next section describes mecha-
nisms for access control.

Our memory model is a conventional flat, paged address
space for each processing node. The operating system can
reserve regions for conventional logical segments. A paral-
lel process consists of a single address space per node, each
with a private copy of the text segm@nt1 and private stack
and heap segments (a single-program multiple-data
model). A separate shared heap segment consists of a large
user-reserved address range. Tempest relies on user-level
code to provide semantics for accesses to this segment. The
compiler or run-time library explicitly allocates physical
memory pages at specified virtual addresses in this seg-
ment. Once allocated, these pages can be remapped or
unmapped and freed. An access to an unmapped page or a
write to a read-only page suspends the current computa-
tional thread and invokes a user-level handler. This mecha-
nism provides a coarse-grain method for managing large
pieces of the shared address space.

2.4 Fine-Grain Access Control

Memory access control is fundamental to transparent
data replication. A runtime system must be able to track
multiple copies of a datum to prevent unintentional inco-
herence. The access-control mechanisms must permit reads
and writes to a local datum, permit reads but not writes,
prevent both reads and writes, and transfer control to user-
level code on an access violation. Virtual memory systems
typically provide this form of access control [2]. The
coarse granularity of their page-based mechanisms, how-
ever, is a poor match for many applications. In addition,
access to page tables is typically an operating system privi-
lege, so user-level changes incur a system call. User-level
shared memory requires access control that is both fine
grained and fast.

In our model, fine-grain access control is provided by
tagged memory blocks. Every memory block-—an aligned,
power-of-two-sized region of memory, typically 32-128
bytes long—has an access tag of ReadWrite,
ReadOnly, or Invalid that specifies which types of
accesses are permitted. Tempest defines nine operations on
memory blocks, listed in Table 1.

1. The system could provide transparent shared-memory semantics for
text, but we ignore that here.



TABLE 1. Operations on tagged memory blocks.

Operation Description

read Load with tag check; if access fault, sus-
pend thread and invoke handler

write Store with tag check; if access fault, sus-

pend thread and invoke handler

force-read Load without tag check

force-write Store without tag check

read-tag Return value of tag

set-RW Set tag value to ReadWrite

set-RO Set tag value to ReadOnly

invalidate Set tag value to Invalid and invali-
date any local copies

resume Resume suspended thread(s)

A processor’s loads and stores translate to read and
wr ite operations on the corresponding memory block. A
read or write on a ReadWrite block or a read on a
ReadOnly block completes normally. However, an access
to an Invalid block or a write on a ReadOnly block
causes a block access fault, which is similar to a page fault.
The faulting thread is suspended and a user-level handler
invoked. The handler takes whatever actions are necessary
to make the access permissible; it then updates the tag and
restarts the access using resume.

3 User-Level Transparent Shared Memory

Efficient transparent shared memory involves replicat-
ing remote data to ensure that subsequent accesses are local
and maintaining coherence between the multiple copies.
Traditionally, the replication and coherence policies are
both implemented in hardware, sometimes assisted by sys-
tem software. This section describes a user-level transpar-
ent shared memory implementation that uses a new
replication policy called Stache together with a conven-
tional invalidation coherence protocol. The next section
uses an application-specific coherence protocol, in con-
junction with Stache, to improve the performance of an
application. Section 6 presents performance results for
these protocols running on the Typhoon system (described
in Section 5).

Stache uses part of each processing node’s local mem-
ory to replicate remote data. In effect, Stache uses this local
memory as a large second- (or third-) level, fully-associa-
tive data cache, which eliminates much of the network traf-
fic caused by capacity and conflict misses in smaller
hardware caches [19]. For applications in which a proces-
sor manipulates data too large to fit in the hardware cache,
but small enough to fit in local memory, Stache offers a
large advantage over conventional directory-based shared-

memory machines, which return a cache block to its home
node on cache replacement [42]. COMA systems share this
advantage, but require complex hardware support.

Stache is a user-level library that exploits the Tempest
mechanisms. This library contains a page-fault handler,
message handlers, block-access-fault handlers, and shared-
memory allocation functions. It maps virtual addresses of
shared data to local physical memory at page granularity,
but maintains coherence at the block level.

To create a shared page, the home node processor allo-
cates per-block directory structures (described below) and
maps the physical page to the desired virtual address. It
also initializes the block access tags to ReadWrite and
associates the home node’s ID with the virtual page in a
distributed mapping table. As long as data on this page is
not cached by another node, the home node can access it
(and cache it in its hardware cache(s)) without software
intervention.

When a node first accesses a shared page on a remote
(non-home) node, the reference invokes a user-level page
fault handler. This handler allocates a new physical page (a
stache page), maps it at the shared virtual address, and ini-
tializes the block access tags to Invalid. The home
node’s ID is found in the distributed table and cached in a
local table. The handler then restarts the application at the
faulting access. The restarted instruction now causes a
block access fault because of the referenced block’s
Invalid tag. The thread is again suspended and a block
access fault handler runs. The handler retrieves the home
node’s ID from the local table, sends a request for the
block, and terminates.! At the home node, the request mes-
sage invokes a handler that performs the appropriate coher-
ence actions and returns the data. (If invalidations are
required, the handler for the final invalidation acknowledg-
ment actually sends the data.) When the response arrives
from the home node, the message handler writes the data
into the allocated page (with a force-write to bypass
the tag check), changes the block’s access tag (to Rea-
donly or ReadWrite), and restarts the suspended
thread. This time, the access completes and fetches the data
into the CPU’s cache.

Future accesses to the “stached” block complete at hard-
ware speed. Since the page is mapped, but all other blocks
are tagged ITnvalid, an access to another block on the
page directly invokes a block access fault handler.

The scenario is similar on the home node, except that all
blocks are initially ReadWrite and are downgraded to
ReadOnly or Invalid as remote nodes request read-
only or exclusive copies. Home block access fault handlers
bypass sending requests and directly access directory data.

1. The remote request could be sent from the page fault handler, but this
would require duplicating code from the block access fault handler. The
performance gain does not justify the software maintenance overhead.



The Stache replication policy is independent of the
coherence protocol. Our default coherence protocol is sim-
ilar to the LimitLESS protocol [5], except that it is imple-
mented entirely in software rather than partially in
hardware. Specifically, the protocol preallocates 64 bits per
cache block—to minimize bitfield operations, it allocates
two bytes for state and six one-byte pointers. If more than
six pointers are required, the current implementation uses
the first four pointers as a bit vector. For systems larger
than 32 nodes, the four node pointers contain the address of
a larger auxiliary data structure.

When the Stache page fault handler cannot allocate a
page, it must replace an existing stache page. In this case
the handler invalidates all blocks within the page, sending
modified data back to its home, and remaps the page at the
new virtual address. Stache currently implements a simple
FIFO replacement policy, since replacements are rare.

4 Custom User-level Shared Memory

To illustrate the benefits of a user-level, application-spe-
cific memory system, we implemented a new coherence
protocol for the irregularly-structured EM3D application.
EM3D models electromagnetic wave propagation through
three-dimensional objects [7]. This program’s principle
data structure is a bipartite graph, in which E nodes repre-
sent electric field values and H nodes represent magnetic
field values. Each iteration consists of two steps: first, new
values are computed for the E nodes as a weighted sum of
their neighboring H nodes; then the H nodes are updated
based on the new E node values.

Program 1 illustrates the code to update the E nodes.
For load balancing and to minimize communication, nodes
are allocated evenly across the processors and each proces-
sor updates its local nodes (i.e., owners compute rule). For
each local e_node, a processor fetches the values of
neighboring h_nodes, which may be either local or
remote.

Under transparent shared memory, this program incurs
unnecessary comimunication. Each time an e_node is
updated, the coherence protocol invalidates outstanding
copies. But in the next step, each processor refetches the
invalidated e_nodes to compute values for its local
h_nodes. Thus in each iteration, a remote e_node (or
h_node) will be fetched, cached, and invalidated, which
requires at least four messages (i.c., request, response,
invalidate, and acknowledge). Prefetching can hide com-
munication latency, but does not reduce the message traf-
fic. Check_in operations, which flush a block from a
processor’s cache [18], cut communication and latency by
replacing the invalidation/acknowledgment with an asyn-
chronous notification, but cannot attain the minimum of
one message. In addition, these operations introduce addi-
tional computation that increases program overhead.

typedef struct e_node (

double value;

int edge_count ;
double *weights;
double *(*h_nodes) ;

struct e_node *next;
} e_node_t;

void compute E()

{
e_node_t 115
int i;

for (n = e_nodes; n != NULL; n = n->next)
for (i = 0; i < n-»edge_count; i++)
n->value -= n->h_nodes[i]->value
* n->weights[i];
barrier();

Program 1: Shared Memory EM3D.

Ideally, at the end of a step, each processor would send
its updated e_nodes (h_nodes) to the processors that
need them. Using Tempest, we customized the Stache
coherence protocol for EM3D. We use a delayed update
protocol in which cache blocks become inconsistent within
a step and are explicitly updated at the step’s end. We intro-
duce two new page types—a custom home page and a cus-
tom Stache page—and allocate graph nodes on the custom
home pages. The customized Stache handlers are similar to
the default handlers, except that they keep count of the
number of stached e_nodes (h_nodes). The new home
node handlers maintain a list of all outstanding e_node
(h_node) copies. Because the program employs the own-
ers compute rule, we can replace the barrier in Program 1
with a function that traverses the e_node (h_node) list
and sends modified values. Because the handler is specific
to EM3D, only the value field is sent, rather than the
entire cache block.

In addition, this protocol does not require acknowledg-
ments of update messages. Every processor knows how
many remote graph nodes it has stached, and simply counts
the updates and waits until they all arrive. The processors
still must synchronize to ensure that graph nodes are not
updated early, but this constraint is easily implemented as a
fuzzy barrier in the handlers. By eliminating most synchro-
nization and all invalidation traffic, the user-level coher-
ence code attains near-minimum communication. In effect,
this approach combines the communication efficiency of
message passing with the low overhead and programming
simplicity of shared memory [24].

Of course, the simple EM3D application could also be
implemented efficiently with pure message passing, by a
software inspection step that explicitly allocates space for
remote nodes and builds an update list [7]. This approach is
feasible because the graph is static and the inspector over-
head can amortized over many iterations. However, in
other codes the inspector cannot be moved out of the main
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loop. Furthermore, inspector-executor schemes are com-
plex to implement [22,38,37]. Finally, a custom coherence
protocol does not require extensive program modifications,
unlike the software caching and updating in the message-
passing version [7].

Although any protocol could be implemented in hard-
ware (or system software [23]), system designers cannot
anticipate the full range of protocols that programmers and
compilers will devise. System-level protocols face a diffi-
cult choice between generality and specificity: a protocol
general enough for many sharing patterns may not be opti-
mal for any of them, but a protocol tailored to a specific
pattern may not support others. Instruction set designers
have learned to implement primitives, rather than solutions
[46]. Memory systems should also provide mechanisms
that compilers can compose into efficient solutions.

5 Typhoon: A User-Level Shared-Memory
System

This section describes Typhoon, a system designed to
implement Tempest’s user-level memory mechanisms.
This implementation has the following goals:

o to demonstrate the feasibility of implementing the
mechanisms within current technological and practical
constraints;

e (o illustrate the hardware support needed to implement
user-level mechanisms efficiently and to accelerate the
common cases; and

e to provide a detailed design that can be simulated to
obtain concrete performance results.

Typhoon consists of homogeneous, workstation-like
processor/memory nodes connected by a high-bandwidth,
low-latency point-to-point network (see Figure 1). For eco-
nomic reasons, commodity components are used for the
processor, bus, memory controller, and DRAM. Specifi-
cally, each Typhoon node has a SuperSPARC processor
connected to a level-2 MBus [31].1 The one custom com-
ponent is the network interface device—the network inter-

1. However, the basic design should work with any coherent bus using an
ownership protocol and cache-to-cache transfers.

MBus Interface
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|
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Block|| Dis-
Network I/F Unit || Ctrl

FIGURE 2. NP Block Diagram. RTLB denotes the reverse
TLB; BXB is the block transfer buffer; the BAF buffer holds
information on block access fauits.
face processor (NP)—that connects to the shared bus to the
network, as itlustrated in Figure 2.

Typhoon’s network architecture is based on that of the
Thinking Machines CM-5 [26], but with a larger maximum
packet payload (twenty 32-bit words rather than the CM-
5’s five). The only aspects of the network that are signifi-
cant in this context are that it provides two independent vir-
tual networks for deadlock avoidance and that it can be
context-switched between user processes.

The following subsections describe how Typhoon
implements the message support, bulk data transfer, mem-
ory management, and fine-grain access control of the Tem-
pest interface described in Section 2.

5.1 Low-Overhead Messages

The network interface processor (NP) is not simply a
passive network device, as illustrated in Figure 2. It con-
tains a full SPARC integer processor, taken from a previ-
ous-generation SPARC design, with instruction and data
caches to enhance performance and a TLB to allow virtual
addressing. The processor is closely coupled to the net-
work interface, which enables rapid handling of incoming
messages.

Although coupling a network interface tightly to the pri-
mary processor can decrease end-to-end message latencies
[16,9], any advantage is outweighed by the cost of chang-
ing the processor, which precludes leveraging off the tre-
mendous investments in commodity components. On the
other hand, decreasing message latency and reducing pri-
mary-processor interrupts justifies the investment in some-
thing larger and more complex than a passive network
device. As commodity microprocessors become more
aggressively superscalar, the overhead of interrupts or poll-
ing increases to unacceptable levels. Separating message
handling on a distinct processor frees the primary proces-
sor for computation. Because the NP does not require state-
of-the-art computation, a previous-generation integer core
with a network interface on its cache bus is sufficient. A
custom processor with tightly integrated messaging would
provide even better performance, but it is not clear that the
benefit justifies the additional design time and complexity.



Typhoon’s send and receive queues are memory-
mapped on the cache bus, so single-cycle loads and stores
can transfer 32 bits between a queue and a general purpose
NP register. A block transfer unit, also on the cache bus,
can asynchronously transfer 32 bytes between a queue and
an aligned address. The processor initiates a block transfer
by storing the address to a control register, where the regis-
ter address also encodes the transfer direction. A block
transfer that misses in the data cache uses a separate 32-
byte block transfer buffer to take advantage of MBus block
transfers and maintain coherence with the local CPU cache
without polluting the NP data cache.

The NP initiates a message send by storing the destina-
tion node ID to a memory-mapped register. Data words are
moved to the send queue using stores or block transfers.
The end of the message is signaled by a low-order bit in the
register address. On the receiver, the first data word is
interpreted as the receive handler PC, as in Active Mes-
sages [45]. The receive handler must pull the remainder of
the message from the receive queue.

Scheduling on the NP is performed by a hardware-
assisted dispatch loop [16]. The dispatch hardware con-
structs a handler PC in a dedicated register either by taking
the first word of an incoming message or by using status
bits as an offset from a user-specified base. Handlers can be
prioritized or disabled via a user-accessible control register.
The software dispatch loop simply reads the value in this
register and jumps to it. If no action is required, the desti-
nation PC is the top of the loop itself. A handler terminates
by jumping to the dispatch loop. To eliminate the need for
synchronization between different handlers, scheduling
among user handlers is not preemptive. Once a message or
block access fault handler begins, it is run to completion.

The primary CPU can also send messages with mem-
ory-mapped stores across the MBus to a separate send
queue. As on the NP, the destination node and final data
word are distinguished by stores to distinct addresses. The
CPU and NP send queues share a single network port. The
primary CPU can send messages directly to its local NF,
short-circuiting the network.

The ability to run user code on the NP processor is criti-
cal to providing performance and flexibility, but it does not
come for free. The primary hardware cost is in the NP TLB
(and RTLB, discussed below). However, the real cost is the
design complexity of providing protected user-level access.
For example, an NP handler could encounter a page fault.
We avoid this problem by providing operating system calls
that permit an application to specify part or all of its mem-
ory as swapped, rather than paged, so it is guaranteed to be
in memory whenever the process is running. Thus an NP
page fault is a user programming error that causes program
termination. An alternate solution, taken in the Meiko CS-2
[30], NACKSs the message that caused the fault, and brings

in the page. However, a higher-level protocol must resend
the message after the page-in completes. We expect to
experiment with a combination of these schemes.

User-level handlers also complicate deadlock avoid-
ance. There are two separate issues. First, the system can-
not guarantee that every user protocol is deadlock-free, but
must ensure that deadlock in one user application does not
impact other users or the operating system. This is dealt
with by context-switching the buffers in the network, as in
the CM-5 [26]. Second, the system must provide sufficient
support that users can write efficient deadlock-free proto-
cols. Typhoon addresses this through a combination of
mechanisms. First, the two independent virtual networks
allow a pure request/response protocol to be deadlock-free
if requests are sent only on one net and responses can
always be processed. The scheduler gives lower priority to
one of the networks, so using this net for requests guaran-
tees that request handlers cannot starve response handlers.
Second, the user must provide a buffer large enough to
hold the message output of any single handler. If a send
queue fills, the hardware will redirect further stores to this
buffer transparently. This guarantees that any handler, once
started, can run to completion without waiting for a send
queue to empty. The user buffer is drained into the network
by software as queue space becomes available. Finally,
when either send queue is full, the scheduler invokes a
user-level status handler instead of directly scheduling
message handlers. The status handler implements a sec-
ond-level dispatch, and can examine the PCs of incoming
messages to decide whether they should be nacked, buff-
ered, or processed (buffering any resulting sends).

5.2 Bulk Node-to-Node Data Transfers

Bulk data transfers are performed on the NP, asynchro-
nously with respect to the primary CPU. Data must be
packetized before being injected into the network. A maxi-
mum-size twenty-word packet holds a receive handler PC,
a 32-bit address, and 64 bytes of data with two words to
spare for status or extended addressing. To avoid tying up
the NP, the data transfer thread suspends itself at regular
intervals or when a message is received. The scheduler
may be configured to invoke a status handler when either
of the send queues is empty and this handler will resched-
ule any waiting data transfer threads. The primary CPU ini-
tiates a transfer by sending a message to its own NP
containing either the transfer parameters or a pointer to the
parameters. Because both the send and receive handlers are
user code, they can be customized to implement arbitrary,
application-dependent scatter-gather operations.

5.3 Virtual Memory Management

Conventional paged virtual memory hardware is suffi-
cient to provide the needed user-level functions. The NP
and primary CPU both implement versions of the SPARC



reference MMU [31]. While the primary processor and the
NP may use separate page tables, they share a single table
in our current implementation. The operating system inter-
face is similar to that of [35].

5.4 Fine-Grain Access Control

As described in Section 2.4, the fine-grain access-con-
trol model provides access tags on memory blocks and
defines nine operations on these blocks. In Typhoon, the
read and write operations (the tag-checked accesses)
correspond to primary CPU cacheable loads and stores.
The NP enforces the tag semantics on these accesses and
implements the remaining operations.

Tag semantics are enforced by monitoring the CPU’s
MBus transactions. Read and write misses are seen as read
and read-invalidate transactions, respectively. A write to a
cached but unowned block results in an invalidate transac-
tion. Transactions involving ReadWrite blocks require
no NP intervention since the memory controller responds
with the data and the CPU acquires an owned cached copy.
A read on a ReadOnly block is similar, except that the
NP asserts the “shared” line to prevent the CPU from own-
ing its cached copy. All other accesses are block access
faults. The access is suspended by asserting the “inhibit”
line to prevent the memory controller from responding, ter-
minating the transaction with a “relinquish and retry” nack,
and masking the CPU’s bus request line to keep it from
retrying the access. Information about the fault is placed in
a buffer, where it is used by the NP dispatch hardware to
schedule the appropriate block access fault handler and is
accessible from the executing handler as well.

Because the NP monitors the node bus, it only observes
the physical addresses of primary CPU references. To
determine which, if any, action to take, the NP uses a
reverse TLB (RTLB), indexed by physical page number, to
determine the accessed block’s tag state quickly. Each
RTLB entry contains two bits for each 32-byte block in the
page which encode four states: ReadWrite, ReadOnly,
Invalid, and Busy. The first three correspond to Tem-
pest’s tag values. Busy has the same semantics as
Invalid, but is useful for higher levels to distinguish
blocks that require special handling, e.g. because they have
been prefetched. The RTLB entry also contains several
fields used to accelerate the invocation of a user-level
block access fault handler: the virtual page number, the
page mode, and 48 bits of uninterpreted state. The page
mode is a four-bit value that is used, in conjunction with
the access type (read or write) and access tag, to select the
fault handler PC. The additional state bits are typically
used for a 16-bit home node ID and a 32-bit pointer to an
arbitrary user data structure (e.g., for Stache home pages, a
vector of per-block directory structures).

All NP memory accesses bypass RTLB tag checking,
implementing the Tempest model’s force-read and

force-write operations. Tag reads and writes are per-
formed in the RTLB using memory-mapped operations,
The invalidate operation invalidates any CPU cached
copy via the MBus in addition to changing the access tag
value. The resume operation merely unmasks the CPU’s
bus request line so that it can retry any suspended transac-
tion.

Transactions that miss in the RTLB cause a “relinquish
and retry” nack and are retried after the appropriate entry
is fetched from memory. To improve the miss rate, an
RTLB entry can either tag a 4 KB physical page or indicate
a large region of physical memory that does not require
block tags, e.g. text or kernel areas.

6 Performance of User-Level Shared Memory

In this section we compare the performance of Typhoon
running the default invalidation-based Stache protocol
(denoted Typhoon/Stache) against a conventional, all-hard-
ware, directory-based DiryNB cache-coherence protocol.
Both systems are modeled using the Wisconsin Wind Tun-
nel, a parallel simulation system that runs on a Thinking
Machines CM-5 [36].1 Both target systems have 32 pro-

TABLE 2. Simulation parameters.

Common

CPU cache 4-way assoc., random repl.
Block size 32 bytes

CPU TLB 64 ent., fully assoc., FIFO repl.
Page size 4 Kbytes

Local cache miss 29 cycles

Local writeback 0 (assume perfect write buffer)

TLB miss 25 cycles

Network latency 11 cycles

Barrier latency 11 cycles

DirgNB Only

Remote cache miss 23 + 5-16 if replacement® +
(cycles) network/directory cost + 34

Remote cache inval-
idate (cycles)

8 + 5-16 if replacement

Directory op 16 + 11 if block rcvd + 5 per msg

(cycles) sent + 11 if block sent
Typhoon Only

NP TLB, RTLB 64 ent., fully assoc., FIFO repl.
(R)TLB miss 25 cycles

NP D-cache 16 Kbytes, 2-way assoc

NP I-cache 8 Kbytes, direct-mapped

a. A replacement costs 5 or 16 cycles for shared or exclusive
blocks, respectively.



cessing nodes and use latency parameters, listed in Table 2,
loosely based on the DASH prototype [28]. The network
Jatency is probably optimistic for future systems, but the
low value will tend to favor DirgNB by making Typhoon’s
overhead relatively larger.

Our simulation of Typhoon is accurate enough to run
SPARC binaries for both the primary CPU and the NP. The
Stache message and fault handlers are all written in C++
and compiled using gcc. Unaltered shared-memory pro-
grams are simply re-linked with the Stache runtime library.
We use a version of Fast-Cache [25] to rewrite executables
with instrumentation code that calculates instruction times,
implements the NP special operations, and simulates the
data caches and TLBs on both the primary CPU and the
NP.

The major limitations of the simulations are that they do
not accurately model network and bus contention, instruc-
tion cache behavior, stack references, and the difference in
the execution rate of the superscalar primary processor and
the simpler NP processor. Not modeling the NP instruction
cache has no impact since the sum of the current handlers
requires less than its 8 Kbyte capacity. We approximated
the last difference by charging a single cycle for each
instruction (plus memory system delays). This is nearly
correct for the simple integer core of the NP, but gives the
primary CPU a big boost since it executes many floating
point operations in the applications.

We evaluated these two systems using five benchmarks:
Appbt, a locally-parallelized version of the NAS bench-
mark [3]; Barnes, MP3D, and Ocean from the SPLASH
suite [40]; and a transparent shared-memory version of
EM3D (discussed in Section 4). Appbt is a computational
fluid dynamics program, which solves multiple indepen-
dent systems of non-diagonally dominant, block tridiago-
nal equations with a 5x5 block size. Barnes performs a
gravitational N-body simulation using the Barnes-Hut
algorithm. MP3D solves a rarefied fluid flow simulation
(e.g., a wind tunnel). Ocean is a hydrodynamic simulation
of a two-dimensional cross-section of a cuboidal ocean
basin. Each application was simulated for two data sets,
one significantly larger than the other (see Table 3). The
smaller data sets are scaled for a 4 Kbyte cache, as advo-
cated by Gupta, et al. [13], and fit entirely in the larger
caches.

Figure 3 summarizes the simulation results. It shows the
relative execution time of Typhoon/Stache versus DiryNB
(application execution time on Typhoon/Stache over its
time on DirgyNB). The results show that Typhoon/Stache
outperforms the conventional protocol by as much as 25%
for data sets that do not fit in the CPU’s primary hardware
cache. Typhoon/Stache can satisfy the resulting capacity
and conflict misses from local memory, while DirgyNB
must incur the overhead of additional remote accesses.
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1.5+~ k=3 small/16K
small/64K
1small/256K

0.5

Execution time relative to DiryNB

<
%
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O. 55
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FIGURE 3. Performance of Typhoon/Stache., Shorter

bars indicate better Typhoon/Stache performance. Legend

indicates data set size/CPU cache size.

TABLE 3. Application Data Sets.

Application Small Data Set Large Data Set
Appbt 12x12x12 24x24x24
Barnes 2048 bodies 8192 bodies
MP3D 10,000 mols 50,000 mols
Ocean 98x98 grid 386x386 grid
EM3D 64,000 nodes, 192,000 nodes,
degree 10 degree 15

Of course, the DiryNB results can be significantly
improved using careful data placement to ensure that most
misses are satisfied locally. Stenstrom, et al., show that a
“first touch” page placement strategy eliminates much of
the difference by allocating pages on the node that accesses
them first [42]. Page migration algorithms also help, as
does restructuring an algorithm to enhance locality [39].
However, most of these DiryNB improvements require
additional hardware, additional run-time overhead, or sig-
nificant effort by the applications programmer. The
Typhoon/Stache simulations required no modifications to
the existing applications.

The most important result in Figure 3 is that the gener-
ality of Typhoon does not significantly degrade transparent
shared memory performance, even in the worst case for
these benchmarks. Typhoon/Stache performs within 30%
of DiryNB (excluding Ocean, within 15%) even when the
data sets fit in the primary CPU’s hardware cache. This is
possible because, in the best case, the NP executes only 14
instructions to request a missing block, 30 instructions for
the remote node to respond with the data, and 20 instruc-
tions when the data arrives at the requesting node. The crit-
ical path is even shorter, since most bookkeeping is
performed after a message is sent.
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FIGURE 4. EM3D Update Protocol Performance
using the large data set (192,000 nodes, degree 15).

The real advantage for Typhoon comes from its flexibil-
ity, which enables compilers (and application program-
mers) to exploit knowledge of program behavior. As
discussed in Section 4, communication in the EM3D appli-
cation can be reduced to near-minimum using a customized
delayed-update protocol. The performance of this protocol
on Typhoon is displayed in Figure 3, where it is compared
to DiryNB and the default invalidation-based Stache proto-
col. The performance advantage of the custom protocol
increases as the fraction of edges that connect remote
nodes is increased so that at 50% remote edges, the custom
protocol outperforms DiryNB by 35%.

7 Related Work

The Tempest interface and Typhoon implementation
evolved from our previous work on the Wisconsin Wind
Tunnel [36], a parallel simulation system that runs on a
Thinking Machines CM-5. The Wisconsin Wind Tunnel
models cache-coherent shared-memory systems with a
Stache-like caching scheme that synthesizes fine-grain
access control from the CM-5’s error-correcting code
(ECC) bits. The Tempest interface generalizes these mech-
anisms and Typhoon provides first-class hardware support
for them.

Typhoon’s low-overhead messaging draws heavily on
message-driven systems for fine-grain computations
[8,9,33,34]. The NP’s message sending interface closely
follows the J-Machine’s [10], but uses memory-mapped
loads and stores instead of integrated instructions, and pro-
vides optimized block transfers. The NP’s receiving inter-
face is an “active” message model [8], in which the sender
explicitly specifies the address of the handler. Rather than
queuing the message in memory [10] or requiring polling
by the primary processor [8], our handlers are directly
invoked on a separate message processor, much like *T
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[33]. However, Typhoon provides a single, general-pur-
pose message processor per node, not a pair of specialized
co-processors like *T.

While the message models of these machines are simi-
lar, the proposed implementations differ. The fine-grain
research machines tightly integrated their network inter-
faces into the primary processor [34,9]. *T multiplexes its
logically separate coprocessors on a single RISC-like pro-
cessor [33]. Commercial machines typically implement
their network interfaces as a passive memory-mapped
device [26,20]. The Thinking Machines CM-5 reduces
message latency by mapping its interface at user-level,
thereby eliminating the need for system calls. The Meiko
CS-2 is similar to Typhoon since its tightly integrated net-
work processor is separate from the primary CPU [30].
However, the CS-2 is optimized for relatively long mes-
sages and provides no fine-grain access control support.
The Intel Paragon also provides a message processor, but
uses a standard i860 CPU and a passive network device
rather than tightly integrating the two [20].

Tagged memory, which Typhoon uses for fine-grain
access control, has been implemented in many earlier
machines. Machines for symbolic languages, such as Lisp,
use word-granularity tags to support run-time typing
[32,43]. Some parallel machines provide tags for fine-grain
synchronization [1,5]. The word-granularity tags in the J-
machine support shared-memory semantics [11], as well as
other functions, but do not provide the ReadOn1ly tag nec-
essary for replication. The IBM 801 and RS/6000 support
fine-grain access control by providing a “lock bit” per 128
bytes in their TLB entries. However, the single bit limits
them to two states, much like the Wisconsin Wind Tunnel
[6]. Typhoon is, we believe, unique in using a reverse-TLB
to provide tags for a commodity processor.

Tempest’s user-level memory management interface is
similar to Appel and Li’s user-level primitives [2]. Both
provide mechanisms to support distributed shared memory
[29]. The differences arise from Tempest’s fine-grain
access control.

The Stache memory-allocation policy bears strong simi-
larities to distributed shared memory systems [29].
Stache’s default page location algorithm is similar to IVY’s
fixed distributed manager algorithm, where pages are
assigned round-robin and the home nodes never change.
However, Stache also allows pages to be allocated on spe-
cific nodes and provides support to allow explicit page
migration. Stache differs from distributed shared memory
systems because its maintains coherence on a much finer
granularity.

Stache is also similar to Cache-Only Memory Architec-
tures (COMA). Both use the local main memory to cache
remote data [42]. However, COMA machines use complex
hardware and make all of local memory into a cache



[14,21], while Stache uses much simpler hardware and
only as much of the local memory as an application
chooses to use. The Swedish Institute of Computer Scien-
ces’s Data Diffusion Machine (DDM) [14] and Kendall
Square Research’s KSR-1 [21] use coherence protocols
fixed in hardware. Stache uses Typhoon’s tag mechanisms
to accelerate user-level software coherence algorithms.
DDM and KSR-1 are both hierarchical machines, with
hierarchical directory structures. Stache is flat, like Sten-
strom, et al.’s proposed COMA-F machine [42].

Recent research has begun focusing on supporting mul-
tiple paradigms in a single computer—by integrating
shared memory and message passing—and allowing a
compiler to select the model appropriate for a program or
data structure [24]. Frank and Vernon proposed message-
passing mechanisms for shared memory systems [12]. The
MIT Alewife system handles some cache coherence events
in software and allows shared-memory programs to send
explicit messages. Their preliminary results show that
some run-time operations, for example, task creation, are
more efficiently implemented with explicit messages than
shared memory [23]. The Stanford FLASH goes further
and replaces a hard-wired directory controller with a pro-
grammable controller that implements shared memory by
explicitly sending messages [15]. However, neither Ale-
wife nor FLASH provides protected, user-level interfaces
for these mechanisms, which limits programmers and com-
pilers to a predefined set of system-provided policies.

8 Conclusions

This paper describes a new approach to designing paral-
lel computers that is based on user-level software control
of the shared address space. Previous systems have imple-
mented shared address space policies in hardware, some-
times assisted by system-level software, which limits
flexibility and performance. The Tempest interface pro-
vides the four primitives—fast messages, bulk data trans-
fer, memory management, and fine-grain access control—
that enable a compiler or run-time library to implement or
customize communication and shared-memory operations
efficiently.

To make these ideas concrete, we described Typhoon,
an initial design of a system that implements the Tempest
primitives at low hardware cost. Processing nodes in
Typhoon are similar to those in existing message-passing
computers, except for an additional Network Interface Pro-
cessor (NP). The NP provides mechanisms that enable
user-level code to respond quickly to incoming messages
from the network and to cache misses or explicit requests
from the node processor.

We demonstrated this approach with a detailed simula-
tion of a new transparent shared-memory protocol based on
a new memory allocation policy called Stache. Although
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this system runs at user-level, it outperforms a complex
hardware directory protocol in the common case in which a
node’s working set exceeds its cache size and performs
competitively in other cases. In addition, we demonstrated
the benefits of user-level protocols by customizing the
coherence protocol for the EM3D application, thereby
improving its performance by 35%.
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