Experiments with Parallel Graph
Coloring Heuristics

Gary Lewandowski
Anne Condon

Technical Report #1213

February 1994

Experiments with Parallel Graph Coloring Heuristics

Gary Lewandowski *
Anne Condon'
Computer Science Department
University of Wisconsin at Madison

January 1994

Abstract

We report on experiments with a new hybrid graph coloring algorithm, which combines a parallel
version of Morgenstern’s S-Impasse algorithm [20], with exhaustive search. We contribute new test
data arising in five different application domains, including register allocation and class scheduling.
We test our algorithms both on this test data and on several types of randomly generated graphs.
We compare our parallel implementation, which is done on the CM-5, with two simple heuristics,
the Saturation algorithm of Brélaz [4] and the Recursive Largest First (RLF) algorithm of Leighton
[18]. We also compare our results with previous work reported by Morgenstern [20] and Johnson et
al. [13]. Our main results are as follows.

e On the randomly generated graphs, the performance of Hybrid is consistently better than the
sequential algorithms, both in terms of speed and number of colorings produced. However, on
large random graphs, our algorithms do not come close to the best colorings found by other
time-intensive algorithms such as the XRLF algorithm of Johnson et al. [13] and Morgenstern’s
tuned S-Impasse algorithm.

o Of the five types of test data, three are easily colored even by the simple RLF and Saturation
heuristics; one (the class scheduling data) is optimally colored by Hybrid but not by the simple
heuristics, and one appears to be very hard. However, it should not be concluded that coloring
is “easy” in most applications. In several cases, such as the class and exam scheduling graphs,
finding an optimal coloring is not sufficient to solve the problem at hand, but rather colorings
satisfying additional restrictions are really needed.

¢ The Hybrid algorithm parallelizes well. This appears to be for three main reasons. First, the
mumber of iterations needed by the S-impasse decreases as the number of processors increase.
Second, in the exhaustive search algorithm the work involved in expanding the search tree is
effectively shared among the processors. Third, on some tests, the S-Impasse and Exhaustive-
Search procedures progress in a symbiotic fashion, one using a good coloring obtained by the
other as a basis for further improvement.

Overall, we are satisfied that our parallel algorithm effectively exploits the processing power of
the CM-5, and that further work on a hybrid algorithm can lead to even better results. Since the
performance of all the implemented algorithms on random graphs does not correlate well with their
performance on application data, we conclude that further effort spent in collecting application data
is well justified, and suggest that new generators, which model the structure of application data, be
investigated.

*lewandow@cs. wisc.edu. Work supported by NSF grants numbers CCR-9257241 and DCR-9208639
t condon@cs.wisc.edu. Work supported by NSF grant number CCR-~9257241

1 Introduction

A classical problem in graph theory, the graph coloring problem is to color the nodes of an undirected
graph with as few colors as possible, such that no adjacent nodes share a color. The earliest reference
to the problem is the conjecture of Guthrie in 1852 that all maps (planar graphs) can be colored using
no more than four colors. Subsequent work on that problem not only spurred the development of graph
theory, but ultimately led to the famous four-color theorem of Appel and Haken [1], based on an extensive
computer search.

Graph coloring has many uses beyond map coloring, and one would expect that computers can be
used to solve not just the four-color problem, but general graph coloring problems. It is an abstraction of
time-tabling problems, in which lists of courses desired by students are given, and the minimal number
of class periods such that all students can take their desired courses must be determined (de Werra
[7], Leighton [18], Opsut and Roberts [21]). Garey, Johnson and So [8] showed that graph coloring can
be used for short circuit testing for printed circuits. Chaitin [5, 6] reduced register allocation to graph
coloring and used it in a compiler. Poole and Ortega [22] showed how to use graph coloring to decompose
matrices used to solve sparse systems of linear equations; the decomposition gives a method for easy
parallelization of the solution.

Given the practical importance of the graph coloring problem, it is unfortunate that, in theory
at least, the cards are stacked against the designer of graph coloring algorithms. Not only is it NP-
complete to determine if a graph can be colored with a given number of colors [15], but it is also hard
even to approximate the chromatic number of a graph. Lund and Yannakakis [19] proved that for
some € > 0, approximating the chromatic number within a factor of n¢ is NP-hard. The best known
approximation algorithm, due to Halld6rsson [12], provides an extremely poor performance guarantee
of O(n(loglogn)?/(logn)®) for an n-node graph. (The performance guarantee is the maximum ratio,
taken over all inputs, of the number of colors used over the chromatic number).

On the other hand, the results of Grimmet and McDiarmid [10] on coloring algorithms for random
graphs offer the algorithm designer some reason for optimism. They consider random graphs such as
the G, graphs, which have n nodes, where each pair is connected with independent probability p.
Their algorithms run in polynomial time and expect to use no more than 2x(G) colors, where x(G)
is the chromatic number. However, the hidden constants in the running times make their algorithms
prohibitively expensive in practice. Also of course, there is no guarantee that algorithms which work
well on random graphs will also work well on data arising from real applications.

There is a fairly extensive body of literature on experimental graph coloring algorithms. These have
been tested primarily on random graphs, such as the G, graphs mentioned above. One of the simplest
coloring algorithms is the Saturation algorithm of Brélaz [4]. It is based on the following principle: the
vertex which is adjacent to the greatest number of differently-colored neighbors is colored first, with a
new color if necessary. Thus, if ever the color of a vertex is forced, that is, there is at most one possible
choice from the current set of colors, that vertex is colored first. Another example of such a “successive
augmentation” algorithm is the Recursive Largest First (RLF) algorithm, proposed by Leighton [18]
when studying the exam scheduling problem at Princeton. This algorithm colors the vertices one color
class at a time, adding vertices one at a time to the current color class so as to reduce as much as possible
the number of edges left in the uncolored subgraph.

These two algorithms have very efficient implementations, but as we will see, do not produce very
~ good colorings on standard test data. Johnson et al. [13] pushed the successive augmentation approach
much further with the XRLF algorithm, which is essentially a semi-exhaustive version of Leighton’s RLF

algorithm, based on ideas of Johri and Matula [14]. The XRLF algorithm finds better colorings than the
simpler successive augmentation algorithms on random G, , graphs, but takes significantly more time
and is beaten by the simpler Saturation algorithm on other randomly generated classes of graphs.

A quite different approach has been taken with iterative improvement algorithms, which include the
simulated annealing algorithm of Johnson et al. [13], the Tabu Search algorithm of Glover [11] and the S-
Impasse algorithm of Morgenstern [20]. Briefly, iterative improvement algorithms differ from successive
augmentation algorithms in that the colors of individual nodes may change several times over the course
of the algorithm. Of the iterative improvement algorithms, Morgenstern reports the best results for the
S-Impasse algorithm. However, there are several parameters in this algorithm that need to be tuned for
different problem instances. We describe his algorithm in more detail later, as our approach is based on
his.

Based on reports of this previous work, we draw the following conclusions. It is hard to design a
“robust” graph coloring algorithm, that is, one which works well on a wide range of inputs: none of the
current approaches clearly dominates the others. The best algorithms, such as XRLF or S-Impasse, are
quite sophisticated, with several parameters that need to be tuned, based on knowledge of the input,
or by trial and error. Moreover, in order to get good results, sequential implementations take several
hours on a standard workstation, even on relatively small graphs of 1,000 nodes or less, and the time to
reduce the size of a coloring by 1 increases greatly as better colorings are found. Finally, there is little
experimental work on data from real applications of graph coloring.

One natural approach towards overcoming the limitations of previous algorithms is with a parallel
implementation, and this is the approach we take in this project. The potential for good speedup is clear.
A MIMD environment also provides one way to achieve robustness, namely to run different algorithms
on different processors and to take the best solution found. This hybrid approach has the potential for
the whole to be greater than the sum of the parts. For example, the different algorithms can progress in
a symbiotic fashion, one using a good coloring obtained by another as a basis for further improvement.
Finally, it may be possible to dispense with tuning, since if the parallel implementation is fast enough,
the time it spends on converging to good parameter values may be significantly less than that spent by
an implementer in finding the right settings.

We describe experiments with a parallel algorithm, Hybrid, which combines a parallel version of
Morgenstern’s S-Impasse algorithm with an exhaustive search algorithm. Our algorithm is run on the
CM-5, a powerful state-of-the-art parallel computer which gives much flexibility in designing hybrid
algorithms. We compare the performance of this algorithm with RLF and Saturation, and with previous
results reported by Morgenstern and Johnson et al. Our parallel algorithm outperforms the sequential
algorithms, both in the quality of the colorings obtained and in the time spent to obtain the colorings, on
all but the simplest test graphs, where all algorithms find an optimal coloring very quickly. However, both
Morgenstern’s tuned sequential implementation of S-Impasse [20] and Johnson et al.’s XRLF algorithm
find better colorings than our algorithm on large G, graphs. (recall that our tests of Hybrid are
untuned). Our conclusion is that our parallel methods are certainly useful in solving the graph coloring
problems, but that tuning of the parameters may help further in reducing the running times.

We have collected new test data for our experiments. One test graph is an example of a class
scheduling graph, which models the problem of constructing a timetable that allows all students to
take their desired courses. The data was obtained from a local high-school, yielding a graph with
approximately 400 nodes. Unlike the simpler hueristics, our hybrid algorithm performed extremely well
on the class scheduling graph data, finding an optimal coloring very quickly. Another set of test data that
we have contributed is based on the problem of register allocation, which arises in compiling programs.

Further data, relating to sparse matrix computations, a problem on latin squares, and an exam schedule,
are also contributed.

We describe our parallel algorithm in detail in Section 2. Our test data, including both our new
contributions and other, randomly generated data, is described in Section 3. The quality of the colorings
obtained for our test data, and the running times of our parallel algorithm are discussed in Section 4.
A brief concluding summary and directions for future work are presented in Section 5.

2 Algorithm Description

We first briefly review Morgenstern’s S-Impasse algorithm [20]. We then describe a parallel version of
the S-Impasse algorithm, a parallel exhaustive search algorithm, and finally our Hybrid algorithm.

The S-Impasse Algorithm. This is an example of an iterative improvement algorithm, proposed by
Morgenstern {20]. In the following description, the parameters of the algorithm are italicized.

Initially, a target number of color classes is chosen, and a naive coloring of the graph is quickly
computed. All vertices from color classes beyond the target are placed in an impasse set. The algorithm
then repeatedly does the following. If the current best coloring uses less than the target number of colors,
then the target is reduced to one less than the current coloring and a new impasse class is created. (This
is different from Morgenstern’s original algorithm, which halted upon reaching its target. The user can
then choose to rerun the algorithm with a smaller target. We believe our method is more useful to a
user.) A random vertex is removed from the impasse set and is placed into a random color class, moving
neighbors of the vertex into the impasse set. Moves are selected so as to reduce the average degree of
vertices in the impasse set; if several such moves are possible, one is chosen at random. With some small
probability, a disimprovement is allowed, i.e. a move which increases the average degree of nodes in the
impasse set. The probability of disimprovement is controlled by a temperature parameter. This allows
the algorithm to avoid being trapped at local minima.

The S-Impasse algorithm also incorporates s-chain moves to keep the neighborhood of moves large.
An s-chain consists of a tuple (v, Vo, ..., Vs) where v is a member of the set 1, and each set V; is a subset
of a distinct color class. The sets V; have the property that placing set V; into the color class V{;+1)mods
maintains a valid coloring. That is, the s-chain “shuffles” the coloring. (This is a generalization of
Kempe chains, an idea used by Kempe [16] in his flawed proof of the four-color theorem.) A parameter,
L, is a scaling factor that determines how often the s-chain moves are performed. Morgenstern’s version
of the algorithm ran for a number of éterations before halting. Our algorithm runs until it has reached
its time bound.

We set our parameters to be the same for all graph classes. The initial target is simply set to be
the number of nodes in the graph. For explanations of exactly how the other parameters are used, see
[20]. In our implementation, the length s of a Kempe chain is set to 3; the temperature is 0.6 and the
parameter 4 is set to 10. This time bound on the algorithm was set to three hours.

The Parallel S-Impasse Algorithm. In the parallel S-Impasse algorithm, several processors are run
independently, each finding an initial coloring independently and then setting the initial target to be one
less than the number of colors in the best coloring found. The processors then independently explore
improvements starting from their initial coloring. When a processor finds a new best coloring, the new
bound is broadcast to the other processors and all processors lower the size of the target coloring, moving

a color class into the impasse set if necessary. When all processors have completed their total number of
iterations, the algorithm stops. Previous studies of simulated annealing algorithms for other applications
indicate that if the number of processors is small, this is a reasonable approach to parallelizing the S-
Impasse algorithm, because the more paths that are explored independently, the smaller the expected
time for one to reach a new best coloring. (See Azencott [2], for example.) We later show that this is
in fact true for the S-Impasse algorithm on our test data. Another advantage of this parallel approach
is that, since the computation of distinct processors is almost completely independent, the amount of
interprocessor communication is kept to a minimum.

Processors do occasionally communicate. When a new coloring is found, a limited number (five of
thirty-two in our experiments) of processors whose last target met is three greater than the new bound
may abandon their partial solution and receive the current solution. They then do an s-chain move to
avoid completely following the search of the sending processor. (Other processors who similarly appear
to be following a dead end in their search but do not receive the current solution, do a large s-chain
move instead.)

The Parallel Exhaustive Search Algorithm. This algorithm is a straightforward branch-and-bound
procedure, as described by Johnson et al. [13]. A tree of partial colorings is expanded, using the size
of the current best coloring to prune the tree. Each node in the tree represents a partial coloring and
its children are all the possible extensions of that coloring obtained by coloring one more node. In
the parallel implementation, a polling mechanism is used by idle processors to obtain work from busy
processors. When a processor finds a new best coloring, the number of colors is broadcast to all of the
other processors.

The Parallel Hybrid Algorithm. In this algorithm, a manager process starts a group of processors on
parallel Exhaustive Search and another group on parallel S-Impasse. The manager maintains the current
best coloring, and whenever either algorithm finds a new best coloring, this is sent to the manager, which
broadcasts it to the other algorithm. Hybrid halts when one of the algorithms finishes its computation.
Thus, the upper bound on the running time is the maximum of the time bound given to the S-Impasse
algorithm and the completion of the exhaustive search.

We note that an execution of either the parallel S-Impasse or Exhaustive Search algorithms cannot
be serialized to give an execution of the corresponding sequential algorithms. In particular, the parallel
S-Impasse algorithm follows several paths in the search space, whereas the sequential algorithm follows
just one path. Similarly, the order in which nodes of the search tree are expanded in the parallel
Exhaustive-Search algorithm may be quite different than in the sequential algorithm.

3 Test Data

Our algorithms have been tested on random graphs, Leighton graphs, register allocation graphs and two
graphs constructed from a course scheduling problem. Below we give a brief description of each graph
class.

Leighton graphs. Leighton graphs [18] are random graphs with a fixed number of edges and predeter-
mined chromatic number. The graphs are constructed by implanting cliques of sizes ranging from x(G)
to 2 into the graph. The nodes in the cliques are chosen in a manner that guarantees the chromatic
number will not be larger than the pre-specified value. The density of these graphs is always less than
0.25, which Leighton claims is commonly the case in applications such as exam scheduling. (Our real

data also fits this assumption.) We test our algorithm on Leighton graphs with 450 nodes and with
chromatic number 5, 15 and 25.

Register Allocation Graphs. Register allocation graphs are used in compilers to determine a mapping
of variables to registers. Variables that are active in the same range of code cannot be placed in the same
register. A conflict graph is constructed, with variables as vertices and an edge representing variables
live in the same range of code. Coloring this graph yields a mapping of variables to registers. If more
colors are needed than there are registers, not all variables can be placed in registers. In this case,
spill code must be inserted to remove some variables from the registers. Spill code removes some edges
from the conflict graph; this subgraph can then be colored to see if the variables can be mapped to the
registers with the spill code.

Preston Briggs of Rice University has constructed a system to test register allocation schemes. He
has provided us with many program files along with code to output the original conflict graphs and
several subgraphs constructed as spill code is inserted. The conflict graphs range in size from a couple
of hundred vertices to several thousand vertices. In this study we consider conflict graphs ranging in
size from around 200 vertices to around 850 vertices. Specifically, we study fourteen graphs from four
different base programs, mulsol, zeroin, fpsol2 and inithx. These graphs were constructed for a
compiler having thirty-two registers available. There are five mulsol files and three each of the zeroin,
fpsol2 and inithx files, resulting from the initial graph and the graphs formed from spill code insertion.
In each case, the register allocation scheme used by Briggs only successfully colored (i.e. using thirty-two
colors or less) the last graph in the set.

G, graphs. Commonly used in testing graph coloring algorithms, a G, graph has n vertices, and
an edge between each pair of vertices with independent probability p. We test our algorithms on Ghos
graphs for n = 70, 125, 250, 500 and 1,000.

Class Scheduling Graphs. Many high schools ask students to select a set of desired courses for the
coming year and then attempt to construct a timetable that allows all students to take their chosen
courses. A timetable with no conflicts corresponds to a coloring of a graph with vertices corresponding
to courses and edges between two vertices if a student has requested both courses or the same teacher
teaches both courses.

We have obtained the scheduling data from a local high school that has approximately 500 students.
There are seven periods in a school day and the entire year (two semesters) is scheduled at one time.
Counting each section of a course separately, there are 385 vertices in the class graph. Since we are
working from a final schedule, the graph is guaranteed to be 14-colorable.

For this study we have looked at algorithm performance on the entire graph, called school.dat, as
well as the subgraph corresponding to removing all references to study halls, called school-nsh.dat.

Generated Class Scheduling Graphs. We have begun to work on a generator for graphs modeling
the class graphs used in this study. We started by examining the real data to get an idea of the important
factors affecting the composition of the class graph.

Since we have only one data set we cannot be sure of all the factors, nonetheless we believe the
following factors are important in the composition of a class graph. The first important factor is division
of students into separate groups, such as different grades and/or different tracks of study. These divisions
are important because each of these groups will have a core set of classes taken only by students in this
group — and the vertices corresponding to classes taken by different groups will be independent. The

second important factor is the selection of courses that intersect the interests of various groups; for
example music courses will be shared between all grades. The probability of students in a group taking
courses that also interest another group will vary among the groups. This variance will affect the number
of edges between the courses from these groups. Currently, our generator concentrates on handling these
two factors.

The assignment of sections after selecting courses must also be done when generating a class graph.
We do this very simplistically, setting a bound on the number of students in a given section of course,
then assigning as many sections as necessary.

The generator constructs a random schedule for each student, based on the parameters. We then
add sections and process the data in the same manner as the real data.

As a basis for comparison, we compare our results on a generated graph, model-1.dat with a Gy,
graph of the same number of nodes and density, (G299,0.23, and with a graph based on the real data but
with section information added by the generator, School-as.dat.

Geometric Graphs. Geometric random graphs, Rz.y, are formed by randomly placing z vertices in
a unit square, then putting edges between any two vertices which are within .y of each other. These
graphs may model applications such as assigning cellular phone frequencies. We test our algorithms on
8 instances of geometric graphs, of size 125,250,500, and 1000, with y parameter of 1,5. We also test
them on complements of Rz.1 graphs.

Latin Square Graph. This graph represents a problem from design theory, relating to latin squares.
The graph is a 900 vertex graph, with independent sets no larger than 10 vertices. It is an open problem
whether or not this graph can be colored in 90 colors.

k-Partite Graphs. These graphs are G, p ; graphs modified to have the density of a Gy, , graph. We
look at graphs of size 300 with k = 20, 26, 28 and of size 1000 with k = 50,60, 76. The target p is 0.5.

Graphs for Parallelizing Iterative Solutions of Sparse Linear Systems. Solving large sparse
linear systems can be done iteratively in parallel using using the Gauss-Seidel iteration method, in which
independent components of the system are updated in parallel. Treating the matrix representing the
system as an adjacency matrix, with positive entries representing edges, the coloring of the graph with &
colors reveals a decomposition of an iteration into k steps. At step ¢ of an iteration, all the components
in color class 7 are updated in parallel. The parallelization does not actually require a true coloring
of the graph; it is sufficient to color the vertices so that no positive cycle contains only vertices of the
same color. There are many applications of sparse linear systems; our graphs are examples from power
systems, of sizes 1993, 1084, 707, and 147.

Final Exam Scheduling. As with class scheduling, final exam scheduling must avoid scheduling courses
taken by the same student simultaneously. Vertices are courses, edges are between courses taken by the
same student. We have acquired data from Florida Institute of Technology (provided by Lynn Kiaer)
for exam scheduling. Each edge has an integer weight between one and three, representing the severity
of the conflict. To schedule the exams, the graph must be colored with six or fewer colors — this may
require leaving conflicts in the coloring. The goal of the problem is to have as few as possible conflicts
of the highest weights. We examine three graphs from this data; graph fl-tech.1 contains all the edges,
fl-tech.2 removes edges of least severity, and fl-tech.3 contains ony the edges of highest weight.

4 Coloring Results

In this section, we discuss the performance of the Hybrid algorithm on the different test graph types
listed in Section 3. For each class of graphs, we compared Hybrid with the simpler RLF and Saturation
heuristics, and also compared the quality of our colorings with those obtained in previous work. Briefly,
our main conclusions are as follows.

o Overall, the Hybrid algorithm performs very well, easily surpassing previous experimental results
for untuned algorithms. Moreover, Hybrid produces good colorings on a wider range of graphs
than any previously reported algorithm. This is perhaps not too surprising, since we are using a
powerful machine, and combine more than one previously touted technique. Still, our results are
obtained with no tuning of parameters; this is an important advantage over previous work. Our
algorithm performs most poorly on large, randomly generated graphs. For example, using his tuned
S-impasse algorithm, Morgenstern obtains better results on large G, , graphs. Also, Johnson et al.
obtain better colorings with their XRLF algorithm. A detailed comparison of Hybrid with other
algorithms on different classes of graphs is given in Section 4.1.

o Of the five types of test data, three are easily colored even by the simple RLF and Saturation
heuristics; one is optimally colored by Hybrid but not by the simple heuristics, and one appears
to be very hard. However, we stress that just because in several cases the test graphs are easy
to color, does not mean that the applications are easily solved. In several cases, such as the class
and exam scheduling graphs and the sparse matrix graphs, finding an optimal coloring is not
sufficient to solve the problem at hand. Instead, colorings satisfying additional restrictions are
really needed. Adapting good coloring heuristics to really solve these problems is an important
direction for further research. We discuss this further in Section 4.2.

e The Hybrid algorithm parallelizes well. One reason is because the number of iterations needed by S-
impasse decreases as the number of processors increase, supporting our approach of independently
exploring several coloring modifications independently. Also, in the exhaustive search algorithm
the work involved in expanding the search tree is effectively shared among the processors. We
present some experimental data supporting this in Section 4.3.

¢ There is often quite a variance in the running time depending on the random seed. The variance
exists even when disregarding runs in which the size of the coloring differed. Using only those runs
finding the most common color size, Table 1 summarizes the average running time and variance
for the Hybrid algorithm on several graphs. We also examined repeated runs of Hybrid using the
same random seed, to see if machine effects cause the variance, but found very little difference in
running time while using the same seed.

4.1 Evaluation of Randomly Generated Data

All of our algorithms were run on Thinking Machine’s CM-5 machine. RLF and Saturation were run on
1 processor, while Hybrid was run on 32 processors, which were partitioned with one acting as manager,
8 executing the parallel Exhaustive-Search algorithm, and 23 executing the parallel S-Impasse algorithm.
Each computation was stopped after three hours; we report the time less than that if the best coloring
was found earlier. A nice feature of our Hybrid algorithm is that if the Exhaustive-Search procedure is
completed, the optimal coloring is known. Thus, we are able to report optimal coloring sizes for several

graphs. All of these results are summarized in Appendix I and Figure 1. In what follows, we discuss
each graph class in turn.

Leighton Graphs (see Table 2). Hybrid outperformed the simpler RLF and Saturation heuristics on
all Leighton graphs. Hybrid found optimal colorings on all of the 5-colorable graphs, two of the four
15-colorable graphs and two of the four 25-colorable graphs. Close to optimal colorings (off by one or
two) were found for the remaining graphs. The time required to find the best colorings ranged from less
than half a minute (on a 25-colorable graph) to almost three hours (on a 15-colorable graph).

In the execution of the Hybrid algorithm on the 5-colorable Leighton graphs, the Exhaustive-Search
and parallel S-Impasse alternated regularly in decreasing the current best number of colors, finishing
with the Exhaustive-Search. On the other Leighton graphs, with chromatic numbers 15 and 25, the
Exhaustive-Search algorithm was useful in decreasing the current best coloring for several colors in the
initial stages, and to end the computation if the chromatic number was found. Progress after the initial
stages, however, was made by the S-Impasse algorithm.

Hybrid also surpassed previous results of Morgenstern. His tuned, sequential S-Impasse algorithm,
only found a 20-coloring, in somewhat less than an hour, for each of the two 15-colorable graphs on
which we find a 16-coloring.

Random G, , Graphs (see Table 3). The Hybrid algorithm fails to come close to the lower bound
estimates on the large G, p graphs. On the Gsgo,05 graph, which has an estimated lower bound of 46,
the best coloring found was 52 colors, found by Hybrid in about 2.19 hours. On the Gio00,0.5 graph,
which has an estimated lower bound of 80, the best coloring found was 99 colors, found in just under
2.5 hours. Still, Hybrid always outperformed the simpler heuristic algorithms on all of these graphs.

The poor results are perhaps not too surprising, as Morgenstern also reported difficulty in obtaining
good colorings for large G, , graphs, even with his tuned sequential S-Impasse algorithm. For example,
he reports running times of about 65 hours to find a 90-coloring of a G1000,0.5 graph, and 40 hours to
find a 50-coloring of a Gsoo,0.5 graph (on a VAX 11/780).

Geometric Graphs (see Table 4). On six of the twelve geometric graphs, we were able to find optimal
colorings using Hybrid. However, on two of the 1,000-node graphs, we have no estimates on the optimal
coloring size, and we do not know how close our colorings are to the optimal colorings.

Previous results were reported by Johnson et al. for geometric graphs of size 500, so we compare our
results with theirs on these graphs. The performance of Hybrid is mixed. On the graph with an edge
between two points if the distance between them is less than .1, 12 colors is optimal, and Hybrid obtains
a 12-coloring in less than half a minute (and most of this time is actually spent reading the graph). On
the graph with an edge between two points if the distance between them is greater than > .9, Hybrid
obtains an 85 coloring in three out of four runs, in an average time of about 2 hours. In contrast, the
best coloring obtained by the RLF and Saturation algorithms were of size 88 and 89, respectively. Also,
Johnson et al. reported that the best coloring they obtained was of size 85, using a tuned version of an
annealing-type algorithm (the Fixed-K Annealing algorithm) which ran for over 75 hours on a Sequent.
On the third graph, with an edge between two points if the distance between them is less than .5, Hybrid
obtains a coloring of size 128 in about 1.5 minutes, but fails to find a better coloring in 3 hours. Johnson
et al. report that in several runs of the Saturation algorithm, a coloring of size 124 was obtained, so
Hybrid fails to match this coloring.

k-Partite Graphs (see Table 5).

Again, the Hybrid does not come close to the optimal colorings on these graphs, although it obtains
better colorings than RLF and Saturation. When given an initial target corresponding to %, instead
of having Hybrid start from an initial coloring and steadily decrease the number of colors, Hybrid
successfully found the optimal coloring of two of the 300 vertex graphs.

4.2 Evaluation of Application Data

We have gathered graphs from several applications for the purposes of studying how well common
heuristics perform on them, whether or not it is feasible to use an exact coloring algorithm on graphs
from applications, and to make them more widely available for benchmarking and testing coloring
algorithms.

Class Scheduling Graphs (see Table 6). For both class scheduling graphs, an optimal 14-coloring was
found both by parallel S-Impasse and Hybrid. Surprisingly, for the School.dat graph, the Exhaustive-
Search algorithm was the main workhorse in Hybrid. In fact, the parallel S-Impasse algorithm alone
takes 13 minutes to find the fourteen-coloring (compared to an average of 46.2 seconds for they Hybrid
algorithm). The sequential S-Impasse algorithm only finds a 23-coloring for the School.dat graph, in-
dicating the advantage of parallelism. The Saturation algorithm finds an 18-coloring of the School.dat
graph, 8 colors better than the RLF algorithm.

The School-nsh.dat graph is more difficult to color than the School.dat graph, even though School-
nsh.dat is a subgraph of School.dat. Hybrid takes 66.4 seconds to find an optimal coloring, with ex-
haustive search finding several early colorings, then S-impasse taking over the work until the last few
colorings, including the optimal, which are found by exhaustive search. The parallel S-Impasse algorithm
takes longer, 11.5 minutes, to find the optimal coloring. Sequential S-Impasse takes 40 minutes to find
an optimal coloring of the School-nsh.dat graph. RLF does better than Saturation in the School-nsh.dat
graph, needing 22 colors compared to Saturation’s 28 colors.

Even though the graphs are over 300 vertices and of density around 0.25, exact coloring is quite
feasible. The Hybrid algorithm completed its exhaustive search on the School.dat graph in an average
of 78 seconds, and on the School-nsh.dat graph in an average of 90 seconds.

Although coloring the school graphs is relatively easy for our Hybrid heuristic, the main difficulty
of scheduling courses remains. The assignment of sections greatly affects the chromatic number, as we
see below in our comparison of the generated class graph to the real data with section numbers added
automatically.

Generated Class Scheduling Graphs (see Table 7). We find that the results on the generated graph
appear to be more similar to the results on the real data with sections added by the generator than to
the G, p graph of the same density. In particular, the G, , graph needs fewer colors.

Ychool-as.dat is colored in 28 colors by both the RLF and Saturation algorithms. The Hybrid and
parallel S-Impasse each manage to find a 28 coloring of the graph.

The graph model-1.dat, built by our generator based on parameters similar to the real data, was
colored by RLF in 32 colors, and Saturation in 31 colors. The Hybrid and parallel S-Impasse algorithm
each found a 28 coloring of the graph.

The density of both School-as.dat and model-1.dat was around 0.23. We built a random Gag9,0.23
graph, having the same number of nodes and the same density as model-1.dat. This graph was colored

with far fewer colors by RLF and Saturation, 19 and 22 respectively. Hybrid and S-Impasse both found
a 17 coloring.

Our conclusion is that our generator has constructed a graph that is a better model for testing
heuristics on class graphs than a G, , graph. We note, however, that model graphs do not yet appear
to capture all aspects of the real data. The largest clique found by dfmax (a semi-exhaustive greedy
clique finding algorithm of Matula and Johri) in the model graph is 25 while the school-as.dat graph has
a clique of size 18. We are doing further work both theoretically and experimentally in this area.

Unlike the 14-colorable school graphs, the model graph and the school graph with sections generated
automatically are not easily exactly-colored. Our Hybrid algorithm spent three hours on each graph
without finishing its search.

The difficulty of coloring School-as.dat suggests that the assignment of sections in such a way to keep
the chromatic number low is a valuable area of study.

Register Allocation Graphs (see Table 8). The Saturation and RLF performed just as well as the
Hybrid and parallel S-Impasse on these graphs, and all algorithms halted quickly. We verified that the
results were close to optimal by finding lower bounds on the chromatic number of the register allocation
graphs (again given in parentheses) by running our exhaustive search algorithm on subsets of the vertices.
For most of these graphs, the lower bound we found was identical to the number of colors used. David
Johnson confirmed that the rest of the colorings were also optimal by finding cliques of the coloring size.
S-Impasse found the same coloring as Hybrid, so we do not report it in the table.

Our Hybrid algorithm did not prove that it exactly colored the register allocation graphs. However,
adding a simple clique finder, such as Matula and Johri’s dfmax, to the algorithm to find lower bounds
would have enabled the algorithm to quickly prove the colorings were optimal.

Graphs for Parallelizing Iterative Solutions of Sparse Linear Systems (See Table 9). The RLF
algorithms optimally colored all of the graphs. The Saturation algorithm exactly covered three of the
four graphs and used four instead of three colors to color s1084.dat. Two of the graphs, s147.dat and
$1084.dat were quickly exactly colored by the sequential exhaustive search algorithm. Lower bounds on
the other two graphs were found quickly by dividing the graphs into 50 vertex sections and coloring
with exhaustive search. We did not run the parallel heuristic on these graphs because the sequential
algorithms worked so quickly on them.

While s147.dat and s1084.dat were easily colored with exhaustive search, the s1993.dat graph was
too large for our program and the search was unsuccessful on the s707.dat graph.

The colorings of these graphs are used to parallelize the computation of a linear sparse system by
computing values of the elements in each color class in parallel. Except for the s707.dat graph, all the
colorings had a very low number of colors, indicating few parallel steps per iteration. The number of
steps actually needed may be lower, even though our algorithms find the exact coloring, because the
parallelization of the linear computation does not need a strict coloring. It is sufficient that the graph
is colored so that there exists no positive cycle in the graph with all nodes in it colored the same color.
Thus, although these graphs are easy to color, the algorithms are not quite solving the problem posed
by the application.

Final Exam Scheduling Graphs (See Table 10). Graphs fl-tech.1 and fl-tech.2 were quickly and
exactly colored using the Hybrid heuristic. The third graph, fl-tech.3 was quickly colored with 6 colors,
but Hybrid did not show it to be exactly colored. Both RLF and Saturation found the minimum coloring

10

on each graph. Only fl-tech.3 was colored with the six colors needed to actually effectively schedule the
exams. Kiaer has constructed heuristics to use the weights of the conflicts to find a 6 coloring with no
severe (weight 3) conflicts, 5 medium (weight 2) conflicts and 42 small (weight 1) conflicts [17].

We see again with this application that coloring the graph itself is not difficult, but modifications are
needed to graph coloring in order to actually solve the problem posed by the application.

Latin Square Graph. All the algorithms perform poorly on this application. The RLF algorithm
uses at least 146 colors to color this graph. The Saturation algorithm uses 132 colors. As in the course
scheduling graphs, this is a reversal of the typical performance of RLF and Saturation on random graphs.
The Hybrid algorithm can get no fewer than 109 colors on this graph. We conclude that this graph is a
hard test for graph coloring heuristics.

Exact coloring appears completely infeasible at this point for the Latin Square graphs.

Our study of these application graphs shows that several of the applications (register allocation,
matrices for sparse linear systems, exam scheduling) provide graphs which are quite easy to color.
Course scheduling is a little harder, with RLF and Saturation being insufficient to color the graphs but
being easily colored by the Hybrid heuristic. One of the applications, Latin Square, is very difficult. We
conjecture that many applications will fall into the easy or moderately difficult category, corresponding
to our observations in this study.

Our study of applications also shows that unlike random graphs, where RLF often tops the perfor-
mance of Saturation, there is no clear winner when comparing the two on applications. For register
allocation, exam scheduling, and most sparse matrices, they gave the same results; RLF was better on
one sparse matrix and one course graph, while Saturation was better on the other course graph and the
latin square graph.

We also note that coloring the graphs of many of these applications, namely course scheduling,
final exam scheduling, and sparse matrices, does not actually solve the problem originally given in the
application. Thus, although these graphs do not provide a great challenge to current heuristics for
coloring, they do offer a challenge to modify heuristics or add additional algorithm techniques in order
to better solve the exact problem posed by these applications.

4.3 Advantages of Parallelism

Clearly, the Hybrid algorithm must always produce colorings that are as least as good as the sequential
S-Impasse algorithm. Our hopes in undertaking this project were that Hybrid would produce good
colorings in significantly less time than the sequential S-Impasse algorithm. We were also curious if
the exhaustive search component of Hybrid would be useful. In order to understand the advantages
of a parallel implementation, we compared the parallel and sequential versions of the S-impasse and
Exhaustive-Search algorithms separately.

Parallel vs. Sequential S-Impasse. Our parallel version of S-Impasse finds good colorings more
quickly than the sequential version. For several graphs, we counted the number of iterations needed to
find the best coloring, in the parallel and sequential algorithms, and found that the number of parallel
iterations was consistently much less in the parallel implementation (see Table 12). A typical example
is the 5-colorable Leighton graph, where four times as many iterations were needed by the sequential
algorithm than by the parallel algorithm, to find a 7-coloring, and a 6-coloring was never found by the

11

sequential algorithm. The difference in number of iterations needed to reach the new coloring is reflected
in the running times: the sequential algorithm required 58 minutes to find the 7-coloring, whereas the
parallel algorithm found this in 11 minutes. Thus, our approach to parallelizing the S-Impasse is sound.
Further testing is needed to see a more general correlation between the improvement in performance and
the number of processors.

Parallel vs. Sequential Exhaustive Search. We ran several additional experiments to test the
parallel Exhaustive-Search algorithm, and conclude that it performs very well. Table 13 shows the
running time of parallel Exhaustive-Search on a 70-node random graph, with the total number of nodes
expanded, and the minimum and maximum number expanded by each processor. While the 70-node
graphs are not big enough to give all thirty-two CM-5 processors work at all times, a speedup of a
factor of 3.2 is observed for four processors and more speedup is observed as processors increase. Also
encouraging is that the number of search nodes examined in the parallel implementation is rarely more
than five percent more than the total number of nodes examined the sequential implementation. In other
studies of several graphs, including the Leighton graphs, we found that the number of nodes expanded
by the processors are generally within ten percent of each other.

Hybrid vs. Parallel S-Impasse. On the parallel environment on the CM-5, it was very easy to
experiment with the Hybrid algorithm, once the parallel Exhaustive-Search and S-Impasse algorithms
were implemented. The performance of the two algorithms was similar, with Hybrid doing slightly better
overall. The Exhaustive-Search component of Hybrid was most useful on graphs with low chromatic
number.

5 Conclusions and Future Work

We were pleased to find that the Hybrid algorithm performed very efficiently, and consistently produced
the best colorings. Based on a comparison with Morgenstern’s previous results, we conclude that tuning
of the algorithms should be useful in improving our results on the large random Gp,p graphs, but on all
other graph classes, our untuned algorithm matches or exceeds previously reported best results.

In further work, we plan to add XRLF to our Hybrid, to run in parallel with S-Impasse and
Exhaustive-Search. In contrast to S-Impasse, the XRLF algorithm runs well on random G, graphs,
given enough time; for example, an 86-coloring of a G1o00,0.5 graph is found in 68.3 hours [13]. (This
was on a VAX 750, which is 20-100 times slower than current machines.) We already have a working
parallel implementation of XRLF, but unfortunately, due to lack of time and competition for the CM-5,
we have not yet been able to test this hybrid. In our implementation, we use Hybrid as a replacement
for the exhaustive search alone at the end of the XRLF algorithm.

Our experience with the class scheduling graphs strongly suggests that more effort should be made
to find applications and real data to compare algorithms. Furthermore, although coloring is important
in these applications, it is clear that in many cases that the problem is more complex than simply
finding good colorings. It is still unclear whether good coloring heuristics can really be applied in these
applications.

12

6 Acknowledgements

We thank Robert Mills, Lynn Kiaer, Preston Briggs, Monika ten Bruggencate and Wendy Myrvold for
their helpful discussions about applications and help in acquiring data, and Alex Chan for his work
entering the class scheduling data.

References

[1] Appel, K. I., W. Haken and J. Koch. Every planar map is four colorable, Part I: Discharging, Illinois Journal
of Mathematics, 21, 1977, 429- 490.

[2] R. Azencott, Editor. Simulated Annealing: Parallelization Techniques, New York, John Wiley and Sons, 1992.
[3] B. Bollobas and A. Thomason. Random Graphs of Small Order. Ann. Discrete Math. 28 1985, 47-97.

[4] Brélaz, D. New methods to color vertices of a graph, Communications of the ACM, 22, 1979, 251-256.
(5]

5] (G.J. Chaitin and M. Auslander and A.K. Chandra and J. Cocke and M.E. Hopkins and P. Markstein, Register
Allocation via Coloring, Computer Languages, 6, 1981, 47-57.

[6] G.J. Chaitin, Register Allocation and Spilling via Graph Coloring, Proceedings of the ACM SIGPLAN 82
Symposium on Compiler Construction, 1982, 98-105.

[7] D. de Werra. An introduction to timetabling, Buropean Journal of Operations Research, 19, 1985, 151-162.

[8] M. R. Garey and D. S. Johnson and H. C. So. An application of graph coloring to printed circuit testing,
IEEE Transactions on Circuits and Systems, 23, 1976, 591-599.

[9] J.W. Greene and K. J. Supowit. Simulated annealing without rejected moves, IEEE Transactions on
Computer-aided Design, vol CAD-5, 1, January 1986, 221-228.

[10] G.R. Grimmet and C.J.H. McDiarmid. On colouring random graphs, Mathematical Proceedings of the Cam-
bridge Philosophical Society, 77, 1975, 313-324.

[11] F. Glover. Tabu search, part 1, ORSA Journal on Computing, 1, 1989, 190-206.

[12] M. M. Halldérsson. A still better performance guarantee for approximate graph coloring, DIMACS Technical
report 1990, 91-35.

[13] D. S. Johnson, C. R. Aragon, L. A. McGeoch and C. Schevon. Optimization by simulated annealing: an
experimental evaluation; part II, graph coloring and number partitioning, Operations Research, 3, 1991,
378-406.

[14] A. Johri and D. W. Matula. Probabilistic bounds and heuristic algorithms for coloring large random graphs,
Technical report, Southern Methodist University, Texas, 1982.

[15] R. M. Karp. Reducibility among combinatorial problems, in R.E. Miller and J.W. Thatcher (ed.), Complesity
of computer computations, Plenum Press, New York, 1972, 85-103. ‘

[16} A. B. Kempe, On the geographical problem of the four-colors, American Journal of Mathematics, 2, 1879,
193-200.

[17] Kiaer, Lynn. Discrete Optimization Strategies for Timetabling, Ph.D. Dissertation, Department of Applied
Mathematics, Florida Institute of Technology, June 1992.

[18] F.T. Leighton. A graph coloring algorithm for large scheduling problems, Journal of Research of the National
Bureau of Standards, 84, 1979, 489-506.

[19] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems, Proceedings 25th
ACM Symposium on Theory of Computing, 1993, 286-293.

[20] C. A. Morgenstern. Algorithms for general graph coloring, Doctoral Dissertation, Technical report CS589-16,
Department of Computer Science, University of New Mexico, Albuquerque, 1989.

13

[21] R.J. Opsut and Fred S. Roberts. On the fleet maintenance, mobile radio frequency, task assignment and
traffic phasing problems, in G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster and D.R. Lick, The
Theory and Applications of Graphs, John Wiley & Sons, New York, 1981, 479-492.

[22] E. L. Poole and J. M. Ortega, Multicolor ICCG methods for vector computers, STAM Journal of Numerical
Analysis, 24, 6, 1987, 1394-1418.

[23] D. C. Wood. A technique for coloring a graph applicable to large scale time-tabling problems, Computer
Journal, 12, 1969, 317-319.

14

-

DOS O D iy e

=TSN

mooBeZ

nw=Oo— Q) =0

ool —em o

- et B0 5,0 0 0

et o o Y

10

-10

Appendix 1

Figure 1: Comparison of Hybrid Colorings with best known sequential colorings. Difference between

number of colors used by Hybrid and best coloring known is plotted. (Points are the number of colors

used by Hybrid.) Points above 0 represent graphs in which Hybrid obtained better colorings.

—5— 5 5

16

—H5— I 15—

16

I

|] | | | | | |

99

128

le450_5a led450.5¢

le450._5b

le450.5d

le450._15a

1e450.15b

le450_15¢

le450_15d

1e450.25b 1e450_25d Gaso0,05 Gio00,0 8

15

le450_25a 1ed50_25¢ Gizsos Gs00,0 5 R500.1 R500.5

R500.1¢

Table 1: Running time and standard deviations for several graphs. The running times for the coloring
result most commonly achieved in 5 trials were used to calculate the variance. (This is not the best
coloring in all cases.) Time is in seconds.

Graph Runs | Colors Running Times
Min Average Std. Deviation Max
G125.0.5 5 17 1199.22 4043.63 2508.8 8037.7
G'250,0.5 4 29 3612.74 5371.12 1879.61 8013.02
G'500,0.5-col 3 53 3343.72 4959.88 1851.77 6980.43
G1000,0.5 3 100 4631.97 4755.06 179.242 4960.7
R125.1 5 5 50 64.6 22.2666 104
R125.1c 5 46 60 85 22.6716 120
R125.5 5 37 31.47 32.986 1.98744 36.38
R250.1 5 8 22 22 0 22
R250.1c 5 64 110.7 27816 160.948 505.8
R250.5 5 66 38.9 39.88 0.563028 40.3
DSJR500.1 5 12 24.5 26.64 4.11983 34
DSJR500.1c¢ 3 85 47172 T7246.53 2729.44 10139.6
DSJR500.5 5 128 85.6 90.5 5.245 96.2
R1000.1 5 20 49.4 49.88 0.268328 50
R1000.1c 2 103 3249 326 1.55563 327.1
R1000.5 3 246 210 213.667 3.51188 217
flat300.20 5 20 236.8 274.3 36.6314 329.3
flat300.26 3 32 6904.5 9109.83 1934.17 10518.1
flat300.28 5 33 454.6 191354 1515.12 3786.9
flat1000-50 3 97 7172.8 7482.27 364.67 7884.3
flat1000_60 5 97.8 | 3766 6288.36 1469.67 7518.7
flat1000_76 4 99 5697 6497.85 664.774 7100.3
[latinsquare |3 | 109 | 52664 68749 1663.54 8588.5 |
le450.152 5 15 88 162.62 75.522 278.1
1e450_15b 5 15 113.3 17836 45.0573 226.1
le450_15¢ 5 16.6 | 1016.1 2229.61 1114.42 3828.8
le450.15d 5 16.8 | 1303.5 2859.6 1999.92 5754.8
mulsol. 1 5 49 27 27.2 0.447214 28
[schoolldat |5 [14 |376 46.26 7.82292 552 |
[schoollmshdat [5 |14 | 542 66.4 9.36616 764 |

16

Table 2: Leighton Graphs with 450 vertices. In the leftmost column, graphs are described by file name
(as in Challenge files), with chromatic number in parentheses. For each of RLF, Saturation and Hybrid,
the following data is listed: (i) The size of the best coloring found by each algorithm. (ii) The number
of runs achieving this coloring, over the total number of runs. (iii) The average running time, over all
runs obtaining the best coloring.

Graph RLF Saturation Hybrid(32 Procs)

() @) (i) (i) @) (i) () @i (i)
led50-5a(5) 8 (1/1) (26.23secs) | 12 (1/1) (47.64secs) | 5 (1/1) (15.11 mins)
1e450-5b(5) 7 (1/1) (26.12secs) | 11 (1/1) (38.45secs) | 5 (1/1) (7.66 mins)
le450-5¢(5) 5 (1/1) (28.07secs) | 13 (1.1) (37.99secs) | 5 (1/1) (28.07 secs)
le450-5d(5) 8 (1/1) (28.01secs) | 13 (1/1) (41.51secs) | 5 (1/1) (6.58 mins)
16450-15a(15) | 17 (5/5) (2720 secs) | 17 (5/5) (41.00 secs) | 156 (5/5) (2.71 mins)
1e450-15b(15) | 17 (5/5) (28.20 secs) | 17 (5/5) (41.00 secs) | 15 (5/5) (2.97 mins)
le450-15¢(15) | 24 (4/5) (35.00 secs) | 24 (5/5) (32.50 secs) | 16 (2/5) (44.42 mins)
16450-15d(15) | 24 (3/5) (33.00 secs) | 24 (1/5) (43.00 secs) | 16 (1/5) (1.60 hrs)
led50-25a(25) | 25 (1/1) (27.80secs) | 25 (1/1) (28.80secs) | 256 (1/1) (27.8 secs)
le450-25b(25) | 25 (1/1) (27.96 secs) | 25 (1/1) (31.00secs) | 25 (1/1) (27.96 secs)
1e450-25¢(25) | 28 (1/1) (32.06 secs) | 30 (1/1) (45.60secs) | 27 (1/1) (2.92 mins)
le450-25d(25) | 28 (1/1) (31.99 secs) | 31 (1/1) (41.09secs) | 27 (1/1) (64.00 secs)

Table 3: Random G, , Graphs. In the leftmost column, graphs are described by node size and probability
p, with an estimated lower bound on the chromatic number in parentheses. For each of RLF, Saturation
and Hybrid, the following data is listed: (i) The size of the best coloring found by each algorithm. (ii)
The number of runs achieving this coloring, over the total number of runs. (iii) The average running
time, over all runs obtaining the best coloring.

Graph RLF Saturation Hybrid(32 Procs)

(i () (i) (i) @) () (i) (1) (i)
Gl70,0.5(11) 14 (1/1) (20 sec) 13 (1/1) (33 secs) 11 (1/1) (50.5 secs)
Gizs0s5(16) |22 (5/5) (22.00secs) | 23 (5/5) (35.80secs) | 17 (5/5) (1.13 hrs)
Gas005(27) |35 (3/5) (29.60secs) | 37 (2/2) (27.00secs) | 29 (4/5) (1.49 hrs)
Gs0005(46) | 62 (1/5) (1L.70 mins) | 63 (5/5) (52.00 secs) | 52 (1/5) (2.19 hrs)
G1000,05(80) | 112 (3/5) (9.05 mins) | 117 (5/5) (1.33mins) | 99 (1/5) (2.28 hrs)

17

Table 4: Geometric Graphs. In the leftmost column, graphs are described by file name (as in Challenge
files). If the optimal coloring size is known, this is included in parentheses in the leftmost column. For
each of RLF, Saturation and Hybrid, the following data is listed: (i) The size of the best coloring found
by each algorithm. (ii) The number of runs achieving this coloring, over the total number of runs. (iii)
The average running time, over all runs obtaining the best coloring.

Graph RLF Saturation Hybrid(32 Procs)
() G (i) (4 G ()) () (i)

R125.1(5) 5 (5/5) (40secs) |5 (5/5) (28 secs) | 5 (5/5) (1 min)
R125.1¢(46) 46 (5/5) (2 mins) 46 (5/5) (30secs) |46 (5/5) (1.4 mins)
R125.5 39 (5/5) (20secs) |38 (5/5) (34secs) |37 (5/5) (32 secs)
R250.1(8) 8 (5/5) (22secs) |8 (5/5) (29 secs) | 8 (5/5) (22 secs)
R250.1¢(64) 65 (1/5) (46secs) |65 (5/5) (39secs) |64 (5/5) (4.6 mins)
R250.5 70 (5/5) (39secs) |67 (5/5) (36secs) |66 (5/5) (40 secs)
DSJR500.1(12) | 12 (3/5) (25secs) |14 (5/5) (38 secs) 12 (5/5) (27 secs)
DSJR500.1c 89 (2/4) (2.5mins) | 8 (5/5) (86secs) | 8 (3/4) (2 hrs)
DSJR500.5 132 (5/5) (2 mins) 130 (5/5) (53 secs) | 128 (5/5) (1.5 mins)
R1000.1(20) 20 (5/5) (50secs) |20 (5/5) (6lsecs) |20 (5/5) (50 secs)
R1000.1c 104 (2/4) (10 mins) | 104 (5/5) (4.3 mins) | 101 (1/5) (2.4 hrs)
R1000.5 261 (2/2) (12 mins) | 248 (5/5) (2.6 mins) | 243 (1/5) (3.7 mins)

Table 5: k-partite Graphs. In the leftmost column, graphs are described by file name (as in Challenge
files). The optimal number of colors is given in parentheses. For each of RLF, Saturation and Hybrid,
the following data is listed: (i) The size of the best coloring found by each algorithm. (ii) The number
of runs achieving this coloring, over the total number of runs. (iil) The average running time, over all
runs obtaining the best coloring.

Graph RLF Saturation Hybrid(32 Procs)
(i) () (i) (i) @i (i) (i) (i) (i)

f1at300-20(20) | 39 (4/5) (58secs) |41 (5/5) (52secs) |20 (5/5) (4.5 mins)
flat300-26(26) | 40 (1/5) (44 secs) |41 (5/5) (39secs) |32 (3/5) (2.5 hrs)
flat300-28(28) | 40 (3/5) (43 secs) |43 (5/5) (38secs) |33 (5/5) (32 mins)
flat1000-50(50) | 109 (1/5) (8.6 mins) | 114 (5/5) (2.3 mins) | 96 (1/5) (2.3 hrs)
flat1000-60(60) | 110 (3/5) (8.9 mins) | 112 (5/5) (2.5 mins) | 97 (2/5) (1.9 hrs)
flat1000-76(76) | 113 (2/4) (8.9 mins) | 115 (5/5) (2.5 mins) [99 (4/4) (1.8 hrs)

18

Table 6: Class Scheduling Graphs. The first is a 385-node graph; the second is a subgraph of this of size
352. Both are 14-colorable. For each of RLF, Saturation and Hybrid, the following data is listed: (i)
The size of the best coloring found by each algorithm. (ii) The number of runs achieving this coloring,
over the total number of runs. (iii) The average running time, over all runs obtaining the best coloring.

Graph RLF Saturation Hybrid(32 Procs)

(i) (i) (iii) (i) (i) (iii) (i) (i) (iii)
School.dat (14) 26 (5/5) (32.20secs) | 17 (5/5) (33.00secs) | 14 (5/5) (46.00 secs)
School-nsh.dat (14) | 22 (5/5) (30.80 secs) | 28 (5/5) (42.00 secs) | 14 (5/5) (66 secs)

Table 7: Generated Class Scheduling Graph (model-1.dat) compared with a random Gagg 0.23 graph and
a graph based on real course selections but section numbers added automatically (School-as.dat). The
size of the coloring found by each algorithm is listed, with running times in parentheses for Hybrid and
S-Impasse.

Graph RLF Saturation Hybrid S-Impasse
(32 Procs) (32 Procs)
School-as.dat | 30 28 23 (6.62m) | 23 (28.38m)
[324 nodes] | (4.88s) | (14.96 s) [total: 1 hr] [total: 1 hr]
Model-1.dat | 32 31 28 (2.82m) | 28 (4m)
[299 nodes] | (4.19s) | (14.71 s) [total: 1 hr] [total: 1 hr]
Gggg’o.gg 22 22 16 (12 hI‘S) 17 (114 hIS)
(3.84s) | (12.15s) [total: 2 hr] | [total: 1.2 hr]

19

Table 8: Register Allocation Graphs. In the leftmost column, graphs are described by file name (as in
Challenge files), with chromatic number in parentheses. For each of RLF, Saturation and Hybrid, the
following data is listed: (i) The size of the best coloring found by each algorithm. (ii) The number of
runs achieving this coloring, over the total number of runs. (iii) The average running time, over all runs

obtaining the best coloring.

Graph RLF Saturation Hybrid(32 Procs)

(1) (i} (iit) i)y () (iii) (i) (i) (iit)
mulsol.1 [197 nodes] (49) | 49 (1/1) (26.66secs) | 49 (1/1) (34.00secs) | 49 (1/1) (26.66 secs)
mulsol.2 [188 nodes] (31) | 31 (1/1) (26.48secs) | 31 (1/1) (36.00secs) | 31 (1/1) (26.48 secs)
mulsol.3 [184 nodes] (31) | 31 (1/1) (27.23secs) | 31 (1/1) (32.92secs) | 31 (1/1) (26.23 secs)
mulsol.4 [185 nodes] (31) | 31 (1/1) (26.5secs) |31 (1/1) (34.03secs) | 31 (1/1) (26.5 secs)
mulsol.5 [186 nodes] (31) | 31 (1/1) (26.51secs) | 31 (1/1) (33.52secs) | 31 (1/1) (26.51 secs)
zeroin.1 [211 nodes] (49) | 49 (1/1) (26.95secs) | 49 (1/1) (32.39secs) | 49 (1/1) (26.95 secs)
zeroin.2 [211 nodes] (30) | 30 (1/1) (26.31secs) | 30 (1/1) (36.40secs) | 30 (1/1) (26.31 secs)
zeroin.3 [206 nodes] (30) | 30 (1/1) (26.32secs) | 30 (1/1) (36.40secs) | 30 (1/1) (26.32 secs)
fpsol2.1 [496 nodes] (65) | 65 (1/1) (28.99secs) | 65 (1/1) (28.95secs) | 65 (1/1) (28.99 secs)
fpsol2.2 [451 nodes] (30) | 30 (1/1) (26.36secs) | 30 (1/1) (25.49secs) | 30 (1/1) (25.49 secs)
fpsol2.3 [425 nodes] (30) | 30 (1/1) (26.05secs) | 30 (1/1) (25.6secs) |30 (1/1) (25.6 secs)
inithx.1 [864 nodes] (54) | 54 (1/1) (44.64secs) | 54 (1/1) (42.32secs) | 54 (1/1) (43.32 secs)
inithx.2 [645 nodes] (31) | 31 (1/1) (41.00secs) | 31 (1/1) (39.20 secs) | 31 (1/1) (39.20 secs)
inithx.3 [621 nodes] (31) | 31 (1/1) (41.08secs) | 31 (1/1) (39.00 secs) | 31 (1/1) (39.00 secs)

Table 9: Sparse Matrix Graphs. In the leftmost column, graphs are described by file name. When
the optimal coloring size is known, this is noted in parentheses in the first column. For each of RLF,
Saturation and Hybrid, the following data is listed: (i) The size of the best coloring found by each
algorithm. (ii) The number of runs achieving this coloring, over the total number of runs. (iii) The
average running time, over all runs obtaining the best coloring. These runs were done on a single CM-5
processor which requires much less time to do i/o than a parallel run. These tests were not done on
the Hybrid, due to lack of memory (the parallel memory allocator greatly overallocates memory on the

CM-5).
Graph RLF Saturation
1) () (iii) (1) (i) (iit)
s1084.dat(3) | 4 (5/5) (40secs) | 4 (5/5) (6 secs)
s1993.dat(4) | 3 (5/5) (7secs) |4 (5/5) (9 secs)
s707.dat(10) | 10 (5/5) (9secs) | 10 (4/5) (3 secs)
sl47.dat(2) |2 (5/5) (I sec) 2 (5/5) (1 sec)

20

Table 10: Exam Scheduling Graphs. In the leftmost column, graphs are described by file name. When
the optimal coloring size is known, this is noted in parentheses in the first column. For each of RLF,
Saturation and Hybrid, the following data is listed: (i) The size of the best coloring found by each
algorithm. (ii) The number of runs achieving this coloring, over the total number of runs. (iii) The
average running time, over all runs obtaining the best coloring.

Graph RLF Saturation Hybrid(32 Procs)

(i) @) () (i) @) () () @) (i)
fl-tech.1(11) | 11 (5/5) (23.4secs) | 11 (5/5) (38.5secs) | 11 (5/5) (23 secs)
fl-tech.2(8) |8 (5/5) (23.5secs) | 8 (5/5) (44 secs) 8 (5/5) (28.5 secs)
fl-tech.3 6 (5/5) (23.1secs) |6 (5/5) (37.5secs) |6 (5/5) (23.1 secs)

Table 11: Latin Square Graph. For each of RLF, Saturation and Hybrid, the following data is listed: (i)
The size of the best coloring found by each algorithm. (ii) The number of runs achieving this coloring,
over the total number of runs. (iii) The average running time, over all runs obtaining the best coloring.

Graph RLF Saturation Hybrid(32 Procs)
(@) () (i) i) @) (i) (i) @Gy ()
| Latin Square | 146 (2/4) (9.8 mins) | 132 (5/5) (2.5mins) | 109 (3/4) (1.9 hrs) |

Table 12: Comparison of number of iterations needed by parallel and sequential S-Impasse algorithms
to decrease colorings, for three graphs.

Graph Coloring Parallel Sequential
Size S-Impasse S-Impasse

G005 14 0 (0.35 secs) 0 (0.24 secs)
13 12 (7.82 secs) 21 (1.31 secs)
12 92 (13.69 secs) | 557 (5.96 secs)
11 523 (29.13 secs) | 7757 (98.27 secs)

le-450.15¢ 29 1 (start) 434 (37.1 secs)
27 350 (55.5 secs) 2770 (196.3 secs)
25 4915 (263.9) 11963 (651.9 secs)
23 17663 (836.0 secs) | 51260 (3086.3 secs)
22 41861 (1706.2 secs)
21 148349 (4590.1 secs)

school-as.dat | 28 48 (19.98 s) 0 (3.58 s)
27 154 (20.73 5) 305 (10.76 5)
26 823 (42.51 s) 686 (15.51 s)
25 1780 (48.89 5) 4767 (66.43 3)

21

Table 13: Parallel Exhaustive-Search. The running time on a Gyp,0.5 graph is given for various numbers
of processors. Also presented for each number of processors are the total number of nodes expanded in
the search tree, plus the minimum and maximum number expanded by a single processor.

No. Procs. | Running Total Nodes Min Nodes | Max Nodes
Time Expanded Expanded | Expanded

1 19.5 mins | 323,881 (100%) 323,881 323,881

2 10.7 mins | 334,156 (103.2%) | 163,040 171,116

4 6.08 mins | 327,621 (101.2%) | 73,556 99,279

8 5.48 mins | 359,681 (111.1% | 35,234 79,744

16 5.22 mins | 340,893 (105.3%) | 12,382 73,925

22

Appendix 11

Second DIMACS Challenge
Coloring Benchmark Results
GENERAL INFORMATION Authors: Gary Lewandowski and Anne Condon
Title: Experiments with Parallel Graph Coloring Heuristics
Name of Algorithm: Hybrid
Brief Description of Algorithm: Heuristic: Parallel Hybrid of parallel branch and bound exhaustive
search algorithm and parallel S-Impasse algorithm.

Type of Machine: Connection Machine CM-5
Compiler and flags used: g++, -g flag

MACHINE BENCHMARKS
User time for instances:

r100.5 1200.5 r300.5 r400.5 1rb00.5
1.83 14.38 122.88 773.39 2993.58

ALGORITHM BENCHMARKS

Authors’ Comments: Each run was time bounded by three hours. We consider machine crashes before
three hours to be failures, with the exception of R1000.5.col which always crashed after 15 minutes (for
unknown reasons) so the results are the best found in that period of time. The C2000 and C4000 graphs did
not run due to lack of memory on the CM-5. (This is partially a problem of size and the memory allocator
which allocates too much memory at a time.)

23

Results on Benchmark Instances

Time Solution
Name Runs (Fail) Min Avg (Std. Dev.) Max | Min Avg (Std. Dev.) Max
DSJC125.5.col 5 119922 4043.63(2508.8) 8037.7 | 17 17(0) 17
DSJC250.5.col b 306.106 4358.12(2789.37) 8013.02 | 29 29.2(0.447214) 30
DSJC500.5. col 5 1172.04 4783.86(2715.41) 786671 | 52 53(0.707107) 54
D3JC1000.5.col 5 4171.87 5333.81(1644.59) 8232 99 100(0.707107) 101
€2000.5.col 5 (5)
€4000.5.col 5 (5)
R125.1.col 5 50 64.6(22.2666) 104 5 5(0) 5
R125.1c.col 5 60 85(22.6716) 120 46 46(0) 46
R125.5.col 5 31.47 32.986(1.98744) 36.38 | 37 37(0) 37
R250.1.col 5 22 22(0) 22 8 8(0) 8
R250.1c.col 5 110.7 278.16(160.948) 505.8 64 64(0) 64
R250.5.col 5 38.9 39.88(0.563028) 40.3 66 66(0) 66
DSJR500.1.col 5 24.5 26.64(4.11983) 34 12 12(0) 12
DSJR500.1c.col 5 (1) 1331.1 5767.67(3703.33) 10139.6 | 85 85.25(0.5) 86
DSJR500.5. col 5 85.6 90.5(5.245) 96.2 | 128 128(0) 128
R1000.1.col 5 49.4 49.88(0.268328) 50 20 20(0) 20
R1000.1c.col 5 259.4 3940(5009.89) 10178 101 102.6(1.14018) 104
R1000.5.col 5 210 215.9(4.9548) 223.5 243 245.6(1.51658) 247
£1at300.20.0.col 5 236.8 274.3(36.6314) 329.3 20 20(0) 20
£1at300.26.0.col 5 2721.3 6637.14(3654.59) 10518.1 | 32 32.4(0.547723) 33
£1at300.28_0.col 5 454.6 1913.54(1515.12) 3786.9 33 33(0) 33
£1at1000.50.0.col 5 7172.8 7792.66(503.902) 8374.7 | 96 97(0.707107) 98
£1at1000.60_0 . col 5 3766 6288.36(1469.67) 75187 | 97 97.8(0.83666) 99
£1a£1000.76.0. col 5 (1) 5697 6497.85(664.774) 7100.3 | 99 99(0) 99
latin_square_10.col 5 (1) 5266.4 6520.12(1532.44) 85885 | 109 109.25(0.5) 110
1e450_15a. col 5 88 162.62(75.522) 2781 | 15 15(0) 15
1e450._15b.col 5 113.3 178.36(45.0573) 226.1 15 15(0) 15
led4b0_15¢c.col 5 1016.1 2229.61(1114.42) 3828.8 16 16.6(0.547723) 17
1e450.15d. col 5 1303.5 2859.6(1999.92) 5754.8 | 16 16.8(0.447214) 17
mulsol.i.1.col 5 27 27.2(0.447214) 28 49 49(0) 49
schooll.col] 37.6 46.26(7.82292) 55.2 14 14(0) 14
schooll nsh.col 5 54.2 66.4(9.36616) 76.4 14 14(0) 14

24

