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Abstract

Trace-driven simulation has long been the dominate technique for evaluating memory system
performance. However, the reference trace abstraction, upon which it is based, does not exploit
the full potential of on-the-fly simulation systems, which tightly couple reference generation and
simulation. In particular, an on-the-fly trace-driven system must simulate each reference even
when the common case, e.g., a cache hit, requires no action. We have developed a new memory
system simulation method that optimizes this common case, significantly reducing simulation
time. Fast-Cache tightly integrates reference generation and simulation by providing the
abstraction of tagged memory blocks: each reference invokes a user-specified function depend-
ing upon the reference type and memory block state. The simulator controls how references are
processed by manipulating memory block states, specifying a special NULL function for no ac-
tion cases. Fast-Cache implements this abstraction by using binary-rewriting to perform a table
lookup before each memory reference. On a SPARCStation 10, Fast-Cache simulation times
are two to three times faster than a conventional trace-driven simulator that calls a procedure on
each memory reference; simulation times are only three to six times slower than the original,
un-instrumented program. Fast-Cache also outperforms specialized hardware, the error correct-
ing code (ECC) bits on a Thinking Machines CM-5, for all but one of our experiments. Fast-
Cache slowdowns range from 3.1 to 6.7, whereas ECC slowdowns range from 1.3 to 46.

1. Introduction

Simulation is the most-widely-used method to evaluate memory system performance. Hardware designers
use simulation to develop new memory system architectures, while programmers use it to improve the utilization of
existing memory systems [6, 8, 17,20]. However, current simulation techniques are discouragingly slow; simulation
times are at least an order of magnitude slower than the execution time of the original program. Gee, et. al. [5], esti-
mate that 17 months of processing time were used to obtain miss ratios for the SPEC92 benchmarks [19].

Most memory system studies rely on trace-driven simulation [23], which consists of two components: refer-
ence generation and trace simulation. A reference generator produces a list of memory addresses—a reference
trace—in program order. A trace simulator models the memory system, at an arbitrary level of detail, by processing
each entry in the reference trace and simulating the actions of the hardware.

The reference trace abstraction has two main advantages. First, the trace acts as a simple interface to hide the
the details of reference generation from the simulator itself, simplifying simulator design and providing a measure
of portability. Second, the trace can be saved and reused for multiple simulations, guaranteeing reproducible results
and amortizing reference generation overhead. However, software reference generation techniques have improved
to the point that regenerating the trace is nearly as efficient as reading it from disk or tape [13]. On-the-fly simula-
tion techniques—where the trace is simulated as soon as it’s produced—have become popular because they
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eliminate I/O overhead, context switches, and large storage requirements [1, 2, 4, 20].

However, these on-the-fly simulation systems continue to use the reference trace abstraction. Although sim-
ple, this abstraction requires the simulator to process each reference; this is unnecessary in most simulations because
the common case requires no action. For example, to compute miss ratio, the most popular memory system metric,
a simulator need only count misses since the total number of memory references can quickly be obtained by
profiling tools [13]. In Tycho [7], the simulator used by Gee et. al., hits in the smallest (1 Kilo-byte) direct-mapped
cache require no action. Therefore, sixty to seventy percent of the references invoke the simulator unnecessarily.
Increasing the smallest cache size to 16 Kilo-bytes filters nearly 90% of the references.

This paper presents a new abstraction for memory system simulation—based on tagged memory blocks—
specifically designed for on-the-fly simulation. In this new abstraction, reference generation and simulation are
tightly coupled. On each memory reference, the reference generator invokes a user-specified function depending
upon the reference type and memory block state. The simulator controls which function is invoked by manipulating
the states. A predefined NULL function allows simulators to expedite the processing of no action cases.

To illustrate this new abstraction, consider a simulation to count cache misses. Memory blocks are either
present in the cache, or absent; the simulator can represent these cases with the two states valid and invalid. Refer-
ences to blocks tagged valid invoke the NULL handler and continue immediately; references to invalid blocks
invoke a user-written miss handler. The miss handler counts the miss, selects a victim using a standard cache data
structure, and updates the state of both the replaced and referenced blocks. Because most references invoke the
predefined NULL function, this simulation is much faster than one using the traditional trace abstraction.

A special case of the tagged block abstraction has been previously implemented using special hardware. The
Wisconsin Wind Tunnel (WWT) uses the error correcting code (ECC) bits of a Thinking Machines CM-5 as valid
bits [22]. References to valid blocks, e.g., cache hits, execute at hardware speed; references to invalid blocks, e.g.,
cache misses, trap to the simulator. By executing most references without software intervention, WWT potentially
achieves significant performance gains over other simulation systems. However, it requires operating system and
hardware support that is not readily available on most machines, and cannot easily be generalized to support more
than two tag values.

Fast-Cache is a software system that implements a general version of the tagged memory block abstraction. It

provides an efficient simulation framework by:

e highly-optimizing no action cases;

e rapidly invoking the necessary routine for action cases;

e isolating simulator writers from details of reference generation;

e providing simulator portability.
Fast-Cache achieves these goals by inserting 9 instructions before each memory reference to lookup a memory
block’s state and invoke the user-specified handler. The NULL handler executes two instructions, so no action
cases require only 11 instructions. Fast-Cache uses binary rewriting to insert the necessary instrumentation and
automatically incorporate user-written handlers. Fast-Cache provides a set of routines to manage the tagged
memory block abstraction, thereby isolating simulator writers from the details of reference generation.

The tagged memory block abstraction supports complex memory system simulations. For example, Fast-
Cache is currently being used to simulate a system that includes a translation look-aside buffer, a two-level cache
hierarchy, and a memory-mapped network interface. Fast-Cache also facilitates simulations that require the notion
of time (e.g., prefeich operations and write buffers) by providing accurate instruction cycle counts.

Although generality is an important feature of Fast-Cache, in this paper we focus on the performance
improvements achieved by optimizing cache simulation for the common case—cache hits. Our results show that
Fast-Cache reduces simulation time by a factor of two or three compared to a trace-driven simulation, where the



reference generator calls a procedure on every memory reference. Fast-Cache simulations run 3.7 to 5.5 times
slower than the original program on a SPARCstation 10, while a trace-driven simulator runs 10 to 15 times slower.
We also compare Fast-Cache to a hardware implementation of tagged memory blocks that uses the error correcting
code (ECC) bits on a CM-5 [22]. Fast-Cache slowdowns range from 3.1 to 6.7, while ECC slowdowns range from
1.3 to over 45. For very low miss ratios, ECC outperforms Fast-Cache because of its low overhead miss detection.
However, Fast-Cache performs significantly better than ECC for miss ratios greater than 2% because ECC incurs
much higher overhead on a miss.

This paper is organized as follows. The next section describes Fast-Cache, and Section 3 compares its perfor-
mance to a conventional trace-driven simulator on a SPARCstation 10. Section 4 compares Fast-Cache to a
hardware implementation that uses the error correcting code bits on a CM-5 as memory block tags. In Section 5, we
discuss some applications of Fast-Cache and possible extensions. Related work is discussed in Section 6, and we
give our conclusions in Section 7.

2. Fast-Cache

In this section we describe Fast-Cache, a simulation system that implements the tagged memory block
abstraction. By tightly coupling reference generation and simulation, Fast-Cache significantly improves perfor-
mance by highly-optimizing cases that do not require simulator action. Performance also improves when action is
required, since Fast-Cache directly invokes (user-specified) functions. Fast-Cache isolates simulator writers from
the details of reference generation by providing a well defined interface for manipulating memory block tags.

Fast-Cache allocates a user-specified amount of state for each memory block (e.g., cache block or page) in a
program’s virtual address space. Each state can be assigned a unique handler, and different handlers can be
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Figure 1: Fast-Cache Operation

This figure shows the execution of Fast-Cache for two cases: a cache hit and a cache miss. In this example the table lookup for
the LOAD Y instruction indicates a cache hit and the handler stub simply returns. Conversely, a cache miss is detected for the
LOAD X instruction; the handler stub saves processor state, and calls a user written handler.




specified for LOADS and STORES. Fast-Cache performs a table lookup before each memory reference to obtain
the corresponding state, and invoke the appropriate user handler. The user handlers can be written in a high-level
language, e.g., C, and are provided their own library routines and data segment, which prevents perturbation of
simulation results.

Fast-Cache invokes user handlers through a handler stub that normally saves processor state. However, Fast-
Cache can special case some functions and perform their entire action within the stub. Currently, Fast-Cache pro-
vides only one special function—the NULL handler—ithat optimizes cases that do not require any simulator action
(see Figure 1). Fast-Cache can easily be extended to provide other predefined functions, such as incrementing an
arbitrary counter, that avoid saving processor state. Although our current implementation optimizes the NULL
handler by using a procedure call, and thus avoids saving the SPARC condition codes, on most machines (e.g.,
MIPS) we could optimize these functions with a compare and branch.

Although Fast-Cache may seem to allocate an extraordinary amount of state, a program’s actual memory is
limited by system resources (e.g., available swap space or maximum text, stack and, data sizes). Therefore, we do
not have to allocate state for the entire 4 Giga-bytes in a 32-bit address space. Furthermore, since UNIX automati-
cally zeros data pages on first reference, Fast-Cache need not explicitly initialize the block states and un-accessed
state pages are never instantiated.

Fast-Cache inserts the table lookup instructions before each data reference’ by rewriting existing executable
files. Binary rewriting, also known as executable file rewriting [12], takes a program that is executable on an exist-
ing machine, adds instrumentation code and produces an executable that runs on the same machine. We discuss
some of the advantages of binary rewriting in Section 3.3.

Under this new abstraction, the simulator is a set of handlers that control reference processing by manipulat-
ing memory block states with Fast-Cache provided routines. Fast-Cache imports the user handlers along with user
startup and termination routines. Table 1 summarizes the interface between Fast-Cache and the simulator. In order
to insert the appropriate instrumentation, Fast-Cache reads the following information from a configuration file (see
Figure 2): the amount of state, the power-of-two block size, and the handler for each state.

The tagged memory block abstraction enables efficient simulation of a variety of memory systems. Simple
simulations benefit primarily from the predefined NULL handler, whereas more complex simulations also benefit
from Fast-Cache’s direct invocation of simulator functions. For example, the property of inclusion [18] allows
efficient simulation of multiple cache configurations in a single pass over the reference trace [7,27]. However, with
the trace abstraction, simulation time is much higher for caches that do not guarantee inclusion. The simulator must
probe each cache individually to determine if the reference is a hit or a miss. Using the state of a memory block to
encode which caches the block is in, Fast-Cache expedites this search by directly invoking a simulator function spe-
cialized to update the appropriate caches.

A simulation system should minimize perturbation of the application program’s memory system behavior.
Interleaving simulator data and application data changes data placement, and can significantly alter memory system
behavior [11]. Fast-Cache avoids this problem by providing a separate data segment for the simulator and allowing
users to specify alignment. Padding all additional text and data to this alignment guarantees that application data in
the instrumented program maps to the same set as in the original, un-instrumented program. Fast-Cache also pro-
vides separate library routines for the user handlers, and thus prevents them from executing the instrumented ver-

sion.

! Currently we do not instrument instruction fetches.



__fc _read_state{address); Returns the current state of
the memory block that con-

Fast-Cache tains address.

Provided _ fo_write_state(address, state); Updates the state for the
memory block containing
address.

user_handler (address) ; A user written function in-

voked by Fast-Cache’s refer-
ence generator.

User — - -
Written _fe_tgt_dinit(); A user written routine called
on simulation startup.
__fe_tgt_exit () ; A user written routine called

on simulation exit.

Table 1: Fast-Cache Interface

/* Fast-Cache configuration file for a simple cache simulation */

state_bits 1 /* number of state bits per block */
lg2blocksize 5 /* log base 2 of the block size */

memory 65536 /* maximum amount of dynamically allocated memory */
align 65536 /* pad additional text and data to this size */
virtual_time 0 /* enable/disable instruction cycle counting */
LOADS

0 miss_handler /* name of a user handler to call */

1 fo_return /* predefined NULL handler */

STORES

0 miss_handler /* name of a user handler to call */

1 fc_return /* predefined NULL handler */

Figure 2: Fast-Cache Configuration File

Fast-Cache provides a framework for efficient memory system simulations by providing a tagged memory
block abstraction. This abstraction allows Fast-Cache to highly-optimize cases that do not require simulator action,
and improve performance when action is required. Fast-Cache also isolates simulator writers from the details of
reference generation by providing a well defined interface for manipulating memory block states. In the next
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section we evaluate the performance of Fast-Cache by comparing it to a conventional trace-driven simulator. Sec-
tion 4 compares Fast-Cache, which implements memory block tags in software, to a hardware implementation of
memory block tags.

3. A Comparison of Abstractions

We have currently implemented Fast-Cache for SPARC processors. In this section, we evaluate the perfor-
mance of Fast-Cache on a SPARCstation 10 by comparing it to a trace-driven simulator that invokes a procedure for
each memory reference. For simple miss counting, Fast-Cache simulations are two to three times faster than the
procedure call implementation. Fast-Cache simulation times are 3.7 to 5.5 times slower than the original program.
Calling a procedure on every memory reference runs 10 to 15 times slower. These results clearly show the advan-
tage of optimizing for the common case, which the tagged memory block abstraction allows.

3.1. Methodology

Although there are many trace-driven simulators available, most are self-contained programs and execute
independently of the reference generator. To make our comparison fair we modified Fast-Cache to implement our
own single address space trace-driven simulator (PROC). Our implementation invokes a single simulator function
before each memory reference; we insert four instructions to compute the effective address and jump to a handler
stub, which is the same as the normal Fast-Cache stub. The stub saves processor state (including condition codes),
calls the cache simulator, then restores the processor state. Although SPARC register windows allow saving most
processor state with a single instruction, condition codes and some global registers must also be preserved across
user handler invocations. We use a sequence of instructions to save and restore the condition codes [2], avoiding
the overhead of system calls. Condition codes are seldom live [10], and we could eliminate saving and restoring
them on some handler invocations; however, our current implementation does not perform the necessary analysis.

We use a metric called slowdown to evaluate simulation techniques. Slowdown is the simulation time divided
by the execution time of the original, un-instrumented program. We use the average of two executions as measured
with the UNIX time command. System time is included because the state bits may affect the virtual memory sys-
temn.

Benchmark Tota_l Data Refergnce Mis.s
Instructions References Ratio Ratio
Compress 550,967,773 132,255,602 0.24 0.1257
Eqntott 1,196,745,802 219,396,712 0.18 0.0423
Gee 122,217,042 30,150,226 0.25 0.0160
Tomcatv 1,350,644,358 481,774,508 0.35 0.0391
Xlisp 5,157,504,732 | 1,702,779,137 0.33 0.0016

Table 2: Benchmark Characteristics on a SPARCstation 10

The miss ratio is obtained for a 64 K-Byte cache with 32-byte blocks.




We present results for two simulations: All-Hits and Miss-Count. All-Hits, which models an ideal cache,
indicates the overhead of detecting cache misses. Miss-Count, which counts misses in a 64 K-byte direct-mapped
cache with 32-byte blocks, includes the overhead for processing cache misses. The PROC implementation of All-
Hits calls a procedure that always performs a successful tag comparison. The Fast-Cache implementation of All-
Hits uses the predefined NULL handler for all cache block states. For this comparison, Fast-Cache uses 8 state bits
and we use an array for the cache data structure in PROC and the Fast-Cache miss handler. Section 3.3 discusses
using fewer state bits in Fast-Cache.

We use 5 programs from the SPEC92 benchmark suite [19]: compress, egntott, gcc, xlisp, and
tomcatv.? All programs operate on the SPEC input files; for gcc we simulate only the ccl program operating
on the single SPEC input file lstmt.i. All programs are compiled with gcc[25] version 2.4.5 at optimization
level -O2. Program characteristics are shown in Table 2.

3.2. Results

The slowdowns for both Fast-Cache and PROC are presented in Figure 3. As shown, Fast-Cache significantly
outperforms calling a procedure to simulate each memory reference. Fast-Cache simulation times are 3.7 to 5.5
times slower than the original program, while PROC ranges from 10 to 15 times slower. Fast-Cache also compares
favorably with previously published slowdowns for uniprocessor simulations [2, 4, 16].

As the dark bars show, miss detection dominates. The overhead of invoking the simulator on every memory
reference clearly dominates PROC simulation times. Fast-Cache significantly reduces the absolute overhead of miss
detection, although it remains a large fraction of the simulation time. Intuitively, All-Hits simulation times should
be a simple function of the reference ratio—the fraction of instructions that are memory references. Unfortunately,
the combination of cache and pipeline effects prevents this. The SPARCstation 10 has a SuperSPARC processor,
which is capable of issuing up to three instructions per cycle. Inserting a jump instruction before each memory
reference can significantly affect the ability to issue multiple instructions per cycle.

PROC uses the same structure for miss detection as miss processing. By the time a miss is detected, the
appropriate index into the cache data structure is available and the additional overhead to process the miss is negli-
gible. Conversely, Fast-Cache uses a different structure for miss detection than for miss processing. The miss
handler must still perform a lookup in the cache structure to obtain the replacement block and insert the new block.
This makes Fast-Cache simulation time dependent on the miss ratio. For example, x1isp has the lowest miss
ratio and exhibits the smallest overhead for miss processing, whereas compress has the highest miss ratio, and
miss processing is a significant portion of simulation time.

3.3. Discussion

The results presented in this section clearly demonstrate the advantage of optimizing for cache hits. Fast-
Cache uses the tagged memory block abstraction to optimize for the common case and significantly reduce simula-
tion times. It also maintains the isolation of simulator writers from the details of reference generation. Although the
data and code expansion caused by the memory tags and extensive in-lining could degrade memory system perfor-
mance, we have not found this to be a problem.

Both Fast-Cache and PROC cause code expansion proportional to the static number of memory references,
however, Fast-Cache inserts twice as many instructions as PROC. Fast-Cache inserts 9 instructions to perform the
table lookup for a byte of state, and 15 instructions if memory block tags are less than 8 bits. PROC only requires 4

2 We used a C-language version of tomcatv that was restructured to improve its cache behavior [8].
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Figure 3: Fast-Cache Slowdowns

Fast-Cache outperforms the procedure call implementation (PROC) by a factor of 2 to 3. The dark bars clearly show that PROC
is dominated by miss detection, and miss ratio has little influence on simulation time. Conversely, optimizing for cache hits
makes Fast-Cache simulation time dependent on miss ratio.

instructions to generate the reference and invoke the simulator. Although we do not have quantitative results on the
impact of code expansion, our results indicate that it has limited impact on performance.

However, we did find the number of instructions executed on each memory reference to significantly affect
simulation times. Fast-Cache simulations that require bit extraction execute from 10% to 30% slower (e.g., a slow-
down of 6 rather than 5) than those that take advantage of SPARC byte operations. However, they are still nearly
twice as fast as PROC. This implies that in-lining the entire simulation will not improve performance much over
tagged memory blocks, unless it significantly reduces the number of instructions for miss detection. For simple miss
counting in a direct-mapped cache, we found that tagged memory blocks perform comparable to complete in-lining.
However, in-lining the entire simulation has other disadvantages: complex simulations would require a large
number of instructions to determine the appropriate action, it is difficult to isolate simulator writers from the details
of reference generation, and code expansion could quickly become a problem.

We found very little variation between Fast-Cache simulators that use 1, 2, and 4 bits of state. This indicates
that data expansion has negligible impact on simulation time. Fast-Cache’s data expansion is proportional to the
amount of memory a program may access and depends on the memory block size, whereas PROC allocates memory
proportional to the size of the simulated cache. Although Fast-Cache requires much more memory, the memory
block tags exhibit even better locality than data in the application program, and therefore do not degrade the perfor-
mance of the SuperSPARC memory system.



Although our implementation of Fast-Cache uses binary rewriting on SPARC processors, the tagged memory
block abstraction is independent of instrumentation methodology. We chose binary rewriting because it is easy to

include library routines,® and it avoids the need to re-compile the instrumented program. The alternative techniques
of source code annotation and assembly instruction instrumentation require source code, which may not be avail-
able. They also require re-compilation of the instrumented program, which is often time consuming. Source code
annotation may alter register allocation, producing a significantly different reference trace. Binary rewriting and
assembly instruction instrumentation preserve the memory reference pattern of the original application program
since they occur after register allocation. For simulations that require accurate timing (e.g., analysis of bus traffic)
assembly code instrumentation must correctly account for synthetic instructions that are expanded into multiple
machine instructions by the assembler. Binary rewriting avoids this problem by instrumenting machine instructions.
However, binary rewriting requires complex analysis to correctly insert instrumentation because it occurs after the
program is linked. Recent advances in this area have produced systems that separate the details of binary rewriting
from the insertion of instrumentation [14].

In some scenarios, it is necessary to include the instrumentation time in slowdown computations. We do not
include binary rewrite time in our slowdown computation for two reasons: rewrite time is usually much lower than
execution time or compilation time (see Table 4), and we are focussing on simulation techniques not instrumenta-
tion methodology. Other overheads of binary rewriting, e.g, indirect jumps and system calls, are included in simula-
tion times, but are negligible.

The results presented in this section clearly demonstrate the advantage of optimizing for cache hits. Fast-
Cache allows the simulator to control which references it processes by providing a tagged memory block abstrac-
tion. Using software implemented tags, Fast-Cache achieves speedups of two to three over a conventional trace-
driven simulator, while maintaining the isolation of simulator writers from the details of reference generation.

4. A Comparison of Implementations

Although Fast-Cache uses software techniques to provide memory block tags, it is possible to implement
them in hardware. The Wisconsin Wind Tunnel does this by using the the error correcting code (ECC) bits on a

Benchmark Rewrite E?(ecution qunpilation
Time (sec) | Time (sec) Time (sec)
Compress 6.25 24.30 7.47
Eqntott 6.58 26.80 16.94
Gcee 31.53 3.80 400.23
Tomcatv 5.79 54.05 5.49
Xlisp 9.16 222.80 29.40

Table 4: Fast-Cache Binary Rewrite Time

3 Currently we do not rewrite dynamically linked executables.



Thinking Machines CM-5 as valid bits, which eliminates software overhead for cache hits. In this section, we pro-
vide a quantitative comparison between Fast-Cache and a simulator that uses ECC bits. Our results show that Fast-
Cache performs better or equal to ECC in all but one simulation, where the miss ratio is less than 0.1%. Fast-Cache
simulation times are 3 to 6.7 times slower than the original program, while ECC executes 1.4 to 46 times slower.
Although ECC optimizes cache hits, it incurs significant overhead for miss processing. Fast-Cache remains stable
across simulations because it provides a better balance between miss detection and miss processing.

The Wisconsin Wind Tunnel uses ECC to provide hardware valid bits for simulated cache blocks [22].
Misses in the simulated cache also cause misses in the hardware cache, which in turn accesses physical memory
marked with bad ECC. Only those cache blocks present in the simulated cache have valid ECC. References to
invalid cache blocks generate a hardware trap that is redirected to the simulator (see Figure 4). The simulator
chooses a block to replace, then copies the data to an internal buffer, and writes bad ECC to the physical memory
Jocation of the replaced block. The simulator writes valid ECC for the referenced block, then copies the referenced
data from its internal buffer, and updates the tags of the simulated cache.

This technique has no software overhead for cache hits, but the miss processing overhead is very high, over
2500 cycles. This overhead can be divided into three components: trap, data movement, and ECC update. First,
because the application program and the simulator run in separate address spaces, the trap overhead includes a
round-trip between the application and simulator. Second, the error correcting code bits are not a true valid bit:
changing the ECC bits requires overwriting the data. Therefore data that is not in the simulated cache must be kept
in an internal simulator buffer. Finally, updating ECC is a privileged operation that must be performed in supervisor
mode; its performance is dominated by the overhead of trapping to the operating system.

To isolate the individual overheads of trapping and data movement, we incrementally add them to a base
Fast-Cache implementation. In the first extension (Fast-Cache+Trap), we modify the miss handler to trap to a
separate process to update the state bits, see Figure 5. This trap overhead is slightly higher than ECC faults incur
because it includes the Fast-Cache overhead to savefrestore processor state. The next implementation, Fast-
Cache+Trap+DM, adds the overhead of data movement by copying data to and from an internal buffer. Fast-
Cache+Trap+DM is very similar to the ECC implementation, but has higher miss detection overhead and does not

Simulator
Cache
N LOAD Y
Hit HW TRAP gpdate
/\,
Cache | LOADX Sopy
Miss -

Figure 4: Miss Detection with ECC

This figure shows the execution of ECC for two cases: a cache hit and a cache miss. In this example the reference to Y is a cache
hit and proceeds at hardware speed, while the reference to X is detected as a cache miss. The physical memory location of X has
bad ECC and generates a hardware trap when referenced. The simulator updates the ECC, and copies the data from its internal

buffer.
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perform the system calls required to update ECC. All of the Fast-Cache implementations use 1 bit of state per cache
block.

4.1. Methodology

Our evaluation environment is a significantly modified version of the Wisconsin Wind Tunnel running on a
Thinking Machines CM-5. Since we are not investigating parallel processing, we retain only the code necessary for
uniprocessor cache simulation (we were, however, still able to exploit parallelism by executing a different simula-
tion on each node of the CM-5). Simulation times are presented as cycle counts, using the CM-5 cycle counters.
We exclude I/O since it goes through the shared control processor. We use three of the benchmarks presented in
Section 3: compress, egntott, and tomcatwv. The programs are modified to use file I/O so they execute
correctly under the new environment (the CM-5 processing nodes do not run UNIX).  compress and egntott
operate on the SPEC input and tomcatv executes 20 iterations on the SPEC input matrices.

We simulate four cache configurations: starting from a 16 K-byte direct-mapped cache with 32 byte blocks,
we double the block size and quadruple the cache size up to a 1 M-byte cache with 256 byte blocks. Increasing both
the cache size and block size reduces the miss ratio for all three programs (see Table 3), allowing us to examine the
dependence of simulation time on miss ratio. The current ECC implementation does not simulate stack references
or LOADS from the text segment. Our Fast-Cache implementations check for these references in the miss handler

and mark their blocks valid for the remainder of the simulation®.

// Lookup
LOADY
Cache ‘///
it
Hi A Lookup
7\ LOAD X
v N Cache
R Miss
>~ Return
Handler
Stub Simulator
SW TRAP
/_\ gpdate
| State
A Bits

Figure 5: Fast-Cache With Trap

This figure shows the execution of Fast-Cache+Trap for two cases: a cache hit and a cache miss. In this example the table lookup
for the LOAD Y instruction indicates a cache hit and the handler stub simply returns. Conversely, a cache miss is detected for
the LOAD X instruction. The handler stub saves processor state and calls a user written handler that executes a software trap to a
separate process, using the SPARC trap always (TA) instruction, where the state bits are updated.

4 The miss ratios for these benchmarks do not change significantly when stack and text references are included.
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6 KBylc | 64 KByt | 256K Byte | 1M
Benchmark | 35 FE | e Byte | 128Byte | 256 Byte
Compress 0.1582 0.1195 0.0434 0.0007
Eqntott 0.0539 0.0332 0.0159 0.0045
Tomcatv 0.0735 0.0198 0.0098 0.0048

Table 3: Benchmark Miss Ratios

4.2. Results

Figure 6 shows the slowdowns of the four simulators presented above, where slowdown is the number of
CM-5 cycles required for simulation divided by the number of cycles executed by the original program. We also
show the slowdown for a Fast-Cache All-Hits simulation. The x-axis in Figure 6 is misses per cycle (MPC),
obtained by dividing the number of cache misses by the cycle count of the original program. We chose MPC
instead of miss ratio or misses per instruction because it allows comparison of results across benchmarks. Miss ratio
is inadequate since it does not account for the memory reference rate of a program. For example, tomcatv has
35% references while egntott has less than 20%. Ideally, we would plot memory reference slowdown versus
miss ratio, but this requires factoring out cycles not attributed to memory references, which we can not do.

Fast-Cache slowdowns range from 3.1 to 6.7, and ECC ranges from 1.3 to 46. Two observations can be made
from the data presented in Figure 6. First, Fast-Cache performs much better than ECC for most of our simulations.
For low MPC, ECC performs very well, but as MPC increases, miss processing overhead dominates and the slow-
down increases almost linearly. Fast-Cache exhibits much less dependence on MPC because it has much faster miss
processing. Simulation time becomes more dependent on MPC as we add additional overhead for miss processing.
The slight non-linearity exhibited by compress and eqntott is caused by cache effects on the CM-5.

The second observation is that simulation time is affected more by trap overhead than data movement. This is
significant for ECC, because it usually requires four traps to process a single cache miss: one for the ECC fault, a
second to mark the new block valid, a third to mark the replaced block invalid, and a fourth to trap back to the appli-
cation program. The trap overhead is higher than it might otherwise be for several reasons: WWT’s structure of
separate address spaces, SPARC register windows, and a bug in the CM-5’s cache controller. Nonetheless, for
hardware valid bits to be better than Fast-Cache for even moderate-sized caches would require user-mode accessible
valid bits [3] and fast user-level trap mechanisms [9]. However, it is unlikely that these features will be widely
available in the near future.

5. Fast-Cache Applications and Extensions

The previous sections focus on counting misses for a specific cache configuration. However, Fast-Cache can
be used for more complex simulations than simple miss counting. In this section we present some applications of
Fast-Cache that take advantage of its generality. We also present some extensions that can easily be incorporated
into our cwrrent implementation of Fast-Cache.
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Figure 6: Fast-Cache vs ECC

This graph shows slowdown versus miss per cycle (MPC). Fast-Cache clearly outperforms ECC for high MPC, and is competitive at low
miss rates. ECC performs better than Fast-Cache in only one case, where the MPC is less than 0.001, Although, MPC ranges from 0 to

0.01 in our graphs, it is not limited to this range.
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5.1. Complex Simulations

The generality of the tagged memory block abstraction allows efficient simulation of memory systems much
more complex than single-level caches. For example, Fast-Cache is currently being used to simulate a system with
a TLB, two levels of cache, and a memory-mapped network interface. This simulation uses four state bits, one for
each level of the memory system. The TLB and cache hierarchy handlers are similar to the handler described in
Section 2. The network interface handler is much more complicated, modeling a user-level messaging system like
in the CM-5 [15].

Fast-Cache provides accurate instruction cycle counts and can be used for timing dependent simulations, such

as prefetching and write buffers. User handlers access the current value of the cycle counter through a global vari-
able.

Fast-Cache can be used to simulate set-associative caches as well. A particular Fast-Cache implementation
depends on the policy for replacing a block within a set. Random replacement can use an implementation similar to
the direct-mapped cache, calling a handler only when a block is not resident in the cache. A Fast-Cache implemen-
tation of least recently used (LRU) replacement can optimize references to the most recently used (MRU) block
since the LRU state does not change. References to MRU blocks would invoke the NULL handler, while all other
references invoke the simulator. This is similar to Puzak’s trace filtering for set-associative caches [21]; the pro-
perty of inclusion [18] indicates the number of references optimized is equal to the number of cache hits in a direct-
mapped cache with the same number of sets as the set-associative cache. A further optimization distinguishes
misses from hits to non-MRU blocks by using more than two states per cache block. An example configuration file
is shown Figure 7.

The performance of simulators that evaluate multiple cache configurations can also be improved by using
Fast-Cache. For example, a Fast-Cache implementation that uses a binomial tree[27] to simulate multiple cache
configurations would optimize references that hit at the root of the binomial tree. The binomial tree reduces the
search time when determining what action to take. A Fast-Cache simulation can eliminate this search by using the
memory block state to encode its position in the tree, and directly invoking a simulator function that is optimized to
update the tree appropriately. As mentioned in Section 2, directly invoking simulator functions based on the state of
a memory block also allows efficient simulation of multiple cache configurations that do not guarantee inclusion.

STATE  Handler Comment

0 miss_handler /* called for blocks not in the cache */
1 non_mru_hit /* cache hits to non-mru blocks */

2 fe_return /* cache hits to mru blocks */

3 fo_return /* unused */

Figure 7: State Specification for Set-Associative Cache with LRU Replacement
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5.2. Cache Profiling

Fast-Cache can be extended to provide the data necessary to produce a cache profile [8, 17]. A cache profile
identifies code sections and data structures that exhibit poor cache behavior. A very simple profile displays the
number of cache misses for each memory reference. Fast-Cache can be extended to provide the program counter
for each memory reference by adding an additional parameter to the user handler invocations. More sophisticated
cache profiles can be created by using different handlers. For example, CPROF [8] classifies cache misses as com-
pulsory, capacity, conflict, or anti-conflict. Fast-Cache’s generality allows invocation of a separate handler for each
miss type.

5.3. Instruction Fetch

Fast-Cache currently does not support instruction fetch simulation. However, it can easily be extended to use
a combination of table lookup and static analysis[29] to efficiently simulate instruction fetches. Fast-Cache knows
the program counter for each instruction when it is rewriting the executable. For split instruction and data caches, at
the beginning of each basic block; Fast-Cache can perform a table lookup for instructions that occupy unique cache
blocks. For unified caches, exact simulation requires checking at a finer grain, however the added accuracy is prob-
ably not worth the extra overhead.

6. Related Work

Fast-Cache builds on the observation that in most simulations, the common case requires no action. This
observation has been used in several earlier efforts to improve memory system simulation. MemSpy [16] optimizes
for cache hits by saving only the registers necessary to determine if a reference is a hit or a miss; hits branch around
the remaining register saves and miss processing. Although we cannot directly compare MemSpy’s performance to
Fast-Cache, there is an important disadvantage of this approach. MemSpy tightly integrates reference generation
and simulation, but does so in an ad hoc way. The miss detection code must be written in assembler, so the
appropriate registers may be saved, and must be modified for each different memory system. By presenting the
tagged memory block abstraction, Fast-Cache hides these low-level details from simulator writers, allowing the
entire simulator to be written in C.

Other work has focussed on reducing the size of reference traces by filtering out references that would hit.
Smith[24] proposed doing this by deleting references to the n most recently used blocks. The subsequent trace can
be used to obtain correct miss counts for fully associative memories that use LRU replacement with more than n
blocks. Puzak {21] extended this work to set-associative memories by filtering references to a direct-mapped cache.
However, these techniques are of little or no use with on-the-fly simulators.

Simulators that evaluate several cache configurations in a single pass over the reference trace [7, 18,27, 28]
use the property of inclusion to limit the search for caches that contain a given block. The portion of the simulator
modeling larger caches only requires action when the block is not contained in all smaller caches. Fast-Cache can
improve the performance of these simulators by filtering references that hit in all caches. Multiple cache
configurations that do not guarantee inclusion can also be simulated with Fast-Cache. The tagged memory block
abstraction enables Fast-Cache to eliminate this search by directly invoking a simulator function to update the
appropriate caches. Again, references that hit in all simulated caches would invoke the NULL handler.

Several simulation systems reduce simulation time by executing the reference generator and the simulator in
the same address space [1,2,4,20,26]. Some of these systems call a procedure before each memory reference
[4,20], incurring the overhead of saving and restoring processor state for each memory reference executed. Other
systems write the trace to a shared buffer and invoke the simulator when the buffer is full [1] or at basic block boun-
daries [26]. These systems amortize the overhead of saving and restore processor state over several memory refer-
ences.
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Most of the above systems instrument assembly code. Shade[2] provides an alternative technique (o instru-
mentation by interpreting each instruction. For tracing, Shade writes addresses to an internal buffer and calls a trace
analyzer when the buffer is full. Shade also allows users to gain control at any point in the simulation, by specifying
instructions that should invoke the simulator.

7. Conclusion

The performance of conventional simulation systems is limited by the simple interface—the reference trace
abstraction—between the reference generator and the simulator. This paper presents Fast-Cache, a software system
that provides a tagged memory block abstraction—a new method for memory system simulation. Fast-Cache pro-
vides an efficient simulation framework by: optimizing cases that do not require simulator action, rapidly invoking
specific simulator functions when action is required, isolating simulator writers from the details of reference genera-
tion, and providing simulator portability. Fast-Cache associates state with each memory block, and directly invokes
simulator functions based on this state. The simulator manipulates memory block states to control which references
it processes. Fast-Cache provides a special NULL function to expedite the processing of references that do not
require simulator action.

Fast-Cache can be used for complex memory system simulations, however in this paper we concentrate on the
performance of simple cache simulation. Fast-Cache simulation times are 3.7 to 5.5 slower than the original, un-
instrumented program on a SPARCstation 10, while a traditional trace-driven simulator that calls a procedure for
each memory reference is 10 to 15 times slower. We also show that Fast-Cache’s software implemented memory
block tags outperforms a hardware implementation of memory block tags (ECC bits on a CM-5) because it provides
a better balance between miss detection and miss processing. Fast-Cache slowdowns range from 3.1 to 6.7, while
ECC slowdowns range from 1.3 to 46. Our results show that Fast-Cache performs significantly better than ECC for
simulated miss ratios greater than 2%. ECC outperforms Fast-Cache in only one of our experiments, where the miss
ratio was less than 0.1%.

As the impact of memory hierarchy performance on total system performance increases, hardware and
software developers will increasingly rely on simulation to evaluate new ideas. Fast-Cache provides the mechan-
isms necessary for efficient memory system simulation by using the tagged memory block abstraction to optimize
for the common case.
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