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Abstract
We present new finite difference schemes for the incompressible Navier-Stokes equa-
tions. The schemes are based on two spatial differencing methods, one is fourth-order
accurate and the other is sixth-order accurate. The temporal differencing is based on
backward differencing formulas. The schemes use non-staggered grids and satisfy regular-
ity estimates, guaranteeing smoothness of the solutions. The schemes are computationally
efficient. Computational results demonstrating the accuracy are presented.
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1. Introduction.

High-order accurate finite difference schemes are important in scientific computation
because they offer a means to obtain accurate solutions with less work than may be required
for methods of lower accuracy. Finite difference methods are attractive because of the
relative ease of implementation and flexibility.

In this paper we present new finite difference schemes for the incompressible Navier-
Stokes equations. The schemes are based on two spatial differencing methods, one a fourth-
order accurate method and one a sixth-order accurate method. There are several temporal
differencing methods presented in section 7. These temporal schemes can be used with
either of the spatial differencing methods. The temporal differencing is based on backward
differencing formulas (BDF) that are used for stiff ordinary differential equations. The
schemes are implicit and appear to be unconditionally stable for the Stokes equations. (A
rigorous stability analysis is the subject of further research.)

High-order methods have been presented by Rai and Moin [13] and Lele [10] for the
fractional step method proposed by Kim and Moin [9]. There is an excellent study of these
methods in the paper by Tafti [20]. A disadvantage of these methods is that because they
are explicit, there is a severe stability limit on the time step. Moreover, as pointed out
by Perot [11], the pressure for fractional-step methods can be no better than first-order
accurate in time. Projection methods also have difficulty with higher order accuracy in
time, see Shen [16]. This is not so for the methods presented here, where the pressure can
be determined to a high order of accuracy. For steady flows the method of Aubert and
Deville [1] can be applied to yield fourth-order accuracy, at the expense of increasing the
number of unknowns and computational complexity of the system. All of these methods
use staggered meshes.

t This work was supported in part by the U.S. Army Research Office under grant
DAALO03-91-G-0094 and the National Science Foundation under grant DMS-9208049
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The schemes presented in this paper are for orthogonal Cartesian grids on non-
staggered grids, that is, the velocity components and pressure unknowns are assigned
to a common grid. The schemes are for the two-dimensional Navier-Stokes equations,
however, the methods for obtaining the equations extend easily to three dimensions and to
generalizations of the Navier-Stokes equations. A second-order scheme similar to the ones
presented here was presented in [19], although it used a less efficient solution procedure.
The methods presented here have been incorporated into a domain decomposition method.

The schemes presented here have been tested on sample problems with low Reynolds
numbers. The tests show that the schemes are very accurate and efficient for these low
Reynolds number computations. The extension of these methods to high Reynolds number
is the subject of further research.

The nondimensional time-dependent incompressible Navier-Stokes system of equations
is:

1
R

iy — =V2+ V@il +Vp=f (1.1)
g

(1.2)

The vector function 4 is the velocity and the scalar function p is the pressure. The Reynolds
number R measures the strength of the inertial effects relative to the viscous effects. Notice
that the pressure appears only in (1.1) and only in terms of its spatial derivatives. We
refer to equations (1.1) as the momentum equations and equation (1.2) as the divergence
equation.

The functions f and g are considered to be given data. In most problems the function
g in (1.2) is identically zero, but we include the general case because it fits in naturally
with our methods and it is useful in checking the accuracy of the computer implementation
of the methods. In particular, the accuracy can be checked by choosing the velocity and
pressure to be arbitrary polynomials of the proper degree (see section 8).

In the limit as R tends to zero, with a rescaling of ¢, p, and f, the Navier-Stokes
system can be replaced by the time-dependent Stokes system, which is:

@y —V2a+Vp=7f (1.3)

V- (1.4)

541
il

We consider the Navier-Stokes system holding in a domain  and to specify a unique
solution boundary conditions must be given. The simplest conditions are to specify the

velocity 4 on the boundary, i.e., .
i=b on 0. (1.5)

This is called the Dirichlet boundary condition. To limit our discussion we only consider
Dirichlet boundary conditions in this paper. The modifications needed for other boundary
conditions should not be difficult to implement.

The system (1.1) and (1.2) has a solution only if the integrability condition

/Qgﬁ~5=/:29 (1.6)
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is satisfied. This condition is a constraint relating function g in (1.2) and (1.4) and the
boundary data b in (1.5).

The schemes we develop are derived using the difference calculus. By considering the
total system in the derivation we obtain schemes that are compact, that is the stencil of the
scheme is about as small as possible. In particular, the schemes presented here have smaller
stencils than those of Lele [10] and Rai and Moin [13]. However, to obtain usable schemes
two other aspects must be taken into account. These are the regularity of the scheme and
the behavior at boundaries. The regularity of the scheme is important to assure that the
solutions are smooth, that is the high frequency modes are prevented from dominating the
error. The schemes have parameters that remove these high frequency modes, often referred
to as checkerboard pressure oscillations. The difficulty at the boundaries is related to the
size of the stencil. Since the stencil increases in size as the order increases, the amount
of modification required at the boundary also increases. These topics are addressed in
sections 5 and 6.

The schemes we derived can be used for both the steady-state and time-dependent
equations. We consider only schemes for which the temporal differencing and spatial
differencing are independent of each other. The spatial differencing is discussed in sections
3 and 4 and the temporal differencing is discussed in section 7.

We avoid modifying the Navier-Stokes equations such as is done with the ‘Poisson
pressure equation’ method. One difficulty with such methods is the need to decide on
additional boundary conditions, especially on the pressure. This is also true for projection
methods, see Gresho [6]. In our approach the linear systems that must be solved to
determine the solution at each time step involve both the momentum and divergence
equations. These large systems are solved by preconditioned GMRES methods, [15]. One
advantage of our approach is that the pressure can be obtained with the same order of
accuracy in space as the velocity, and better than first-order in time which is the limit
with fractional-step methods [11].

We do not use the finite volume approach, relying on the power of the symbolic
difference calculus to obtain high accuracy with compact stencils. Our schemes do not
satisfy exact conservation laws for mass or momentum. The accuracy of the solutions
implies that the conservation laws should be satisfied to a high degree of accuracy. The
schemes are based on the conservation form of the differential equations.

The structure of the paper is as follows. In section 2 we present the notation for the
basic difference operators. In sections 3 and 4 we present the spatial differencing methods
for orders four and six, respectively. In section 5 we discuss the numerical boundary
conditions needed for both schemes. Section 6 discusses the regularity of the two schemes
for steady-state computations. The multistep schemes used for the temporal differencing
are discussed in section 7, and in section 8, the numerical tests of the methods are discussed.
Conclusions are presented in section 9.

2. Notation.

We develop our schemes for regular two-dimensional Cartesian grids, with grid spacing
Az and Ay, respectively. We use the notation é0 to denote the first-order central difference
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with respect to x and is defined by

fH—l fz 1

5w0fz - 2A.’It

The forward and backward operators are denoted by 8,4 and ,_, respectively, and are
defined by

.f Ji+l — Ji f i
6:1:+f i AiL‘
and fiof

bp fi = “L T2
fi Az

The standard second-order central difference is denoted 62 and is defined by
2p _ _Jirn—2fi + fim
0ofs = bpqbofi = Ag? :

Difference operators 6y9, 0y, etc. are defined similarly.
We obtain most of our difference formulas from basic identities relating derivatives to
the difference operators 62 and 8,0. For the first-derivative, we use the identity

=12 11
h~! (LAz6,
0 <1+(A26)> sinh™” (5828, (2.1)

oz %Amém

see [18]. The basic identity we use that relates the second derivative to 63 is, see [18],

92 _ (sinh"1 (%Amém))z . (2.2)

Oz? LAz

By expanding these expressions as Taylor series in Ax to appropriate powers, we may
obtain difference approximations of any order.

To handle the modifications at the boundaries, we use two formulas that relate forward
and backward differences. These are

_ ey

b = 1+ Azbyy (2:3)
and

5. = O

T A,
These two relations both arise from the identity
Opy — Oz
62 = 6,465 = —+KF—'



3. The Fourth-Order Scheme.

Our fourth-order scheme for the Navier-Stokes equations is based on the approxima-
tions

A
(% - (1 ;” 52> 840 + O(Az)* (3.1)
and
-1
ai (1 + AT“’&?) 80 + O(Az)? (3.2)
for the first derivatives from (2.1) and
02 A
575 = ( ° 52> 82 + O(Az)* (3.3)

for the second derivatives from (2.2).

Using the approximations (3.1) and (3.3), we have that the first two equations of (1.1)
are approximated as

2
ugt+ (1 - 9%53) 80(u?) + <1 Ay® 52> 8y0(uv) + <1 - 5‘-6"”—52> 850D

1 Az® 2 2 1 A"J ) 2 4
=g <1—|— ) ) ozu + R( 15 —=0, (5yu+f1+O(A)

and

Vgt (1 - ég—& ) dzo(uv) + (1 - —%62) by0(v?) + < Aé 62> byop

1 A:v 2 2 1 A?J 9 2 4

We have used the symbol O(A)? for O(Axz)*+O(Ay)*. The discretization of the derivative
in time is discussed in section 7. Operating through with the product

( + 5‘-5-52) < + %—%—-5;) (3.4)
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we obtain

<1 + 9_2’“52) ( LA 52> (ut+ (1 - 9%312-53) ba0(u2) + < Ag 52> 8,0(uv)

A Ay?
+ (1+—x62+ =2 >f1+O(A)4

for the first component of the velocity, and similarly for the other component. The stencil
for the second-order difference terms from the Laplacian has the shape

where the scheme is centered about the center of the stencil. The coefficients for the
difference in the z-direction are

1 1 -2 1
ﬁ 10 -20 10
1 -2 1

The terms for the first difference in z for the convection terms and pressure gradient

become
2
(1 + é"’—”—(s?) (1 + éfi-(s?) (1 - ég_ag%) 8a0 + O(A)*

A A
- <1+ é 62— =2 52> 6z0+ O(A)*.

The stencil for the terms in this last expression (other than the O(A)* terms) has the
shape

where the x marks the center point. The difference approximations in the y—direction
are similar. Notice that the stencil must be modified for points one grid spacing from the
boundary. The modifications are discussed in section 5.
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To insure the regularity, we take the pressure gradient expression to be

A Az?
(1+ é 62 — 1‘; 53) Suop + VAT 26,54 .

As shown in section 6, the term with « positive will insure the regularity of the solution.
Notice that this term does not degrade the accuracy of the difference formula.

Thus the scheme for the first momentum equation, with the exception of the time
differencing, is

(1 + Az 62 Ay? 62) i

12 12 Y
# (14 S 52) ba0p + TAT8365.4p (3.5)
= ;—2 <1 + é—g—/-—62> 62u + ]1% (1 + é—s—c-—52> 6§u
+ (1 Az? 62 + Alg y) f1

and similarly for the other momentum equation. Notice that the terms on the right-hand
side of (3.5) are essentially the standard fourth-order accurate scheme for the Poisson

equation derived by Rosser [14].
We next consider the approximation of the divergence equation (1.2) or (1.4). Using

the approximation (3.2) on (1.2), we have

6 6

(o228) (49

(1 + %—52) Sa0u + (1 + éx—(sz) 8,00

-1 9 -1
<1 LA ) Sa0u + (1 + éfi—éj) §,00 = g+ O(A).

Operating with the product

we obtain

(3.6)

Ax? A
=<1+-——§-—5§+ =Y 62)g+O(A)4
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The stencil for the terms for the differencing in u has the shape

@ ]
[ ] X [ ]
[ ] [ ]

where the x marks the center point. The stencil for the differencing of v is similar, but
rotated a quarter turn.

To insure the regularity of the scheme we modify (3.6) to give the scheme

A2 Ax?
(1 + %5;) Sa0th + YAT 46, _u + <1 + -—~6—6£) Syov + YAy 6, by-v
(3.7)
Az? ,  Ay?,

Notice that the divergence operator and the gradient operator are not adjoints of each
other.

4. The Sixth-Order Scheme.

The sixth-order accurate scheme for the Navier-Stokes equation is based on expanding
(2.1) to terms that are O(Az)®. The approximation for the first derivative is

0 Az? , Azt
5’5"(1" 6 =T 35

5;4) 840 + O(AT)®. (4.1)

This equation is used to approximate first derivatives in the convection terms and the
pressure gradient. It has a stencil involving seven points and for the divergence equa-
tion it is desirable to find a formula of sixth-order accuracy with a smaller stencil. An
approximation giving a smaller stencil is

0 Azx?
or

-t Az?
1+ —-5—--651) (1 + W&g) 6z0 + O(Az)® . (4.2)

Similarly we obtain from (2.2)

o? 2Az% ,\ Az? L\ 5 6
57 = (1 + -——i-5—6m> (1 + —2-(-)-633) 67 + O(Ax) (4.3)

for the second derivatives.



Using the approximations (4.1) and (4.3) we have that the first of the two components
of (1.1) may be approximated as

4
-+ (1 _ _A_ﬂ’_(sz Az 53) 8u0(u?) + ( Ay = A 92—5‘*) 8,0 (uv)

30 30 ¥
A 2
+ (1~ -6‘”—55 A“; =5 >5w0p
2 -1 Az 9 -1
:1_1%. (1+ 2?: 53) (1 "‘26"62> St - <1+ -?-é’—&j) (1 ‘;?(/) 5;) 520
+ fL +0(A)°

and similarly for the second momentum equation.
Operating through with the product

2Az2 2Ay
<1+ = 6m> (1

:) (4.4)
we obtain
2Az2% 2Ay? Az? , Azt , 9
(14— 5)(1 B y>[m+(1 62 4 S04 ban(u)

Ay? A Az? Azt
+ (1- g 62 + 3?(/) 5;*) §,0(uv) + <1—- 6+ 5o 54> 5z0pjl

1 2Ay? Az? 5\ o 1 2Azx2 Ay 2\ 2
—R<1 T y) (1+ 205 6xu+‘R 1+ T oz 50 -0, | b,u

2 2
+ (1 + 280 63,) (1 + 2—%——65) fi+0(A)S.

15

The stencil for the second-order difference terms in the z direction has the shape

[ ] o [ [ ] [ ]
centered around the center point. Notice that this difference approximation requires mod-
ification for two points away from the boundary.
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The terms for the first-order difference in x become

2 2
(1 + 20z 5§> <1+ -2—4-?/—52) (1 A 62 + Azt 54> 6z0 + O(A)°

15 15 6
2Ay? Ax? , Azt , 6
(1+— 6)( 306 905 650 + O(A)

2Ay2 Az? Azt , 6
—-————5 )
~[(1+258) (1- Fo 2) 4 G| 60 +0(8)

The stencil for these terms (other than the O(A)® terms) has the shape

where the x marks the center point.
To insure the regularity, we take the pressure gradient expression for the first momen-
tum equation to be

2Ay? Az? 5\ Azt 66
[( TE y> ( 30 -0 ) + 90 0 ]51;019—’)/[337 02654+D-

As shown in section 6, the term with « positive will insure the regularity of the solution,
and again the additional regularity term does not degrade the order of accuracy.
Thus the scheme, with the exception of the time differencing, is

2Ax2 2Ay? o
[ 2Ay z?
o[ 5508) (- 55%)
[ 2Aa: Ay
¥ ( )(1 50 y) 9 63 o)
" 2
o[ 255) (- 55%)
2 2 2
Y™ o ' é.af_ 2 2 2Ax 2 A 2
5y> <1+ 5 6m) 5%u <1+ = 5m> <1+ g% ) Gyu
ZA 2A
(1 255) (1 5508)

10

(54 5:,;0 (uz)

(4.5)

== 52| bp0p — YAZOE6,4p




and similarly for the other momentum equation.
We next consider the approximation of the divergence equation (1.2) or (1.4). Using
the approximation (4.2) on (1.2), we have

Az? )\ 7' Az? Ay? N\ Ay?
(1+50) (1 Gpt) s (14 5F085) (145567 oor

=g +O(A)® .

Operating with the product

Az? , Ay? ,
(1+528) (1+°542)

we obtain

Ay? Az? Az? Ay?
(1 + %55) <1 + -3—553) So0t + <1 + Tag) (1 + %53) 8y0v

(4.6)
2 A 2
=(1+ é“’;ég 1+2262) g+ 0(A)E.
5 5 ¥
To insure the regularity of the scheme we modify (4.6) as
Ay? Az? 646
(1 + "'5_5y) (1 + _?‘)‘6—63; 5_1;()'& - ’)’A.’L‘ 6z6w~u
Az? Ay?
+ (1 + Tég) <1 + —§6~5§> 6y0v - 7Ay6626y_v (4.7)

Az? Ay?
- <1 + —5—63> <1 + %&;) g.

The stencil for the difference operator on u, other than the term multiplied by 7, is

where the x marks the center point.

One disadvantage of the sixth-order scheme over the fourth-order scheme is that be-
cause of the necessary boundary modifications, the stencil for the Laplacian is not sym-
metric for the sixth-order scheme. Some implications of this are described in the section
7.
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5. Boundaries and Extrapolation of Pressure.

For the higher-order methods, the stencils are so wide that some modification of the
schemes is required at boundaries. Also, for all of the schemes the pressure values on the
boundary must be determined by extrapolation. The regularity terms, those multiplied by
~, are removed whenever they conflict with boundaries.

We index the grid points by nonnegative integers starting from 0. For a rectangle the
grid points are indexed by (7,7) fori=0,1,2,...,M and j =0, 1,2, ..., N for some integers
M and N. We consider only the boundary points with ¢ = 0, the other boundaries are
handled similarly.

We use the identity (2.3) to replace backward differences with forward differences. In
particular we use

62 = 65405 = (1 - Axbyy + AZ?62, — AZ?85 )62, + O(Az?) (5.1)

We also use the relation

1

1 0
S RIS & (U T
ds0 2((5 ++ :c) 2(w++1+A.’L‘6w+> (5.2)

= 0pq — %Amt?fﬂ, + O0(Az)?.

For the fourth-order scheme, the differencing for the convection and gradient terms
need modification near the boundary. For ¢ = 1, the terms

Ayz Az” o
( g %~ 126)6

are replaced by A A
( Y 52> 620 — 502 <5 - -;—Axéﬁ +>

For the sixth-order scheme, both the differences for the Laplacian and the convection
terms need modification near the boundary. From the Laplacian, the terms

2Ay? Az? L\
( T5 y><1+ 206>6uw

for 7 = 1 are replaced by
2Ay?
(1 + y

The expression

> (1 + 92%.(1 ~ Azbyy + Az?62, — Aw362+)5i+> 8gu

(1 + BT (1 Avt + D062, - Aw363+)55+> 9
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at grid point ¢ is

24—y — 62¢p; + T2¢s41 — 69¢; 12 + 56¢;13 — 28d; 14 + 8Py — ¢z+6
20Ax2

Similar modifications are made at the other boundaries.
For the pressure gradient and convection terms, we also use (5.1). At i = 1, the

expression
2Ay% Az? 2 Ax4 4
from the sixth-order scheme (4.5) is replaced by
2Ay? Az?
<1 15 y> ( o (1= Avber + AT, Am363+)5£+)}6m0p (5.4)

A"” (1—-—Am6w+)6m L6a_p.

In this last expression, the fourth-order divided difference was modified using the relations
62 = 6262, (1 — Azézy) + O(A?)

and the central difference was modified using (5.2).
The expression

<1 _ é_ﬂf_(l — Azbyy + Am262+)6z+> 6z0P1

in (5.4) expands to

—2Tpo — 9p1 + 3Tp2 + 4p3 — 9ps + 3ps — ps
60Azx

and %%626(%4_ (1 — gAm62+> p1,; expands to

—5po,; + 28p1,; — 65pa j + 80p3 ; — 55p4,; + 20p5,; — 3ps,
180Ax )

At i = 2 the expression (5.3) is replaced by

2Ay 2 Az, Azt 4

where we used (5.2) on the central first-order difference.
The values of the pressure on the boundaries must be set by extrapolation from values
in the interior. For a scheme of order r the extrapolation should have order v+ 1 to insure
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that the scheme is exact for polynomials of degree r. In this work the formula used to
determine pg ; was

6 1po; =0. (5.6)

For the fourth-order scheme the extrapolation is the fifth-order formula

Po,;j = 9p1,5 — 10p2; + 10p3 ; — 5p4,; + ps,j -

Similarly, for the sixth-order scheme the extrapolation is the seventh order formula

Po,j = Tp1,j — 21pa,; + 39p3,; — 35p4,; + 21ps,j — Tps,; + P7,5 -

Values of the pressure must also be set in the corners of the Cartesian grids. In this
work the formula used to determine pg o was, for the method with r = 2t,

(024 0,5 + 02516, ) Poo =0,

where the other boundary values of p have been determined by the boundary extrapolation
(5.6).
For the fourth-order scheme the corner extrapolation is

P0,0 = ( 5p1,0 =4 P20 + P30
+5po1 —12p1,1 +9p21 —2p3n
~4po2+ 9p12 —6p22 + P32
+ po3 — 2p13+ P23 )/2

Similarly, for the sixth-order scheme the corner extrapolation is

P0,0 = ( Tpio— 9Pp20+ 95P30— DPapo
+ Tpos —24p11 +30p21 —16 P31 + 3 pa
— 9po2 +30p12 —36 p22 +18 P32 — 3 Pa2
+ 5po3 —16p13 +18 pa3 — 8pss + P43
— Pos+ 3pia— 3paat D34)/2

6. The Regularity of the Schemes.

In this section we check the regularity of the schemes. As shown in [3] a scheme
must be regular in order to insure that the solution be smooth. We consider only the
steady equations since the theory has only been developed for the steady state case. The
importance of regularity is shown in the examples in section 8.

To test the regularity of the fourth-order scheme consisting of (3.5), the similar formula
for v, and (3.7), we examine the symbol of the principal part of the scheme. We use the
Fourier transform to determine the symbol by replacing ug ., by @ e2i(@01+y62) and similarly
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for v and p. Because of the factor of 2 in the exponential, we are only concerned with 6,
and 6 in the range —m/2 to 7 /2.
We may write the symbol as

L(64,02) 0 iG(601,02)/ Ax
0 L(91,62) zG(62,91)/Ay (61)
ZD(91,02)/ALU zD(92,91)/Ay 0
where ) ) ) )
_ sin® 65\ sin”® 6, sin® 07 \ sin® @,
o= (1 SO)0  (y snyste,
. 2 )
G(01,0,) = (1 - s1n3 02 sm3 91) sin(26;) + 257 sin® ;¢ (6.3)
and 5
D(61,0,) = (1 _ 2sin 02) sin(26,) -+ 25y sin® §,e " . (6.4)
The determinant of this system is
L(01,6) (G(61,62)D(61,65)/Ax® + G(62,61)D(62,61)/Ay*) - (6.5)

The scheme is regular precisely when this determinant vanishes only for 8; = 65 = 0,
with |6;| and |02] less than or equal to 7/2. The factor L(61,82) does not vanish for nonzero
6; and 5, so we need consider only the other factor in (6.5). We first evaluate the product
G(Ql, 92)D(91, 92) We have

G(Ol, 92)D(91, 92) = { (1 - %sinz 92 -+ %SinQ 91> <1 - -?-;'Sin2 92)

1 1
+ 2% sin® 6, (1 ~3 sin? 6 + g sin? 91) } sin? 26,
sin? 6, + sin® 4,
3

An examination of this expression easily shows that the real part is a sum of non-negative
terms, and for |6;| and |62| less than or equal to /2 it vanishes only for §; = 0. Thus,
G(61,02)D(01,02)/ Az?+G(82,61)D (02, 61)/Ay? does not vanish except for #; and 63 both
ZEero.

The regularity of the sixth-order scheme is analyzed similarly. The symbol has the
same form as (6.1) with

+ 210~25in10 9, — 25y < ) sin® 6 sin 26 .

8 sin® 02> (1 B 2 sin? 91) sin? 6,

L(61,02) =4 (1 T 15 10 Az?

8sin? 6, 2sin? 65\ sin? 6,
+4<1_"""15 ) (1_ 10 ) Ay?

(6.6)
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G(61,0,) = ((1 -

and

85in292> (1+ 23in291> N 8sint 6,

. T cin? 9. 201
T TE T >sm(291)—|—2 vsin’ 61+ (6.7)

4sin292> (1 B 2sin? 6,

D(8y,6,) = (1 - T ) sin(26;) + 27ysin” G171 | (6.8)

The symbol L, as defined in (6.6), vanishes only when 6, = 6, = 0, with |6,] and |6] less
than or equal to 7/2.
For the sixth-order scheme, the product G(61,62)D(61,02) is

G(01,02)D(04,02) =

8 . 92 4 . 2 4 o4
-2 _ = 1 — —
<1 153111 02) (1 5sm 62)( 225sm 01>
8 . 4 4 ., 2 .4
2 _= 1- =
—|—45 sin” 64 (1 5sm 02) ( i sin” 64

2 4 4
+ 27y sin® 6, (1 — Zsin? 0y + — sin? #; sin? 6, + — sin* 01) } sin? 26

3 225 45
+ 21442 5in'* 6,

292.’)/,2 .2".2 .9 _2.2 . 8 .
— 5 |sin 61(1 + 7 sin 61) + sin” 05(1 5 sin 61) ) sin® 8, sin 26, .
As with the fourth-order scheme, with « positive, this expression vanishes only for 6
equal to 0. Therefore the expression (6.5), for the sixth-order scheme, does not vanish for
non-zero values of #; and 03, and thus the scheme is regular.

7. The Temporal Differencing.

In this section we discuss the temporal differencing of the time-dependent Navier-
Stokes equations. We consider only schemes based on multistep methods from ordinary
differential equations. To simplify the discussion we consider the Navier-Stokes and Stokes
equations in the form

i, = Lia—~Vp+f

7.1
V=g (7.1)

where % denotes the velocity and p denotes the pressure. The operator L represents
the terms involving spatial derivatives of the velocity. Our approach is motivated by
the similarity of the system (7.1) to differential-algebraic systems for ordinary differential
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equations. The incompressible Navier-Stokes equations are similar to differential-algebraic
systems of index 2, see [2].

For the system (7.1) the temporal differencing using a general multistep method is
defined by

| X
—_— ik
Atl;) k

K K K
> Bl F =" BV T+ Y B
k=0 k=0 k=0 (7’2)
g".

V.a®

The two arrays of coeflicients oy, and (. are normalized by

K
Zak=o and Zﬂk = 1.
k=0

Any of the second-order, fourth-order, or sixth-order spatial differencing can be used with

any of these time-dependent schemes. We consider the temporal differencing (7.2) to be

applied before the spatial differencing, such as applying the operations (3.4) or (4.4).
The stability of the scheme depends on the two polynomials

K K
A(z) = Zasz“k and B(z) = Zﬂsz“k.
k=0 k=0

A necessary condition for the stability of the overall scheme is that the polynomial A satisfy
the standard root condition for stability in the sense of ordinary differential equations.
That is, the roots of A(z) = 0 must be inside the unit circle or simple on the unit circle
[5], [8].

As the following theorem shows, for the standard multistep methods (7.2) stability
also requires that the polynomial B(z) satisfy the root condition.

Theorem 7.1. A necessary condition for stability of the multistep method (7.2) is that
the roots of B(z) = 0 be inside the unit circle or simple on the unit circle.

Proof:

Let z be a root of B(z) = 0 and let ¢ be any non-constant function of the spatial
variables. A solution of (7.2) is constructed by setting @ = 0 and p¥ = z"¢. If the
magnitude of z is larger than 1, then this solution will be unbounded in norm. If z is a
multiple root with magnitude 1, then take p* = vz¥q. Thus it is necessary for B(z) to
satisfy the root condition. H§

As is seen in the proof, the roots of the polynomial B(z) govern the growth of the
pressure errors. The restriction on the roots of B(z) is a result of the pressure appearing
only in the spatial differencing portion of the equations. Similar situations occur with
semi-explicit differential-algebraic equations of index 2. However, defining p by

K
=) Bp"*
k=0
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we can replace (7.2) with

(7.3)

The function p” is at least a first-order accurate approximation to p(t, — uAt) where

K
p=> kb
k=0

Note that a disadvantage of this modified scheme is that the pressure is not be obtained
to the same accuracy as the velocity without some post-processing.

Theorem 7.1 is a severe limit on multistep schemes, however, the modified multistep
scheme (7.3) allows for many schemes to be used. An adequate theory for the stability
of schemes for the Navier-Stokes and Stokes equations has not been developed. Here we
rely on the experience and theory of differential-algebraic equations, see [2], to guide our
choice.

Primarily, we have used schemes based on backward time-differences. These schemes,
called backward differencing formula (BDF) schemes, are widely used for solving stiff
ordinary differential equations and in differential-algebraic equations, see [2]. For these
schemes 3y is 1, the other (B are 0, and the ay are chosen from the formula

§  In(1-At6-) <1+1 1

1

1
= = “At & + = )2 ¥ a6,
5 AL 5 t 0y +3(At6t) + = (At 6 )° + >(5t
truncated after K terms for a scheme with order of accuracy K. The coefficients ay, for a
scheme of order K are given by

K 4 kK i1
O‘O:Z; and akz(—l)z )7 for k=1,---,K.

j=1 j=k N/

Our finite difference schemes are obtained by replacing the temporal derivative in
equations (3.5) and (4.5) with the BDF operator of order K. In this paper we consider
only K equal to 2, 3, and 4.

These schemes are stable as multistep schemes for ordinary differential equations for
K < 6, unstable for K = 7 and possibly all larger values of K, see [7]. In the numerical
tests, the BDF schemes out performed the non-BDF schemes.

The backward differencing schemes we have used are:

1. Second-order backward in time (K = 2)
Qo = 3/2, Q) = -'2, Qg = 1/2; ﬂo =1
2. Third-order backward in time (K = 3)
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ap=11/6, a3 = -3, aa =3/2, ag=-1/3; fp=1
3. Fourth-order backward in time (K = 4)
Qo = 25/12, = -—-4, Qg = 3, Qg = —4/3, Q4 = 1/4, ﬂo =1

In addition, three schemes were used in the first time steps, when the above schemes
could not be used since they require several past time steps.

4. Crank-Nicolson (second-order accurate)
ap=1, a;=-1; Bo=p1=1/2
5. Fourth-order in time using three time levels.
ap=1, a1=0, ag=-1; By=1/6, 1 =2/3, B =1/6
6. Fourth-order in time using four time levels.
Qo — 17/24, Q1 = Qg = -—-3/8, Qg = 1/24, ,30 = 1/4, ,[7’1 = 3/4

These schemes are obtained by factoring the backward operators as done in sections
3 and 4 for spatial difference operators. (Scheme 5 is equivalent to (3.2) applied in time
rather than space.)

As multistep schemes, as in (7.2), schemes 5 and 6 are unstable by Theorem 7.1, but
appear stable when used as in (7.3). Runs using the second-order scheme 1 used scheme 4
to compute the first time step. Runs using the third-order accurate scheme 2used scheme
4for the first time step and scheme 1for the second time step. Subsequent steps then used
scheme 2.

Runs using the fourth-order scheme 3 used scheme 4 to compute the first time step,
scheme 5 to compute the second time step, and scheme 6 to compute the third time
step. Subsequent steps then used scheme 3. The use of a second-order accurate scheme to
initialize a fourth-order accurate appears not to reduce the overall order of accuracy. There
was no reason to use a first-order accurate scheme. The BDF schemes are dissipative of
order 2 when applied to parabolic equations. For dissipative schemes with order of accuracy
r, initializing schemes may be accurate of order r — 2 and still have the overall order of
accuracy be r.

For the Stokes equations, because they are linear, the determination of the solution
at the next time step requires the solution of a linear system. The system can be written
as

an K gn—k K .
a0y — PoLi" +V k};ak—z—t" +§:ﬂkc +;)ﬂkf (70
V-i*=g"

This system determines the solution, @™ and p"”, for the new time level. Note that the

spatial operators such as (3.4) or (4.4) must be applied to (7.4).
We have used a preconditioned GMRES method [15] for the solution of this linear
system. The usual method was GMRES(7) with a restart. The preconditioner was an

inversion of the operator
1
— — (V2 7.5
Q07 Bo (7.5)
on the first two equations in the system. Other methods of solving the linear system
could also be used. An advantage of GMRES is that it does not require the system to be

symmetric.
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As mentioned, the preconditioner for the system (7.4) was the inversion of the operator
(7.5). For the second-order and fourth-order accurate schemes this was done using the
preconditioned conjugate gradient method, with SSOR as the preconditioner. For the
sixth-order scheme, because the operator is not symmetric, the GMRES method was used.
Although accurate solutions were obtained, this method was not particularly efficient,
More experience is needed with these methods to improve the overall efficiency.

Because the pressure can only be determined to within an additive constant, the sys-
tem (7.4) is singular. Moreover, the existence of the solution is dependent on satisfying
the integrability condition. An important issue is the choice of norms to determine conver-
gence of the system (7.4). By requiring only that the quantity Vi — g™ be constant as
described in [19], we effectively have a nonsingular system. The average value of Vi — gr
over the grid is a measure of the consistency of the data. In all the results shown in section
8 this value is less than the errors themselves by several orders of magnitude.

For the nonlinear Navier-Stokes equations, we modify the equations to obtain a linear
system for the solution that does not degrade the accuracy. We linearize the quadratic
expressions u2, uv, and v? at time level n using the following idea. Consider a two functions
A(t) and B(t) depending on the independent variable ¢. Using the relations

§_A(t)=0 and & _B(t)=0

we obtain approximations A and B to order r for A(t) and B(t). The formula for A” is

A= }_Tj(-nk-—l (;) Ar—k

k=1

and similarly for B™.
The product AB involving past values of the variable ¢ is approximated using the

relation
(A - Z)(B — F) = O(At)z’“ .

In particular, at t, = nAt with A™ = A(t,), we can write
A"B" = A"B™ + A"B™ — A"B™ + O(At)*" .

where A™ and B™ depend on values of ¢ less than ¢,.

We use these formulas for ¢ = nAt and with A and B being velocity components. We
take 7 equal to the number of time levels available in the scheme. The expression d(uv)/dz
at time step n is approximated by

A(u"v" + uv" — w"v")/0x

and the spatial derivative is approximated using either the fourth-order or sixth-order
methods given previously. In this way the equation being solved for the solution at each
time step is a linear system and the accuracy of the solution is not affected. For schemes
4, 5, and 6, the above approximations were used only at the time step being solved for.
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8. Numerical Experiments.

Several tests are described in this section that illustrate the accuracy of the methods.
The first series of tests check the formal order of accuracy and the second tests examined
the accuracy for an analytically known solution. for which there is no analytic solution.
The finite difference methods were implemented using the C programming language with
double precision variables.

The finite difference schemes were tested extensively to assure that when the velocity
and pressure were polynomials of appropriate degree, the solutions satisfied the schemes to
within machine precision. This served as both a test of the methods and a means to detect
programming errors in the implementation of the methods. For example, the solution

u=x%-19y0 f1 = —30(z* — y*) + 4z3y?
v =%y’ fa = —6(zy® + 2%y) + 2z%y
p = zy? g = 6x% + 3z3y?

was used with the steady-state Stokes equations (1.3) and (1.4) for the sixth-order method.
Other sixth-degree polynomials were also used. By considering these solutions after trans-
lations and rotations in the plane, a large class of solutions could be obtained. Similar
tests were made for the fourth-order scheme.

For positive Reynolds numbers, because of the quadratic convection terms, the fourth-
order scheme is exact for all polynomials of degree two for the velocity and of degree four
for pressure. Similarly, the sixth-order method is exact for third-degree polynomials for the
velocity and sixth-degree polynomials for the pressure. In all these tests with polynomial
solutions, the solutions were computed to within machine precision. Similar tests were
used to check the temporal differencing.

For a test of the method on a less trivial application, we take the solution used by
Pearson [12], Chorin [4] and others to test their methods. The solution is given by

_2/R — o~ 2/R

U= coszsiny v sinz cosy

1
p= ~Ze‘4t/R (cos 2z + sin 2y)

on the square 0 < z < 7w and 0 < y < 7 for 0 < ¢t < 0.5. We took the Reynolds number to
be 2.

Computational results are displayed in Tables 1 and 2. The order of accuracy of the
method is given as an ordered pair (p, ¢) where p is the temporal order of accuracy and ¢
is the spatial order of accuracy. The runs marked with an asterisk are those for which the
parameter v was nonzero. These are discussed later in this section.

Table 1 displays the error for runs in which the initial steps were given by the exact
solution. For the runs given in Table 2, the solutions on the initial steps were computed
from schemes with fewer time levels. The pressure errors were computed using the ‘stan-
dard deviation’ as a norm. That is, the norm is the mean square of the error minus the
average error, see [19].

There are two principles illustrated by the data in the tables. The first is that, for a
given choice of method, the smaller values of the time step and grid spacing gives better
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case order At n error u error v error p
1 (2,4) 0.01 20 1.984(-6) 1.770(-6) 4.058(-5)
2 (2,4) 0.02 60 5.565(-6) 5.527(-6) 8.608(-5)
3 (2,4) 0.01 60 1.390(-6) 1.378(-6) 2.140(-5)
4 (3,4) 0.05 20 8.834(-6) 9.268(-6) 1.315(-4)
5 (3,4) 0.05 40 1.295(-6) 1.297(-6) 2.103(-5)
6 (4,6) 0.05 20 7.327(-T) 7.253(-7) 3.986(-6)
7 (4,6) 0.02 20 7.440(-7) 7.446(-7) 5.065(-6)
8 (4,6) 0.02 40 1.710(-8) 1.446(-8) 2.932(-6)
9 *(4,6) 0.02 40 1.242(-8) 1.238(-8) 3.923(-7)

Table 1

accuracy. The second principle is that higher order methods give better order accuracy
than lower order methods. Moreover, for fewer grid points and fewer time steps, a higher
order method can give better accuracy than lower order accurate methods.

A difficulty with interpreting the numerical results is that the errors due to the time
discretization and the spatial discretization are combined. Thus in few cases do we observe
a nice reduction in the error that corresponds to the order of accuracy in time or space.
Notice however, that because of the unconditional stability of the implicit method, the
time steps are much larger than that required by the fractional-step method.

The errors in the runs in Table 1 with order (2,4) are principally due to the time
discretization. This is due in part to the smoothness of the solution in space. The error for
case 3 is not that much smaller than that for case 1. Also, the ratio of the error between
cases 2 and 3 is approximately 4, as would be expected if the error where predominately
due to the time discretization. Notice that the reduction in the pressure error is consistent
with the second-order accuracy in time.

For the (3,4) runs in Table 1, the error is affected primarily by the spatial step size.
There is a reduction in the error of about 7 as the mesh parameter n is increased from 20
to 40. Also, the run with n = 40 and At = 0.05, case 5, produces smaller errors than does
the run in case 1 for less effort. (The work for a given run is proportional to n?(At)~1.)

The first two (4,6) runs in Table 1, cases 6 and 7, illustrate that for this choice of
scheme the spatial error for the grid with n = 20 dominates the temporal discretization
error. The smaller error for the pressure for case 6 may be due to the initial data being
exact and there being only 7 time steps of actual computation in case 6, and 23 such steps
in case 7, and is also influenced by the oscillatory modes, which are allowed by taking
equal to 0. Note however, that the computation in case 6 is much more efficient than is
case 5 with better accuracy.

Cases 8 and 9 illustrate the effect of the regularizing parameter v on the accuracy.
Because the exact solution is so smooth the oscillations allowed by having v equal to 0 are
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small initially, and because there are relatively few time steps in these tests, the error due
to pressure oscillations remain small and are dominated by the usual discretization error.
However, for case 8 the dominant error for the pressure is due to this oscillatory mode.
The errors are reduced in case 9 by taking v = 0.001. For runs involving more time steps
the importance of having a nonzero value for v is even more important.

Also, comparing the errors for cases 7 and 9 in Table 1, we see that there is a reduction
in the velocity errors that is approximately 60, in excellent agreement with the sixth-order
accuracy in space. If the error were due solely to the spatial differencing we could expect
a reduction of 26. The reduction in the pressure is only a factor of 13. The pressure errors
are still somewhat oscillatory for this case, a different value of v might give even smaller
errors.

case order At n error u error v error p
1 (2,4) 0.01 20 1.982(-6) 1.769(-6) 4.058(-5)
2 (2,4) 0.02 60 5.581(-6) 5.542(-6) 8.610(-5)
3 (3,4) 0.02 20 1.451(-6) 1.551(-6) 3.382(-6)
4 (3,4) 0.02 40 4.977(-8) 3.859(-8) 1.816(-6)
5 (3,6) 0.05 20 9.309(-7) 8.705(-7) 1.803(-5)
6 (4,4) 0.02 20 1.448(-6) 1.533(-6) 3.391(-5)
7 (4,4) 0.02 40 7.469(-8) 5.753(-8) 1.745(-6)
8 *(4,4) 0.02 40 7.439(-8) 5.682(-8) 5.624(-7)
9 (4,4) 0.01 60 8.665(-9) 7.228(-9) 1.335(-6)

10 (4,6) 0.05 20 1.337(-6) 1.271(-6) 4.856(-6)

11 (4,6) 0.01 40 3.489(-8) 3.064(-8) 1.043(-5)

12 *(4,6) 0.01 40 1.317(-8) 1.278(-8) 6.162(-6)

13 *(4,6) 0.01 40 1.358(-8) 1.286(-8) 6.873(-7)
Table 2

The runs in Table 2 with order (2,4), as in Table 1, have errors that are principally
due to the time discretization. The errors are also approximately the same for similar
(2,4) runs in Tables 1 and 2, showing that the initialization does not significantly affect
the accuracy. (Compare cases 1 and 2 in Table 1 with cases 1 and 2 in Table 2.)

Case 3, a (3,4) scheme, obtains results comparable to, but better than, case 1 with
less computational effort. There is a dramatic decrease in the velocity errors as the grid is
refined between cases 3 and 4.

Case 5 in Table 2, with accuracy (3,6), has errors smaller than cases 1 and 2 with far
fewer grid points and time steps. This shows the advantages of the more accurate methods.

Cases 6, 7 and 8 demonstrate the gains in accuracy for the higher order accurate
methods. Increasing the spatial resolution by 2 between cases 6 and 7 results in a reduction
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in the errors by a factor of about 20 for the velocity and the pressure, a bit better than
the factor of 16 expected if the errors were due solely to the spatial discretization. They
also show that, for fourth-order accurate methods, the accuracy of the solution is not
adversely affected by the use of second-order methods as part of the initialization. This
is a consequence of the dissipativity of the BDF methods for parabolic equations. Recall
from section 7 that that the solution on the first time-step was computed using the Crank-
Nicolson scheme, which is second-order accurate in time.

For case 8 a value of v equal to 0.001 reduced the pressure error by factor of about 3,
again showing the importance of regularity. This same value of v caused a slight increase
in the errors for case 6.

Case 9 gives the best results for the accuracy of the velocity of any of the cases,
showing the high accuracy of the methods. The pressure errors could be improved by
choosing 7 to be positive, see the discussion of cases 7 and 8 and cases 11, 12, and 13.

Case 10 when compared to cases 3 and 6 shows that the (4,6) method can produce
comparable accuracy for less effort. As mentioned in section 4, a disadvantage of using
the sixth-order method is that the iterative solution method that was employed was less
efficient, in terms of iterations required for convergence, than was the iterative method
for the fourth-order scheme. Hopefully, this inefficiency can be removed by experimenting
with preconditioners and with methods.

Cases 11, 12, and 13 illustrate the effect of the parameter v on the computation. For
computations which required few time steps, notice that the stopping time was 0.5, taking
v to be 0 was adequate and gave very good accuracy. In fact, taking v positive increased
the pressure errors for the (2,4) cases. However, in the cases with  equal to 0, the pressure
error was noticeably oscillatory for many cases, and for runs involving more time steps,
such as case 11, this error was significant and seriously degraded the total accuracy. Notice
that the pressure error for case 11 is greater than that for case 10.

For case 12 the value of v was 0.01 and for case 13 it was 0.02. Notice the dramatic
improvement in the error for the pressure as -y increases in these three cases. Further
work is needed to determine how to set the parameter v for different computations. For
computations involving many more time steps than the tests here, and for runs with initial
data containing more high Fourier modes than this solution, a non-zero value of v would
be critical to obtaining good results.

As discussed in section 7, the method GMRES(7) was used to solve for the solution
variables at each time step. An average of about 10 applications of GMRES(7) were
required per time step.

9, Conclusions.

In this paper we presented several new finite difference schemes for the incompressible
Navier-Stokes equations. We have shown that these schemes have a high-order of accuracy.

The schemes are based on two spatial differencing methods, one a fourth-order accu-
rate method and one a sixth-order accurate method. The temporal differencing methods
are BDF methods of order 2, 3, and 4. These temporal schemes can be used with either of
the spatial differencing methods. The schemes, as presented, are for orthogonal Cartesian
grids. The schemes can be used for both the steady-state and time-dependent equations.
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For the time-dependent methods, the storage requirements of the second-order scheme
appear to be greater than needed by fractional-step methods. However, this is compensated
for by the larger time-steps and smaller stencils for the higher-order spatial discretization.
For the higher-order accuracy in time, the storage requirements are reasonable, increasing
by one level of storage with each order of accuracy.

The methods presented in this paper have been demonstrated to be accurate and
effective methods for solving the time-dependent incompressible Navier-Stokes and Stokes
equations. Further research is needed to improve the efficiency of the solution of the linear
systems. For higher Reynolds number solutions, better iterative methods will be needed
to solve the linear systems at each time step.
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