Dynamic Program Instrumentation
for Scalable Performance Tools

Jeffrey K. Hollingsworth
Barton P. Miller

Jon Cargille

Technical Report #1207

January 1994

Dynamic Program Instrumentation
for Scalable Performance Tools
Jeffrey K. Hollingsworth Barton P. Miller Jon Cargille

hollings @cs.wisc.edu bart@cs.wisc.edu jon@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, Wisconsin 53706

Abstract

In this paper, we present a new technique called dynamic instrumentation that provides efficient, scalable,
yet detailed data collection for large-scale parallel applications. Our approach is unique because it defers
inserting any instrumentation until the application is in execution. We can insert or change instrumentation at
any time during execution. Instrumentation is inserted by modifying the application’s binary image. This per-
mits us to insert only the instrumentation that is necessary for the current analysis being performed or visualiza-
tion presented. As a result, our technique collects several orders of magnitude less data than traditional data
collection approaches. We have implemented a prototype of our dynamic instrumentation on the Thinking
Machines CM-5, and present results for several real applications. In addition, we include recommendations to
operating system designers, compiler writers, and computer architects about the features necessary to to permit
efficient monitoring of large-scale parallel systems.

1. Introduction

Efficient data collection is a critical problem for any system that monitors the performance of a parallel or
distributed application. We have estimated that monitoring programs at a reasonable level of detail on current
RISC processors can easily generate two megabytes per second per processor of performance data. For a mas-
sively parallel computer (say 1000 nodes), this amount of data is impractical to collect for all but the shortest
programs. However, to understand the performance of parallel programs, it is necessary to collect data for
full-sized data sets running on large numbers of processors. In this paper, we present a new approach to perfor-
mance instrumentation that defers instrumenting the program until it is in execution, permitting dynamic inser-

tion and alteration of the instrumentation during program execution.

Monitoring the performance of massively parallel programs, requires an instrumentation system that is

detailed, frugal, and scalable. 1t must collect information that is detailed enough to permit the the programmer

© Copyright 1993 Jeffrey K. Hollingsworth, Barton P. Miller and Jon Cargille. All rights reserved.

This research supported in part by Department of Energy grant DE-FG02-93-ER25176, Office of Naval Research grant
N00014-89-J-1222, and National Science Foundation grants CCR-9100968 and CDA-9024618. Hollingsworth is supported
in part by an ARPA Fellowship in High Performance Computing.

-2

to understand the bottlenecks in their program. It must be frugal so that the instrumentation overhead does not
obscure or distort the bottlenecks in the original program. The instrumentation system must also scale to large,

production data set sizes and number of processors.

A detailed instrumentation system needs to be able to collect data about each component of a parallel
machine. To correct bottlenecks, programmers need to know as precisely as possible how the utilization of
these components is hindering the performance of their program. In addition, they need to understand which

part of their program or its data is causing the problem.

There are two ways to provide frugal instrumentation: make data collection efficient, or collect less data.
All tool builders strive to make their data collection more efficient. To reduce the volume of data collected, tool
builders are forced to select a subset of available data to collect. Most existing tools require the decisions about
what data to collect be made prior to the program’s execution. By deferring data collection decisions until the

program is executing, we can customize the instrumentation to a specific execution.

The goals of being frugal and detailed are often in opposition. Collecting detailed information requires a
lot of data, but frugality says you can not afford to collect it. This dichotomy can be seen in the choice of how
the data is collected. Currently two styles of collection are used: periodic sampling of the state of a program
and tracing (logging) of events during an execution. Sampling optimizes data volume over accuracy, and trac-
ing optimizes accuracy over data volume. We chose a hybrid of sampling and tracing that provides the low
data volume of sampling with the accuracy of tracing. We periodically sample detailed information stored in
event counters and timers. These intermediate values provide data to make decisions about how to change the

instrumentation.

Scalable instrumentation requires that data collection remain detailed yet frugal as the number of
resources in the system grows. This means that we should be able to handle increases in the application code
complexity (number of procedures), length of program execution, data set size, and number of processors. Pro-
viding scalable instrumentation is important because the nature of bottlenecks in parallel programs change as

each dimension is increased.

To make our instrumentation system easy to use, we want to remove obstacles that could deter program-
mers from using our system. We, like many tool builders, decided it is unreasonable to require users to modify
the source code of their program in any way to use the tool. However, this is not sufficient; many applications

today are built from files scattered in different directories and libraries. We feel that recompiling an entire

-3

application to use a performance tool represents an unreasonable burden. The only step required to use our tool
is to run a standalone pre-processor that appends our instrumentation library to the application’s binary. The
instrumentation is enabled by modifying the application’s binary image while it is executing. Our strategy
differs from other approaches to adaptable instrumentation that compile the instrumentation into the application
and then enable it via global variables. Our technique has no impact on the application until we insert instru-
mentation. Also, once we insert the instrumentation, there is no overhead to check if it is enabled. For long-
running programs, having to re-execute the program to observe its performance is also undesirable. To combat
this problem, we designed our performance tool to be "attachable”. At any point during the application’s exe-
cution, the programmer can invoke our tool and attach it to their already running program and start to investi-
gate its performance. Both of these features (no re-compiling and attachability) would be difficult to provide in
a static instrumentation environment, however they were relatively easy to incorporate into our dynamic instru-

mentation system,

While our dynamic approach makes it possible to collect a wide variety of performance data, it also
requires that runtime decisions be made about what data to collect and when to collect it. Although it is possi-
ble for programmers to manually control data collection, this is difficult and tedious. We have built a system

called the Performance Consultant[8] that liberates the programmer from needing to make these decisions.

The rest of this paper describes an instrumentation system we have built to meet our three goals of being
detailed, frugal, and scalable. Section 2 describes the design of our instrumentation system, and Section 3 pro-
vides details about its implementation. Section 4 presents a series of performance benchmarks for our initial
implementation of dynamic instrumentation on the CM-5. Sections 5 and 6 describe related work and conclu-

sions about our approach respectively.

2. Design

Our instrumentation system is designed as an interface to be used by higher level analysis and visualiza-
tion tools. We present two abstractions to higher level tools: resources and metrics. Resources are the objects
about which we gather performance information. Metrics are quantitative measures of performance. In this

section we describe these two abstractions and our data collection model.

2.1. Resources and Metrics

The first abstraction provided by our dynamic instrumentation is resources. Resources are separated into
several different hierarchies, each representing a class of objects in a parallel application. For example, there is
a resource hierarchy for CPUs, containing each processor. Figure 1 shows three sample resource hierarchies.
The left-most hierarchy is for code resources. The root of the hierarchy is Code Objects. The next level con-
tains the modules (files) that constitute the application under study. Below each module are the procedures

defined in that module.

Individual resource instances are created both when an application starts execution, and during its execu-
tion. The static components are at the top of each hierarchy, and the more dynamic nodes are at the lower lev-
els in each hierarchy. The lowest levels in each hierarchy, representing specific resource instances, are added
during the application’s execution when the resource is first used. For example, the procedure resources are
created when the program to be monitored is specified. However, information about files used is discovered

dynamically when the files are opened.

T T
w <fm (" Syncohl:?nization)
_ Object o Oblects -

\ e
/ / \\ / / \\ // i}arrieré\\\ /'Msg Recvf\,
/ N\ / \ ‘
£ AN 3 R
Avork.£\ / lffllff\ Cpu #12 Ood / / \ \
/ . ‘ x\ Other CPUs oood
- Individual Barriers o o
t compute 5 1transpose} matMult Individual
Message
Types

Figure 1. Resources showing three class hierarchies.

Each resource instance is associated with a single resource hierarchy. When the resource was
defined is indicated by its shape. The oval objects are statically defined independent of the applica-
tion. The triangles are static based on the application, and the rectangles are dynamically (run-
time) identified.

The second abstraction is metrics. Metrics are time varying functions that characterize some aspect of a
parallel program’s performance; examples include CPU utilization, counts of floating point operations, and
memory usage. They are defined by higher-level performance tools that use our instrumentation system (e.g.,
the Performance Consultant[8]). However, to assist tool builders, we provide a standard set of metrics as part

of our system. Metrics can be computed for any subset of the resources in the system. For example, CPU

_5.

utilization can be computed for a single procedure executing on one processor or for the entire application. Our
abstractions of metrics and resources provide a rich variety of performance data that can be used to collect pre-

cise information about many aspects of a program’s execution.

2.2. Data Collection Model

To provide the resource and metric abstractions, we developed a new dynamic data collection model that
combines the advantages of tracing and sampling. Trace-based systems can collect detailed information about
specific events during a program’s execution. However, they can generate vast amounts of data that are
difficult to manage. Our approach is to dynamically modify the program to record precise information about
relevant state transitions in counter and timer data structures. These structures are then periodically sampled to
report performance information to the higher layers of our system. We control the volume of data collected in
two ways: first by collecting only the information needed at a give moment, and second by controlling the sam-
pling rate.

Our hybrid of dynamic tracing and sampling can provide more accurate information than can be provided
by pure sampling. For example, if you periodically sample the program counter to compute the amount of time
spent in a procedure, the accuracy of the result will depend on the sampling rate. Instead, we insert code to
start and stop timers at the procedure entry and exit to accurately record time spent in the procedure. In this
case, the sampling rate affects only how frequently we update our knowledge of the time, not the accuracy of

the time.

We periodically sample our performance metrics for two reasons. First, we want to isolate performance
bottlenecks to specific phases or time intervals during a program’s execution. Second, our dynamic instrumen-
tation system uses partial data to decide what additional data should be collected to further isolate a perfor-
mance bottleneck. The dynamic instrumentation actually collects and calculates the performance data; sam-
pling is used only to periodically report the collected data. Varying the sampling rate effects only our rate of
decision making and granularity of phase boundaries; it does not effect the accuracy of the underlying perfor-

mance data.

Collected data is stored in a data structure called a time histogram[7]. A time histogram is a fixed size
array whose elements store values of a performance metric for successive time intervals. Two parameters

determine the granularity of the data stored in time histograms: initial bucket width (timer interval) and number

-6-

of buckets. Both parameters are supplied by higher level consumers of our performance data. However, if the
program runs longer than the initial bucket width times the number of buckets, we run out of buckets to store
new data. In this case, we simply double the bucket width and re-bucket the previous values. In addition, we

change the sampling rate to the new bucket width. This process repeats each time we fill all the buckets.

2.3. Points, Primitives, and Predicates

Recording performance information about the application program is accomplished by points, primitives
and predicates. Points are well-defined locations in the application’s code where instrumentation can be
inserted!. Primitives are simple operations that change the value of a counter or a timer. Predicates are
boolean expressions that can be associated with primitives that determine if the associated primitive gets exe-
cuted. By inserting predicates and primitives at the correct points in a program, a wide variety of metrics can

be computed.

Our system consists of six primitives: set counter, add to counter, subtract from counter, set timer, start
timer, and stop timer. Figure 2 lists the primitives and describes their semantics. Predicates are simple condi-
tional statements that consist of an expression and an action. If the value of the expression is non-zero, the
associated action is taken. Expressions can contain numeric and relational operators. The operands of predi-
cate expressions can be either counters or constants. If the point where the predicate is inserted is a procedure
call or entry, the parameters to the procedure can be used as operands in expressions. Likewise if the predicate
is inserted at a procedure exit, the procedure’s return value can be used as an operand. Actions are either other

predicates or calls to one of the six primitives. Figure 3 describes the predicate facility.

Examples of how primitives and predicates can be combined to create metrics is shown in Figure 4. This
example shows two different metrics. The first example computes the number of times procedure foo is
called. A single primitive to increment a counter by one has been inserted at the entry point to the procedure
foo. The second example shows a metric to compute the number of bytes transferred via a message passing
procedure. The second parameter to the add counter primitive is a multiplication expression that uses the third

and fourth arguments to the message passing function to compute the number of bytes transferred.

+ Currently the available points are the procedure entry, exit and individual call statements. In future versions of our instru-
mentation, points will be extended to include basic blocks and individual statements.

setCounter (counter, expression) Sets counter to the value of ex-
pression.

addCounter (counter, expression) Adds the value of expression to
counter.

subtractCounter (counter, expression) Subtracts the value of expres-
sion from counter.

setTimer (timer, expression) Sets timer to expression.

startTimer (timer,

[Process Time | Wall Time])

Starts timer running. The second
parameter indicates if
should record process time or wall

time.

stopTimer (timer)

Stops timer.

Figure 2. Primitives.

if (expression) action If expression is non-zero then action is exe-
cuted.

action An if statement or a call to a primitive.

operand A counter, constant, or parameter.

expression operand operator operand
operand

operator + - / ¥ < > <= »>= == != and or.

Figure 3. Description of the Predicate Language.

Predicates are described in a simple language consisting of expressions and one conditional. All
operands and their results are of type integer. Note: the primitives addCounter and sub-
tractCounter are convenience functions that could be expressed in terms of setCounter

and a counter expression.

{ addCounter (fooCounter, 1) fm—im |

EaddCounter(bytes, param{3] * param{[4])

] sendMsg {dest, ptr, cnt, size)
—

Figure 4. Example Showing Two Different Instances of Dynamic Instrumentation.

the timer

-8

Figure 5 shows a slightly more complex example of dynamic instrumentation. In this case four instru-
mentation points are used to compute the waiting time due to message passing constrained to a single pro-
cedure. The top two primitive calls maintain a counter fooActive, which is non-zero whenever the pro-
cedure foo is active. The lower two instrumentation points are calls to primitives to start and stop the timer
syncTimer. However, the timer operations only occur when the counter fooActive is non-zero.

3 foo ()
iaddcounter (fo0Active, 1) et {

isubCounter (fooActive, 1) imwd }

e ; sendMsg (dest, ptr, cnt, size)
iif (fooActive) e {
startTimer (syncTimer, ProcessTimer)

iif (fooActive) -)
stopTimer (syncTimer)

Figure 5. Example Showing Multiple Points Used to Collect a Constrained Metric.

3. Implementation

In the previous section, we defined two abstractions: resources and metrics. To actually collect data,
requests to enable metrics for specific resource combinations must be translated into calls to primitives and
predicates at the appropriate points in the application processes. The implementation of our instrumentation
system is divided into two parts. The first part, the Metric Manager, translates requests for metric and resource
combinations into primitives and predicates. It is machine independent. The second part, the Instrumentation

Manager, modifies code sequences in the application being monitored.

3.1. Metric Manager

The Metric Manager’s role is two-fold; it translates requests for metrics into primitives and predicates
and informs higher-level consumers of performance data about new resources. It also provides a way to moni-
tor and control the amount of overhead that the instrumentation will inflict on the application’s execution. The

Metric Manager is designed to be application and machine independent.

-9.

The translation from metrics to primitives is described by metric definitions. These definitions can be
provided by higher-level performance tools, although we provide a substantial library of them. A metric
definition can be viewed as a template that describes how to compute a metric for different resource combina-
tions. It consists of a series of code fragments that create primitives and predicates to compute the desired
metric. We divide metric definition into two parts: a base metric, and a series of resource constraints. The base
metric defines how a metric is computed for an entire application (e.g., all procedures, processes, or proces-
sors). A resource constraint defines how to restrict the base metric to an instance of a resource in one of the
resource hierarchies. There is one resource constraint for each resource hierarchy. However, resource con-

straints can be shared by different metric definitions.

A typical resource constraint defines a counter whose value is positive only when the desired resource is
active. This constraint is implemented by inserting primitive calls to increment and decrement the counter as
the status of the resource changes. This counter is used in a predicate that guards the execution each of the
primitive operations in the base metric. To compute a metric constrained on two different resource hierarchies
(e.g. a procedure foo in process P), each constraint defines its counter and a conjunctive predicate of these

counters is used by the base metric’s primitives.

Our strategy of enabling instrumentation only when it is needed greatly reduces the amount of data col-
lected, and therefore the potential perturbation caused by our instrumentation system. However, instrumenta-
tion requests still have an impact on the program’s performance. To help quantify this effect, the Metric
Manager includes a predicted cost model . The predicted cost model provides users of our instrumentation sys-
tem with information about how much perturbation of the application can be expected for each instrumentation
request. When queried about the cost of a metric and resource combination, the Metric Manager uses the
metric’s definition to compute what instrumentation primitives and predicates need to be inserted and where.
For each instrumentation point, data about the overhead of the predicates and primitives at that point is multi-
plied by the expected execution frequency of the point to compute the predicted perturbation. The overhead
information for each predicate and primitive is measured once for each hardware platform and stored in a sys-
tem configuration file. The execution frequency of points comes from a static model of procedure call fre-
quency. While the cost model does not perfectly predict the impact of instrumentation on the application, data
collected during execution can be used to dynamically tune the estimates during the course of program execu-

tion{8].

-10 -

3.2. Instrumentation Manager

The Instrumentation Manager performs two functions: it identifies the potential instrumentation points,
and handles requests for primitives and predicates and inserts them into the application program. The requests
are translated into small code fragments, called frampolines, and inserted into the program. We define two
types of trampolines: base trampolines and mini-trampolines (see Figure 6). There is one base trampoline per
point with active instrumentation. Base trampolines have four slots for calling mini-trampolines, two slots
before the relocated instruction and two slots after the emulated instruction. One slot before and one slot after
the instruction are used to call global primitives (ones that are inserted into all processes in an application). The
other slots are used to call local primitives (ones that are specific only to this process). This structure makes it

easier to use hardware broadcast facilities to install global requests.

Identifying the points where instrumentation can be inserted is accomplished by analyzing the instruc-
tions in the application. This is one area where compiler writers could help make our task easier. It would be
helpful if additional symbol table information were available that indicated exactly what is code and what is
data in a program. Many compilers generate read-only data into a program’s text (code) segment. This creates
a problems for post-linker tools (correctness debuggers and performance tools). Ball and Larus[2] have also

noted this problem.

Mini-trampolines contain predicate and primitive specific code and there is one for each primitive at each
point. A sample instrumentation point with trampolines installed appears in Figure 6. Installing this instrumen-
tation consists of four steps. First, the original instruction is copied (patching up any program counter relative
offsets) into the base trampoline. Second, the code for the mini-trampoline is generated (the details of this step
are described below). Third, a branch from the base trampoline to the mini-trampoline and back is added. If
there is more than one mini-trampoline at a point, they are chained together. Finally, the instruction at the

desired point is replaced by a branch to the freshly allocated base trampoline.

Creating a mini-trampoline requires generating appropriate machine instructions for the primitives and
predicates requested by the Metric Manager. Figure 7 shows two sample mini-trampolines. The first example
(a) shows a simple counter increment that has been generated as inline code. This is the code that would be
generated for the first primitive in Figure 5. The second example (b) shows the instrumentation generated for
the predicate and primitive at the entry point to the SendMsg procedure in Figure 5. The if statement has

been translated into a branch based on the value of the fooActive counter. If the counter is non-zero, the

-11 -

Program
Base Mini Primit;
Trampoline Trampoline rmive
o
Function ‘A’ f Local »1 Save Registers startTimer
Entry — Global ~ SetUp Arg
] Relocated — _/
Instruction(s) Revore ==
Local Registers
Global

Figure 6. Inserting Instrumentation into a Program.
stopTimer predicate is called from the mini-trampoline. The predicate language is simple, requiring only a
hand full of instruction types. The instructions are assembled by the Instrumentation Manager, and then
transferred to the application process using a variation of the UNIX ptrace interface (described in the next sec-
tion). In addition to code requested by the Metric Manager, code must also be generated to save and restore
any registers that the generated code (or called primitives) might overwrite. When we extend the available
points to include basic blocks and individual statements, additional processor state (such as condition codes)

must also be saved and restored.

save
save load fooActive, ol
load fooActive, ol cmp ol, O

add ol,1,01 be +8

load #syncTimer, o0
call startTimer
restore

ba,a baseTramp3+4
(a) (b)

store ol, fooActive

restore
ba,a baseTrampl+4

Figure 7. Two Sample Mini-Trampolines.

To implement our dynamic instrumentation, we needed several efficient operating system services.
These include a data transport mechanism for moving performance data off of the parallel machine with little
perturbation of the program under study, and a scalable version of Unix ptrace. Unfortunately, the operating

system of our target machine included neither of these features, and we were forced to construct them.

-12-

The data transport is responsible for moving performance data off the parallel machine to some other
location where it can be analyzed. However, if performance data moves through the parallel machine during
program execution, it can compete for resources with the program under study, and thus perturb it. We take
advantage of the CM-5 synchronous gang-scheduling. We developed something similar to a signal handler,
that we term a "timeslice handler”. This handler is a piece of user-level code that gets called on each node at

the end of each timeslice, after the normal program context has been saved by the operating system.

On top of this timeslice handler mechanism, we build the data transport. Each node buffers performance
data in memory while the application program runs, and then transfers the data at the end of each timeslice.
Since the program has already been stopped by the operating system and its execution context has been saved,
the program execution state is not affected and the timeslice handlers do not contend with the program for

machine resources.

This technique will cause some dilation of wall-clock execution time, but the data transport itself has vir-
tually no perturbing effect on the program’s execution'. On machines that do not have such a synchronous
scheduling model, such as the Intel Paragon, we still use this model of data transport even though it is more

difficult to factor out the cost.

The Instrumentation Manager may make frequent changes to the instrumentation during the application’s
execution. To be scalable, the cost of instrumentation operations must not grow with the number of nodes in
the parallel computer. When we insert instrumentation into all instances of a procedure on all nodes, the cost
should be the same as inserting instrumentation into a single node. To achieve this goal, we have developed a
parallel (broadcast based) version of the ptrace function on the CM-5. Ptrace allows the application address
space to be read and written. We use our broadcast ptrace to insert global instrumentation into all nodes in unit

time.

On machines that do not provide hardware broadcast, such at the IBM SP/1, we can construct a software
message spanning tree. The spanning tree technique achieves logarithmic time, instead of unit time, cost. We
are currently experimenting with these software mechanisms. Most new machines come with some form of
broadcast facility, including the Intel Paragon (though it is currently not accessible to application software),

Cray T3D, and Meiko CS-2. We believe that unit time operations such as these are crucial to dealing with the

+ The one exception to this is the case where the performance data buffer fills up on the nodes; in this case, it is necessary to
either force the timeslice to end early, or wait for it to end. Either action will have a perturbing effect.

- 13 -

issue of scale in tools for large parallel machines.

4. Performance of Implementation

We studied the performance of our dynamic instrumentation at two levels. First, we report on the cost of
the individual operations, accounting for cost down to exact number of instruction cycles. These costs provide
insight into the abilities and limitations of our techniques, and insights to operating system designers about what
facilities to provide. Next, we provide macro benchmarks for a few examples of the overall cost of using these
facilities. The macro results are based on a few simple workloads and are meant only to be a general guideline

(i.e., your mileage may vary).

To explain the performance of our instrumentation, it is necessary to know a bit about the implementation
of the CM-5. The CM-5 is a distributed memory multiprocessor containing nodes connected together by a net-
work that provides both point-to-point and broadcast communication. The machine is controlled by a front end
processor running a modified version of the SunOS operating system. Processor nodes consist of SPARC pro-
cessors running at 33Mhz, memory, and a network interface chip. Each node has a virtual 64 bit free running

clock (running at 33Mhz).

4.1. Micro Benchmarks

Our micro benchmarks show the cost of the individual components of the dynamic instrumentation. We
first report the cost of basic instrumentation, including cost of executing the trampolines, cost of the primitives
and predicates, and a detailed break down of several of the primitive operations. Next, we report on the cost of
the instrumentation support functions, including the data transport and broadcast ptrace. These detailed results
provide insights into the limitations of various instrumentation techniques. It also provides guidance to operat-

ing system designers about what facilities are needed to support efficient instrumentation.

N

The first aspect of the performance of our instrumentation system we studied was the overhead of the
trampolines that get inserted any time a primitive is called. Figure 8. shows the cost involved in trampolines.

The time required for a base trampoline is 4 clock cycles'iﬂ. This time provides four no-op slots for global and

 Since the clock runs at 33Mhz, one clock cycle is about 30 nano-seconds.

-14 -

local instrumentation both before and after the relocated instruction. The second row shows the time required
for the smallest mini-trampoline. Two clock cycles are required for the SPARC save and restore register
instructions (for case when no register window overflow occurs). Another source of delay in the trampolines is
for the various branches into and out of the trampolines. This value is currently 8 clock cycles. The final com-
ponent of the trampoline overhead is the time required to setup the parameters to call the predicate. This time

can range from 1 to 5 clock cycles depending on the type of the parameter (constant vs. timer).

Clock

Item Cycles
Base Trampoline (slots for branches) 4
Mini Trampoline (save/restore registers) 2
Branches 8
Parameters 1-5

Figure 8. Time to execute trampolines.

This table shows the time (in clock cycles) to execute both types of trampolines, the time to branch
into and out of trampolines, and the time to setup the parameters to a primitive.

The other intrinsic cost of our instrumentation is the time to execute our primitives. Figure 9 shows each
of our six primitives and their execution time in clock cycles. In addition, the time to execute a simple predi-
cate that checks if a counter is positive is included. The measured times ranged from 7 clock cycles for the
predicate to 71 clock cycles to stop a process timer. These results were collected by invoking each primitive
1,000 times in a tight loop, and recording the elapsed time. For each call, the counter or timer passed to the
primitive was the same, so the effects of the machine’s memory hierarchy has been factored out of these results.
To get a feel for the relative cost of these numbers, we compared the cost of our primitives to simple procedure
calls on the machine. A one argument procedure call that returned its argument took 15 clock cycles. Most of

our primitives are within a factor of three of this value.

To look for bottlenecks in our timers, we isolated the time required to execute each part of each timer
primitive. Figure 10 shows each of the four timer primitives and 5 different operations used to implement the
timer. The first row, "read clock”, is the time to get a 64 bit representation of the time (either wall or process
time) into two 32 bit registers. This involves reading the 32 bit free running Network Interface clock (7 clock
cycles) plus reading the high order 32 bits from memory. Since the low order word could overflow while we
read the high order word, we need to check for this condition and re-read the clock if it overflowed. As a result,

it took 20 clock cycles to read the wall clock, and 25 clock cycles to read process time'. The semantics of our

+ Process time requires an additional load and subtraction to factor out time when the process was not running.

-15-

Clock

Primitive Cycles
addCounter 8
subCounter 8
startTimer(wall) 32
stopTimer(wall) 55
startTimer(process) 37
stopTimer(process) 71
if (counter > 0) 7

Figure 9. Cost of Primitive Operations.

The cost (in clock cycles) of executing the instrumentation primitives, and a simple predicate on a
TMC CM-5.

timers permit multiple calls to startTimer to be made and a matching number of stopTimer calls are
required to stop the timer. This is implemented as a counter, and the time to maintain this counter appears in
the row "maintain counter". The third component present in all of our timers primitives is "store value" which
is the time to record either when the timer started or the elapsed time when it stopped. In addition, stopping a
timer involves two extra steps. First, we need to compute the elapsed time since the timer was started, this time
is shown in the "compute elapsed" row. Second, since timers can be read by an asynchronous sampling func-
tion, we need to ensure that the value of the timer is consistent even when we are stopping it. (This is not a
problem when starting the timer because we compute and store the start time before marking the counter as run-
ning.) Permitting sampling at any time is accomplished by storing a snapshot of the timer in an extra field while
the other fields (elapsed time, start timer, etc.) are being updated. The overhead introduced to maintain this

field is shown in the row labeled "consistency check”.

Time (clock cycles)

Operation startTimer(Wall) stopTimer(Wall) startTimer(Process) stopTimer(Process)
read clock 20 20 25 25
maintain counter 8 10 8 11
store value 4 4 4 4
compute elapsed 10 10
consistency check 11 21

Figure 10. Primitive times by component.

This figure shows the time (in clock cycles) required for each of the five components of each timer
primitive.

Our breakdown of the cost of timer operations shows that the largest time component in any primitive
(and the majority of time in two cases) is spent reading the clock. This time could be substantially reduced if

processors provided a clock that was readable by user level code at register access speed. Few RISC

216 -

processors, with the exception of the DEC Alpha[17], provide such a clock. We feel this type of clock is a criti-

cal architectural feature to permit building efficient performance tools.

The numbers presented above reflect the time to execute our primitives after we made a slight
modification to the CM-5 operating system. Originally, the operating system required a system call to read the
clock, and the overhead of this system call dominated the cost of our timer primitives. Figure 11 shows the
time to execute our four timer primitives both with and without the mapped clock. Using this system call
slowed down our timer primitives by a factor ranging from 2 to 9. We overcame this bottleneck by adding a
new system call to the operating system that maps the kernel’s clock data structure into user address space so
that we could read the clock at memory speed. Another option to implement our timers would be to use the
timer library routines supplied by Thinking Machines. The results of using their timer calls also appears in Fig-
ure 11. Our timers are a factor of 6 to 12 times faster than the vendor supplied ones. However, the Thinking
Machine timers provide both a process and a wall timer in one. While this may be useful some applications, for
dynamic instrumentation we only need one timer type at a time. We feel it is vitally important when building
performance tools that accessing clocks be as fast as possible. Requiring a kernel call to read a clock is unac-

ceptably slow.

Default Dyninst Dyninst
Primitive TMC Timers wo/mapped Clock w/mapped Clock
startTimer(Wall) 410 109 32
stopTimer(Wall) 410 133 55
startTimer(Process) 410 320 37
stopTimer(Process) 410 358 71

Figure 11. Comparison of different timer operations on a TMC CcM-5',

The first column shows the default timers supplied by Thinking Machines. The second column
shows the same primitives using a kernel call to access timer structures. The third column shows
the overhead of our timers (in clock cycles) with a kernel modification to provide user space access
to the timer data structures.

The overhead of trampolines is one place where we could improve our implementation. For example, if
we generated the base and mini-trampolines as a straight line code sequence we could reduce the overhead by 7
clock cycles (4 for the no-op slots, and 3 for not having to branch to the mini-trampoline). This would require
additional complexity in the instrumentation manager (especially when one primitive is removed from a point

with several primitives). However, 7 clock cycles is a significant fraction of the time for many of our

+ The CM-5 timer values are for CMOS version 7.2 and reflect a kernel patch done at Wisconsin to fix a clock roll-over ano-
maly.

-17 -

primitives.

We also measured the performance of several components of our scalable ptrace implementation to deter-
mine the performance of each piece. Figure 6 outlines the structure of the communication paths in our imple-
mentation. First, ptrace requests are sent from the Instrumentation Controller over a pipe to the Timeslice
Handler running on the front end processor. These requests are then broadcast over the CM-5 network to the
nodes where they are processed. Ptrace requests are aggregated into batches by the Instrumentation Controller,

and sent as a group to amortize the startup costs passing data through a pipe.

Nodes
Instrumentation CP--side
Controller Handler O
CM 5

Umx Pipe Network .

®

®

‘\

g

Figure 12. Communication Paths for Scalable Ptrace.

For each of the two communication paths shown in Figure 12 we divided the overhead into three com-
ponent costs. First, there is a fixed startup latency associated with sending any request. This round-trip-time is
represented in the first row of Figure 13. Second, there is a cost associated with interpreting and executing each
request; this is shown in the second row. Last, there is a cost for each byte transferred, shown in the third row.
This per-byte cost includes only the payload bytes; the cost of transferring header bytes is included in the per-

request overhead.

Time (in micro-seconds)

Cost Controller Handler

Component to Handler to Nodes
Startup Cost 3027.0 35.9
Per-operation Cost 8.3 14.9
Per-byte Cost 0.3 1.8

Figure 13. Component Costs of Broadcast Ptrace.

This table shows the cost of ptrace requests, broken down into several components for the two
paths requests traverse.

- 18-

The results show several bottlenecks in our current ptrace implementation. There is a high cost, 3 mil-
liseconds, associated with each batch transferred due to UNIX context-switching. The impact of this bottleneck
can be mitigated by using large batch sizes to amortize the startup cost of many operations. Although the CM-5
network provides better bandwidth than a Unix pipe, the per-byte costs in the handler to node case are higher
than for the pipe. This is because each byte sent to a node is received into a temporary buffer, and then copied
into the desired memory location. This extra copying reduces the effective bandwidth of the broadcast net-
work!.

We also measured the performance of our data transport layer, which moves performance data from the
nodes to the front end processor. The data path for the transport is the reverse of that shown in Figure 12. Our
data transport layer, implemented using timeslice handlers, achieves throughput of approximately 2 MB/sec
from the nodes to the front end. The throughput is bounded by hardware architecture; although the network is
capable of greater bandwidth (40 MB/s theoretical physical limit), the front-end processor can only receive
from the network when the appropriate process is scheduled by the SunOS kernel. Although 2MB/sec can

arrive on the front-end, we are limited to about 1.5 MB/sec because we pass data through a Unix pipe.

The front end processor or the transport mechanism can become a bottleneck if too much data needs to
pass through them. To reduce the amount of data sent through the transport mechanism, we use the hardware
combining facilities of the CM-5 to aggregate metrics that have components on each node. This approach

ensures that the data required for aggregate metrics remains constant regardless of the machine size.

4,2. Macro Benchmarks

The micro benchmarks were designed to study the performance of the primitive operations in our instru-
mentation system. To get a feel for the larger picture, we also studied the performance of our instrumentation
system for entire applications. The goal of these benchmarks was to study the aggregate impact of our instru-
mentation system for several real applications. We conducted two type of benchmarks. First, we evaluated how
our system performed with a tool that makes multiple requests to change instrumentation. Second, we com-

pared the overhead of dynamic instrumentation to existing tools.

1 A future optimization is receive the data directly into the target memory.

-19-

For the dynamic tests, we ran two parallel applications on the CM-5. The first application does a
domain-decomposition method for optimizing large-scale linear models. The second program is a database
simulator that implements a parallel Grace Hash join algorithm in a simulated shared-nothing environment[16].
Both programs are written in C. We compared the execution time of an un-instrumented application to the exe-
cution time of an instrumented application. We measured the overall cost of our instrumentation and the over-
head of various components of the instrumentation. For this study, we used the Performance Consultant[8], a

system that takes full advantage of dynamic instrumentation, to drive our instrumentation.

The results for these tests are shown in Figure 14. The second column, Original Execution Time, shows
the time to run the application without any instrumentation. One program ran for about an hour, and the other
one for a couple of minutes. The third column, Execution Time w/Instrumentation, shows the total execution
time with dynamic instrumentation. To understand where this time is spent, we have divided the overhead for
instrumentation into three categories: Null Handler time, Actual Handler time, and Direct Perturbation. The
first two types of overhead represent the time spent in the end of time slice handlers. Null Handler time is the
cost of running the end-of-time-slice code without any instrumentation enabled. The Actual Handler time is the
time to process ptrace requests and collect data from the nodes. The differences between the two applications
for Actual Handler time is due to the larger volume of performance data transferred for the database applica-
tion. Since the CM-5 uses synchronous gang scheduling, overhead time in the handlers does not directly per-
turb the performance of the program. Instead, it dilates execution similar to the way that other time-shared jobs
impact a application’s execution. The third type overhead represents the direct perturbation of the application
due to the instrumentation inserted. It is a relatively modest amount (6-8%) for these two applications, since

the Performance Consultant adapts the instrumentation to collect only the data it requires.

Components of Overhead
Application Original Execution Time Null Actual Direct
Execution Time | w/Instrumentation Handlers Handlers Perturbation
Decomp 59:22 | 1:05:29 (10%) 01:26 (2%) 00:06 (< 1%) 04:34 (8%)
Hash-join 01:22 | 0:02:09 (57%) 00:10 (12%) 00:32 (39%) 00:05 (6%)

Figure 14. Cost of ptrace operations.

This table shows the overhead of using dynamic instrumentation with the Performance Consultant
for two applications running on the CM-5. All times in minutes:seconds.

For the second set of tests, we selected several sequential applications and compared the overhead of our
system to two UNIX profilers: prof, and gprof. This made it possible to benchmark our instrumentation cost

compared to existing techniques. Using the dynamic instrumentation, we enabled the CPU time metric for for

-20-

each procedure in the program. While this does not take advantage of dynamic instrumentation’s ability to
adapt data collection, it still provides the benefits of an attachable performance tool and does not require the
application to be recompiled. In addition, since dynamic instrumentation collects intermediate values, it is pos-
sible to study the time varying performance of an application which is not possible with traditional prof. We

then compiled and ran each program with prof and gprof profiling enabled.

The results of running dynamic instrumentation, prof, and gprof on the two sequential applications is
summarized in Figure 15. The first application is MultiComm which a math programming application that
solves the a multi-commodity network flow problem with mutual capacity constraints. It is written in a mixture
of C and Fortran. For this application, dynamic instrumentation has only 4% overhead, but prof and gprof have
overheads of 40% and 79% respectively. This is because prof and gprof instrument the internals of the C
library, and this application makes heave use of integer divide which is implemented as a library function on

most SPARC machines.

The second application is tycho, a cache simulator. It is written in C and spends most of its time repeat-
edly calling 9 small procedures. For this application, dynamic instrumentation has a very high overhead of 70%
compared to prof and gprof which have overheads of 14% and 44%. Dynamic Instrumentation has a higher per
procedure overhead because it needs to invoke a mini-trampoline and start and stop a timer for each procedure
called. In contrast, prof only increments a counter (using periodic sampling to approximate CPU time per pro-

cedure) and gprof needs to identify the caller/callee relationship at each procedure.

Applicati Original Overhead (minutes:seconds)

on Origin
pphicatt & Dynamic Inst. Prof Gprof
MultiComm | 01:12 00:02 (4%) 00:29 (40%) 00:56 (79%)
Tycho 01:57 01:22 (70%) 00:16 (14%) 00:32 (44%)

Figure 15. Overhead of different CPU Profilers.

This table shows the overhead of running dynamic instrumentation, prof, and gprof, on two dif-
ferent sequential applications.

The sequential macro benchmarks indicate that dynamic instrumentation has a higher per operation over-
head than traditional UNIX profiling. This is not surprising since dynamic instrumentation uses direct timing
instead of sampling. However, the overhead seen for all three techniques when the iprocedure call frequency is
high indicates that blindly instrumenting procedures is not necessarily the right granularity for data collection.
The flexibility afforded by dynamic instrumentation to instrument at different levels than just procedures (e.g.

modules and loops) makes it possible to collect data at an appropriate granularity for each application.

-21-

5. Related Work

Many systems have been built to collect performance data. However, most use static instrumentation
inserted prior to the program starting execution. Three approaches have been used to insert instrumentation:
source to source translation, a modified compiler or libraries, and binary re-writing. Source to source transla-
tion is the most portable mechanism. The Pablo performance system[15] uses this scheme in an interactive
instrumentation tool called iPablo. A number of systems use a modified compiler to insert instrumentation:
AE[10] and the CONVEX Performance Monitor[6] are good examples of this approach. IPS-2[13] and Cedar’s
tracing facility[11] use instrumented runtime libraries to insert their instrumentation. Closer to our approach is
binary re-writing, which is the insertion of instrumentation into an object file after it has been compiled and
assembled. QPT[2] and Mtool[5] both use this style of instrumentation. Binary re-writing has the advantage
that it is language independent, and that compilers and libraries do not need to be modified. However, data col-

lection decisions must still be made a priori.

One system that defers instrumentation until the program has started to execute is the TAM facility[1]
provided by Intel for the Paragon. TAM uses a static set of performance instrumentation profiles (i.e. prof style
sampling, or full event tracing) to insert instrumentation into a program after it has been loaded into memory
but prior to execution. Their method of inserting instrumentation is similar to ours, however their data collec-

tion model is not as dynamic.

The other major area of related work are techniques for modifying a program once it has started execu-
tion. A number of correctness debuggers have been built that modify an executing program for assertions
checking and conditional breakpoints. Jeff Brown[3] developed a debugger for Cray Computers that provided
this feature. Kessler at Xerox Parc[9] built a system that used dynamic modification of a program to insert
breakpoints. Work has also been done by Wahbe, et. all on fast data breakpoints[18]. They employ sophisti-
cated program analysis techniques to minimize the overhead of instrumentation that must be inserted to evalu-
ate data breakpoints. Massalin and Pu[12] have a novel application of code patchup in their Synthesis operating

system. They modify a program to automatically schedule another thread when it about to block.

-0 .

6. Conclusion

We have described the design and implementation of a new data collection strategy that meets ours goals
of being detailed, frugal, and scalable. Our current implementation runs on a Thinking Machine CM-5 using
explicit message passing programs written in C, C++, or Fortran. The cost of the primitive operations is only a
few instruction times, and overall application perturbation was held 6-8% for a several real applications tested.
Our system also provides a simple interface, metrics and resources, that makes it easy to use our instrumenta-

tion system with higher level performance tools.

In addition, we have provided several specific recommendations to compiler writers, operating systems
designers, and machine architects about the features necessarily to monitor large parallel systems. Compilers
need to provide additional symbol table information for post linker tools to be able to correctly relate machine
activity back to the source program. Operating systems need to provide scalable versions of services like
ptrace, and make clock access as cheap or cheaper than memory accesses. Architects should provide high reso-

lution clocks that are easy to access by user-level programs.

This work is part of an ongoing project at the University of Wisconsin, called Paradyn, to design and
build a complete performance tools for large-scale parallel machines. In the future, we plan to conduct a
detailed case study of both the Performance Consultant[8], dynamic instrumentation, and their interactions
using several real applications. We are also in the process of studying and refining our predicated cost model.
Work is underway to provide dynamic instrumentation on the Intel Paragon and clusters of workstations (using

PVMI4]).

7. Acknowledgements

We thank Adam Greenberg of TMC for helping to benchmark the CMOS timers, and Babak Falsafi for
providing the memory mapped timers for the CM-5. We also thank the authors of the applications used in our
study: Mark Hill and Madhusudhan Talluri (Tycho), Spyros Kontogiorgis (Decomp), Tia Newhall (Hash-join),

and Gary Schultz (MultiComm).

11.

12.

13,

14.

15.

16.

17.
18.

-23 .

R. Anderson, W. Auld, D. Breazeal, K. Callaghan, E. Richards and W. Smith, "The Paragon Performance
Monitoring Environment", Proceeedings of Supercomputing’93, Portland, Oregon, Nov 15-19, 1993, pp. 850-859.

T. Ball and J. R. Larus, Optimally Profiling and Tracing Programs, in Conference Record of the Nineteenth ACM
Symposium on Principles of Programmin g Languages, (Albuquerque, NM, January 19-22, 1992), ACM, New York,
1992, 59-70.

1. 8. Brown, The Application of Code Instrumenation Technology in the Los Alamos Debugger, L.os Alamos National
Laboratory, October 1992.

J. Dongarra, G. A. Geist, R. Manchek and V. S. Sunderam, "Integrated PVM framework supports heterogeneous
network computing.”, Computers in Physics 7, 2 (March-April 1993), pp. 166-74.

A. 1. Goldberg and J. L. Hennessy, "Performance Debugging Shared Memory Multiprocessor Programs with
MTOOL", Proc. of Supercomputing’91, Albuquerque, NM, Nov. 18-22, 1991, pp. 481-490.

G. J. Hansen, C. A. Linthicum and G. Brooks, "Experience with a Performance Analyzer for Multithreaded
Application", 1990 International Conference on Supercomputing, Amsterdam, June 11-15, 1990, pp. 124-131.

J. K. Hollingsworth, R. B. Irvin and B. P. Miller, "The Integration of Application and System Based Metrics in A
Parallel Program Performance Tool", 1991 ACM SIGPLAN Symposium on Principals and Practice of Parallel
Programming, April 1991, pp. 189-200.

J. K. Hollingsworth and B. P. Miller, "Dynamic Control of Performance Monitoring on Large Scale Parallel
Systems", 7th ACM International Conference on Supercomputing, Tokyo, July 1993, pp. 185-194.

P. B. Kessler, "Fast Breakpoints: Design and Implementation”, Proceedings of the ACM SIGPLAN’90 Conference on
Programming Language Design and Implementation, White Plains, NY, June 20-22, 1990, pp. 78-84.

J. R. Larus, "Abstract Execution: A Technique for Efficiently Tracing Programs”, Software—Practice & Experience
20, 12 (Dec 1990}, pp. 1241-1258.

A. D. Malony, Program Tracing in Cedar, CSRD Report No. 660, Center for Supercomputing Res. and Dev., Iniv. og
inois at Urbana-Champaig n, April 1987.

H. Massalin and C. Pu, "Threads and Input/Output in the Synthesis Kernel", ACM Symposium on Operating Sysiems
Principles, the Wigwam, Litchfield Park, Arizona, Dec 3-6 1989, pp. 191-201.

B. P. Miller, M. Clark, J. Hollingsworth, S. Kierstead, S. Lim and T. Torzewski, "IPS-2: The Second Generation of a
Parallel Program Measurement System", IEEE Transactions on Parallel and Distributed Systems 1, 2 (April 1990),
pp. 206-217.

J. K. Osterhout, Proc. USENIX Winter Conference, January 1990, pp. 133-146.

D. A. Reed, R. A. Aydt, T. M. Madhyastha, R. J. Noe, K. A. Shields and B. W. Schwartz, The Pablo Performance
Analysis Environment, Dept. of Comp. Sci., University of Illinois, 1992.

D. A. Schneider and D. J. DeWitt, A Performance Evaluation of Four Parallel Join Algorithms in a Shared-Nothing
Multiprocessor Environment, 836, Dept. of Comp. Sci., University of Wisconsin, April 1989.

R. L. Sites, ed., Alpha Architecture Reference Manual, Digital Press, 1992.

R. Wahbe, L. Lucco and S. L. Graham, "Practical data breakpoints: design and implementation”, ACM SIGPLAN’93
Conference on Programining Language Design and Implementation, Albuquerque, NM, June 23-25, 1993, pp. 1-12.

