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Abstract.

The notion of a strictly complementary solution for complementarity prob-
lems is extended to that of a nondegenerate solution of variational inequal-
ities. Several equivalent formulations of nondegeneracy are given. In the
affine case, an existence theorem for a nondegenerate solution is given in
terms of several related concepts which are shown to be equivalent in this
context. These include a weak sharp minimum, the minimum principle suf-
ficiency, and error bounds. The gap function associated with the variational
inequality plays a central role in this existence theorem.

Key Words. Variational inequalities, nondegenerate solutions, weak sharp
minima, minimum principle, error bounds.






1 Introduction

Strict complementarity is a familiar notion in the context of optimization
problems and/or complementarity theory. A classical result proved in [17,
Corollary 2A] shows that a solvable linear complementarity problem defined
by a skew-symmetric matrix must possess a strictly complementary solution.
In general, the property of strict complementarity of a solution to an op-
timization or a complementarity problem plays an important role in many
aspects of such a problem. Historically, Fiacco and McCormick [14] used
this property to develop the first sensitivity theory of nonlinear programs
under perturbation. Robinson [40, 41] has fully exploited the role of strict
complementarity (which he called nondegeneracy) in parametric nonlinear
programming.

In recent years, the strict complementarity property was given a renewed
emphasis in the analysis of many iterative algorithms for solving linear and
nonlinear programs and complementarity problems. Dunn [10] and Burke-
Moré [6] used a geometric definition of a strictly complementary solution to a
nonlinear program and showed how such a solution was essential for the suc-
cessful identification of active constraints in a broad class of gradient based
methods for solving constrained optimization problems. Giiler and Ye [19]
showed that many interior-point algorithms for linear programs generated a
sequence of iterates whose limit points satisfied the strict complementarity
condition; they also extended the result to a monotone linear complementar-
ity problem having a strictly complementary solution. Monteiro and Wright
[36] demonstrated that the existence of a strictly complementary solution
was essential for the fast convergence of these interior-point algorithms for
a monotone linear complementarity problem.

The theory of error bounds for inequality systems has in recent years
become an active area of research within the field of mathematical program-
ming. In this regard, Hoffman [21] obtained the first error bound for a
system of finitely many linear inequalities. The generalizations of Hoffman’s
result are too numerous to be mentioned here. There are several factors that
have motivated this proliferation of activities. In general, an error bound
is an inequality that bounds the distance function from a test vector to the
solutions of a system of inequalities in terms of a residual function. Part of
the importance of an error bound is that it provides the foundation for ex-
act penalization of mathematical programs [24, 30]; this in turn is strongly
connected to the theory of optimality conditions for nonlinear programs [4].
Error bounds play an important role in the convergence analysis (particu-



larly in establishing the convergence rates) of many iterative algorithms for
solving various mathematical programs. These include the the matrix split-
ting methods for linear complementarity problems [8, Chapter 5] and affine
variational inequalities [25], various descent methods for convex minimiza-
tion problems [26, 27, 28], and interior-point methods for linear programs
and extensions [23, 35, 43]. Error bounds can also be used to design inexact
iterative methods [37, 16].

The concept of a weak sharp minimum for a constrained optimization
problem was introduced in [11]. The usefulness of this concept in establishing
the finite convergence of various iterative algorithms was discussed in several
subsequent papers [12, 5, 1. Among the classes of optimization problems
that possess weak sharp minima are linear programs [32] and certain convex
quadratic programs and monotone linear complementarity problems [5].

Finally, the minimum principle [29] is a well-known set of conditions
that must be satisfied by any local minimum of a nonlinear program with a
convex feasible region. One way to state this principle is in terms of the gap
function [20] of the nonlinear program; informally, this principle states that
a local minimum of a nonlinear program must be a global minimizer of the
gap function over the same convex feasible region of the program. In [13],
Ferris and Mangasarian studied the “converse” of this principle for the class
of convex programs and coined the term “minimum principle sufficiency”
when this converse was valid. They also showed (Theorem 6 in the reference)
that for a convex quadratic program, the minimum principle sufficiency
is equivalent to the existence of weak sharp minima of the program and
that of a nondegenerate solution in the primal-dual linear complementarity
formulation of the quadratic program. This somewhat unexpected result
therefore links up the various concepts that we have discussed so far.

The present research is motivated by the desire to gain a better un-
derstanding of the concepts of strict complementarity, error bounds, weak
sharp minima, and minimum principle sufficiency for various mathematical
programs, and how these concepts are related. The results in [13, 31] sug-
gest that for a monotone linear complementarity problem and its “natural”
convex quadratic program [8, Chapter 3], all these concepts are equivalent
(to be made precise later). In this paper, we shall extend the equivalences
to a monotone affine variational inequality.

By adding appropriate multipliers to the constraints of an affine varia-
tional inequality, this problem becomes equivalent to a linear complemen-
tarity problem [38]. In view of the results available for the linear comple-
mentarity problem [13, 31], this transformation therefore raises the question
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of whether the intended generalized equivalences for the affine variational
inequality are of any significant interest. We shall argue that the results
derived herein are potentially useful for two reasons: (i) they do not rely
on the multipliers of the constraints, and hence, are independent of the rep-
resentation of the defining set of the affine variational inequality; and (ii)
as it turns out, we shall use a nondifferentiable optimization problem as
the bridge to connect the various concepts in question. The latter approach
raises the issue of the extent to which these equivalences will remain valid for
more general nondifferentiable optimization problems. The full treatment
of this last issue is, regrettably, beyond the scope of the present work.

2 Definitions and Review

For a given mapping F' : R* — R", the nonlinear complementarity problem,
which we shall denote NCP (F), is to find a vector z € R™ such that

>0, F(z)>0, z'F(z)=0.

A solution & of this problem is said to be strictly complementary, or, non-
degenerate, if Z + F() > 0. For an optimization problem of the form

minimize  f(z)

(1)

subject to z € C,

where f : R* — R is continuous and C' C R™ is convex, different forms of
nondegeneracy abound in the literature. Dunn [10], Burke and Moré [6] use
the relative interior condition:

—Vf(3) € riNe (), (2)

to define an optimal solution & of (1) as being nondegenerate. Here riS
denotes the relative interior of the convex set S and N¢ (z) denotes the
normal cone to the convex set C at the point € R™ which is defined by

{ye R"|yT(c—2) <0, forallce C} ifzeC,
] otherwise.

NC (:E) = {

Robinson [41] uses the dual form: T¢ (£) NV f (&)1 is a subspace, where the
tangent cone, T¢ (), to C at z is the polar of the normal cone at z; ie.

Te(z) ={z € R"| 2Ty <0, for all y € N¢ (z)}.



Tt is easy to show (see [41, Lemma 2.1] for a proof) that the definition (2) is
equivalent to the subspace definition. In general, for a convex set S C R",
the negative of the polar of S is the dual cone of S, which is denoted by 5.
It is not difficult to extend the notion of strict complementarity to the
context of a variational inequality (VI) of the form: find x € C such that

F(z)'(y—2)>0, foralyeC, (3)

where ¢ C R™ is a nonempty closed convex set and F' : R" — R" is
a continuous mapping. We shall denote this problem by VI (F,C); its
(possibly empty) solution set is denoted SOL(F), C). When F is affine and
given by F(z) = ¢ + Mz for some vector ¢ € R", some mafrix M € R™*™,
and all vectors z € R™, we shall append the word “affine” to describe this
VI and denote it by AVI (¢, M, C); the notation SOL(q, M, C) will be used
to denote the solution set of this AVI.

Given a vector & € SOL(F,C), by simply replacing Vf(2) by F(Z) in
either (2) or in Robinson’s dual definition, we obtain a definition for Z to be
a nondegenerate solution of the VI (F,C). A justification for this definition
of nondegeneracy for the VI is the well-known fact that the VI (F,C) is
equivalent to the generalized equation

0 € F(z) + N¢ (z),

or equivalently,
—F(z) € N¢ (z),

which easily leads to the generalized definition.

When C is a polyhedron, it is possible to give some further charac-
terizations for the nondegeneracy of a solution # € SOL(F,C). We shall
summarize these characterizations in Proposition 1 below. The additional
characterizations rely heavily on the face structure of a polyhedral convex
set. It is well known that the relative interiors of the faces of a convex set
C form a partition of C [42, 18.2]. Throughout this paper, we will use the
notation F(z) to denote the face of C' which contains a vector z € C' in its
relative interior. The following result was established in [6].

Lemma 1 The normal cone to a polyhedral convez set C is constant for all
z € riF, where F is a face of C; henceforth labeled Ng. Furthermore,

aff F —z = linT¢ (z) = (aff N)L.



As a consequence of this lemma, it follows that F—Nr has full dimension,
and hence has a nonempty interior. This observation will be used in the proof
of the following proposition. We note that condition (iv) in this proposition
has been used by Reinoza [39].

Proposition 1 Suppose & solves VI (F,C) and C is polyhedral. Let F =
F(&), so that —F(&) € Nr. The following statements are equivalent:

(i) &+ F(2) € int (F —Ng),

(ii) —F(Z) € riNF,

(i) T (&) N F(£)* is o subspace,

(i) & is in the relative interior of the face of C exposed by —F ().
If in addition, F' is monotone, then SOL(F,C) C F(%).

Proof The equivalence of (ii) and (iii) has been noted before. The equiv-
alence of (ii) and (iv) is by [7, Theorem 2.4]. Since £ € riF and —F(£) €
ri Nz, it follows that & + F(2) € 1iF + ri(=NF) = ri(F — M) which, as
we have noted, has a nonempty interior. Thus (ii) implies (i). We now show
that (i) implies (ii). First note that &+ F(2) € riF + 1i (—Nx), so suppose

2+ F@E)=y+=2

withy € riF and z € 1i (~N5). Theny—2& € aff F— 2, F(2) — 2 € aff Nr
and these two subspaces are orthogonal. Hence y —Z = 0 = F(&) — 2 as
required.

For the final statement of the proposition, let z € SOL(F, C) be arbitrary.
Since F' is monotone, it follows that (see e.g. [3])

F(e)f(c—2)>0, forallceC,

which implies, since & € C, that F(2)T (& — z) > 0. However, & also solves
the VI (F,C), so

F(@&)'(c—2)>0, forallceC,
implying F(z)T (% — z) = 0. Hence,
ze{ceC|F(@&)T(c—2)=0},

which is F(&) by [7, Theorem 2.4]. 0



In the remainder of this paper, we shall focus on the AVI (¢, M,C). As
stated before, our goal is to establish the equivalence of the existence of a
nondegenerate solution to this problem and a number of related concepts.
In what follows, we shall describe each of these concepts more formally.

The notion of a weak sharp minimum was introduced in [11] and exten-
sively analyzed in [5, 13]. The formal definition is as follows.

Definition 1 Let f : R* — RU {oo} and C C R". A nonempty subset
S C C is a set of weak sharp minima for the problem (1) if there is a scalar
a > 0 such that for allz € C and ally € S,

f(z) 2 fly) + adist (2] 5), (4)

where
dist (z | §) = inf{||z — || : z € S}

is the distance from the point x to S measured by any norm.

Note that a set of weak sharp minima for (1), if it exists, must be equal
to the set of global minimizers of f over C. In general, for the problem
(1), it would be useful to know when a set of weak sharp minima exists.
As mentioned in the introduction, an affirmative answer to this question is
known for a linear program and certain convex quadratic programs.

Observe that if the problem (1) has a weak sharp minimum, then the
inequality (4), which is equivalent to

dist (z | ) < @™} (f(%) — fmin), forallzeC, (5)

where fmin is the minimum value of f on C, can be interpreted as providing
an error bound for an arbitrary feasible point z to the set of minimizers of
(1), with the residual given by the deviation of the objective value f (z) from
its minimum value. Consequently, a necessary and sufficient condition for
the existence of a weak sharp minimum for the problem (1) is the existence
of an error bound of the type (5) where S is the set of minimizers of (1).
The notion of minimum principle sufficiency was introduced in [13]. The
minimum principle is a well-known necessary optimality condition for a pro-
gram of the form (1), where C' is convex; this principle states that, for a
continuously differentiable function f, if Z solves (1) then & € SOL(Vf, C).
Roughly speaking, minimum principle sufficiency is the converse assump-
tion; nevertheless, in order to make this precise, it will be necessary for



us to introduce the gap function associated with the VI (F,C). Specifi-
cally, the gap function for the latter problem is the extended-valued function
g: R — RU {oo} given by

g(z) = 2T F(z) — w(z), forall z € R™, (6)
where
w(z) = inf{zT F(z) : 2 € C}. (7)

The function w was introduced in [18] where it was used for stability analysis
of the AVI. Let
Q(z) = argmin{zT F(z) : z € C};

it is understood that if the minimum value in w(z) is not attained, then
Q(z) is defined to be the empty set. We note that if C' is polyhedral, then
w(z) is the optimum objective value of a linear program.

The following proposition summarizes some important properties of the
two functions g and w. No proof is needed for these properties.

Proposition 2 Let F : R® — R" be a mapping and C be a closed convez
subset of R™. The following statements are valid.

(i) The function w: R® — RU {—oo} is concave and eztended-valued; if
F is a monotone affine function, then g is conves.

(ii) The function g is nonnegative on C.

(iii) A vector x € SOL(F, C) if and only if x € Q(x), or equivalently, z € C
and g(z) =0.

(i) If C is polyhedral, then
domw = {z € R"|w(z)> —oo}
= {xz € R"| F(z) € (recC)*},
where (rec C)* is the dual of the recession cone of C.

(v) If C is polyhedral and F is affine, then w is piecewise linear and g is
plecewise quadratic.

Returning to the problem (1) and letting F' = Vf, we see that the
minimum principle for this problem can be stated simply as: if z is a local
minimizer of (1), then z € Q(z). Obviously, if f is a convex function,



then every vector x € C with the property that z € Q(z) must be a global
minimizer of (1). For a convex function f, the minimum principle sufficiency
stipulates that for all optimal solutions z of (1), or equivalently, for all =
such that z € Q(z), if 2’ € Q(z), then 2’ is a also global minimizer of
(1). In what follows, we shall give several equivalent formulations for this
sufficiency property, one of which will be the basis for generalization to a
nondifferentiable function f.

Proposition 3 Let f : R* — R be a continuously differentiable conver
function and C C R™ be a closed conves set. Assume that S = argmin{ f(z) :
z € C} # 0. The following statements are equivalent.

(a) The minimum principle sufficiency holds for the minimization problem
(1).

(b) For allz € S, S = Q(z) where Uz) = argmin{zTVf(z): z € C}.

(c) Forallz €S,

[zeC, V() (z—z)=0=>2z€S.

If in addition, C is polyhedral and S # 0, then any one of the above state-
ments 18 further equivalent to:

(d) S is a set of weak sharp minima for (1).

Proof Since & C Q(z) for all optimal solutions  of (1), the equivalence of
(a) and (b) is obvious. That (c) is also equivalent to (a) or (b) is equally
obvious because z solves (1) if and only if z € Q(z). Finally, the equivalence
of (d) and the above statements was proved in [5, Theorem 4.2]. 0

Remark. Theorem 4.2 in [5] shows that in the above proposition, (d) always
implies (a) for an arbitrary closed convex set C; nevertheless, Example 4.3
shows that the polyhedrality of C is needed for the reverse implication.

3 Miscellaneous Preliminary Results

We have now defined all the concepts we shall deal with in this paper. Our
ultimate goal is to link them together for the monotone AVI (g, M, C) where
M is assumed to be positive semidefinite and C' is polyhedral. The linkage
is via the gap function g for this AVI. Motivation for using this function
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g stems partly from statement (iil) in Proposition 2 which suggests that g
is a likely candidate for a residual function for the AVI. This choice is also
supported by some error bound results in [18] which are derived with the
aid of some additional properties of the monotone AVI. In what follows, we
shall summarize the relevant results for later use. Throughout the rest of
this paper, we shall fix the vector ¢ € R", the matrix M € R™™", and the
set C C R™. We shall assume that M is positive semidefinite and C is a
polyhedral. We shall further assume that SOL(q, M, C) # 0.

There are two important constants associated with the solution set of
the monotone AVI (g, M, C). Indeed, by results in [18], there exist a vector
d € R"™ and a scalar o € Ry, both dependent on the data (g, M,C), such
that

d=M+MDz, o=a"Maz, (8)

for all z € SOL(g, M, C). Furthermore, SOL(g, M, C) can be characterized
using these constants as

SOL(¢q,M,C) = {z € C | w(z) — (¢Tz +0) > 0,(M + MT)z = d}.

Since, for every x € SOL(g, M, C),w(z) < (g+Mz)Tz = (g+d—MTz) s =
(¢ + d)Tz — o, simple algebra gives the alternative characterization:

SOL(g,M,C) = {z€C|w()-(¢g+dTz+0>0,(M+ M)z =d}
= {zeCluw)-(g+dTz+0=0,(M+ M)z =d}

For a given polyhedral cone K C R", the AVI (g, M, K) is equivalent
to a generalized linear complementarity problem which is to find a vector
y € R™ such that

yeK, q+MyekK* and y'(g+My)=0,

where
K*={yeR"|y'z>0,Vz € K}

is the dual cone of K. In this case, we shall use the prefix “GLCP” instead
of “AVI” to describe the problem. The feasible region of GLCP (¢, M, K)
is given by

FEA(¢, M,K)={ye K |q+ My € K*}. (9)
Since F — Nr C K + K* and both have full dimension, it follows from
Proposition 1 that if § is a strictly complementary solution of the GLCP
(g, M, K), then

94+ q+ Mg € int (K + K*).
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It is known [38] that the AVI (g, M, C) is equivalent to a mixed linear
complementarity problem in higher dimensions. In what follows, we shall
establish a connection between the nondegenerate solutions of these two
problems. For this purpose, we shall represent C as

C = {z€R"| Az > b} (10)

for some matrix A € R™*™ and vector b € R™. Then a vector z € C is a
solution of AVI (g, M,C) if and only if there exists a vector A € R™ such
that the following conditions hold:

0=qg+ Mz — AT\

w= Az —b

wZO, A20, ’LUT)\ZO

These conditions define the GLCP (p, N, K) where the variable i and the
data (p, N, K) are given by

(= _ q N = M AT 0
() e (5) el T

and K = R"™ x R7. Specializing Proposition 1 to the latter GLCP, we can
show that a solution (&, ) of GLCP (p, N, K) is nondegenerate if and only
if @ + A > 0, where @0 = A% — b. Based on this observation, the following
result is easy to prove.

Proposition 4 Let C be given by (10). A solution & of the AVI (¢, M, C)
is nondegenerate if and only if for some A, (Z,A) is a nondegenerate solution
of the GLCP (p,N, K).

Proof Let
T={i| (45 =)}

be the index set of active constraints at Z. By the definition of F = F(&),
we have
F={zxeC|(Az =1b), foralli € T},

and # € riF. Hence,

Ne={ATX| A€ R™ \; =0, foralli ¢ I}.
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From the theory of convex polyhedra, particularly [42, 6.6], we have
riF ={z € F | (Az > b);, for all i ¢ T}
fiNg={ATA| ) <0, forallieZ; \; =0, foralli ¢ Z}.

Hence, according to Proposition 1, Z is nondegenerate if and only if £ € ri F
and —(g+ M) € ri Nz, From this, the existence of the desired A is obvious.

O

The GLCP (p, N, K) defined above is related to the linear program defin-
ing the function w(z) which is given by:

w(z) = min{z7 (¢ + Mz): 2 € C};
see (7). The dual of this linear program, denoted A(z), is

maximize b\

subject to g+ Mz —-ATA=0, X>0.

We shall let A(z) denote the (possibly empty) optimal solution set of Al(z).
The following result summarizes an important relation between the dual
program A(z) and the GLCP (p, N, K) as well as two properties of A(z)
as a parametric linear program with a changing right-hand side in the con-
straints.

Proposition 5 The following three statements hold:

(a) if & € SOL(g, M, C), then a pair (2, ) solves the GLCP (p, N, K) if
and only if A € A(Z);

(b) there exists a constant @ > 0 such that for all = € R™ with A(z) # 0
and all X feasible to A(z),

—bTA 4+ w(z) > adist (A | A(z)); (12)

(c) there ezists a constant § > 0 such that for all z and z’ in R™ with

A(z) # 0 and A(z") # 0,
A(z) C A(a') + Bllz — 2'[|B(0, 1),

where B(0,1) is the unit Euclidean ball in R™.
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Proof Statement (a) is obvious. For statement (b), observe that if A(z) # 0
for some z, then w(z) is finite and equal to the optimal objective value of
A(z). By [32, Lemma A.1], every solvable linear program has a nonempty set
of weak sharp minima. A careful look at the proof of this result reveals that
the constant associated with such a set of weak sharp minima is independent
of the right-hand side in the constraints of the program. Thus (b) follows.
Statement (c) follows from the Lipschitzian property of the solutions to a
parametric right-hand sided linear program as proved in [33, Theorem 2.4].

ad

We shall associate the following optimization problem with the AVI
(¢, M,C):
minimize g(z) (13)
subject to z € C
where ¢ is the gap function defined in (6) with F(z) = ¢+ Mz. By Proposi-
tion 2, the function g is convex, piecewise quadratic, and possibly extended-
valued; it is in general not Fréchet differentiable. We should mention that
recently, there have been several differentiable optimization problems intro-
duced for the study of a monotone VI [2, 15, 34]; since the objective functions
of the latter optimization problems are not known to be convex even for a
monotone AVI, it is therefore not clear whether our results can be extended
to these other (possibly nonconvex) optimization formulations of the AVL
Since C is polyhedral, it can be represented as

C = convG + recC (14)

for some finite point set G C R™ where conv G denotes the convex hull of
G and recC denotes the recession cone of C. When C is a cone, we have
G = {0} and C = recC. Clearly, the problem (13) can be equivalently

stated as
minimize z7 (g + Mz) — &(z) (15)
subject to z € C, g+ Mz € (recC)*,

where
@(z) = min{2T (¢ + M=) : z € G}. (16)

When C is a cone, the latter formulation reduces to

minimize 27 (¢ + Mz)
subject to x € FEA(q, M, C),
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since C' = recC and &(z) is identically equal to zero in this case; see (9) for
the definition of FEA(q, M, C).

Unlike the function w(z),w(z) is finite valued for all z € R™ and it is
dependent on the point set G (in particular, on the representation of C').
Nevertheless, w(z) = ©(z) for all z € domw; recall that by Proposition 2,
dom w consists of all vectors z satisfying ¢ + Mz € (rec C)*. The function
&(z) will play an important part in the proofs (but not the statements) of the
results involving the AVI (¢, M, C). We shall let FEA(q, M, C) denote the
feasible region of the problem (15). This coincides with the previous defini-
tion (9) when C is a cone. Trivially, we have SOL(g, M, C) CFEA(q,M,C).
Moreover, the problem (13) is equivalent to

minimize  g(x)

(17)
subject to = € FEA(¢q, M, C).

Although the function g is not Fréchet differentiable, it is directionally
differentiable at every vector in FEA(g, M, C) along all feasible directions.
This fact is made precise in the following result.

Proposition 6 Let ¢ € R" and M € R™*™ be arbitrary; let C C R™ be a
polyhedral set. For any vectors T and © in FEA(q, M,C), the directional

derivative B _ B
W (Zyz—Z) = lim w(@ +7(z = 2)) = w(@)
740 T

exists, 1s finite, and is equal to
min{u? M(z — z) : u € Q(z)},

where Qz) = argmin{zT (g + MZ) : z € C}; hence, ¢'(Z;z — T) ezists and
15 equal to
(z — %) (g+ (M + M)z) - (2 — I).

Proof Since ¢+ Mz € (recC)*, Q(z) # 0. It suffices to verify that
W' (Zz — z) = min{uT M(z — T) : u € Q&)},

and that this derivative is finite. Since both # and z are in FEA(q, M,C) ,
it follows that

W(E+ 7(r — 7)) =0T + 7(z — T))



for all 7 € [0,1]. Hence, we have
Wz —1) =& (Z2 - F) = min{u’ M(z — Z) :u € Q(z)},

where 5
Q(z) = argmin{z7 (¢ + M%) : z € G}

is a nonempty, finite subset of (Z). Since &'(Z;x — ) is finite, thus so is
W' (Z;z — &). Moreover, we have

W' (&2 — &) > min{ul M(z — ) 1 u € QT)}. (18)

w(@+7(z—7)) = min{zT(qg+ Mz)+ 72T M(z —%):2z€ C}
< min{zT(¢+ Mz)+ 72T M(z — 7) : z € Q(I)}

= w(Z) + rmin{u" M(z - 7) : u € Q(2)},

it follows that the reverse inequality in (18) also holds. Consequently, equal-
ity holds in (18). 0

Note that if Z € SOL(q,M,C) and M is positive semidefinite, then
Proposition 6 yields

g @z —-2) = (z—-2)" (¢ +d) — (72 - i) (19)

for all z € FEA(q, M, C), where d = (M + M7T)Z is one of the two constants
associated with the solutions of the AVI (¢, M, C'). With the above proposi-
tion, we can now discuss the extension of the minimum principle sufficiency
to the nondifferentiable gap minimization problem (13), or equivalently, to
(17). Some related work on error bounds for convex, piecewise quadratic
minimization problems, of which (13) is a special case, can be found in
[22]. The following result establishes two properties of solutions to the AVI
(g, M, C).

Proposition 7 Let ¢ € R™ be arbitrary, M € R™™ be positive semidefi-
nite, and C C R"™ be a polyhedral set. If © and T are any two vectors in
SOL(q, M, C), then ¢'(Z;2 — %) = 0 and

w(z) = w(@) + W' (F;z — T). (20)
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Proof Since SOL(q, M,C) is convex, & + 7(z — &) € SOL(q, M, C) for all
7 € [0,1]. Hence for all such 7,

g(Z+7(z—1z)) =0,

which easily implies ¢'(Z;z — Z) = 0.
Since z and Z belong to SOL(q, M, C), we have
) =" (g + Mxz)
=T (q+ M7Z) + 2T M(z — z)
= 7T(q+ M%) + (z — 8)T (¢ + Mz) + ZT M(z — %) + (z — 2)" M (z — )
> w(Z) + min{u M(z —z) : u € Q(Z)}
=w(Z) + ' (T;z — ) > w(z),

w(x

where the last inequality follows from the concavity of w. 0

Alternatively stated, the above proposition says that for a monotone AVI
(¢, M, C) and any Z € SOL(q, M, C), we have

SOL(g, M, C) €

21
{z e FEA(q, M,C) | ¢ (#;2 — &) = 0,w(z) = w(Z) +w'(T;2 — z)}. (21)
We say that the restricted minimum principle sufficiency (RMPS) holds for
the problem (17) if for any & € SOL{q, M, C), equality holds in (21); or
equivalently, the implication holds:

z € FEA(q, M, C), ¢ (%2 —Z) =0

w(z) = (@) + (32 - 7) }”ESQL@’M?C)- (22)

The word “restricted” that describes this property reflects the additional
restriction—equation (20)—that the vector z has to satisfy in order for if
to be a solution of AVI (¢, M,C). If w is a smooth (linear) function on
FEA(q, M, C) (instead of a piecewise linear function), the latter restriction
is redundant. In particular, this is the case when C' is a cone.

The following two results give some necessary and sufficient conditions
for the two conditions, ¢'(Z; z—Z) = 0 and (20), to hold separately. Although
these results are not needed in the proof of the main theorem in the next
section, they give some insights into the RMPS property of the AVI.
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Proposition 8 Let ¢ € R™ and M € R"*™ be arbitrary; let C C R™ be a
polyhedral set. Let & € SOL(g, M, C) and z € FEA(q, M, C) be given. Then
¢ (Z;x— ) =0 if and only if x € Q(Z) and

(w—2)T(qg+Mz) >0, forallu€ Q). (23)
Proof Indeed, by Proposition 6, we have ¢'(Z;z — Z) = 0 if and only if
(z — )T (q + (M + MT):E) = min{ul M(z — %) : u € Q(2)},
or equivalently,
(z — )T (¢ + Mz) = min{(u — )T M(z - Z) : v € )}

Since 7 € SOL(g, M, C) and z € C, the left-hand side is nonnegative whereas
the right-hand side is nonpositive because Z € (z). Consequently, g (Z;z—
z) = 0 if and only if

0=(z—2)7(q+Mz) =min{(u —z)"M(z - %) : u € Q2)}.

The first equality is equivalent to z € Q(Z). Moreover, for all u € Q(z), we
have (u — z)T (g + MZ) = 0; hence,

(w—2)T Mz —1) = (u—7)"(q+ Mz).
Consequently,
min{(u —2)TM(z — %) :u e Qx)} =0
if and only if (23) holds. 0

Proposition 9 Let ¢ € R" and M € R ™ be arbitrary; let C C R™ be a
polyhedral set. Let & and x be any two vectors in FEA(q, M, C). Then the
following are equivalent:

(i) (20) holds,
(i) Qz) NQ(T) # 0,
(i11) for all X € (0,1)

we + (1 = N)Z) = dw(z) + (1 = Nw(Z).
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Proof Suppose (20) holds. Then for any u € Q(Z) such that u” M (z—2) =
Ww'(Z;x — T), we have

w(z) < ul(g+ Mz)
= ul(q+Mz)+uTM(z —7)
= w(Z)+u' (T2 —T).

Hence, w(z) = v’ (¢ + Mz) which implies v € Q(z) N Q(Z). Conversely, if
u € Q(z) NQ(Z), then

w(z) = ul(¢g+ Mz)
= uT(qg+ Mz)+uTM(z - 7)
> w(@) +w(Fz—T).
By the concavity of w, we have
w(z) <w(@) + ' (T;z — T).

Thus (i) is equivalent to (ii). The equivalence of (ii) and (iii) follows from
the fact that Q(z) is the subdifferential of the support function of C' at
—(Mz + q) and [9, Lemma 5.3]. 0]

4 The Main Result

We are now ready to state the main result of this paper. This result gives
various necessary and sufficient conditions for the existence of a nondegen-
erate solution for a monotone AVIL.

Theorem 1 Let ¢ € R™ be arbitrary, M € R " be positive semidefinite,
and C C R" be a polyhedral set. Suppose SOL(q,M,C) # 0. Let d € R
and o € Ry be the two constants associated with the AVI (g, M,C). The
following statements are equivalent:

(a) The AVI (g, M,C) has a nondegenerate solution.

(b) The set SOL(q, M,C) is a set of weak sharp minima for the problem
(13).

(c) There exists a constant v > 0 such that for all z € C,

dist (z | SOL(g, M, C)) < vg(x). (24)
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(d) The representation holds:
SOL(g, M,C) = {z € C | w(z) — (g -+ d)Tz + o > 0}. (25)

(e) The restricted minimum principle sufficiency holds for the problem
(17); i.e. the implication (22) holds.

As it turns out, the proof of this theorem, except for the equivalence
of (b) and (c), is rather complicated. We shall divide the entire proof into
several parts. Throughout the proof we will assume, if necessary, that C
is written in the form (10) or (14). Notice that since the function w is in
general not differentiable, the equivalence of (b) and (e) does not follow from
Proposition 3.

The easiest part is the equivalence of (b) and (c); this follows from the
remark made after Definition 1 and the observation that gmin = 0. Note that
effectively, the inequality (24) concerns only those vectors z € FEA(q, M, C);
indeed, since g(z) = oo for all z € C\ FEA(q, M, C), (24) trivially holds for
the latter vectors x.

The following lemma establishes (a) = (d).

Lemma 2 Under the assumptions of Theorem 1, statement (a) implies
statement (d).

Proof Let S denote the right-hand set in (25). It suffices to verify S C
SOL(g, M, C), as the reverse inclusion is always valid. Let x € S and let £
be a nondegenerate solution of AVI (g, M, C). Since w(z) is finite, its dual
program A(z) has an optimal solution A that satisfies

bIN = w(z).

Since & € SOL(q, M, C) is nondegenerate, by Propositions 4 and 5, there
exists a A € A(&) satisfying

3T(As—b) =0, and A+ A:—b>0.

We have,
wz) > (g+d)Tz—o0

= (g+ M+ MT2)Te - 3T Mz

= (q+M&)Tz+3TM(z - 1)

= MAz+ (- NTAz

= M(Az —b) + ) T(Az —b) + AT,
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which yields, )
0> AT (4z —b) + A\T(Az —b) > 0.

Since A + A% — b > 0 and X and Az — b are both nonnegative, it follows
easily that AT (Az —b) = 0. Thus z € SOL(q, M, C) as desired. 0

Next, we prove (d) = (c). The proof of this implication uses the follow-
ing consequence of the famous Hoffman error bound for systems of linear
inequalities [21]. Let P be a polyhedral set in R™, and let E and f be, re-
spectively, a matrix and vector of compatible dimensions. If the polyhedron

S={zeP|Ex>f}
is nonempty, then there exists a constant ¢ > 0 such that
dist (z | S) < ¢|(Ex — f)=|loo, forallz € P,
where the subscript “_” denotes the nonpositive part of a vector.

Lemma 3 Under the assumptions of Theorem I, statement (d) implies
statement (c).

Proof Invoking the function @(z) defined in (16), we can express (25)
equivalently as

SOL(g, M,C) =
{z € FEA(q, M, C) | 2T (g + Mz) — (¢+d)Tz + 0 >0,Vz € G}.

By the aforementioned consequence of Hoffman’s result, we deduce the ex-
istence of a constant v > 0 such that for all z € FEA(q, M, C),

dist (x | SOL(q, M, C)) < ymax (ZT((] + Mz) - (g +d) T+ a) .
zZ —

To complete the proof, it remains to verify that for all z € FEA(q, M, C)
and all z € G,

(zT(q + Mz)—(g+d) Tz + a)_ < zT(g+ Mz) — w(z).

Since zT (¢ + Mz) > w(z) for all z € C, it suffices to show that for all
x € FEA(q, M,C) and z € G,

(qg+d)Tz -0 —2T(g+ Mz) < 2T (g + Mz) — w(z);
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in turn, since 27 (g + Mz) > w(z), it suffices to verify
(g+d)Tz -0 <aT(qg+ Mz).

For some Z € SOL(q, M, C), the left-hand side of the above inequality is
equal to,

(qg+ (M + MTY)2) Tz —zT Mz =
(g+ Mz)Tz — (7 —2)TM(z —2z) < (g+ Mz)T 'z,

where the last inequality follows by the positive semidefiniteness of M.

We next show that (d) and (e) are equivalent. The proof of this equiva-
lence is based on the following lemma which shows that the two sets on the
right-hand sides of (21) and (25) are equal.

Lemma 4 Under the assumptions of Theorem I,

{CE € FEA(%]\/—IJ C) l w(m) - (q + d)TCB + o2 0} -

o _ _ (26)
{z e FEA(q, M, 0) | ¢'(%;7 — %) = 0,w(z) = w(Z) + ' (T2 — 2)}

for any T € SOL(q, M, C); hence statements (d) and (e) are equivalent.

Proof Let z be any vector belonging to the right-hand set in (26). Com-
bining (19) and (20), we deduce,

w(z) = w(@) + (z — )T (g + d).
Thus
w(z)—(q+dTz+0=w@) —(g+d)Tz+0=0,

where the last equality holds because € SOL(g, M, C). This establishes
one inclusion in (26). To show the reverse inclusion, let z belong to the
left-hand set in (26). By the concavity of w, we have

0 < wa)—(g+dTfz+o
< w@ - (g+rdTz+o~(g+d)T(z—2)+ Tz —7T)
= —¢(Z;z—17)<0.
Thus equality holds throughout and (26) follows. The equivalence of state-
ments (d) and (e) is now obvious. 0
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Finally, we show that (¢) = (a). Before presenting the details of the
proof, we explain the key steps involved. First, we recall the GLCP (p, N, K)
that is equivalent to the AVI (g, M, C); see (11) for the definition of this
GLCP. Consider the convex quadratic program in the variable (z, A):

minimize 27 (g + Mz) — bT A
subject to 0= ¢+ Mz — AT\ (27)
Az —-b2>0, A>0

this is the “natural” quadratic program associated with the GLCP (g, N, K).
We will show that condition (c) in Theorem 1 implies that this program has
a nonempty set of weak sharp minima; the proof of this implication will use
Proposition 5. Thus by Proposition 3, the minimum principle sufficiency
holds for (27). Next by using a similar proof technique as in [13, Theorem
13], we will establish that the GLCP (p, N, K) has a nondegenerate solution.
Proposition 4 will then imply that the AVI (g, M, C) has a nondegenerate
solution.

In what follows, let y = (z,)\); also let f(y) denote the objective func-
tion of (27). Note that f(y) = y”(p + Ny) and the matrix N is positive
semidefinite; moreover, the feasible region of (27) is precisely FEA(p, N, K).

Lemma 5 Under the assumptions of Theorem 1, statement (c) implies that
SOL(p, N, K) = {y e FEA(p, N, K) | Vf(9)" (y =) <0},  (28)

for any ¥ € SOL(p, N, K).

Proof Since SOL(q, M,C) # , it follows that SOL(p, N, K) # @; more-

over, the optimal solution set of (27) is equal to SOL(p, N, K'). The claimed

equation (28) is a consequence of the minimum principle sufficiency holding

for (27); see Proposition 3. Thus by the analysis made above, it suffices to

show that condition (c) in Theorem 1 implies that there exists a constant
~' > 0 such that

2T (q+ M=) — b'A > ' dist (y | SOL(p, N, K)), (29)

for all y = (z,)) € FEA(p,N, K). Let y be any such vector. Then z €
FEA(q, M,C) and ) is feasible to A(z). Thus A(z) # 0 and the inequality
(12) is valid for this pair (z,)). We have

g+ Mz) - b')N = g(z)+w(z) - b
> ~~ldist (z | SOL(g, M, C)) + adist (A | A(z)),
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where the last inequality follows from (12) and (24). Now choose (z', ) €
SOL(q, M,C) x A(z) such that

llz — 2'|| = dist (z | SOL(g, M,C)) and ||A— X| = dist (A | A(z)).

Since &' € SOL(g, M, C), it follows that w(a’) is finite and thus A(z') # 0.
By part (c) of Proposition 5, there exists A € A(2') satisfying

X =Xl < Blle — .

By part (a) of the same proposition, the pair (z', A) € SOL(p, N, K). Con-
sequently, we have

dist (y | SOL(gq, N, K))

<l — &'l + A = Xl

< dist (z | SOL(q, M, C)) + dist (A | A(z)) + |X' = Al

< (14 B)dist (z | SOL(q, M, C)) + dist (A | A(z)) -

Thus by letting

v = min (;ﬁl%-—ﬂj’a> )

it is easy to see that (29) must hold. 0

Lemma 6 Under the assumptions of Theorem 1, statement (c) implies
statement (a).

Proof It suffices to show that the GLCP (p, N, K) has a nondegenerate
solution. By the expression of SOL(p, N, K) given in Lemma 5 and by
expanding V£ (7)T (y — 7), such a solution exists if and only if the following
linear program in the variables (z, ), €):
minimize —¢
subject to 0 =gq+ Mz — AT\
Az —b>0, A>0
T -
(¢+ (M +MT)3) (z—7)=HT(A=2) <0
AN+ Az —b > ce,

has a feasible solgtion with a negative objective value, where e is the vector of
all ones and (Z, \) is an arbitrary solution of the GLCP (p, N, K). Assume
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that the GLCP (p, N, K) does not have a nondegenerate solution. Since
the above linear program is feasible, with (z, A, €) = (Z, X,0) as a feasible
solution, the assumption implies that the program has an optimal solution
with zero objective value. By letting (u,v,{,w) be an optimal dual solution,
we have

MTy 4+ AT (v + w) —C<q+(JVI+]\/[T):Y:) =0
—~Au+bl+w<0

eTw=1

v,(,w >0

—qTu+ 67 (v +w) + ¢ (53— 3T (g + (M + MT))) = 0.

Premultiplying the first equation by u”, the second constraint by (v + w)7,
and the last equation by ¢, adding the resulting constraints, using the fact
that bT'X — zT (¢ + M%) = 0, and simplifying, we deduce

(u— ) M(u—(z) + (v+w)Tw<Lo.

Since M is positive semidefinite, and both w and v are nonnegative, the last
inequality implies that w = 0, which contradicts the equation eTw = 1. 0

Combining the above lemmas, we have the following proof of Theorem
1.

Proof of Main Theorem From Lemmas 2, 3, 4, 6, as well as the previ-
ously mentioned equivalence of (b) and (c), we see that the following impli-

cations are valid:
(a) = (d & (e

Y
(¢ = (a)
g
(b)
Consequently, all five statements (a)—(e) are equivalent. 0

In summary, Theorem 1 has shown that for a monotone AVI, the follow-
ing five properties are equivalent: (a) existence of a nondegenerate solution,
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(b) existence of a nonempty set of weak sharp minima for the gap minimiza-
tion problem, (c) validity of an error bound in terms of the gap function
alone, (d) a simplified representation of the solution set, and (e) validity
of the restricted minimum principle sufficiency for the gap minimization
problem.

We conclude this paper by giving an application of Theorem 1 that
generalizes the classical result of Goldman and Tucker [17] mentioned in the
opening of this paper.

Corollary 1 Let ¢ € R" be arbitrary, M € R™™ be positive semidefi-
nite, and C C R™ be a polyhedral set. Suppose SOL(q,M,C) # 0 and
FEA(q, M, C) is contained in the null space of M + MT. Then the AVI
(g, M, C) has a nondegenerate solution.

Proof Since FEA(q, M, C) is contained in the null space of M + MT, it
follows that 27 Mz = 0 for all z € FEA(q, M,C). Thus the two constants,
d and o, of the AVI (¢, M, C) are both equal to zero. Moreover, it is easy
to verify that the right-hand set in (25) reduces to

{zeC|ul(qg+ M) —z¥(g+ Mz) >0, for all w € C},

which is exactly SOL(g, M, C). Thus, property (d) of Theorem 1 holds, and
the corollary is established. 0
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