Representing and Querying Complex
Information in the Coral Deductive
Database System

Divesh Srivastava
Technical Report #1205

December 1993

REPRESENTING AND QUERYING COMPLEX

INFORMATION IN THE CORAL DEDUCTIVE
DATABASE SYSTEM

by

Divesh Srivastava

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN - MADISON
1993

Abstract

The inadequacy of relational databases for new classes of applications has led to consid-
erable research directed at enhancing the modeling capability of the database and the
expressive power of the query language. The development of deductive databases was
aimed at providing a declarative, potentially complete query language based on Datalog.
However, Datalog lacks features such as aggregation and negation, does not support the
manipulation of numeric values, and inherits the relational data model with its limited
modeling power. Our goal in this thesis is to resolve these limitations of Datalog and to
demonstrate that powerful and practical database query languages based on Datalog can
be designed and efficiently implemented.

We present a Magic-sets based bottom-up evaluation technique, Ordered Search, that
can be used to efficiently evaluate programs with left-to-right modularly stratified aggre-
gation and negation; this class of programs includes useful applications such as bill-of-
materials. We provide theoretical results to demonstrate that our technique is more
efficient than previous bottom-up evaluation techniques. We also give performance re-
sults from the implementation of Ordered Search in the Coral deductive database system
showing the practicality of this evaluation technique.

We propose a program transformation technique, Constraint-rewrite, which propa-
gates arithmetic constraints, such as Cost < 100, specified in a program. By considering
semantic manipulation of constraints, our techniques significantly extend earlier work.
The Constraint-rewrite transformation can be combined with the Magic-sets transforma-
tion to efficiently propagate both constant binding and constraint binding information.
We also develop a uniform framework that integrates our results and the earlier related
work in the literature.

We design a deductive, object-oriented language, Coral++, that combines the data
modeling features of C++ and the querying capability of Coral—two existing languages—
with minimal changes to either, and yields a powerful combination of the object-oriented

il

and deductive paradigms. We describe our implementation strategy for Coral++, which
effectively uses the existing Coral run-time system and the G++ compiler to support the
object-oriented features of the Coral++ data model and query language.

il

Acknowledgements

I have enjoyed working with Prof. Raghu Ramakrishnan during my graduate studies
at the University of Wisconsin-Madison. Raghu is an excellent Ph.D. advisor, always
encouraging me to pursue any research idea that caught my fancy. At the same time, he
tried to make sure that both my feet were firmly planted on the ground by prodding me
to implement my ideas to test their practicality. Despite having a very busy schedule,
Raghu always had time for discussions whenever I knocked on his door and I thank him
for that.

Working with the CORAL team—Raghu Ramakrishnan, S. Sudarshan, Praveen Se-
shadri and Per Bothner—has been an enlightening experience, and I have come to believe
that a small group of researchers can design and successfully implement a fairly large soft-
ware project. I have also learned a lot from my collaborators in research: Catriel Beeri,
David Kemp, Jeffrey Naughton, Raghu Ramakrishnan, Praveen Seshadri, Peter Stuckey,
S. Sudarshan, among others. During my years as a graduate student, I collaborated
extensively with Sudarshan in doing research and writing papers, and we have had many
interesting debates and heated arguments over the merits of competing ideas; it has al-
ways been a lot of fun. I have had many interesting discussions with Shaul Dar during
my last year at Madison; he also helped me considerably in preparing for my final oral
defense and proof-reading portions of my thesis.

Several other professors have played important roles in broadening my research hori-
zons. Yannis Toannidis, Kenneth Kunen and Jeffrey Naughton were always willing to
listen to me and give valuable feedback on my research ideas in databases and logic
programming, Olvi Mangasarian explained many concepts of linear programming in ter-
minology that I could comprehend, Anne Condon and Deborah Joseph got me interested
in theoretical aspects of computer science, and Michael Byrd, Arda Denkel, Ellery Eells,
Malcolm Forster, LaVerne Shelton, Elliott Sober and Leora Weitzman inculcated in me
a lasting interest in philosophy.

iv

I would like to thank Charles Fischer, Kenneth Kunen, Olvi Mangasarian, Jeffrey
Naughton, Raghu Ramakrishnan, and Marvin Solomon for sitting in on my Ph.D. pre-
liminary and/or final committees. Marvin Solomon, in particular, made many excellent
suggestions to ensure that my thesis could be read and understood by researchers other
than myself.

Several research grants supported me financially during my years as a graduate stu-
dent, and I would like to gratefully acknowledge the following grants: a David and Lucile
Packard Foundation Fellowship in Science and Engineering, a Presidential Young Inves-
tigator Award with matching grants from Digital Equipment Corporation, Tandem and
Xerox, NSF grants DCR-8402565, IRI-8804319 and IRI-9011563, and an IBM Faculty
Development Award.

Contents

Abstract

Acknowledgements

1 Introduction

1.1
1.2

MOBIVALION « + » v o v v e e e e e e e e e e e e e e e e e
Outline of ThESIS .« « v v v« v v v e e e e e e e e

2 Preliminaries

2.1

2.2

2.3

Syntax and Semanticso
211 SYDEAX .+« o o e e e e e e
2.1.2 SemantiCs . . + « v v v e e e e e e e
Bottom-up Evaluation
29.1 Naive Evaluation«
9992 Semi-naive Evaluation oo
2.2.3 Dependency Graphs
Magic-sets Transformations

3 Ordered Search

3.1

3.2
3.3

3.4

Backgroundo a e
3.1.1 Motivating Exampleso
Outline of Chapter+« v v v v i it
Preliminaries . - « v v v v o v e e e e e e e e e e e e e e e e
3.3.1 Subgoal Dependency Graph
3.3.2 Modular Stratification: Syntax and Semantics
3.3.3 Modified Magic-sets Rewriting
Ordered Search v« v v i i i e e e

vi

ii

iv

[UVI

-~ =

10
14
14
16
19
20

341 An OVEIVIEW . . . v v v v i oo 41

3.4.2 Data Structures: Context « « oo oo 41
3.4.3 Algorithms 42
3.4.4 Motivating Examples Revisited 44
3.5 Theoretical Results about Ordered Search 49
351 Soundness, Completeness and Non-repetition 49
3.5.2 Space and Time Complexity« o oo oo 55
3.6 Ordered Search in Practice v v v oo e 58
36.1 Modulesin Coral oo 58
3.6.2 Comparing Alternatives« oo 59
3.6.3 Overheads of Ordered Search« oo oo e o 64
3.6.4 Ordered Search and Persistence« oo 67
37 Related Work . . . o o v v v i it 68
371 Prolog . . o o i 68
3.7.2 QSQR/QoSaQ and Extension Tables-- 68
3.7.3 Subquery Completion oo 68
3.7.4 Techniques for computing the well-founded model 69
3.8 DISCUSSION . « « v v v v v v o n e e 69
3.8.1 Single Answer Querieso o s e e 70
3892 Ordering Rules« oot vvom e 73
Propagating Constraint Selections 75
41 Backgroundo 75
4.1.1 Motivating Exampleso oo e 76
4.2 Outline of Chapter o v v v v v v oo 79
4.3 PreliminarieS« o v o e e e e e e 80
4.4 Propagating Constraints: The Problemo o 85
4.5 The Transformation: Propagating Constraints 89
451 AnExample o . oo e e 89
4.5.2 Generation of QRP-constraintso oo 91
4.5.3 Propagating QRP-constraints oo 94
4.5.4 Using Inferred Predicate Constraints~ 95
4.5.5 Putting it all Together oo 100
4.5.6 DISCUSSION . + v v v v v v e e e e e e e e e e e e e 104
4.6 Sufficient Conditions for Termination« o v v oo oo 106

vii

4.7 Understanding Previous Techniques oo 108
4.7.1 Balbin et al.’s C-transformation 108
4.7.2 Mumick et al.’s GMT-transformation 109

4.8 Combining Constraint Propagation with Magic Rewriting 110
4.8.1 Problems Addressed« oo 11
4.8.2 Constraint Magic Rewriting« oo 112
4.8.3 Combining Propagation of QRP-constraints with Constraint Magic

ReWHting . . .« o« o v v i 113
4.8.4 Combining Predicate and QRP-constraint Propagation 116
4.8.5 Adding Constraint Magic Rewriting 118
4.8.6 An Optimal Sequence of Transformations 121
4.8.7 Other Classes of Adornments« .o v v 123

4.9 DISCUSSION .« « v v v v o v e e oo e e e e e e e 123

Coral+-+ 126

51 Background e 126
51.1 Overview of the Coral4++ Design 127
5.1.2 Motivating Examples oo 128

5.2 Outline of Chapter o o v v v i 132

53 Coral++: DataModel« 132
5.3.1 Overview of the Coral Data Model 133
5.3.2 Overview of the C++ Type System 134
53.3 Relationsin Coral++. . . « .« o o v o v oo 134

5.4 Coral++: Query Language« « « o oo oo 135
541 Overview of the Coral Query Language 136
5.4.2 Evaluating Coral Queries« oo 137
54.3 Class Extentsin Coral++« oo v 137
5.4.4 C++ ExpressionsinRules 138
5.4.5 Creating Objects in Coral++o oo 139

5.5 Implementing Coral+-+ oo 139
5.5.1 Implementing Classes and Extents 140
5.5.2 Program Evaluation in Coral++.o v oo e 141

56 Related Work o o v v i it 142
5.6.1 Proposals Based on C++4o oo 143
5.6.2 Proposals Based on Deductive Languages 144

viii

5.6.3 Proposals Based on Non-Horn Logics 145

5.7 DISCUSSION . « o « v v v v o o v e e e e e e 146
Conclusions 147
Algorithms 159
A1l Ordered Search . . . v v o v v oo o 159
A.2 Pushing Constraint Selectionso oo 163
Fold/Unfold Transformations 167

ix

Chapter 1

Introduction

1.1 Motivation

Current databases typically represent data as flat relations. Queries on such databases
are expressed in languages such as SQL. However, flat relations are often insufficient
to naturally model real-world information, and SQL has a limited expressive power.
For instance, in an airline application, relational databases cannot naturally represent a
sequence of flights between two cities, and one cannot express the query “find the cheapest
sequence of flights between two given cities” in SQL. Similarly, in an engineering/CAD
application, relational databases cannot naturally model a part-subpart hierarchy, and
SQL cannot be used to express the bill-of-materials query “find the quantity of each basic
part required to assemble a given complex part.” In recent years considerable research
has aimed at providing sophisticated features for the natural modeling of real-world
information, and enhancing the expressive capability of the query language. The major
directions this research has taken have been deductive databases and object-oriented
databases.

Deductive databases allow information to be explicitly represented in non-first normal
form relations, and provide a facility for generalized recursive queries based on logic
programming formalisms. Deductive query languages, like relational query languages, are
declarative—they let the users specify what the answers to a query should be, rather than
how these answers should be computed. This makes it easy for the users to specify queries,
but it places the burden of query evaluation on the system. Thus deductive database
systems must have powerful optimization techniques to efficiently answer queries (see
[8, 66, 92] for a discussion). Existing deductive database systems (Aditi [93], CORAL [65,

1

68], Glue-NAIL [54, 62], and LDL [22, 59], among others) incorporate many different
optimization strategies for answering queries.

One of the most important optimization strategies used in these deductive database
systems is Magic-sets [7, 11, 64, 73, 80]. Magic-sets is a general program transformation
technique that seeks to restrict the computation to facts that are relevant to answering the
query, where a fact is considered relevant if it would be computed in a top-down evaluation
of the given query. However, bottom-up evaluation of recursive programs based on Magic-
sets has many advantages over a top-down evaluation scheme such as Prolog. It is sound
and complete with respect to the declarative semantics of least Herbrand models (see
Lloyd [50], for instance) for positive programs. When used in conjunction with Semi-
naive evaluation [5, 6, 10], it is guaranteed to prevent repeated computation. Further,
it is more efficient than Prolog in many database applications, because it is set-oriented.
However, Magic-sets evaluation has its limitations. The evaluation is neither sound
nor complete in the presence of negation or aggregation, which are very useful features
of database query languages. Also, while the Magic-sets optimization can propagate
“constant” binding information (e.g., X = 5) from a query into the program such that
the transformed program may be efficiently evaluated, the propagation of “constraint”
binding information (e.g., X < 5) leads to the computation of constraint facts [39, 64],
which are expensive to manipulate. The major goal of this thesis is to address and
resolve these limitations of Magic-sets based bottom-up evaluation of deductive database
queries.

Although deductive databases offer a powerful query facility, they typically support
a structural data model, making the representation of complex information difficult.
In contrast, object-oriented databases allow users to model information using the so-
phisticated type system of a general-purpose programming language, giving the users a
more powerful information modeling capability. However, manipulation of information in
object-oriented databases is typically done using an imperative programming language,
where the user has to specify not only what the answers to a query should be, but also
how these answers should be computed. This makes specification of queries harder in
object-oriented databases than in relational databases or in deductive databases. An-
other goal of this thesis is to demonstrate that the advantages of object-oriented database
languages and deductive database languages can be combined in a clean and practical

manner.

1.2 Outline of Thesis

In Chapter 2 we present notation and background material needed for the understanding
of this thesis. Most of the basic terminology is given in Section 2.1. The Semi-naive
evaluation technique is reviewed in Section 2.2. In Section 2.3, we describe the Magic-
sets transformation.

The broad aim of this thesis is to show that powerful and practical database query
languages based on logic programming can be designed and efficiently implemented. In
Chapter 3 we describe a memoing evaluation technique, Ordered Search, which can eval-
uate a class of programs with negation and aggregation, known as left-to-right modularly
stratified programs [74], more efficiently than other memoing techniques in the literature.
We provide both complexity results and performance results to demonstrate the efficiency
of the Ordered Search evaluation. Here is a motivating example. (Details of the syntax

are presented in Chapter 2.)

Example 1.1 (Bill-of-materials) The following program is representative of a class
of problems known as “bill-of-materials” problems.

bom(Part, sum(< C >)) . — subpart_cost(Part, SubPart, C).
subpart_cost(Part, Part,Cost) @ — basic_part(Part, Cost).
subpart_cost(Part, Subpart, Cost) : — assembly(Part, Subpart, Quantity),
bom(Subpart, Total Subcost),
Cost = Quantity * T'otal Subcost.

The database consists of the two relations assembly(Part, Subpart, Quantity) and
basic_part(Part,Cost). Each fact in the relation assembly(Part, Subpart, Quantity)
indicates the quantity of a subpart in a composite part, and the relation represents a
hierarchy of parts. Each fact in the relation basic_part(Part, Cost) indicates the cost of
a basic part (i.e., a part that has no subparts) in the hierarchy of parts.

The above program computes the total cost of a composite part by adding the
total costs of all its subparts. It computes two relations, bom(Part, Totalcost) and
subpart_cost(Part, Subpart, Cost), using the information in the database relations. Each
fact in the relation bom(Part, Totalcost) contains the total cost of a (basic or composite)
part in a complex assembly, and each fact in the relation subpart_cost(Part, Subpart,
Cost) indicates the cost of a subpart in a composite part (taking into account the quan-
tity of subparts in the composite part).

Magic-sets based bottom-up evaluation would not be able to evaluate this program
correctly, since the semantics of the program requires that for a given part a, all facts
of the form subpart_cost(a,-,-) be computed before attempting to compute the fact
bom(a,-). This requires imposing an order on the sequence of derivations, and Magic-
sets evaluation cannot guarantee such an order. The evaluation technique proposed in
Chapter 3, Ordered Search, works on the Magic-sets transformed program, and maintains
“dependency information” between “subgoals” to ensure that the derivations are carried
out in the desired order, and the correct answers to a query are computed efficiently. O

In Chapter 4 we describe an optimization technique, Constraint-rewrite, which prop-
agates constraints (such as X < 5) specified in a program, in such a way that the
transformed program fully utilizes the constraint information present in the original pro-
gram. The Magic-sets evaluation cannot utilize all the constraint information present in
such program-query pairs without computing non-ground constraint facts [39, 64], which
are expensive to manipulate. With the Constraint-rewrite optimization, only “constraint
relevant” facts are computed, and if the evaluation of the original program computes
only ground facts, then so does the evaluation of the transformed program. Here is a
motivating example. (Details of the syntax are presented in Chapter 2.)

Example 1.2 (Flight Connections) The following program is representative of a
class of problems known as “path computation” problems.

cheap_flight(S, D, C) : — flight(S, D,C),C < 150.
flight(Src, Dst, Cost) : — leg(Src, Dst, T'ime, Cost),Cost > 0.
flight(S, D, C) . — flight(S, D1,C1), flight(D1,D,C2),C = C1 + C2.

The database consists of the relation leg(Src, Dst, Time, Cost), and each fact in this
relation indicates the duration and the cost of a single leg flight between two cities Src
and Dst. The above program computes cheap flights (i.e., flights whose total cost does
not exceed $150) between cities, where the total cost of a flight is defined as the sum of
the costs of the legs of the flight.

If the query is to obtain all cheap flights between two given cities, one would like to
compute only “constraint relevant” flight facts: clearly, flight facts that have Cost >
150 are not relevant to answering this query and, hence, need not be computed.

Magic-sets evaluation would not be able to propagate the constraint Cost < 150
without computing “constraint facts.” Using constraint facts in an evaluation involves
symbolic manipulation of constraints, and is hence likely to be much more expensive

than using only ground facts in the evaluation. Constraint-rewrite is able to propagate
the constraint Cost < 150, and the bottom-up evaluation of the transformed program
computes only ground facts.

Further, the Constraint-rewrite optimization can be combined with the Magic-sets
transformation to efficiently propagate constant binding information in addition to propa-
gating constraint binding information. Given any query on cheap_flight (i.e., any pattern
of bound arguments), the bottom-up evaluation of the transformed program computes
only flight facts with Cost < 150, that are reachable from the query. O

In Chapter 5 we present a deductive object-oriented language, Coral++, that com-
bines the advantages of object-oriented database languages and deductive database lan-
guages. The central observation is that object-oriented features such as abstract data
types, encapsulation, inheritance and object identity are essentially extensions of the
data model. We can achieve a clean integration of these features in a deductive query
language by making the deductive language draw values from a richer set of domains, and
by allowing the use of the facilities of the deductive language to maintain, manipulate
and query collections of objects of a given type. Coral++ combines the data modeling
features of C+-+ and the querying capability of Coral—two existing languages—with
minimal changes to either, and yields a powerful combination of the object-oriented and
deductive paradigms. Here is a motivating example. (The syntax is discussed in Chap-
ters 2 and 5.)

Example 1.3 (Computing Department Budgets) A university database maintains
information about various departments as well as information about employees. Some
type declarations in Coral+-+ syntax are given below.!

class employee ; /* forward declaration */
class department {
public:
employee *head ;
int budget() ;
s
class person {
public:
char *name ;

1The Coral++ type declarations have the same syntax as C++ class declarations.

b
class employee : public person {
public:
int salary ;
department *dept ;
b
In this example, the budget attribute of class department is a “computed” attribute,
which is computed, say, by adding the funding the department receives from several
sources. The Coral++ program for the query, “Find all departments where the sum of
the salaries of the employees has exceeded the department budget, and the head of the
department is named John” is:

interesting-dept(D) . — sum.sals(D, S),
S > ((department) D) — budget(),
((departmentx)D) — head — name ="J ohn”.
sum_sals(D, sum(< S >)) : — employee(E), D = ((employeex)E) — dept,
S = ((employeex)E) — salary.

The ability to use inheritance and computed attributes in specifying a query demon-
strates the advantage of supporting an object-oriented data model in conjunction with a

declarative query language. O

We summarize our contributions in Chapter 6. Appendix A contains detailed algo-
rithms for Ordered Search evaluation and Constraint-rewrite optimization. These tech-
niques are described intuitively in the main body of the thesis. Appendix B describes
the fold/unfold transformations that are used by the Constraint-rewrite optimization.

Chapter 2

Preliminaries

In this chapter we present some of the basic terminology required for the understanding
of the rest of this thesis. We also describe some basic query evaluation and program
optimization techniques used in deductive database systems.

2.1 Syntax and Semantics

2.1.1 Syntax

We consider a first-order language that has a countably infinite set of variables, and
countable sets of function and predicate symbols, these sets being pairwise disjoint. We
denote variables by strings of characters, possibly subscripted, starting with an upper
case letter, e.g. X,Yi. We denote function and predicate symbols by strings of characters,
possibly subscripted, starting with a lower case letter, e.g. f,ps. We assume, without loss
of generality, that with each function symbol f and each predicate symbol p is associated
a unique non-negative integer n, referred to as the arity of the symbol; f and p are then
said to be n-ary symbols. A 0O-ary function symbol is referred to as a constant symbol.

Our language also includes the unary arithmetic function symbol —, the binary arith-
metic function symbols +, -, * and /, the binary equality predicate symbol =, the binary
arithmetic predicate symbols <, <,> and >, and the numeric constant symbols, e.g., 9
and 6.75.

We now define the syntax of programs and queries, in a series of steps. Program
semantics is discussed in the next section.

Definition 2.1 (Arithmetic Term) An arithmetic term is defined as follows:

7

e A variable, or a numeric constant symbol is an arithmetic term.

o If t; and t, are arithmetic terms, then (¢; +12), (1 — ty), (t1 % t2), (t1/t2), and (—t1)
are arithmetic terms. O

Often, in using arithmetic terms, we omit full parenthesization. In such cases, we
assume the usual precedence and associativity of the arithmetic function symbols. For
instance, the arithmetic term ((X + (2 Y1)) + 3.5) may be written as X, +2xY;+3.5.

Definition 2.2 (Term) A term is defined as follows:

e An arithmetic term is a term.
e Any constant symbol is a term.

e If f is an n-ary function symbol, and ty,...,t, are terms, then f(tr,-. - t) is @
term. O

Definition 2.3 (Grouping Term) If ¢ is a term, and agg is an aggregate function
(for instance, min, maz, sum, or count), then agg(< t >) is a grouping term. U

A tuple of terms and grouping terms (t1,...,tn) is sometimes denoted simply by the
use of an overbar, e.g. &.

Definition 2.4 (Arithmetic Constraint) If ¢; and ¢, are arithmetic terms, then
t = tg, 1 <ta,t1 S to,t1 >t and t; > t, are arithmetic constraints. O

In this thesis, unless noted otherwise, “constraint” refers to an arithmetic constraint.

Definition 2.5 (Atom) If p is an n-ary predicate symbol and ty,...,t, are terms,

then p(ty,...,tn) is an atom.
A literal is either an atom p(t1,...,t,) or a negative atom not Pty .. tn). O

Definition 2.6 (Grouping Atom) A grouping atom has the form p(t1,...,t,), where
p is an n-ary predicate symbol, some of the t;’s are terms, and the others are grouping
terms. U

Definition 2.7 (Rule) A rule in our language has the form:
riA:i—CiyeroyCmy L1y L

A is an atom or a grouping atom, m,n > 0, ¢1,...,Cm are constraints, and Ly,..., L,
are (positive or negative) literals. Optionally, a rule may be named as above, using the
prefix “r :,” where 7 is a constant symbol. If A is a grouping atom, then we require n to
be greater than 0.

We refer to A as the head of the rule and refer to ci, ..., ¢m, L1, .-+, L,, as the body of
the rule. All variables in the rule are assumed to be universally quantified at the front
of the rule.

A Horn rule is one where the head is an atom, and the body does not have any
constraints or negative literals.

If the body of the rule has no literals, we may refer to the rule as a fact. Facts that
have constraints in the body are referred to as constraint facts. If there are no constraints
in the body of a fact, we may omit the “ —” symbol. (Note that a fact cannot be a

grouping atom.) O

Definition 2.8 (Program) A program is a collection of rules. A Horn program is one
with only Horn rules. A Datalog program is a function-free Horn program. U

Definition 2.9 (Range-restricted Program) A rule r in a program is said to range-
restricted if every variable in the rule occurs in a positive body literal.

A program P is said to be range-restricted if every rule in the program is range-
restricted. O

Definition 2.10 (Query) A query Q is of the form:

Q:7q().

The predicate g is referred to as the query predicate. U

Definition 2.11 (EDB/IDB) A predicate p is said to be an extensional database
(EDB) predicate or base predicate of a program, if p does not appear in the head of any
rule that has at least one body literal.

A predicate p is said to be an intensional database (IDB) predicate or derived pred-
icate of a program, if p appears in the head of a rule with at least one body literal.
O

10

The motivation for separating the EDB predicates from the IDB predicates is that
program optimizations are applied only to the IDB predicates, and not to the EDB
predicates. This is important in the database context since the set of EDB facts can be
very large. However, the distinction is artificial, and we may choose to consider (a subset
of) EDB facts to be part of a program.

2.1.2 Semantics

We now define the meaning of programs with constraints that have no grouping atoms
or negative body literals. (We consider the meaning of programs with grouping atoms

and negative body literals in Chapter 3.)
We use the word ground as a synonym for “yariable-free,” when referring to terms,

atoms, literals, rules, etc.

Definition 2.12 (Herbrand Universe) The Herbrand universe of a program P is
the set of all ground terms that may be formed from the constant symbols and function

symbols appearing in P.! O

Definition 2.13 (Herbrand Base) The Herbrand base of P is the set of all ground
atoms with predicate symbols from P whose arguments are in the Herbrand universe of

pP. O
Definition 2.14 (Relation) An n-ary relation R is a collection of n-tuples. O

Definition 2.15 (Interpretation) Given a program P, an interpretation I of P con-
sists of:

e A domain D.
e A mapping from each constant symbol in P to an element of domain D.
e A mapping from each n-ary function symbol in P to a function from D" to D.

e A mapping from each n-ary predicate symbol in P to a relation in D". [

INote that we exclude the arithmetic function symbols from being used in the construction of the
Herbrand universe.

11

Definition 2.16 (Herbrand Interpretation) Given a program P, an Herbrand in-
terpretation of P is an interpretation with the Herbrand universe as the domain, with
each constant symbol mapped to itself in the Herbrand universe, with each n-ary function
symbol f interpreted as a mapping from n-tuples (t1,...t,) of terms from the Herbrand
universe to the term f(t1,...,t), and with each n-ary predicate symbol interpreted as
a mapping to some n-ary relation on the Herbrand universe. O

The interpretations that we consider for assigning a meaning to a program treat
arithmetic function symbols, arithmetic predicate symbols, and the equality predicate
symbol in a special manner. These “interpreted” function symbols and predicate symbols
are given their standard meaning. For instance, the meaning of the “<” arithmetic
predicate symbol is a binary relation of numbers of the form, (4,7), such that i < j. In
the rest of this thesis, interpretations that assign the standard meaning to arithmetic
function and predicate symbols are loosely referred to as Herbrand interpretations.

Definition 2.17 (Substitution) A substitution is a mapping from the set of vari-
ables to the set of terms. Substitutions are denoted by lower case Greek letters 6, o, ¢,
etc. Substitutions are easily generalized to apply to terms, atoms, arithmetic terms,
constraints, and other syntactic objects of the language.

A substitution o is more general than a substitution @ if there is a substitution ¢

such that, for all terms ¢, 0[¢] = ¢[o[t]].
Two terms %, and ¢, are said to be unifiable if there is a substitution o such that

o[ti] = oltz]. The substitution o is said to be a unifier of t; and t,. Note that if two
terms have a unifier, they have a most general unifier (mgu) that is unique up to renaming
of variables. O

Definition 2.18 (Constraint Satisfaction) A constraint c(?) is said to be satisfied
by a substitution ¢ if oc(?)] evaluates to true under the standard interpretation of the
arithmetic functions and predicates. O

For instance, the constraint X < 5 is satisfied by the substitution {X — 4}, since
4 < 5 evaluates to true under the standard interpretation of <, whereas the constraint

X < 5 is not satisfied by the substitution {X — 7}.
We now define when a rule is ¢rue in an interpretation for different kinds of rules.

Definition 2.19 (Truth of a Rule in an Interpretation) First, consider rules
without grouping atoms in their heads. Let r be a rule of the form:

riA:—ci,...,CmyBi,..., Bn,not Dy,...,not Dg.

12

A,Bi,...,Bn,Dy,..., Dy are atoms, and cy, . . . ¢ aT€ constraints. Let I be an Herbrand
interpretation, and o be a substitution that maps all variables of r to elements of the
Herbrand universe. The rule r is said to be true in interpretation I for substitution o if
o[A] is present in I whenever:

e Fach ¢;,1 < i < m is satisfied by o,
o Each ¢[B;],1 < i < nis present in I, and
e Each o[D;],1 < i < k is absent from I.

Now consider rules whose head is a grouping atom. For simplicity, assume that the
body contains only one positive literal, and that the head contains only one grouping
term of the form agg(< Y >), where agg is an aggregate function, and Y is a variable.?
Let r be a rule of the form:

r:p(tagg(<Y >)): —p(t).
Let Z be the variables (possibly including Y') that occur in z. Let I be an Herbrand
interpretation, and o be a substitution that maps all variables of r to elements of the
Herbrand universe. The rule 7 is said to be true in interpretation I for substitution o if
p(3,a) is present in I whenever:

e o[pi(f1)] is present in I,
e U[ﬂ =73, and

o aisthe result of applying the aggregate function agg to the multiset {n[Y]|n € Ss},
where S, is the set of all ground substitutions 7 (on variables in t;) such that
n[f] = olf], and such that n[p(#1)] is present in . DI

Intuitively, grouping terms are similar to the “group-by” construct in SQL. The vari-
ables in 7 can be thought of as the “group-by” variables, and Y can be thought of as
the “grouped” variable. Given values for each of the group-by variables, we first collect
in a multiset all possible values of the grouped variable from p; facts that are present
in the interpretation I, and have the same values for the group-by variables. Then, we
apply the aggregate function to this multiset. If the resulting head fact is also in the
interpretation, the rule with the grouping atom as its head is said to be true.

2 A1l programs described in this thesis satisfy these conditions. Programs that do not satisfy these
conditions can be rewritten, as in Beeri et al. [12], to satisfy these conditions, without changing the
meaning of programs.

13

Definition 2.20 (Herbrand Model) Consider a program P. An Herbrand interpre-
tation I is said to be an Herbrand model of a program P if each of the rules of P is
true, for every substitution ¢ that maps variables of the rule to elements of the Herbrand
universe. U

Intuitively, an Herbrand model of a program P is an interpretation that is “closed”
under the reading of each rule of the program as an “if — then” statement in logic.

In an Herbrand interpretation (or model), the mappings for constant symbols and
function symbols are fixed; only the mappings of predicate symbols vary. An Herbrand
model can hence be viewed as a collection of relations, one corresponding to each unin-
terpreted predicate symbol.

Definition 2.21 (Minimal Model) An Herbrand model M1 is a subse? of Herbrand
model M2 if each relation in M1 is a subset of the corresponding relation in M2. Model
M1 is a proper subset of model M2 if it is a subset of M2, and at least one relation in
M1 is a proper subset of the corresponding relation in M2.

An Herbrand model M1 of program P is minimal if no proper subset of M1 is a

model of P. O

The following result is a consequence of the results of Jaffar and Lassez [36].

Theorem 2.1 Each program P without grouping atoms or negative body literals has a
unique minimal Herbrand model. O

Definition 2.22 (Meaning of a Positive Program) The meaning of a program
without grouping atoms or negative body literals is given by its unique minimal Herbrand
model. OJ

We define the meaning of programs with grouping atoms and negative body literals

in Chapter 3.
Often, we are interested only in the answers to a particular query @ on a program P,
rather than in the meaning of the full program P. We now define what we mean by an

answer to a query.
Definition 2.23 (Answer to a Query) Consider a program P, and query Q:
Q:7q().

The answer to query @ is the collection of tuples matching % in the relation corresponding
to the query predicate g in the meaning of program P. O

14

2.2 Bottom-up Evaluation

2.2.1 Naive Evaluation

Consider a program P and a database D. (The set of all relations corresponding to
EDB predicates is referred to as the database.) The Naive bottom-up evaluation (see
Bancilhon [6], for instance) of (P, D) proceeds in iterations. In each iteration, each of the
rules in the program is independently “gpplied” on the set of available facts, and the set
of available facts is updated at the end of the iteration. (The database D constitutes the
initial set of available facts.) The Naive evaluation terminates when no new facts can be
computed for any of the derived predicates of the program.

We now describe the application of a rule. For simplicity, we consider only range-
restricted programs; the bottom-up evaluation of such programs compute only ground
facts. In Chapter 4, we briefly consider non-range-restricted programs.

Definition 2.24 (Rule Application) First, consider a program rule without a group-
ing atom in its head:

r p(Z) PGy -;Cm)pl(zz)a v ,Pn(m,nd pn+1(m—i-)7 .- .,’TLOt pk(-i;)

A derivation of a p fact using rule r consists of two steps:

e First, choose a (ground) p; fact for each pi(t), 1 <1 < n, from the available facts
to instantiate the variables in the body of rule r, such that each of the constraints
cj,1 < j < min the body of rule r is satisfied, and none of the instantiated facts
pi(ti),n+1 <4 < k are present in the set of available facts. Let o denote the
substitution that instantiates the variables of the rule.

e Then the fact o[p(?)] is derived.

Note that our requirement of range-restricted programs allows negation in the body of
a rule to be processed using “set-difference.” In the absence of such a requirement, rule
application could have required taking the complement of a relation with respect to the

(Herbrand) base of the program.
Next, consider a program rule with a grouping atom in its head. By assumption, this

is of the form:
r:p(,agg(< Y >)): = pi(tr).

Let Z be the variables (possibly including Y') that occur in I. A derivation of a p fact
using rule 7 consists of two steps:

15

Iteration | Derivations made
1 {r1: anc(1,2), r1: anc(2,3), rl: anc(4,5) }
2 { r2: anc(1,3), r3: anc(1,3), r1:anc(1,2),71 : anc(2,3),71 : anc(4,5)}
3 {r2: anc(1,3),73 : anc(1,3),71 : anc(l,2),71 : anc(2,3),71 : anc(4,5)}

Table 2.1: Derivations in a Naive Evaluation of (P, D)

e First, choose all (ground) p; facts from the available facts, that are instances of #,
such that the p; facts agree on the variables in Z. Let o denote the substitution
that instantiates the variables of Z.

o Let S denote the multiset of all Y values, one for each of the p; facts chosen in
the previous step. Let a be the result of applying the aggregate function agg on S.
Then the fact p(c[f], a) is derived.

An application of rule r consists of making all possible derivations that can be made
using rule 7 and the set of available facts. O

The following result is straightforward.

Theorem 2.2 The Naive bottom-up evaluation of a program without grouping atoms or
negative body literals computes the meaning of the program. O

The Naive evaluation of a program on a database is extremely inefficient since it
repeats derivations; each derivation made in an application of a rule is repeated in every
subsequent application of the same rule. Example 2.1 below illustrates this inefficiency.

Example 2.1 (Naive Evaluation) Consider the following program P and query &«

rl:anc(X,Y): — par(X,Y).
72 : anc(X,Y) : — par(X, Z),anc(Z,Y).
r3:anc(X,Y): — anc(X, Z),anc(Z,Y).
Q: 7 anc(1,X).

Let the database D contain the facts:

par(1,2). par(2,3). par(4,5).

16

A Naive bottom-up evaluation of (P, D) would result in the derivations of anc facts as
shown in Table 2.1. (The rule used to derive a fact is also indicated, and new derivations
are shown in bold-face.) Only anc(1,2) and anc(1,3) are answers to the query Q. Note
that each derivation made in an iteration of Naive bottom-up evaluation is repeated in
subsequent iterations. O

2.9.2 Semi-naive Evaluation

Semi-naive evaluation [5, 6, 10, 27, 61] is an optimization of Naive evaluation, such that
no derivation is repeated in the bottom-up evaluation. For simplicity, we consider only
range-restricted programs; the bottom-up evaluation of such programs compute only

ground facts.
Given a program P, the Semi-naive evaluation of P also proceeds in iterations. There

are essentially two components to the Semi-naive evaluation of a program.

1. The first component is a rewriting of the program P that defines “differential”
versions of predicates, in order to distinguish facts that have been newly generated
(and not yet used in inferences) from older facts.

For each predicate p defined in P, we define four predicates p, p°e, §p°? and Sp™e.
For each rule in P of the form:

r:p(t): — L(%),- .., ln(ta), not Pr1(Tng1), - - - 0O P (Em)-

where ;(%;),4 < n are base literals, and p;,¢ > n are predicates defined in P the
following Semi-naive rewritten rule is obtained from 7:

r1:6p"® (@) : — L), - - -, ln(Tn), 0t Pry1(tasr), ... 10t P (Em)-

We call such rules non-recursive Semi-naive rules.

For each rule in P of the form:

T p(—t‘) L pl(ﬁ): s 7pn(%;)1732t pn-l—l(zm), ey not pm(t_m—);
lm+1(tm+1), ey lk(tk)

17

where p1,. .., pm are predicates defined in P, n >0 and [;(%;),% > m are (positive
or negative) base literals, the following n Semi-naive rewritten rules are obtained
from r, if n > O:

rl: 6pmee (D) : — 6p3(T), p2(B2); - - - Palln)s

10t Prp1(Eng)s - - -2 10t Pra(tm)y bt Bt 1)s - - -5 L (B)-
r2 : sprev (%) : — pd(E), 608 (%2), - - » Pultn),

1ot pry1(tats), - -, not Pm(tm); Imt1(tma1)s - - - e (Te)-

rn: §pme(T) : — pe(tr), p3(Ea), - - - ,P?ffl(tni), 624 (20),
not ppy1(tnt1), .- -, N0t P (En)s bt Bmg1) s - - - ke (r)-

We call such rules recursive Semi-naive rules.

9. The second component is a technique to apply the rewritten rules and update these
differentials, ensuring that each derivation is made ezactly once in the bottom-up

evaluation.

Tnitially, all relations other than those corresponding to EDB (or, base) predicates
are empty. In evaluating P, the first iteration consists of applying each of the
Semi-naive (both non-recursive and recursive) rewritten rules in P. Subsequent
iterations consist of applying only the recursive Semi-naive rules. The evaluation
of P proceeds by iterating until no new facts are computed for any of the predicates
defined in P. After applying the Semi-naive rules in an iteration, the extensions
of the Semi-naive relations for each p; are updated using Procedure SN-Update in

Figure 2.1.

In Semi-naive bottom-up evaluation, the differential versions of predicates are used to
distinguish newly generated facts from older facts. Consider a predicate p in the program
P.

e The relation corresponding to the differential predicate 6p™* in the Semi-naive
transformed program contains facts generated in the “current” iteration; these facts
are not available to the evaluation.

e The relation corresponding to the differential predicate 6p°? contains facts gener-
ated in the “immediately prior” iteration; these facts were made available to the
evaluation at the end of the previous iteration.

18

procedure SN-Update(p;)

{

/* After applying Semi-naive rules in an iteration */

P = p U 8pfte.

6pgld = 5p£aew - pgld_

pi =3t U 8pf'.

opte = @.

Figure 2.1: Procedure SN-Update

Tteration | Derivations made
1 {r1:anc(1,2),71: anc(2,3), 71 : anc(4,5)}
2 {r2 : anc(1,3),73 : anc(l,3)}
3 {}

Table 2.2: Derivations in a Semi-naive Evaluation of P

e The relation corresponding to the differential predicate p°¢ contains facts generated
two or more iterations prior to the current iteration.

o The relation corresponding to the differential predicate p in the Semi-naive trans-
formed program contains facts generated one or more iterations prior to the current

iteration, i.e., p = p®¢ U 6p°te.

At every stage of the evaluation, the set of relations pde, for all i, has the property
that every derivation that uses only these facts has been made. This can be seen from
the nature of the 6 terms in the bodies of the Semi-naive rules, and the order of updates
of the various Semi-naive relations by Procedure SN-Update.

The following result is straightforward:

Theorem 2.3 The Semi-naive bottom-up evaluation of a program without grouping
atoms or negative body literals computes the meaning of the program, and does not repeat

any deriwations. O

Example 2.2 (Semi-naive Evaluation) Consider again the program P of Exam-
ple 2.1. Using Semi-naive evaluation, the sequence of derivations made is shown in

19

Table 2.2. Note that each derivation made in the Naive evaluation is also made in the
Semi-naive evaluation. However, the Semi-naive evaluation does not repeat any deriva-
tions, i.e., all derivations are new derivations. But if a fact (anc(1,3) in this case) is
derived by two different derivations, each of these derivations is made in the Semi-naive
evaluation.

Such “redundant” derivations can be avoided by recognizing that every fact derived
using rule 72 is also derived using rule r3, and vice versa. Consequently, a scheme that
prunes redundant derivations (Helm [33], for instance) could recognize this and never
apply rule 73; the derivation of 73 : anc(1, 3) is not made in such a case. Given a program
that has redundant derivations, its evaluation using Semi-naive does not eliminate such

derivations. [l

2.2.3 Dependency Graphs

Both the Naive and the Semi-naive evaluation strategies can be refined by taking the
structure of the program into account. In this section we formalize the syntactic structure
of the program based on the “predicate dependency graph.”

Definition 2.25 (Strongly Connected Component) A directed graph G = (V, E),
where V is the vertex set and E C V x V is the edge set, is said to be strongly connected
if there is a path, using the directed edges in F, between every pair of distinct vertices
in V.

Given a directed graph G, a subgraph G1 of G is said to be a strongly connected
component (SCC) of G if G1 is a maximal subgraph in G that is strongly connected.
Note that the SCCs of a directed graph G partition the vertices of G.

The condensation of G with respect to the SCCs is the graph G' = (V', E') obtained
with vertex set V' being the set of SCCs {54, ..., Sk} of G. An edge (Si,S;) € E'i # j,
if there is an edge (Vi, Vi) € E, where Vj is a vertex in S; and V; is a vertex in S;. The
condensation G’ of G reflects the SCC structure of G, and is acyclic.

We say that S; < Ss, if there is a path from 5; to Sy in G'. (In particular, S; < S;,
for all 2.) O

Note that the “<” relation on a condensed graph is a partial order, i.e., it is reflexive,
anti-symmetric and transitive.

Definition 2.26 (Predicate Dependency Graph) Given a program P with pred-
icates Pred = {p1,.-.,Pn}, the predicate dependency graph of P is the directed graph

20

G = (Pred, E), where (p;,p;) € E iff p; occurs (positively or negatively) in the body of
a rule defining p;.

A predicate p; depends upon a predicate p; if there is a path from p; to p; in the
predicate dependency graph. A predicate p; is recursive with a predicate p; if p; depends
upon p; and p; depends upon p;. U

We refer to the SCCs of the predicate dependency graph of a program as the SCCs of
the program. With each SCC S of a program P, we also associate all rules in P defining
the predicates.in S. Note that if SCC S; contains a predicate used in a rule in SCC S;,
then S; < S;. Given a program P, its SCCs S, . .., Sm are said to be in topological order,
if whenever S; < S;, then ¢ < j.

The Naive and Semi-naive evaluation strategies can be refined by evaluating one
strongly connected component (SCC) at a time, in a topological ordering of the SCCs.
In the SCC-by-SCC Semi-naive evaluation of a program, predicates that are not defined
in an SCC S are treated as “base” predicates for the Semi-naive rewriting of S, and only
predicates defined in S are updated using Procedure SN-Update after each iteration in
the evaluation of S.

2.3 Magic-sets Transformations

Given a program P and query @, the Naive and Semi-naive bottom-up evaluation tech-
niques compute the meaning of the full program P in order to answer the query. If we are
interested only in the answers to the query Q, these evaluation techniques can be very
inefficient, and a considerable amount of effort within the deductive database commu-
nity has been devoted to automatically specializing evaluation techniques for efficiently
computing answers to a query. It is beyond the scope of this thesis to review them all,
and we refer the reader to [66, 92] for a survey. In this section, we focus attention of the
Magic-sets approach to improving the efficiency of answering queries. The Magic-sets
transformation is important because it can result in significant improvements, and at the
same time it is generally applicable (see Kemp [43] for details).

One of the main objectives of efficient query evaluation is to avoid computing the
entire model of the original program in answering a query. Top-down evaluation tech-
niques, such as Prolog, usually achieve this objective by using answers to subgoals to
bind arguments of other subgoals, and hence restrict the model to be computed to facts
relevant to answering a query (or goal). Magic-sets transformations [7, 11, 64, 73, 80] are

21

used to imitate top-down computations using bottom-up computation. The major ad-
vantage they provide over Naive and Semi-naive bottom-up evaluation is that they allow
a bottom-up computation to be specialized with respect to the query, thus improving the
efficiency of answering queries.

The intuition behind the Magic-sets transformation is to compute a set of auxiliary
(or, magic) predicates that contain the subgoals set up in a top-down evaluation of the
original program. The rules in the program P are then modified by attaching additional
literals that act as filters and prevent the rule from generating “irrelevant” facts. There
are three distinct steps to the Magic-sets transformation of a program P and query Q.

e First, new rules that define “magic” predicates are added to the Magic-sets trans-
formed program M P. Intuitively, applications of these rules in a bottom-up evalua-
tion of the transformed program compute subgoals set up in a top-down evaluation
of the original program P.

In the top-down evaluation of program P, subgoals on a predicate p may have
some arguments bound to ground terms, while other arguments may contain free
variables. The former arguments are referred to as bound arguments, and the
latter arguments are referred to as free arguments of the subgoals on predicate p.®
In the Magic-sets transformed program MP, the arity of the magic predicate m_p
(corresponding to predicate p in program P) is the number of bound arguments in
the subgoals set up on predicate p in 2 top-down evaluation of pA

o Second, modified versions of the rules of program P are added to the Magic-sets
transformed program M P. Each rule of program P is modified by attaching an
additional “magic” literal to the body of the rule. These magic literals correspond
to the subgoals set up on the heads of rules in a top-down evaluation of P.

These magic literals act as filters and prevent the rule from generating irrelevant
facts, where a fact is considered relevant only if it is an answer to a subgoal set up
in a top-down evaluation of P.

e Finally, a “seed’ magic fact that corresponds to the query @ is added to the Magic-
sets transformed program MP.

3Ramakrishnan [64] generalizes these notions of “hound” and “free” arguments of a subgoal to capture
larger classes of binding patterns. The interested reader is referred to [55, 56, 64] for a detailed discussion.

4\We assume that all subgoals set up on a predicate p in a top-down evaluation have the same set
of bound and free arguments. This assumption can be easily relaxed using the notion of “predicate
adornments,” and the interested reader is referred to [11] for a detailed discussion.

22

Because of the correspondence between the subgoals set up in a top-down evaluation
of the original program P, and the magic facts computed in a bottom-up evaluation of
the Magic-sets transformed program M P, we often refer to magic facts as subgoals in this
thesis. Similarly, there is a correspondence between the answers to subgoals set up in a
top-down evaluation of P, and the non-magic facts computed in a bottom-up evaluation
of M P; hence, we often refer to these non-magic facts as answer facts in this thesis. The
interested reader is referred to [17, 69, 86, 91] for details on the duality between top-down
and bottom-up evaluation.

Note that the first two steps of the Magic-sets transformation can be performed at
“compile-time,” while the final step can be performed only at “run-time,” when the
actual query is known. We formally define the Magic-sets transformation next, and then
provide an example of the Magic-sets transformation.

Definition 2.27 (Magic-sets Transformation) Let P be a program and @ be a
query of P. The Magic-sets transformation results in a new program M P obtained as
follows. Initially, M P is empty.

1. Create a new predicate m._p for each predicate p in P, where the arity of m.p is the
number of bound arguments in the subgoals set up on predicate p in a top-down
evaluation of P.

9. For each rule in P, add the modified version of the rule to M P. If a rule has head
p(3), the modified version of this rule is obtained by adding the literal m_p(3*) to
the body, where 3* denotes the tuple of argument positions of 3 that are bound in
the top-down evaluation of P.

3. For each rule 7 in P with head p(3), and for each body literal q(?), add a magic
rule to MP. The head is m_g(f'). The body contains the literal m_p(s*), and all
the literals in the body of r that are to the left of g(?).

4. Create a seed fact m_q(¢') from the query Q. O

Example 2.3 (Magic-sets Transformation) Consider again the program P and
query @ of Example 2.1, reproduced below:

rl:anc(X,Y): -~ par(X,Y).
r2:anc(X,Y) : — par(X, Z),anc(Z,Y).
r3:anc(X,Y): — anc(X, Z),anc(Z,Y).
Q: 7 anc(1,X).

23

Iteration | Derivations made

1 {mrd : m_anc(1)}
{r1: anc(1,2), mrl : m-anc(2), mr2 : m-anc(l)}
{rl: anc(2,3), mrl : m-anc(3), mr2 : m-anc(2), mr3 : m_anc(2)}
{r2: anc(1,3),73 : anc(1,3),mr2 : m-anc(3), mr3 : m_anc(3)}
{mr3 : m_anc(3)}

{}

Table 2.3: Derivations in a Semi-naive Evaluation of M P

SOt Wi

In a top-down, Prolog-style evaluation of (P,Q), each subgoal on the anc predicate
has its first argument bound to a constant, and the second argument is a free variable.
Consequently, the magic predicate m.anc is a unary predicate.

The Magic-sets transformation of this program-query pair results in the following

program M P:

rl: anc(X,Y): —m.anc(X),par(X, Y).

r2: anc(X,Y): — m.anc(X),par(X, Z),anc(Z,Y).
r3: anc(X,Y): —m.anc(X),anc(X, Z),anc(Z,Y).
mrl : m-anc(Z) : — m-anc(X),par(X, Z).

mr2 : m-anc(X) : — m_anc(X).

mr3 : m_ane(Z) : — m-anc(X), anc(X, Z).

mr4 : m.anc(l).

Rules mrl, mr2 and mr3 of MP are the new rules defining magic predicates; rules
rl,72 and 73 of M P are modified versions of the rules of P, and the fact mr4 is the seed
magic fact obtained from the query Q.

Fach of the rules mrl, mr2 and mr3 is obtained from one of the anc literals in the
bodies of rules of P as follows: rule mr1 is obtained from the anc(Z,Y) literal in rule
72 of P, rule mr2 is obtained from the anc(X, Z) literal in rule 73 of P, rule mr3 is
obtained from the anc(Z,Y) literal in rule r3 of P. To understand the structure of
the rules defining the magic predicates, it is useful to recollect the steps in a top-down
evaluation of program P. For instance, given a subgoal 7anc(a,Y’) on the head of rule
r2, a top-down evaluation would set up the “new” subgoal ?anc(b,Y), if there was a
fact par(a,b) in the database. This is ezactly what an application of rule mrl of the
transformed program M P achieves: if there is a magic fact m-anc(a) (corresponding to
the subgoal anc(a,Y) in the top-down evaluation of P) and the fact par(a,d) is present

24

in the database, an application of rule mrl would compute the magic fact m_anc(b)
(corresponding to the subgoal ?anc(b, Y) in the top-down evaluation of P). The other
rules defining the magic predicates can be understood in a similar manner.

Each of the rules 71,72 and 73 in M P is obtained from the corresponding rule in P by
adding the magic literal m_anc(X) to the body of the rule. Intuitively, these literals act
as filters and ensure that an anc(a, b) fact is computed in the bottom-up evaluation of the
transformed program only if there is a magic fact m-anc(a), i.e., the subgoal ?anc(a,Y)
had been set up in the top-down evaluation of P. Consequently, the anc facts computed
by the transformed program are all “relevant” to answering the query.

We now present the sequence of derivations made in a Semi-naive bottom-up evalua-
tion of M P; this sequence is shown in Table 2.3. Note that the evaluation of M P results
in avoiding the derivation of anc(4, 5), since this is “irrelevant” to computing the answers
to the query anc(l,X). O

Supplementary Magic-sets transformation is an optimization of Magic-sets transfor-
mation that, essentially, performs some common sub-expression elimination automat-
ically, at the cost of computing additional (supplementa,ry) predicates. We refer the
reader to [11, 64] for a detailed discussion of the Supplementary Magic-sets transforma-
tion, and give an example here.

Example 2.4 (Supplementary Magic-sets Transformation) Consider the Magic-
sets transformed program M P of Example 2.3. Note that m.anc(X), par(X, Z) occur as
the first two body literals in each of the rules 72 and mrl. Also, m-anc(X), anc(X, Z)
oceur as the first two body literals in each of the rules 73 and mr3.

The Supplementary Magic-sets transformation infers the presence of these common
sub-expressions because of the nature of the Magic-sets transformation, and performs
common sub-expression elimination from the modified version of a rule r in the original
program and the magic rules obtained from rule 7, to optimize the evaluation of the
transformed program. The Supplementary Magic-sets transformation of the program p

25

and query @ of Example 2.1 is the following program:

r1: anc(X,Y) :—mance(X),par(X,Y).
r2: anc(X,Y) :— supl(X, Z),anc(Z,Y).
r3: anc(X,Y) :- sup2(X,Z),anc(Z,Y).
srl: supl(X,Z): — m-anc(X),par(X, Z).
mrl :m.anc(Z) - supl(X,Z).

mr2 : m_anc(X) : — m-anc(X).

sr3: sup2(X, Z): — m-anc(X),anc(X, Z).
mr3 :m.anc(Z) :— sup2(X, Z).

mrd : m-anc(l).

The use of the literal sup_1(X, Z) eliminates the common sub-expression m_anc(X),
par(X, Z) in the bodies of rules 72 and mrl, and the use of the literal sup2(X, Z)
eliminates the common sub-expression m.anc(X),anc(X, Z) in the bodies of rules 3
and mr3. (Note that the Supplementary Magic-sets transformation does not replace the
sub-expression m-anc(X), par(X, Z) in the body of rule r1 by sup-1(X, Z).) O

Chapter 3

Ordered Search

3.1 Background

Magic-sets based bottom-up evaluation of queries on deductive databases has many ad-
vantages over an evaluation scheme such as Prolog. It is sound and complete with respect
to the declarative semantics of least Herbrand models for positive Horn clause programs.
In particular, it is able to avoid infinite loops by detecting repeated (possibly cyclic) sub-
goals (i.e., magic facts). Further, in many database applications, it is more efficient than
Prolog due to its set-oriented evaluation. However, the completely set-oriented, breadth-
first search strategy of bottom-up evaluation has certain disadvantages. For example, to
evaluate several classes of programs with negation (or aggregation), it is necessary to or-
der the inferences; in essence, all answers to a negative subgoal must be evaluated before
making an inference that depends upon the negative subgoal. A completely breadth-first
search strategy (Ross [74, 75], for instance) would have to maintain redundant subgoal
dependency information to achieve this.

In this chapter we present a memoing technique to order the use of generated subgoals,
that is a hybrid between pure breadth-first and pure depth-first search. The technique,
called Ordered Search, works on the Magic-sets transformed program, and is able to
maintain subgoal dependency information efficiently, while detecting repeated subgoals,
and avoiding infinite loops. The technique also avoids repeated computation and is
complete for Datalog. Ordered Search can be used to evaluate programs with left-to-right
modularly stratified negation and aggregation more efficiently than with any previously
known bottom-up technique.

26

27

3.1.1 Motivating Examples

Example 3.1 (Computing Even Numbers) Consider the program (Peyen, Qeven)
below:

rl: even(X): — succ(X, Y1), succ(Y1,Y), even(Y).
r2: even(X): — suce(X,Y),not even(Y).

r3: even(0).

succ(1,0). suce(2,1). ... succ(n,n— 1).

Qeven = 7 even(m).

where m < n.

Intuitively, in the meaning of the above program the answer to the query should be
yes if m is an even number, and no if m is an odd number. (The meaning of programs
with negative body literals is formally defined in Section 3.3.) A bottom-up evaluation
of the above program would apply the program rules iteratively until no new facts are
computed. Initially the even relation is empty. The first application of rule r2 would
compute facts of the form even(i) for every succ(i,) fact that is present in the database.
Clearly this is not the desired meaning of the program.

A Prolog evaluation of the above program would however compute the correct answer
to the query. Given the query (or, goal) ?even(3), for instance, a Prolog evaluation first
sets up the subgoal ?even(l) (using rule r1), which sets up the subgoal 7not even(0)
(using rule r2). This subgoal fails because of rule r3, and consequently the subgoal
even(1) fails. On backtracking, the subgoal ?not even(2) is set up (using rule 72), which
sets up the subgoal 7even(0) (using rule r1). This subgoal succeeds, and consequently the
subgoal 7not even(2) fails. As a result, the goal ?even(3) fails, which is consistent with
the desired semantics. Intuitively, the reason that Prolog evaluation correctly evaluates
this program is that it implicitly sets up “dependencies” between subgoals, and computes
answers to a negative subgoal before making an inference that “depends on” the negative
subgoal. (We make precise this notion of “depends on” in Section 3.3.)

Although bottom-up evaluation of the original program does not compute the correct
answers to the query, one may enquire whether the bottom-up evaluation of the Magic-
sets transformed program computes the desired meaning. The bottom-up evaluation of
the Magic-sets transformed program does compute the subgoals (i.e., magic facts) set
up in the top-down evaluation. However, it does not maintain “dependencies” between
subgoals and consequently the evaluation of the Magic-sets transformed program also
computes incorrect answers to queries.

28

Ross [75] proposed a modified Magic-sets rewriting of (Peyen, Qeven) 1D conjunction
with a bottom-up method for evaluating the rewritten program. The rewritten pro-
gram has rules that define predicates of the form dp(even(X), even(Y)) and dn(even(X),
even(Y')), which correspond to positive and negative dependencies, respectively, between
subgoals set up in the Prolog evaluation. The bottom-up method proposed by Ross ex-
plicitly computes all the subgoal dependency information and ensures that, if there is a
fact dn(even(s), even(s)) (i.e., there is a negative dependency between subgoals Teven(i)
and ?even(j) in the top-down evaluation), the answer to the subgoal ?even(j) is com-
puted before computing the answer to the subgoal ?even(i). Ross’ approach on this
program would take O(m?) space and make O(m?) derivations since it would compute
and store transitive dependencies between subgoals.

Our technique, Ordered Search, also modifies Magic-sets rewriting and bottom-up
evaluation to compute “dependencies” between subgoals, and to ensure that if there if a
negative dependency between subgoals ?even(i) and ?even(y) in the top-down evaluation,
then the answer to the subgoal ?even(j) is computed before computing the answer to the
subgoal ?even(i). However, our approach is quite different from that proposed by Ross.
Our variant of the Magic-sets rewriting (described in Section 3.3.3) introduces “guard
literals” before each negative body literal in the Magic-sets transformed program. These
guard literals are satisfied only when all the answers to the subgoal corresponding to the
negative body literal have been obtained. Subgoals are stored on a stack-like data struc-
ture, and the order in which the subgoals are stored and made available to the bottom-up
evaluation corresponds to the dependencies between subgoals. In effect, only information
about direct dependencies is stored; information about transitive dependencies can be
inferred. Hence, Ordered Search would use O(m) space and make O(m) derivations in
computing the query answer. (For more details, see Example 3.8.)

We describe other top-down and bottom-up techniques that can evaluate this program
in Section 3.7. As an example, the technique of Morishita [53] would also use O(m) space
and make O(m) derivations on this example. However, if rule 71 were removed from Peyen,
the technique of [53] would make O(m?) derivations, though it would still use only O(m)
space. Even on this modified program, Ordered Search would compute the answer to the
query using O(m) space and making O(m) derivations. O

Example 3.2 (Working Parts) Consider the following program from Kemp et al. [40],

29

which is modified from an example in Ross [74].

working(X) : — tested(X).
working(X) . — essential_part(X,Y), working(Y').
working(X) . — part(X,Y), not has_suspect.part(X).

has_suspect_part(X) : — part(X,Y), not working(Y).

The database consists of the relations tested, part and essential_part. The part(Part,
Subpart) relation represents a hierarchy of parts, and the essential_part(Part, Subpart)
relation is a subset of the part(Part, Subpart) relation. Parts that have been tested are
present in the tested(Part) relation.

Intuitively, in the meaning of the above program, a part is working if it has been tested,
or if it is composite (i.e., it has subparts) and an essential subpart of it is working, or else
if it is composite and none of its subparts are suspect. A composite part is considered
suspect if at least one of its subparts is not working. The last two program rules essentially
encode the condition that a part is working if all of its subparts are working.

Suppose the part(Part, Subpart) relation is a complete binary tree with m nodes,
the left half of the leaf nodes are in tested(Part), and the essential_part(Part, Subpart)
relation comprises the left branches in part(Part, Subpart). Thus the entire left hand
side of the tree is working. The query enquires whether the root of the tree is working.

Again, on this program, Ross’ approach would take O(m?) space and make O(m?)
derivations since it would compute and store all the dependencies between subgoals tran-
sitively.

Our technique, Ordered Search, would compute and store only information about
direct dependencies; hence, it would use O(m) space and make O(m) derivations in
computing the query answer. [

Ordered Search also correctly evaluates left-to-right modularly stratified programs
with aggregation. This class of programs includes the important “bill-of-materials” prob-

lems.
Example 3.3 (Bill-of-materials) Consider again the program from Example 1.1.

bom(Part, sum(< C >)) . — subpart_cost(Part, SubPart, C).
subpart_cost(Part, Part,Cost) : — basic_part(Part, Cost).
subpart_cost(Part, Subpart, Cost) : — assembly(Part, Subpart, Quantity),
bom(Subpart, TotalSubcost),
Cost = Quantity * TotalSubcost.

30

This program computes the total cost of a composite part by adding the total costs of
its subparts. Let the assembly(Part, Subpart, Quantity) relation be a complete binary
tree with T nodes, with each composite part containing exactly one copy of each of its
subparts. Let the basic_part(Part, Cost) relation correspond to the leaves of the binary
tree. The query asks for the total cost of the root of the tree.

Both Ross’ approach and Ordered Search would take O(m) space and make O(m)
derivations in computing the answer to a top-level query. O

3.2 Outline of Chapter

The rest of this chapter is organized as follows.

Preliminaries are covered in Section 3.3. We define the subgoal dependency graph
that characterizes the dependencies between subgoals in Section 3.3.1. The syntax and
semantics of modularly stratified programs are reviewed in Section 3.3.2. The Ordered
Search evaluation uses a variant of the Magic-sets transformation; this variant is described
in Section 3.3.3.

The data structures and algorithms that are required to evaluate a program using
Ordered Search are described in Section 3.4. This chapter describes the algorithms at an
intuitive level, and detailed algorithms are presented in Appendix A.1. In Section 3.4.4,
we present a detailed description of the Ordered Search evaluation for Example 3.1.

Section 3.4 makes several informal claims about the properties of the Ordered Search
evaluation. The soundness, completeness, and complexity results of the Ordered Search
evaluation are formalized and presented in Section 3.5. The Ordered Search evaluation
strategy is implemented in the Coral deductive database system. In Section 3.6 we present
performance results that demonstrate the practicality of the Ordered Search evaluation.
We also provide some results to measure the overheads of the Ordered Search evaluation
compared to Semi-naive evaluation for positive programs.

Related work is presented in Section 3.7. Finally, in Section 3.8, we consider how
Ordered Search is useful in evaluating queries when just one answer is desired. In this
section, we also briefly describe some of our other research in ordering inferences in a
bottom-up evaluation.

31

3.3 Preliminaries

3.3.1 Subgoal Dependency Graph

For simplicity, we consider only programs with negation in the rest of this chapter. How-
ever, we discuss examples with aggregation to illustrate the utility of our evaluation
technique. Aggregation is similar to negation in the problems it poses to program se-
mantics and bottom-up evaluation, and we indicate the similarities between negation and
aggregation where appropriate. We also assume that all programs are range-restricted;
this ensures that negation can be processed using set-difference, and only ground facts
are generated in the bottom-up evaluation.

Definition 3.1 (Non-floundering Program) A program P is non-floundering if
each negative subgoal set up in a top-down evaluation of P is ground. O

As with the technique of Ross [75], our technique deals only with non-floundering
programs, and we assume that programs are non-floundering in the rest of this chapter.

We now define SLP-trees, which characterize top-down Prolog-style program evalua-
tions.

Definition 3.2 (SLP-trees) ([75]) Let P be a non-floundering program, and let) be
a query. We define the SLP-tree T for Q. The root of Tg is). Each node in Tg is a
sequence of literals. If Q' is a node of Tp then its children are obtained as follows:

1. If Q' is empty, then we call it a successful leaf.

2. Suppose that the leftmost literal L in Q' is positive. Let Uy, be the set of program
rules whose heads unify with L. The children of Q' are obtained by resolving! @’
with (a variant of) each of the rules in Uy over the literal L using most general
unifiers. If there is no such Uy then @' has no children, and is a failed leaf.

3. Suppose the leftmost literal L in Q' is negative, say not A. (By our assumption
about the absence of floundering, L must be ground.) Recursively construct the
SLP-tree T4 for A.

— Tf Ty is successful, then @' is a failed leaf.

1 As in Prolog evaluation.

32

— If T, is failed, then @' has a single child that is formed by deleting L from Q'.

— If Ty is indeterminate, then @' is an indeterminate leaf.

If Ty has a successful leaf, then Ty is successful. If every leaf of Tg is failed, then Tgq is
failed. Otherwise, Tg is indeterminate. (This can happen because of an infinite sequence
of subgoals set up in the top-down evaluation.)

A branch of Ty is a path from the root of To. We associate with each successful
leaf V an answer substitution, which is the composition of the most general unifiers used
along the branch to V. O

SLP-trees contain information about subgoals as well as answers to subgoals. Since
we are interested only in the subgoals and dependencies between them, we first define a
reduced SLP-tree, which contains all the information contained in SLP-trees about the

subgoals.

Definition 3.3 (Reduced SLP-trees) Let P bea non-floundering program, let ¢ be
an query, and let Tg be the SLP-tree for Q. We define the reduced SLP-tree Rq for Q.

The root of Rg is Q. If the SLP-tree Tg is a single node, then so is Rg. Otherwise,
the children of Q in Rq are the same as the children of @ in Tp. If the query @' is any
(non-root) node of Rg, then its children are obtained as follows: Let @} be the node
corresponding to Q' in Tg.

o If () has only one literal L, @' has no children.

e Else, let @, = Ly, Ly, ..., L. Consider a path B in T from Q] down to a leaf of
To. Let Q) be the highest node (i.e., closest to @)) in the path B that is an instance
of L, . .., L. (Intuitively, the path between node Q) and node Q5 corresponds to
the computation of an answer to the left-most subgoal L; of @}.) Let Sg be the
set of all such Q) obtained along different paths in T from Q) down.

~ If Sg, is empty, @’ has no children.
— Else, each element of Sg: is a child of @'. O

We now formally define the negation tree, which summarizes information contained
in SLP-trees about the negative subgoals set up in a top-down evaluation of the original
program.

33

Definition 3.4 (Negation Tree) ([75]) Given a subgoal G, the negation tree Ng is
defined as follows: The nodes of Ng are subgoals, and the root of Ng is G. Let H be
any node of Ng. For every atom A for which T, is recursively constructed (in Step 3 of
Definition 3.2) in constructing Ty, A is a child of H. O

Intuitively, the subgoal dependency graph of a program-query pair is an AND/OR
directed graph that characterizes the (positive and negative) dependencies between sub-
goals set up in a top-down evaluation of the original program. We formally define the
subgoal dependency graph in terms of SLP-trees, reduced SLP-trees and negation trees.

Definition 3.5 (Subgoal Dependency Graph) Let P be anon-floundering program,
and let Q be a query. The subgoal dependency graph S(P,Q) has two types of nodes:
AND nodes and OR nodes. There is one OR node in S(P, Q) for the leftmost literal of
each node in Ty, for each H that is a node in the negation tree for Q.

The children of an OR node are unordered, and each OR node L (corresponding to
a literal) in S(P,Q) has one AND child for each branch in the reduced SLP-tree Ry.
Consider an AND node N and the associated branch By in Ry. Let the leftmost literals
in each node along the branch By be L, Ly, Loy,L3a, ... Lig-1. The AND node N has
k children, ordered from left-to-right (to reflect the order in which subgoals are solved),
where L;;_; is the 7’th child of N. O

Definition 3.6 (Depends On) We say that the solution of subgoal @; depends on
the solution of another subgoal @, if there is a path from Q; to @, in the subgoal
dependency graph S(P, Q). O

When the solution of subgoal @; depends on the solution of subgoal @, we loosely
use the notation “subgoal Q; depends on subgoal @;”. (Note that, unlike Ross [75], we
do not distinguish between positive and negative dependencies.)

3.3.2 Modular Stratification: Syntax and Semantics

Definition 3.7 (Stratification) A program is stratified if there is an assignment of
ordinal levels to predicates such that whenever a predicate occurs negatively in the body
of a rule, the predicate in the head of that rule is of strictly higher level, and whenever a
predicate appears positively in the body of a rule, the predicate in the head of that rule
has at least that level. O

34

Example 3.4 (Stratified Negation) Consider, for instance, the following program.

r1 : nocyc(X,Y) : — te(X,Y), not te(Y, X).
r2:te(X,Y) 1 —edge(X,Y).
r3:te(X,Y) i —edge(X,Z),tc(Z,Y).

The database consists of the edge relation, which contains the edges in a directed graph.
The relation tc (computed by the program) contains the transitive closure of the edge
relation, and the nocyc relation contains pairs of vertices such that there are no cycles in
the graph between those pairs. Intuitively, this program is stratified since the definition
of the nocyc predicate depends negatively on the definition of the tc predicate, but the
definition of the ¢c predicate does not depend on the definition of the nocyc predicate.
The edge and tc predicates can be assigned an ordinal level of 0, and the nocyc predicate
can be assigned an ordinal level of 1. This assignment is consistent with the definition of

stratification. O

Unlike positive programs, programs with negative body literals cannot be assigned a
unique minimal model semantics, because such programs may not have a unique minimal
model. Consider the above program. If the edge relation consists of the single fact
edge(1,2), the program has two minimal models: M1 = {edge(1,2), tc(1,2), nocyc(1, 2)}
and M2 = {edge(1,2),tc(1,2),tc(2, 1), te(1, 1)}. (Each of the interpretations M1 and
M?2 is a minimal model because if any fact is removed from the interpretation, it ceases
to be a model of the program.)

Example 3.5 (Stratified Aggregation) A problem similar to negation arises for
programs with grouping atoms and aggregation; such programs may not have a unique
minimal model. Consider the following program.:

p(X,sum(< Y >)): —q(X,Y).

q(1,2).
The following two interpretations are both minimal models of the program: M3 =
{q(1,2),p(1,2)} and M4 = {q(1,2),49(1,3),p(1,5)}. (Each of the interpretations M3
and M4 is a minimal model because if any fact is removed from the interpretation, it
ceases to be a model of the program.)

The definition of stratification can also be extended to programs with grouping atoms

and aggregation. Intuitively, a program with grouping atoms and aggregation is stratified
if there is no cyclic dependency between predicates “through” aggregation. (This can

35

be formalized using the notion of assignments of ordinal levels to program predicates
as before.) The solutions proposed for stratified negation also apply to programs with
stratified aggregation. [

Apt, Blair and Walker [2] and Van Gelder [94] independently proposed a semantics for
stratified programs. We give a brief description of their semantics for stratified programs,
and refer the reader to [2, 94] for formal definitions. The intuitive idea is to choose one
of the minimal models of the entire program, based on the assignment of ordinal levels to
predicates and an “iterated minimal model” construction procedure. Consider the above
program defining the predicate nocyc and the following assignment of ordinal levels to
program predicates: the edge and tc predicates are assigned an ordinal level of 0, and
the nocyc predicate is assigned an ordinal level of 1.

First, the procedure constructs a unique minimal model for the predicates at ordinal
level 0, i.e., the edge and tc predicates. (By definition, the rules defining these predicates,
i.e., rules 72 and r3 along with the database facts for the edge relation, constitute a
positive program, which has a unique minimal model.) Having fixed the meaning of
the edge and tc predicates, the procedure constructs a unique minimal model for the
predicates at ordinal level 1, ie., the nocyc predicate. (The single rule defining this
predicate, i.e., rule 71, can be thought of constituting a positive program, since the only
negative body literal not te(Y, X) corresponds to a predicate not defined in the program;
this can be effectively thought of as a “database” predicate, where not tc(a,b) is true if
and only if tc(a,b) is not present in the tc relation.) If the edge relation consists of the
single fact edge(l,2), the meaning of the program (according to this semantics) is given
by M1 = {edge(1,2),tc(1,2),nocyc(1, 2)}.

The iterated minimal model construction procedure clearly depends on the assignment
of ordinal levels to predicates. Given a stratified program, there may be several possible
assignments of ordinal levels that are consistent with the definition of stratification. For
instance, the following assignment of ordinal levels to the program in Example 3.4 is also
consistent with the definition of stratification: the edge predicate is assigned an ordinal
level of 0, the tc predicate is assigned an ordinal level of 1, and the nocyc predicate is
assigned an ordinal level of 2.

One of the main results of Apt et al. [2] was the following theorem.

Theorem 3.1 Consider a stratified program P and an assignment of ordinal levels to
the predicates of P. The “iterated minimal model” procedure constructs a minimal model

36

of the program P, and the model constructed is independent of the specific assignment of
ordinal levels to the predicates of P. U

As a consequence of the above result, we can assign a unique meaning to a stratified
program.

Definition 3.8 (Meaning of a Stratified Program) Consider a stratified program
P with grouping atoms and negative body literals. The meaning of the program is
the result of the “iterated minimal model” construction procedure for any consistent
assignment of ordinal levels to program predicates. O

Definition 3.9 (Herbrand Instantiation of a Program) The Herbrand instantia-
tion of a program is the set of rules obtained by substituting terms from the Herbrand

universe for variables in the rule in every possible way.
An instantiated rule is a rule in the Herbrand instantiation of a program. a

Note that the Herbrand instantiation of a program with a finite number of rules could
have an infinite number of rules.

Definition 3.10 (Local Stratification) A program is locally stratified if there is an
assignment of ordinal levels to ground atoms such that whenever a ground atom appears
negatively in the body of an instantiated rule, the head of that rule is of strictly higher
level, and whenever a ground atom appears positively in the body of an instantiated rule,
the head has at least that level. [

Example 3.6 (Locally Stratified Negation) Consider, for instance, the following
program.

even(0).

even(s(X)) : — not even(X).
This program computes even numbers, where the non-negative integer n is represented
using n occurrences of the function symbol s. This program is not stratified since the
definition of the predicate even depends negatively on itself. However, it is locally strat-
ified. Intuitively, this is because in the Herbrand instantiation of the above program the
number of occurrences of the function symbol s in the head of a rule is one more than
the number of occurrences of the function symbol s in the only literal in the body of
the rule. Consequently, if each ground atom has the same ordinal level as the number
of occurrences of the function symbol s, the condition for local stratification would be
satisfied. O

37

Przymusinski [63] proposed the perfect model semantics for the class of locally strat-
ified programs. We do not present details of the perfect model semantics here, and refer
the reader to [63] for formal definitions. As with stratified programs, the intuitive idea
is to choose one of the minimal models of the entire program, based on the assignment
of ordinal levels to ground atoms and an “iterated minimal model” construction proce-
dure. For locally stratified programs, the iterated minimal model construction procedure
operates on the Herbrand instantiation of the program, unlike stratified programs where
the procedure operates on the original program directly.

Example 3.7 (Non-locally Stratified Negation) Consider the following variant of
the program in Example 3.6.

1 : even(0).

2 : even(X) : — s(X,Y),not even(Y).

r3:5(1,0). s(2,1). s(3,2).
In the Herbrand instantiation of the above program, one could instantiate the rule r2
using the same substitution for the variables X and Y. Consequently, the program is not
locally stratified. For instance, the following is an instantiated rule of the above program:

even(1) : — s(1,1),not even(1).

No assignment of ordinal levels to ground atoms would be consistent with the definition
of local stratification, since the ground atom even(1) would have to be assigned a lower
level than itself. O

Note however that the instantiated rule contains the ground atom s(1,1), which is not
the head of any instantiated rule. Ross [74] introduced the class of modularly stratified
programs, generalizing locally stratified programs, where information about the model
of a lower SCC is utilized to give the program a semantics based on an assignment of
ordinal levels to ground atoms.

Definition 3.11 (Reduction of an SCC) ([75]) Let S be an SCC of a program, and
Usedg be the set of predicates that occur in the bodies of rules of S, but that are not
defined in S. Suppose Useds is fully defined by an interpretation M over the universe U.

Form Iy,(S), the instantiation of rules of S with respect to U, by substituting terms
from U for all variables in the rules of S in every possible way. Delete from Iy(S) all
rules having a subgoal whose predicate is in Useds, but which is false in M. From the

38

remaining rules, delete all subgoals having predicates in Useds (which must be true in
M) to leave a set of instantiated rules Ry (S). We call Ry (S) the reduction of S modulo
M. O

Definition 3.12 (Modular Stratification) ([75]) Let < be the dependency relation
between SCCs of a program. We say the program P is modularly stratified if, for every
SCC S of P,

1. There is a modularly stratified model M for the union of all SCCs S'<8,8#S
and

9 The reduction of the rules of S modulo M is locally stratified, with a perfect model
M1.
The modularly stratified model for the union of S and all SCCs S’ < S is given by
MuMl. O

Intuitively, a program is modularly stratified iff its SCCs are locally stratified once
all instantiated rules with false subgoals that are defined in a “lower” SCC are removed.
Note that the definition of modular stratification depends on the truth values of the
predicates defined in lower levels. This property is unlike stratification, where checking
that a program is stratified can be done syntactically.

Like stratification, modular stratification can be extended to handle programs with
grouping atoms and aggregation. The intuition is similar, and the program in Exam-
ple 3.3 is an example of a program with modularly stratified aggregation.

Recall that in a range-restricted program, a variable appearing in a negative body
literal must also appear in a positive literal. Since the Magic-sets transformation prop-
agates binding information in a left-to-right manner (reflecting a top-down evaluation),
each of the variables in a negative body literal must appear to the left in a positive
body literal. This condition can be easily satisfied by reordering the body literals in a
range-restricted rule. However, this is not sufficient to guarantee freedom from infinite
loops through negation in a top-down evaluation of the program. To guarantee this, we
must make sure that only the bindings (for predicates in lower SCCs) that “make the
reduction of an SCC locally stratified” are passed to negative body literals. The solution
is to refine the notion of modular stratification to take account of the left-to-right order
of evaluation.

Definition 3.13 (Rule Prefix) A rule prefic is formed from a rule with n subgoals
in the body by deleting the rightmost m subgoals, where 0 < m < n. O

39

Definition 3.14 (Left-to-right Modular Stratification) ([75]) Let < be the de-
pendency relation between SCCs of a program. We say the program P is left-to-right
modularly stratified if, for every SCC S of P,

1. There is a left-to-right modularly stratified model M for the union of all SCCs
S'< 5,8 #S, and

9. The reduction of the set of all prefixes of rules of S modulo M is locally stratified,
with a perfect model M1.

The left-to-right modularly stratified model for the union of S and all SCCs S’ < S
is given by M U M1. O

In the subgoal dependency graph for left-to-right modularly stratified programs there
is no cyclic dependency involving a negative subgoal. The technique of Ross [75] as
well as our technique makes essential use of this property in evaluating programs with
left-to-right modularly stratified negation.

Several semantics have been proposed for general logic programs with negation and/or
aggregation. These include the well-founded semantics [42, 87, 96, 97], the stable model
semantics [31, 42], and the valid semantics [12, 87]. These semantics differ in the meaning
they assign to a program when there are cyclic dependencies between subgoals through
negation and/or aggregation. The class of programs we consider in this chapter, i.e.,
left-to-right modularly stratified programs, do not have such cyclic dependencies, and
all these various semantics agree on the meaning of the program. In the sequel, we
(arbitrarily) refer to the meaning of such programs as its well-founded semantics.

Each fact in the well-founded model of a left-to-right modularly stratified program
has at least one derivation tree that indicates how the fact is derived. We now define
derivation trees, which we use extensively in proofs of subsequent theorems.

Definition 3.15 (Derivation Tree) Consider a non-floundering program P and
database D. Derivation trees are defined recursively and a derivation tree for a fact
p(€) is defined as follows:

e If p is a base predicate, the derivation tree consists of a single node with label p(€),
if this fact is present in D.

e If p is a derived predicate, let 7 be a rule in P defining p:

rip®): — pr (@), - - -, Pr(Te), 10t 1 (Fera)s - - -, 0 Plln)-

40

Let d;,1 < i < k, be facts with derivation trees T;, let di,k +1 < i < n, be facts
with no derivation trees, let 6 be a unifier of (pi(£1), ..., (%)) and (di, ..., dx),
let p(2) = p(?)[6], and let d; = p(t;)[0],¢ > k-

Then the root of the derivation tree is a node labeled with p(¢) and r, and each
T, 1 < 4 < k, is a child of the root. Also, for each d;,i > k, “not d;” is a child of
the root.

A derivation step for fact p(¢) consists of the rule r, and d;,1 < ¢ < n. U

3.3.3 Modified Magic-sets Rewriting

For the purpose of this chapter, we modify the Magic-sets rewriting as follows:

1. For each magic predicate m_p in the Magic-sets transformed program M P, we
create a new predicate done_m_p with the same arity as m-p, which contains those
subgoals on p all of whose answers have been computed.

9. For each rule 7 in M P, and for each negative literal, say not g; (1;) in the body of
r, we add the literal done*m.qi('t?) to the body of r just before the occurrence of

not ¢i(:)-

Intuitively, the literal done.m_g; (El) will be satisfied only when the complete set of ¢;
answers matching %! have been computed. Hence, this literal acts as a guard on the use
of the subsequent negative g; literal. In a similar fashion, we can also define the modified
Supplementary Magic-sets rewriting. In the rest of this chapter, we use SMT(P, Q) to
refer to the program obtained by this modified Supplementary Magic-sets transformation
of program-query pair (P, Q).

Further, when we talk about the dependencies between subgoals in the rewritten
program, we refer to the dependencies between subgoals in the original program, before
the rewriting has been performed.

3.4 Ordered Search

We now describe our evaluation technique, which we call Ordered Search, that works
on the transformed program obtained using Magic-sets or Supplementary Magic-sets
rewriting. This technique generates subgoals and answers to subgoals asynchronously, as
in bottom-up evaluation, but orders the use of generated subgoals in a manner reminiscent

41

of top-down evaluation, and is in a sense a hybrid between pure (tuple-oriented) top-
down evaluation and pure (set-oriented) bottom-up evaluation. We informally describe
how Ordered Search works on a transformed program-query pair SMT(P, Q) and provide
a detailed algorithmic description in Section A.l.

3.4.1 An Overview

The central data structure used by Ordered Search, the Context, is used to preserve
“dependency information” between subgoals. Ordered Search can be understood as mod-
ifying Semi-naive bottom-up evaluation as follows:

1. Newly generated magic and supplementary facts (if any) are inserted in the Context
instead of being directly inserted in the differential relations. Consequently, these
facts are hidden from the evaluation. (Other newly generated facts are inserted in
the differential relations, and made available to the evaluation, as usual.)

9. Magic and supplementary facts from Contezt are selectively inserted into the dif-
ferential relations (i.e., made available for further use by the evaluation) when no
new facts can be derived using the current set of facts available to the evaluation,
i.e., a fixpoint has been reached. (When a fact in Context is made available to the
evaluation, it is said to be “marked” on the Context.)

3.4.2 Data Structures: Context

The Context is a sequence of ContextNodes. Each ConteztN ode has an associated set of
magic facts and supplementary facts, and each magic or supplementary fact is associated
with a unique ContextNode. A ContextNode is said to be “marked” if any magic or
supplementary fact associated with the ConteztNode is marked. The sequence of marked
ConteztNodes is a subsequence of the sequence of ContextNodes.

In the rest of this chapter, when we use adjectives like “earlier”, “later”, etc. to refer
to subgoals and ContextNodes in C'ontext, we mean their position in the sequence and
not the time (which might be different) at which these subgoals and nodes were inserted
in the sequence.

We now intuitively describe the various operations performed on Context:

1. When a new magic or supplementary fact is inserted in Context, it is associated
with a new ContextNode. Facts on Context are stored in an ordered fashion, such

42

that if magic fact ; generates (i.e., depends on) the magic fact ()2, then Q) is
stored after or along with @, in the Context.

2. On detecting a cyclic dependency between subgoals on the Context, the associated
ContextNodes are collapsed into one ContextNode, and all the facts associated
with these ContextNodes are now kept together. Thus, unlike the stack of subgoals
in Prolog evaluation, cyclic dependencies are handled gracefully.

3. When all the answers to a subgoal have been computed, the subgoal is removed
from the Context.

3.4.3 Algorithms

We give an intuitive description of the Ordered Search technique and in the process make
several claims informally. These are formally stated and proved in Section 3.5.

Inserting Facts into Context

Newly generated magic and supplementary facts (obtained by applying the Semi-naive
rules of the Magic transformed program) are inserted in the Context before they are
selectively made available to the evaluation. When applying these rules, Ordered Search
records which magic or supplementary fact was used to make each derivation. (From
the form of rules in the (Supplementary) Magic-sets transformation, there is exactly
one such fact.) Let @ be a newly computed magic/supplementary fact derived from
magic/supplementary fact Q.

e If (; is a magic fact m_p(%;) that has been completely evaluated, it will be present
in the done.m._p relation.

In this case, Ordered Search does not insert ¢ in Context.

e Else, since magic/supplementary facts that have been made available for use but
have not been completely evaluated are marked in the Context, we know that Qs
occurs as a marked fact in a marked ContextNode.

The fact @, is now inserted in a new unmarked ContextNode immediately before
the next marked ContextNode following the marked ContextNode associated with
Q, in the sequence of ContextNodes. (If there is no such marked ContextNode,

43

Q. is inserted as the last ContextNode in the Contezt.) Thus, Q) is inserted after
Q2.

Since @, depends on @y, “answers” to @; could be used in computing “answers” to
Q.. Insertion, as above, is used to maintain dependency information between subgoals
within the Context as a linear sequence. The order in which facts from Context are
made available to the evaluation will ensure that @ is made available to the evaluation
before Q; is said to be completely evaluated.

Duplicate elimination is now performed in the Contezt to ensure that there is at most
one copy of @ in Context. If there is more than one unmarked copy of @, in Context
at this stage, only the “last” copy of Q) is retained. If there is a marked copy of G
in Context, i.e., if @; has already been made available to the evaluation, there are two

possibilities:

o If the marked copy of Q; occurs after the unmarked copy, only the marked copy of
Q, is retained in Context.

e If the unmarked copy of @; occurs after the marked copy, @, depends on itself.
We have thus detected a cyclic dependency between the set of all marked subgoals
in Contest in between the two occurrences of @;. Ordered Search recognizes this
and collapses this set of marked subgoals into the node of the marked copy of @
in Context.

Collapsing marked subgoals into a single node when a cyclic dependency is detected
is essential to the correctness of the technique in the presence of cycles in the subgoal
dependency graph of the original program. (Note that in left-to-right modularly stratified
programs there can be positive cyclic dependencies, but no negative ones.) Since all
these subgoals (cyclically) depend on each other, we cannot guarantee that any of these
subgoals is completely evaluated until we know that all of them have been completely
evaluated.

Making Facts Selectively Available

Facts from Context are made available to the evaluation only when no new facts can be
computed using the set of available facts. If the last ConteztNode contains at least one
unmarked (magic or supplementary) fact, Ordered Search chooses one such unmarked
fact, marks it and makes it available to the evaluation by inserting it in the corresponding
differential relation. (Note that this fact still remains in the Coontezt.)

44

m_even (4) -
+ - m_even (3)
m__gven 2)_ - l +
\
+ - m_even (1)

m__gven 0

Figure 3.2: Subgoal Dependencies for Example 3.8

If all facts in the last ConteztNode are marked, all the facts in the last ContextNode
can be considered to be completely evaluated. Intuitively, the reason for this is that a set
of facts on Context (that have been made available to the evaluation) can be considered
to be completely evaluated if:

1. no new facts can be generated using the currently available set of facts (i.e., the
iterative application has reached a fixpoint), and

9. every magic fact generated from these facts has been completely evaluated.

All these facts are removed from Context and all magic facts among these are inserted
in the corresponding done-m._p relations. The last ContextNode is now removed from
Context. Thus, when a magic fact m_p(#;) on Context has been completely evaluated,
it is moved to done_m._p.

3.4.4 Motivating Examples Revisited
We describe how Ordered Search can be used to evaluate Example 3.1.
Example 3.8 (Modular Negation) Consider the left-to-right modularly stratified

program P, from Example 3.1, and the query ?even(4). For this program-query pair,
the dependencies between subgoals is shown in Figure 3.2.

Iteration No. Relation Facts
0 Context | m_even(4)
1 even {}
m-even {m_even(4)}
done_m_even | {}
Context | m-even(4)*, m_even(2), m_even(3)
2 even {}
m-even {m_even(4), m.even(3)}
done-m_even | {}
Context | m_even(4)*, m.even(3)*, m_even(2), m-even(1)
3 even {}
m-even {m_even(4), m_even(3), m-even(1)}
done-m_even | {}
Contezt | m_even(4)*, m_even(3)*, m_even(2), m-even(1)*,
m_even(0)
4 even {even(0)}
m-even {m_even(4), m-even(3), m_even(1), m-even(0)}

done_m_even
Context

{}

m_even(4)*, m_even(3)*, m.even(2), m-even(1)*,
m-even(0)*

Table 3.4: Evaluation of (Peyen, Qeven) using Ordered Search

45

Iteration No. Relation Facts
5 even {even(0)}
Inner m_even {m_even(4), m_even(3), m_even(1), m-even(0)}
Loop done_m_even | {m_even(0)}
Fixpoint Contert | m_even(4)*, m_even(3)*, m_even(2), m_even(1)"
6 even {even(0)}
Inner m-even {m._even(4), m_even(3), m_even(1), m-even(0)}
Loop done.m_even | {m.even(0), m_even(1)}
Fixpoint Context | m-even(4)*, m_even(3)*, m_even(2)
7 even {even(0), even(2)}
m-even {m_even(4), m_even(3), m_even(l),
m_even(0), m_even(2)}
done_m_even | {m_even(0), m_even(1)}
Context | m_even(4)*, m_even(3)*, m_even(2)*
8 even {even(0), even(2), even(4)}
m_even {m_even(4), m-even(3), m_even(l),

done_m_even
Context

m_even(0), m_even(2)}
{m_even(0), m_even(1)}
m.even(4)*, m_even(3)*, m_even(2)*

Table 3.5: Evaluation of {Peyen, Qeven) using Ordered Search (continued)

46

Iteration No. Relation Facts
9 even {even(0), even(2), even(4)}
Inner m-even {m_even(4), m_even(3), m_even(1),
Loop m_even(0), m-even(2)}
Fixpoint | done.m_even | {m_even(0), m_even(1), m-even(2)}
Context | m_even(4)*, m_even(3)*
10 even {even(0), even(2), even(4)}
Inner m-even {m_even(4), m_even(3), m-even(1),
Loop m-even(0), m_even(2)}
Fixpoint | done.m_even | {m_even(0), m_even(1), m-even(2), m-even(3)}
Context | m_even(4)*
11 even {even(0), even(2), even(4)}
Inner m.even {m_even(4), m_even(3), m_even(l),
Loop m_even(0), m_even(2)}
Fixpoint | done.m_even | {m-even(0), m_even(1), m-even(2),

Context

m_even(3), m_even(4)}

Table 3.6: Evaluation of (Peyen, Qeven) using Ordered Search (continued)

47

48

The Magic-sets transformed program is as follows:

r1: even(X) :—m-even(X),suce(X,Y1),succ(Y1, Y),even(Y).
r2: even(X) :— m-even(X),succ(X,Y), done-m_even(Y),not even(Y').
r3: even(0) :— m-even(0).

mrl : m_even(Y) : — m_even(X), suce(X, Y1), suce(Y'1, Y).
mr2 : m_even(Y) : — m_even(X), suce(X,Y).

mr3 : m_even(4).

suce(1,0). succ(2,1). ... succ(n,n—1).

The evaluation of the rewritten program using Ordered Search could proceed as shown
in Tables 3.4, 3.5 and 3.6. The iteration number indicates the iteration of the inner “re-
peat ...until” loop in Procedure Ordered-Search in Section A.1. It computes and stores
only information about direct dependencies as a linear ordering of the magic facts on
Context; hence, the evaluation uses linear space and makes a linear number of deriva-
tions.

Ross [75] proposed a rewriting (SMR) of (Peven, Qever) in conjunction with a bottom-
up method for evaluating the rewritten program. This method explicitly stores all the
subgoal dependency information for negative subgoals. For m = 4, SMR(Peven, Qeven) in-
cludes the following rules (by folding rules defining supplementary predicates) in addition
to other rules that are not relevant for our purpose:

mrl : magic(even(Y),+) : — magic(even(X),-), succ(X, Y1), succe(Y1,Y).

mr2 : magic(even(Y),—) : — magic(even(X),-), suce(X,Y).

mr3 : magic(even(4),+).

drl: dp(even(X),even(Y)) : — magic(even(X), —), magic(even(X), -),
suce(X, Y1), suce(Y1,Y).

dr2: dn(even(X),even(Y)) : — magic(even(X), —), magic(even(X), -),

suce(X,Y).

dr3: dp(P,even(Y)) : — dp(P, even(X)), magic(even(X),),
suce(X,Y1), succ(Y1,Y).

drd: dn(P,even(Y)) . — dp(P, even(X)), magic(even(X), -), succ(X ,Y).

Ross’ algorithm to evaluate SMR(P.yen, Qeven) Would compute the facts shown in
Table 3.7, in addition to other facts that are not relevant for our purpose.

Ross’ approach on this program computes and stores the transitive dependencies in
addition to the direct dependencies; consequently, it would use O(m?) space and make
O(m?) derivations. O

49

Relation Facts

magic(even(X), —) X =3210

magic(even(X), +) X =4,2,1,0

dp(even(X), even(Y)) | (X,Y) = (3,1),(2,0)
dn(even(X),even(Y)) | (X,Y) = (3,2),(2,1),(1,0),(3,0)

Table 3.7: Evaluation of SMR(P.yen, Qeven) using Ross’ Technique

3.5 Theoretical Results about Ordered Search

All results in this section are applicable to programs with function symbols, except where
stated otherwise. We also assume that only ground facts are generated in the evaluation.
Ordered Search evaluation can be used to correctly evaluate programs with left-to-right
modularly stratified negation and aggregation. However, for the sake of simplicity, we
prove the correctness and complexity results of Ordered Search evaluation only for pro-
grams with negation. The generalization of the proofs to programs with left-to-right
modularly stratified aggregation is straightforward.

3.5.1 Soundness, Completeness and Non-repetition

Recall that we use SMT(P, @) to refer to the modified Supplementary Magic-sets trans-
formation of a left-to-right modularly stratified program-query pair, as described in Sec-
tion 3.3.3. We first show that an Ordered Search evaluation does not repeat derivation

steps.

Theorem 3.2 Suppose (P,Q) is a left-to-right modularly stratified program-query pair.
An Ordered Search evaluation of SMT(P,Q) does not repeat derivation steps.

Proof: In an Ordered Search evaluation of SMT(P, @), rules are applied as in Semi-naive
evaluation. Hence, to show that no derivation steps are repeated in the evaluation, we
only need to show that the evaluation eliminates duplicates.

Duplication elimination of answers to subgoals as well as the done.m facts is per-
formed during the updates to the delta relations, as in Semi-naive evaluation. (See
Procedure Initialize-SN-Relations in Appendix A.1.) However, duplicate elimination of
subgoals is not done during the updates to the delta relations. Recall that once a magic
fact has been generated in an Ordered Search evaluation, it is present either in the
Contest, or in the done_m relation. Consider now a newly generated magic fact m-p(%).

o0

If it is present in the done-m_p relation, it is not inserted in the Context. If it is not

present in the done_m_p relation, it is inserted in the Contezt. Insertion of a subgoal in

the Context along with duplicate elimination in the Context ensures that exactly one

copy of a subgoal is retained in the Context. This concludes the proof of the result. O
As a corollary to the above result, we have:

Corollary 3.3 Suppose (P,Q) is a left-to-right modularly stratified Datalog program-
query pair. An Ordered Search evaluation of SMT(P,Q) terminates. Further, every
subgoal that is generated in the Ordered Search evaluation is removed from the Context
and moved to the corresponding done_m._p relation during the evaluation. O

We now prove a couple of lemmas that formalize the claims we made while describing
the Ordered Search algorithm. These lemmas are also used to prove the correctness of
the Ordered Search evaluation.

Lemma 3.4 Let (P, Q) be a left-to-right modularly stratified program-query pair. Con-
sider an Ordered Search evaluation of SMT(P,Q).

1. If Q. is a marked subgoal in Context, and Q2 is any subgoal in Context after Qu,
then Q; depends on Qs.

2. If Q, is a marked subgoal in Context, and Q, is any subgoal in Context in the
same ContextNode as Q1, then Q1 and Q2 depend on each other.

8. If Q, and Q; are subgoals such that Q1 generates Q, in the evaluation, and Q1 is
in the Context when it generates @2, then:

(a) Q2 is made available to the evaluation before Qy is removed from the Context.

(b) Either Q, is removed from the Context before Qy is removed from the Context,
or Q1 and Q, are removed from the Context together.

Proof: We prove the results by induction on the order of operations on subgoals in the
Context. For the base case, the first operation on the Context is the insertion of the
magic fact corresponding to the query). This subgoal is also marked, and Parts 1-3 of
the result hold trivially in this case.

Consider now the induction step. There are three possible states of the Context to
consider: (1) A newly derived subgoal is inserted into the Context, or (2) A fixpoint has

51

been reached, and the last ConteztNode contains an unmarked subgoal, or (3) A fixpoint
has been reached, and the last ContextNode contains only marked subgoals. We prove
the results for each of these three cases.

Case 1: A newly derived subgoal is inserted into the Context.

Induction steps in case 1: Only Parts 1 and 2 need to be shown.

Let Qs be the newly computed subgoal, derived from subgoal @1, that is inserted in
the Contezt. From Theorem 3.2, we know that no derivation is repeated in the Ordered
Search evaluation of SMT(P, Q). The insertion procedure inserts @2 as an unmarked
subgoal after the marked subgoal @, but before the next marked subgoal (if any) after
Q1, in the Context. (The fact that it is marked follows from the fact that it is available
to the evaluation to generate Q2.)

Suppose duplicate elimination does not collapse Q- into a marked ContextNode.
From the induction hypothesis (Parts 1 and 2), each marked subgoal before @; or in the
same ConteztNode as Q; in the Context depends on @,. Since ¢J; depends on Q2, we
have shown that each marked subgoal in the Context before Q; or in the same node as
@, in the Contexst depends on (. This completes the induction step for Part 1.

Suppose duplicate elimination collapses ()2 into a marked ContextNode. Collapsing
occurs because there is a marked occurrence of @, before Q; or in the same node as Q1.
From the induction hypothesis (Parts 1 and 2), each marked subgoal before @; or in the
same ContextNode as Q; in the Context depends on @ and consequently, Q2 depends
on Q;. Since @, also depends on @3, we have detected a cyclic dependency between the
set of all marked subgoals in Contezt between the two occurrences of Qs. This completes
the induction step for Part 2.

Case 2: A fixpoint has been reached, and the last ContextNode contains an unmarked
subgoal.

Induction steps in case 2: Only Part 3a needs to be shown, since this is the step when
an unmarked subgoal is made available to the evaluation.

Let Q, be the unmarked subgoal in the last ContextNode that is made available to
the evaluation. Let Q; be the subgoal that generated this occurrence of (2. By the
hypothesis of Part 3, Q; is present (as a marked subgoal) in the Context. Hence, Q3 is
made available to the evaluation before @, is removed from Context. This completes the
induction step for Part 3a.

Case 3: A fixpoint has been reached, and the last ContextNode contains only marked
subgoals.

52

Induction steps in case 3: Only Part 3b needs to be shown, since this is the step when
marked subgoals are removed from Context.

Let @, be a marked subgoal in the last ContextNode. Let Q1 be the subgoal that
generated this occurrence of Q2. By the hypothesis of Part 3, @1 is present (as a marked
subgoal) in the Context. If Q; does not (directly or indirectly) generate @1, then @ is
present in a previous ContextNode, and hence Q2 is removed from the Context before
Q1 is removed from the Context. If Q (directly or indirectly) generates @y, then @; and
Q. are present in the same ContextNode, and are removed from the Context together.
This completes the induction step for Part 3b.

This completes the proof of all the parts of the lemma. O

Definition 3.16 (Complete Evaluation of a Subgoal) A subgoal @ is said to be
completely evaluated at a point in an evaluation, if all “answers” to @) have been computed
by that point in the evaluation. O

Lemma 3.5 Let (P,Q) be a left-to-right modularly stratified program-query pair. Con-
sider an Ordered Search evaluation of SMT(P,Q). Let Qo be a subgoal in the Context
that depends on subgoals Q1, ..., Qm, such that none of the subgoals Q1,...,Qm depends
on Qo. IfQ1,...Qm have been completely evaluated at a point in the Ordered Search eval-
uation and have been removed from the Context, then Qq is removed from the Context
only when it has been completely evaluated.

Proof: In the subgoal dependency graph of a left-to-right modularly stratified program,
there are no cycles through negative subgoals, although there can be cycles through
positive subgoals. Consequently, if a subgoal Qo depends on a subgoal Q1 negatively, then
@ does not depend on Q. By the hypothesis of the lemma, all such subgoals have been
completely evaluated and have been removed from the Context (i.e., they are present in
the corresponding done_m relations) in the Ordered Search evaluation. Consequently, a
single fixpoint suffices to compute all the answers to o, and an Ordered Search evaluation
removes Qg from the Context only on reaching a fixpoint. This completes the proof of
the lemma. O

The soundness and completeness results now follow from the exhaustive nature of
the evaluation and the correctness of the Supplementary Magic-sets rewriting with the
done_m.p literals as guards for negative body literals (referred to as SM'T rewriting). Note
that for programs with function symbols and negation, there is no effective procedure
that can guarantee completeness in general. If there is an infinite sequence of subgoals,

53

each depending on the next one in the sequence, and Ordered Search chooses to explore
such an infinite path, it may not compute an answer to the original query, even if one
exists. Such paths cannot exist for Datalog programs.

Theorem 3.6 Let (P, Q) be a left-to-right modularly stratified Datalog program-query
pair. An Ordered Search evaluation of SMT(P,Q) is sound and complete with respect to
the well-founded semantics of (P, Q).

Proof: Let (P,Q) be a left-to-right modularly stratified Datalog program-query pair,
and S(P,Q) be its subgoal dependency graph. We can associate ordinal levels with
the subgoals in S(P,Q) based on the SCCs in the subgoal dependency graph. Note
that subgoals that depend on each other are given the same ordinal level, whereas if a
subgoal); depends on subgoal @2, but @, does not depend on @, then Q) is given a
lower ordinal level than ;. Recall that the subgoal dependency graph of a left-to-right
modularly stratified program has no cycles through negative subgoals. Consequently, if
subgoal @; depends on subgoal Q2 negatively, @; has a higher ordinal level than Q-.
With each subgoal, we associate all the “answers” to the subgoal in the well-founded
model of (P, Q), as well as all the instantiated rules of P having these answers as their
head fact.

Claim 1: In an Ordered Search evaluation of SMT(P, @), a subgoal @ is removed from
the Context only when it has been completely evaluated.

We prove Claim 1 based on induction on the ordinal levels of subgoals and facts.

We say that (P, m_p(c')) and (SMT(P), m_p(c')) are equivalent if P and SMT(P)U
{m_p(c')} are equivalent with respect to all “answers” to m.p(c).

Let H1(n) be the proposition that for all subgoals m_p(¢*) with ordinal levels less than
or equal to n, (P,m_p(c')) and (SMT(P), m_p(c')) are equivalent, and Claim 1 holds.
As a basis, note that facts with an ordinal level of 0 correspond to base predicates, and
the same sets of facts are present in the extensions of base predicates in P as well as in
SMT(P). Claim 1 holds trivially. Hence, H1(0) holds.

Assume that H1(k) holds for some h, and consider any subgoal m.p;(G;') with an ordi-
nal level of h+1in P. We prove the equivalence of (P, m_p;(¢;*)).and (SMT(P), m_p; @),
and Claim 1 by induction on the heights of derivation trees of facts in P and SMT(P).

We now prove one direction of H1(h-+1). Let H2(n) be the proposition that if a fact
p(c) has a derivation tree of height less than or equal to n in P, (1) there is a derivation
tree in SMT(P) U {m_p(c')} for it, and (2) it is derived in an Ordered Search evaluation
of SMT(P) U {mp(c")}. For the basis of H2, the set of facts with derivation trees of

54

height one are simply base facts, and they also have derivation trees in SMT(P), and are
derived in an Ordered Search evaluation of SMT(P). Hence H2(1) holds.

Assume H2(n) is true for some n, and consider any fact p(¢) with a derivation tree of
height 7+ 1 in P, where p(€) has an ordinal level of b+ 1. Let the root of the derivation
tree be (p(c), R), where 7 is a rule in P, and the corresponding instantiated rule is:

r1:p(e) : — p1(Ci), - - - Pi(TE)-

In the instantiated SMT(P), the corresponding rule has an occurrence of the literal
done_m_p;(G) before each negative p; literal in the body of the rule.

Fori=1,...,k, if p;(G) is a negative fact, the ordinal level of p;(c;) is less than h+1,
and it has no derivation tree in P. By hypothesis H 1(h), there exists no derivation tree
for p;(&) in SMT(P) U {m._p;(;")}, and if the fact done_m_p;(c*) is true, the subgoal
m.p;(¢i*) has been completely evaluated in the Ordered Search evaluation.

If p;(3;) is not a negative fact, p;(¢;) has a derivation tree of height less than or equal
to n in P. By hypothesis H2(n), there exists a derivation tree in SMT(P) U {m_p;(c")}
for this fact, and it is derived in an Ordered Search evaluation of SMT(P) U {m_p;(G")}-
Since the magic and done_m facts are not available a priori, we have to show that they
can be computed in an Ordered Search evaluation of SMT(P)U{m_p(c')}. We show this
by induction on the position of the occurrences of derived predicates in the body of r1.

Let H3(m) be the proposition that the magic facts corresponding to the first m derived
predicate occurrences in r, and done-m facts corresponding to the negative literals in the
first m derived predicate occurrences in 7 are computed in an Ordered Search evaluation
of SMT(P) U {m-p(c")}

As a basis, consider the first derived fact in the body, say pi (g7). By construction of
SMT(P), there is a rule in SMT(P), say 72, with head m-p(T'), such that the body
contains only base facts and m-p(c'). The corresponding facts in the body of the rule
r1 can be used in the body of r2 to produce the fact m_py(G*). This is a derivation in
SMT(P) U {m_p(¢*)} in an Ordered Search evaluation. If this is a negative literal, pi(&)
has an ordinal level less than k + 1. From Corollary 3.3 and Lemma 3.4, done.m_p(ci*)
is generated in the Ordered Search evaluation. The basis H3(1) follows.

Assume H3(j) holds for some j, and let Pm(Gm) be the j + 1’th derived predicate
occurrence in the body of rule r1. By construction SMT(P) contains a rule, say 3, with
head m_pm(Gnt), such that the body contains only base predicates, m_p(¢*), the first j
derived predicate occurrences in 7, and the done_m predicates corresponding to some of
these derived predicates (those that are negative). In the Ordered Search evaluation of

95

SMT(P) U {m_p(c')}, the done_m facts in the body of r2 are generated according to
hypothesis H3(j); non-negative facts in the body of r2 have derivation trees according
to H2(n); and by hypothesis H1(h), no negative fact has a derivation tree. It follows
that there is a derivation tree for m_pm(Gnt) in SMT(P) U {mp(c")}, and it is derived
in an Ordered Search evaluation. By similar arguments as the base case for H3, it can
be shown that if pm(Gr) is negative, done.m_pm(cm') is also generated in the Ordered
Search evaluation.

This completes the proof of H3(j+1) as well as H2(n+1). Since all the subgoals that
depend on m._p(e'), but such that m_p(c') does not depend on them, are fully evaluated,
Lemma 3.5 ensures that m_p(¢') is completely evaluated before it is removed from the
Context. This completes the proof of one direction of H1(h + 1).

We now prove the other direction of H1(h+1). Let H4(n) be the following proposition:
for any non-magic fact p(¢) such that the ordinal level of p(©) (in P) is less than or equal to
h+1, if p(?) has a derivation tree of height less than or equal to 7 in SMT(P)u{m-p(c")},
then there is a derivation tree for the same fact in P.

For the basis of H4, the set of facts with derivation trees of height one are simply
base facts and also have derivation trees in P. Hence H4(1) holds. Assume H 4(n) holds
for some n, and consider any non-magic fact p(€), with a derivation tree of height n +1
in SMT(P) U {m-p(c")}. Let the root of this derivation tree be (p(©), R). The rules in
SMT(P) for non-magic facts are obtained from rules in P by adding magic facts and
done.m facts to the rule bodies. Hence, by dropping occurrences of magic facts from r
we get a rule, say r1, in P.

Consider the rule r used to derive p(Z). By hypothesis H1(h), no derivation trees
exist in P for the non-magic negative facts in this rule. By hypothesis H4(n), there
exists a derivation tree in P for each of the non-negative non-magic facts in this rule.
These non-magic facts can be used with 71 to get a derivation tree for p(¢) in P. This
completes the proof of H1(h -+ 1), and hence the theorem follows. O

In general, even if there are function symbols, Ordered Search evaluation is always
sound with respect to the well-founded semantics, and is complete whenever it terminates.

3.5.2 Space and Time Complexity

In maintaining an auxiliary data structure, the C'ontext, Ordered Search uses more space
than Semi-naive bottom-up evaluation (which only needs to maintain differential rela-
tions). However, as the following results show, there is no increase in asymptotic space

o6

complexity compared to other bottom-up evaluation strategies. Intuitively, this is be-
cause Ordered Search computes no more facts (asymptotically) than the other bottom-up
evaluation strategies, and the space used by the Contezt data structure is proportional
to the space used by the subgoals computed.

Theorem 3.7 Let {P,Q) be a positive program-query paar. Let the space taken to eval-
uate SMT(P,Q) in a Semi-naive bottom-up evaluation be S. Then, an Ordered Search

evaluation of SMT(P,Q) takes space O(S).

Proof: From Theorem 3.2, we know that the same derivations are made in a Semi-naive
bottom-up evaluation of SMT(P, Q) and an Ordered Search evaluation of SMT(P, Q).
Consequently, the same set of subgoal and answer facts are computed by the two evalu-
ation strategies.

Let Sp be the space taken by the answer facts, and S)r the space taken by the
subgoal facts, in a Semi-naive bottom-up evaluation of SMT(P, Q). Then, S = Sp+Su.
In an Ordered Search evaluation of SMT(P, @), the space taken by answer facts remains
unchanged. However, each magic fact m_p(€) could be stored twice: one copy in the
m._p relation, and one copy, either in the done-m.p relation or in Context. (Note that
no magic fact can appear both in the done-m_p relation and in Context.) Similarly,
each supplementary fact could be stored twice: one copy in the supplementary relation,
and one copy in the Context. Further, the space used by the Context data structure is
proportional to the maximum number of subgoals on Context. Hence, the total amount
of space taken by subgoal facts in an Ordered Search evaluation of SMT(P, Q) is O(Su).
This concludes the proof of the result. O

Theorem 3.8 Let (P, Q) be a left-to-right modularly stratified program-query pair. Let
the space to evaluate (P,Q) using Ross’ algorithm be S. Then, an Ordered Search eval-
uation of SMT(P,Q) takes space O(S).

Proof: Ross’ rewriting of (P, Q) essentially contains all the rules of SMT(P, Q). (How-
ever, these rules in Ross’ rewriting do not contain any done_m literals in rule bodies.)
In addition, Ross’ rewriting includes additional rules for inferring positive and negative
dependencies between subgoals. Consequently, the set of subgoal and answer facts com-
puted by an Ordered Search evaluation of SMT(P, Q) is the same as the set of subgoal
and answer facts computed by Ross’ evaluation. Ordered Search computes done_m facts
in addition, but these take space proportional to the magic facts computed, and do not

o7

affect the asymptotic space complexity. Further, the space taken by the Context is pro-
portional to the maximum number of subgoals in the Context. This concludes the proof
of the result. O

Note that Ross’ technique may use asymptotically more space than Ordered Search,
since it stores transitive dependencies explicitly. For instance, in Example 3.1, Ross’
algorithm uses O(m?) space, whereas Ordered Search uses O(m) space. Our technique for
evaluating left-to-right modularly stratified programs is strictly better than the algorithm
in [75], in terms of the asymptotic space complexity.

We now compare the asymptotic time complexity of the Ordered Search technique
with other bottom-up evaluation strategies.

Theorem 3.9 Let (P, Q) be a positive program-query pair. Let the time taken (in terms
of asymyptotic derivation cost) to evaluate SMT(P,Q) in a Semi-naive bottom-up evalu-
ation be T'. Then, an Ordered Search evaluation of SMT(P,Q) takes time O(Ta(T)).

Proof: From Theorem 3.2, we know that the same derivations are made in a Semi-naive
bottom-up evaluation of SMT(P, Q) and an Ordered Search evaluation of SMT(P, Q).
In order to obtain the total time taken by the Ordered Search evaluation in terms of
the asymptotic cost of derivations, we need to obtain the cost of each derivation in the
Ordered Search evaluation.

Unification of ground facts can be done in constant time using hash-consing for ground
terms; indexing and insertion of ground facts in relations can also be done in constant time
using hash based indexing (see [69]). Hence, the cost of each derivation depends on the
operations on Context, and several of these operations are operations on sets: finding the
node corresponding to a fact, taking the union of facts associated with nodes on Context,
and deleting entire sets of facts associated with a ContextNode. These operations can
be efficiently implemented using the union-find technique [89], with an amortized cost of
O(a(N)) per operation, where N is the total number of these operations on Context, and
a(N) is the inverse Ackermann function. Further, the number of operations on Context
is proportional to the number of derivations in the Ordered Search evaluation.

This completes the proof of the result. O

Theorem 3.10 Let (P, Q) be a left-to-right modularly stratified program-query pair. Let
the time to evaluate (P, Q) using Ross’ algorithm be T. Then, an Ordered Search evalu-
ation of SMT(P,Q) takes time O(Ta(T)).

58

Proof: Ross’ rewriting of (P,Q) essentially contains all the rules of SMT(P, Q). (In
addition, Ross’ rewriting includes additional rules for inferring positive and negative de-
pendencies between subgoals.) Consequently, Ordered Search makes no more derivations
than Ross’ method. As before, the cost of each derivation is proportional to a(T). This
completes the proof of the result. O

Since «(T) is very small even for very large values of T, Ordered Search compares
favorably in asymptotic (space and time) complexity both to Semi-naive bottom-up eval-
uation for positive programs, and to Ross’ evaluation of left-to-right modularly stratified
programs.

Note, however, that Ross’ algorithm may make asymptotically more inferences, and
hence take asymptotically more time, than Ordered Search since it computes transitive
dependencies. For instance, in Example 3.1, Ross’ algorithm makes O(m?) inferences,
whereas Ordered Search makes O(m) inferences.

Corollary 3.11 Let (P,Q) be a program-query pair. Then,

1. If (P, Q) is positive, an Ordered Search evaluation of SMT(P, Q) takes no more time
(asymptotically) than the Semi-naive bottom-up evaluation of SMT(P,Q), and

2. If (P,Q) is left-to-right modularly stratified, then an Ordered Search evaluation
of SMT(P,Q) takes no more time (asymptotically) than Ross’ method to evaluate

(P,Q). O

3.6 Ordered Search in Practice

Ordered Search has been implemented in the Coral deductive database system [65, 68].
In this section, we briefly describe our experience with the Ordered Search evaluation
strategy in Coral.

3.6.1 Modules in Coral

A Coral declarative program can be organized as a collection of interacting modules.
Modules are the units of evaluation, and the high level module interface allows modules
with different evaluation techniques to interact in a transparent fashion; the evaluation
of each module is independent of the methods used to evaluate other modules.

Modules export the predicates that they define; a predicate exported by a module is
visible to all other modules, and can be used by them in rule bodies. During the evaluation

59

of a rule 7 in module A, if there is an occurrence of a predicate pp exported by module B,
a query is set up on module B taking into account the bindings on the variables in the pg
literal. The answers to this query are used iteratively in rule 7; each time a new answer
to the query is required, rule 7 requests for a new tuple from the interface to module
B. The module interface makes no assumptions about the evaluation of the module.
Module B may contain only database facts, or may have rules that are evaluated in
any of several different ways. The module may choose to cache answers between calls, or
choose to recompute answers. All this is transparent to the calling module. Similarly, the
evaluation of the called module B makes no assumptions about the evaluation of calling
module A. This orthogonality permits the free mixing of different evaluation techniques in
different modules in Coral and is central to how different executions in different modules
are combined cleanly.

Two basic evaluation strategies are supported in a module, namely pipelining and ma-
terialization. Pipelining uses facts “on-the-fly” and does not store them, at the potential
cost of recomputation. Materialization stores facts and looks them up to avoid recompu-
tation. Several variants of materialized evaluation are supported: for instance, the usual
Semi-naive evaluation which is the default evaluation strategy for modules without nega-
tion and aggregation, and Ordered Search, which is chosen for modules with negation or

aggregation.

3.6.2 Comparing Alternatives

The inter-module call strategy in Coral suggests an alternate way of evaluating programs
with left-to-right modularly stratified negation. Given such a program, it can be au-
tomatically rewritten as follows. First, each negative literal not p(%) in a rule body is
replaced by not p1(t), where plis a predicate not defined in the program, and pl has the
same arity as p. Second, for each such newly introduced predicate pl, we add a module
that exports pl and has a single rule of the form:

pL(X) : — p(X).
where X is a tuple of distinct variables. Finally, if the predicate p is not exported in the
original program, p is exported from the module that defines it. The resulting (rewritten)
program can now be evaluated without using Ordered Search in any module. Intuitively,
the evaluation of the resulting program is correct since intermodule calls corresponding
to the newly introduced predicates are made only for negative subgoals, and there is no
cycle of negative subgoals in left-to-right modularly stratified programs.

60

1 : working(X) : — tested(X).
r2 : working(X) : — part(X,Y),not has_suspect_part(X).
73 : has._suspect_part(X) : — part(X,Y), not working(Y).

Figure 3.3: The working Program

Query working; workings workings
distance || (Ordered Search) | (inter-module calls) | (optimized inter-module)
Time Space Time Space Time Space
(secs) | (bytes) | (secs) (bytes) (secs) (bytes)
10 || 0.332 12,288 | 0.258 303,104 0.168 188,416
100 || 3.109 | 81,920 | 2.808 | 3,014,656 | 1.437 1,765,376

Table 3.8: Evaluation Alternatives on working with Chain Data

In this section, we first compare the performance of the Ordered Search evaluation
with this alternative for evaluating programs with left-to-right modularly stratified nega-
tion. All performance numbers in this chapter are obtained on a DECstation 5000 rated
at 25 MIPS, with 24 megabytes of main memory, running Ultrix 4.2. We use the program
in Figure 3.3 (from Ross [74]), and compare alternative evaluation strategies on different
input data-sets. We use the name working; to refer to the Ordered Search evaluation
of the working program, the name working, to refer to the evaluation of the program
rewritten as described above, and the name workings to refer to the evaluation of the
working program, where rules r1 and r2 are in one module, and rule 73 is in a separate
module. This program is equivalent to the working program in Figure 3.3, but it is more
efficient than workings. All programs use materialized evaluation.

Our first data set is a simple chain of length 100 for the part() relation, with the
single sink node in the tested() relation. The space and time taken by the alternative
evaluation strategies for two queries is shown in Table 3.8. The query distances are from
the sink node of the chain. The Ordered Search evaluation (i.e., working,) is about
twice as slow as the optimized program relying on inter-module calls (i.e., workings),
and about 10% slower than the working, evaluation. However, the space used by the
Ordered Search evaluation is considerably less than the other two evaluation strategies,
which set up a large number of inter-module calls to evaluate the two queries.

61

Query working; workings workings
level | (Ordered Search) | (inter-module calls) | (optimized inter-module)
Time | Space | Time Space Time Space
(secs) | (bytes) | (secs) (bytes) (secs) (bytes)
1| 0.137 4,096 0.301 98,304 0.195 94,208
2 |l 0.648 12,288 | 7.414 | 2,478,080 | 4.496 2,445,312
3| 3.168 20,480 — — — —

Table 3.9: Evaluation Alternatives on working with Tree Data

10 20 n0
1 2/\ \n
11 21 nl

Figure 3.4: The DAG Data Set

Our second data set corresponds to a tree of height 3 with a fanout of 5 for the part()
relation. All the leaf nodes of the tree are in the tested() relation. The space and time
taken by the alternative evaluation strategies for three queries is shown in Table 3.9,
where the leaf nodes of the tree are at level 0. On this data set, it can be seen that the
Ordered Search evaluation is considerably faster than the evaluations that rely on inter-
module calls. Also, it uses much less space. No numbers are reported for the evaluation
strategies working, and workings for the query at level 3 of the tree, since the evaluation
exhausted the free store.

With the chain and the tree data sets, neither of the evaluation strategies workings
and workings set up repeated subqueries, or inter-module calls. When the data for the
part() relation is a directed acyclic graph, i.e., a part could be a subpart of several different
parts, the evaluation strategies relying on inter-module calls repeat computation, unlike
the Ordered Search evaluation. This is illustrated by our third and final data set. This
data set corresponds to a directed acyclic graph (DAG) for the part() relation, shown in
Figure 3.4, for n = 5. Each of the leaf nodes of the DAG is in the tested() relation. The

62

Query working; workings workings

(Ordered Search) | (inter-module calls) | (optimized inter-module)
Time Space Time Space Time Space
(secs) | (bytes) | (secs) (bytes) (secs) (bytes)

5 || 0.070 4,096 0.070 16,384 0.051 16,384

41 0.168 4,096 0.375 114,688 0.211 106,496

30 0.277 8,192 1.406 532,480 0.871 483,328

2 1l 0.383 8,192 5.789 1,974,272 | 3.472 1,904,640

1| 0.469 12,2838 | 23.604 7,729,152 | 14.151 7,581,696

Table 3.10: Evaluation Alternatives on working with DAG Data

r1 : bom(Part, sum(< C >)) . — subpart.cost(Part, SubPart, C).

2 : subpart.cost(Part, Part,Cost) :— basic.part(Part, Cost).

r3 : subpart_cost(Part, Subpart, Cost) : — assembly(Part, Subpart, Quantity),
bom(Subpart, T'otal Subcost),
Cost = Quantity * TotalSubcost.

Figure 3.5: The bom Program

space and time taken by the alternative evaluation strategies for five queries is shown in
Table 3.10. Ordered Search evaluation does not repeat computation, and this results in
its superiority over the evaluations that use inter-module calls (and consequently repeat
computation).

The inter-module call strategy can also be used for evaluating programs with left-
to-right modularly stratified aggregation. We compare the performance of the Ordered
Search evaluation of the bill-of-materials program shown in Figure 3.5 (referred to as
bom,), with the evaluation of the bom program with rule r1 in one module and rules 72
and 73 in a separate module (referred to as bomg), on three data sets. The evaluation
of bomy relies upon the inter-module calling mechanism rather than Ordered Search to
ensure that all subpart_cost facts are determined before the bom rule is applied. Thus,
some operational reasoning is required to understand why this works as expected. Both
programs use materialized evaluation.

63

Query bom; boms
distance (Ordered Search) (optimized inter-module calls)
Time (secs) | Space (bytes) | Time (secs) | Space (bytes)
10 0.297 4,096 0.145 57,344
100 2.808 16,384 1.370 520,192
1000 25.709 110,592 — —

Table 3.11: Evaluation Alternatives on bom with Chain Data

Query bom, boms
level (Ordered Search) (optimized inter-module calls)
Time (secs) | Space (bytes) | Time (secs) | Space (bytes)
1| 0316 4,096 0.164 57,344
2 3.160 28,672 1.620 561,152
3 31.299 221,184 15.624 5,545,984

Table 3.12: Evaluation Alternat'ives on bom with Tree Data

Our first data set is a simple chain of length 1000 for the assembly() relation, with
each subpart occurring in a part exactly once. The single sink node is in the basic_part()
relation, with a cost of 1. Thus, all parts have a total cost of 1. The space and time
taken by the alternative evaluation strategies for three queries is shown in Table 3.11.
The query distances are from the sink node of the chain. The Ordered Search evaluation
(i.e., bom,) is about twice as slow as the optimized program relying on inter-module calls
(i.e., bomg). However, the space used by the Ordered Search evaluation is considerably
less than the other evaluation strategy, which sets up a large number of inter-module
calls to evaluate the queries. No numbers are reported for the evaluation strategies boms
for the query at distance 1000 from the sink node, since the evaluation exhausted the
free store.

Our second data set corresponds to a tree of height 3 with a fanout of 10 for the
assembly() relation, with each subpart occurring in a part exactly once. (Thus, there
are 1110 facts in the assembly() relation.) All the leaf nodes of the tree are in the
basic_part() relation, with a cost of 1. The space and time taken by the alternative
evaluation strategies for three queries is shown in Table 3.12, where the leaf nodes of
the tree are at level 0. Again, on this data set, it can be seen that the Ordered Search
evaluation (i.e., bom,) is about twice as slow as the evaluation (i.e., boms) that relies

64

Query born; bomsg
(Ordered Search) (optimized inter-module calls)
Time (secs) l Space (bytes) | Time (secs)] Space (bytes)

9 0.098 4,096 0.051 16,384

7 0.270 4,096 0.242 106,496
5 0.426 8,192 1.203 475,136
3 0.617 8,192 4.781 1,970,176
1 0.773 8,192 19.655 7,909,376

Table 3.13: Evaluation Alternatives on bom with DAG Data

on inter-module calls. However, the Ordered Search evaluation uses much less space, as
before.

With the chain and the tree data sets, the evaluation strategy bomy does not set
up repeated subqueries, or inter-module calls. Our third data set is a directed acyclic
graph for the assembly() relation, shown in Figure 3.4, for n = 9. Each of the leaf
nodes of the DAG is in the basic-part() relation, with a cost of 1. The space and time
taken by the alternative evaluation strategies for five queries is shown in Table 3.13.
While the time taken by the Ordered Search evaluation grows linearly with the distance
of the query from the sink node, the time and space taken by the inter-module call
evaluation grows exponentially with the distance of the query from the sink node. As
with negation, Ordered Search evaluation does not repeat computation, and this results
in its considerable superiority, in both space and time, over the evaluation that uses
inter-module calls, and consequently repeats computation.

3.6.3 Overheads of Ordered Search

Ordered Search evaluation uses more space and time than Semi-naive bottom-up evalu-
ation for programs without negation or aggregation. There are two main reasons for the
overheads of Ordered Search:

1. Ordered Search maintains an auxiliary data structure, the Context, to record de-
pendencies between subgoals generated in the evaluation, and maintains done.m
facts that correspond to subgoals that have been completely evaluated. As a con-
sequence, Ordered Search uses more space and time than Semi-naive bottom-up
evaluation, which only needs to maintain and update differential relations.

65

append([}, X, X) : — m_append([l, X).
append([X|Y], Z, [X|W]) : — m_append([X|Y], Z), append(Y, Z, W).
m-append(Y, Z) : — m_append([X|Y], Z).

Figure 3.6: Magic-sets Transformation of the append Program

List append; appendy appends
length | (Semi-naive) | (Semi-naive w/o SCC-by-SCC) | (Ordered Search)
Time | Space | Time Space Time Space
(secs) | (bytes) | (secs) (bytes) (secs) | (bytes)
200 + 400 || 3.418 | 69,632 | 4.422 73,728 5.082 | 77,824
2400 + 2400 || 21.108 | 380,928 | 27.162 425,984 31.318 | 430,080

Table 3.14: Space and Time Overheads of Ordered Search on append

9. In an Ordered Search evaluation, all program rules are applied in each iteration,
unlike a Semi-naive bottom-up evaluation of a positive program that partitions the
rules of the program and evaluates it one strongly connected component (SCC) at a
time. As a consequence, the number of Semi-naive rules (see Section 2.2) generated
in the Ordered Search evaluation are more than the number of Semi-naive rules
generated in the Semi-naive evaluation with the SCC-by-SCC optimization, While
this does not affect the number of inferences made, it makes the processing less
set-oriented, with the inferences distributed over a larger number of Semi-naive
rule applications.

In this section, we examine the effect of these overheads on the efficiency of Ordered
Search evaluation in the Coral system using a few example programs without negation
or aggregation.

Our first program is the Magic-sets rewriting of the append program, which is given
in Figure 3.6. This is a positive program, and consists of two strongly connected com-
ponents, one containing the m_append predicate, and the other containing the append
predicate. Table 3.14 gives the space and time taken to evaluate append using three dif-
ferent memoing strategies for answering queries where the first two arguments of append
are bound, and the third argument is free: append; corresponds to an SCC-by-SCC Semi-
naive bottom-up evaluation of the append program, append, corresponds to a Semi-naive

66

anc.r(Ancestor, Descendant) : — m_anc.r(Ancestor),

parent(Ancestor, Descendant).
sup-2_1(Ancestor, Child) . — m.anc_r(Ancestor), parent(Ancestor, Child).
m_anc-r(Child) : — sup2_1(Ancestor, Child).
anc.r(Ancestor, Descendant) : — sup-2_1(Ancestor, Child),

anc_r(Child, Descendant).

Figure 3-7: SMT(PO.TLCGStOT)

Tree anc.ry anc.ry anc.rs
level || (Semi-naive) | (Semi-naive w/o SCC-by-SCC) | (Ordered Search)
Time (secs) Time (secs) Time (secs)
2 0.539 0.676 1.312
3 6.589 7.578 14.737

Table 3.15: Time Overheads of Ordered Search on anc.r

bottom-up evaluation that evaluates the append program without the SCC-by-SCC op-
timization, and appends corresponds to an Ordered Search evaluation of the append
program.

The Ordered Search evaluation of the append program is about 50% slower than
the SCC-by-SCC Semi-naive, bottom-up evaluation, and takes about 10% to 15% more
space. However, a significant fraction of these overheads is due to the absence of the
SCC-by-SCC optimization in the Ordered Search evaluation, as is illustrated by the space
and time numbers for the append, evaluation; the overheads due to the maintenance of
additional data structures by Ordered Search contributes less than half of the space and
time overheads.

The actual overheads of Ordered Search clearly depend on the data. In the append
program, for instance, each iteration of the Semi-naive bottom-up evaluation (with or
without the SCC-by-SCC optimization), as well as the Ordered Search evaluation com-
putes exactly one new fact. Thus, the number of inferences made is the same as the
number of rule applications. When the data is such that Semi-naive, bottom-up evalua-
tion is more set-oriented than the Ordered Search evaluation, then Ordered Search has
the overhead of additional rule applications needed to make the same set of inferences.

67

This is illustrated in our second program, which is the Supplementary Magic-sets
rewriting of the right-linear “ancestor” program (without the right-linear, or factoring,
optimization), given in Figure 3.7. The data corresponds to a 3-level tree with a fanout
of 10. Table 3.15 gives the time taken to evaluate anc.r using three different memoing
strategies for answering queries where the first argument is bound, and the second argu-
ment is free: anc.r; corresponds to an SCC-by-SCC Semi-naive, bottom-up evaluation
of the anc.r program, anc-ry corresponds to a Semi-naive, bottom-up evaluation that
evaluates the anc_r program without the SCC-by-SCC optimization, and anc.rs corre-
sponds to an Ordered Search evaluation of the anc_r program. The queries ask for all
descendants at two different levels of the tree; the query at level 2 has 110 answers, and
the query at level 3 has 1110 answers. (The numbers in Table 3.15 exclude the time
taken to print answers.) The Ordered Search evaluation is slightly more than twice as
slow as the SCC-by-SCC, Semi-naive, bottom-up evaluation, and slightly less than twice
as slow as the Semi-naive, bottom-up evaluation without the SCC-by-SCC optimization.
The space overheads of the Ordered Search evaluation for the anc.r program are less
than those for the append program.

3.6.4 Ordered Search and Persistence

Coral provides support for persistent data using the EXODUS client-server database
toolkit [19]. Coral is the client process, and maintains buffers for persistent relations.
Data stored using the EXODUS storage manager is paged into these buffers on demand,
making use of the indexing and scan facilities of the storage manager.

The Ordered Search implementation is orthogonal to the implementation of persistent
relations. Consequently, Ordered Search evaluation in Coral can be used with base and
derived relations that are persistent. However, the current implementation assumes that
the Context data structure itself fits in memory. This is usually not a problem since
the size of the Context is proportional to the length of the longest path in the subgoal
dependency graph, and not to the size of the database which can be much larger than
the subgoal dependency graph. However, if the Context data structure does not fit in
memory, it would have to be stored using the EXODUS storage manager. The main issue
that arises is the structuring of the Contexrt data structure, so that portions of it can
be brought into memory on demand. We have not addressed this in the current Coral
implementation.

68

3.7 Related Work

Ordered Search compares favorably with other top-down and bottom-up methods for
evaluating logic programs in the literature. In earlier sections, we have presented a
detailed comparison with Semi-naive bottom-up evaluation and with Ross’ technique to
evaluate left-to-right modularly stratified programs. We present a brief comparison with
other techniques below.

3.7.1 Prolog

Ordered Search is sound, complete for Datalog and does not repeat derivations. Prolog
is not complete even for Datalog, and may repeat derivations. Also, Prolog does not
evaluate the class of left-to-right modularly stratified programs correctly.’

3.7.2 QSQR/QoSaQ and Extension Tables

Extension Tables [26] is similar to Prolog, except that it memos facts and subgoals and
can detect loops. QSQR/QoSaQ [98, 99] is a top-down, memoing, set-oriented strat-
egy that is closely related to bottom-up evaluation with Supplementary Magic rewriting.
Like Prolog, these techniques cannot deal with left-to-right modularly stratified nega-
tion/aggregation. The tuple-oriented search strategy of the Extension Tables variant
ET* is closer to Prolog, but it repeats computation.

Ross also describes how his approach can be used to adapt QSQR to deal with left-to-
right modularly stratified negation. In this case as well, dependencies between subgoals
are maintained transitively, and our previous comparisons also apply to this case.

3.7.3 Subquery Completion

A variant of QSQR, subquery completion, was described in Lefebvre [48] to deal with
recursively defined aggregates. It uses the dependencies between subgoals maintained
by QSQR to handle a class of acyclic programs with aggregation. However, this tech-
nique does not deal with programs that have cycles in the subgoal dependency graph of
a strongly connected component with aggregates (even if the cyclic dependency is only
between positive subgoals). Ordered Search allows positive cycles in the subgoal depen-
dency graph, and deals with them by collapsing nodes in the Context, and declaring all

20f course, a meta-interpreter can be written using Prolog to evaluate such programs.

69

the facts in a collapsed node to be completely evaluated once a fixpoint is reached. There
is no analogue to this step in the technique of [48].

3.7.4 Techniques for computing the well-founded model

There are several query evaluation techniques in the literature that compute answers un-
der the well-founded model. For example, WELL! [14] is based on global SLS-resolution,
XOLDTNF [21] is an extension of OLDT resolution, GUUS [49] is based on the alternat-
ing fixpoint semantics, and the techniques of Kemp et al. [40, 41, 43] and Morishita [53]
are based on alternating fixpoint semantics and Magic-sets. The class of programs han-
dled by these techniques is larger than that handled by Ordered Search, but each of these
techniques can repeat computation even for left-to-right modularly stratified programs.
This can result in a loss of efficiency of evaluation.

There are other proposed techniques that control the order of inferences in a bottom-
up evaluation in some way. Sloppy Delta Iteration [78] provides a way to “hide” facts
until they are to be used. Techniques for hiding facts are used in [29, 85] to evaluate
programs with aggregate operations efficiently. These results are only tangentially related
to Ordered Search since the (motivation as well as the nature of the) orderings considered
are quite different.

3.8 Discussion

We presented a memoing technique, Ordered Search, that is a hybrid between breadth-
first and depth-first search, and we discussed how Ordered Search can be used to evalu-
ate programs with left-to-right modularly stratified negation, that generate ground facts.
Fully set-oriented computation causes problems for the evaluation of left-to-right modu-
larly stratified programs, as illustrated by our comparisons with Ross [75]; it can result in
an order of magnitude slow-down. Hence, it is important to provide some of the benefits
of tuple-at-a-time computation with bottom-up evaluation, and Ordered Search does just
this.

Ordered Search can also be used to evaluate programs with left-to-right modularly
stratified aggregation; the algorithms described in Appendix A.1 and the Coral imple-
mentation [68] deal with programs with aggregation as well as programs with negation.
Ordered Search can also be used for programs that compute non-ground facts; details
are omitted from this thesis for the purpose of simplicity.

70

We now discuss how the search strategy of Ordered Search is useful in evaluating
single answer queries (Section 3.8.1). We also briefly describe how a related strategy, of
ordering rule applications to control the order in which inferences are performed, can be
evaluated efficiently (Section 3.8.2).

3.8.1 Single Answer Queries

When only a single answer to the query is desired, the order in which facts are generated
and used becomes important, and the depth-first search strategy of a top-down evaluation
scheme such as Prolog can perform much better than the breadth-first search strategy of
bottom-up evaluation methods. In this section, we show that Ordered Search can also
be used for optimizing single-answer queries for linear programs by restricting the search

space.

Example 3.9 (Obtaining a Single Answer) There are many cases where the user
may want a single answer to a query. Consider, for example, the following program-query

pair <P paths Qpath)-

rl: path(X,Y,[X,Y]) : - edge(X,Y).

r2 : path(X,Y, [X|P)) : — edge(X, Z), path(Z,Y, P).

edge(1,2). edge(1,3). edge(2,1). edge(2,4). edge(3,4).
? path(1,4,X).

A top-down, tuple-oriented evaluation strategy, like Prolog, would set up a query on
path, and solve the subgoals in a depth-first fashion. However, since there is a cycle in
the edge relation, Prolog would not terminate on the given query.

One way of obtaining a single answer to the query is to evaluate the Magic-sets
transformed program bottom-up until we get an answer to the query, and then terminate
the evaluation. With this approach, subgoals are solved in parallel as they are generated.

Ordered Search solves subgoals in a depth-first fashion for this program, but since
it performs memoing, it does not repeat computation, and terminates on this program.
In general, it provides an alternative evaluation strategy to the breadth-first strategy of
bottom-up evaluation. For many programs (the above program with the given data is
one such) a depth-first search for one answer is much more efficient than a breadth-first
search for one answer.

For this program-query pair, the subgoal dependencies are shown in Figure 3.8. Note
that the subgoal dependency graph has a cycle; consequently, Prolog would not terminate
on this example program-query pair.

m_path (1,4)
m_path (2,4) m_path (3,4)

Figure 3.8: Subgoal Dependencies for path Program

Iteration No.

Relation

Facts

0

path
m.path
Context

{}
{}

m-path(1,4)

path
m._path
Context

{}
{m_path(1,4)}
m_path(1,4)*, m_path(3,4), m_path(2,4)

path
m-path
Context

{m_path(1,4), m_path(2,4)}
{m_path(1,4)*, m_path(2,4)*}, m-path(3,4)

path
m_path
Context

{path(2,4,[2,4]), path(1,4,(1,2,4])}
{m.path(1,4), m_path(2,4)}
{m_path(1,4)*, m_path(2,4)*}m path(3, 4)

Table 3.16: Ordered Search evaluation of (Ppath, @path)

71

72

The Magic-sets transformed program is straightforward and we do not describe it
further. We describe the evaluation of {Ppatn, Qpatn) using Ordered Search briefly in Ta-
ble 3.16. Facts in Context marked with an * indicate facts made available to the evalua-
tion, and facts in Contezt within { } indicate facts associated with a single ContextNode.
Note that an answer is produced in iteration 3, as in the Semi-naive bottom-up evalu-
ation of the Magic-sets transformation of (Ppatn, Qpatr). However, the evaluation using
Ordered Search has computed fewer facts than would be computed by pure bottom-up
evaluation. Also note that a cycle was detected since m_path(1,4) was derived from
m-_path(2,4), and this magic fact occurs with an * earlier in Context. As a result, in
iteration 2, several nodes in Context have been collapsed together. O

Recall that bottom-up evaluation of a Magic-sets transformed program generates
subgoals and answers to the subgoals as in a top-down evaluation, although the order
in which these are generated in the bottom-up evaluation may be quite different from a
top-down evaluation. By ordering the newly generated facts in Context, Ordered Search
makes facts selectively available to the evaluation in a manner considerably different
from pure bottom-up evaluation. The order in which generated subgoals (magic facts)
are selected to be used by Ordered Search is related to a top-down evaluation as described
by the following result.

Proposition 3.12 Suppose (P, Q) is a lefi-to-right modularly stratified program-query
pair. In an Ordered Search evaluation of SM T(P,Q), the order in which magic facts are
marked corresponds to a depth-first traversal (with marking) of the subgoal dependency
graph of (P, Q) starting from Q. O

The order in which Prolog explores the subgoal dependency graph also corresponds
to a depth-first traversal, although Prolog does not “mark” nodes, and hence may repeat
computation. After generating an answer for a subgoal generated from a rule literal,
Prolog continues with the next rule body literal, before attempting to generate more
answers for the first subgoal. Ordered Search, on the other hand, generates all answers
for the first subgoal before trying to solve subgoals generated from the next rule body
literal. Consequently, Prolog may perform a lot less computation than Ordered Search
in obtaining a single answer to the query. For linear programs, however, delaying the
availability of subgoals to the Ordered Search evaluation does not delay the computation
of the first answer to the query (because of the asynchronous way in which answers are
generated).

73

We conjecture that Ordered Search is most useful for computing single answers to a
query for the class of linear programs that may have cyclic subgoals (and hence Prolog
is not suitable).

3.8.2 Ordering Rules

The order of inferences in a bottom-up evaluation can also be controlled by using regular
expressions over rules to specify orderings of the application of rules. Rule orderings are
significant for several reasons.

1. Rule orderings have been proposed to prune redundant derivations and to allow
the user to specify a desired semantics [33, 34, 35].

9. Rule ordering can result in increased efficiency.

For example, in an SCC-by-SCC evaluation of a program, rules in lower SCCs do
not need to be considered while applying rules in higher SCCs; this can improve the
efficiency of evaluation. Ordering rules within an SCC can also improve efficiency
by further reducing the number of rule applications. Although the orderings do not
affect the number of inferences made, the processing becomes more set-oriented,
with each rule application generating more facts.

3. Rule orderings have been proposed as a way of evaluating the (non-stratified)
Magic-sets transformation of a stratified program [13].

The usual Semi-naive algorithm is capable of evaluating a limited number of rule or-
derings, e.g. those that result in an SCC-by-SCC evaluation. However, it cannot correctly
evaluate regular expressions over rules that order rule applications within an SCC.

In [67], we present two fixpoint algorithms that address the issue of how to apply
rules in a specified order without repeating inferences. One of them, General Semi-naive
(GSN), applies a rule to produce new facts, and then immediately makes these facts
available to subsequent applications of other rules (possibly in the same iteration). GSN
is capable of dealing with a wide range of rule orderings but with a little more overhead
than the usual Semi-naive evaluation. The other algorithm we present, Predicate Semi-
naive (PSN), can utilize facts produced for a predicate p in the same iteration they have
been derived in, although not always in the immediately following rule application. It
handles a more restricted set of control expressions compared to GSN, but is cheaper

74

than GSN. In fact, it has no additional overheads compared to the usual Semi-naive
evaluation.

We also study rule orderings in detail in [67], and establish a close connection between
cycles in rule graphs (which are a variant of rule/goal graphs defined in [8, 92]) and
orderings that minimize the number of iterations and rule applications. We define what
it means for a rule ordering to preserve a simple cycle, and show that a rule ordering
that preserves all simple cycles in the rule graph (if such an ordering exists) is optimal
within a certain class of rule orderings in minimizing the number of iterations, and hence
the number of rule applications and joins.

Chapter 4

Propagating Constraint Selections

4.1 Background

Recently, there have been attempts ([9, 23, 39, 70}, among others) to increase the ex-
pressive power of database query languages by integrating constraint paradigms with
logic-based database query languages; such languages are referred to as constraint query
languages (CQLs). Evaluating such programs can be expensive due to the manipula-
tion of constraints, and hence optimizing such programs is very important. We consider
the following problem in this chapter: How can we optimize a CQL program-query pair
(P, @) by propagating constraints occurring in P and Q7 More precisely, the problem is
to find a set of constraints for each predicate such that the following statements hold:

o Adding the corresponding set of constraints to the body of each rule defining a
predicate yields a program P’ such that (P,Q) is query equivalent to (P, Q) (on
all input EDBs), and

e Only facts that are constraint relevant to (P,Q) are computed in a bottom-up
evaluation of (P’,@) on an input EDB.

Constraint sets that satisfy the first condition are called query-relevant predicate (QRP)
constraints; those that satisfy both conditions are called minimum QRP-constraints.!

1There is indeed a minimum QRP-constraint, as we show later. Since we treat a constraint as
equivalent to its set of ground instances, this definition is independent of the exact representation of the
constraint set.

75

76

The notion of constraint relevance is introduced to capture the information in the con-
straints present in P and (). (We note that every fact for a predicate that appears in
P or Q is constraint relevant if neither P nor @ contains constraints.) Identifying and
propagating QRP-constraints is useful in two distinct situations:

o Often, it is possible to evaluate queries on CQL programs without actually generat-
ing constraint facts. The constraints in the program are used to prune derivations,
and only ground facts are generated.

If only Magic-sets transformation is used to optimize CQL programs, this could
lead to the generation of constraint facts, even when the evaluation of the original
program generates only ground facts.2 A motivation for this work, as for Balbin et
al. [4] and Mumick et al. [56], is to take advantage of the constraints present in the
program to reduce the potentially relevant facts computed, and yet compute only
ground facts during the bottom-up evaluation of the rewritten program.

e Even when constraint facts are generated, we may ensure termination in evaluating
queries on CQL programs that would not have terminated if these constraints had
not been propagated.

4.1.1 Motivating Examples

Let us describe some examples that motivate our results.
Example 4.1 (Flight Connections) Consider the following program P:

r1 : cheaporshort(S, D, T,C) . — flight(S,D,T,C),T < 240.
- 72 : cheaporshort(S, D, T, C) . — flight(S,D,T,C),C < 150.
r3 : flight(Src, Dst, Time, Cost) : — leg(Sre, Dst, Time, Cost),
Cost > 0, Time > 0.
rd : flight(S, D, T,C) . — flight(S, D1, T1,C1), flight(D1, D,T2,C2),
T=T1+T2+30,C=Cl+C2.

2The Magic-sets algorithm described in Section 2.3 considers an argument of a subgoal “bound,”
only if it is ground. One could also treat an argument “hound,” if it is potentially restricted; this is
the approach taken by Ramakrishnan [64]. With this interpretation of bound arguments, it is possible
for the Magic-sets transformation to generate non-range-restricted rules defining magic predicates; the
bottom-up evaluation of such programs would compute non-ground constraint facts.

7

The query predicate is cheaporshort, and Cost and Time fields in leg are values
drawn from the reals. Although P is a CQL program, each fact computed in the bottom-
up evaluation of P is just a tuple of constants; no constraint fact is computed. Given a
query, for instance:

? cheaporshort(madison, seattle, Time, Cost).

one would like to compute only relevant flight facts: clearly, flight facts that cost more
than $150 and take more than 240 minutes are not relevant to answering this query and,
hence, need not be computed in answering the query.

Recall that Magic-sets seeks to restrict the computation to facts that are relevant to
answering a query. The Magic-sets rewriting of the above program P can take one of

two approaches.

1. Use the constraints in the bodies of rules such as 71 to restrict computation of
magic facts. (In this case, an argument of a subgoal is treated as “bound” if
it is potentially restricted, not necessarily ground.) For instance, the magic rule
obtained from 71 could be:

mrl : m_flight(S,D,T) : — m_cheaporshort(S, D), T < 240.

The (bottom-up) evaluation of this rule would require computing constraint facts.
For instance, given the above query, the fact m_flight(madison, seattle, T; T <
240) would be computed using rule mrl. (See Section 4.3 for the notation used
for constraint facts in this chapter.) Using such constraint facts in a bottom-
up evaluation is likely to be more expensive than using only ground facts in the
evaluation.

9. One can compute only ground facts safely in the magic program by not making
use of the constraints in the body of rule r1 to restrict computation of magic facts.
For instance, the magic rule obtained from 71 in this case, would be:

mrl' : m_flight(S, D) : — m_cheaporshort(S, D).

The bottom-up evaluation of the magic program which includes rule mr1l’ would
compute many irrelevant facts since not all available constraints are made use of in
the magic program. In particular, given the query:

? cheaporshort(madison, seattle, Time, Cost).

78

one could compute many flight facts with Cost > 150 and Time > 240; these
facts are not relevant to answering the query. O

The rewriting techniques proposed by Balbin et al. [4] and Mumick et al. [66] would
not be able to optimize this program. The technique of Balbin et al. treats constraints
in a manner similar to “ordinary” literals, and does not make use of semantic properties
of constraints. For instance, the technique of Balbin et al. would treat the constraints
C1 > 0,02 > 0 and C = C1+C2 as three separate literals, and would not be able to infer
that the conjunction of these three constraints also entails that C' > 0. The technique
of Mumick et al. does not consider the use of arithmetic functions such as +, —, *, etc.
(Essentially, the technique of Mumick et al. considers programs with constraints of the
form C < 5, but not programs with constraints of the form C < C1+ C2.)

The rewriting scheme proposed in this chapter propagates the constraints in the
bodies of rules r1 and 2 in the above program into the definition of flight, as described
in Example 4.5. The bottom-up evaluation of the rewritten program computes only
ground facts. Further, given any query on cheaporshort (i.e., any pattern of bound
arguments), the bottom-up evaluation of the rewritten program does not compute any
flight fact with Cost > 150 and Time > 240.

Our next example is a program on which the Magic-sets evaluation does not terminate.
The techniques we present can propagate constraint information present in this program
such that the bottom-up evaluation of the rewritten program always terminates, while
computing all the answers to the query (Example 4.6). Unlike the previous example, this
program requires the generation of constraint facts at run-time.

Example 4.2 (Computing Backward Fibonacci) Consider the following program
Pj; to compute the Fibonacci numbers:

rl: fib(0,1).

r2: fib(1,1).

r3: fib(N, X1+ X2): = N > 1, fib(N -1, X1), fib(N — 2, X2).
This program can be queried with:

? fib(N,5).

79

Tteration | Derivations made
0 {r6: m_fib(N1,5)}
{r4 : m_fib(N1,V1; N1 > 0)}
{r2: fib(1,1), r4: m_fib(N1,V1; N1>0) }
{r5: m_fib(0,V2), r5: mfib(0,4) }
{r1: fib(0,1)}
{r3: fib(2,2)}
{r3: fib(3,3), r5: m_fib(1,V2), r5: mfib(1,3) }
{r3: fib(4,5), r5: m_fib(2,V2), r5: m_fib(2,2) }
{r3: fib(5,8), r5: mfib(3,V2), rb: m_fib(3,0) }

O~ | U Wi

Table 4.17: Derivations in a Bottom-up Evaluation of Pf

The Magic-sets transformation would transform Pr (and the above query) to Pf
below:

rl: fib(0,1) : —m-f1b(0,1).

r2: fib(1,1) : —m-fib(1,1).

r3 - fib(N, X1+ X2) : — m_fib(N, X1+ X2),N > 1, fib(N — 1, X1),
Fib(N -2, X2).

rd :m_fib(N —1,X1): — m_fib(N, X1 + X2),N > 1.

5 m_fib(N — 2,X2) : — m_fib(N, X1+ X2),N > 1, fib(N — 1, X1).

76 : m_fib(N, 5).

A Semi-naive bottom-up evaluation of P}’;bg computes facts as shown in Table 4.17.
The answer N = 4 to the query is computed in the seventh iteration, but the evaluation
does not terminate. Note that this evaluation generates constraint facts for the magic
predicate, m_fib. Subsumed facts are shown in boldface; these are discarded, and are
not used to make new derivations. U

4.2 Outline of Chapter

In this chapter we present a technique that generates and propagates minimum QRP-
constraints (if the technique terminates), based on the definition and uses of program

80

predicates (Section 4.5). By propagating minimum QRP-constraints to the original pro-
gram, we obtain a program that fully utilizes the constraint information present in the
original program. This technique is based on two algorithms:

1. Gen-Prop-predicate-constraints, which generates and propagates constraints that
are satisfied by program predicates based on their definitions.

2. Gen-Prop-QRP-constraints, which generates and propagates constraints based on
the uses of program predicates, using fold /unfold transformations (Tamaki and
Sato [88]) and constraint manipulation.

We also show that determining whether (any representation for) the minimum QRP-
constraint for a predicate is a finite constraint set is undecidable (Section 4.4). We
describe a class of programs for which this problem is decidable (Section 4.6). For
this class of programs, our algorithm for computing minimum QRP-constraints always
terminates.

The Magic-sets transformation has been widely studied for propagating bindings.
An important question is how Magic-sets interacts with the use of Gen-Prop-predicate-
constraints and Gen-Prop-QRP-constraints. Our results are as follows:

1. In [82], we present an algorithm based on Magic-sets followed by a finite sequence

of fold/unfold transformations that essentially mimics the algorithm of Mumick et
al. [56].
This enables us to view the results of this chapter, and the algorithms in [4] and
[56] in a uniform framework; namely, a combination of Magic-sets and (possibly
simpler versions of) the algorithms Gen-Prop-predicate-constraints and Gen-Prop-
QRP-constraints, in some order.

9. We examine various orderings in which Magic-sets, Gen-Prop-predicate-constraints
and Gen-Prop-QRP-constraints can be applied, and show that it is always better
to defer the application of Magic-sets (Section 4.8). This is clearly very useful in
designing a compiler to deal with CQL programs.

4.3 Preliminaries

For simplicity, we discuss programs without negation or aggregation in this chapter. How-
ever, our techniques can be easily generalized to deal with negation and/or aggregation.

81

Definition 4.1 (Linear Arithmetic Constraint) A linear arithmetic constraint is
of the form:

X1+ ..., Xy 0D Gpya

where ay, . . ., n41 are real-valued coefficients of real-valued variables X;,1 < ¢ < n, and
the operator op is one of <,>,<,> and =. U

In this chapter, we consider only constraint query languages with linear arithmetic
constraints. However, our techniques extend to programs with other types of constraints

as well.
In this chapter, we refer to programs with constraints in rule bodies as CQL programs

(following the terminology used by Kanellakis et al. [39]). A constraint fact of the form:
p(X):=C.

where C is a comma separated sequence of constraints, is also represented as p(X;C). It
is a finite representation of the (potentially) infinite set of ground facts that are instances
of X and satisfy the conjunction of constraints denoted by C.

Definition 4.2 (Derivation Tree) Consider a program P with database D. Deriva-
tion trees in (P, D) are defined for ground facts as follows:

e Every ground instance h of a fact in D is a derivation tree for itself, consisting of
a single node with label h.

e Let r be a rule:

p(X): — C,p1(X1)s - - -, Pn(Xn)-

in P, let d;,1 < i < n, be facts with derivation trees T;, and let 6 be the mgu
of (1(X1),---,0n(Xn)) and (di,...,ds), such that f[C] is satisfiable. Then the
following is a derivation tree for each ground instance p(a) of f[p(X)]: the root is
a node labeled with p(a@) and 7, and each T}, 1 < i < n, is a child of the root.

Constraints in rules are viewed as conditions that determine whether or not a candidate
tree is indeed a derivation tree; constraints are not themselves part of a tree. O

82

Definition 4.3 (Bottom-up Evaluation of CQL Programs) Bottom-up evaluation
of a program in a CQL proceeds by starting with the constraint facts in the database and
repeatedly applying all the rules of the program, in iterations, to compute new constraint
facts. The evaluation terminates once we have reached a fixpoint. We now intuitively
describe a rule application, the basic step in a bottom-up evaluation. Consider a program
rule:

T p(—X—) i C’)pl(—X—D7 e apn(y'l—l)

A derivation of a p fact using rule r consists of two steps:

e First, choose one p; fact that unifies with literal pi(E), for each 1 < 7 < n, to obtain
a satisfiable conjunction of constraints over the variables present in the body of rule
T

o Next, variables not present in the head of the rule are eliminated using variable
(quantifier) elimination techniques to obtain a conjunction of constraints over the
variables in the head of the rule.

This newly generated p fact must be compared against previously generated p facts to
check whether it is indeed a new fact. An application of rule 7 consists of making all
possible derivations that can be made using rule r and the set of facts known at the end
of the previous iteration. If no new facts are computed in an iteration, the computation
has reached a fixpoint. U

Note that bottom-up evaluation uses the representation of the constraint facts di-
rectly, instead of working with the potentially infinite set of ground facts represented by
the constraint facts. The equivalence of the constraint facts computed in a bottom-up
evaluation of a program P and the meaning of P given by its least model is in terms of
the set of ground facts represented by the constraint facts.

Theorem 4.1 Consider a program P, and database D in a CQL with arithmetic con-
straints, and let F be the set of constraint facts computed in a bottom-up evaluation of
(P, D). Let M be the meaning of (P, D) in terms of its least model. Then,

Soundness : Each ground instance f of a constraint fact F' € F isin M, and

Completeness : Each fact f in M is a ground instance of a constraint fact F € F.

83

Proof: Consider a program P and database D in a CQL with arithmetic constraints.
Jaffar and Lassez [36] described a functional semantics for (P, D) in terms of an immediate
consequence operator Tpp, and showed that the least fixpoint of Tpp, given by T8 p, is
equivalent to the meaning of (P, D) in terms of its least model. Let gr(F) be the ground
facts represented by the set of constraint facts F.

Claim 1: Consider a set of (constraint) facts D; for base and derived predicates of
a program P. Let F; be the set of constraint facts computed from D; by a single
application of each rule in P. Let Tp(gr(Di)) be the set of ground facts obtained by a
single application of the immediate consequence operator Tp on the set of ground facts,
gr(D1). Then, (1) each ground instance f; of a constraint fact Fy € F, is in Tp(gr(D1)),
and (2) each fact fi in Tp(gr(D1)) is a ground instance of a constraint fact F; € F;.

The proof of Claim 1 follows from the decision procedure of Tarski [90] for the theory
of real closed fields. All the operations needed for a rule application have straightforward
analogues in Tarski’s decision procedure; projection (on the variables of the head of a
rule) corresponds to quantifier elimination, for instance.

The soundness and completeness results for the program can be shown by induction
on the iterations of the bottom-up evaluation of (P, D). The database D provides the
base case. Claim 1 provides the induction step. U

Consequently, with each constraint fact F computed by a bottom-up evaluation of
the program, we can associate the set of derivation trees for each ground instance of F'.

Given a program-query pair (P, @), we can treat the query @ as the body of a rule
defining a new predicate ¢, not occurring in P. The arity of g is the same as the number
of variables in . The predicate ¢ can now be treated as the query predicate, queried
with all its arguments free. Whenever a query is given, we assume this transformation
has been done and the query is treated as just another program rule.

Definition 4.4 (Constraint Set) A constraint set is a disjunction of conjunctions

(DNF) of constraints.
A constraint set Cy(Xi,...,X,) is said to imply constraint set Co(X1, ..., Xn), de-

noted
Ci1(Xq,... , Xn) D Co(Xy, .. o Xn),

if whenever we substitute constant a; for the variable X;, 1 < ¢ < n, such that the
constraint set Ci(as, ..., a,) simplifies to true, then so does Cs(ay,...,a,).> This can
be naturally extended to the case when C) and C, do not contain the same variables. O

3Note that the use of the “O” symbol is different from its traditional use as the superset operator.

84

For example, the conjunction (X +Y < 4)&(X = 2) implies Y < 2. The techniques
described in Srivastava [81] can be used to check for implication of constraint sets of
linear arithmetic constraints.

Definition 4.5 (Predicate Constraints) Given a CQL program P, a predicate con-
straint on a predicate p is a constraint set satisfied by each p fact that is derived during
the bottom-up evaluation of P, independent of the facts in the EDB predicates. U

Given a program P, a predicate constraint C, on predicate p is said to be minimal if
there does not exist a Cy, such that: (1) C, is also a predicate constraint on p, (2) Cp D Cp,
and (3) Cp C,. The existence of a unique minimum predicate constraint is guaranteed
as a consequence of the following proposition.

Proposition 4.2 Given a program P, if constraint sets C1, and C'2, are predicate con-
straints on p, then so is C1,&C2 (after conversion to DNF). O

Definition 4.6 (Constraint Relevance) Given a CQL program P with query pred-
icate ¢, consider the complete set S of derivation trees that are associated with query
answers, for every possible extension of the EDB predicates and every possible query on
the query predicate.

A ground program fact p(@) is said to be constraint relevant to the query predicate
if it occurs in at least one derivation tree in S. A constraint fact p(X;C) is said to
be constraint relevant to the query predicate if each ground instance of it is constraint
relevant to the query predicate. O

Definition 4.7 (Query Relevant Predicate Constraints) Given a CQL program
P, a query relevant predicate constraint (QRP-constraint) on a predicate p is a constraint
set satisfied by each p fact that is derived during the bottom-up evaluation of P, inde-
pendent of the facts in the EDB predicates, and which is constraint relevant to a query
predicate of P. O

A proposition similar to Proposition 4.2 guarantees the existence of minimum QRP-
constraints.

In representing constraints on argument positions of a predicate, we use $i for the
#th argument. Since constraints in rules are in terms of the variables (X,Y, etc.) in
the rule, whereas predicate constraints and QRP-constraints are in terms of argument
positions ($1,$2, etc.), we need functions to convert between the two forms. We use

PTOL(p(X), C) to convert a constraint set over the argument positions of p to an “equiv-
alent” constraint set over the variables in X.

85

Definition 4.8 (PTOL()) Consider a predicate p of arity n, and a constraint set C
on the argument positions of p. Let p(X) be a literal, such that X is a tuple of n (not
necessarily distinct) variables.

We define PTOL(p(X),C) as the constraint set obtained from C' by replacing each
argument position by the “corresponding” variable in that position in p(X). O

For example, if flight is a predicate of arity 4, then PTOL(flight(S, D, T, C), (83 <
240) V ($4 < 150)) is given by (T < 240) v (C < 150).

Similarly, we use LTOP(p(X),C) to convert a constraint set over the variables in X
to an “equivalent” constraint set over the argument positions of p.

Definition 4.9 (LTOP()) Consider a literal p(X), such that X is a tuple of n (not
necessarily distinct) variables; and a constraint set C(X) on the variables in X.

If X is a tuple of n distinct variables, we define LTOP(p(X),C(X)) as the constraint
set obtained from C(X) by replacing each variable in X by the “corresponding” argument
position of the variable in p(X).

If X is not a tuple of n distinct variables, we define LTOP(p(X), C(X X)) as equivalent
to LTOP(p(Y), I(C(X)&C1(X,Y))) where Y is a tuple of n distinct variables, distinct
from the variables in X, and Ci(X,Y) is a conjunction of equality constraints that
equates each variable in Y with the variable in the corresponding position in X. The Il
operation is the projection (quantifier elimination) operation, and it guarantees that we
focus attention in the constraint set on the variables in Y. O

For example, LTOP(flight(S, D,T,C),(T < 240) v (C' < 150)) is given by (83 <
240) V ($4 < 150).

4.4 Propagating Constraints: The Problem

Definition 4.10 (Program Core) Consider a program P in a constraint query lan-
guage. The core of P is the program obtained from P by deleting all constraints in
program rules. O

Consider a CQL program P, with query predicate g, and let P, be the core of
the program P. In this section, we look at the problem of optimizing P by propagating
constraints occurring in P to the bodies of rules in Peore. The intuition behind not altering

86

the core of P while propagating constraints is that the core represents the syntactic
structure of the program, which encodes the programmer’s knowledge about the problem.

More precisely, we address the problem of finding a constraint set for each predicate
such that:

1. Adding the constraint set for predicate p to the body of each rule* defining p yields
a program P’ such that P is query equivalent to P' (on all input EDBs).

9. The bottom-up evaluation of P’ on an input EDB should compute only program
facts such that each of these facts is constraint relevant to the query predicate in

P.

A rewritten program P’ is said to be completely optimized with respect to the con-
straints present in the program P, if it satisfies the above two conditions. In terms of the
definition of QRP-constraints, a rewritten program P’ is said to be completely optimized
with respect to the constraints present in P if each ground instance of each p fact com-
puted in a bottom-up fixpoint evaluation of P’ on an input EDB satisfies the minimum
QRP-constraint on p. We are interested in computing QRP-constraints, since we make
the assumption (as is common in optimization of database query languages) that query
optimization should be independent of the facts in the EDB predicates.

Theorem 4.3 Given a CQL program P with linear arithmetic constraints, determining
whether any representation for the minimum predicate constraint for a predicate p s a
finite constraint set is undecidable.

Proof: We first show that a variant of the safety (or finiteness) problem for logic programs
is undecidable. Consider the Sebelik and Stepanek [79] reduction which showed that every
partial recursive function can be expressed as a logic program P, with one constant
symbol and one unary function symbol.

Now consider a program P, which has all the rules in Py, as well as the following
rules:

pla) - a(X).
p(f(X)) : — p(X).
4[f the constraint set has more than one disjunct, this would mean creating copies of the rule, each

copy containing one of the disjuncts. This is required since only conjunctions of constraints are allowed
in the body of a rule.

87

The predicate p does not occur in Py, a is the only constant symbol in P, f is the only
function symbol in P, and q(X) is a query on P,.

Clearly, p(a) is in the model for p iff ¢(X) is satisfiable. If p(a) is in the model, then so
are p(f(a)),p(f(£(a))),p(f(f(f(a)))),- ., and the model of p in this program is infinite.
Hence, the model of p is infinite iff q(X) is satisfiable in P. Now, satisfiability of a query
q(X) on P, is undecidable, by reduction of the “halting problem” for partial recursive
functions. Hence, it is undecidable whether the model of p is finite in this program.

We now reduce this problem to the problem of deciding whether any representation
for the minimum predicate constraint for a predicate is finite. Intuitively, this reduction
takes a logic program P and reduces it to a CQL program P’ such that there is a unique
representation for the minimum predicate constraint for predicate p in P', and the number
of disjuncts in the minimum predicate constraint is finite iff the model of p in P is finite.

Consider a logic program P defining a unary predicate p (in addition to defining
other (possibly) non-unary predicates). Let there be just one constant, say a, and one
unary function symbol, say f, appearing in P. (The program P; above satisfies these
conditions.) We transform the logic program P into a CQL program P’ as follows:

o We replace all occurrences of the constant a by the numeric constant 0in P’

o All occurrences of f(X) (appearing in the head or the body of a rule) in P are
replaced by Y (a variable not appearing in the rule). The conjunction of constraints
(X > 0)&(Y = X +2) is included in the body of the modified rule in P'.

Tt can be easily seen that there is a one-to-one correspondence between p facts in the
model of p in P, and p facts in the model of p in P’. Further, each p fact in the model
of p in P’ is a ground fact, with an even valued argument > 0. Hence, the minimum
predicate constraint for p in P’ is the possibly infinite disjunction:

V(81 =2 1)

i>0
Again, there is a one-to-one correspondence between p facts in the model of p in P and
the disjuncts in the minimum predicate constraint for p in P'. Tt can be easily seen that
this is a unique representation for the minimum predicate constraint for p in P', given
the representations we consider for constraint sets.

Consequently, the number of disjuncts in the minimum predicate constraint for p in

P' is finite iff the number of p facts in the model of p in P is finite. The undecidability
result follows. O

88

In general, a constraint set with linear arithmetic constraints can have many different
(though equivalent) representations. Even if a specific representation of the minimum
predicate constraint is infinite, it does not follow that the minimum predicate constraint
is infinite, since it could have an equivalent finite representation. The result is hence
independent of any specific representation of the minimum predicate constraint.

The proof of Theorem 4.3 can also be used to show:

Proposition 4.4 Given a CQL program P, where the only constraints allowed are of
the form X < ¢, X > ¢, and X <Y + ¢, determining whether any representation for the
minimum predicate constraint for a predicate p 1s a finite constraint set is undecidable.
O

Brodsky and Sagiv [16] show that it is undecidable whether a specific procedure for
computing minimum predicate constraints computes finite predicate constraints. Propo-
sition 4.4 does not follow from their result since they do not address the issue of multiple

representations.

Theorem 4.5 Given a CQL program P with linear arithmetic constraints, determining
whether any representation for the minimum QRP-constraint for a predicate p is a finite

constraint set is undecidable.

Proof: Consider a CQL program P defining predicate p. Let ¢ be a predicate not
occurring in P. We add a new rule to P:

r:g(X): - p(X).

The predicate ¢ has the same arity as p, and X is a tuple of distinct variables. Let ¢
be the query predicate of the modified program P;. Since r is the only rule defining g,
every p fact is constraint relevant to the query predicate g. Consequently, the minimum
QRP-constraint for p in P; is the same as the minimum predicate constraint for p in P.

From Theorem 4.3, we know that determining whether the minimum predicate con-
straint for p in P is a finite constraint set is undecidable. Hence, determining whether
the minimum QRP-constraint for predicate p in P, is a finite constraint set is also unde-
cidable. O

As a corollary, we have:

Proposition 4.6 Given a CQL program P, where the only constraints allowed are of
the form X < ¢, X > ¢, and X <Y +c, determining whether any representation for the
minimum QRP-constraint for a predicate p is a finite constraint set s undecidable. O

89

In Section 4.6, we describe a class of constraint query languages for which it is decid-
able whether the minimum QRP-constraint for a predicate in a program can be repre-
sented as a finite constraint set.

Independent of its use in establishing Theorem 4.5, Theorem 4.3 is of interest since
our technique for generating and propagating minimum QRP-constraints first generates
and propagates minimum predicate constraints (see Section 4.5.4).

4.5 The Transformation: Propagating Constraints

In this section, we describe a rewriting technique for propagating constraints in a CQL
program. Our technique has two components to it:

1. For each derived predicate p of a program P, it generates QRP-constraints on p,
using semantic properties of constraints.

9. Tt then uses the fold/unfold transformations [88] to propagate the QRP-constraint
on p into the program rules defining p.

Procedure Gen-Prop-QRP-constraints in Appendix A.2 describes this technique algo-
rithmically. If the rewriting technique terminates, it propagates QRP-constraints for each
derived predicate in the program, while preserving the core of the program. However,
the rewriting technique does not terminate in general.

A key feature of our rewriting technique is that it makes essential use of semantic
properties of constraints, unlike previous techniques that had a similar objective [4, 56].
As a consequence, we are able to optimize a larger class of programs than previous
techniques.

4.5.1 An Example

First, we give a simple example of how the fold /unfold transformations can be used along
with semantic properties of constraints to propagate constraint selections in a program.
The fold/unfold transformations used are described in Appendix B.

Example 4.3 Consider the following program P with query predicate g:

rl: Q(X) : “pl(‘Xa Y)aPZ(Y)7X +Y < 67X > 2.
r2:p(X,Y): — b (X,Y).
r3:pe(X) = bo(X).

90

First, two new rules are created:

rd:p(X,Y): =X +Y <6,X >2,p(X,Y).
r5:py(Y) =Y < 4,pa(Y).

The body of each rule includes a derived literal from the body of rule 71, and the projec-
tion of the constraints in the body of r1 onto the variables of the derived literal. (Such a
projection can be performed using the techniques described in [47], for instance.) Thus,
although Y < 4 is not present in the body of r1, it is implied by the conjunction of
constraints (X +Y < 6)&(X > 2).

Next, the definitions of p; and pp are unfolded into the definitions of p} and pj
obtaining:

rd p(X,Y): =X +Y <6,X 22,(X,Y).
rs py(Y) =Y <4,b0(Y).

Finally, rules 4 and 75 are folded into rule r1 obtaining
rl':q(X): - pi(X,Y),p(Y), X +Y <6,X > 2.

The transformed program obtained (after deleting rules not reachable from the query
predicate ¢) is P’, shown below:

rl’ 1 g(X) - pi(X,Y),ph(Y),X+Y <6,X>2.
rd Py (X,Y): -~ X +Y <6,X 22,0(X,Y).
5 i ph(Y) =Y <4,b0(Y).

Note that P’ is equivalent to P on the query predicate; the bottom-up evaluation of P’
computes only ground facts, if the bottom-up evaluation of P does so; and the bottom-
up evaluation of P’ computes, in general, fewer facts than the bottom-up evaluation of
P. Further, this program can now be rewritten using Magic-sets to take advantage of
any constants in the actual query; if the bound-if-ground rule is used (i.e., an argument
is treated as bound only if it is bound to a ground term), the Magic-sets transformed
program also computes only ground facts.

Note that the LTOP of the conjunction of constraints in the body of r4', viz. ($1 +
$2 < 6)&($1 > 2), is the minimum QRP-constraint for p; in the original program P.
Similarly, the LTOP of the constraint in the body of rule 75, viz. $1 < 4, is the minimum
QRP-constraint for ps in the original program P. We have thus generated and propagated
the minimum QRP-constraints for the various derived predicates in the original program.

91

Neither the C-transformation of [4], nor the GMT-transformation of [56] would be
able to propagate all the constraints in this example. Since the C-transformation of [4]
treats constraints as any other literal, it would not be able to propagate any constraints
into the definition of py; the problem is that in rule 71, there is no explicit constraining
literal on V. Our technique utilizes the fact that (X +Y < 6)&(X >2)) D (Y < 4),a
semantic property of the conjunction of linear arithmetic constraints in the body of rule
r1, to propagate constraints into the definition of p, and hence restrict the potentially

relevant p, facts computed.
As described in [56], the GMT-transformation does not handle constraints with arith-

metic function symbols such as +. Consequently, it would not be able to propagate
constraints either. O

4.5.2 Generation of QRP-constraints

Our algorithm, Gen-QRP-constraints, described in Appendix A.2, for generating QRP-
constraints works iteratively. In each iteration, given “approximate” QRP-constraints on
each predicate defined in program P, the algorithm computes a new approximation for
the QRP-constraints for each predicate in the program. The algorithm terminates when
a “fixpoint” is reached. Theorem 4.8 shows that, in the limit, Gen-QRP-constraints does
compute QRP-constraints for each predicate in the program.

Non-recursive Inference

Consider a rule 7 of the form:

T p(—X.‘) e Cr(?)’pl(j{;)y T apn(z)

where C,(Y) is the conjunction of constraints in the body of rule r. Given a constraint
set C, on the arguments of the head predicate p of rule 7, a literal constraint on p;(X;)
in the body of r is a constraint set (on the variables in X;) that needs to be satisfied
by each p; fact that can be used (in literal pi(X7)) to derive a p fact (using rule 7) that
satisfies Cj.

Proposition 4.7 Consider a CQL program P, with linear arithmetic constraints. Given
a rule r of the form:

r:pX): — Co(Y),p1(X1), - - Pn(Xa)-

92

where C(Y) is the conjunction of constraints in the body of rule 7, if Cp is the desired
constraint set on head predicate p,

Cutn(Xi) = [(PTOL(p(X), Cp)&C:(Y))

is a literal constraint on pi(X;) in the body of rule r. O

Recursive Inference

Since each fact in the query predicate ¢ is constraint relevant to an answer to some query,
Gen-QRP-constraints initially assumes the constraint true as the “approximate” QRP-
constraint for predicate g, and the constraint false as the “approximate” QRP-constraint
for every other predicate defined in P. Gen-QRP-constraints works iteratively.

In each iteration, given the “approximate” QRP-constraints on each predicate p as
the desired constraint set on the head of each rule defining p, the algorithm computes
literal fgnstraintsﬁ'pi(z) for each derived literal in the body of each rule defining p.
Let p(X1),-..,p(Xx) be all the occurrences of p in the bodies of the rules in P, and
Coxyr -+ Cox) the corresponding literal constraints inferred. Let C'l, be the “approxi-
mate” QRP-constraint on p before the iteration and let C2, be Ve, LTOP(p(Xy), Coii)):
i.e., the disjunction of the LTOPs of the various literal constraints inferred on p literals
in this iteration. For each predicate p, the new “approximate” QRP-constraint is given
by Cl, V C2,. (Before adding disjuncts to the “approximate” QRP-constraint, we can
eliminate redundant disjuncts.) If, for each predicate p defined in P, C1, = C1, V C2y,
Gen-QRP-constraints has reached a fixpoint, and it terminates. Else, the algorithm
continues iterating with the new “approximate” QRP-constraints.

Theorem 4.8 Given a CQL program P with linear arithmetic constraints, the con-
straint set generated for each derived predicate p in P by Gen-QRP-constraints is a
QRP-constraint for p.

Proof: Consider a CQL program P with linear arithmetic constraints. For each derived
predicate p in P, let C, be the constraint set generated by Gen-QRP-constraints. We
prove the result by contradiction.

Let us suppose that there exists some query @, some database D, and some ground
fact p(a) in the least model of (P, D) that does not satisfy Cp, and which occurs in a
derivation tree for an answer to the query Q.

93

We associate a number with each program fact as follows: Consider the set of deriva-
tion trees 7y for answers to query (), and the set of all facts p(@) that occur in at least
one derivation tree in 7g such that p is defined in P.

o If p(a) is the root of a derivation tree T' in 7q, then p(a) is given the number 0.

o Else, let p(a) have a parent p;(a7) in a derivation tree T' in 7q. Then p(a@) is given
the number j + 1, where j is the lowest numbered parent of p(@).

Choose any fact p(@) that occurs in a derivation tree T' in Tg, such that p(@) does not
satisfy Cp, and let its number be k.

Let C’g , C’;, ... be the sequence of constraint sets generated by Gen-QRP-constraints
as “approximate” QRP-constraints for each predicate p. We now show by induction that
p2(@;) facts with number j satisfy Cj,.

For the base case, a fact py(@;) with number 0 is the root of a derivation tree T' in To.
It is an answer to the query and trivially satisfies 032, which is true. For the induction
step, assume that all p, facts with number j > 0 satisfy Cj,, and consider fact ps (az) with
number j + 1. This fact has as a parent p;(@1) (and rule r), where p;(@7) has number j.
Now consider the rule r (with head p;(X7)), and the literal p, (X3) where the fact p,(@3) is
used to compute p;(a;). Given the constraint set CJ, (satisfied by p: (a1) by hypothesis)
on the head of rule r, fact p(@z) has to satisfy the LTOP of the literal constraint on
p2(X5), and hence CZ1. This is because “projection” (or quantifier elimination) of linear
arithmetic constraint sets can be done exactly using the algorithm described in [47], for
instance. This concludes the induction. Hence, fact p(@) satisfies Cz’f (since it’s number
is k), and hence C,. This contradicts the original assumption that p(a@) does not satisfy
Cp, and concludes the proof of the theorem. O

Gen-QRP-constraints may not terminate, in general. Termination could be guaran-
teed by various modifications of our algorithm. For example, instead of iterating until the
QRP-constraints “stabilize”, we could iterate for a (pre-determined) fixed number of iter-
ations. If after the fixed number of iterations, the “approximate” QRP-constraints have
not stabilized, our algorithm can return true (which is trivially a QRP-constraint, though
not the minimum possible) as the QRP-constraint for program predicates. Clearly, this
does not affect the correctness of our algorithm. The larger the number of iterations
chosen, the larger the class of programs for which we will be able to infer non-trivial
QRP-constraints. Clearly, there is a tradeoff here: how large a class of programs we wish
to optimize versus the cost we are willing to incur in optimizing such programs. What
bound to choose depends on the relative costs, and is outside the scope of this thesis.

94

.4.5.3 Propagating QRP-constraints

If Gen-QRP-constraints terminates (with the QRP-constraint for p having m disjuncts),
we can use the fold/unfold transformations, described in Appendix B, to propagate this
QRP-constraint into rules defining p. This propagation consists of three steps:

1. Perform a a definition step creating m rules with head p' (X) and the sole body
literal being p(X). Further, each of the m rules contains one of the m disjuncts of
the QRP-constraint generated for p.

9. Unfold the definition of p into each of the rules defining p'.
3. Fold the original definition of p’ into each rule containing an occurrence of p.

With this, the QRP-constraints generated for the predicate p have been propagated
into the rules defining the predicate p. Procedure Gen-Prop-QRP-constraints in Ap-
pendix A.2 describes this algorithmically. Example 4.3 illustrates this algorithm for a
simple program.

The correctness of the fold, unfold, and definition steps ensures the following:

Theorem 4.9 Given a CQL program P with linear arithmetic constraints, if Gen-Prop-
QRP-constraints terminates, the rewritten program is equivalent to the original program
with respect to the query predicates, on all input EDBs. O

The following result indicates that if the original program could be evaluated “effi-
ciently”, so can the rewritten program.

Theorem 4.10 Consider a CQL program P with linear arithmetic constraints, such that
the bottom-up evaluation of a program P on database D computes only ground facts. Let
P' be the program obtained from P using Gen-Prop-QRP-constraints. Then,

e the bottom-up evaluation of P' on D also computes only ground facts,

e the bottom-up evaluation of P' on D computes a subset of the facts computed by
the bottom-up evaluation of P on database D, and

e if the QRP-constraint C, generated for each derived predicate p were such that the
intersection of no two disjuncts of Cy is satisfiable, the bottom-up evaluation of P’
on D makes a subset of the derivations made by the bottom-up evaluation of P on

D.

95

Proof: Consider a program P such that the bottom-up evaluation of P on database
D computes only ground facts. We prove the results by considering the sequence of
definition, unfold, and fold steps performed by Gen-Prop-QRP-constraints.

First, consider the definition step. Each new rule is of the form:

rip(X): - C,p(X).

where X is a tuple of distinct variables, and C is a conjunction of constraints involving
only the variables in X. (It is the PTOL of a disjunct in the QRP-constraint C,, generated
for predicate p.) Since each rule defining p computes only ground facts, adding an
additional conjunction of constraints C only prevents the computation of certain facts; it
does not affect the property that all p’ facts computed are ground. Also, the set of facts
computed for p' is a subset of the set of facts computed for p because of the additional
conjunction of constraints C in the body of rule r. Further, if C, were such that the
intersection of no two disjuncts is satisfiable, each of the rules defining p’ would compute
distinct facts. Hence, the set of derivations made for p' is a subset of the set of derivations
made for p.

Next, consider the unfold step. The definition of p is unfolded into the rules defining
p'. This does not affect the set of p’ facts computed, nor the derivations made.

Finally, consider the fold step. The fold step essentially replaces occurrences of p in
rule bodies by p'. Since the set of facts computed for p' is a subset of the set of facts
computed for p, by replacing occurrences of p by p' in the body of a rule defining p,
no new facts are computed for p; by this rule. Since the facts computed for p, prior to
the fold step were ground, so are facts computed for p; subsequent to this fold step. If
the derivations made by each rule defining p' were distinct, the derivations made for p;
subsequent to the fold step does not increase. This completes the proof of the theorem.
O

4.5.4 Using Inferred Predicate Constraints

The QRP-constraints generated and propagated by Gen-Prop-QRP-constraints need not
be the minimum QRP-constraints, in general. However, if the program P is of a cer-
tain form, then we can guarantee that Gen-Prop-QRP-constraints does generate and
propagate the minimum QRP-constraints (if it terminates). Theorem 4.13 below pro-
vides conditions on the form of such programs. We first describe a program where the
minimum QRP-constraint is not generated using Gen-QRP-constraints.

96

Example 4.4 Consider the following program P:

rl:q(X,Y):—a(X,Y), X <10
r2:a(X,Y): —p(X,Y),Y < X.
r3:a(X,Y): —a(X, 2),a(Z,Y).

where ¢ is the query predicate. Assuming true as the QRP-constraint for ¢, we would
generate the literal constraint X < 10 for the occurrence of a(X,Y) in the body of rule
r1. Now, assuming the constraint set $1 < 10 as the “approximate” constraint set for a,
we would generate the following literal constraints: for a(X, Z) in rule 73, we would get
X < 10; for a(Z,Y) in rule 73, we would get true. Gen-QRP-constraints would infer
true (or, unconstrained) as the QRP-constraint for a and the algorithm would terminate.
Note, however, the following. Each a fact that is derived using rule 72 of program P
has the constraint $2 < $1. These facts will be used in the recursive rule 73 to derive
more a facts. If each of the facts used in the body of 73 satisfies $2 < $1, then so does
the head fact derived using these facts and rule 73. Thus, each a fact derived using rules
9 and 73 in the above program P satisfies the predicate constraint $2 < $1. (Similarly,
each ¢ fact derived using rule r1 in the above program P satisfies the predicate constraint
($2 < $1)&($1 < 10).) If, for each a literal in the program, the PTOL of the predicate
constraint $2 < $1 were explicitly introduced, we would get the following program P1:

rl:q(X,Y): - a(X,Y),X <10,Y < X.
r2: a(X,Y): - p(X,Y),Y < X.
3 a(X,Y): —a(X,2),Z < X,a(Z, Y),Y <Z

Now, introducing these constraints does not change the facts computed by the program
P1. However, with program P1 we can use Gen-QRP-constraints to obtain the minimum
QRP-constraint (($1 < 10)&($2 < 81)) for a. This constraint can now be propagated
using the fold/unfold transformations to reduce the number of facts computed by the
rewritten program P'. O

Given a CQL program P with linear arithmetic constraints, there is a procedure to
enumerate minimum predicate constraints for program predicates. Intuitively, given con-
straints on base predicates, the procedure works by iteratively computing the constraints
that hold on derived predicates bottom-up. Procedure Gen-predicate-constraints in Ap-
pendix A.2 algorithmically describes this. In general, Gen-predicate-constraints may not
terminate.

97

Theorem 4.11 Given a CQL program P with linear arithmetic constraints, procedure
Gen-predicate-constraints generates the minimum predicate constraint for each derived
predicate of the program P.

Proof: Consider a CQL program P. For each derived predicate p in P, let C, be the
constraint set generated by Gen-predicate-constraints.
Claim 1: C, is a predicate constraint for p.
Proof of Claim 1: We prove this by contradiction. Let us suppose that there exists
some database D, and some ground fact p(@) that does not satisfy Cp, and which occurs
in a derivation tree.

We associate a number with each program fact as follows: Consider the set of deriva-
tion trees 7, and the set of all facts p(a) that occur in at least one derivation tree in

T.

o Let p(@) be a leaf node in some derivation tree T' in 7. Then p(@) is given the
number 0.

o Else, let p(@) be such that in some derivation tree T in 7, a child of p(a) is of the
form p;(@7). Then p(a) is given the number j + 1, where j is the highest numbered
child of p(a@).

Choose any fact p(@) such that p(a@) does not satisty C,, and let its number be k.

Let 019’ C;, ... be the sequence generated by Gen-predicate-constraints as “approxi-
mate” predicate constraints for predicate p. We now show by induction that p»(@3) facts
with number j satisfy CJ,.

For the base case, a fact ps (@) with number 0 is a database fact. It trivially satisfies
C’g, the predicate constraint given on the database predicate. For the induction step,
assume that all facts with number j > 0 satisfy C’gz, and consider fact p,(@z) with
number j + 1. There is a derivation tree and a node in the derivation tree with label
po(d3) (and rule 7) such that each child of it has a number < j. Now consider the rule r
(with head p; (X)) which is used to compute p; (@z). Given the constraint set C’gl on each
py literal in the body of rule 7, fact p»(az) has to satisfy the LTOP of the inferred head
constraint on py(Xs), and hence C’gj 1 This is because quantifier elimination of linear
arithmetic constraint sets can be done exactly. This concludes the induction. Hence,
fact p(a) satisfies C¥ (since it’s number is k), and hence C,. This contradicts the original
assumption that p(@) does not satisfy Cp, and concludes the proof of Claim 1.

98

Claim 2: C, is a minimum predicate constraint for p.

Proof of Claim 2: We prove this by contradiction. Let GS,C;, ... be the sequence
of constraint sets generated by Gen-predicate-constraints as “approximate” predicate
constraints for predicate p. Consider the lowest numbered C’I’f such that there exists a
fact p(a@) that satisfies C¥ and is not in the least model of (P, D), i.e., each fact that is
an instance of Cj*,m < k is in the least model of (P, D). The number k cannot be 0,
since C is false for all derived predicate p, and no p fact satisfies this constraint; Cp is
not false only for database predicates p, and for these predicates, we have assumed that
the minimum predicate constraints were made available as input.

Since ground fact p(a) satisfies C}, it satisfies some disjunct of C¥ which is not present
in C’I’f‘l. From Gen-predicate-constraints, we know that this disjunct is generated in
iteration k of Gen-predicate-constraints using some rule r. Consider this rule, and the
literals in the body of r. By hypothesis, each fact that satisfies C’;f; ! is present in the
least model and can be used in body literal py (X1). Since quantifier elimination of linear
arithmetic constraint sets can be done exactly, each ground fact that satisfies the inferred
head constraint C’z’f can also be derived, and must be present in the least model. This
contradicts the original assumption that p(@) is not present in the least model, and
concludes the proof of Claim 2, as well as the proof of the theorem. 0

Brodsky and Sagiv [16] study this problem of generating predicate constraints for
a special case, where the only constraints allowed are of the form $i < $5 +c. Van
Gelder [95] also studies a similar but more restricted problem; the techniques of [95] can
be used only to derive a single conjunction of constraints on the arguments of a predicate;
general constraint sets (which are disjunctions of conjunctions) are not inferred.

Using Gen-predicate-constraints for generating predicate constraints, one can infer
that $2 < $1 is a predicate constraint for a in program P of Example 4.4. One can also
infer that, on the flight predicate in Program P of Example 4.1, $4 > 0 (that is, the cost
of each flight is > 0) as well as $3 > 0 (that is, the time taken by each flight is > 0). For
each of these examples, our algorithm for generating predicate constraints terminates.

If Gen-predicate-constraints terminates, we can associate the PTOL of the predicate
constraint for p with body occurrences of p. Procedure Gen-Prop-predicate-constraints
in Appendix A.2 describes this algorithmically.

Theorem 4.12 Consider a CQL program P with linear arithmetic constraints. If Gen-
Prop-predicate-constraints terminates (resulting in program P'), then

99

o The rewritten program P’ is equivalent to the original program with respect to all
derived predicates, on all input EDBs that satisfy the predicate constraints for the
database predicates.

e If the bottom-up evaluation of P on database D computes only ground facts, the
bottom-up evaluation of P' on database D computes only ground facts.

e If the bottom-up evaluation of P on database D computes only ground facts, and the
predicate constraint C'l, generated for each derived predicate p were such that the
intersection of no two disjuncts of Cly 1s satisfiable, then the bottom-up evaluation
of P’ on database D makes the same set of derivations for each predicate p as the
bottom-up evaluation of P on database D. U

The proof of the above theorem follows easily from the form of the rules in the
rewritten program obtained using Gen-Prop-predicate-constraints, and the fact that Gen-
predicate-constraints generates minimum predicate constraints.

One of the main results of this chapter is the following result about when Gen-Prop-
QRP-constraints generates and propagates minimum QRP-constraints.

Theorem 4.13 Consider a CQL program P with linear arithmetic constraints. Let the
minimum predicate constraint for each predicate p; be a finite constraint set, Cp,- Further,
let the constraints in the body of each rule in P imply the constraint set PTOL(pi(X;),Cy,)
for each literal pi(X;) in the body of the rule. Then, if it terminates, Gen-Prop-QRP-
constraints generates and propagates the minimum QRP-constraints for each derived
predicate of the program.

Proof: Consider a CQL program P, and let the constraints in the body of each rule in
P imply the constraint set PTOL(p(X), Cj,) for each literal p;(X;) in the body of the
rule, where Cz’n is the minimum predicate constraint for predicate p;. For each derived
predicate p in P, let Cp, be the constraint set generated by Gen-Prop-QRP-constraints.
From Theorem 4.8, we already know that it is a QRP-constraint for p. We only need to
show that it is the minimum QRP-constraint for p.

We prove the result by contradiction. Since the constraints in the body of each rule
in P imply the constraint set PTOL(pi(X:), Cy,) for each literal p;(X;) in the body of
the rule, each ground fact p(a@) that satisfies Cp is present in the least model of (P, D).
Hence, we only need to show that each such fact is constraint relevant to an answer to

the query Q.

100

Let Cp,Cy, . .. be the sequence of constraint sets generated by Gen-QRP-constraints
as “approximate” QRP-constraints for predicate p. Consider the lowest numbered C’;,“
such that there exists a fact p() that satisfies C;f and is not constraint relevant to an
answer to the query Q. The number k cannot be equal to 0 since C’S is false for all
non-query predicates, and no p fact can satisfy this constraint; C’g is true for the query
predicate, and every p fact has to satisfy this constraint.

Since ground fact p(@) satisfies CE,k > 0, it satisfies some disjunct of C¥ which is not
present in C’I’f“l. From Gen-QRP-constraints, we know that this disjunct is generated in
iteration k of Gen-QRP-constraints using some rule r. Now consider the rule r, and the
literal p(X), which is used to generate this disjunct. By hypothesis, the “approximate”
QRP-constraint C¥! for the head p; (X1) is such that each ground fact that satisfies this
constraint set is constraint relevant to an answer to query Q.

Since quantifier elimination of linear arithmetic constraint sets can be done exactly,
and ground fact p(@) is in the least model, there is a derivation tree where p(@) is a child
of some py (1) (with rule 7), which satisfies Cp, and is constraint relevant to an answer
to query Q. Consequently, p(@) is also constraint relevant to the same answer to query
Q as p1(a7) is. This contradicts the assumption that p(@) is not constraint relevant to
an answer to query @, and completes the proof of the theorem. O

4.5.5 Putting it all Together

Given a CQL program P with linear arithmetic constraints, and a query predicate g, our
technique for generating and propagating minimum QRP-constraints has two components
to it:

1. First, we use Gen-Prop-predicate-constraints for generating and propagating min-
imum predicate constraints for each predicate in P.

2. Next, we use Gen-Prop-QRP-constraints to generate and propagate the QRP-
constraints for each derived predicate in P.

Procedure Constraint-rewrite in Appendix A.2 describes this algorithmically.
The following result follows from Theorems 4.11, 4.12 and 4.13.

Theorem 4.14 Given a CQL program P with linear arithmetic constraints, if Con-
straint-rewrite terminates, the QRP-constraints generated and propagated are minimum
QRP-constraints for each derived predicate in P. O

101

Let us illustrate the result of applying this technique to our original motivating pro-
gram from Example 4.1.

Example 4.5 (Computing Flights: Rewritten and Optimized) Consider the pro-
gram P in Example 4.1.

r1 : cheaporshort(S, D, T, C) : — flight(S,D,T,C), T < 240.

9 : cheaporshort(S, D, T, C) : — flight(S,D,T,C),C < 150.

r3 : flight(Src, Dst, Time, Cost) : — leg(Src, Dst, Time, Cost),
Cost > 0,Time > 0.

rd : flight(S,D,T,C) . — flight(S, D1,T1,C1), flight(D1, D, T2,C2),
T=T1+T2+30,C=Cl+C2.

The query predicate is cheaporshort. We first add a rule:
r0:q:(S,D,T,C): — cheaporshort(S, D, T, C).

The new query predicate is g;. Our algorithm for generating minimum predicate con-
straints terminates on this example, and concludes that the predicate flight has the
minimum predicate constraint ($3 > 0)&($4 > 0). It also concludes that the predicate
cheaporshort has the minimum predicate constraint (($3 > 0)&($3 < 240)&($4 > 0)) V
(($3 > 0)&($4 > 0)&(84 < 150)). For each body predicate occurrence of flight and
cheaporshort, we introduce the PTOL of the predicate constraints into the rule body.
Now, Gen-Prop-QRP-constraints can be applied to obtain the disjunctive constraint
(($3 > 0)&($3 < 240)&(34 > 0)) V (($3 > 0)&($4 > 0)&($4 < 150)) as the minimum

102

QRP-constraint on flight as well as cheaporshort. Propagating these (minimum) QRP-
constraints, and deleting the rules defining ¢, results in the following program P

rl

rd:
r3:

r4

rH !

6

7

Note

: cheaporshort(S, D, T, C) . — flight'(S,D,T,C),T >0,T < 240,C > 0.
cheaporshort(S, D, T, C) . — flight'(S,D,T,C), T > 0,C > 0,C < 150.
cheaporshort(S, D, T,C) . — flight’(S,D,T,C),T > 0,T < 240,

C > 0,C <150.

flight'(Src, Dst, Time, Cost) : — Time > 0,Time < 240,

leg(Src, Dst, Time, Cost), Cost > 0.
flight' (S, D,T,C) T >0,T < 240,C > 0,

flight'(S, D1,T1,C1),

flight'(D1, D, T2,C2),

T1>0,T2>0,T =T1+T2+ 30,

Cl1>0,C2>0,C=Cl1+C2.
. flight'(Src, Dst, Time, Cost) : — Time > 0, Cost < 150,

leg(Sre, Dst, Time, Cost), Cost > 0.

: flight'(S, D, T, C) :—T>0,C>0,C <150,
flight'(S,D1,T1,C1),
flight'(D1, D, T2,C2),
T1>0,72> 0,T = T1 + T2 + 30,
C1>0,02>0,C=C1+C2.

that the bottom-up evaluation of P' does not compute any flight' fact which

is not constraint relevant to the query predicate; in particular, no flight' fact with
Time > 240 and Cost > 150 is computed. Further, each of the facts computed during a
bottom-up evaluation of P’ is a ground fact.

Consider the query:

? cheaporshort(madison, seattle, Time, Cost).

One could now rewrite this program using Magic-sets, and the bound-if-ground rule, to
take advantage of the pattern of constants in the actual query. This is not something
that our optimization (based on generating minimum QRP-constraints and propagating
these into the bodies of rules) is designed to do. The magic rewritten program is now
able to utilize the various constraints in the program rules, as well as the constants in
the query, without computing constraint facts. O

103

Iteration | Derivations made
0 {r6: m_fib(N1,5)}
{r4:m_fib(N1,V1;N1>0,V1>1,V1<4)}
{r2: Jib(1, 1), r4: m Ab(NL,V1; N1>0, V1> 1, V1< 3) }
{r5: m_fib(0,V2;V2>1,V2<3),75 : m-fib(0,4)}
{r1: fib(0,1)}
{r3: fib(2,2)}
{r3: fib(3,3), r5: mfib(1,3), r5: mfib(1,V2; V2 > 1, V2 < 2) }
{r3": fib(4,5), r5: m_fib(2,2), r5: mfib(2,1) }
{

Table 4.18: Derivations in a Bottom-up Evaluation of Pf

QO ~J| | O] W | DO|

We next show how propagating predicate constraints can make the difference between
non-termination and termination in answering queries on a CQL program, even when the
evaluation computes constraint facts.

Example 4.6 (Computing Backward Fibonacci: Rewritten and Optimized)
Consider the program Py; from Example 4.2.

r1: fib(0, 1).

r2: fib(1,1).

r3: fib(N, X1+ X2): - N> 1, fib(N — 1, X1), fib(N — 2, X2).

Note that $2 > 1 is a predicate constraint (though not the minimum) for fib. We
can associate the PTOL of this constraint with each body occurrence of fib in rule 73
of Pj;. By introducing these constraints, we get the following program P _1:

rl: fib(0,1).

r2: fib(1,1).

r3: fib(N, X1+ X2): — N > 1, fib(N —1,X1), X1 > 1,
fib(N —2,X2),X2> 1.

104

The Magic-sets transformation of the resultant program is Pf§ 1 shown below:

rl: fib(0,1) : — m-fib(0,1).

r2: fib(1,1) : — m-fib(1,1).

r3: fib(N, X1+ X2) : —m_fib(N, X1+ X2),N > 1, fib(N —1,X1),
X1>1, fib(N — 2,X2),X2> 1.

rd - m_fib(N — 1,X1): = m_fib(N, X1+ X2), N > 1,X1 > 1,X2>1.

r5 - m_fib(N — 2, X2) : —m_fib(N, X1+ X2),N > 1, fib(N — 1,X1),
X1>1,X2>1

76 : m_fib(N, 5).

A Semi-naive bottom-up evaluation of P ; computes facts as shown in Table 4.18.
Note that the answer to the query is computed in the seventh iteration, and the evaluation
terminates after the eighth iteration, since no new derivations are made during the eighth
iteration. The additional constraints in the bodies of rules r3,74 and 75 of Pfi 4 prevent

subsequent derivations.
In a similar manner, given the query:

? fib(N,6).

a Semi-naive bottom-up evaluation of Pfs ; (with 76 replaced by m- fib(N, 6)) terminates,
and answers “no” since there is no N whose Fibonacci number is 6. The bottom-up
evaluation of Pf;f would not terminate. U

4.5.6 Discussion

Given a CQL program P, Constraint-rewrite generates and propagates minimum QRP-
constraints for each derived predicate in the program. Propagating QRP-constraints into
rule bodies has several advantages. For instance, in the bottom-up evaluation of program
P! of Example 4.5:

1. Fewer flight' facts need be computed (since the constraints in the rules defining
cheaporshort are used earlier). In particular, no flight' fact with Time > 240 and
Cost > 150 is computed. Since there could be an arbitrary number of flight facts
(in P) with Téme > 240 and Cost > 150, considerable savings (in terms of the
number of facts derived) are achieved.

105

9. These constraints can be used for effective indexing of relations. In particular,
the constraints Cost < 150 and Time < 240 could be used to efficiently retrieve
(via B-trees, etc.) leg(-, -, T'ime, Cost) tuples satisfying this constraint. This can
improve the efficiency of rule application. i

With disjunctive constraints, however, using fold /unfold transformations may lead to
an increase in the number of derivations of each fact, though the number of facts com-
puted may decrease. For instance, if the leg relation contained leg(madison, chicago, 50,
100), the original program P in Example 4.5 would derive flight(madison, chicago, 50,
100) just once using the non-recursive rule, whereas flight'(madison, chicago, 50, 100)
would be derived twice using the non-recursive rules in P'. Since the number of disjuncts
in the minimum QRP-constraint, though finite, is unbounded, the number of derivations
could increase considerably, in general.

Notice that this problem of multiple derivations of flight' facts arises because the
minimum QRP-constraint for flight is a non-trivial disjunction, and the two disjuncts
(($3 > 0)&($3 < 240)&(84 > 0)) and (($3 > 0)&($4 > 0)&(34 < 150)) “overlap” in that
their intersection is satisfiable. There are two possible solutions to this problem:

e First, one can represent the minimum QRP-constraint in such a way that the
intersection of no two disjuncts is satisfiable. The algorithms described in [81] can
be used to obtain such non-overlapping disjuncts.

Thus, for instance, the minimum QRP-constraint for flight can be represented as
((33 > 0)&($3 < 240)&($4 > 0)&($4 < 150)) V ((83 > 0)&($3 < 240)&($4 >
0)& (%4 > 150)) v (($3 > 0)&($3 > 240)&($4 > 0)&($4 > 150)).

If this representation of the minimum QRP-constraint for flight' is propagated, the
rewritten program does not make any more derivations than the original program.
However, the number of rules in the rewritten program could increase exponen-
tially, because representing a given constraint set C as a constraint set C' with
non-overlapping disjuncts could result in an exponential increase in the number of
disjuncts.

e Another possible solution is to bound the number of disjuncts (say, to 1) by simpli-
fication of the QRP-constraint, using constraint manipulation techniques. This is
always possible, though the result of such a simplification would be a non-minimal
QRP-constraint, in general.

106

Thus, for instance, in Program P in Example 4.5, bounding the number of disjuncts
in the QRP-constraint to one, results in obtaining the QRP-constraint as ($3 >
0)&($4 > 0). Propagating this would not result in any reduction in the number of
flight' facts computed.

In practical terms, there is a tradeoff between the number of potentially relevant facts
computed, the number of derivations of potentially relevant facts, and the overheads of
applying a large number of rules. What choice to make depends on estimates of the
relative costs of evaluation of the alternative rewritten programs. We do not discuss this
issue further, as it is outside the scope of this thesis.

4.6 Sufficient Conditions for Termination

Given a CQL program P with linear arithmetic constraints, determining whether (any
representation for) the minimum QRP-constraint for a predicate p is a finite constraint
set is undecidable, according to Theorem 4.5. However, one might be able to obtain
decidability results, if we restrict the classes of constraints that we consider in the CQL.
In this section, we show that for a restricted class of constraint query languages we can
obtain decidability results, and that our technique for generating and propagating the
minimum QRP-constraints always terminates.

Example 4.7 Consider program P1 of Example 4.4.

rl: q(X,Y): —a(X,Y),X <10,Y < X.
r2: a(X,Y): —p(X,Y),Y < X. ‘
r3' a(X,Y): - a(X,2),Z < X,a(2,Y),Y £ Z.

It is easy to see that, since there are no arithmetic function symbols in the program,
and the only arithmetic predicate used is <, the only “simple” constraints that can be
part of the QRP-constraint for a, generated by Gen-QRP-constraints, are: $1 < 10, $2 <
10,10 < $1,10 < $2,$1 < $1,$1 < $2,$2 < $2, and $2 < $1. No constant other than 10
can be part of the QRP-constraint generated for a, since that would require the use of
an arithmetic function symbol to create the new constant.

Each disjunct in a constraint set can contain any or all of these “simple” constraints.
Since there are 8 “simple” constraints, there can be at most 28 = 256 disjuncts in the
QRP-constraint generated for a. Each iteration of our algorithm to generate QRP-
constraints, checks whether the “new” constraints are subsumed by the “approximate”

107

QRP-constraint, and adds at least one “new” disjunct in each iteration (else it termi-
nates). Since there are only a bounded number (256) of disjuncts possible, our algorithm
can iterate only 256 times, before it must terminate.

In the case of P1, our algorithm, Gen-Prop-QRP-constraints, terminates in just two

iterations. O

Theorem 4.15 Consider a constraint query language with linear arithmetic constraints
of the form X op Y and X op c, where op is one of {<,>,<,>} and c is a constant.
Given a CQL program P with these constraints, there is a terminating algorithm to
compute minimum QRP-constraints.

Proof: Consider a CQL with linear arithmetic constraints of the form XopYand Xopec,
where op is one of {<, >, <, >} and c is a constant. In such a constraint query language,
no n-ary (n > 0) function symbols (such as -+ or *) are permitted. A “simple” constraint
(on the arguments of a predicate) in a program in such a CQL can either be of the form
$i < e, $i<ce<$ic<$i,% <8, or §i < 3. (A simple constraint involving > or >
can be treated as an equivalent constraint using < or <.) If predicate p has arity k, there
can be at most 2k% +4k “simple” constraints that can be part of the predicate constraint
or the QRP-constraint generated for p. (There can be k? constraints each of the forms
$; < $7 and $i < $j, and k constraints each® of the forms $i < ¢,$i < ¢,¢ < $i and
¢ < $i.) Consequently, there can be at most 22k*+4k disiuncts in the predicate constraint
or the QRP-constraint for p.

If program P contains n predicates, with arity at most k, it is easy to see that at
most n * 22¥*+4* disjuncts are possible in the predicate or the QRP-constraints generated
for predicates in P. Since each iteration of Gen-predicate-constraints and Gen-QRP-
constraints adds at least one “new” disjunct, each of these algorithms terminates in at
most 1 % 22¥*+4% iterations.5 Consequently, Constraint-rewrite terminates on this class of
programs, having generated and propagated minimum QRP-constraints. This also gives
us the decidability result. O

This result can be easily generalized to constraint query languages with no n-ary
(n > 0) function symbols, and only a finite number of constraint predicate symbols.

5Even if there are, say two constants ¢; and c; in the program, in each disjunct there can only be
one of $i < ¢; and $i < ¢y present. The other constraint is redundant.

6This is a combinatorial upper-bound for the number of iterations taken. For most programs, we
expect the bound to be considerably lower.

108

Adom ad C-transform ad,C Apply ad,Cmg
P P P P

using {bf} Magic

Figure 4.9: The Transformation of Balbin et al.

4.7 Understanding Previous Techniques

Balbin et al. [4] and Mumick et al. [56] consider the problem of propagating constraints
such as X > 10 in a range-restricted, function-free CQL program P.” Both [4] and [56]
use a combination of constraint propagation and Magic-sets.

A fundamental limitation of each of these techniques is that they do not-utilize seman-
tic properties of constraints. The techniques presented in this chapter make essential use
of such properties, and are hence able to optimize programs that could not be handled
by previous techniques.

4.7.1 Balbin et al.’s C-transformation

The approach taken by Balbin et al. [4] is to try to propagate constraints using (a
more limited version than we consider of) fold/unfold and then apply the Magic-sets
transformation. Given a program P, their technique is depicted in Figure 4.9. It can be
split into three phases:

1. First, they have an adornment phase, which uses the bf adornment, where b stands
for bound, and f for free.

An argument is treated as bound only if it is bound to a ground term. Let the
adorned program obtained be P

9. Second, they perform a C-transformation on the adorned program. This is ex-
pressed as a sequence of fold, unfold, and definition steps using the fold/unfold
transformations of Tamaki and Sato [88].

This step propagates constraints into the recursive rules, while obtaining a query-
equivalent program. A constraint in a rule body is treated as any other rule body

TRange-restrictedness is a sufficient syntactic condition for all the facts computed during the bottom-
up evaluation of a program to be ground facts.

109

Adom ad Apply ad,mg Grounding ad,mggr

P P P

using {bcf} Magic transform

Figure 4.10: The Transformation of Mumick et al.

literal for the purposes of the transformation.® Let the C-transformed program be
Pad,C .

3. In the third phase, they perform the Magic-sets rewriting on the C-transformed
program. The resultant program is denoted podCimg,

Thus, the approach of [4] is to C-transform the (adorned) program before the Magic-
sets rewriting is applied. Further, given a program P which has only range-restricted
rules, the transformation of [4] has the property that each of pod padiC gnd pedi©ms hag
only range-restricted rules. Consequently, all the facts computed during the bottom-up
evaluation of the C-transformed program as well as the magic rewritten program are
ground facts.

Our algorithms for generating and propagating minimum QRP-constraints can be
straightforwardly used to replace the constraint propagation phase of [4]’s technique.
The resulting technique can optimize a larger class of programs than [4].

4.7.2 Mumick et al.’s GMT-transformation

The approach taken by Mumick et al. [56] (the Ground Magic-sets transformation, or
GMT) directly extends the Magic-sets rewriting of [64] to support propagation of arith-
metic constraints, without leading to computation of constraint facts. Although, [56]
presents the GMT-transformation as a single algorithm that combines Magic-sets with
the propagation of constraints, to understand the GMT-transformation, it is best to think
of GMT as a three step transformation, as shown in Figure 4.10:

1. Given a program P, the first step is an adornment phase.

They generalize the class of bound (b) and free (f) adornments to include a condi-
tion (c) adornment that describes selections involving arithmetic inequalities. They

8[4] refers to constraints in P as constraining predicates; for instance, > is a constraining predicate
and X > 3 is a constraining literal.

110

describe how sideways information passing strategies (sips) can be modified to al-
low conditions, in addition to bindings, to be passed sideways. Let the adorned
program obtained be P

2. In the second step, they take a bcf adorned program, and apply the Magic-sets
transformation of [64] to get a program that may have non-range restricted magic
rules. Let the Magic-sets transformed program be podmg,

3. Finally, they ground the magic rules in Padmg to get a range restricted program
Pad,mg,gr'

We show in [82] that this final (and quite complicated) grounding step can be under-
stood as a sequence of fold/unfold transformations using the system of Tamaki and
Sato [88]. Thus, the technique of [56] can also be decomposed into a combination
of the Magic-sets rewriting and the fold /unfold transformation, each of which is well-
understood.

Semantic properties of constraints can also be used to enhance the adornment phase
in the GMT-algorithm of [56], and permit a larger class of programs to be optimized.

In contrast to [4], the approach of [56] is to magic transform the (adorned) program
before applying the fold/unfold transformations. This intermediate (magic) program
pedma conld compute constraint facts; however, the final program obtained P*™%9" has
only range restricted rules, and hence computes only ground facts.

4.8 Combining Constraint Propagation with Magic
Rewriting

Consider a CQL program P, with linear arithmetic constraints. We described two algo-
rithms, Gen-Prop-predicate-constraints and Gen-Prop-QRP-constraints, that preserved
the core of P while propagating constraints that occur in the program P. (A combination
of these algorithms generated and propagated minimum QRP-constraints.) The rewrit-
ten programs obtained using these two algorithms preserve equivalence with respect to
every possible query on the query predicate. An advantage of these techniques is that if
the evaluation of the original program computed only ground facts, so do the evaluations
of the rewritten programs. A shortcoming of these techniques for propagating constraints
is that they are not able to take advantage of the pattern of constants in the actual query,
known only at run-time, or the actual set of facts in the database predicates.

111

Magic-sets [64] is a rewriting strategy that s able to take advantage of constants in
the actual query, as well as the actual set of facts in the database predicates, thereby
restricting the computation to facts that are potentially relevant to answering a given
query. However, a shortcoming of this technique is that the bottom-up evaluation of the
Magic-sets transformed program could compute constraint facts, even if the bottom-up
evaluation of the original program computed only ground facts. There are two cases in
which the Magic-sets transformation computes only ground facts:

e First, when we use the bound-if-ground rule (equivalently, the class of bf adorn-
ments), where an argument of a subgoal is treated as bound only if it is ground; it
is free otherwise.

o Second, when we use Mumick et al’s [56] class of bcf adornments for groundable
programs, with grounding sips, in conjunction with their GMT algorithm.

An important question is how Magic-sets interacts with the use of Gen-Prop-predicate-
constraints and Gen-Prop-QRP-constraints in these cases.

Tn the rest of this section, we describe this interaction in detail for the case when
an argument of a subgoal is treated as bound only it is ground, i.e., the Magic-sets
transformation uses the class of bf adornments. In Section 4.8.7, we briefly consider
how the interaction of Magic and Gen-Prop-predicate-constraints and Gen-Prop-QRP-
constraints can be explored further for the case of bcf adornments.

We use the following notation. Let Prred he the program obtained from P using
Gen-Prop-predicate-constraints, P?? be the program obtained from P using Gen-Prop-
QRP-constraints, and P™ be the program obtained from program P using Magic-sets
rewriting. (Thus, PPr*%4"? is the program obtained by first applying Gen-Prop-predicate-
constraints to P and then applying Gen-Prop-QRP-constraints on the resultant program
prred; ete.)

4.8.1 Problems Addressed

Consider a CQL program P, with linear arithmetic constraints, such that the bottom-
up evaluation of P computes only ground facts. The program P can be successively
optimized using a sequence of applications of Gen-Prop-predicate-constraints (to generate
and propagate minimum predicate constraints), Gen-Prop-QRP-constraints (to generate
and propagate QRP-constraints), and the Magic-sets rewriting (to propagate binding
information). An important question concerns their interaction. Qur main result is that:

112

Given a CQL program P with linear arithmetic constraints, the rewritten
program obtained by first applying Gen-Prop-predicate-constraints, followed
by applying Gen-Prop-QRP-constraints, and finally applying the Magic-sets
rewriting, that is PPre4"P™d is optimal among all rewritten programs ob-
tained from P by using a sequence of applications of the three rewritings,
where the Magic-sets rewriting can be applied exactly once, and the other
two rewritings can be applied any number of times in the sequence.

We also show that:

o Given a CQL program P with linear arithmetic constraints, Magic-sets rewriting
and Gen-Prop-QRP-constraints are not confluent, i.e., the order in which these two
rewritings are applied on a program affects the final resultant program.

For some programs P, the program P¥P™¢ computes fewer facts (for all EDBs
and queries) than the program P™#%%; for other programs, the program P™&%'?
computes fewer facts than P¥?™. We also identify conditions when it is more
advantageous to apply Gen-Prop-QRP-constraints first.

e Qiven a CQL program P with linear arithmetic constraints, Constraint-rewrite
(which is a sequence of applications of procedures Gen-Prop-predicate-constraints
and Gen-Prop-QRP-constraints) and the Magic-sets rewriting are not confluent
either.

However, as shown by our main result, the program prredaremg (obtained by ap-
plying Constraint-rewrite first, and then applying the Magic-sets rewriting) always
computes fewer facts than the program pmgpredarp,

The Magic-sets rewriting that we consider for our results is one in which all the
constraint information present in a rule 7 in program P is also present in each magic rule
generated from rule 7. We refer to this as constraint magic rewriting, described next.

4.8.2 Constraint Magic Rewriting

Consider a CQL program P. The Magic-sets rewriting of P to P™ is said to be a
constraint magic rewriting iff the following condition is satisfied. Let 7 be any rule in P
of the form:

r:p(X): = Cr,p1(X1)s -, Pa(Xn).

113

where C, is the comma separated list of constraints in the body of rule r. Let mr; be a
magic rule in P™, obtained from body literal pi(X;) in rule r, of the form:

mrs mpi(Xz) : — mp(X"), Conrsr - - -

Comr; is the conjunction of constraints in the body of rule mr;. For each such mr; in P™,
let Y; be the variables appearing in the (head and body of the) rule. Then, for each rule
rin P and each such mr; in P™, it should be the case that:

HE(CT) = H’}"Z(Cmri)

The intuition is that all the constraints in rule r that are “relevant” to the magic
rule mr; should be present in the body of rule mr;. We can guarantee that a Magic-sets
rewriting is a constraint magic rewriting if the constraints in the body of a rule are to
the left of every other body literal.

Proposition 4.16 Consider o CQL program P with linear arithmetic constraints, such
that the bottom-up evaluation of P computes only ground facts. Let P™ be the result of
the constraint magic rewriting of P. Then, the bottom-up evaluation of P™ computes
only ground facts, and is query equivalent to P for all input databases. U

4.8.3 Combining Propagation of QRP-constraints with Con-
straint Magic Rewriting

Each of the rewritings, Gen-Prop-QRP-constraints and constraint magic rewriting, prop-
agates information available on the head of a rule to predicates occurring in the body
of the rule. Gen-Prop-QRP-constraints propagates constraint information, while con-
straint magic rewriting propagates information about the pattern of constants in the
actual query, and the facts in the actual database. Consequently, it is of interest to
determine whether these two rewritings are confluent, i.e., does the order in which these
two rewritings are applied on a program affect the final resultant program?

We first describe example programs to show that the two rewritings are not confluent.

Example 4.8 Consider the following program p:

rl1:q(X,Y) :—al(X,Y), X <4
r2:al(X,Y): - bl(X, Z),a2(Z,Y).
r3:a2(X,Y): — b2(X,Y).
r4:a2(X,Y): — b2(X, Z),a2(Z, Y).

114

where ¢ is the query predicate, queried with all its arguments free. For this program
P, it is preferable to apply Gen-Prop-QRP-constraints followed by the constraint magic
rewriting, independent of the facts in the database. The programs obtained by applying
the rewritings in different orders are discussed in Srivastava and Ramakrishnan [82]. O

The above example also illustrates that Constraint-rewrite and constraint magic
rewriting are not confluent either.

Example 4.9 Consider the following program P:

rl:q(X,Y) :—al(X,Y).

r2:al(X,Y): ~b1(X, Z), X <4,02(Z,Y).
r3:02(X,Y): — b2(X,Y).

rd:a2(X,Y): —b2(X, Z),a2(Z,Y).

where ¢ is the query predicate, queried with its first argument bound to a constant
and the second argument free. For this program P, it is preferable to apply constraint
magic rewriting followed by Gen-Prop-QRP-constraints, independent of the facts in the
database, and pattern of constants in the actual query. The programs obtained by apply-
ing the rewritings in different orders are discussed in Srivastava and Ramakrishnan [82].
O

Examples 4.8 and 4.9 show that, in general, no ordering of Gen-Prop-QRP-constraints
and constraint magic rewriting is always superior to the other. However, for a restricted
class of CQL programs, we can show that applying Gen-Prop-QRP-constraints followed
by constraint magic rewriting is superior to applying constraint magic rewriting followed
by applying Gen-Prop-QRP-constraints. Theorem 4.17 below identifies conditions on the
form of such programs.

Theorem 4.17 Consider a CQL program P, such that the bottom-up evaluation of P
computes only ground facts. Also, let v be a rule in P of the form:

T p(-X—) e T;pl(yl-)a e apn(y;)

Let C, imply PTOL(pz-(”X_i),CI’,i), 1 < i < n, where Cy, s the minimum predicate con-
straint for predicate p;.

Then, for all databases D and pattern of constants in the actual query, the bottom-up
evaluation of PT™ on database D computes a subset of the set of facts computed by
the bottom-up evaluation of P™T? on database D.

115

Proof: Consider a CQL program P satisfying the conditions of the theorem. Consider
any rule r in P:

r p(—X-) . T:pl(TX_I))- .. 7pn(-X—n)

In the magic program P™, the modified rule and the magic rules generated from rule r
in P are of the form:

roo p®) i Crymp() pX), o alFn)
mry : mpy(X1)+ — Cr,mp(X0).

My m_pn(jf,;l) - Cr,m_p(jf—l),. .

Again, consider rule r in P, and the propagation of QRP-constraints into the body of
rule r using Gen-Prop-QRP-constraints. Each of the resulting rules® in P%? is of the

form:
T :p(y) P CP? CT?pl(‘.X_]T)y e ,pn(‘.Xi;).

where C,, is a disjunct in the QRP-constraint propagated for p. Since the rules in P?P
have at least as many constraints as the corresponding rule 7 in P, constraint magic
rewriting guarantees that each rule in P¥P™ obtained from rule r in P?? has at least
as many constraints as the corresponding rules in P™9.

Hence, to prove the theorem we only need prove that the QRP-constraints generated
and propagated by Gen-Prop-QRP-constraints for each (magic and non-magic) derived
predicate p in P™ are implied by the conjunction of constraints present in the body of
each rule defining p in P¥P™9.

First consider a non-magic derived predicate p in P™ and PIP™ The constraints
present in the body of each rule defining p in P¥"?™9 include, in addition to the constraints
present in the corresponding rule in P™_ g disjunct from the QRP-constraint generated
for p in P (and propagated in pae),

Claim 1: If C1, is the QRP-constraint generated for predicate p in P, and C2, is the
QRP-constraint generated for predicate p in P™, then C1, D C2,.

Proof of Claim 1: The QRP-constraint obtained for p in P is based on occurrences of
p literals in the body of rules in P, and corresponding literal constraints. In P™, each
of these occurrences is present (in modified original rules); in addition, there are some

9There could be many such rules if the QRP-constraint propagated is a non-trivial disjunction.

116

more occurrences of p literals in the bodies of magic rules. Using induction, it can be
shown that at the end of each iteration ¢ of Gen-QRP-constraints, the “approximate”
QRP-constraint C1} (the disjunction of C15°! and the literal constraints on occurrences
of p in the i’th iteration) implies the “approximate” QRP-constraint 02;',. The claim
follows from the monotonic nature of the non-recursive inference in the generation of
QRP-constraints.
Next, consider a magic predicate m-p in P™ and PTP™I,

Claim 2: If Cl,_, is the conjunction of constraints in the body of a rule defining m-p
in PrP™9 and C2,_p is the QRP-constraint generated for predicate m_p in P™, then
Clmyp D C2pp.

Proof of Claim 2: (Sketch) The QRP-constraint generated for predicate m._p in P™
is obtained from rules containing body occurrences of m.p. These are the (modified
original) rules defining p in P™ and the magic rules obtained from the rules defining
p in P. Using simultaneous induction on the iterations of Gen-QRP-constraints and
Gen-predicate-constraints, it can be shown that C2y,_p, the QRP-constraint generated
for predicate m_p in P™ is implied by the predicate constraint C, for predicate p in
P. By hypothesis, the conjunction of constraints in the body of each rule containing a
body occurrence of p implies the PTOL of C, on this literal. Magic rules defining m-p
in PTP™I gre obtained from such body occurrences of p. The claim follows from the
property of constraint magic rewriting (the relationship between the constraints present
in a magic rule and the rule from which it is generated) in obtaining P?™f from P.

This concludes the proof of the theorem. O

4.8.4 Combining Predicate and QRP-constraint Propagation

Consider a CQL program P, with linear arithmetic constraints, such that the bottom-up
evaluation of P computes only ground facts. In this section, we show several results
about the rewritten program obtained by combining Gen-Prop-predicate-constraints and
Gen-Prop-QRP-constraints on program P.

Theorem 4.18 Consider a CQL program P, with linear arithmetic constraints, such
that the bottom-up evaluation of P computes only ground facts. Then, the bottom-up
evaluation of PPreb™ computes a subset of the facts computed by the bottom-up evaluation
Of qup,pred_

Proof: Consider a CQL program P satisfying the conditions of the theorem. From
Theorem 4.14, it follows that the evaluation of prredarp computes a subset of the facts

117

computed by the evaluation of P7P. From Theorem 4.12, it follows that the evaluation
of PP computes the same set of facts as the evaluation of poprred - Combining these
two results, we have a proof of the theorem. [

The following result indicates that consecutive applications of Gen-Prop-predicate-
constraints on a program are redundant.

Theorem 4.19 Consider a CQL program P, with linear arithmetic constraints. Then,
for each predicate p, the minimum predicate constraint C1, on predicate p in prred g
equivalent to Cp, the minimum predicate constraint on predicate p in P.

If the bottom-up evaluation of P computes only ground facts, the bottom-up evaluation
of PPredrred computes the same set of facts for each program predicate as the bottom-up
evaluation of PPred, O

The first half of the result follows from the definition of minimum predicate con-
straints. The second half of the result is a corollary of Theorem 4.12. The following
result indicates that consecutive applications of Gen-Prop-QRP-constraints on a pro-
gram are redundant.

Theorem 4.20 Consider a CQL program P, with linear arithmetic constraints. Then,
for each predicate p, the QRP-constraint C1, generated by Gen-QRP-consiraints on pred-
icate p in PTP is equivalent to Cyp, the QRP-constraint generated by Gen-QRP-constraints
on predicate p in P.

If the bottom-up evaluation of P computes only ground facts, the bottom-up evaluation
of PIP9P computes the same set of facts for each program predicate as the bottom-up
evaluation of P?. [

The result can be shown by induction on the iterations of Gen-QRP-constraints on P
and P7?. From Theorems 4.19 and 4.20, it follows that in rewriting a program using Gen-
Prop-predicate-constraints and Gen-Prop-QRP-constraints, one only needs to alternate
between the two rewritings; consecutive applications of the same rewriting are redundant.

From Theorem 4.14, we know that prredarp ig the rewritten program obtained by
generating and propagating the minimum QRP-constraints for predicates in P. The
next result shows that more than one alternation of Gen-Prop-predicate-constraints and
Gen-Prop-QRP-constraints is redundant.

Theorem 4.21 Consider a CQL program P, with linear arithmetic constraints. Then,

118

e The minimum predicate constraint C1l, on predicate p in prredare g equivalent to
C,, the minimum QRP-constraint on predicate p in P.

e The minimum QRP-constraint C2, on predicate p in prredarp s equivalent to Cp,
the minimum QRP-constraint on predicate p in P. O

As a corollary to the second part of the above theorem, we have:

Corollary 4.22 Consider o CQL program P, with linear arithmetic constraints. If
the bottom-up evaluation of P computes only ground facts, PS', where S1 is the se-
quence {pred, qrp, pred, qrp}, computes the same set of facts for each program predicate
as Ppred,qrp_ I

4.8.5 Adding Constraint Magic Rewriting

Consider a CQL program P with linear arithmetic constraints. In this section, we discuss
properties about a sequence of applications of Gen-Prop-predicate-constraints, Gen-Prop-
QRP-constraints, and constraint magic rewriting on P. Example 4.8 shows that con-
straint magic rewriting and the sequence of rewritings, Gen-Prop-predicate-constraints
and Gen-Prop-QRP-constraints are not confluent, that is, PPred@P™9 does not compute
the same set of facts as P™9Predarp In the example, PPreaP™ computes fewer facts
than PmePredarp for all input databases. We now show that this is true, in general.

Theorem 4.23 Consider a CQL program P with linear arithmetic constraints, such
that the bottom-up evaluation of P computes only ground facts. Then, for all databases
D and pattern of constants in the actual query, the bottom-up evaluation of PPreddarpma
on database D computes a subset of the set of facts computed by the bottom-up evalualion
of P™9wredar? o database D.

Proof: Consider a CQL program P satisfying the conditions of the theorem. Using
arguments similar to the proof of Theorem 4.17, it can be seen that each rule in PPred:arpmg
has at least as many constraints as the corresponding rules in P™9.

Hence, to prove the theorem we only need prove that the minimum QRP-constraints
generated and propagated for each (magic and non-magic) derived predicate p in P™ are
implied by the conjunction of constraints present in the body of each rule defining p in
prredarpmg - Rirst, we prove certain results about the application of Gen-Prop-predicate-
constraints on P™.

119

Claim 1: The minimum predicate constraints generated for each non-magic predicate
p and the corresponding magic predicate m_p in P™ by Gen-predicate-constraints are
implied by the minimum QRP-constraints generated for predicate p in P.

Proof of Claim 1: (Sketch) The claim is proved by induction on the SCC structure of
pm™,

For the base case, consider the magic predicate m._g corresponding to the query pred-
icate ¢ in P™ and the database predicates in P™. The minimum predicate constraint
on the magic predicate m-g is given to be true, since every query is possible. Since
the minimum predicate constraints on the database predicates in P are the same as the
minimum predicate constraints on the corresponding predicates in P™, the minimum
QRP-constraints on the database predicates in P trivially imply the minimum predicate
constraints on the database predicates in P™9.

Now consider the induction step. Consider SCC S; of P™ and predicate m.p in S;.
The minimum predicate constraint obtained for m.p in P™ is based on the predicate
occurrences in the body of the rules defining m_p, and the minimum predicate constraints
for those predicates in P™. For each rule mr; in P™ defining m._p, consider the rule
r in P from which it is generated. The body of rule r in P contains occurrences of
all the body predicates and constraints occurring in the body of mr;. In the process
of computing the minimum QRP-constraint for p in P, Gen-Prop-predicate-constraints
propagated the minimum predicate constraint associated with each literal in the body of
r in P. Theorem 4.21 guarantees that the minimum QRP-constraint for p in P would
not be different had the minimum QRP-constraint constraint been associated with each
literal in the body of r in P. By the induction hypothesis, this minimum QRP-constraint
for a predicate p; in the body of r implies the minimum predicate constraint for the
corresponding predicate p; in the body of mr;, if py is defined in a lower SCC of P™9.
If p, in the body of mr; is not defined in a lower SCC of P™, it has to be defined
in S;. The proof now requires an additional induction on the iterations performed by
Gen-predicate-constraints on P™9.

From this it follows that the minimum predicate constraint on m_p in P™ is implied
by the minimum QRP-constraint on p in P.

Consider now predicate p defined in S; of P™. Again, the minimum predicate con-
straint for p depends on the minimum predicate constraints associated with predicates
in the bodies of rules defining p. The rules defining p in P™¢ are similar to rules defining
p in P; the only additional literal is an occurrence of m.p. Again, an application of The-
orem 4.21 and the form of the minimum predicate constraints for m_p ensures that the

120

minimum predicate constraint on p in P™ is implied by the minimum QRP-constraint
on p in P. This concludes the induction step, and the proof of the claim.
Claim 2: If C1, is the minimum QRP-constraint generated for predicate p in P, and
C2, is the minimum QRP-constraint generated for predicate p in P™, then C'l, D C2,.
Proof of Claim 2: This is very similar to the proof of Claim 1 in the proof of Theo-
rem 4.17, except that it additionally requires an application of Theorem 4.21 along with
the above Claim 1.
Claim 3: If C1,,_, is the conjunction of constraints in the body of a rule defining m_p
in prredarp™I and C2,, p, is the minimum QRP-constraint generated for predicate m._p
in P™, then Cly_p O C2pyp.
Proof of Claim 3: This is very similar to the proof of Claim 2 in the proof of Theo-
rem 4.17, except that it additionally requires an application of Theorem 4.21 along with
the above Claim 1.

By combining Claims 2 and 3, we have a proof of the theorem. O

The following theorem shows that generating and propagating predicate constraints
on PPredar? prior to constraint magic rewriting is redundant.

Theorem 4.24 Consider a CQL program P with linear arithmetic constraints, such
that the bottom-up evaluation of P computes only ground facts. Then, the bottom-up
evaluation of P51, where S1 is the sequence {pred, qrp, pred, mg} computes the same set
of facts for each predicate as the bottom-up evaluation of P52, where S2 is the sequence

{pred, grp, mg}.

Proof: Consider a CQL program P satisfying the conditions of the theorem.
Claim 1: Consider a rule r in PPré®a of the form:

T p(Y) M T)pl(j{_l-)1 s 7pn(7'f:)

where C, is the conjunction of constraints in the body of the rule. Let Cp, be the minimum
QRP-constraint on predicate p; in P. Then,

LTOP(pi(—X—i-)aHE(Cr)) D Cy,.

Proof of Claim 1: The proof is a direct consequence of the fact that the conjunction
of constraints in the body of each rule in prredar? ig stronger than the conjunction of
constraints in the body of the corresponding rule in P.

121

Claim 2: Let p;(X31), .. .,pi(Xm) be all the body occurrences of p; in PP**4'?. Let Cy,
be the minimum QRP-constraint on predicate p; in P. Then,

m

V LTOP(pi(-X—j-): H?{?(Cr,j)) = Cpi

j=1
where C,; is the conjunction of constraints in the body of the rule containing the occur-
rence p;(X;).
Proof of Claim 2: The conjunction of constraints LTOP(p;(Xj), II%~(Cr,j)) restricts
the set of p; facts that can be used in literal p;(X;). Since Cp, is the minimum QRP-
constraint on predicate p;, each ground p; fact that satisfies Cp, must satisfy at least
one of the LTOP’s of the various p; literals, else that fact would be a witness for the
non-minimality of C,,. Consequently, Cp, D the disjunction of the LTOP’s. From Claim
1, we have that the disjunction of the LTOP’s D Cp,. Combining the two, we have a
proof of the claim.

From Theorem 4.21, we know that the minimum predicate constraint C1, on predi-
cate p in PPre®a'? is equivalent to Cp, the minimum QRP-constraint on predicate p in P.
From the above two claims, it follows that propagating C1, (using Gen-Prop-predicate-
constraints) would not change the constraints associated with any rule. Consequently,
applying constraint magic rewriting on PP"**%"? and prredarppred woyld result in equiva-
lent corresponding (non-magic and magic) rules. This proves the desired result. O

4.8.6 An Optimal Sequence of Transformations

We now show that PPred¢"Pmd is optimal among a class of transformation sequences on
program P.

Theorem 4.25 Consider a CQL program P with linear arithmetic constraints, such
that the bottom-up evaluation of P computes only ground facts. Consider the class of
all programs obtained from P using a sequence of applications of Gen-Prop-predicate-
constraints, Gen-Prop-QRP-constraints, and constraint magic rewriting, such that con-
straint magic rewriting is applied only once. Among all such programs, prred.arpmg g
optimal in that it computes a subset of the facts computed by any other program from this
class, for all input databases.

Proof: Consider a CQL program P satisfying the conditions of the theorem, and consider
the class of programs obtained from P using a sequence of applications of Gen-Prop-
predicate-constraints, Gen-Prop-QRP-constraints and constraint magic rewriting, such

122

that constraint magic rewriting is applied only once.
Such programs can be denoted by PS5t where S1 is the sequence of transformations:

{predil, qrpj‘, . ,predik, qrpik, mg, predi’”'l, qrpik+1, . ,predi", qrpf"}

From Theorems 4.19, 4.20 and 4.21, it follows that any such program computes the same
set of facts for each program predicate as the program P5? where S2 is the sequence of
transformations {pred, grp, pred, mg, pred, grp}. From Theorem 4.23, it follows that the
program P53 where S3 is the sequence {pred, grp, pred, pred, grp, mg} computes a subset
of the set of facts computed by P52, for all input databases. Using another application
of Theorems 4.19, 4.21, and 4.24, we have that P5? is equivalent to prredarpimg for all
input databases. This gives us the desired optimality result. O

The importance of Theorem 4.25 is in prescribing an optimal order in which to apply
Gen-Prop-predicate-constraints, Gen-Prop-QRP-constraints and the constraint magic
rewriting on program P, if we desire a rewritten program P’ such that the bottom-up
evaluation of P”":

e utilizes constraint information present in the program P,

o utilizes the actual facts present in the database and the pattern of constants in the
actual query, and

e computes only ground facts.

To summarize, the optimal order for rewriting a CQL program P with linear arithmetic
constraints, is as follows:

1. Apply Gen-Prop-predicate-constraints on P to generate and propagate minimum
predicate constraints; let the resultant program be PPred,

2. Apply Gen-Prop-QRP-constraints on prred to generate and propagate minimum
QRP-constraints; let the resultant program be prredarp,

3. Apply constraint magic transformation on Prredar? g obtain PPredaPime,

The program PPreb’Pm™4 ig the resultant optimized program.

123

4.8.7 Other Classes of Adornments

A natural question to ask is how do Gen-Prop-predicate-constraints, Gen-Prop-QRP-
constraints and constraint magic rewriting interact when given a program P adorned
using a class of adornments different from bf (or, the bound-if-ground rule for arguments
of subgoals). One such possibility is the class of bef adornments of Mumick et al. [56],
where the ‘¢’ adornment denotes an argument that is independently constrained.

Given a bef adorned CQL program P with linear arithmetic constraints, such that
the bottom-up evaluation of P computes only ground facts, it can be seen easily that
the rewritten program obtained by applying either of Gen-Prop-predicate-constraints
or Gen-Prop-QRP-constraints also computes only ground facts. Further, each of these
transformations also preserves the semantics of the ‘c’ adornment. Intuitively, this is
because these transformations only add constraints to rule bodies without altering the
core of the program.

The main problem is that for the class of bcf adornments, constraint magic rewriting
alone does not guarantee that the evaluation of the rewritten program P™ computes only
ground facts, even if the evaluation of the original program P computed only ground facts.
However, for groundable programs [56], one could replace the constraint magic rewriting
described in Section 4.8.2 by (a suitably enhanced version of) the GMT algorithm, to
obtain a magic rewriting that computes only ground facts.

We conjecture that our results for the class of b f adornments can be extended to the
class of groundable programs with bcf adornments as well. The intuition behind this
conjecture is that each of the three transformations for the class of groundable programs
with bef adornments preserves the semantics of the ‘¢’ adornment. Further, none of the
proofs of the various results relied on the actual adornment class used by the program.

4.9 Discussion

We formally defined the problem of propagating constraints occurring in a program with-
out altering the syntactic program structure, using the notion of minimum query relevant
predicate constraints. If these constraints are propagated into a program, the rewritten
program is query equivalent to the original program (on all input EDBs), and computes
only facts that are constraint relevant to the program on an input EDB. We showed
that the problem of determining whether any representation for the minimum QRP-
constraints for program predicates is finite is undecidable in general, for linear arithmetic

124

constraints. We presented two algorithms:

1. for generating and propagating minimum predicate constraints based on the defi-
nition of predicates, and

2. for generating and propagating query relevant predicate constraints based on the
uses of predicates.

We showed that a combination of these algorithms generates and propagates minimum
QRP-constraints, if it terminates. It is the generation aspect that is non-terminating;
once we have a finite minimum QRP-constraint, the propagation uses fold /unfold trans-
formations, and always terminates. We also identified a class of programs for which our
technique terminates.

We described a uniform framework—namely, a combination of Magic-sets and (pos-
sibly simpler versions of) our algorithms for generating and propagating minimum pred-
icate constraints and QRP-constraints—for the results of this chapter, and for related
work in the literature for propagating constraint selections. By considering semantic
manipulation of constraints, the techniques presented here significantly extend earlier
work.

We studied the interaction of our algorithms (for generating and propagating mini-
mum predicate constraints and QRP-constraints) with the Magic-sets transformation for
a class of programs where the Magic-sets evaluation computes only ground facts if the
original program computed only ground facts. We showed the optimality (among a class
of transformation sequences where the Magic-sets rewriting is applied exactly once) of a
transformation sequence that applies the Magic-sets transformation after generating and
propagating minimum QRP-constraints.

There are several directions in which this work can be extended. Our technique for
generating and propagating minimum QRP-constraints does not terminate, in general.
A practical direction of research is to provide a terminating algorithm that generates
and propagates QRP-constraints. (These constraints have to be non-minimal, because of
our undecidability results.) Kemp and Stuckey [44] recently proposed an algorithm that
modifies our technique for generating QRP-constraints, by using abstract interpretation
to guarantee termination.

An important direction is to identify classes of programs for which there is a ter-
minating procedure to compute minimum predicate constraints and minimum QRP-
constraints. A promising candidate is the class of programs called “strongly unique”
programs by Brodsky and Sagiv [16].

125

By first propagating predicate constraints, it may be possible for a Magic-sets evalu-
ation to terminate, whereas the evaluation may not have terminated otherwise. Another
interesting problem is to study this interaction between our algorithm for computing
minimum predicate constraints and the Magic-sets transformation when the evaluation
computes constraint facts.

Chapter 5

Coral++

5.1 Background

In recent years considerable research has been done in extending relational database
languages, such as SQL, which have proven inadequate for a variety of emerging appli-
cations. Two main directions of research in database programming languages have been
object-oriented database languages and deductive database languages, and the issue of
combining the two paradigms has received attention recently ([3, 15, 18, 24, 28, 32, 37,
38, 45, 51, 57, 60, 77, 100], among others).

Object-oriented database languages, such as E [72], O++ [1] and Oy [25], among
others, enhance the relational data model by providing support for abstract data types,
encapsulation, object identifiers, methods, inheritance and polymorphism. Such sophis-
ticated features are very useful for data modeling in many scientific, engineering, and
multimedia applications. Deductive database languages, such as LDL [59], Coral [65]
and Glue-Nail! [62], among others, enhance the declarative query language by providing
a facility for generalized recursive view definition, which is of considerable practical im-
portance. However, data models for deductive databases are typically structural, and do
not have the richness of object-oriented data models.

In this chapter, we demonstrate that the advantages of object-oriented database lan-
guages and deductive database languages can indeed be combined in a clean and practical
manner. Our proposal, Coral++, has the following objectives:

e To combine an object-oriented data model with a deductive query language.

126

127

This permits the programmer to take advantage of the features of both object-
oriented database languages and deductive database languages in developing ap-
plications. The Coral++ query language is significantly more expressive than the
object-oriented extensions of SQL ([24, 28], for instance). A non-operational seman-
tics is however maintained, and this makes Coral++ more amenable to automatic
query optimization than imperative languages for object-oriented databases ([1, 25],
for instance) that have similar expressive power.

e To cleanly integrate a declarative language with an imperative language.

Such an integration is extremely useful since several operations such as updating the
database in response to changes in the real world, input/output, etc., are imperative
notions, whereas one can easily express many complex queries declaratively. A clean
integration allows the programmer to do tasks in either the declarative style or the
imperative style, whichever is appropriate to the task, and mix and match the two
programming styles with minimal impedance mismatch.

o To keep object storage and retrieval orthogonal to the rest of the design, so that
techniques developed for implementing object stores can be used freely in conjunc-
tion with other optimizations in the declarative query language.

5.1.1 Overview of the Coral++ Design

The central observation is as follows: Object-oriented features such as abstract data
types, encapsulation, inheritance and object-identity are essentially extensions of the
data model. We can achieve a clean integration of these features into a deductive query
language by allowing the deductive language to draw values from a richer set of domains,
and by allowing the use of the facilities of the deductive language to maintain, manipulate
and query collections of objects of a given type.

In relational query languages such as SQL, values in fields of tables have been re-
stricted to be atomic constants (e.g., integers or strings). In logic programs, values can
be Herbrand terms, which are essentially structured values. In Coral++, values can
additionally be of any class definable in C+-+ [84]. (We chose C++ since it provides a
well-understood and widely used object-oriented type system.)

Coral++ provides support for maintaining extents, or collections of objects of a given
type, either in a simple manner that reflects the inclusions associated with traditional
IS-A hierarchies, or in a more sophisticated way through the use of declarative rules. The

128

idea is to automatically invoke code that handles extent maintenance whenever objects
are created or destroyed, and provide constructs to use these extents in Coral++. We
also provide support for creating and manipulating various types of collections: sets,
multisets, lists and arrays, whereas traditionally only sets and multisets are provided.

Coral++ separates the querying of objects from the creation, updating and deletion of
objects, and provides separate sub-languages for these two purposes. This methodology
stems from the view that querying is possible in a declarative language, whereas creation,
updates and deletion should be performed only using an imperative language. We discuss
querying in this chapter and refer the interested reader to Srivastava et al. [83] for a
description of the imperative features of Coral++.

In summary, the proposal is simple, combines features of C++ and Coral—two ex-
isting languages—with minimal changes to either, and yields a powerful combination of
the object-oriented and deductive paradigms. The essential aspects of the integration
are not specific to our choice of C++ and Coral, and the ideas can readily be used to
combine other object-oriented and deductive systems in a similar manner.

5.1.2 Motivating Examples

Example 5.1 (A University Database) A university database maintains information
about various departments as well as information about students and employees. The
Coral++ class declarations below specify both structural and behavioral properties of
objects of these types.! (These class declarations are not complete, and are given only
to illustrate some features of the language.)

class employee ; /* forward declaration */
class date ;
class department {
public:
employee *head ;
int budget() ;
}s
class person {
private:
date *date_of birth ;

1Coral++ class declarations have the same syntax as C++ class declarations.

129

public:
char *name ;
int age();

i
class employee : public person {
public:
int salary ;
department *dept ;
employee *supervisor ;
i
class student : public person {
public:
department *dept ;

};

The above class declarations have the following meaning. Each object of type person
has two “stored” attributes called name and date_of birth, and a “computed” attribute
called age, which may be computed using the date of birth of the person and the current
date. Each object of type student is also of type person and hence inherits the stored
and computed attributes of type person. In addition, each student has a certain major
department. Similarly, each object of type employee is also of type person and hence
inherits the attributes of type person. In addition, each employee has a salary, is affiliated
to a department, and reports to a supervisor. Each object of type department has an
attribute called head, and an attribute called budget which may be computed by adding
the funding the department receives from several sources.

Assume that for each of these classes, the class extent (i.e., the collection of all objects
that are instances of the class) is maintained as a relation, and the relation name is the
same as the class name. One can now ask several queries of interest against this database.
For instance, the following query might be of interest for accounting purposes: “Find all
departments where the sum of the salaries of the employees has exceeded the department
budget.” The corresponding Coral++ program/query is:

budget_exceeded(D) : — sum.sals(D, S),
S > ((department*)D) — budget()-
sum_sals(D, sum(< S >)) : — employee(E), D = ((employeex)E) — dept,
S = ((employeex)E) — salary.

130

Coral++ programs use a rule-based syntax, similar to Coral and logic programming
languages. A difference is that Coral++ allows the use of C++ expressions (for instance,
((employeex)E) — dept) in rules to access attributes and invoke methods. Each Coral++
rule can be read as an “if-then” statement in logic. For instance, the meaning of the first
rule is “if the sum of salaries in a given department D is S and S is greater than the budget
of department D, then the budget of department D has been exceeded”; the second rule
gives a way of computing the sum of the salaries of the employees in a given department.

The Coral+-+ program corresponding to the query “Find all students in departments
where the head of the department is named John” is:

jds(D,< S >): — j-dept(D), student(S), D = ((student*)S) — dept.
j-dept(D) : — department(D),
((department*)D) — head — name =" John”.

The second rule in the above program is used to find out all departments where the head
of the department is named John, and the first rule collects all the students in such
departments.

These two queries can also be expressed in object-oriented extensions of SQL, and
are provided here to primarily illustrate the difference in program specification styles. O

Example 5.2 (An Engineering Application) An engineering database for a man-
ufacturing company stores information about the various parts manufactured, along
with information about composition of parts. Some Coral++ class declarations for this
database are given below.

class part {
private:
int functionality test ;
int connection_test ;
public:
char *part._type ;
int tested ();
s
class connection {
public:
part *from ;

131

part *to;
char *ctype ;

|8

The above class declarations have the following meaning. Each object of type part
has a certain part type (for instance, “wrench,” “numerically controlled machine,” etc.),
and one can check if a part has been tested to be working. Parts may be connected
together in several different ways, and each object of type connection indicates a binary
relationship between two parts. Connections can also be of many different types (for
instance, “subpart,” “electrical connection,” etc.), and this is stored in the attribute
ctype. "

The following Coral+-+ program can be used to express the bill-of-materials problem:
“Find all subparts of a given part”. This problem is of considerable practical importance
in inventory control, and other applications.

subpart(P1, P2) . — connection(C), P1 = ((connectionx)C) — from,
P2 = ((connectionx)C) — to,
((connection*)C) - ctype = " subpart”.
subpart(P1, P3) . — connection(C), P1 = ((connectionx)C) — from,
P2 = ((connectionx)C) — to,
((connectionx)C) — ctype = " subpart”,
subpart(P2, P3).
all_subparts(P1, < P2 >): — subpart(P1, P2).

Consider the following query from [74]: “Find if a given part is working, where a part
is known to be working either if it has been (successfully) tested or if it is constructed
from smaller parts, and all the smaller parts are known to be working.” This can be
expressed in Coral++ as follows:

working(P) : — part(P), ((partx)P) — tested() = 1.
working(P) : — connection(C), P = ((connectionx)C) — from,
((connectionx)C) — ctype =" subpart”,
not has_suspect_part(P).
has_suspect.part(P) : — connection(C), P = ((connection¥)C) — from,
P1 = ((connectionx)C) — to,
((connectionx)C) — ctype =" subpart”,
not working(P1).

132

Neither of these two queries can be expressed in SQL or its object-oriented extensions
because of the recursive definitions of subpart and working. O

5.2 Outline of Chapter

"The rest of this chapter is structured as follows.

We describe the Coral+-+ object-oriented data model in Section 5.3. The Coral+-+
data model combines the Coral data model, which is presented in Section 5.3.1, with the
C++ type system, which is briefly described in Section 5.3.2. In addition, the Coral+-+
data model includes new types of relations, and these are discussed in Section 5.3.3.

The Coral+-+ declarative query language is presented in Section 5.4. The Coral++
query language combines the Coral query language, which is briefly described in Sec-
tion 5.4.1, with the use of C++ class extents and C++ expressions in rules. We discuss
the incorporation of these features into the query language in Sections 5.4.3 and 5.4.4.

We discuss in detail how Coral+-+ is implemented using the existing Coral run-time
system in Section 5.5. In Section 5.5, we also describe how queries are evaluated in the
Coral++ system, and the design decisions made to enable ease of implementation.

Finally, in Section 5.6, we compare our proposal with some of the related proposals

in the literature.

5.3 Coral++: Data Model

In database languages such as SQL, values in fields of relational tables are unstructured,
i.e., restricted to be of a basic type supported by the system (e.g. integers or strings). In
deductive database languages such as LDL [59] and Coral [65], values can be Herbrand
terms, which are essentially structured values. However, data modeling in many scientific
and engineering applications require support for more sophisticated features such as ab-
stract data types, encapsulation, methods and inheritance. To support the data modeling
needs of such applications, the Coral++ data model enhances the untyped Coral data
model [65] with the C++ class facility. Values in Coral++ can additionally be of any
class definable in C+-+, which can be manipulated using only the corresponding methods,
supporting encapsulation. This allows a programmer to effectively use a combination of
C-++ and Coral.

One of the goals of Coral++ was to integrate Coral with an existing object data

133

model, instead of inventing yet another object data model. By using the C4++ type
system as an object model, our approach is able to benefit from the support of data
abstraction, inheritance, parameterized types, and polymorphism already available in
C++. The choice of C++ was based on practical implementation considerations (Coral is
implemented in C++), but we believe that our approach can also be applied to extending
Coral with an alternative object-oriented data model.

5.3.1 Overview of the Coral Data Model

We informally describe features of the Coral data model using examples. The following
facts could be interpreted as follows: the first fact indicates that John is an employee
in the “Toys for Tots” department who has been with the company for 3 years and
makes $35000 annually. The second fact indicates that Joan has worked for the same
department for 2 years and makes $30000 annually.

works_for(john,”Toys for Tots”,3,35000).
works_for(joan,”Toys for Tots”,2, 30000).

In order to express structured data, complex terms are required. In Coral, function
symbols are used as record constructors, and such terms can be arbitrarily nested. The
following fact can be interpreted as: John lives in Madison, and has a street address with

a zip of 53606.

address(john, residence(” Madison”, street_add(” Oak Lane”, 3202),53606)).

Sets and multisets are allowed as values in Coral; {peter, mary} is an example of a
set representing the children of John, {60000, 35000, 35000, 30000} is an example of a
multiset representing the salaries of employees in the “Toys for Tots” department.

Coral permits variables within facts. A fact with a variable in it represents a possibly
infinite set of ground facts. Such facts are often useful in knowledge representation,
natural language processing and could be particularly useful in a database that stores
(and possibly manipulates) rules. There is another, possibly more important, use of
variables — namely to specify constraint facts {39, 64].

However, the Coral data model does not allow values of (arbitrary) user-defined types
in facts. These are extremely useful in several applications, especially when the user-
defined types have behavioral components.

134

5.3.2 Overview of the C++ Type System

C++ allows the specification of user-defined types using the class definition facility.
An implementation of a C++ class is a combination of the attributes that specify the
“structure” of the class along with the implementation of the methods that specify the
“behavior” of the class. Attributes and methods of a class may be specified as either
“public,” “private,” or “protected,” providing different levels of encapsulation. Classes
can be organized in an inheritance hierarchy in C-+++, and a class can have more than one
subtype as well as more than one supertype (i.e., C++ supports multiple inheritance).
The class declarations of Examples 5.1 and 5.2 illustrate some of these features.

By integrating the C++ object model with Coral, the Coral++ user benefits from
having sophisticated data modeling and manipulation capabilities.

5.3.3 Relations in Coral4+

Coral supports database relations that are multisets (i.e., unordered collections) of tuples.
Typically, current database systems support only multisets of tuples, and the utility of
these collections can be seen from the variety of applications written in SQL. However,
for many applications ([71, 76]) involving sequence data and spatial data, for example,
ordered collections of list-type and array-type are more natural. Hence, Coral++ also
supports list-relations and array-relations, in addition to multiset-relations.

Each of these relation types supports the operation of iterating through the elements
in the collection. The difference is the primary mode of access to elements in the collec-
tion. Multisets support unordered access, lists support ordered access in the total order
of the list elements, and arrays support access in the array index order. In addition, each
collection type can have value-based indexed modes of access, where the index can be on
specified attributes or patterns.

Example 5.3 (Stock Market Data) A stock market database maintains daily in-
formation about the stocks traded for each company. A small fragment of such type
information is shown below:

class DailyStockInfo {
public:
double low ;
double high ;
double average () ;

135

int volume_traded ;

};

Stock market information for individual companies can be naturally represented as
array relations, which results in extremely efficient querying and manipulation of such
information, as is demonstrated in the Mimsy system [76]. O

5.4 Coral++: Query Language

The Coral++ query language is modular, declarative and provides support for generalized
recursive view definition. It is based on the Coral query language [65] which supports
general Horn clauses with complex terms, multiset-grouping, aggregation and negation.
Coral++ extends the Coral query language by allowing C++ expressions for accessing
attributes and invoking (side-effect free) methods of classes in program rules. Declarative
Coral-++ programs can be largely understood in terms of standard Horn clause logic with
C++ attribute accesses and method invocations treated as external functions.

Coral+-+ incorporates several important design decisions in the way the data model
interacts with the declarative query language:

e The notion of a class is kept orthogonal to the related notion of class extents. This is
achieved by providing the Coral++ programmer considerable flexibility in explicitly
defining and maintaining collections of objects of a given class. We describe this in
more detail in Section 5.4.3.

e The C++ expression truth semantics is kept distinct from the Coral++ predicate
truth semantics. This is achieved by allowing C++ expressions to appear only in
the argument positions of predicates (including evaluable predicates such as =, <,
etc.). This is discussed in more detail in Section 5.4.4.

o Declarative rules in Coral++ do not create new objects that are instances of user-
defined C++ classes, although they can create facts describing relationships be-
tween existing objects. The rationale for this decision is discussed in Section 5.4.5.

One of the major advantages of our proposal is that evaluation of Coral++ programs
is based on the existing Coral run-time system, which facilitates implementation consid-
erably. More generally, it suggests that optimization techniques developed for deductive

136

and for object-oriented database languages can be combined cleanly. In this section, we
first give an overview of the Coral query language and the evaluation of Coral queries,
and then discuss the Coral++ design decisions.

5.4.1 Overview of the Coral Query Language

Coral supports and efficiently evaluates a class of programs with negation that prop-
erly contains the class of non-floundering left-to-right modularly stratified programs (see
Chapter 3). Intuitively, this class is one in which the subgoals and answers generated
during program evaluation involve no cycles through negation. There are two ways in
which sets and multisets can be created using Coral rules, namely, multiset-enumeration
({ }) and multiset-grouping (<>). The following examples illustrate the use of these
constructs:

children(john, {mary, peter, paul}).
p(X, <Y >): —q¢(X,Y,Z).

The second rule uses facts for ¢ to generate a multiset S of instantiations for the
variables X,Y, and Z. For each value z for X in this set it creates a fact p(z, Ty 0x=25),
where 7y is a multiset projection (i.e., it does not do duplicate elimination). Thus,
with facts ¢(1,2,3),9(1,2,5) and ¢(1,3,4), we get the fact p(1,{2,2,3}). The use of the
multiset-grouping construct in Coral is similar to the grouping construct in LDL, except
that in LDL the grouping construct creates a set (as opposed to a multiset).

Coral requires the use of the multiset-grouping operator to be left-to-right modularly-
stratified (in the same way as negation). This ensures that all derivable ¢ facts with a
given value z for X can be computed before a fact p(z, -) is created.

Coral provides several standard operations on sets and multisets as system-defined
predicates. These include member, union, intersection, dif ference, subset, cardinality,
multisetunion and makeset. It also allows several aggregate operations on sets and
multisets: these include count, min, maz, sum, product, average and any. Some of the
aggregate operations can be combined directly with the multiset-generation operations
for increased efficiency (see Ramakrishnan et al. [65] for further details).

A Coral declarative program can be organized as a collection of interacting modules.
Modules provide a way, as the name suggests, to modularize Coral code. In developing
large applications, incremental program development and testing is critical, and modules
in Coral provide the basis for this kind of programming. A module in Coral consists of

137

a collection of rules defining a collection of predicates. A subset of these defined predi-
cates are named as exported predicates, and other modules can pose queries over these
predicates. The query forms permitted for each exported predicate are also indicated in
the export declarations. Non-exported predicates are not visible outside this module and
this provides a way of encapsulating the definition of Coral predicates.

5.4.2 Evaluating Coral Queries

The evaluation of a Coral module, given a query on an exported predicate of a module, is
determined by the control annotations in the module, and the expert user can control the
evaluation in several ways. We refer the interested reader to [65] for a discussion of these
annotations and their effect on module evaluation. In the absence of any user-specified
annotations, the Coral system chooses from among a set of default evaluation strategies.

For declarative modules, Coral evaluation, using these default strategies, is guaranteed
to be sound, i.e., if the system returns a fact as an answer to a query, that fact indeed
follows from the semantics of the declarative program. The evaluation is also “complete”
in a limited sense — as long as the execution terminates, all answers to a query are
actually generated. It is possible however, to write programs that do not terminate; in
some such cases (e.g., programs without negation, set-grouping or aggregation) Coral is
still complete in that it enumerates all answers in the limit.

5.4.3 Class Extents in Coral++

Coral++ keeps the notion of a class (as an encapsulation of data and methods) orthogonal
to the related notion of class extents (i.e., the collection of all objects of the given class).
Although maintaining class extents is necessary for iterating over all objects of a given
class (as in Example 5.2), Coral++ does not automatically maintain class extents since
doing so is very expensive, and one does not always need to iterate over all objects of a
given class.

Coral++ provides the programmer considerable flexibility in explicitly defining and
maintaining collections of objects of a given class. Collections of objects can be main-
tained either in a simple manner that reflects the inclusions associated with traditional
IS-A hierarchies, or in a more sophisticated way through the use of declarative rules.
Coral++ provides functions that handle extent maintenance, and these functions can be
explicitly invoked from class constructors and destructors. Such class extents are main-
tained as Coral+-+ relations, and can be used as literals in the bodies of Coral++ rules.

138

The Coral++ extent maintenance functions take the name of the relation as a parameter,
and hence the user can choose the name of extent relations for user-defined classes; in
this chapter, we use the class name as the name of the class extent for simplicity. For
instance, the following literal can be used to iterate over the extent of class part, in the
body of a Coral++ rule:

part(P).

The logic variable P is successively bound to (pointers to) objects in the extent. (See
Example 5.2 for further uses of class extents.)

5.4.4 C++ Expressions in Rules

By integrating the C+-+ object model with the Coral data model, Coral++ allows facts
to contain objects of C++ classes. Such objects can be manipulated only using the
corresponding methods, supporting encapsulation. This is achieved by allowing C++
expressions in Coral+-+ rules to access attributes and invoke methods of objects. For
example, one can iterate over all tested parts using:

part(P), ((partx)P) — tested() = 1.

All variables in Coral++ rules are logic variables, and hence Coral++ requires vari-
ables participating in C+- expressions to be type cast to their intended C++- type. For
instance, in the above example, the variable P has to be cast to the type (partx) before
the method tested() of class part can be invoked on the object to which P refers. The
expression P — tested() would result in a compile-time error, since the method tested()
is not defined for logic variables. By supporting type declarations for variables in rules,
the syntax for attribute accesses and method invocations can be simplified; we do not
discuss this further in the thesis.

C-++ expressions can appear only in the argument positions of predicates (including
evaluable predicates such as =, <, etc.) in Coral++ rules. This ensures that the Coral++
predicate truth semantics is kept distinct from the C++ expression truth semantics.
(The C++ type system does not include a boolean type; any arithmetic expression is
considered false if its value is zero, and true otherwise.) For instance, the following are
not legal Coral++ literals, although the C++ conditional expressions can each be used
in the C++- if-statement:

((partx)P) — tested().
((departmentx)D) — head — name.

139

5.4.5 Creating Objects in Coral++

Objects can be created using constructor methods (specified along with the class defi-
nition), and deleted using destructor methods (also specified along with the class defi-
nition). Coral+-+ requires that objects that are instances of C++ classes be explicitly
created only using C++; the database can be populated with such objects only from
C-+-+. However, the Coral++ declarative language can create facts describing relation-
ships between existing objects in the database.

Rules in Coral++ are deliberately restricted to avoid creating new objects, since this
is an issue that is not yet well-understood despite work by Maier [52], Kifer et al. [45],
and others. A number of issues, notably the resolution of conflicts when rules generate
distinct objects with the same object identifier, remain unclear, especially in the presence
of partially specified objects (e.g. some fields are variables, in the Coral++ context).

Similarly, updating and deleting objects that are instances of C++ classes should be
performed only using the imperative language. This methodology stems from the view
that the query language has to be declarative, whereas creating, updating and deleting
objects are operational notions.

5.5 Implementing Coral++

One of the fundamental design decisions of our proposal is to use the run-time system of
the Coral implementation [68] as much as possible in the implementation of Coral+-.
Several design decisions are a practical consequence of this:

e The notation for class definitions in Coral++ is the same as in C-++. This allows
the Coral++ class definitions to be handled by the C++ compiler directly.

e All variables in Coral++ rules have to be cast to the appropriate type before invok-
ing a method or accessing an attribute. This permits Coral++ to avoid inferencing
types at compile-time.

As a consequence of these design decisions, the compilation and evaluation of a
Coral++ program possibly augmented with class definitions proceeds as follows. (Fig-
ure 5.11 depicts the Coral++ program compilation process pictorially.) First, the user
compiles the class definitions and the method definitions (if any) along with the basic
Coral++ system to create an enhanced Coral++ system that “knows” about these new

140

Vanilla Coral++
system

\ Enhanced Coral++
) Complle System
user—defined classes AT A
+ interpret i 4

Coral program y

«| user Coral++
program

>0

Al
"l method definitions P p
pid /
Ve 7/
\ preprocessed < /
S

S,

Coral external

incrementally
compile & load

predicates

Figure 5.11: Coral++ Program Compilation

classes; Section 5.5.1 describes this process in more detail. Second, Coral+- program
modules go through a translation phase (at run-time) for handling attribute accesses and
method invocations; Section 5.5.2 describes this process in more detail. (These two pro-
cesses are indicated using solid arrows in Figure 5.11.) Finally, the translated programs
are directly evaluated using the Coral+-+ interpreter. (This process is indicated using
dashed arrows in Figure 5.11.)

5.5.1 Implementing Classes and Extents

We briefly describe the Coral run-time system with a view to describing the implemen-
tation of Coral+-+. The Coral system is implemented using C++ and all Coral data
types are represented as C++ classes. The root of all data types is the virtual class
CoralArg; specific types such as complex terms and multisets are all subclasses of the
class CoralArg. The class CoralArg defines virtual methods that must be defined for
each Coral data type; this includes methods such as the method “print”, which is used
to display the value to the Coral user.

Our approach for a practical implementation of Coral++ classes is summarized as
follows:

o User-defined classes in Coral++ have the same syntax as C+-+ classes. All class
definitions including method definitions are completely handled using the C++
compiler. Subtyping (including multiple inheritance) in Coral++ is automatically

141

implemented using the inheritance mechanism of C++.

o All user-defined Coral-++ classes should be subclasses of the root class CoralArg.
Because all values used in Coral++ rules at run-time are of a type derived from
CoralArg, Coral++ does not have to perform any dynamic type inferencing and
type conversion to determine the methods that need to be invoked during rule
evaluation.

e We provide C+-+ functions that can be used to maintain class extents. The user
has to explicitly insert these functions into the definitions of the constructor and
destructor methods of each class whose extent has to be maintained.

5.5.2 Program Evaluation in Coral++

Program evaluation in Coral+-+ requires modifying the existing program evaluation strat-
egy in Coral to access named attributes and invoke methods of objects, instead of simply
accessing relation field values using position notation. In a Coral++ program these
requirements can be satisfied as follows:

e First, for each attribute access and method invocation in a Coral++ rule, the
Coral+-+ preprocessor generates external (C++) predicates that perform the ap-
propriate attribute access or method invocation at run-time. This code can be
separately compiled and incrementally loaded.

This approach relegates the task of binding the method name with the actual code
to invoke the method to the C+-+ compiler. The alternative approach of invoking
the C+-+ methods directly from the Coral+-+ interpreter would involve duplicating
some of the tasks of the C-++ compiler including maintaining symbol tables and
virtual function tables, which would be quite impractical.

e Second, the program is translated to replace all occurrences of method invocations
and attribute accesses by the appropriate external predicates.
Appropriate indexes are also created at this time for providing associative access

to relations containing objects.

e Finally, the translated program is evaluated using the Coral interpreter for evalu-
ating rules, modules and programs.

142

The evaluation of Coral4++ modules can use the query-directed rewriting optimiza-
tions as well as the various optimizations of the existing Coral run-time system.

The decision to relegate the task of determining which code is to be evaluated at
method invocation to the C++ compiler results in the following practical design decision
for methods invoked in Coral++ rules: All uses of rule variables should be cast to the
appropriate type before accessing an attribute or invoking a method. This is done to
avoid type inferencing in Coral++.

The current Coral++ implementation does not parse C++ expressions. Consequently,
C++ expressions in declarative rules must be set apart syntactically for recognition by
the Coral++ preprocessor. This is done by using the reserved symbol “#” to surround
each C+-+ expression within a declarative Coral++ rule. Logic variables within these
C-++ expressions are also distinguished syntactically by preceding each variable with the
“$” symbol.

Thus, the query “Find all departments where the sum of the salaries of the employees
has exceeded the department budget,” from Example 5.1, would be written in the current
Coral++ implementation as the following program:

budget_exceeded(D) : — sum-sals(D, S),
S > #((department*)$D) — budget()#.
sum-sals(D, sum(< S >)) : — employee(E),D = #((employeex)$E) — dept#,
S = #((employeex)$E) - salary+.

5.6 Related Work

There are many proposals in the literature ([3, 15, 18, 24, 28, 32, 37, 38, 49, 51, 57, 60,
77, 100], among others) for integrating object-oriented databases and declarative query
languages. Typically, these proposals support features such as complex objects, data
abstraction, inheritance and polymorphism in their data model, and the ability to pose
queries on collections of objects using a suitable query language. The Coral+-+ data
model and query language have been influenced by many of these proposals. Some of the
important aspects of our design, and how related proposals differ are as follows:

o Coral+- uses the type system of an existing object-oriented programming language
(i.e., C++) as an object data model rather than inventing yet another object data
model which is the approach taken by, for instance, [3, 28, 32, 37, 45, 57, 77]. This

143

approach benefits from the support for data abstraction, inheritance, polymorphism
and parametrized types already available in C++.

Other query languages that use the C++ type system include CQL++ [24], Ob-
jectStore [60] and ZQL[C++] [15].

o The Coral++ declarative query language supports the combination of Coral rules
with C++ expressions in a clean fashion. This approach can effectively utilize the
Coral implementation and the C++ compiler.

SWORD [57] and ObjectStore [60], for instance, take the alternative approach of
inventing new syntax to query an object data model.

e Coral+-+ is more expressive than most of the other proposals [24, 28, 32, 77]. In
particular, it provides a facility for generalized recursive view definition in the query
language. It also supports unordered relations (i.e., sets and multisets) and ordered
relations (lists and arrays), which are useful in applications involving sequence
data [76).

o The Coral+-+ query language can be largely understood in terms of standard Horn
clause logic (with C-++ method invocations treated as external functions), unlike
Noodle [57] which is based on HiLog [20] and XSQL [45] which is based on F-
logic [46]. Bottom-up evaluation of HiLog and F-logic programs is not as well
understood as the evaluation of Horn clause programs and is likely to be more
expensive.

e Our proposal includes a detailed implementation design that clearly demonstrates
the practicality of extending Coral (an existing deductive system) with object-
oriented features of C++ (a widely-used object-oriented type system). An initial
implementation based on the run-time system of the Coral implementation [68] is
underway.

We now examine some of the closely related proposals in more detail.

5.6.1 Proposals Based on C++

ZQL[C++] [15] and CQL~++ [24] are the proposals most closely related to Coral++ since
they are also based on the C++ object model.

144

The Coral++ query language is more expressive than CQL++ or ZQL|C++], which
are based on SQL. However, each of these proposals is integrated with a computationally
complete imperative language: CQL++ with O++ [1], and Coral++ and ZQL[C++]
with C++.

CQL++ has a syntax similar to SQL syntax for class definition. These classes do
not have any facility for data abstraction (i.e., all class members are public). Further,
accessing an attribute or invoking a method in a CQL++ query uses the “dot notation”
of SQL, i.e., the system has to dereference pointers automatically. In Coral++ and
ZQL|C++], class definitions can use all the features of C++ including data abstraction,
and C++ expressions can be used for accessing attributes and invoking methods in a
query.

In Coral++ and CQL++, path expressions are treated as values that can be argu-
ments to boolean-valued predicates. ZQL[C+-+], on the other hand, allows C++ expres-
sions to serve directly as predicates. Since ZQL[C++] also allows SQL subqueries to
appear as predicates, it does not distinguish between the predicate truth semantics and
the C4-+ expression truth semantics, unlike Coral++ and CQL4-+.

5.6.2 Proposals Based on Deductive Languages

The COMPLEX data model [32] is a structural, typed data model that adds features
such as object identity, object sharing and inheritance to the relational model. It does not
support abstract data types, encapsulation, or methods; consequently, the data model is
not as rich as the Coral4-+ data model. The query language of COMPLEX is C-Datalog
which can be automatically translated to Datalog, and evaluated using an engine for
evaluating Datalog programs. This translation is possible because of the lack of behav-
joral features and polymorphism in the data model. It is not clear how the translation
approach generalizes once we introduce behavioral features in the model.

LDL++ [3] is a deductive database system whose type system extends that of LDL [59]
with an abstract data type facility that supports inheritance and predicate-valued meth-
ods. However, it does not support object sharing or ADT extents, and its support of
encapsulation and object identity is limited. Consequently, the data model is not as
rich as the Coral++ data model. Further, LDL++ methods can be defined only using
LDIL-+ rules; however, this can be done more naturally than in Coral++.

145

5.6.3 Proposals Based on Non-Horn Logics

XSQL [45] extends SQL by adding path expressions that may have variables that range
over classes, attributes and methods. This facilitates querying schema information as
well as instance-level information in object-oriented databases, using a single declarative
query language. Noodle [57, 58] is a declarative query language for the SWORD declar-
ative object-oriented database. Unlike Coral++ and XSQL, Noodle does not use path
expressions to access attributes and invoke methods on objects. Instead, Noodle uses a
syntax reminiscent of HiLog [20] for this purpose. Noodle also has a number of built-in
classes to facilitate schema querying. Orlog [37] combines the modeling capabilities of
object-oriented and semantic data models, and is similar to Noodle in that its logic-based
language for querying and implementing methods uses a higher-order syntax with first
order semantics.

In Coral-++, methods and other aspects of data abstraction borrowed from C++ are
viewed as being outside the scope of the deductive machinery, notably the unification
mechanism. A more comprehensive treatment of features like path expressions (e.g.,
as in XSQL [45]) may well enable more efficient (i.e., set-oriented) processing of certain
queries. We make no attempt to give these features a logical semantics; we simply borrow
the C++ semantics, in order to enable ease of implementation.

The semantic foundations of XSQL, Noodle and Orlog (i.e., F-logic [46] and HiLog),
have features that are difficult to support efficiently, at least in a bottom-up implementa-
tion. In particular, variables can get bound to predicate names only at run-time, and this
causes problems with analysis of strongly connected components (SCCs) and can make
Semi-naive evaluation inefficient. In contrast, one of the design motivations of Coral++
was to have a language that is rich in expressive power and can be efficiently evaluated
within the framework of existing evaluation techniques.

There are several other interesting proposals for combining semantically rich data
models with deductive databases that are less closely related to Coral++. Concept-
Base [38] and Quixote [100] are two such systems. ConceptBase is based on the Telos
knowledge representation language, and allows the specification of methods using de-
ductive rules and integrity constraints. Quixote is a knowledge representation language
that allows subsumption constraints, knowledge classification and inheritance and query
processing for partial information databases.

146

5.7 Discussion

We described Coral+-+, an object-oriented extension of Coral. The Coral++ data model
extends the structural data model of Coral by integrating it with the C++ type system.
The Coral++ query language extends Coral by allowing C++ expressions for accessing
attributes and invoking methods of objects. The Coral++ query language is much more
expressive than object-oriented extensions proposed for SQL, while remaining declarative
at the same time. Consequently, a variety of rewriting and evaluation-time optimizations
can be performed to improve efficiency; in particular, the optimizations performed for
Coral programs are applicable to Coral++ programs as well. The Coral++ imperative
language can be used to create, update and remove objects from the database. It is
cleanly integrated with C++, providing the user the ability to program in a combination
of programming styles, with minimal impedance mismatch.

We proposed an implementation strategy for Coral++ that effectively uses the ex-
isting Coral run-time system [68] and the C-++ compiler to implement object-oriented
features of the data model and the query language. This, in our view, is one of the
strong points of our proposal, and distinguishes it from many proposals in the literature
describing query languages for object-oriented databases. The implementation strategy
is orthogonal to issues such as object clustering, caching, indexing, storage management,
etc. Although we described the implementation using the C-++ class hierarchy, Coral+4+
does not depend on C++ implementation techniques for classes and class instances; it
could also be implemented on top of a typed, persistent object store. We believe that
Coral-+ is a realistic and useful proposal for engineering, scientific and multi-media ap-
plications that can benefit from object-oriented data models and high-level data access
and manipulation capabilities.

Chapter 6

Conclusions

This thesis contributes to our goal of making deductive database technology practical
and usable in two main areas: optimization techniques for efficiently answering queries
in deductive databases, and a combination of an object-oriented data model with a
deductive query language for the natural modeling and expressive querying of complex
information.

We presented a bottom-up evaluation technique, Ordered Search, that can be used
to efficiently evaluate programs with left-to-right modularly stratified negation, multiset-
grouping and aggregation. We provided theoretical results to demonstrate that Ordered
Search is more efficient than other bottom-up techniques in the literature. We also
provided performance results from the implementation of Ordered Search in the Coral
deductive database system to show the practicality of this evaluation technique. While
considerable research still needs to be done for efficiently evaluating arbitrary programs,
we believe that Ordered Search provides a very satisfactory solution for evaluating the
class of left-to-right modularly stratified programs.

We proposed a program transformation technique, Constraint-rewrite, that propa-
gates constraints specified in a program and a query, such that the evaluation of the
transformed program fully utilizes the constraints present in the original program. We
described a uniform framework for our results, and for earlier related work in the lit-
erature on propagating constraint selections. By considering semantic manipulation of
constraints, the techniques presented significantly extend earlier work. The Constraint-
rewrite transformation can be combined with the Magic-sets transformation to prop-
agate constant binding information in addition to propagating constraint information.
We believe that our techniques provide some important insight into the optimization of

147

148

constraint query languages. However, there is considerable research to be done on the
optimization and evaluation of constraint query languages before this technology become
practical; our work is an initial step in this direction.

Finally, we presented a deductive, object-oriented language, Coral++, that combines
the data modeling features of C++ and the querying capability of Coral—two existing
languages—with minimal changes to either, and yields a powerful combination of the
object-oriented and deductive paradigms. We described an implementation strategy for
Coral+-+ that effectively uses the existing Coral run-time system and the C+-+ com-
piler to implement object-oriented features of the data model and the query language.
Coral+-+ is being implemented using this strategy. We believe that the Coral++ ap-
proach of combining an existing object data model with a deductive query language is
a very practical avenue to providing users the ability to represent and query complex
information.

Bibliography

[1] R. Agrawal and N. H. Gehani. Ode (Object Database and Environment): The
language and the data model. In Proceedings of the ACM SIGMOD Conference on
Management of Data, Portland, Oregon, June 1989.

[2] K. R. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89-148. Morgan-Kaufmann, San Mateo, Calif., 1988.

[3] N. Arni, K. Ong, S. Tsur, and C. Zaniolo. The LDL++ system: Rationale, tech-
nology and applications. (Submitted), 1993.

[4] 1. Balbin, D. B. Kemp, K. Meenakshi, and K. Ramamohanarao. Propagating
constraints in recursive deductive databases. In Proceedings of the North American
Conference on Logic Programming, pages 16-20, Oct. 1989.

[5] L. Balbin and K. Ramamohanarao. A generalization of the differential approach to
recursive query evaluation. Journal of Logic Programming, 4(3), September 1987.

[6] F. Bancilhon. Naive evaluation of recursively defined relations. In Brodie and
Mylopoulos, editors, On Knowledge Base Management Systems — Integrating
Database and AI Systems. Springer-Verlag, 1985.

[7] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange
ways to implement logic programs. In Proceedings of the ACM Symposium on
Principles of Database Systems, pages 1-15, Cambridge, Massachusetts, March
1986.

(8] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query
processing strategies. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 16-52, Washington, D.C., May 1986.

149

150

[9] M. Baudinet, M. Niezette, and P. Wolper. On the representation of infinite temporal
data and queries. In Proceedings of the Tenth ACM Symposium on Principles of
Database Systems, pages 280-290, Denver, Colorado, May 1991.

[10] R. Bayer. Query evaluation and recursion in deductive database systems. Unpub-
lished Memorandum, 1985.

[11] C. Beeri and R. Ramakrishnan. On the power of Magic. In Proceedings of the
ACM Symposium on Principles of Database Systems, pages 269-283, San Diego,
California, March 1987.

[12] C. Beeri, R. Ramakrishnan, D. Srivastava, and S. Sudarshan. The valid model
semantics for logic programs. In Proceedings of the ACM Symposium on Principles
of Database Systems, pages 91-104, June 1992.

[13] C. Beeri, R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Magic implementa-
tion of stratified programs. Manuscript, September 89.

[14] N. Bidoit and P. Legay. WELL! An evaluation procedure for all logic programs. In
Proceedings of the International Conference on Database Theory, pages 335-348,
Paris, France, December 1990.

[15] J. A. Blakeley. ZQL[C++]: Integrating the C++ language and an object query
capability. In Proceedings of the Workshop on Combining Declarative and Object-
Oriented Databases, pages 138-144, Washington, D.C., May 1993.

[16] A. Brodsky and Y. Sagiv. Inference of inequality constraints in logic programs.
In Proceedings of the Tenth ACM Symposium on Principles of Database Systems,
pages 227-240, Denver, Colorado, May 1991.

[17] F. Bry. Query evaluation in recursive databases: Bottom-up and top-down recon-
ciled. IEEE Transactions on Knowledge and Data Engineering, 5:289-312, 1990.

[18] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating object-
oriented data modeling with a rule-based programming paradigm. In Proceedings of
the ACM SIGMOD Conference on Management of Data, pages 225-236, Atlantic
City, New Jersey, May 1990.

151

[19] M. Carey, D. DeWitt, J. Richardson, and E. Shekita. Object and file management
in the EXODUS extensible database system. In Proceedings of the International
Conference on Very Large Databases, Aug. 1986.

[20] W. Chen, M. Kifer, and D. S. Warren. Hilog: A first-order semantics for higher-
order logic programming constructs. In Proceedings of the North American Con-
ference on Logic Programming, pages 1090-1114, 1989.

[21] W. Chen and D. S. Warren. A goal-oriented approach to computing the well
founded semantics. In Proceedings of the Joint International Conference and Sym-
posium on Logic Programming, 1992.

[22] D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Nagvi, S. Tsur, and C. Zaniolo.
The LDL system prototype. IEEE Transactions on Knowledge and Data Engineer-
ing, 2(1):76-90, 1990.

[23] J. Chomicki. Polynomial time query processing in temporal deductive databases.
In Proceedings of the Ninth ACM Symposium on Principles of Database Systems,
pages 379-391, Nashville, Tennessee, Apr. 1990.

[24] S. Dar, N. H. Gehani, and H. V. Jagadish. CQL++: An SQL for a C++ based
object-oriented DBMS. In Proceedings of the International Conference on Fxtend-
ing Database Technology, Vienna, Austria, Mar. 1992. (A full version is available
as AT&T Bell Labs Technical Memorandum 11252-910219-26).

[25] O. Deux. The O, database programming language. Communications of the ACM,
Sept. 1991.

[26] S. W. Dietrich. Extension tables: Memo relations in logic programming. In Pro-
ceedings of the Symposium on Logic Programming, pages 264-272, 1987.

[27] A. C. Fong and J. Ullman. Induction variables in very high-level languages. In Proc.
Third ACM Symposium on Principles of Programming Languages, pages 104-112,
1976.

[28] L. J. Gallagher. Object SQL: Language extensions for object data management.
In Proceedings of the ISMM First International Conference on Information and
Knowledge Management, pages 17-26, Baltimore, Maryland, Nov. 1992.

[29]

[30]

[31]

[32]

[33]

[34]

152

S. Ganguly, S. Greco, and C. Zaniolo. Minimum and maximum predicates in logic
programming. In Proceedings of the ACM Symposium on Principles of Database
Systems, 1991.

P. Gardner and J. Shepherdson. Unfold/Fold transformations of logic programs. In
J.-L. Lassez and G. Plotkin, editors, Computational Logic. The MIT Press, 1991.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. Fifth International Conference and Symposium on Logic Programming, 1988.

S. Greco, N. Leone, and P. Rullo. COMPLEX: An object-oriented logic program-
ming system. [EEE Transactions on Knowledge and Data Engineering, 4(4):344—
359, Aug. 1992.

A. R. Helm. Detecting and eliminating redundant derivations in deductive database
systems. Technical Report RC 14244 (#63767), IBM Thomas Watson Research
Center, December 1988.

R. Helm. Inductive and deductive control of logic programs. In Proceedings of
the International Conference on Logic Programming, pages 488-511, Melbourne,
Australia, 1987.

T. Imielinski and S. Naqvi. Explicit control of logic programs through rule algebra.
In Proceedings of the ACM Symposium on Principles of Database Systems, pages
103-116, 1988.

7. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of the
1/th ACM POPL, pages 111-119, Munich, Jan. 1987.

M. H. Jamil and L. V. S. Lakshmanan. ORLOG: A logic for semantic object-
oriented models. In Proceedings of the ISMM First International Conference on
Information and Knowledge Management, pages 584-592, Baltimore, Maryland,
Nov. 1992.

M. Jarke, S. Eherer, R. Gallersdoerfer, M. Jeusfeld, and M. Staudt. ConceptBase
— a deductive object base manager. Submitted, 1993.

P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages.
In Proceedings of the Ninth ACM Symposium on Principles of Database Systems,
pages 299-313, Nashville, Tennessee, Apr. 1990.

153

[40] D. Kemp, D. Srivastava, and P. Stuckey. Magic sets and bottom-up evaluation
of well-founded models. In Proceedings of the International Logic Programming
Symposium, pages 337-351, San Diego, CA, U.S.A., Oct. 1991.

[41] D. Kemp, D. Srivastava, and P. Stuckey. Query restricted bottom-up evaluation of
normal logic programs. In Proceedings of the Joint International Conference and
Symposium on Logic Programming, 1992.

[42] D. Kemp and P. Stuckey. Semantics of logic programs with aggregates. In Pro-
ceedings of the International Logic Programming Symposium, pages 387-401, San
Diego, CA, U.S.A., Oct. 1991.

[43] D. B. Kemp. On the Foundations of Query Evaluation in Deductive Databases.
PhD thesis, University of Melbourne, Nov. 1992. Report No. CITRI/TR-92-70.

[44] D. B. Kemp and P. J. Stuckey. Analysis based constraint query optimization.
In Proceedings of the International Conference on Logic Programming, Budapest,

Hungary, June 1993.

[45] M. Kifer, W. Kim, and Y. Sagiv. Querying object-oriented databases. In Proceed-
ings of the ACM SIGMOD Conference on Management of Data, pages 393-402,
San Diego, California, 1992.

[46] M. Kifer and G. Lausen. F-logic, a higher-order language for reasoning about
objects, inheritance and schemes. In Proceedings of the ACM SIGMOD Conference

on Management of Data, 1989.

[47] J.-L. Lassez and M. J. Maher. On Fourier’s algorithm for linear arithmetic con-
straints. Journal of Automated Reasoning, 9:373-379, 1992.

[48] A. Lefebvre. Towards an efficient evaluation of recursive aggregates in deductive
databases. In Proceedings of the International Conference on Fifth Generation

Computer Systems, June 1992.

[49] N. Leone and P. Rullo. Safe computation of the well-founded semantics of Datalog
queries. Information Systems, 17(1):17-31, 1992.

[50] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, second edition,
1987.

154

[51] Y. Lou and Z. M. Ozsoyoglu. LLO: An object-oriented deductive language with
methods and method inheritance. In Proceedings of the ACM SIGMOD Conference
on Management of Data, pages 198--207, Denver, Colorado, May 1991.

[52] D. Maier. A logic for objects. Technical Report Technical report CS/E-86-012,
Oregon Graduate Center, Beaverton Oregon 97006-1999, November 1986.

(53] S. Morishita. An alternating fixpoint tailored to magic programs. In Proceedings
of the ACM Symposium on Principles of Database Systems, 1993.

[54] K. Morris, J. D. Ullman, and A. Van Gelder. Design overview of the NAIL! system.
In Proceedings of the Third International Conference on Logic Programming, 1986.

[55] 1. S. Mumick. Query Optimization in Deductive and Relational Databases. PhD
thesis, Stanford University, Dec. 1991. Report No. STAN-CS-91-1400.

[56] I. S. Mumick, S. J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic con-
ditions. In Proceedings of the Ninth ACM Symposium on Principles of Database
Systems, pages 314-330, Nashville, Tennessee, Apr. 1990.

[57] 1. S. Mumick and K. A. Ross. An architecture for declarative object-oriented
databases. In Proceedings of the JICSLP-92 Workshop on Deductive Databases,
pages 21-30, Washington, D.C., Nov. 1992.

(58] I. S. Mumick and K. A. Ross. The influence of class hierarchy choice on query
language design. In Proceedings of the Workshop on Combining Declarative and
Object-Oriented Databases, pages 152-154, Washington, D.C., May 1993.

[59] S. Naqviand S. Tsur. A Logical Language for Data and Knowledge Bases. Principles
of Computer Science. Computer Science Press, New York, 1989.

[60] J. Orenstein, S. Haradhvala, B. Margulies, and D. Sakahara. Query processing in
the ObjectStore database system. In Proceedings of the ACM SIGMOD Conference
on Management of Data, pages 403-412, San Diego, California, 1992.

[61] R. Paige and J. T. Schwatz. Reduction in strength of high level operations. In Proc.
Fourth ACM Symposium on Principles of Programming Languages, pages 58-71,
1977.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

155

G. Phipps, M. A. Derr, and K. A. Ross. Glue-NAIL!: A deductive database system.
In Proceedings of the ACM SIGMOD Conference on Management of Data, pages
308-317, 1991.

T. Przymusinski. On the declarative semantics of stratified deductive databases.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 193-216, 1988.

R. Ramakrishnan. Magic templates: A spellbinding approach to logic programs. In
Proceedings of the International Conference on Logic Programming, pages 140-159,
Seattle, Washington, August 1988.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. CORAL: Control, Relations
and Logic. In Proceedings of the International Conference on Very Large Databases,
1992.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Efficient bottom-up evaluation
of logic programs. In J. Vandewalle, editor, The State of the Art in Computer
Systems and Software Engineering. Kluwer Academic Publishers, 1992.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule ordering in bottom-up
fixpoint evaluation of logic programs. IEEE Transactions on Knowledge and Data
Engineering, 1993. To appear. (A shorter version appeared in VLDB, 1990).

R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. Implementation
of the CORAL deductive database system. In Proceedings of the ACM SIGMOD
Conference on Management of Data, 1993.

R. Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. In
Proceedings of the International Logic Programming Symposium, 1991.

P. 7. Revesz. A closed form for Datalog queries with integer order. In International
Conference on Database Theory, pages 187-201, France, Dec. 1990.

J. Richardson. Supporting lists in a data model (a timely approach). In Pro-
ceedings of the International Conference on Very Large Databases, pages 127-138,
Vancouver, Canada, 1992.

J. E. Richardson, M. J. Carey, and D. T. Schuh. The design of the E programming
language. ACM Trans. Prog. Lang. Syst., 15(3):494-534, July 1993.

156

[73] J. Rohmer, R. Lescoeur, and J. M. Kerisit. ‘The Alexander method — a tech-
nique for the processing of recursive axioms in deductive database queries. New
Generation Computing, 4:522-528, 1986.

[74] K. Ross. Modular Stratification and Magic Sets for DATALOG programs with
negation. In Proceedings of the ACM Symposium on Principles of Database Sys-
tems, pages 161-171, 1990.

[75] K. A. Ross. The Semantics of Deductive Databases. PhD thesis, Stanford Univer-
sity, Aug. 1991. Report No. STAN-CS-91-1386.

[76] W. G. Roth. Mimsy: A system for analyzing time series data in the stock market
domain. Technical Report To appear, University of Wisconsin at Madison, 1993.

[77] L. A. Rowe and M. R. Stonebraker. The POSTGRES data model. In Proceedings
of the Thirteenth International Conference on Very Large Databases, pages 83-96,
Brighton, England, Sept. 1987.

[78] H. Schmidt, W. Kiessling, U. Giintzer, and R. Bayer. Compiling exploratory and
goal-directed deduction into sloppy delta iteration. In IEEE International Sympo-
sium on Logic Programming, pages 234-243, 1987.

[79] J. Sebelik and P. Stepanek. Horn clause programs for recursive functions. In
K. Clark and S.-A. Tarnlund, editors, Logic Programming. Academic Press, 1982.

[80] H. Seki. On the power of Alexander templates. In Proc. of the ACM Symposium
on Principles of Database Systems, pages 150-159, 1989.

[81] D. Srivastava. Subsumption and indexing in constraint query languages with linear
arithmetic constraints. Annals of Mathematics and Artificial Intelligence, 8(3-4),
1993. To appear.

[82] D. Srivastava and R. Ramakrishnan. Pushing constraint selections. Journal of Logic
Programming, 1993. To appear. (A shorter version appeared in the Proceedings of
the ACM Symposium on the Principles of Database Systems, 1992).

[83] D. Srivastava, R. Ramakrishnan, S. Sudarshan, and P. Seshadri. Coral++: Adding
object-orientation to a logic database language. In Proceedings of the International
Conference on Very Large Databases, 1993.

157

[84] B. Stroustrup. The C++ Programming Language (2nd Edition). Addison-Wesley,
Reading, Massachusetts, 1991.

[85] S. Sudarshan and R. Ramakrishnan. Aggregation and relevance in deductive
databases. In Proceedings of the Seventeenth International Conference on Very
Large Databases, Sept. 1991.

[86] S. Sudarshan and R. Ramakrishnan. Optimizations of bottom-up evaluation with
non-ground terms. In Proceedings of the International Logic Programming Sympo-
sium, 1993.

[87] S. Sudarshan, D. Srivastava, R. Ramakrishnan, and C. Beeri. Extending the well-
founded and valid semantics for aggregation. In Proceedings of the International
Logic Programming Symposium, 1993.

[88] H. Tamaki and T. Sato. Unfold /fold transformations of logic programs. In Proceed-
ings of the Second International Conference on Logic Programming, pages 127-138,
Uppsala, Sweden, July 1984.

[89] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, 1983.

[90] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley, California, 1951.

[91] J. D. Ullman. Bottom-up beats top-down for Datalog. In Proceedings of the Eighth
ACM Symposium on Principles of Database Systems, pages 140-149, Philadelphia,
Pennsylvania, March 1989.

[92] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volumes I and
II. Computer Science Press, 1989.

[93] J. Vaghani, K. Ramamohanarao, D. B. Kemp, Z. Somogyi, and P. J. Stuckey.
Design overview of the Aditi deductive database system. In Proceedings of the
Seventh International Conference on Data Engineering, pages 240-247, Apr. 1991.

[94] A. Van Gelder. Negation as failure using tight derivations for general logic pro-
grams. In Proceedings of the Symposium on Logic Programming, pages 127-139,
1986.

158

[95] A. Van Gelder. Deriving constraints among argument sizes in logic programs.
Annals of Mathematics and Artificial Intelligence, 3:361-392, 1991.

[96] A. Van Gelder. The well-founded semantics of aggregation. In Proceedings of the
ACM Symposium on Principles of Database Systems, pages 127-138, 1992.

[97] A. Van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well-founded se-
mantics for general logic programs. Journal of the ACM, 38(3):620-650, 1991.

[98] L. Vieille. Recursive axioms in deductive databases: The query-subquery approach.
In Proceedings of the First International Conference on FEzpert Database Systems,
pages 179-193, Charleston, South Carolina, 1986.

[99] L. Vieille. From QSQ towards QoSaQ: Global optimizations of recursive queries.
In Proc. 2nd International Conference on Ezpert Database Systems, Apr. 1988.

[100] K. Yokota, H. Tsuda, and Y. Morita. Specific features of a deductive object-
oriented database language QUIXOTE. In Proceedings of the Workshop on Com-
bining Declarative and Object-Oriented Databases, pages 89-99, Washington, D.C.,

May 1993.

Appendix A

Algorithms

A.1 Ordered Search

Ordered-Search below is applicable to programs with function symbols that compute
non-ground facts.

Ordered-Search(P™I, Q™)
{

Let Context be a list of sets of (magic and supplementary) facts,
initially containing Q™.
repeat
repeat
Initialize-SN-Relations(P™, Context).
Apply-Rules(P™). /* Compute new facts */
for each newly computed pair of magic/supplementary facts (@1, Q-)
Insert-in-Context({Q1, Q2), Context)
end for
until (no new facts computed)
Remove-Marked-Subgoals(P™, Context)
until (Context is empty)
return answers to Q™.

}

Initialize-SN-Relations below is used to maintain the differential relations that are
needed to ensure that derivations are not repeated.

159

160

Initialize-SN-Relations(P™¢, Context)
{
Let p1,...,Dn be the original program predicates defined in P™I.
Let m_p1, ..., m-p, be the corresponding magic predicates.
Let sups, ..., supy be the supplementary predicates in P™9.
for each predicate p;,1 <i<n, SN-Update(p;).
for each predicate done-m_p;,1 <1 < m, SN-Update(done-m_p;).
for each predicate m_p;,1 <t <n
mp? = m_p LI 6m_pde. mpddi=¢. Om.pi = ¢.
end for
for each predicate sup;, 1 <1<k
supgl : —supg L §supgt. Ssupld == ¢. bsup}” = ¢.
end for
Let Q; be an unmarked fact in the head of Context; mark Q1.
if (head of Contest is unmarked)
Mark head of Context.
Link head of Context with previous marked node.
Set number of head of Context to number of previous marked node +1.
end if
Let [be the predicate of Q.
519 .= Q.
for each predicate m.p;,1 <i<n, mp;:=mpdLl dm_pdte.

for each predicate sup;, 1 <i <k, sup;:= supd L §supdte.

}

Apply-Rules below is used to make new derivations. It also records which magic
or supplementary fact was used to derive a newly generated magic/supplementary fact.
This is used to maintain dependency information within the Context.

Apply-Rules(P™)
{
Let R be the rules of P™, and let Ry be the Semi-naive rules
obtained from .
Apply each rule in Rgy once; when computing magic facts,
compute pairs (Q1, Q2), where each of @; and @ is either a magic fact
or a supplementary fact, and Q2 was used to compute -

161

}

Insert-in-Context below is used to insert newly generated magic and supplementary
facts into the Context, which maintains dependency information between magic facts.

Insert-in-Context((Q1, Q2), Context)
{
/* @, was used to compute Q1. */
Let p; be the predicate of Q.
(a) if (@, is subsumed by a fact in the done.m._p; relation)
return /* completely solved */
(b) else
(i) Add-After(Q1, @2, Context).
(ii) if (@ is subsumed by some 3 that occurs after Q; in Context)
Delete @ from Context.
(iii) else
Delete occurrences (3 earlier than @, in Context that are
not marked and are subsumed by @.
Let Q4 be the earliest fact in Context subsumed by Q.
/* This fact is either marked, or is the fact @y itself. */
Collapse-Nodes(Q4, @1, Q2, Context).
(iv) end if
(c) end if
}

Add-After below is used to insert Q; in Context, as the last unmarked fact generated
from Q.

Add-After(Q;, @2, Context)
{
(a) if (Q; is in the last marked node in Contezt)
(i) Add a new node containing @; to head of Contezt.
(b) else
(i) Let N be the earliest marked node after @ in Context.

(i) Add a new node containing @, immediately before N in C'ontext.
(c) end if

162

(d) Set the parent of Q1 to be Q.
}

Collapse-Nodes below ensures that all magic facts which cyclically depend on each
other are kept together in a node in Context; these magic facts will be declared fully
evaluated, and moved into the corresponding done.m_p relations together.

Collapse-Nodes(Qy, @1, @2, Context)

{
if (Q4 is marked) /* Q4 is in a different node from Q. */

(a) (i) Remove all marked nodes in Context marked between
(not including) the node containing Q4 and
(including) the node containing Q2.

(ii) Set the Subgoals set of the node of Q4 to the union
of its Subgoals set and the Subgoals sets
of all the removed nodes.

(iii) Set the unmarkedSubgoals set of the node of Q4 to
the union of its unmarkedSubgoals set and the
unmarkedSubgoals sets of all the removed nodes.

(b) Delete the (newly inserted) node containing Q; from Context.
(c) if (@1 is not subsumed by Q)
Add Q; to the Subgoals set as well as the
unmarkedSubgoals set of the resultant node.
(d) end if
end if
}

Remove-Marked-Subgoals below is used to remove facts from Context and insert
magic facts into the done_m._p relations.

Remove-Marked-Subgoals(P™¢, Context)

{

if (all facts in head of Context are marked)
Add all magic facts in head of Context to the corresponding

ddone_m_p™* relations.
Remove head of Context.
end if

A2

Pushing Constraint Selections

163

The following procedure generates and propagates QRP-constraints, though not the min-
imum possible, for each derived predicate of a program P, if it terminates. Procedure
Constraint-rewrite, described later, generates and propagates minimum QRP-constraints.

Gen-Prop-QRP-constraints (P)

{

}

let p1,...,pm be the predicates defined in the program P,
and let ¢ be the query predicate.
Gen-QRP-constraints (P).
let Cpy, .. -, Cp, be the QRP-constraints obtained.
let p!,...,p,, be new predicates, not occurring in the program.
for j =1tomdo
let Cp, have k; disjuncts.
perform a definition step creating k; rules with head
o (X), and the sole body literal p; (X).
each rule has PTOL(p;(X),C) as the conjunction of constraints
in the body, where C is one of the k; disjuncts.
end for
for j =1tomdo

unfold the definition of p; in P into each of the rules defining -

end for
for j =1 tom do
fold the original definition of p;- into rules in P containing
body occurrences of p;.
end for
the resultant program P’ has all the QRP-constraints propagated.

Gen-QRP-constraints (P)

{

let p1,...,Pm be the predicates defined in the program P.
let ¢ (one of the p;’s) be the query predicate.
fori =1 tom do

C1,, = false.

164

end for
C1, = true.
repeat
assuming C1,, as a QRP-constraint for each p;, obtain literal
constraints G, ;) for each literal in each rule in P.
fori=1tomdo
C2,, =V each LTOP(pi(X1), Cyx;y) for pi(X1) in a rule in P.
end for
fori=1tomdo
if (C2p, D C1p,) then
‘mark’ p;.
else
‘unmark’ p;.
Cl,, = Cl,, VvV C2y,.
end if
end for
until (all predicates are ‘marked’)
C1,, is the QRP-constraint obtained for each p;.
}
The following procedure generates minimum predicate constraints for each derived
predicate of a program P.

Gen-Prop-predicate-constraints (P)
{
let p1, ..., pm be the predicates defined in the program P.
let by,...,b, be the database predicates.
let Cly,,...,C1;, be the minimum predicate constraints for database
predicates. /* These predicate constraints are part of the input. */
Gen-predicate-constraints (P, Clp,,...,Cls,).
let Clp,,...,Clp, be the predicate constraints obtained.
for each rule in P of the form: 7 : p(X) : — Cr;, pir (K1), - - - , pir(Xix) do
let each Cl,,,,1 < j <k have ¢ disjuncts.
create c;; * - - - * ci, new rules of the form:
Tih : p(—f) P Cru C3, DPix (ZI): LERE C3;;ik7pik(_Xle—c.)

pi1? 2 &7
where each €3, is a disjunct of PTOL(pi;(Xi;), Cly,;)

165

end for
the resultant program is composed of the new set of rules.

}

Gen-predicate-constraints (P, Cly,,...,C1p,)
{
let pi,...,Pm be the predicates defined in the program P.
let by, ..., b, be the database predicates, and
C1y,,1 <4 < n the corresponding minimum predicate constraints.
let R be the rules in P defining p;, 1 <7 <m.
for i =1 tom do
C1,, = false.
end for
repeat
Single-step (R, Cly,,...,C1,,,,Clpy, . .. ,C1y.).
for =1 to m do
if (C2,, D C1,,) then ‘mark’ p;.

else
‘unmark’ p;.
Cly, = Cly, V C2y,.
end if
end for

until (all predicates are ‘marked’)
C1,, i the minimum predicate constraint obtained for each p;.

}

Single-step (R,Clp,...,Clp,,Cly,,...,Cly,)
{
fori=1tomdo
C2,, = false.
end for
let the rules in R be rq,...,Tk.
fori=11tok do
let rule r; be of the form: r; : pj(.X;) P — Oi(Y),pil(_)E{), ey Dis(Xis)-
C2,, = C2,, v LTOP(p;(%;), Tix(C(X)& Ny PTOL(pir(Xar), C13,,)))

166

for each choice C1,, of a disjunct from Clp,,.
/* The disjunction of the LTOPs is the inferred
head constraint for rule r;. */
end for
return C2,,,...C2,,.
}
The following procedure generates and propagates minimum QRP-constraints for each
derived predicate of a program P, if it terminates. It combines Procedures Gen-Prop-
predicate-constraints and Gen-Prop-QRP-constraints.

Constraint-rewrite (P)
{
let ¢ be the query predicate.
define a new predicate ¢; with the same arity as g,
and let the only rule defining ¢, be
a(X) - a(X).
where X; is a tuple of distinct variables.
add this rule to P, and call the resultant program P1.
the predicate ¢ is the new query predicate.
Gen-Prop-predicate-constraints (P1).
call the resultant program P2.
Gen-Prop-QRP-constraints (P2)
delete rules defining ¢; from the resultant program.
the resultant program P3 is the rewritten program obtained by
generating and propagating minimum QRP-constraints.

Appendix B

Fold /Unfold Transformations

In this chapter, we formally define the fold, unfold, and definition steps for programs in
a constraint query language, restricted to the transformations required for our purposes.

The set P,, 4 > 0, is the set of rules in the program obtained after applying ¢ definition,
fold, or unfold steps. The set N;,¢ > 0, is the set of rules defining new predicates after
applying 4 definition, fold, or unfold steps. At any step, a definition, fold, or unfold step
may be applied to produce F; and N; from P,_; and N;_i, for ¢ > 0. The set P, is the
set of rules in the initial program P, and the set of rules defining new predicates, Ny, is

initially 0.

Definition Step

1. Let rq,...,Tm be m rules of the form:

r: p(X): — Ci(X), p(X).

rr (%) : = C(X), 0(X).

where the variables in X are distinct variables; each Ciy(X),1 <7 < mis a con-
junction of constraints; p’ is a predicate not appearing in P;_1,N;—1, and p is a
predicate appearing in F.

9. The updated set of program rules is given by P; = Pi_1U{ry,... ,Tm}. The updated
set of rules defining new predicates is given by N; = N;_y U {r1,..., T}

167

168

Note that since the variables occurring in the head of the rule are all and only the
variables occurring in the body of the rule, the problems described in [30] do not apply.

Unfolding Step

1. Let r be a rule in P;_;, p(X) a body literal occurring in 7, and 71,...,7x be all the
rules in P,_; whose head literals are unifiable with p(X).

2. Let 75,1 < j <m, be the result of resolving r with 7; upon p(X).
3. The updated set of program rules is given by P; = (Pi1 — {rhu{r},...,m}. The

set of rules defining new predicates remains unchanged, i.e. N; = Nij_1.

Folding Step

1. Let r be a rule in P;_; of the form:
T pO(_X_O-) c C’r(?)a Cl(-XT)apl(_Xz)a e 7Gn(_X—7:)7pn(-)?;:)

where each C;(X;),1 < i < n, is a conjunction of constraints on the variables in
p:(X;), and C,(Y) is also a conjunction of constraints. Let r1 be a rule in N;_; of
the form:

r1:p/(X): - C(X), i(X).
where X is a tuple of distinct variables and C (X) is a conjunction of constraints.

9 Let there be a substitution § and a body literal pi(X;) in r such that: pi(X;) =
6[pi(X)] and Ci(X;) D 9[C(X))-

3. Let ' be a rule obtained from 7 by deleting the literal p; (X;) from the body of the
rule and adding 8[p(X)] to the body.

4. The folding step is described by P; = (Pj—1 — {r}) U{r'}; Ni = Ni-1.

Note that we do not mark rules as “foldable” or not, as is done in [4]. The algorithm
that uses these steps to rewrite a program in a constraint query language ensures that
no undesirable folds (like a rule being folded by itself) occur.

