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Abstract

A natural residual is shown to be globally ”equivalent” to the distance be-
tween an arbitrary point and the unique solution to a strongly monotone nonlinear
complementarity problem, under a Lipschitz continuity assumption. This extends
Pang’s error bound [10] to the nonlinear case. Under monotonicity alone, we show
that this error residual is merely a "lower” error bound. In addition, we extend
the linear complementarity error bound given in [7] to a global error bound for a
strongly monotone nonlinear complementarity problem, without Lipschitz continu-
ity. Comparisons among several residuals are given.

1 Introduction

We consider the nonlinear complementarity problem (NCP for short) of finding an z in IR™ such
that
F(z)>0, >0, zF(z)=0, (1)

where F is a function from IR™ to IR*. The linear complementarity problem [1, 9] obtains when
F(z) = Mz + g. A primary goal of this paper is to develop new error bounds for the nonlinear
complementarity problem. We note the following residuals for the NCP (1):

r(z) = [z —(z - F(e))+]l;
s(z) = |l(-=z, =F(z), zF(z))+|;

(e) = l-e ~F(e), SwRE)l,

we) = l-e, ~F@), LlaF@Il 2

These are natural extensions of corresponding residuals for the linear complementarity problem
[6, 7, 8, 10]. Note that Z is a solution of (1) if and only if any of the residuals above is equal to
zero. A number of error bounds have been established for the linear complementarity problem and
linear variational inequality problems by using these residuals. Some of the error bounds lead to
a linear convergence rate for widely-used algorithms [6]. Here, we establish some corresponding
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error bounds for the distance between an arbitrary point and a ”closest” solution of the nonlinear
complementarity problem. In Section 2, we prove that the residual r(z) is both an upper and
lower bound for this distance for the strongly monotone complementarity problem under Lipschitz
continuity of F. In Section 3 we prove, without Lipschitz continuity, that the residual s(z)+ s(z)?
is also an error bound for the strongly monotone complementarity problem. We also relate various
residuals to each other.

A word about our notation. For a vector z in the n-dimensional space IR", x, will denote the
orthogonal projection on the nonnegative orthant IR%, that is (z4); := max{z;,0},i=1,...,n. A
norm || - || is called a monotonic if ||z|| = || |z| ||. The scalar product of two vectors ¢ and y in IR®
is denoted by zy.

The NCP (1) is strongly monotone if there exists a constant ¢ > 0 such that for any z, y € IR"

(F(z) = F(y))(z ~y) 2 cllz - ylI* (3)
A function F': IR™ — IR™ is Lipschitz continuous if there exists a constant L > 0 such that
|F(z) = F(y)ll < Ll]= — .

Note that for a monotonic norm, ||z, — y4|| < ||z — y|| for any z,y € R™.

2 The Error Bound r(z)

We begin by defining the concepts of a residual, lower and upper error bounds, and a distance-
equivalent bound. FEach of these quantities characterizes, to certain degree, how well a residual
estimates the distance from any z to the solution set of an NCP.

Definition 2.1 Let e : IR* — IR and dist(z,X) = infscx ||z — Z||. Assume that the NCP has a
nonempty solution set.

1. e(z) is a residual for the NCP if e(x) > 0, for all z € IR", and e(z) = 0 if and only if z
solves the NCP.

2. A residual e(z) is a lower global error bound for the NCP if it is a residual for the NCP
and there exists some constant 1 > 0 such that for each x € IR"™ and any solution

ie(e) < ||z - 2|

3. A residual e(z) is an (upper) global error bound for the NCP if it is a residual for the
NCP and there exists some constant 75 > 0 such that for each z € IR™

dist(z, X) < mye(z)

4. A residual e(z) is a distance-equivalent bound if it is both a lower and (upper) global error
bound for the NCP.

Note that the best estimate for dist(z, X) is a distance-equivalent residual because this residual is
bounded from both below and above by dist(z, X) itself.

We first show that a Lipschitz continuity is all that is needed for 7(z) to be a lower error bound
for dist(z, X) for any NCP.



Theorem 2.1 Let F : IR™ — IR™ be Lipschitz continuous with constant I,. Assume that the NCP
(1) has a solution. Then for any solution Z of the NCP (1),

r(z) < (2+ L)z - z|. (1)

where || - || is @ monotonic norm on IR™.

Proof. By the definition of r(z), it follows that

r(2) < o~ (2= Fa))sl

le = (2 = F(2))s - & + (2 - F(@))s]
ke = 3l| + [I(e = F(2))s - (2 = F@)4ll
le — 2ll + lle - &l + | F(=) - F(2)]
2+ D)lle - 2.

I

IA NN

Q.E.D.

Hence residual r(z) is a lower error bound for any NCP under merely a Lipschitz continuity
assumption on F. However, for 7(z) to be an upper error bound, a much stronger condition on the
NCP is needed, such as strong monotonicity condition as seen from the following theorem.

Theorem 2.2 Let the NCP (1) be strongly monotone with constant ¢ > 0 and let F' be Lipschitz
continuous with constant I, > 0. Then Yz € IR"
_ 1+2L
e - 2l < 22 o), 2)

where T is the unique solution of the NCP.

Proof. Since the NCP is strongly monotone, it has a unique solution [2, Corollary 3.2], say Z.
For a fixed z, the point p(z) := (¢ — F(z)), is a solution of the related LCP

F(p):=p—z+F(z)>20, p>0, pF(p)=0.
It follows that

(p(z) = 2)(F(p(2)) - F(2))
= p(e)F(p(z)) ~ p(2)F(Z) - 2F(p(2)) + 2F(z)
= —p(2)F(z) - iF(p(x))
< 0.

From the definition F(p(z)) = p(z) — = + F(z) and the inequality above we have that

0 > (p(z) - 2)(p(z) - =) + (p(e) — 2)(F(z) - F())

(p(z) — 2)(p(z) — ) + (p(z) — z + & — T)(F(z) - F(T))

= (p(z) — 2)(p(z) - ) + (p(z) — 2)(F(e) - F(2))

+(z — 3)(F(e) - F(2))

(p(2) — )(p(e) = & + F(z) - F(2)) + (z — &)(F(z) - F())

(p(z) = 2)(p(z) - & + F(2) - F(Z)) + cllz - 2|*. (3)

f

fl

v
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Since = p(Z), ||lz4 — v+l < ||z — y||,V2,y € R™ and ||F(z) — F(Z)|| < L||z — ||, it follows that

Ip(e) - 2| lIp(z) — p(2)||
I(z = F(z))1 — (& - F(2))4]

{1

(l

< e - F(e) = (2 - F(z))|

< e =gl +1F(z) - F@)I

< le =3[+ Lije - 2|

< (14 Dz -2 (4)

By using the Cauchy-Schwartz inequality in (3) and noting that 7(z) = 2 — p(z), we have

lle =2 < lle - p(@)(llp(e) ~ &l + |1 F(x) - F@))
< r(@)((1+ Dlle 7+ Llw ~ #) (By (4))
< @+ 2Ly -
Therefore,
le - #ll < ~F 2 0(a),
Q.E.D.

Corollary 2.1 Let the NCP (1) be strongly monotone and let F' be Lipschitz continuous. Then
r(z) is distance-equivalent.

Proof. The proof is immediate from Theorems 2.1 and 2.2. Q.E.D.

Remark. When r(z) is a distance-equivalent bound, it precisely characterizes dist(z, X). More
importantly, it is explicitly computable for any z. Hence it can be used as an accurate measure of
the error in an approximate solution to the NCP and thus serves as a useful termination criterion
for any algorithm for the NCP. It can also be used to measure the error reduction rate in the
convergence proof of such algorithms [4, 5, 6].

3 The Error Bound s(z) + s(x)%‘

Mangasarian and Shiau proved that s(z) 4 s(z)? is an (upper) error bound for the monotone linear
complementarity problem [7]. Here we prove that s(z) + s(z)? is also an (upper) error bound
for the strongly monotone nonlinear complementarity problem as can be seen from the following
theorem. Note that there is no Lipschitz continuity requirement on the NCP.

Theorem 3.1 Let F : IR* — IR" be strongly monotone. Then there exists a positive A such that
Iz = 2| < A(s(e) + s(2)*). (5)

where T is the unique solution of the NCP (1), and the norm is any monotonic norm.

Proof. By strong monotonicity of the NCP, there exits the unique solution Z for the NCP [2].
Assume that the theorem is false. Then for each integer k, there exists an z* # & such that

la* — | > k(s(2*) + s(*)). (6)

4



Case 1. Let {2*} be unbounded. Then

l2* -zl o k(s(a*) + s(2*)?)

2 o
s(a)
> FlaF]
o z* _F(zk) =t F(z*)
= AN e e @)

z*—z

Since Hmy_co Jl]TxWH = 1, it follows from the above inequality between the first and last terms that
for each § > 0, there exists a k(6) such that

xk F(z*) ot F(z*)
- < be, ———= < be, ———= < be, Yk 2> k(6 8
ol o] ] ®) ®)
Hence for k > k(8), we have
5> o F(z*) _ e*F(a*) + 3F(3) — 2* F(Z) — TF(a*) + «* F(2) + 2 F (")
o =fl [|=*]]
(F(z*) - F(z))(z* — &) 2*F(Z)+ zF (")
||| [|=*]
¢[z* - |2 N
——— } fe(F(Z) + Z).
E] )
This however is a contradiction since limy_ H%%}%Jﬁ = 00.

Case 2. Let ||z*|| be bounded. Without loss of generality, let {z*} converge to Z. Since the
left hand side of (6) is bounded, so s(z") goes to zero. Therefore s(Z) = 0, and hence Z is a solution
of the NCP. Since the NCP has a unique solution, £ = . Again from (6),

lz* - z|| > ks(z*)?
= kl|(=2*,=F(z*),s" F(z*))4|I*
k| (—zF, —F(2*), 2" F(z*) + 2 F(3) - ZF(z*) — 2* F(z)
+EF (") + 2" F(Z))4]|?
kll(—a*, —F(z*), (F(z*) = F(2))(z* - 2) + 2F(a*) + " F(2))4 |7
kl|(—a*, = F(z*), clle* - 2|* + 2F(z*) + a* F(2)) |2

I

v

Hence
la* = &|| > kl|(—z*, —F(a*), clla* - &|]* + 2F(z*) + 2 F(2)).]|*. (9)
We now show that this inequality cannot hold when k is sufficiently large, and hence we have a

contradiction. In fact, if ZF(a*) + 2" F(Z) < —£|jz" — Z||?, then

Set —alP < —aF(*) - HF(@)
< (MLFGE) + (FE),2
< =¥~ FGa)slllE, F-

5



where || - ||’ is the dual norm to || - ||. It follows that ||Z, F(Z)||' > 0. Hence we have from (9) that

la* =zl > E||(=2*, ~F(z"))4]]
E2c||z® — 7|2
- 2z, ()
Hence
S k%c
2||z, F(z)I|
This inequality fails to hold for k sufficiently large.
Suppose now that ZF(a%) + 2* F(z)); > —§[|z* — Z||?, then by (9)

1

la* — &l > kl(=a*,—F(e*), clla® - &[> + 2F(a*) + 2" F(2))4 2
k||(cllz® — &||* + 2F(2*) + 2" F(7))4||* (By norm monotonicity)

3 _ c 3 _ 1
Eli(clle® = 2]1* = Fll=* = 211")4 1|2

k\/gnxk ~ .

Hence k£ < \/—% which is a contradiction to k being unbounded. Q.E.D.

vV IV

H

Remark. It seems that there are some fundamental differences between the residuals 7(z) and
s(z)+ s(z)?. In the case of an LCP r(z) is always a local error bound, but s(z)+ s(z)* is not. For
the monotone LCP, s(z) + s(z)7 is always an global error bound, but 7(z) is not. In the case of
strongly monotone NCP, s(z) + s(z)? is always a global error bound, however Lipschitz continuity
is needed for 7(z) to be a global error bound for the same problem. On the other hand, r(z) is
always a lower error bound for any NCP under Lipschitz continuity. We are unable to prove that
s(z) + s(m)% is a lower bound to even the strongly monotone NCP.

In the rest of this paper, we relate some error residuals used. First of all, it is easy to see that
s(z) < t(z) < v(z) for a monotonic norm. The following proposition relates r(z) and #(z).

Proposition 3.1 Let || - || denote the I-norm in the definition of v(z) and t(x). Then for any
z € IR",

(&) < N2, ~F@)1lh + 0 Y (wi Pl

Consequently,
r(e) < nll2(t(e) + t(2)"?) (10)

Proof. Let I = {i| z; > F;(z)}, then

r(z) = |lz = [z - F(z)l|
= SR+ |
iel igl
o IB@I+ Y |F(=)

i€l,Fi(z)>0 i€l Fi(z)<0

+ Z || + Z ||

igl,z; 20 igl,zi<0

fl
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< Y E@I+ Y sl + (=2, —F(@)4
€1, Fi(z)>0 gL,z >0
< nf Y F@+ Y @F+ (-, —F(@)lh
i€l Fi(z)>0 igl 220
< i Y (@E@)s+ Y (mFi(e)]*
i€l Fy(z)>0 igl,z; >0
+(=z, =F(2))+(x
< n%[Z(ﬂﬂiﬂ(w)M%*- (=2, =F(z))+[l:-

Q.E.D.

4 Conclusions

We have been able to establish global error bounds for the strongly monotone NCP. In some cases,
an error bound is equivalent to the distance dist(z, X) to the solution set, in which case, a precise
estimate of dist(:c,_f{' ) is obtained. Hoverer, it is not obvious how to extend these error bounds to
more general NCPs. In other words, are there even local error bounds for the monotone NCP?
What are the minimal conditions needed for a given residual to be an error bound? These are some
open questions for future research.
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