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Abstract

The increasing use of parallel systems has led to the development of a number of multiprogrammed
processor allocation policies. This paper analyzes the following four policies that have previously been shown
to have high performance under specific workloads: adaptive static partitioning (ASP), dynamic first-come-
first-serve (FCFS), preemptive smallest available parallelism first (PSAPF), and spatial equipartitioning
(EQS). The results in this paper are derived for a general workload model that includes general distribution
of available job parallelism, controlled correlation between cumulative processing demand and available
parallelism, general demand distribution per class of jobs in the correlation model, and general deterministic
job execution rates that represent synchronization and communication overheads as well as load imbalance
for parallel programs.

Under the assumption that jobs can dynamically and efficiently redistribute their work across the proces-
sors allocated to them previous interpolation approximations are used to estimate the mean response times
of EQS and FCFS, and new interpolations are derived and validated for the mean response times of ASP
and PSAPF. The interpolation approximations provide approximate mean response time formulas for each
policy that directly yield key determinants of relative policy performance. The key determinants are used
to delineate regions of the workload parameter space over which each of ASP, FCFS, EQS, and PSAPF
performs best. The delineation provides a unification and generalization of previous results.

*This research was partially supported by the National Science Foundation under grants CCR-9024144 and CDA-9024618.



1 Introduction

The increasing use of parallel processor systems has led to the development of a number of multiprogrammed
processor allocation policies. Many studies have compared the performance of specific processor allocation
policies [7, 13, 14, 15, 16, 20, 21, 22, 25, 33, 34, 35, 37, 39, 41}, which has led to a diverse set of results
concerning relative policy performance over numerous specific regions of the workload parameter space.! For
example,

e The Adaptive Static Partitioning (ASP) policy has been shown to have higher performance than several
static allocation policies, under specific workload parameter values with ezponential per class total job
processing requirements (demands) [34].

o For a workload with independent and identically distributed (7.7.d.) generalized exponential task service
times dynamic FCFS is shown to have higher performance than Round Robin Process and Processor
Sharing when coefficient of variation of task service times is less than 4 [37].

e Under exzponential demands, no correlation between demand and parellelism, and linear speedups, FCFS,
EQuiallocation (EQ) policies, and Preemptive Smallest Available Parallelism First (PSAPF) perform
almost the same [14, 18].

e PSAPF is optimal for a workload with i.i.d. ezponential task service times [13], and also for a workload
with i.i.d. ezponential job demands and linear speedups [1], given that the scheduler has no information
about job processing requirements.

e Under specific hyperezponential demands and specific parallelism distributions, PSAPF has been ob-
served to have high performance under a workload with high correlation between demand and paral-
lelism when coefficient of variation in job demand, Cp, is low to moderate?

o Under specific hyperezponential demands and specific parallelism distributions EQ has been observed
to have high performance for both uncorrelated and highly correlated workloads when Cp is moderate
to high [14].

e The spatial equipartitioning (EQS) policy is also shown to have high performance for specific measure-
ment workloads [39, 20, 8] and a particular workload that consists of a mizture of application types and
has high Cp [21, 22].

These results show particular policies to perform well over narrow regions of the parameter space but
it is not clear whether or how the various results generalize. In particular, it is not clear which workload
parameters determine relative policy performance or how the policies compare for say general distribution
of job demand or of available parallelism, partial correlation between demand and parallelism, or speedup
curves that range from highly sublinear to linear. The incomplete nature of previous studies and the lack

of unifying results is due to several factors. First, analytic results in the literature are based on solution

1The performance metric throughout this paper is mean response time.
2By “low Cp” we mean Cp less than or equal to 1 and by “high Cp” we mean Cp in the range of 5 or more, as might be
expected for general purpose workloads.



techniques that are applicable only to specific workload assumptions and thus the results are confined to
narrow regions of the workload parameter space. Second, the numerical nature of solution techniques (e.g.,
solution of simultaneous equations, simulation, system measurement) yields no direct insight about how the
policies perform outside the assumed workloads. Third, for each given set of specific workload assumptions,
different subsets of possible high-performance policies have been compared.

This paper analyzes and compares the performance of four policies that have been shown to have high
performance for specific workloads, viz. ASP, EQS, FCFS, and PSAPF, over a general workload model that
we believe captures the essential features of parallel applications. The workload model used in this study
is defined in [18, 19] and includes general distribution of available job parallelism®, controlled correlation
between total job processing requirement (demand) and parallelism, general distribution of demand for
each class of jobs in the correlation model, and general deterministic job execution rates that represent
synchronization and communication overheads as well as load imbalance for parallel programs.

Under the assumption that jobs can dynamically and efficiently redistribute their work across the proces-
sors allocated to them, we obtain mean response time estimates for each policy primarily using interpolation
approximations, which were introduced in [18] and refined for the EQS policy in [19]. The approximate mean
response time formulas that follow from the interpolations readily identify workload parameters that are key
determinants of relative policy performance, and are used to evaluate policy performance as a function of
these key parameters. Using the key determinants, interpolation approximations, and simulation in a few
cases, we delineate regions of the model parameter space over which each policy performs best and thus
generalize and unify results in the literature for the relative performance of ASP, EQS, FCFS, and PSAPF.
A complete design space exploration such as this is not generally possible if policy performance is evaluated
using numerical analysis, simulation, or measurement because in these techniques the functional dependence

of policy performance on key workload parameters is not apparent.

The remainder of this paper is organized as follows. Section 2 presents the system model and defines the
ASP, EQS, FCFS, and PSAPF processor allocation policies. Section 3 reviews and develops interpolation
approximations for estimating the mean response times of each of these four policies, and Section 4 validates
the new interpolation approximations. Section 5 uses the approximate mean response time formulas to

compare policy performance, and finally Section 6 summarizes the conclusions of this study. Analytic proofs

3The available job parallelism of a job is the number of processors the system scheduler believes the job can productively
use.



and derivations are given in the appendix.

2 System Model

We consider an open system model with P identical processors and a central job queue as shown in Figure 1.
The centralized queueing model is a conceptual model; actual implementations of the scheduling policy may
in general allow for distributed queue access. We assume zero scheduling and preemption overhead, with
the understanding that the actual implementation of a particular scheduling policy will include limits on
preemption rates (i.e., delayed preemptions) so as to reduce overhead to a small fraction of the productive

execution on the processors.
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Figure 1: Open System Model

Below we define the processor allocation policies of interest (Section 2.1) and the workload model as
it was defined in [18, 19] (Section 2.2). From [19] we also review constraints that exist among workload
parameters (Section 2.3), and finally, we define the notation used throughout the remainder of the paper

(Section 2.4).

2.1 Processor Allocation Policies

As stated in Section 1 we compare the following processor allocation policies in this paper: ASP, FCFS,
EQS, and PSAPF. The ASP policy has been identified in previous work as a high performance static
allocation policy [33]. The FCFS policy is very simple and has been shown to have high performance
for specific workloads [37]. Equiallocation policies have been shown to have high performance under various

workloads [39, 14, 20, 8, 33, 21, 22, 18]. The EQS policy is an idealized spatial equiallocation policy. Finally,



we examine the PSAPF policy that was proposed in [15] and shown to have high performance for specific

workloads in [15, 13, 1}.

Each of the policies is defined in the context of a global or central job queue. The four policies are defined

in terms of the processing power that they allocate to jobs in the queue, and not in terms of the allocation of

processors to individual tasks within a job. All four policies make use of the available parallelism in the jobs

to decide how many processors to allocate to each job in the system. We define the available parallelism of

a job to be the number of processors the scheduler believes the job can make productive use of.

ASP

FCFS

EQ

EQS

Adaptive Static Partitioning. When a job arrives it is allocated the lesser of the number of idle
processors in the system and its available parallelism. If no free processors are available, the job
queues behind waiting jobs, if any. When a job completes, the released processors are allocated one
at a time to the waiting jobs in round robin order (starting from the first waiting job), under the
constraint that no job is allocated more processors than its available parallelism. For example, if
there are five jobs waiting when a fully parallel job completes in a 100-processor system and the
available parallelism per job is (50, 25, 100, 10, 10), then the allocation of processing power is (28,
25, 27, 10, 10). This policy was first defined in [33] and its performance has been studied under
several workload assumptions [34, 29, 21, 22].

The FCFS policy? allocates processors to jobs on a first-come-first-serve basis. Each job is allocated
processors as they become available up to a maximum of its available parallelism. Processors
released by a departing job are first allocated to the job in service (if any) whose allocation is less
than its available parallelism and then to jobs waiting for service. Allocation of processing power
for the five jobs in the above example is (50, 25, 25, 0, 0). This policy has been studied under
different workload assumptions in previous literature [26, 15, 23, 14, 37, 13].

Dynamic equiallocation (EQ) policies allocate an equal fraction of processing power to each job in
the system unless a job has smaller available parallelism than the equiallocation value, in which case
each such job is allocated as many processors as its available parallelism, and the equiallocation
value is recursively recomputed for the remaining jobs. Allocation of processing power for the above
example is (27.5, 25, 27.5, 10, 10). Reallocation of power can occur on job arrivals, job departures,
and changes in a job’s available parallelism.

The Spatial EQuiallocation policy is an EQ policy in which processing power is allocated spatially
for integral allocation and temporally for fractional allocation. For example, if a job is to receive
an allocation of 27.5 units of processing power, then it is allocated 27 processors and it receives
an additional 0.5 units of processing power by time sharing an additional processor (i.e., the job
alternately executes on 27 and 28 processors). Ignoring variations in implementation details, the
EQS policy was first defined in [39)].

PSAPF Preemptive Smallest Available Parallelism First. The central job queue is a preemptive queue that

is ordered in ascending order of available job parallelism. Jobs with the same available parallelism
are served in first-come-first-serve order. As in the FCFS policy each job is allocated processors as
they become available (or preempted) up to a maximum of its available parallelism, and processors
released by a departing job are first allocated to the job in service (if any) whose allocation is less
than its available parallelism and then to the jobs waiting for service. Processor allocation for the

4The FCFS policy is defined for the case that available parallelism is fixed throughout the life of a job, as assumed in the
workload model in Section 2.2. There exist extensions to the policy for the case where the available parallelism of the job
changes during its lifetime and the system scheduler can detect and react to the changes.



above example is (50, 25, 5, 10, 10). Processor allocation to jobs can change upon job arrivals,
job departures, and changes in job parallelism. This policy was proposed in [15] and also studied
in [13, 14] under specific workloads.

2.2 Workload Model

The goal is to have a simple workload model that is broadly applicable, uses a small number of parameters
to characterize the essential features of parallel workloads with respect to scheduling disciplines, and is easy
to analyze. To achieve broad applicability, few restrictions are made on the distribution of important system
parameters, such as job parallelism and total service demand. To keep the parameter space simple and to
facilitate ease of analysis, a simple characterization of job execution rates and correlation between demand
and parallelism is assumed.

Jobs arrive to the system according to a Poisson process with rate A as shown in Figure 1. All jobs are

assumed to be statistically identical. Each job is characterized by the following variables.
(1) Total service demand (execution time on one processor) D,
(2) Available parallelism N € {1,2,..., P},

(3) Execution rate function (ERF) E : [0, P] — [0,N], which is nondecreasing and has the following

properties:

(4) Correlation coefficient r € [0, 1] between available parallelism N and the random variable for mean

demand of a job with available parallelism N.

The system operates as follows. Upon arrival each job joins the central job queue. At each time, ¢ > 0,
the P processors are allocated to jobs present in the queue according to the processor allocation policy ¥.
If a(t) processors (possibly fractional) are allocated to a job at time ¢, then its demand is satisfied at rate
E(a(t)). In other words, E(k) is the speedup of the job if the job is allocated k processors throughout its
execution, and if the allocation can vary E(z) is also assumed to be the instantaneous rate at which the
job executes whenever it is allocated z processors. The job leaves the system upon completion of its total

demand, D. The available parallelism, N, of a job is the number of processors the system scheduler believes

6



the job can productively use. The workload model assumes that N is an upper bound on the actual number
of processors, m, the job can productively use (i.e., by definition, E(z) = E(N) for N < ¢ < P, and if m is

less than N then E(j) = E(m),m < j < N.)
The following is assumed about N, E, D, and r.

e N has a general (bounded) distribution with mean N, coefficient of variation® Cy, and probability
mass function p = (p1,...,pp), where py =Pr[N = k|, k=1,...,P.

e F is derived from a deterministic function <, that is nondecreasing and is such that y(z) = z for
0<z<l,andy(z) <zforl <z <P.

For a job with available parallelism N, E(N) = v(IN). When fewer than N processors are allocated to
the job, the execution rate E depends on more detailed characteristics of the applications. In this paper,
we assume that the work for a job can be dynamically redistributed across the number of processors
allocated to it such that it executes as if it had available parallelism equal to the processor allocation,
i.e., E(j) = v(j), for 1 < j < N. This could be appropriate for applications based on the work queue
model, or in some cases where the processes of a job are timeshared on the allocated processors. In
cases where the allocated processing power, , is nonintegral we use a linear interpolation between
v(|z]) and y([z]) to compute E(z).

Note that other assumptions about job execution rate on fewer than N processors are possible. For
example, one might assume that the parallelism overhead is about the same on fewer processors as on

N processors, i.e., E(j) = ]—if—fy(N ) for 1 € j < N, which could represent a system with jobs that have

fixed parallelism in which overhead is primarily due to message passing software and processing load
is balanced across the processors, e.g., through cyclic rotation of processes. As another example, if
communication overheads are fixed for a given available parallelism but the load is only balanced when

j evenly divides N, then E(j) = T—N}/—ﬁ'y(N), for 1 <j<N.

As shown by the above examples, for given assumptions about the application characteristics, the
function ~ determines the ERF E. Thus v will be called the execution rate determinant (ERD) of the
workload in the remainder of this paper. The ERD + is said to be linear if y(z) = z, forall0 < z < P.

¢ The mean demand of a job with available parallelism N is either independent of IV or linearly correlated
with N. We assume the following model from [19] in which the mean demand of a job with available
parallelism N is given by

D, with probability 1 —r2,

AN =
¢N, with probability 72.
In the first case the demand is drawn from a general distribution, 7}, with mean D and coefficient
of variation C,, where C, is a fixed constant independent of N. In the second case, the demand is

stochastically equal to a demand that is drawn from the same distribution and then scaled by the factor
¢cN

~—. In the latter case the mean demand is ¢ N as required, and the coefficient of variation of is equal
to C,, which does not depend on N. It is easy to see after unconditioning on N that ¢ = D/N. Thus,
the workload correlation is captured by the single parameter r, which is shown in [19] to be equal to
the correlation coefficient between Ay and N, i.e.,

E[AN N] — E[AN]E[N]

r = Corr(An,N) = oo , OAy,0N # 0. 1)
N

5The coefficient of variation of a random variable is the ratio of the standard deviation to the mean.



The service time of a job on N processors is denoted by the random variable S = D/v(N), with mean

denoted by S. Under the above workload assumptions the mean service time under arbitrary r € [0,1] is

given by
s=s[sga] = 05[] + ol
= (1-r3)8@r=0) + r*S(r =1). (2)

The workload model defined above contains four simplifications each of which represents a trade-off
between analytic tractability and the simplicity of the parameter space on the one hand, and generality of
the model on the other hand. The first is the assumption of constant available parallelism per job, the second
is the assumption of a fixed execution rate, E(k), whenever the job is allocated k processors, the third is
the assumption of the same deterministic execution rate function +y for all jobs, and the fourth is the specific
type of correlation model assumed. The implications of these assumptions are discussed further in [19].
An important point is that since the purpose of the model is to analyze scheduling policy performance, as
opposed to obtaining mean response time for the applications, assumptions that represent key workload
characteristics while keeping the model tractable and the parameter space simple, are acceptable even when
they do not precisely describe the behavior of individual applications. For example, the simple correlation
model may not precisely model a particular realistic workload, but one can use it to vary the degree of
correlation between mean demand and available parallelism and thereby study the impact of correlation on

policy performance.

2.3 Constraints on the Model Parameters

Workload parameters of immediate interest to us are mean and coefficient of variation in demand, i.e., D
and Cp, mean and coefficient of variation of available parallelism, i.e., N and Cy, correlation coefficient ,
execution rate function -, and mean service time S. The parameters D, N, «, and r can vary freely within
their feasible ranges (e.g., 0 < D<o, ]1<N<P,or0<r <1), and thus are the free parameters of
the model. Below, relationships that constrain the other parameters of interest, i.e., Cp, Cn, and S, are
reviewed. The relationships define the parameter space for the policy comparisons.

The coefficient of variation, Cp, in demand (after unconditioning on N) can vary freely between 0 and

oo only when D and N are independent, i.e., 7 = 0. For 7 > 0, it can be verified that that Cp depends on



Cy, r, and Cn as follows:

C%=(1+CH1A+r2C%) - 1. (3)

Since N is bounded above by P, it follows that Ciy cannot be unbounded. For a given N, the following

constraints on Cy are derived in [19],

ochg\/E(f%é)—iE—l. 4)

The lower bound is attained when N is constant and integer-valued for all jobs, i.e., N = k, where k €
{1,...,P}. The upper bound is attained when N has a two-point p.m.f. with nonzero mass only at 1 and P.

The following constraints on S are derived in [19]. When r = 0 and 7 is concave®, S is minimum when
Cy is minimum and S is maximum when Cx is maximum. When r = 1, v is concave, and N/v(N) is
concave, S is maximum when Cy is minimum and S is minimum when Cy is maximum. For concave 7
and N/v(N), S decreases with workload correlation 7. (Note that N/v(N) is concave for the concave ERD

considered in the experiments in this paper.)

2.4 Notation

Table 1 summarizes the notation for the system parameters and variables. Under the implicit assumption
of Poisson arrivals and system of P processors we use the following notation to characterize specific system

workloads.
(\I” )‘: ]:Na EL): T 7 E(])),

¥ = processor allocation policy
A = job arrival rate
Fn = distribution of N, e.g., N = P, Uniform(1,P)
% = distribution of demand for jobs with mean demand independent of parallelism e.g., exp(p)

r = correlation coefficient

8 A function f : {a,b) — IR is concave if f(az+(1—a)y) > af(z)+(1—a)f(y), forall z,y € (a,b) and a € (0,1). Conversely,
f is convex if f(az + (1 — a)y) < af(z) + (1 — a)f(y) [28]. Informally, a function is concave if the straight line joining any two
points of the function lies on or below all function values between the two points, and is convex if the line lies on or above the
function values.




v = execution rate determinant. By default we assume that v is a general nondecreasing function.
To specify the linear ERD we use the notation .

E(j) = job execution rate on j < N processors , e.g., E(j) = v(j) in the case of jobs that can
dynamically and efficiently redistribute their work.

To indicate a general distribution of demand or available parallelism, general ERD, or arbitrary value of r

between 0 and 1, we simply leave the notation as FJ, Fn, 7, or r, respectively.

Table 1: System Notation

P Number of processors in the system

A Arrival rate of jobs

D Total job demand

Fb Distribution of demand for “uncorrelated” jobs
D Overall mean job demand

Cp Overall coefficient of variation of demand

P Offered load AD/P

N Available job parallelism
Fn Distribution of available parallelism

Dk Probability[N = k], k=1,...,P

P (p1,p2,--->PP)

N Average available parallelism

Cn Coefficient of variation of available parallelism

T Measure of workload correlation as defined in (1)
v Execution rate determinant (ERD) of the workload
7 Linear execution rate function

S Mean job service time

Sn Normalized mean service time S/D
Ry Mean response time of policy ¥

M/G/1p | An M/G/1 system with a server of power P

2.5 Workloads for Numerical Experiments

The following distributions of N and functions -y are used to validate mean response time approximations in

Section 4 and to experimentally compare specific policies in Section 5.
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3

e The bounded-geometric distribution of N with parameters P, and p (see [14, 12]):

with probability Pngq,
P Y fmaz where X = Geometric(p).

P,
N =
{ min(X, P),

Tt can be verified that across all bounded-geometric distributions with N the same, Cy is maximum
when p = 1 and is minimum when Ppe, = 0 [17]. We refer to these workloads as high Cy and low
Cy workloads, respectively. The specific bounded-geometric distributions in Table 2, more details of
which are given in [18], are used in the policy comparisons.

with probability 1 — Pz,

Table 2: Three Bounded-Geometric Distributions for N

P=100
Symbol | Parallelism | Ppaz P N Cy CDF of N
H | High 0.9 10 |9010 033| My L —
. F(k) M
M | Moderate | 0.1 1/(0.4P) | 43.14 0.80
01 H g
L | Low 0.1 0.9 | 11.00 270
I K 100

To evaluate the impact of sublinear ERF's, the following parametric ERD will be considered, which is
derived from an execution signature in [6].
(1+B)k

v(k) = s

At B = 0 we get the flat ERD (k) = 1. By increasing § we obtain ERDs that are closer to linear as
shown in Figure 2 until we obtain the linear ERD when § = co. We note that 8 = 100 represents a
considerably sublinear ERD, whereas § = 500 is fairly close to linear.

For r = 0 and the ERD (5),

Sp(y)=FE [

=1,2,.... (5)

W%ﬂ=E&ﬁ;QJ=1iﬂ@+“4%D:f%ﬁ“”&“%

or equivalently,

swﬂ=%m+m&m~u. (6)

Equation (6) will prove useful in exploring the design space of relative policy performance of EQS and
ASP in Section 5.1.

Approximate Analysis

The goal is to solve for the performance of the FCFS, PSAPF, and ASP policies under general distributions

of demand F¥ and available parallelism Fy, arbitrary correlation coefficient 7, and any general ERD v, as

11
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Figure 2: ERD (k) = (1 + B)k/(k + B)

was done for the EQS policy in [19]). However, the FCFS, ASP, and PSAPF policies are difficult to analyze
under such completely general workload assumptions and therefore suitable restrictions are made below for
the sake of analytic tractability. Fortunately, the restrictions do not limit the applicability of the policy
comparison results, because as will be shown, one can extrapolate from the comparisons under the restricted
assumptions to the general case.

Interpolation approximations are derived by obtaining accurate estimates of mean response time (either
exact or approximate) at extreme values of system parameters and then interpolating among the end-
points. In this section we review interpolation approximations from [18] for Rrorps under (A, Fy, Fp, 7=
0, ', E(G) = 7(4)) and from [19] for Rgos under (A, Fn, Fp, 7, v, E(j) = 7(j)). New interpolation
approximations or reductions are derived for the following policies and workloads assuming an arrival rate

of A and E(5) = v(j):

FCFS: (N =k, Fp, r=0, 7),

ASP: (Fn, exp(1/D), 7 =0, ¥4,
ASP: (N =P, exp(1/D), r =0, 7'),
PSAPF: (N =k, Fp, =0, v),
PSAPF: (Fn, Fp, =0, 4%, and
PSAPF: (Fn, FB, >0, 7).

As will be shown in Section 5, the restrictive assumptions (r = 0,~') for FCFS under general F provides

12



the best case performance of FCFS relative to PSAPF. Likewise, the assumptions (exp(1/D),r = 0,7') are
favorable for ASP relative to EQS, and the assumption (7') will be shown favorable for PSAPF relative to
EQS. Section 5 will show that conclusions from these “favorable” comparisons can be extrapolated to other
regions of the general workload parameter space. The mean response time estimates for FCFS and PSAPF
under (N = k,r = 0,7) provide insight about how the performance of each of these policies behaves with
respect to ERF sublinearity.

Sections 3.1 and 3.2 provide the approximations for Rrcrs and T%EQS, respectively. We then develop
the (interpolation) approximations for Rasp (Section 3.3), and for Rpgapr under no correlation between
mean demand and available parallelism (Section 3.4) and under full correlation (Section 3.5). The new

approximations for Rasp and Rpsapr are validated in Section 4.

3.1 FCEFS

First an accurate interpolation approximation for Rpcrs from [18] is reviewed that holds for (A, i, Fp,r =
0,7, E(j) = v(4)). We then develop a new approximation for Rrcrs under constant available parallelism

and general 7.

3.1.1 Analysis under General N: r =0 and 7

For the system (FCFS, )\, Fn,Fp,r = 0,9', E() = 7(j)) the following interpolation approximation on the

pmf of N, p, is an accurate estimate for Rrors [18):

P

Rrors(Fn,r=0) =~ > psRrops(N =k,r=0), under (- Fp, 7", E(j) = 7(5))
k=1

. E[oV"FD] i o
- 1—p 2 ’

where the solution for Rpcrs(N = k,r = 0) is derived by reducing the system to the M/G/c queue, under

similar reasoning to the reduction under the more general assumptions of (N = k,r = 0,7), given next.

3.1.2 Analysis under Constant N

Let Tropsy = (FCFS,A\,N =k, p,7 =0,7, E(7)). In [18] mean response time estimates were provided for

this system under the assumption that v = 4!. The extension to general nondecreasing v is straightforward
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and uses the following reduction.

First consider the case where k evenly divides P. A job arriving at an empty system is allocated %
processors. Subsequent jobs that arrive are also allocated k processors unless all processors are occupied.
When a job departs it releases all k of its processors as a single unit. The first job waiting in the queue (if
any) thus obtains all ¥ processors released by the departing job, and so on. Since processors are allocated
and released in units of size k, the system I'rc g, behaves like a system with ¢ = P/k processors in which

each job has one task with service requirement S = D/v(k). That is, under (A, N =k, Fp,r = 0,7, E(j))
Rpcps(N = k,r = O) = RM/G/C: Cc = P/k, Pmodk =0.

To compute RM/G /e we use the following approximation which is derived using Sakasegawa’s approxima-

tion [30] for the mean number in a GI/G/c queue:

RM/G/C ~ S+

1-v 2A

VAT (1+0§> Y5

Cs being the coefficient of variation in job service time, S. Using S = D/v(k), we obtain C% = C% and thus

_ D WVEPD [14c2 . .
vRFCFS'(N"‘]‘UT“'O)"‘ 7(’9) + 1—u ( 2\ ) H under (Av'afo:'-YrE(])) (8)
XD k. . X

where v = -5 ;(—7 Since (8) can also be computed when & does not evenly divide P, it can be used as

an approximation for Rpops(N = k) for all k=1,2,...,P.

It is tempting to believe that the interpolation on p using estimates from (8) as the interpolation end-
points can be used to approximate Rrcrs for a sublinear ERD . Validations so far have shown that this
approximation is accurate for low values of p, but that the accuracy degrades with p and at high load the
accuracy can be quite poor even when Cp = 1 (a case under which the approximation is very accurate for the
linear ERD). With some “fine tuning” it may be possible to obtain an accurate estimator by this approach,
however this is not pursued further in this paper.

Note that both approximations (7) and (8) show that Rpcrs increases linearly with C%,.
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3.2 EQS

Below is a summary of the mean response time solutions from [19] for the system (EQS, A, -, 5, 7,7, E(j) =
4(4)). First an accurate approximation under general F (Section 3.2.1) and second the exact solution under

constant N (Section 3.2.2), are reviewed.

3.2.1 Approximation for general N

The results in [19] show that the normalized mean service time S, = S/D is the key parallelism determinant
of EQS performance under the workload (A, Fn,Fp,r,7v) and that Rpgs increases linearly with S,. Thus,

the following linear interpolation on S, is an accurate estimate of —R.EQS.

Regs(Fn,1) = (%) Rpo(N=1,r=0)+

(T%) REQ(N = P’T = 0)7 under ()‘7 '7*7'-}5’ 57 E(J) = 7(.7)) (9)

The mean response times Rggs(N = 1,7 = 0) and Rggs(N = P, = 0) are special cases of the exact
solution in [19] for —REQS(N =k,r=0), k=1,2,...,P, which is reviewed below in Section 3.2.2.
Interpolation (9) can be rewritten by expressing S, as (1 —72)Sn(r = 0) + 728,(r = 1) (see (2)), which

results in,
Rpos(r) = (1 - r*)Regs(r = 0) +r*Rpgs(r = 1), under (\,Fn,Fp,-,7, E() =()),  (10)

as shown in [19]. Rgos(r = 0) and Rgqs(r = 1) can be directly derived from (9).

3.2.2 Exact solution for N =k

The derivation for Epgs(N = k,r = 0) is based on the property that when N = k the EQS system reduces

to a symmetric queue [9], and it is shown in [19] that under the workload assumptions (A, N =k, Fp, r =0,

¥, E(5) = (5))

Rpos(N=k,r=0) = b XP: (Pp)* . N
Q ’ A = (z— 1)!E(k)min(i,m) H;=m+1 E(P/5)
(PP)P P 1 B
P!E(k)me=mHE(_p/j) 1-p (1—~p +P)}, k=12,...,P
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where m = |P/k], p= AD/P, and

P i -1
b= |14+ Z (Pﬂ)' + (PP)P P _
& il E(kyminGm) T E(P/5)  PE(k)™ iy B(P/5) 1P

Note that the above expression for REQS as well as the expression in (9) are independent of Cp.

3.3 ASP

In this section an approximation is developed for Rasp under (A, Fn,exp(l/D),r = 0,4, E(5) = 7(j)).
Setia and Tripathi [33] derive an exact solution for Rasp under exponential per class job demands and
general job execution rates, which is based on matrix-geometric analysis [27, 24]. Two drawbacks of this
exact analysis are that the underlying state space grows exponentially in the number of processors (making
the analysis computationally prohibitive even for systems with 20 processors) and that the analysis does not
yield direct insight into the dependence of Rasp on workload parameters.

In contrast, a closed form approximation is developed below for R.asp under the restrictive assumptions
of linear execution rates and exponential demands. The assumption of linear execution rates yields estimates
of the best possible performance of ASP (i.e., under no synchronization and communication overheads). The
exponential demand assumption should also result in lower estimates for Rasp than for workloads with high
Cp, since ASP is a static allocation policy. This is discussed further in Section 5.

Section 3.3.1 presents an interpolation approximation under general Fy and Section 3.3.2 derives reduc-

tions and interpolation approximations for the extreme cases of constant N, i.e., N =1and N = P.

3.3.1 Analysis under General N: exp(1/D), r =0,

To derive an approximation for Rasp we note from Section 2 that at each allocation point ASP divides
processors equally among waiting jobs (with no fewer than one processor per job). This resemblance to the
EQS policy suggests using the same form of interpolation for Rasp as we used for Rggs in (9), that is, an
interpolation on S,. Thus we have the following interpolation approximation on §, for the mean response
time of (ASP,\, Fn,exp(1/D),r = 0,4, E(5) = v(j)).

Rasp(Fn) =~ (%L—:%) Rasp(N =1)+
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(11':1§TILJ> Rasp(N =P), under (A,-exp(1/D),r = 0,7, E(j) =~()). (11)

Solutions for R4sp(N = 1) and Rasp(N = P) are given next.

3.3.2 Analysis for N =1 and N = P: exp(1/D), o

When N = 1, ASP is the same as FCFS. Therefore for exponential job demands, Rasp(N = 1) is simply

the mean response time in an M/M/P queue, ie.,
Rasp(N =1) = Rymyp, (A, exp(1/D),r =0,9).

Under nonexponential demands the extension is that Rasp(N = 1) = R_M/G /P

Since to the authors’ knowledge there does not exist an exact solution for Rasp(N = P), an interpolation
approximation for Rasp(N = P) is developed next by observing the behavior of ASP at extreme ends of
system utilization. When p = 0, Rasp(N = P) is simply S = D/P (since execution rates are linear). On
the other hand when p — 1 the queue length increases and a waiting job is allocated just one processor upon
service (assuming that there are at least as many jobs as free processors). Therefore, for exponential job
demands, as p — 1 the system under ASP tends to behave like an M/M/P queue, i.e., Rasp — EM/M/p
as p — 1. Combining these two estimates at extreme ends of p, we get the following approximation for

Rasp(N = P) when job demand is exponential. 7

Rasp(N=P)r~ (1- a(p))—g +a(p)Rarymyp,  under (A, exp(1/D),r = 0,7, B(G) = (7))  (12)

where a(0) =0, a(1) =1,and 0 < a(p) < 1,for 0 < p < 1.
The following form for a(p) is empirically derived by means of curve fitting techniques using simulation

estimates of mean system response time for the above workloads at P=10, 20, 50, and 100:

2
o(p) = 5p+(0.5-2/P)p" + 0.50/P/31,

where
3.5 P <20,
s§=<¢ 45 P =50,
6.0 P =100.

TNote that the interpolation approximation on p might also be applied for general D, N, and/or vy; however the function
afp) is difficult to derive in these cases.
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Since approximation (11) will be shown to validate well in Section 4, S, is the key parameter for job
parallelism under the given workload. That is, Rasp is approximately the same for all distributions of NV
that yield the same value for S,.

The interpolation approximation approach in (11) and (12) also resulted in an accurate approximation
when job demand is deterministic (Cp = 0) and N has a general distribution, . In this case the functional
form of a(p) was less carefully constructed and the approximation also has so far been less extensively
validated than the approximation for exponential demands (Cp = 1). (For the 50 data points validated for
this approximation, 42 are with 15% of the simulation estimates and the maximum error is about 28%.) The
following summarizes the approximation for Cp = 0:

S, ~1/P

l_l/P)EASP(Nzl)“}'

Rasp(Fn) = (

( = ) Rasp(N=P), under (\,-,D=D,r=0,9,E(j)=7()). (13)

1-1/P
where
_ _ _ VAP
Rasp(N=1)=Ryp/p= D+ AN
and

Rasp(N = P) = (1 - () 5 + (o) Ry,

1 /573
a(p) =5 p+(05-1/P)p P12 4 0.5pP/2.

3.4 PSAPF:r=0

This section first reviews an interpolation approximation from [18] for Rpsapr under (X, Fy,Fp,r =
0,7, E(5) = v(J)), then derives a more accurate approximation under the same workload assumptions, and
finally provides solutions for constant N and general . Section 3.5 derives estimates for Rpsapr forr > 0.

3.4.1 Previous Analysis for General N: r =0, ~

The following interpolation approximation on the pmf of V is shown to provide reasonably accurate estimates

of Rpsapr under (A, Fn,Fp,r = 0,74, E(§) = v(j)) and is noted to be the same as the interpolation
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approximation (7) for Rpors [18].

P
Rpsapr(Fn,m=0) ~ Y pyRpsapr(N=k,r=0), under (A, FB,7,E(j) =(5))

k=1
_ g, E [p\/2(',%+1)- ) y
B 1—p 22 )7 (14)

In many validations this approximation results in less than 35% errors from simulation estimates. However,
it does not validate well in some cases with high Cp and low Cy (e.g., more than 100% relative errors have
been observed), which motivates a more accurate approximation for Rpsapr. Note that approximation (14)
gives the “coarse” result that Rpsapr(r = 0) & Rpcrs(r = 0) under the given workload assumptions. The

more accurate approximation derived next will enable a more refined comparison.

3.4.2 More Accurate Analysis for General N: 7 = 0, 4

A more accurate approximation for Rpgapr is derived by observing that PSAPF is essentially a Preemptive
Resume (PR) priority scheduling policy. A known heuristic for obtaining performance estimates of PR for a
multiserver system with sequential jobs is to compare PR with FCFS in a uniprocessor system and then map
the comparison to the multiserver system (cf. [5, 3, 36]). For example, in [3], Buzen and Bondi approximated

the mean extra time (i.e., mean response time minus mean service time) of an M/G/c PR queue by

— X —
Xmiaje PR™ —M/G[le PR Xmja/c FCFS) (15)
XM/G/1. FCFS

where the M/G/1, PR queue is obtained by replacing all ¢ servers of the M/G/c PR queue by a single
server of power ¢. (Likewise for FCFS.) A similar heuristic can be used to estimate the mean extra time of

a parallel system under PSAPF, X psapr = Rpsapr — S, as follows.

— X —
XpsAPF & MG PR ¥ ors, (16)
XM/G/1p FCFS

where job priorities in the M/G/1p PR queue are the same as those in the PSAPF system (i.e., inversely
proportional to available parallelism).

A closed form expression for Rpsapr is derived by obtaining closed form expressions for each of Xum /G/1p FOFS

Xrers, and X—M/an pr in (16). YM/G/IP rorg is simply p?(1 + C%)/(2X(1 — p)) [10], and approxima-
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tion (7) yields a closed form expression for Xrcrs = Rrcrs — 5. The analysis in [11] for an M/G/1 PR

queue (under the given workload assumptions) yields,

= F Ok—1 Ok 1+C% D i
X = o - ll = X
MIGir PR ,;pk [1 Zona (1—-0p-1)(1 —0ox) < 2 )} pr Where ok p;pl. (7)

Thus, under the assumptions (A, Fn, F¥,7 = 0,7}, E(j) = 7(j)), we have the following closed form expression

for Rpsapr =S5 + X psapr:

— —_ il Ok—1 O 1+ C% D IRy
Rpsapr(r=0)=5+{> p [ + ( 5 D)] 5 F [sz(W“)‘Z] . (18)
k=1

l—op1  (1=0op-1)(1~o0x)
Note that the accuracy of approximation (18) can be improved by using a more accurate approximation for
Xrcrs in (16); however, the use of numerical analysis entails significant loss of insight [18].
3.4.3 Analysis under Constant N

When available parallelism is constant, i.e., N = k, PSAPF is identical to FCFS and approximation (8) is

valid for the system (PSAPF,\,N =k, Fp,r =0,7) as well. Thus,

5 D VPR /14 02
Rpsapr(N =k,r=0)~ +Z ( ;)\ D

0 - ). under 0,0, BG) (19

wherel/--éé--li~
P (k)

Note that as in the case of FCFS, approximations (18) and (19) for Rpsapr increase linearly in C%.
3.5 PSAPF:7>0

The estimate Rpsapr is first derived for fully correlated workloads (r = 1) and then combined with ap-
proximation (18) for uncorrelated workloads (r = 0) to yield an estimate for arbitrary partial correlation

(0<r<1).

3.5.1 Analysis for r = 1: o}

The approximation for Rpsapr under (A, Fy, F¥, r=1, 4!, E(j) = v(j)) is derived by: (1) classifying

jobs according to their available parallelism, (2) computing the mean response time for each class of jobs

20



by approximating the average interference from other classes of jobs, and (3) computing the overall mean
response time as a weighted sum of the approximate mean response times per class. This general approach
yields very accurate estimates of Rpgs under the given workload conditions [19]. In the case of PSAPF the
particular approximate representation of average interference by other job classes yields a system for each
class that reduces to a preemptive resume queue, from which the class mean response time is computed.®

Let a job with available parallelism % belong to class Cy, for k= 1,..., P. Let Rpsap F,c, denote the
mean response time of class Cj, in the system (PSAPF, A, Fn,F5,7,7, E(j) = v(j)). Clearly,

P

Rpsapr =) PkRpsaprcy (20)
k=1

The approximate processor contention from classes other than Cj is modeled by assuming each such
class has available parallelism k, but retains its total service requirements and job priority as before. More
precisely, we approximate Rpsapr,c, to be the mean response time of class Cy in a system Iy which is like

the original system except that a class C; job in I'y has demand Dj, priority j, and available parallelism k,

- §, as per the correlation model in Section 2.2. The instantaneous load of class C; jobs is

not accurately modeled by assuming that class C; jobs have parallelism k. However, the priority and offered
load of class C; jobs are accurately modeled. Thus, the overall interference of C; with C, may be reasonably
well represented.

An approximation for Rpsap 7,0, 1s derived by solving for the mean response time of class k in system
T'x. Since jobs from classes k + 1 to P have lower priority than k it is only necessary to consider arrivals
from classes 1 through k to obtain Rr, c,. Recall that in I'; all jobs have an available parallelism of k.
First assume that k evenly divides P. Thus processors are allocated or preempted in units of k at a time.
If processors are grouped k at a time and each such cluster is thought of as a superprocessor, then we
realize that T'), essentially functions as an M/G/c PR queue with ¢ = P/k servers each of power k, and
with k priority classes. Therefore, Rr, ¢, is equal to the mean response time of the kth priority class in
this M/G/c PR queue. Tabetaeoul and Kouvatsos [36] derive an approximation for per class mean response

times of a GI/G/c PR queue using a heuristic similar to (15). Using their heuristic we obtain the following

8This general approach validates well not only for 7 = 1 but also for 0 < r < 1. However, the separate approximations for
Rpsapr(r=0)and Rpsapr(r), 0 <r <1, yield more insight.
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expression for Rr, c,, which is derived in Appendix A.

¥

k—1 —
— 1 — - 1 -
Rr,.c. = ¢y + P < gi) (Uky2(c+1) 2 U}”\'/—zl(c+l) 2) + p—kgwk\/Z(chl) 2 i > 0, (21)
 \i=1

where

=T g xpi 35y {piT2) (1+03>

pil—Uz‘_lwi + (1"“71'—1)(1"’01') 2

Di Lo
xizﬁ, and UiZAZpiIEi, Z=1,...,k.

=1
Approximation (21) can be applied even when k does not evenly divide P to obtain

P

-RPSAPF ~ Epk h(k7)‘7(pl’---7pk)7(ﬁ7cv))7 under (/\a]:Nva"r = lale:E(]) :7(]))7 (22)
k=1

where h(k, X, (p1, . .-, pi), (D, Cy)) is given by the RHS of (21). Note from (21) that Rpsapr grows linearly

in the squared coefficient of variation of demand, Cy, of each job class when r =1 and 7y = 7.

3.5.2 Analysis for 0 <7 < 1: o}

Thus far estimates have been derived for Rpsapr(r = 0) and Rpgapp(r = 1). To estimate Rpsapr for a

general 7 between 0 and 1, consider an interpolation approximation on 7. That is,
Rpsapr(r) = (1- f(r)) Rpsapr(r =0) + f(r)Rpsapr(r =1),

where f(r) is a suitable function of r. Note from (2) that as p — 0, Rpsapr = S = (1 - r2)§(r =
0)+7r28(r = 1). Therefore as p — 0, f(r) = r?. Validations show that for p > 0 this choice of f(r) continues

to yield accurate estimates of Rpsapr. Therefore,
Rpsapp(r) ~ (1—=12)Bpsapr(r =0) + r?Rpsapr(r =1), under (\,Fn, 75,7, E() = (7)), (23)

where Rpgapr(r = 0) and Rpsapr(r = 1) are estimated using approximations (18) and (22), respectively.
Note that the form of approximation (23) is identical to (10), which was proposed for the EQS policy.

This will prove useful in comparing the performance of the EQS and PSAPF policies in the range 0 <r < 1.
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4 Validations of Approximations for R, 5p and Rpgsspr

This section presents results of validation experiments for the approximations for R4sp and Rpsapr derived

in Section 3. The parameter values for the validations are as follows:
e For most of validations P=20 or P=100 processors.’

e Three different distributions for available parallelism N were used. First, the bounded-geometric
distribution defined in Section 2.5. Second, a uniform distribution with several values for the lower
and upper limits. Third, constant N, i.e., N = k.

o The ASP approximations (12) and (11) were validated using an exponential distribution for demand,
and the PSAPF approximations were validated using exponential (C, = 1) demands as well as two-
stage hyperexponential (Hz) demands with C, = 5. In a few cases the PSAPF approximations were also
validated for deterministic and Gamma distributions of demand. The accuracy of the approximations
for deterministic demands was nearly the same as the accuracy for exponential demands and for the
Gamma distribution the accuracy was the same as for Hy demands with the same C,. A few test cases
for C,, < 5 also showed that the accuracy of the PSAPF approximations generally improves when C,
is decreased.

o Tor all validations D was set to P so that p = AD/P = \. In the validations p was varied from 0.1 to
0.9.

The approximations for Rpsapr for constant available parallelism were validated using exact matrix-
geometric analysis [27, 24]. In all other cases, the approximations were validated using discrete event sim-
ulation. All simulation estimates of mean response time had 95% confidence intervals with less than 10%
half-widths, and in nearly all cases the half-widths were less than 5%. The batch means method was used if

obtaining the regenerative cycles was too time consuming,.

4.1 ASP Validations

Figure 3a depicts the relative errors for approximation (12) for systems with 10, 20, 50, and 100 processors.
Observe that for all four system sizes approximation (12) overestimates Rasp(N = P) at low utilizations,
but underestimates Rasp(N = P) at moderate to high utilizations. However, in all cases the relative
errors are less than 10%. Approximation (11) can be expected to have higher relative errors since it uses
approximation (12). To validate approximation (11) simulation experiments were run for many bounded-
geometric distributions of N with different values of Py, and p, and for uniform and constant distributions
of N. The total number of data points in the validations {excluding the points for N = P) was about 140 for

systems with 20 and 100 processors. Figure 3b summarizes these validation results by plotting histograms

9In some cases systems with 10 or 50 processors and in some other cases systems with 500 or 1000 processors were considered.
The accuracy of the approximations was approximately the same in these cases as the accuracy for 20 or 100 processors.
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of relative error. The figure shows that approximation (11) is very accurate. For more than 90% of the data
points the approximation is within 15% of the simulation estimates. The largest error (-36.4%) occurred for
a U[50,100] distribution for N at p = 0.3. In general, the errors are larger and more negative for workloads

with high average available parallelism (say N > 3P/4) when load is low to moderate (p < 0.5).
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P ' so
[+ >
P D
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n t
a
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: Lo |
8 -40% -25% -15% -5%
-5 to to to to
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Relative Errors
(a) Approximation for N=P (b) Approximation for general N

Figure 3: Validations of ASP Approximations

4.2 PSAPF Validations

Validations of approximations (18), (22), and (23) will be presented. For approximation (18), and r =0, a
total of 612 data points were validated, 306 for each of C, = 1 and C, = 5. Figure 4a presents the histograms
of relative errors for this approximation. The results indicate that the approximation is extremely accurate
when C, = 1, and reasonably accurate at C, = 5 (about 90% of the data points have less than 35% error
at C,, = 5). The approximation is more conservative (i.e., only very small negative relative errors have been
observed) and more accurate than the PSAPF approximation in [18]. The maximum relative error occurred
at C, =5, N = 3/4P, and p = 0.2 for both P=20 and P=100. In general, the largest errors at C}, = 5 were
observed for distributions of N with moderate to high N and low C. Recall also that the overall accuracy
might be improved if a more accurate approximation for X rors is used in approximation (18).
Approximation (22) is validated against simulation estimates for 356 data points, 178 each for C;, =1
and C, = 5. (Since the constant N distribution need not be validated when r = 1 the total number of

validations is fewer than when r = 0.) Figure 4b summarizes the validations for this approximation. As seen
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from the figure approximation (22) is very accurate at low C, and reasonably accurate at high C, (about
95% of the data points have less than 35% error when C, = 5). The maximum error at C, = 5 occurred
for the data point N=U[1,100], p = 0.5. The approximation errors when r = 1 were highest for low Cy

workloads at low to moderate load.
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(a) Approximation for r=0 (b) Approximation for r=1

Figure 4: Relative Error Histograms for PSAPF Approximations: r =0 and r =1

For approximation (23) the validations consist of a total of 452 data points, 226 data points for each
of C, =1 and C, = 5 (excluding the cases for r = 0 and 7 = 1). Three values of r were included in the
experiments, viz., 7 = 0.25, 7 = 0.5, and r = 0.75. Figure 5 displays histograms of the relative error at
C, =1 and C, = 5. Again, the accuracy of approximation (23) is very high at C,, = 1 and reasonable at
C, = 5. Thus all three approximations for PSAPF (i.e., for r=0, r=1, and for general r) are reasonably
accurate in general, as long as C, < 5. The maximum observed error for approximation (23) was for a
specific bounded-geometric distribution for N with low Cy, C, = 5, r = 0.5, and p = 0.8. Thus, as for the
approximations at r = 0 and r = 1, approximation (23) is more accurate for distributions of N with high

Cn.

5 Policy Comparison Results

The goal of this section is to compare the performance of ASP, EQS, FCFS, and PSAPF under the general

workload assumptions (A, Fn,F%,7,7, E(j) = v(j)). The mean response times of ASP, FCFS, and PSAPF
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were each derived under one or more restrictive assumptions, i.e., linear execution rates for all three policies,
no correlation for ASP and FCFS, and exponential demands for ASP. However, if it turns out that the
restrictive assumptions are more favorable to one policy, ¥;, over another, ¥3, and yet ¥; performs worse,
then the same relative ordering between ¥; and ¥y will hold under more general conditions that are less
favorable to ;. In this way we will be able to generalize the results from comparisons of the four policies
under the restrictive assumptions.

The following theorem will prove useful in understanding the impact of execution rate assumptions on
policy comparisons. This theorem shows that for any fixed set of jobs with a common workload ERD, v, the

total execution rate of all jobs (or equivalently the processor efficiency) is maximum for the EQS policy.

Theorem 5.1 Consider a set of K jobs with available parallelisms (ni1,...,ng). Let ¥ be a processor
allocation policy that allocates a}l’ processors to job i, for i = 1,..., K. Then for a workload ERD ~y that

is concave and nondecreasing, and for E(5) = ~(j), i.e., jobs dynamically and efficiently redistribute their

work,
K K
ZE(afms) > Z E(a}), for any processor allocation policy ¥. (24)
i=1 t=1

Proof. See Appendix B. |

Remark: An extension to Theorem 5.1 is that the available parallelisms can be random variables (Ny, ..., Ng),
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in which case one should take the expected value of the sums in (24).

The intuition behind the result is that when « is concave the total execution rate decreases with variability
in allocation. EQS tends to allocate an equal fraction of processors to jobs and this leads to high overall
efficiency. As per the theorem, the assumption of the linear ERF is more favorable to the ASP, FCFS, and
PSAPF policies as compared to EQS. We discuss the favorability of other workload parameter settings as
they arise in the comparisons below.

This section first compares ASP and EQS and shows that EQS performs as well or better than ASP
for essentially the entire parameter space. We then compare FCFS and PSAPF and show that PSAPF
outperforms FCFS for most of the parameter space. Section 5.3 compares EQS and PSAPF and delineates
the regions under which each policy performs best. Section 5.4 shows how the performance comparison
results in this paper generalize and unify previous work. Note that for all experiments in this section D=P

and thus p = AD/P = ).

5.1 ASP versus EQS

Section 5.1.1 compares the performance of ASP and EQS for uncorrelated workloads with linear execution
rates. The comparison is made using approximation (9) for Rpgs. For Rasp, approximation (11) is used
for exponential job demands, approximation (13) is used for Cp = 0, and simulation is used for Cp > 1.
In all cases, the linear ERF is most favorable to the ASP policy, which allows extrapolation of the policy
comparisons to sublinear ERFs. Section 5.1.2 uses simulation for Ragp to compare the performance of ASP

and EQS.

5.1.1 ASP versus EQS: r=0

Key to the comparison of Rasp and Rpgs for uncorrelated workloads with exponential job demands and
linear execution rates, i.e., (A, Fn,exp(1/D),r = 0,4, B(j) = 7(j)), are the following observations from (9)
and (11). First, for a given system size, Sn, D, and p are the key determinants of Rasp and _REQS under
the given assumptions. Second, for fixed S, and p the ratio Rasp /—REQS is insensitive to D because each
of the formulas in (9) and (11) is directly proportional to D. Therefore, if D is held fixed and the ratio
Rasp /REQS is plotted as a function of S, for different values of p, the results will hold for all D and all

distributions of N in the assumed workloads.
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Consider the maximum value of Sy, i.e, S, = 1, in which case all jobs are fully sequential. When
N = 1, the EQS system is identical to an M/M/P processor sharing (PS) system and thus Rpgs(N=1)=
_RM/M /p ps. On the other hand ASP is identical to FCFS when N = 1 and thus for exponential demands
Rasp(N = 1) = Ryymyp rors. Since Ryymyp ps = Ruymyp rors [31], Rasp = Rpgs for Cp =1,
r=0,and S, =1.1°

Next consider how these policies compare as job parallelism increases, that is, as S, decreases. Figure 6a
plots Rasp/REeqgs versus Sy, for the workload (A, Fn,exp(1/D),r = 0,4}, E(5) = v(j)). Consider only the
solid curves in the figure, for Cp = 1, for now. The range of Sy, in Figure 6a covers the likely practical values
of N (i.e., N = 0.05P to P). Recall that when S, =1 (not shown) REQS = Ragp and thus the ratios
for Cp = 1 will converge to 1 when S, = 1. Furthermore, since the linear ERF assumption results in the
lowest possible ratio of Rasp /EEQS at each value of p, as per Theorem 5.1, the ratios for workloads with
sublinear ERFs will lie above the ratios shown for the linear ERF. Figure 6a reveals that over the entire
range of S, < 1, the EQS policy outperforms the ASP policy. The ASP policy becomes more competitive
with the EQS policy as S, increases, but is significantly less competitive for workloads that are (nearly)
fully parallel. The reason for the poor performance of ASP is its lack of flexibility in processor allocation.
Unlike the dynamic allocation under EQS, the (adaptive) static allocation under ASP can leave processors
idle when parallel jobs could otherwise use them.

To compare the policies for distributions of demand other than the exponential, first note from (9) that for
fixed D, Rpgs is insensitive to Fp. On the other hand, at S, =1, i.e,, N=1, and v = v', Rasp = Ruja/p
and thus ASP policy performance is sensitive to Cp. When P is large (say P >100), and S, =1, Rasp is
slightly smaller than R—EQS for Cp < 1, equal to EEQS at Cp =1, and then increases with respect to _REQS
with further increase in Cp. The intuition for the increase of Rasp with respect to Cp at S, = 1 is that a
scheduled job runs to completion without interruption and each large demand job in execution reduces the
number of system processors available for serving small jobs. This intuition should also apply for S, < 1.

Figure 6a also contains the results for Rasp /_REQS versus S, when Cp = 0 (using approximations (13)
and (9)). As suggested by intuition, the ratios are lower than when Cp = 1. However, the ratio is greater
than one throughout the range of S, shown in the figure and will become only marginally smaller than 1 at

S, =1, as noted above.

1O0Note that Rpgs(Cp =1) = REQs(exp(l/D)) since the mean response time for EQS depends only on the first moment of
the job demand distribution. We further surmise, based on simulation experiments, that RASP(CD =1~ RAsp(exp(l/D))
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For Cp > 1 we do not have analytic estimates of Rasp and thus we use simulation to show the trends
in relative policy performance.!’ As before, approximation (9) for REpgs is valid for all Cp. Figure 6b plots
Rusp/Reos versus Cp for constant available parallelism and two-stage hyperexponential (Hz) demand
distributions. The figure shows that R4sp increases significantly with Cp and the rise is sharper for larger
available parallelism. The intuition for the latter observation is that jobs with higher parallelism and larger
processing demand can occupy a larger number of servers, thus more significantly reducing the processors
available to serve waiting jobs. Using the same intuition it appears likely that Rssp should increase with
Cp for general demand and parallelism distributions. This was partially verified for specific nondeterministic
distributions of N (not shown).

Thus, for uncorrelated workloads it appears that EEQS < Ragp except for S, close to 1, Cp = 0, and
linear execution rates, and even for these extreme parameter values, Rasp is only marginally smaller than
REpos for systems with a moderate to large number of processors.

Before concluding this section, it may be of interest to compare how EQS performs for workloads with

sublinear  versus how ASP performs when v is linear. Assuming that job demand is exponential, S,(7)

11 A]] simulation experiments in this paper have 95% confidence intervals with less than 10% half-widths, and in almost all
cases the half-widths are less than 5% of the estimate. The confidence intervals were generated using the regenerative method
whenever feasible and otherwise the method of batch means.
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and S,(7) are the respective key parallelism parameters for EQS and ASP. For the ERD in (5) Sa(') is
related to S, (7) by (6), and thus S,(v) uniquely determines the performance of both policies. For p = 0.7
and p = 0.9 Figure 7 plots the ratio Rasp(v!) /Reqs(7) versus S,(v) for the ERD (5) with # = 100, which
is considerably sublinear as shown in Figure 2. The ratios converge to 1 when S, = 1 and are thus greater
than 1 throughout the range of S, < 1. For (low) values of p where mean service time dominates mean
response time, the ratio will be less than 1 (except at S, = 1). However, Figure 7 shows that (at moderate
to high loads) a poor choice of scheduling policy, perhaps dictated by existing system software or hardware

can be more detrimental to overall mean system response time than parallel program overheads.
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5.1.2 ASP versus EQS: r=1

In Section 5.1.1 it was noted that lack of flexibility of processor allocation under ASP causes it to perform
worse than EQS when 7 = 0. For example, if a highly parallel job is allocated fewer processors than its
available parallelism it cannot make use of additional processors when they become idle. Conversely, if a
fully parallel job that has large processing demand is allocated all of the processors, it may block lower
demand jobs for a significant length of time. When r = 1, the more parallel jobs also have larger demands

and therefore one might expect that the static allocation under ASP will be even more detrimental — i.e.,
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the differential between Rasp and REQS will increase with r.

Rasp and Rpgs will be compared under the assumptions (A, -, Fp = exp(1/D),r = 1,4'), using simu-
lation to estimate Ragp. The assumption of linear ERFs is more favorable to ASP, as is the assumption of
exponential demands compared with C, > 1. Due to lack of analytic estimates it is unknown whether 5,
is a key parameter for Rasp. As a result, the performance of ASP will be compared with that of EQS for
the high Cy and low Cy distributions for N defined in Section 2.5, and thus estimate the range of relative
policy performance between these two extremes of bounded-geometric distributions.

Figure 8a plots Rasp /R_EQS versus S, for the high Cy and low Cy workloads for the linear ERF at
two values of p. Note that the results in fact show that S, is not by itself the key parallelism determinant
of ASP mean response time. The curves for workloads with sublinear ERFs will lie above those shown for
the linear ERF. We note from Figure 8a that Rasp /EEQS is higher for the high Cn workload than the
low Cy workload. Moreover, the ratios for the high Cnx workload are markedly higher than the ratios in
Figure 6. What causes the performance of ASP to degrade at r = 1 when Cy is high? The intuition for
this behavior is as follows. For all data points in Figure 8, noting that Cp = 1, the mean waiting time
(not shown) under ASP is negligible compared to the overall mean response time of ASP!2, Thus for the
given range of utilizations and for the given workload assumptions, the mean response time of an arriving
job in the ASP system is primarily determined by the number of processors it is allocated when it begins
service. The high Cy workload has a much higher percentage of fully parallel jobs as compared to the low
Cn workload (see Section 2.5) and fully parallel jobs under ASP have the highest mean service time among
all parallelism classes. Furthermore, these jobs are frequently allocated a smaller fraction of the processors
than they can productively use. This phenomenon is more detrimental for ASP as compared to EQS since
under ASP a job’s partition cannot expand beyond its initial allocation.

From Figure 8a we also observe that all curves initially increase sharply with Sy, reach a peak at moderate
parallelism, and then decrease with further increase in S,. This behavior is explained by two opposing trends
that occur when S, increases. The first trend is that when S, increases the mean demand of highly parallel
jobs increases!® which causes their mean response time under ASP to increase relative to EQS because a

highly parallel job can make use of idle processors under EQS but not under ASP. The second trend is that

12This observation does not concur with the observations of Setia and Tripathi [33] because we examine a system with P = 100
whereas they examined systems with P < 10 in which it is less likely for a job to find an idle processor upon arrival.

13Ag S, increases more and more of the probability mass shifts to lower values of parallelism where jobs have smaller mean
demands (since r = 1). Therefore, to keep the overall mean demand as D the mean demand of highly parallel jobs increases.
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when S, increases the percentage of fully parallel jobs decreases which decreases their contribution to overall
mean response time. When S, is low the first trend dominates causing the curves in Figure 8 to increase
and as S, increases further the second trend dominates causing the curves to decrease.

As in the case of r = 0 we also plot Rasp(v')/Regs(7) versus Sp(v) for the highly sublinear ERD with
B = 100. Figure 8b shows that the ratios are greater than 1 throughout the range of S, (they converge to
1 at S, = 1). At lower utilizations where S dominates mean response time, the ratios will be less than 1.
Thus at moderate to high utilizations EQS performs better even when the EQS workload has a sublinear
ERF and the ASP workload has the linear ERF.

To summarize the policy comparison results for ASP and EQS, we conclude that EQS has significantly
better performance over essentially the entire system parameter space because (1) it utilizes processors better,
that is, jobs make use of idle processors whenever possible, and (2) its mean response time is not sensitive to
variation in job demand. ASP becomes more competitive with EQS as 5, decreases, correlation decreases,
C, decreases, and ERF linearity increases. While the last three observations follow from intuition and from
Theorem 5.1, the first observation follows from the results shown in Figure 6 (and 8) and would be difficult

to obtain in the absence of simple approximations such as (11) and (13) for Rasp.
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5.2 PSAPF versus FCFS

The purpose of this section is to quantify the difference in performance between PSAPF and FCFS over
the model parameter space (A, Fn,F5,7,7, E(j) = 7(j)). When N is deterministic, PSAPF is identical to
FCFS. For nondeterministic N, however, we expect PSAPF to perform differently than FCFS. In general,
one can expect PSAPF to perform better than FCFS for three reasons. First, by delaying service of more
parallel jobs, PSAPF tends to keep processor utilization high for a larger portion of each busy period [1].
Second, for correlated workloads PSAPF gives higher priority to jobs with smaller mean demands. Third, at
high instantaneous load the overall efficiency is higher under PSAPF for sublinear v because jobs that receive
higher priority also execute more efficiently. Due to the last two reasons the most favorable parameter values
for FCFS relative to PSAPF are no correlation (r = 0) and the linear ERF (y = 4!). Using the analytic
models of Section 3 we show how the policies compare under these favorable conditions and extrapolate the
results to the case of sublinear ERFs. We then provide simulation data to show how PSAPF and FCFS

compare under correlated workloads.

5.2.1 PSAPF versus FCFS: r=0

Consider the workloads with r = 0 and v = +'. Using approximation (16) we have that

- - X M/G/1p PR
P
Xpsapr = XFors X MG/t PR
M/G/1p FCFS

To compare Rpsapr with Rrcrg we need to compare YM/G/lp pr With XM/G/lp rcrs. From Sec-

tion 3.4.2, under the given workload

k

P .
— _ Ok—-1 O 1'*'0% _lz — .
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Note that relative policy performance is only sensitive to the first two moments of D. When D = exp(1/D)

then X pr/c/1, PR = X p/am/1p and thus for all Fp with Cp =1 and fixed D, we have X a//1p = X M/M/1p
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which means that X psapr & X rors when Cp = 1. Setting Cp = 1 in the formulas for X /g1, pr and

—X—M/G/lp rors we find that
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Now consider Cp > 1. Since (1 +C%)/2 > 1, we obtain

— 14 C% P Ok—1 O D 14+ C% p D =
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Thus »-X;PSAPF < X-FCFS when Cp > 1. Likewise, when Cp < 1, ~—~X7PSAPF > _X-FC’FS- Thus, at r =0, and

v =+, the relative performance of PSAPF and FCFS as determined by Cp is as follows

> Rrors, Cp <1,
Rpsapr{ = Rrors, Cp=1, (25)

< Rpers, Cp > 1.

These results are illustrated in Figure 9a, which plots Rrors /Eps apr versus Cp for the H and M workloads
given in Table 2. The response time ratios for the L workload are not shown because they lie very close to
those for the H workload. We note from Figure 9a that Cp has a much stronger effect for the M workload
as compared to the H and L workloads. This is because PSAPF is more highly differentiated from FCFS for
the M workload in which there is a wider range of values for available parallelism as opposed to the H and

L workloads, as shown by the cdfs in Table 2.

5.2.2 PSAPF versus FCFS: r=1

The performance of PSAPF can be expected to improve relative to FCFS as correlation increases, and
thus Rpsapr /RFCFS should be lower at 7 = 1 than at r = 0. Simulation experiments were run to
obtain Rrcrg at 7 = 1 and C, between 0 and 5 for the H, M, and L parallelism workloads. Rpsapr is
approximated using (22). Figure 9b plots the ratios EFCFS/RPSAPF as a function of Cp for the three
parallelism workloads. (For the L workload the results are shown up to C, = 3 which corresponds to
Cp = 9.04 using (3).) We observe that the mean response time ratios at r=1 are significantly lower than the

ratios at r=0. The ratios decrease faster with increasing Cp, and also decrease more substantially for the
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M workload compared with the H workload, and for the L workload compared with the M workload. The
reason for the marked improvement in the L workload is that when r = 1 90% of the jobs have lower mean
demands than the other 10%. This differentiation in mean demands when r = 1 increases the performance
differential between PSAPF and FCFS.

To summarize the comparison between PSAPF and FCFS, the results have shown that PSAPF performs
better than FCFS for most of the parameter space. FCFS performs marginally better when r = 0 and
Cp < 1. The quantitative results above were for the linear ERF. PSAPT should perform relatively even

better if the ERF is sublinear, as explained above.

5.3 PSAPF versus EQS

Sections 5.1 and 5.2 respectively showed that in general EQS performs better than ASP and that PSAPF
performs better than FCFS (unless 7 is low and Cp < 1). The EQS policy has high performance since it
utilizes processors efficiently and its response time is insensitive to Cp (as shown by the approximate analysis
in Section 3). The PSAPF policy has high performance for workloads with high correlation since it gives
priority to jobs with small mean demand in these workloads. This section first compares PSAPF and EQS

at r = 1 and v = 4'. Each of these parameter settings is more favorable to PSAPF relative to EQS. After
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the comparison at 7 — 1, the policies are compared for 7 < 1.

When 7 = 1 and v = !, we have § = D/N (see the equation above (2)) and thus S, = 1/N. Since S,
is the key parallelism parameter for EQS, and N is uniquely determined from Sy, when 7 = 1 and v = 7}, it
follows that N is equivalently the key parallelism parameter for EQS under these workload conditions. That
is, at r = 1 and v = 4' Rgpos is approximately the same across all distributions of N with the same N. This
is not necessarily true for Rpsapr. Therefore, approximation (22) and nonlinear programming are used to
obtain the minimum and maximum values of Rpgapr across all distributions of N that have the same N,
and then use these values to determine the relative performance of PSAPF with respect to EQS. The details

of the nonlinear programming solution method are given in Appendix C.
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Figure 10a plots the minimum and maximum of Rpsapr/Reqs as a function of N for various Cy at
p = 0.7 for a 100-processor system. We observe that the ratios increase with C, since PSAPF is sensitive to
C,, whereas EQS is not. When C, < 1 PSAPF performs better than EQS. However, the reverse is mostly
true for C, = 2 (in the range N > 30) and is true for all cases with C, > 3. We also observe that the
minimum and maximum ratios increase with N for C, > 2, due to the improvement in EQS performance
with increase in average available parallelism when 7 = 1 [19]. Figure 10b plots similar ratios for p = 0.9

and we note that the difference between PSAPF and EQS increases with an increase in p.
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Under sublinear execution rates the ratios of Figure 10 should be higher by virtue of Theorem 5.1. We
can therefore conclude that for general workload conditions with r = 1, EQS outperforms PSAPF as long as
C, >2M

Coupling the results from Figure 10 for r = 1 with the results from [18] for r = 0 we have the following

relationships between _REQS and Rpgapr at the extreme ends of correlation.

> Rpsapr(r=0), 0<C, <1, > Rpsapr(r=1), 0<C, <1,
Rpgs(r=0){ = Rpsapr(r=0), Cy=1, and Rpgs(r=1){ ? Rpsapr(r=1), 1<C, <2,
< Rpsapr(r=0), Cy>1, < Rpsapr(r=1), Cy>2,
(26)
where the question mark on the right reflects that the exact relationship between REQS(T = 1) and

Rpsapr(r = 1) is sensitive to the distribution of N. Note that in (26) we used the fact that at 7 = 0,
we have C, = Cp as can be seen from (3). Now consider the case where 0 < r < 1. The approximations for

EQS(7y) and PSAPF(+') (see (10) and (23)) for 0 < r < 1 have the following forms

REQS ~ (1- Tz)REQs(T =0)+ T2EEQS('I‘ =1)

Rpsapr ~ (1—1)Rpsapr(r=0)+r"Rpsapr(r =1).

Using these approximations and the relationships in (26) it follows that for general r, REQS > Rpsapr for
Cy <1 and EEQS > Rpgapr for C, > 2. For C, between 1 and 2, the relative performance of EQS and
PSAPF depends on the value of 7 and on the distribution of N. In general, workloads in general purpose
computer systems have high variation in demand [31, pg16),[38]'> and in these systems we expect EQS to

perform significantly better than PSAPF.

5.4 Generalization and Unification of Previous Work

The policy comparisons for the ASP, EQS, FCFS, and PSAPF policies in Section 5.1-5.3 enable us to
delineate regions of the parameter space under which each policy performs best. The direct results derived
assuming the linear ERF, together with the extensions for sublinear ERF's, leads to the delineation shown in

Figure 11. The key determinants of relative policy performance are the axes of the figure. C, has been shown

14Note that given Cy, Cy, and 7, we can compute Cp using (3). For example, when N =50, Cy < 0.99 from (4) and thus
if Cy = 2, we get Cp < 3.

15Note that we have also measured the coefficient of variation in service times on our local CM-5, which ranges from 2.8 to
about 5, with the higher end being more typical.
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to be a key parameter in all comparisons in this paper. Correlation between mean demand and available
parallelism determines the relative performance between FCFS and PSAPF and between PSAPF and EQS.
The ERF sublinearity affects relative policy performance since at very sublinear ERFs EQS will be perform
best for all C, > 0 and all 0 < r < 1. Although S, is a key determinant of absolute performance for ASP
and EQS, this parameter is not shown in Figure 11, because the performance of EQS is better than that of
ASP throughout the range of Sj.

We analytically derived results only for the topmost plane in the figure, where the ERF is linear, for which
comparisons are favorable to ASP, FCFS, and PSAPF with respect to EQS. In this plane, the orderings
between PSAPF and EQS, between FCFS and EQS at 7 = 0, and between FCFS and PSAPF at r = 0 were
derived analytically. To supplement the results from analysis and complete the topmost plane of Figure 11
the following assumptions are required: (1) FCFS performs as well or better than ASP when Cp = 0
and S, is close to one (i.e., in the narrow region where ASP performs marginally better than EQS), (2)
Rasp(Cp = 1) is a lower bound for its performance when Cp > 1, and (3) the simulation results for PSAPF
versus FCFS when r = 1 (Section 5.3) hold qualitatively for all distributions of demand and parallelism.
The value of 7 that delineates the boundary between FCFS and PSAPF in the topmost plane has not been
precisely derived in this paper, and is thus indicated by the line break in the figure. Extending the results
from the topmost plane to sublinear ERFs makes use of Theorem 5.1 which shows that EQS should perform
relatively better than FCFS and PSAPF as the ERF sublinearity increases. The lack of precise values of v
that form the boundaries between these policies is also indicated by line breaks in the figure. Furthermore,
the precise boundaries may depend not only on the specific degree of sublinearity but also on the specific
ERF and the distribution of available parallelism. However, for C;, > 1 and r =0 and C, > 2 and 7 = 1 the
result that EQS performs best holds for all distributions of N.

Due to the general workload assumptions in this paper the delineation of the design space generalizes
and unifies previous results, as follows. First consider the line for r = 0 and v = +', and variable C,.

e Two previous studies show that PSAPF, FCFS, and EQ have almost the same performance at (Cy =
1,7 = 0,7") [14, 18]. This is shown in Figure 11 for FCFS and EQS!® and approximation (25) shows
that Rpsapr = Rrcrs under these conditions.

e For an uncorrelated workload (r = 0) with specific hyperexponential demand distributions (C, > 1),
specific distributions of N, and linear speedups, [14] shows that Rgq < Rpsapr, Rrcrs. Figure 11
shows the same result for all distributions of demand and parallelism.

16Note that when + is linear, all EQ policies have the same performance under the assumption of E(j) = 7(j).
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Figure 11: Summary of Policy Comparison Results

Now consider the line r = 1, v = ¢, and variable C,.

o The results in [13] compare PSAPF, FCFS, EQ and several other policies for a workload with a fixed
number of jobs having i.i.d. ezponential task service times (for which C;, < 1 and r = 1) and linear task
execution rates. PSAPF is shown to be the optimal policy for the given workload. This is consistent
with Figure 11 which shows that in generalfor C, < 1,7 =1, and v = +!, PSAPF is optimal among
ASP, FCFS, EQ, and PSAPF.

e The results in [14] show that -REQ < Rpsapr for specific hyperexponential demands, specific paral-
lelism distributions, full correlation (r = 1), and linear speedups. Additional simulation data in [12]
for the same assumptions shows PSAPF to perform better than EQ if C, < 2 and worse if C;, > 2.
[12] also shows cases with C, between 1 and 2 where PSAPF performs worse than EQ. Again these
results are consistent with Figure 11.

Now consider 0 < r < 1, which is the case in [33, 21, 22] where no quantitative measures of workload
correlation are given. These studies show that for particular workloads with sublinear ERFs, EQS outper-
forms ASP under exponential per class demands (C, = 1) [33] and under a specific mix of applications with
C, > 1 [21, 22]. The same result is shown in Section 5.1 and Figure 11 for all distributions of demand and
parallelism.

Other results in the literature show that Rpsapr < Rrcrs for hyperexponential demands (C, > 1),
specific distributions of parallelism, and both r = 0 and 7 = 1 [15, 14]. The same result is shown in
Section 5.2 for all distributions of demand with C, > 1 and for all distributions of N. Finally, [37] shows
FCFS to outperform Round Robin Process and Processor Sharing for i.i.d. generalized exponential task
service times with coefficient of variation < 4. Note that for this model r = 1 and Figure 11 shows that if
the C, of the sum of task service times is low, then PSAPF performs better than FCFS whereas if C, is

high then EQS performs better.
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6 Conclusions

This paper has compared the performance of four parallel processor allocation policies, ASP, EQS, FCFS,
and PSAPF that were shown in previous literature to have high performance under specific workloads. The
comparisons were made over a general workload model that includes general distribution of available job
parallelism, controlled correlation between total job processing requirement (i.e. demand) and available
parallelism, general distribution of demands for jobs with no correlation, and a general deterministic job exe-
cution rate function for all jobs. Under the assumption that jobs can dynamically and efficiently redistribute
their work across the processors allocated to them, the mean response time of each policy was estimated
using interpolation approximations for various regions of the parameter space. The mean response time
formulas were validated against simulation and then used to obtain key determinants of policy performance.
By using the key parameters to explore the design space, results that generalize and unify previous policy
comparison results were obtained. The regions of the parameter space under which each policy performs
best are delineated as in Figure 11.

The main results of this paper are as follows:

o Coefficient of variation in demand (Cp) can be critical in determining relative policy performance. This
might be obvious from uniprocessor scheduling results, but most previous analyses and comparisons of
parallel processor policies have assumed exponential demands or exponential task service times. This
result shows that the assumption of a particular coefficient of variation in job demand can have a strong
impact on policy comparisons.

e Execution rate sublinearity and correlation between demand and parallelism are also parameters that
influence relative policy performance. While speedup curves have been explicitly considered and speci-
fied in previous studies, in many cases no measures of the assumed or inherent correlation are provided.
This result shows that it is important to consider the correlation between demand and parallelism and
its implications on relative policy performance.

e For a fixed set of jobs with a common nondecreasing and concave execution rate function the EQS
policy achieves optimal processor utilization over all allocation policies.

e EQS substantially outperforms ASP for both uncorrelated as well as correlated workloads. This result
is shown for more general demand and parallelism distributions than in previous studies.

¢ EQS outperforms PSAPF when Cp is moderate to high even when workload correlation is high. PSAPF
has lower mean response time tha EQ only for highly correlated workloads at low to moderate values
of Cp, and when execution rates are (close to) linear. These results are hold for all distributions of
available parallelism and general distributions of demand.

¢ PSAPF outperforms FCFS for most of the parameter space. (FCFS has slightly lower mean response
time when correlation is low, Cp < 1, and job execution rate is linear.)

e Since general purpose computer systems are likely to have high variation in job processing requirements,
the EQS policy seems to be the best candidate for implementation among the policies considered in
this paper.
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The policies examined in this study are idealizations of practical processor allocation policies, since
we have assumed zero scheduling and preemption overheads. The qualitative results should continue to
hold if practical (approximate) implementations of these policies can ensure that the overheads are small
compared to job service times. In this paper it was assumed that applications can dynamically and efficiently
redistribute their work among allocated processors. In environments where this is not possible, based on the

results of this paper, a natural candidate policy to consider is temporal equiallocation.
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Appendix

A Derivation of Rpgspr approximation for r = 1

In this section we derive (21) using the per class mean response time approximation for an M/G/c PR queue

given in [36). That is, we show that,

3

1 V/ / — 1 </ —
Rr,c. ~C$k+p—k (Zéh) < o=z _ ~_21(C+1) 2> + o JEk AT >0, (27)

i=1

where ¢ = P/k, T; = (Di)/(NP), 0; = )‘Z;’=1 P;T;, and

I S Api Z;:l{pj(l + CE)E?}
11—0’1'_1 ’ 2(1“‘0'i-—1)(1"'0'71)

gi=Dp

Recall that Rr, ¢, in Section 3.5.1 was shown equal to the mean response time of the k** priority class
in an M/G/c PR queue with k priority classes. To estimate Br,.c, we use Tabetaeoul and Kouvatsos’

heuristic [36] for per class mean response times of an M/G/c PR queue. To begin with, Rr,.c, can be
expressed in terms of the overall mean response times for the first 7 classes, TZM /GJe PRy Tor @ =k — 1,k

That is,

7k rk—1
yo _ AkTM/G/c PR ™ Ak,—lTM/G/c PR
0r,,,C, — Ak )

(28)

where A\ = Apg, and A = Zle Ai. Let Z; denote the service time of class ¢ in the M/G/c PR queue, for

i=1,...,k, and let 7, denote the overall mean service time of the first : classes, that is §, = A Z j=1 AiZ; for
i=1,...,k Define 71;\,[ /GJc PR = T’;W /GJe PR — Ui~ Tabetaeoul and Kouvatsos [36] proposed the following
heuristic to estimate ._X-ﬁ,f /G/c PR

<k

XmiG/le

sk —k
Xumjcle PR® XM/ PR © =h (29)
Xmie/.

-k =k . .
where .X?WG/lC PR = TM/G/lc pr—Ue/¢  Tujc. pr being the overall mean response time of the first

k classes in an M/G/1, PR queue that is obtained by replacing the ¢ servers of the M/G/c queue by a

44



single server ¢ times faster. (The M/G/1. PR system has the same job priorities, service demands, and
arrival rates as the M/G/c PR system.) Similarly, _X-};,, /G/c 18 the overall mean waiting time in an M/G/c

system that has the same workload as the M/G/c PR system (i.e., k classes) and YL /G /1, is the overall
mean waiting time in an equivalent M/G/1. system.

We first provide closed form expressions for _)?M/G /e and .YM/G /1, and then for .-X"M/G /1. PR S0 that

we can get an expression for Y}j,, /GJc pr using (29). Using Sakasegawa’s approximation for GI/G/c FCFS

queues [30], we obtain

2 o 2t 4 o)
M/G[c ™ ZAk(l"'(T}g) ’

where CVj, is the overall coefficient of variation in the service requirement of the %k classes, and oy =

Zle XiZ;/c. Using the analysis in [10] for the M/G/1 queue we get,

%+ ok(l +CVk)
M/Glte ™ 9AL(1 = oy)

and as a result,

—k
X —

_kM/G/c mo_;/2(c+l) 2 (30)
Xumepn.

From the analysis in [11] we have the following expression for 5(—];,[ /G/1. PR = T’fw /G/1. PR~ Uk/C

ke 0i—1 . z E.7 1 (1 + Cz)
Xmjen. PR= A Z)‘ (1-0i-1) ¢ 20-0i)l=-a) [’

where C,, is the coefficient of variation of service requirement of class j, for j =1,...,k.

Substituting the above expression for .YI;W JG/1. pr @long with (30) into (29) we obtain

) |}:}l

DY (1+0)% ” VAT

XM/(’/C PR ™ KZ l:}:)‘ {1 — g1 21 ~04-1)(1 —ay) k

Using TI;W /GJc PR = X’?M /GJc PR T Ui/, substituting into (28), and simplifying we get

k

k-1 _
_ 1 _ _ 1 -
Bir, o, ~ % X:)‘ <Z gi> (0_1/2(c+1) 2 0;—/21(&1) 2) + - /\gkﬂk’/z( ) 2’ i >0,
v i=1
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where

T g, P Y {pi(1+ /)
S A 20— 0i1)(1 — o3)
We used X; = Ap; to obtain g;. Substituting T; = Z;/c into the above expressions for R-pk,ck and g; we
obtain (27) as required. Note that Z; = D;/k = (Di)/(Nk), and since ¢ = P/k, we get Z; = (Di)/(NP), for
i=1,...,k.

B Proof of Theorem 4.1

Theorem 5.1 Consider a set of K jobs with available parallelisms (ny,...,ng). Let U be a processor
allocation policy that allocates af processors to job i, for i = 1,...,K. Then for a workload ERF v that

is concave and nondecreasing, and for E(5) = v(j), i.e., jobs dynamically and efficiently redistribute their

work,
K K
Z.E(aiEQS) > Z E(a}), for any processor allocation policy ¥.
i=1 g=1

Proof. Without loss of generality assume that ny < ng < ... < ng. Throughout the proof we use the

following two properties:
° Zfi—l af <P.

< n;, but af can be > n; if ¥ is not processor conserving, i = 1,..., K.

e aiEQS

We divide the proof into three cases.

Case 1: Zfil n; < P.

EQS

We have a; =mn;, 1t =1,...,K and thus,

K K

K
S E@f) =" Bn) > Y Ba}),
g=1 3 1

where the last inequality follows because E is nondecreasing and E(z) = E(N) for z > N.
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Case 2:

Case 3:

ny; > P/K, i.e., all jobs under EQS get P/K processors each.

By definition, af Q5 = P/K. Therefore,

K K K K
> B =K1 (%) 2 Ky (Zz—l ) 52901 > 3 Blal),

i=1
where we have used the fact that « is concave and nondecreasing and E(z) < y(z) if z > N.

n < P/I{.
Under EQS jobs with low available parallelism are allocated as many processors as their available
parallelisms and the remaining jobs get the resultant equipartition number. Let the first J jobs under

EQS

EQS get as many processors as their available parallelisms. That is, a; =mn; fori=1,...,J and

aiEQS = (P ~ Zizl ne)/(K — J) for i = J+1,...,K, where anS < anS for j € {1,...,J} and

ke {J+1,...,K}. We now have

K Y
;E(af‘?s zfy(nz + (K - J)7y <5K—Z_-=JL—~> (31)

Let u) = min(ay,n;) be the useful processor allocation under policy ¥. As a result for policy ¥ we

have
K J K P Z'J ¥
;E(a% = ;7@?) + g;l ) < Z'y(u (K~ J)v (——————-——K = ) , (32)

where the last inequality follows due to concavity of . Using (31) and (32), to prove the theorem it

suffices to show that

J — J n; J - J u‘I’
Zv(ni>+<K—J>v<-’—’~;§;—7~—“> > + (K - J)v(ﬁ%i) (33)

f=1

To complete the proof we make use of the following property of concave functions. For a concave

function f

f(@2) — flo1)  flxg) = f(zs)

> , wherez; <z2 < 23 < 24. (34)
T2 — 1 T4 — T3
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This property is best illustrated by Figure 12 where slope of line AB > slope of line CD. Since uf’ < ny,

fori=1,...,J we have (P -0, ul)/(K = J) > (P = ¥;_, m:)/(K — J). Therefore,

J J
¥ <n2 < P“Zi:lni < P-—Zzzlug’,
- K-J . K—-J

U

where the second inequality is a consequence ofanS < anS forje{l,...,J}andk e {J+1,...,K}.

Applying (34) we obtain,

P-37 u¥ P-5>7 ne P-37 uf P-30
y(n:) — y(u¥) v K—d - K7 v R - s
L2 > = = .
ni—uf (p_ZJ: ug) (P“ZL n;) S mema) , i=1,...,J
K—J - K—J K—J
f(x)
¥ : i t
X1 x2 X3 X4
Figure 12: A Property of Concave Functions
As a result,
P-S u? P-5 n
() ()
y(ng) = y(@f) > (ni —uf) - [(K—J) - , fori=1,...,J.

Zgzl(ne - “g’)

Summing both sides from i =1 to J we get,

d J I e
3o - Sz uc-a - {(B5ET ) -0 (F52)

ge=1 i=1
Rearranging terms,
J J J J
5 P-ylim) s P-SL u¥
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which is what we set out to prove (see (33)).

C Obtaining Minimum and Maximum values of Rpgspr at 7 =1

and v = !

This appendix provides details of the algorithm used to find the minimum and maximum RpsapratrT =1
and v = 4! across all distributions of N that have the same N. Approximation (22) estimates RpsapF

under 7 =1 and v = 4*. The objective is to minimize or maximize Rpgapr over all pmf’s p subject to the

constraint that Zf:l ip; = N. It is easy to verify that the set of pmf’s that satisfies this equality constraint

is a convex set!”. We henceforth denote this convex set by Q. From [2] we note the following:
(1) Any local minimum of a convex function over a convex set is also a global minimum.

(2) If a convex function has a maximum over a convex set S, then the maximum is achieved at an extreme
point 6f S, where an extreme point is a point that does not lie strictly within the line segment connecting

two other points of the set.

If we can show that Rpgapr is convex in p over the set 2, our task of finding the global minimum and

maximum values of Rpgapr over Q will be considerably simplified. (Note that in general there is no known
algorithm that obtains the global minimum and maximum for an arbitrary nonlinear function.) We have
been unable to rigorously prove that Rpsapr is convex as desired, but we have empirically verified this
property by selecting random pairs of points in  and verifying that the line segment connecting the mean
response time values between each pair lies above the mean response time function. We have also plotted
the shape of Rpsapr for 2 and 3 dimensional problem sizes and verified it to be convex in 2. We shall
therefore assume that Rpgapr is convex in  and use properties (1) and (2) from above.

The minimum values of Epgapr were obtained by writing a nonlinear program in GAMS [4], and running
the program over the input values of A, Cy, and N required for Figure 10. We specified several different

initial feasible points p € Q to the GAMS program and always obtained the same value for the minimum

17 A nonempty set S in IR™ is said to be convex if the line segment joining any two points of the set also belongs to the set,
i.e., if  and Tp are in 8, then ATy + (1 — A)F2 is also in S for all A between 0 and 1 [2].
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(within the limits of numerical error), thus strengthening our belief that Rpsapr is convex in 2. To obtain
the maximum values of Rpsapr we first computed the extreme points in Q. It can be verified that an
extreme point in € is obtained by considering only two nonzero values in the pmf p and attaching suitable
weights to them so that the mean is N.® That only two nonzero values are needed results from the fact
that there are only two equality constraints, the first > p; = 1 and the second Y ip; = N. Once the extreme

points in ) were obtained we then computed Rpsapr at these points and selected the maximum value.

181n the special case where NV is an integer, the point (pg=1lpi=0fori# N) will also be an extreme point.
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