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Several studies of multiprogrammed parallel systems have observed that dynamic equiallocation policies
have high performance for a variety of specific parallel workloads. However, only very incomplete informa-
tion is available about which workload parameters are key determinants of policy performance and how the
mean response times of equiallocation policies behave as a function of key workload parameters. This paper
addresses these issues for an idealization of the Spatial EQuiallocation policy (EQS) and a workload model
that characterizes the essential features of parallel applications with respect to scheduling discipline perfor-
mance. Important features of the workload model include general distribution for available job parallelism,
controlled correlation between available parallelism and total job processing requirement, general distribution
of processing requirement per class of jobs in the correlation model, and general nondecreasing deterministic
job execution rates (i.e., speedups) that represent synchronization and communication overheads as well as
load imbalance for parallel programs.

The performance of EQS is analyzed using sample path analysis to derive bounds and using highly
efficient and extensively validated interpolation approximations to derive estimates for mean response time
(REegs)- The bounds show that under exponential job processing requirements (demands) and any concave
nondecreasing job execution rate function for all jobs Rpos is minimum when all jobs are fully parallel and
is maximum when all jobs are fully sequential. The upper bound is also shown to hold under very general
workload conditions. The approximation is used to obtain the demand and parallelism parameters that are
key determinants of EQS performance and to study the behavior of Rpgs as a function of changes in the
workload. Mean response time is shown to decrease with stochastic increase in available parallelism, decrease
in variability of parallelism, and increase in correlation. Under certain potentially realistic assumptions, the
mean response time is also shown to be fairly insensitive to parallel program overheads.

*This research was partially supported by the National Science Foundation under grants CCR-9024144 and CDA-9024618.



1 Introduction

Dynamic equiallocation policies are a class of parallel processor scheduling policies that attempt to allocate
processing power equally to all jobs, subject to the constraint that no job is allocated more processors than
its available parallelism. Several studies [30, 11, 10, 18, 7, 27, 19, 20, 16] of multiprogrammed parallel systems
have observed that dynamic equiallocation policies have high performance for a variety of workloads, where
the performance metric is mean response time. However, the performance characteristics of equiallocation
policies are not yet thoroughly understood. Typical questions that remain unanswered are:

o What are key workload parameters that affect scheduling policy performance? In particular,
what measures of job processing requirement, job parallelism, and correlation between the two
are key determinants of policy performance?

e What is the qualitative behavior of equiallocation policies as a function of the key workload
parameters? For example, how does the policy performance respond to changes in workload
parallelism or to changes in the correlation between processing requirement and parallelism?

In previous work, the principal barriers to addressing these questions have been restrictive workload
assumptions and numerical solution techniques that do not readily yield insight into key parameters and
policy behavior. In particular, previous simulation studies necessarily make specific assumptions about
distributions of cumulative processing demand and parallelism, and previous analytic studies of equiallocation
policies [10, 27] either assume that task service times are exponentially distributed, or assume that job
service time is exponentially distributed. These assumptions are made for analytic tractability yet the
solution techniques involve explicit enumeration of the state space, which yields no direct insight and grows
exponentially in the number of processors.

In this paper recent sample path analyses and interpolation approximation techniques [1, 16] are extended
to analyze an idealization of the Spatial EQuiallocation policy (EQS) (defined in Section 2) for a workload
model that we believe is broadly applicable and uses only a few parameters to characterize the essential
properties of parallel applications with respect to scheduling discipline performance. Significant features of
the workload model include general distribution of available job parallelism?, controlled correlation between
available parallelism and total job processing requirement (i.e., demand), general distribution of demand
per class of jobs in the correlation model, and general deterministic nondecreasing job execution rates (i-e.

speedup curves) which represent synchronization and communication overheads as well as load imbalance in

1The available parallelism, N, of a job is the number of processors the system scheduler believes the job can productively
use.




parallel programs. The key extensions to the workload model in this paper as compared with [16] are (1) the
model of correlation and (2) several equations that constrain the system parameter space. The constraints
on the parameter space aid in evaluating the qualitative behavior of EQS and in identifying stress tests for
validating the interpolation approximations.

The performance of EQS is analyzed using sample path analysis to derive bounds and interpolation ap-
proximations to derive estimates for mean response time (REegs)- The bounds show that under exponential
job processing demands and any concave nondecreasing job execution rate function for all jobs, Rpgs is min-
imum when all jobs are fully parallel and is maximum when all jobs are fully sequential. Further proofs show
that the upper bound holds under more general workload conditions that include general interarrival times,
general demands, general available parallelism, and general nondecreasing execution rates, with arbitrary
dependencies among these workload variables.

The central interpolation approximation is derived by showing that the BEQS system under constant
available parallelism reduces to a symmetric queue [8] and then interpolating among the mean response
time estimates at these extreme points to obtain an approximation for REpgs for general workloads. The
mean response time approximation is extensively validated against simulation and shown to be very accurate
across the workload parameter space. The approximation yields insight into the key determinants of EQS
performance and the behavior of Rpqs as a function of these parameters, and is highly efficient to evaluate
— systems with hundreds of processors can easily be analyzed.

The main results derived in this paper, under the assumptions that jobs can dynamically adapt to their
processor allocation and have a common nondecreasing execution rate function, are as follows:

e The key determinants of REqs are job arrival rate, the mean total processing requirement, D, and
the mean job service time on an otherwise empty system, S. More specifically, Rggs does not depend
on demand parameters other than D, such as coefficient of variation, and G contains all information
about parallelism, correlation, and execution rate parameters that are needed to determine REQS.

e Rpgs increases linearly in each of D and S (given that offered load remains fixed).

o The performance of EQS improves with (stochastic) increase in available parallelism. In particular,
the performance of EQS is optimal when all jobs are fully parallel and is pessimal when all jobs are
fully sequential.

e For workloads with a concave job execution rate and no correlation between total processing require-
ment and available parallelism, Rpgs decreases when the variability of available parallelism in the
workload decreases. More specifically, for a fixed mean available parallelism, Rggg is minimum when
the coefficient of variation, Cy, of available parallelism is minimum and is maximum when Cy is
maximum.



e An increase in correlation between mean demand and available parallelism improves the performance
of EQS (given a fixed overall mean demand).

® ﬁEQS remains bounded over the same range of job arrival rates for sublinear execution rates as for
linear execution rates, and is relatively insensitive to parallel program overheads if the workload is not
fully parallel and the execution rate is nearly linear for small processor allocations.
Although these results are derived assuming a single execution rate function for all jobs, it appears that most
of the results are likely to hold more generally as long as job execution rate on j < N processors is either
uncorrelated or positively correlated with available parallelism NV, as clarified in Section 7.

The remainder of this paper is organized as follows. The workload model, system assumptions, and
constraints on model parameters are presented in Section 2, which also contains a summary of the notation
used throughout the paper. Bounds on mean response time for EQS are presented in Section 3. and mean
response time approximations for EQS are derived in Section 4. The qualitative behavior of EQS is studied

in Section 5 for uncorrelated workloads and in Section 6 for correlated workloads. Finally Section 7 contains

the conclusions of this work.

2 System Model

We consider an open system model with P identical processors and a central job queue as shown in Figure 1.
The centralized queueing model is a conceptual model; actual implementations of the scheduling policy may
in general allow for distributed queue access. We assume zero job scheduling and preemption overhead, since
this is an idealized system model aimed at understanding qualitative performance characteristics of the EQS
scheduling policy. In practical implementations preemption overhead will exist but preemption frequency
should be limited so as to guarantee that overhead is a small fraction of the application processing time.
Below we define the EQS scheduling policy (Section 2.1), the basic workload model as it was defined in [16]
(Section 2.2), and extensions to that workload model to represent correlation between total job processing
requirement and available parallelism (Section 2.3). Constraints that exist among workload parameters are

discussed in Section 2.4, and the notation used throughout the remainder of the paper is given in Section 2.5.

2.1 The EQS Scheduling Policy

Dynamic equiallocation (EQ) policies allocate an equal fraction of processing power to each job in the

system unless a job has smaller available parallelism than the equiallocation value, in which case each such
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Figure 1: Open System Model

job is allocated processing power equal to its available parallelism, and the equiallocation value is recursively
recomputed for the remaining jobs. For example, if there are five jobs in a 100-processor system and the
available parallelism per job is (50, 25, 100, 10, 10), then the allocation of processing power is (27.5, 25, 27.5,
10, 10). The available parallelism of a job is defined to be the number of processors the system scheduler
believes the job can make productive use of. Reallocation of power can occur on job arrivals, job departures,
and changes in a job’s available parallelism.

The Spatial EQuiallocation policy (EQS) is an EQ policy in which processing power is allocated spatially
for integral allocation and temporally for fractional allocation. For example, if a job is to receive an allocation
of 27.5 units of processing power, then it is allocated 27 processors and it receives an additional 0.5 units
of processing power by time sharing an additional processor (i.e., the job alternately executes on 27 and 28
processors). Ignoring variations in implementation details, the EQS policy was first defined in [30].

In this paper we analyze the EQS policy and also comment on the applicability of the results for temporal
and hybrid spatial/temporal equiallocation policies. In the context of the workload model defined in the

next section, all EQ policies have the same performance when job execution rates are linear.

2.2 Basic Workload Model

The goal is to have a simple workload model that is broadly applicable, characterizes the essential features
of parallel workloads with respect to scheduling disciplines, contains a small number of parameters, and is
easy to analyze. To achieve broad applicability, few restrictions are made on the distribution of important

system parameters, such as available job parallelism and total processing demand. To keep the parameter



space simple and to facilitate ease of analysis, a simple characterization of job execution rates and correlation
between demand and parallelism is assumed.
Jobs arrive to the system according to a Poisson process with rate A as shown in Figure 1. All jobs are

assumed to be statistically identical. Each job is characterized by the following random variables.
(1) Total service demand (execution time on one processor) D,
(2) Available parallelism N € {1,2,..., P},

(3) Execution rate function (ERF) E : [0,P] — [0,N], which is nondecreasing and has the following
properties:

<=, 0<z <N,

E(z)
=E(N), N<z<P.

The system operates as follows. Upon arrival each job joins the central job queue. At each time, ¢ > 0, the
P processors are allocated to jobs present in the queue according to the EQS processor allocation policy.
If a(t) processors (possibly fractional) are allocated to a job at time #, then its demand is satisfied at rate
E(a(t)). In other words, E(k) is the speedup of the job if the job is allocated k processors throughout its
execution, and if the allocation can vary E(z) is also assumed to be the instantaneous rate at which the
job executes whenever it is allocated z processors. The job leaves the system upon completion of its total
demand, D. The available parallelism, N, of a job is the number of processors the system scheduler believes
the job can productively use. The workload model assumes that NV is an upper bound on the actual number
of processors, m, the job can productively use (i.e., by definition, E(z) = E(N) for N <z < P, and if m is
less than N then E(j) = E(m),m <j < N.)

The following is assumed about N and E.

e N has a general (bounded) distribution with mean N, coefficient of variation Cv, and probability mass

function p = (p1,...,pp), where py =Pr[N = k], k=1,...,P.

o E is derived from a deterministic nondecreasing function -, such that y(z) = = for 0 < z < 1, and
y(z)<zforl<z < P.
For a job with available parallelism N, E(N) = 4(IN). When fewer than N processors are allocated to

the job, the execution rate E depends on more detailed characteristics of the applications. Most results

in this paper are derived assuming that the work for a job can be dynamically redistributed across the




number of processors allocated to it such that it executes as if it had available parallelism equal to the
processor allocation, i.e., E(j) = 7(j), for 1 < j < N. This could be appropriate for applications based
on the work queue model, or in some cases where the processes of a job are timeshared on the allocated
processors. In cases where the allocated processing power, T, is nonintegral a linear interpolation

between v(|z]) and y([z]) is used to compute E(z).

Note that other assumptions about job execution rate on fewer than N processors are possible. For

example, one might assume that the parallelism overhead is about the same on fewer processors as
on N processors, i.e., E(j) = _1267(N ) for 1 < j < N, which could represent a system with jobs that

have fixed parallelism in which overhead is primarily due to message passing software and processing
load is balanced across the processors, e.g., through judicious cyclic rotation of processes. As another

example, if communication overheads are fixed for a given available parallelism but the load is only

balanced when j evenly divides N, then E(j) = T—A—/}/-ﬂ'y(N ),for1 <j<N.

As shown by the above examples, for given assumptions about the application characteristics, the
function y determines the ERF E. Thus « will be called the execution rate determinant (ERD) of the
workload in the remainder of this paper. The ERD 1 is said to be linear if y(z) = z, forall 0 < z < P.

In this paper the performance properties of the EQS policy are for the most part studied under the
assumption that jobs can dynamically adapt to the processor allocation such that E@G)=+(4), j <N,
as described above. Some of the results can be expected to hold for other assumptions about E(j),j <
N. We comment on this further as the results are developed and in Section 7.

The service time of a job on N processors is denoted by the random variable § = D/~(N), with mean
denoted by S.

The workload model defined above contains three simplifications each of which represents a trade-off
between analytic tractability and the simplicity of the parameter space on the one hand, and generality
of the model on the other hand. The first is the assumption of constant available parallelism per job, the
second is the assumption of a fixed execution rate, E(k), whenever the job is allocated k processors, and
the third is the assumption of a single function v that determines the execution rate for all jobs. The first
assumption is realistic for certain systems and/or workloads, for example, if the job is based on a work
queue model and can continuously adapt to any given number of processors up to a maximum value of N
throughout (most of) its lifetime, or if the system scheduler assumes the job’s parallelism is fixed (as in
the CM-5). Similarly, the second assumption is realistic for certain cases of dynamic scheduling (i.e., when
execution rates are nearly linear and/or when parallelism overheads including load imbalance are relatively

evenly distributed throughout the execution of the program, on any number of processors). Furthermore,
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since the purpose of the model is to analyze scheduling policy behavior and performance, as opposed to
obtaining precise mean response times for the applications, assumptions that approximately represent key
workload characteristics while keeping the model tractable and the parameter space simple, are acceptable
even when they don’t precisely describe the behavior of individual applications. For example, if jobs have
varying available parallelism, one can view the model with constant available parallelism as capturing the
contention that occurs between phases of different jobs, where a phase is a portion of the job in which
available parallelism is constant. Similarly, although jobs actually have differing degrees of sublinearity,
one can view the model as representing how policy generally performs as execution rates are more or less
sublinear. Extensions that would further increase the applicability of the model yet preserve its tractability

and parameter simplicity would be desirable, but appear to be quite difficult to obtain.

2.3 Correlation Model

The workload model defined so far is very similar to the workload model in [16]. In this section the model
is extended to allow correlation between D and N.

It is unknown whether or how job processing demand is correlated with parallelism in real workloads.
The most general way to model correlation is to specify an arbitrary joint distribution of D and N, but this
approach can complicate both the analysis and exploration of the design space. A simpler model that still
permits a wide range of correlation, can be obtained by assuming that for a job with available parallelism
N, its mean demand is either independent of N with probability g or is linearly correlated with N with
probability 1 — g. Varying ¢ from 0 to 1 thus allows us to control the workload correlation in the model.
Below the parameters of the correlation model are defined more precisely.

The demand of a job with available parallelism N is drawn from a general distribution, Fp, with mean

N
A and coefficient of variation C,, and then with probability 1 — ¢ it is scaled by the factor %—1—-, where A,

C,, and c are constants independent of N. Thus the mean demand of the job with available parallelism N
is given by

A A,  with probability g,
N‘ pred
¢N, with probability 1 — g.

Note that even for the scaled demand cases the coefficient of variation of processing requirement is equal to

Cy.




Let r denote the correlation coefficient of Ay and N. That is,

E|An N] — E[AN] E[N]

OANON

, Oan ONF0 (1)

i

T

Define 7 to be 0 when oo, =0o0r oy =0. The following lemma shows how A and ¢ are related to D (i.e.,
the mean demand of the workload across all jobs) and N, and how g is related to r. This lemma shows that

the workload correlation is specified by the single parameter 7.
Lemma 2.1 For the correlation model given by (1),
A=D, ¢=DJ/N, and g=1 -2,

Proof. By definition of A,
Ay = { A,  with probability g,
c¢N, with probability 1 —g¢.
Thus, E[Ay] = D=qgA+ (1-4q) ¢N, for all 0 < g < 1. Setting ¢ = 1 yields A = D, and setting g =0
yields ¢ = D/N.
To prove that ¢ = 1— 7%, note first that either oo, = 0 or oy = 0 implies that Ay = D with probability
1. Thus g = 1 — 72 for these cases. For oay >0 and oy > 0, we evaluate the RHS of equation (1). First
note that
E[ANN]=qgAN + (1-q)cE[N?].
Using this and E[An] = D and further simplifying we obtain,

E[Ax N] — E[AN]N = (1-q)DNC}. (2)

Also,

E[AR] gA* + (1-q)cE[N?,

i

ok, = B[A}] - E[An)? =1~ q) D C.

Substituting oay = v/I — ¢ D Cn and the RHS of (2) in (1), yields




which results in ¢ = 1 —r? as required. [

A consequence of this lemma is that 7 = 0 implies that ¢ =1 and thus that D and N are independent.

2.4 Parameter Constraints

The workload model defined above is not only general but is also easy to parameterize. Important general-
izations in the workload model include the general distribution of available parallelism, general distribution
of job demand for jobs with no correlation, general nondecreasing ERD, and controlled correlation between
demand and parallelism. Varying workload parameters, such as Cp and r, allows us to explore the de-
sign space more thoroughly than in the past. Nearly all previous performance studies of parallel processor
scheduling policies have assumed specific distributions for demand and/or parallelism. Furthermore, the
authors are not aware of any study that has allowed controlled correlation between demand and parallelism.
(Some previous studies have considered specific extremes of our correlation model such as r =0 andr =1,
cf. [12, 11, 32]. In ii.d. task service time models there is implicitly a high correlation between demand and
parallelism and there is no opportunity to vary demand and parallelism parameters independently.)

Workload parameters of immediate interest to us are mean and coefficient of variation in demand, i.e., D
and Cp, mean and coefficient of variation of available parallelism, i.e., N and Cy, correlation coefficient T,
execution rate determinant v, and mean service time 5. These parameters must satisfy certain relationships
which constrain the system design space. The parameters D, N, 7, and  can vary freely within their feasible
ranges (e.g., 0 < D<oo,1<N <P, or0<r <1), which is why they are the free parameters of the
model. Below, the constraints on the other parameters of interest, i.e., Cp, Cn, and S are identified. The
constraints delineate the model parameter space which will be useful in evaluating the qualitative behavior
of EQS as well as for identifying stress tests for validating mean response time approximations.

The overall coefficient of variation, Cp, in demand (after unconditioning on N) can vary freely between
0 and oo only when D and N are independent, i.e., 7 = 0. For 7 > 0, it can be verified using Lemma 2.1

that Cp depends on Cy, 7, and Cy as follows:
C3=(1+CH(1+rCF) - 1. (3)

Since NN is bounded above by P, it follows that Cly cannot be unbounded. For a given N, the following
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constraints on Cv are derived in Appendix A,

OSCNS\/LVE—;N:%l:—I‘)'—l- (4)

The lower bound is attained when N is constant and integer-valued for all jobs, i.e., N = k, where k €
{1,...,P}. The upper bound is attained when N has a two-point p.m.f. with nonzero mass only at 1 and P.

Appendix A also derives the following results that constrain 5. When 7 = 0 and v is concave?, § is
minimum when Cy is minimum and S is maximum when Cy is maximum. When r = 1, v is concave,
and N/v(N) is concave, § is maximum when Cy is minimum and S is minimum when Cy is maximum.
(The result for 7 = 1 holds for i.i.d. exponential task service times [21].) For concave v and N, /y(N), S
decreases with workload correlation r. (Note that N/v(V) is concave for the concave ERDs considered in

the experiments in this paper.)

2.5 Notation

Table 1 summarizes the notation for the model parameters and variables. Under the implicit assumption of

Poisson arrivals the following notation will be used to characterize specific workloads.
()‘a Fn, %7 LER E(J))3

A = job arrival rate
Fy = distribution of N, e.g., N = P, Uniform(1,P)
% = distribution of demand for jobs with mean demand independent of parallelism e.g., exp(x)

r = correlation coefficient

4 = execution rate determinant. By default 7 is a general nondecreasing ERD. The notation
~ € ¢, specifies that « belongs to the class of concave and nondecreasing ERDs, £°. To specify
the linear ERD, the notation 4! is used.

E(j) = job execution rate on j < N processors , €.g., E(j) = 7(j) in the case of jobs that can
dynamically and efficiently redistribute their work.

2 A function f : (a,b) — IR is concave if f(az+(1-a)y) 2 af(z)+(1—a)f(y), forall z,y € (a,b) and & € (0, 1). Conversely,
f is convex if flaz + (1 —a)y) < af(z) + (1 — a)f(y) [24]). Informally, a function is concave if the line joining two points on
the function lies on or below the function values between the two points, and is convex if the line lies on or above the function

values.
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A general distribution of demand or available parallelism, general ERD, or arbitrary value of r between 0

and 1, will be indicated simply by leaving the notation as Fp, Fn, 7, or 7, respectively.

Experimental results in this paper will make use of the following bounded-geometric distribution for

available job parallelism (similar to the distribution in [11, 9]):

Definition 2.1 N has a bounded-geometric distribution with parameters Py and p if

P, ith probability Pmaz,
N = { Wil prodadiity Fmes where X = Geometric(p).

min(X, P), with probability 1 — Prga,

In some experiments, three specific bounded-geometric distributions for N will be examined. These distri-
butions are given in Table 2. Discussion of these workloads is contained in [16]. Another distribution for N

that will be used is the following two-point pmf:

Definition 2.2 N has a Ko(a,b,a) distribution if

0<axl

N = a, with probability a,
b, with probability 1 — c.

Note that the Ka(1, P, ) distribution is the bounded-geometric distribution with Ppez =1 —a and p = 1.
The following two types of ERDs are used in the experiments:
o (k) =k fork=1,2,...,0<¢c<1,
o y(k)=1+B)k/(k+p) fork=12,..,0<p< 00

Both ERDs are concave and nondecreasing as shown in Figure 2. The second ERD is derived from a type

of execution signature in [5].

3 Mean Response Time Bounds for the EQS Policy

This section first derives lower and upper bounds on Rpgs for the workload (A, Fn, exp(1/D), r=0, 7€
£¢,E(j) = 4(j)). These bounds show that the mean response time is minimum when all jobs are fully
parallel (i.e., N = P) and is maximum when all jobs are fully sequential (i.e., N = 1), all else being equal.

Note that these bounds are derived assuming N and D are independent, D is exponential, the workload

12




Table 1: Notation

P Number of processors in the system

A Arrival rate of jobs

D Total job demand

4 | Distribution of demand for “uncorrelated” jobs
D | Overall mean job demand
Cp Overall coefficient of variation of demand

p | Offered load AD/P

N Available job parallelism
Fn | Distribution of available parallelism

Dk Probability[N = k], k=1,...,P

p | (p1,p2,---,PP)

N Average available parallelism
Cy | Coefficient of variation of available parallelism
T Correlation between N and D (as defined in (1))
vy Execution rate function (ERD) of the workload
o Class of concave and nondecreasing ERDs

At Linear execution rate function

S Mean job service time

S, | Normalized mean service time S/D

Rpgs | Mean response time of EQS

Table 2: Three Bounded-Geometric Distributions for N

Symbol | Parallelism | Pmaa P P=20 P=100
N Cw N Own
H High 0.9 1.0 18.10 0.31 | 90.10 0.33
M Moderate 0.1 | 1/(04P) | 870 0.77 | 43.14 0.80
L Low 0.1 0.9 3.00 1.89 | 11.00 2.70
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Figure 2: Two types of ERDs

ERD is concave and nondecreasing, and each job can dynamically redistribute its work across its processor
allocation. The assumption of exponential job demand is probably not a serious limitation in this case, since
the approximate analysis in this paper as well as the simulation experiments reported in this and previous
papers indicate that Rgos depends only on mean demand and not on distribution of demand.? We also show
that the upper bound for Rggs holds under more general workload assumptions, which include general job
arrival times, job demands, available parallelisms, and execution rates, with arbitrary dependencies among
these workload variables.

The lower and upper bounds in this section are generalizations of the bounds in [1] for the EQS policy,
and are obtained as corollaries of more general bounds, which show that the performance of EQS improves
with “increase” in available parallelism. For example, for workloads with the same available parallelism for
all jobs Rpgs decreases as available parallelism increases. In [1] it was shown that the mean response time of
any processor conserving policy* under exponential job demands and linear job execution rates is minimum
when N = P and maximum when N = 1. Note that the generalizations below are only with respect to the

EQS policy and do not hold for all processor conserving policies.

3The bounds also hold for the generalized exponential distribution since it can be shown analytically that the mean response
time of EQ is the same under exponential and generalized exponential demands [17].

4 A processor conserving policy does not allocate more processors to a job than the job can productively make use of, and it
does not leave a processor idle if any job can make use of that processor.

14




3.1 Lower and Upper Bounds: F} =exp, =0, y€&°

Tt will be shown that under the workload (A, Fn,exp(1/D),r = 0,7 € £°, E(j) = 7(j)), the performance of
EQS is optimal when all jobs are fully parallel and is pessimal when all jobs are fully sequential. The bounds

follow as an immediate consequence of the following theorem.

Theorem 3.1 If £ and m are constants such that £ < m, then under the workload assumptions

(A .,exp(1/D),r = 0,7 € €% E(j) = v(4)),

Rpgs(m < N<P) < Rpgs(1<N<Y).

Proof. See Appendix B. H

The intuition for Theorem 3.1 is that whenever the number of jobs in each system is equal, the total job
completion rate in the system with higher available parallelism is greater than or equal to the job completion

rate in the other system.

Setting £ = m = P in Theorem 3.1 yields the following lower bound on Rpgs:
Corollary 3.1 Under the workload assumptions (A, -,exp(1/D),r = 0,7 € €%, E(j) = v(5)),
Reos(Fn) > Rgpes(N =P).

In [1] a corresponding bound was given for all processor conserving policies assuming exponential demands
and the linear ERF. As in [1], a tighter lower bound can be obtained when N # P by using the fact that

REQS > 5. This yields the following bound, which henceforth will be referred to as the N = P lower bound:
Regs(Fv) = max{S, Reos(N =P)}, under (A, -, exp(1/D),r = 0,7 € £%, E(5) = 7(j))- (5)

Setting £ = m = 1 in Theorem 3.1 yields the following bound on REQS, which henceforth will be referred

to as the N = 1 upper bound:

Corollary 3.2 Under the workload assumptions (A, .,exp(1/D),r = 0,7 € £%, E(j) = v(4)),
REgs(Fn) £ Rpes(N=1). (6)

For the linear ERF, the bounds in (5) and (6) can be shown to reduce to the following [1}:

—_ 1 D — — . ) -
max (DE[l/N], i—-_—;};) < Rpgs(\ Fw,exp(l/D),r =0,4', E(j) =7(j)) < Rumymyp-
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3.2 Experimental Evaluation of the N =P and N =1 Bounds

For the workload (},-,exp(1/D),r = 0,y € £, E(j) = 7(j)) and for many distributions of N, the mean
system response time will lie closer to the N = P lower bound than the N = 1 upper bound, primarily
because the lower bound is the maximum of the mean service time and the mean reponse time when N = P
For example, for a given distribution of N, N # 1, the N = P bound is exact when p — 0 but this is
not true of the N = 1 bound. This point is further illustrated by comparing simulation estimates of REQS
against the bounds for a 100 processor system, the H and L distributions of N given in Table 2, exponential
job demand D with mean D = P = 100, and ERD ~(k) = ¥°8, k = 1,2,...,P.5 As seen from Figure 3(a)
and (b) the N = 1 upper bound is rather loose for workloads with high average available parallelism, but
is much tighter when average available parallelism is low. Conversely, REQS(N = P) is tighter for the H
workload, but looser for the L workload. Taking the maximum of § and Rggs(N = P), ie., the N =P

bound, results in a tight bound for both high and low average available parallelism.

2007 &—a N=1 upper bound 2007 a—a N=1 upper bound
M| e Regs(tH) M| Rggs()
g 1601 z—a N=P lower bound 3160 e—a N=P lower bound
R ~— Rggs(N=P) R | REQsW=P)
€120 €120
s S
5 6 1 : .
° # = #
n 301 3 80 /
e e /
T T /
i 40 1 40 //
m m //
e | e e
B . el
00 02 04 o 06 08 10 0.0 02 04 P 06 08 1.0
(a) H workload (b) L workload

Figure 3: Tightness of N =1 and N = P bounds for Rpos: D=exp,r=0

EB.D ’)’(k) = k08
D =P =100

5 A1l simulation experiments in this paper have 95% confidence intervals with less than 10% half-widths, and in almost all
cases the half-widths are less than 5of the estimate. The confidence intervals were generated using the regenerative method

whenever feasible and otherwise the method of batch means.
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3.3 Upper Bound under General Workloads

The N = 1 upper bound will now be derived under more general workload assumptions, i.e., general arrivals,
general available parallelism, general demands, and general nondecreasing execution rates, with arbitrary
dependencies among these workload variables. The upper bound follows as a direct consequence of the

following theorem.

Theorem 3.2 Let T; be a system with the EQS policy and primitive workload variables

{(A;, Di, N; > k,Ey),i = 1,2,...}, where A; is job i’s arrival time, D; its total demand, N; its available
parallelism, and E; its ezecution rate function. Let these primitive variables have arbitrary marginals (given
that N; > k, and the other variables make sense, e.g., D; > 0) with arbitrary dependencies among them. Let
T';r be a system with the EQS policy and the same workload as T'; except that N; = k for alli = 1,2,....

Then

Proof. See Appendix B. B

The intuition for Theorem 3.2 is that system I'; allocates at least as much processing power to each unfinished
job as I'yy does.

Setting k = 1 in Theorem 3.2 yields the following result.

Corollary 3.3 Let I'1 be a system with the EQS policy and primitive workload variables
{(A;, D;, Ni, Ei)yi = 1,2,.. .}. Let these primitive variables have arbitrary marginals with arbitrary depen-
dencies among them. Let T'r1 be a system with the EQS policy and the same workload as I'r ezcept that

N;=1foralli=1,2,.... Then
Rp, <RBpr, k=12,...,P.

More specifically,
Reos(Fn) < Rees(N=1), under (A, Fp,7,7,E(5))-

Considering only constant values of N in Theorem 3.2 yields the following corollary.

Corollary 3.4 Consider a system with the EQS policy with general {(As, Di, Ei)yi = 1,2,.. .} (Gi.e., these

primitive variables have arbitrary marginals with arbitrary dependencies among them). Then
Rpgs(N =P)<...<Rpes(N=k) <Bpos(N=k-1)<...<Rpes(N=1), k=PF,...,2
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where N = k denotes N; =k, for alli=1,2,....

This corollary shows that for workloads with constant available parallelism the performance of EQS improves

as available parallelism increases. This result is generalized in Section 5.2.

4 Mean Response Time Estimates for EQS

In this section mean response time estimates for EQS are derived under the workload assumptions (A, Fn,
F3, 7, 7, E(§) = 7(j)). In Section 4.1 the EQS system under constant available parallelism is reduced to
a known queueing system to obtain an exact expression for _EEQS. In Section 4.2 an approximate estimate
of Rpgs is derived for general distribution of available parallelism and arbitrary correlation between job
processing requirement and parallelism. The approximation for Rpgs is shown to be an interpolation

among the exact results for constant values of available parallelism, which yields additional insight into the

behavior of the policy.

Before proceeding, the known queueing system that will be used in deriving both the exact and approx-
imate mean response times is the symmetric queue, which is defined as follows [8].
Definition 4.1 A queue is a symmetric queue if it operates in the following manner:

(i) The service requirement of a job is a random variable whose distribution may depend upon the class of

the job.
(i) A total service effort is supplied at the rate ¢(j), where j is the total number of jobs in the queue.

(i) A proportion a(l,j) of this effort is directed to the job in position 1 € {1,2,...,5}; when this job leaves

the queue, jobs in positions I + 1,1+ 2,..., j move to positions I, +1,...,5 -1, respectively.

(iv) When a job arrives at the queue it moves into position 1 € {1,...,j + 1} with probability a(l,j + 1);
jobs previously in positions 1,1 +1,..., § move to positions 1+ 1,1+ 2,...,7+1, respectively, where j

is the total number of jobs in the queue as seen by the arrival.

. J
Note that ¢(j) >0 if 5 > 0, and Y o(l,5) = 1.
=1

4.1 Reductions under Constant Available Parallelism

For a system with constant available parallelism across all jobs, ie., N = k, where 1 < k < P, the EQS

system reduces to a symmetric queue, which leads to an exact solution for -R_EQS for any general distribution
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for demand and any general non-decreasing ERD 7, as given by the following theorem.

Theorem 4.1 For the system (EQS, A\, N =k, Fp, =0, 7, E(j)=1()),1<k<P,

ol kre0) = 2 (Pp)’
Beos(N =kr=0) = A{Zl (i — DI E(k)yminGm) [T E(P/3) "

(Pp)® p 1
P E(k)™]% EP/j)1-p (1 -P M P) } ’ @)

j=m+1

where m = |P/k), p=AD/P, and

.y (Pp) (Pp) p r_

2 AR oy BT PLEGRY™ i BPL) 10

Proof. Let I'y denote the system (EQS, A\, N =k, Fp,7 = 0,7, E(j) = 7(j)), 1 £ k < P. We first show
that T is a symmetric queue, and then derive the mean response time of I'y, for a general distribution of job
demand.

System T’ satisfies conditions (i) through (iv) for a symmetric queue in Definition 4.1. The total service
effort supplied when there are j jobs in I'y is #(j) = j - min(E(k), E(P/j)) since E is non-decreasing. (Note
that for j > P, ¢(j) = P, because E(z) = v(z) = z for 0 < z < 1.) From the definition of the EQ policy,
o(l,j) =1/j,1=1,...,j, since each job in Ty, gets an equal fraction of processing power. Note that this
does not hold if available parallelism is not constant across all jobs.

The mean response time of a job in system I'x can be derived from Theorems 3.8 and 3.10 of [8], which
give the following steady state probability of ¢ jobs in the queue for the stationary symmetric queue with

arbitrary distribution of job service time:

1r,-=—-;-’-’3-——n, i=0,1,2,... (8)
Hl:l ¢(l)
where
a=AD, and b= [ -—;—-——n—-} .

Substituting ¢({) = | min(E(k), E(P/1)) into equation (8) and Little’s Result
iy U
A ?

Rpos(N =k) =
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yields the mean response time for I'y as given in (7), where m = | P/k]. That is, m is the maximum number
of jobs that can execute simultaneously without contention for processors. The derivation of (7) uses the

fact that if there are P or more jobs in the system then the total service effort of the symmetric queueis P. W

Remark: The symmetric queue reduction and equation (8) actually hold for any nondecreasing ERF E,
and the mean response time formula (7) holds for any nondecreasing E such that E(z) =z for0 <z <1
(i.e., (7) and (8) hold for more general E than E(j) = v(5))-

An important observation from equation (7) is that Regs(N = k) depends only on the mean job demand
and not on higher moments of job demand. This property is a generalization of the corresponding property
for Processor Sharing (PS) systems. Note that when P =1 or when N =1 the EQS policy is identical to
the PS policy, and thus Rpgs(N =1) equals ﬁM/G/p pPs = RM/M/p. For the case of the linear ERF it was
shown in [16] that when P mod k = 0, Reos(N = k) = Ruygjc ps = R/ujc, where ¢ = P[k. The same

does not hold for nonlinear ERF's, however, if k£ > 1.

4.2 Approximation for Rggs: general N and r

Given equation (7) for Rpos(N = k,r = 0), the following interpolation on the pmf of N might be used to

approximate the mean response time for general distributions of N (cf. [16]):

P
_REQs(fN,T=0) ~ R%‘Q =2pkEEQS(N>=k:T=0)1 under (A,',f}sﬂ:(),’Y,E(j) =7(7). (9
k=1 .

However, it is not immediately obvious whether or how one might use the equations for constant available
parallelism to obtain mean response time estimates for correlated workloads. We thus take an alternate
approach to compute the mean response time for workloads with arbitrary correlation 0 <7 < 1, general
distributions of demand and available parallelism, and general nondecreasing ERD 7. The result of this
alternate approach will provide a justification for the above interpolation, an interpolation on the estimates
in equation (7) for Rpgs(r = 1), and an interpolation on the parameter 7 between the approximations for
r=0andr=1

The approximate mean response time for the EQS policy for the workload (A, Fn, F5,7,7, E(G) =~())
is derived by (1) classifying jobs according to their available parallelism, (2) computing the mean response

time for each class of jobs by approximating the average interference from other classes of jobs, and (3)
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computing the overall mean response time as a weighted sum of the approximate mean response times per

class. The particular approximate representation of average interference by other job classes yields a system

for each class that reduces to a symmetric queue, from which the class mean response time is computed.
Let a job with available parallelism k belong to class C, for k=1,..., P. Let _R-EQs,ck denote the mean

response time of class Cy under the workload A\, Fn, FB, 71,7, B(§) = 7(5)). Clearly,

P

Rpgs = Zpkﬁzsqs,ck- (10)
k=1

For each class Ci, the approximate processor contention from classes other than Cj is modeled by
assuming each such class has available parallelism k, but retains its total service demands as before. More
precisely, let REegs,c,. be approximately equal to the mean response time of class Cy in a system I'y which
is like the original system except that a class Cj job in T has demand D; and available parallelism k,
where D; = ¢D + (1 —g)cj, g=1-r*and c = D/N, as per the correlation model in Section 2.3. The
instantaneous load, including available parallelism and execution rate, of class C; jobs is not accurately
modeled by assuming that class C; jobs have parallelism k. However, the offered load by class C; jobs is
accurately modeled since the arrival rate and distribution of processing requirement of the class are as in
the actual system. Since efficiency is underestimated when parallelism is overestimated and vice versa, the
interference experienced by Cy may be somewhat underestimated for lower k and somewhat overestimated
for higher k. Note that these errors will tend to cancel each other in the calculation of overall mean response
time, REQS.

The approximation for REgs,c, is derived by solving for the mean response time of class k in system
T'x. Note that in system T’y there are P job classes, Ci,...,Cp, where C; has available parallelism k and
demand D;. Since all jobs have the same available parallelism and since the definition of a symmetric queue
permits multiple job classes with different service demand distributions (see Definition 4.1), the system
again reduces to a symmetric queue. As before, the total service effort with j jobs in the queue is ¢(4) =
j-min(E(k), E(P/4)), j 2 0, and the fraction of effort for job i is a(4,j) = 1/j, fori = 1,..., j. Furthermore,
equation (8) holds also for the case of multiple classes with different distribution of demand (see Theorem
3.8 and 3.10 of [8]), and thus Rr, = Rees(N = k,7 =0).

The mean response time of class k in I, Rr,.C., is obtained from part (ii) of Theorem 3.10 of Kelly [8].

Using the notation in this paper, this theorem can be stated as follows.
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Given there are ) customers in the symmetric queue, the classes of the customers are independent
and the probability the customer in a given position is of class C}; is

__D_k , where Ay, is the arrival
rate of class Ci, and Dy is the mean demand of class Ck.-

Thus given @ jobs in system I, the of number, Q, of jobs of class Cy is binomially distributed with

parameters @ and u; where uy := ADi/ (\D) = pyDi,/D. Therefore Q; = Quj and Little’s law yields the
mean response time of class C in I'y as

Br,c. = %

il

Qui _ Drs

< = =Ry, .
r D

Since Rr, = —REQs(N =k,7r=0),

— —_ Di—
Rggs,c, = Bry,c = ‘—‘D-,EREQS(N =k,r=0)

Substituting the above in (10), yields under the workload assumptions (X, -, F5,,7, E(j) = 7(j)) that
P

Rres(Fnv,r) = Y piReas(N =k,r=0), p;= PE= = D

(1 . i) ,
k=1 D
where the expression for p} was d

i (11)

erived as per the correlation model described in Section 2.3.
Further insight can be obtained from equation (11) by making the following observations. When r = 0,
P

= pg, for k=1,2,..., P, and approximation (11) reduces to the interpolation approximation in (9). On

the other hand when 7 = 1 it follows from (11) that under the assumptions (), -, F5,+7, E(F) = 7(5))s

P

- k—

Reos(Fn,r=1)~) pk-N‘REQs(N =k,r = 0).
k=1

Finally, for r between 0 and 1 and (A, -, 5,7, E(5) = (7)),

P

— k)l —

Rpos(Fn,1) = Zpk{1‘7‘2+T2=N-}REQS(N=’“’T=O)
k=1

P P
— k —
(1- 7‘2) ZkaEQs(N =k,r=0)+ r? Zpk::REQ,g(N =k,r=0)
k=1 k=1

(1- 7'2)—REQS(-7:N,7' =0)+ 7‘2_REQ5(.7:N,’I' = 1),
which can be interpreted as an interpolation on .

(12)
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4.3 Validations

We validated approximation (11) against simulation estimates of Rggs for several distributions of D and
N, linear as well as sublinear v, and uncorrelated as well as correlated workloads. As noted in Section 3
almost all simulation estimates have 95% confidence intervals with less than 5% half-widths (less than 10%
in all cases), and whenever possible the regenerative method was used to obtain the confidence intervals.
The batch means method was used if obtaining the regenerative cycles was too time consuming (e.g., for
workloads with low average available parallelism).

The parameter values used in the validation experiments are as follows:
(i) P: 20,100

(ii) F¥: deterministic, two-stage Erlang, exponential, two-stage hyperexponential, Gamma.
The approximations for REQS suggest that mean response time is insensitive to the distribution of
demand provided the mean demand is fixed. Within the limits of statistical error, the simulation
results also show this to be the case. For all validation experiments the mean job demand, D, is equal

to P. Thus offered load p = AD/P = \.
(iii) p: 0.1 to 0.9

(iv) Fn: bounded-geometric, uniform
Table 3 lists the parameter settings for all distributions of N considered in the validations. The
parameter settings for the bounded geometric distributions are arranged in groups of three, and within
each group in order of decreasing N. Tt can be shown that for a fixed value of N, the bounded-geometric
distribution with lowest Cy has Prgz = 0.0 and the bounded-geometric distribution with highest Cn
has p = 1 [15]. Thus, the first group of three are low Cy workloads, the last group are high Cn

workloads, and the middle group are workloads with intermediate Cn.

Note that for a fixed N the Ka(1, P, -";J‘—_——le) distribution, or equivalently the bounded-geometric distri-

2|

|

bution with p = 1 and Ppoz = Pj , distribution has highest Cy over all distributions of N, and the

constant N distribution has lowest Cy for integer-valued N. For constant N, approximation (11) is

exact, which is why this case is not included in the validation experiments.
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Distribution Parameter Settings

Bounded- Proz 0.0 0.0 0.0 0.1 0.1 01 09 05 0.1
Geometric p 0.005 1/(0.5P) 1/(0.1P) 0.01 1/(04P) 09 1 1 1
Uniform (P/2,P), (1,P), (1,P/2)

Table 3: Validation Workloads for N: P=20,100

) v (k) =k, k) =k 0<c<l, k)= (1+P)k/(k+B) 0<B<oo, k=12,...,P
In the absence of extensive data for real workloads the models are validated against three types of ERDs.
The first is simply the linear ERD. The second is a simple algebraic choice of a concave sublinear ERD,
whereas the third is derived from a type of ezecution signature given in [5]. For the ERD 7(k) = k¢,
the validations include ¢ = 0.7, 0.8, and 0.9, which are plotted for P = 100 in Figure 2(a). At c=0.7,
4(20) = 8.14 and (100) = 25.12 which are quite low compared to their linear counterparts of 20 and
100, respectively. The value of ¢ = 0.7 therefore tests the accuracy of the models for highly sublinear
ERDs. For the ERD 7(k) = (1 + B)k/(k + B) the following values of 3 are used in the validations:
B = 20, 50,100 for P = 20, and B8 = 50,100,500 for P = 100. The smaller values of § are used as stress
tests whereas the larger values are used to evaluate the accuracy of the models when the ERD is close

to linear, but not exactly linear. Figure 2(b) plots these ERDs for P = 100.

(vi) r: 0, 0.5, 1.

The total number of data points in our validations was 25616, Figure 4 summarizes the validations by
means of a histogram of relative error. There was no appreciable difference in the histograms for r = 0,
r = 0.5, and r = 1 and as a result the histograms are not presented separately for these cases. Note
that approximation (11) is extremely accurate since all data points in Figure 4 are with 15% of simulation
estimates. The largest errors (10 — 15%) were observed for correlated workloads with low to moderate N
(i..e, 0.1P < N < 0.5P), high Cy, and moderate to high execution rate sublinearity.

We also ran a few experiments for a nonconcave ERD, specifically, v(k) = P/[P[k],k =1,..., P, which
is a step function with perfect speedup when k evenly divides P. We found approximation (11) to have a
similar level of accuracy for this ERD as well. The results derived from approximation (11) in Sections 5

and 6 hold within the accuracy of the model, which is expected to be high for concave ERDs and is likely to

be high for nonconcave ERDs as well.

6Many of the simulations were run on the Condor distributed system [2].
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5 Behavior of _R'EQS with respect to Key Parameters: r =0

For the sake of simplicity we focus on uncorrelated workloads in this section and then generalize the results for
correlated workloads in Section 6. The goal is to identify which workload parameters are key determinants
of policy performance and to determine the functional dependence of EQS on key parameters. Section 5.1
points out that it is quite straightforward to determine the key parameter of job demand and discusses
how Rpgs varies with the key demand parameter. In Section 5.2 the behavior of Rggs is examined as a
function of several different parameters of available parallelism and the key parallelism parameter is identified.
Section 5.3 presents insights into the behavior of EQS as a function of sublinearity in the workload ERD

and Section 5.4 presents a summary of the results for uncorrelated workloads.

5.1 Rpggs as a function of job demand

Approximation (9) is a weighted sum of the mean response times of EQS under constant available parallelism.
We noted in Section 4.1 that the mean response time of EQS under constant available parallelism depends
only on the first moment of demand and not higher moments. Thus the weighted sum of Rpgs(N = k,7=0)
in approximation (11) depends only on D and not on higher moments of demand. This means that Rgos
is independent of Cp for all distributions of job demand and all distributions of job parallelism. Simulation
studies have also verified this result for specific demand distributions [11,9].

The dependence of Rggs on D can be readily obtained from approximation (11). For a given p, Rpqs is
directly proportional to D. This is because Rggs(N = k,r = 0) given by equation (7) is directly proportional

to D for a given p (because A = pP/D). These results were also shown for the linear ERF in [16].

5.2 Rggs as a function of job parallelism

To understand the behavior of REpos as a function of available parallelism, N, we need to know which
parameters of N are principal determinants of _REQS. Natural candidates are N and C. Another measure
of N that could be a key determinant when r = 0 is E[l /~(IN))] since the mean service time is DE[1/y(N)].

A possible approach to determining if a given parameter of N, say E[f(N)], uniquely determines REpos
is to test whether Rpos remains unchanged across all distributions of N that have a given E[f(N)], for

each possible value of E[f(N)]. In other words, if min{REeqs(¥n) : E[f(N)] =z} = max{Reqgs(Fn) :
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P P
minimize Z Ry, pr maximize Z Ry px
k=1 k=1
subject to: subject to:
Hp20 @Hp=0

P
@) > m =1
k=1

P
(i) > fk)ps = ElfN)i=a
k=1

P
i) Y pe = 1
k=1

-1
(i) Y f(k)pr = Ef(N)] =a

k=1

Figure 5: Linear Programs for Min and Max of Repgs

E[f(N)] = =} for all feasible z, then E[f(N)] is a parameter that uniquely determines REgs- To use this
approach we must obtain the minimum and maximum of Rpos(Fn,r = 0) over all distributions of N for each
value of E[f(N)]. A key observation about approximation (9) is that Rpos(N = k,r = 0) does not depend
on the pmf, p (see equation (7)). Thus, for given fixed values for A, D, and 7, RBEQ in approximation (9) can
be viewed as a linear combination of the px’s and we can use linear programming [4] to obtain the minimum
and maximum mean response times. The generic form of the linear program is given in Figure 5, where Ry,
denotes Rpgs(N = k).

Below, the linear programs of Figure 5 are used to determine whether N, Cy, or E[1/v(N)] uniquely

determine Rpqs-

5.2.1 Rpgs versus N

Setting f(IN) = N in Figure 5 we obtain linear programs that minimize and maximize the estimator R%Q
for a given N, A D, and « over all possible pmfs p such that the expected value of N is N. For P = 100 and
specific values of A, D, and 7, the linear programs were solved for N = 1,2, 5, 10,25,50,75, and 100 using
the Simplex Method of linear programming [4]. Figures 6(a) and (b) plot the envelopes obtained from the

minimum and maximum values of RE_ versus N for D = P, two different ERDs, and two different values of
EQ

p= )\_D_/ P = ). The minimum value of R‘%Q for a given N was obtained for a distribution of N with low Cy

(typically Ko(| N1, [N1,[N] = N)). The maximum value was obtained for the K2(1, P, 5=1) distribution

of N.

Figure 6 clearly shows that for uncorrelated workloads, N alone does not adequately capture the influence
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Figure 6: Envelopes of Rpgs versus N

D=P=100

of Fn on the behavior of Rpgs. For example, at p = 0.9 and N = 25 in Figure 6(a), E%Q ranges from a
minimum of 11.88 when N = 25, to a maximum of 79.83 when N has the K2(1,100, g%) distribution.
Although N does not in general uniquely determine EEQS, the envelopes in Figure 6 provide useful

bounds on REQS and lead to two useful observations. First, for each of the given parameter settings and
across all distributions of N, RPEQ is maximum when N = 1 and minimum when N = P. This is consistent
with the bounds for Rpgs that were derived in Section 3, where the upper bound was derived for general

demands and the lower bound was derived for exponential demands. For the envelopes in Figure 6 job

demand has a general distribution. Second, the plots for the maximum value of R%Q versus IV in Figures 6

reveal an interesting property of the K»(1, P, %) distribution of N — namely, that the response time for
this distribution decreases linearly as the mean available parallelism increases (i.e. as the fraction of fully

parallel jobs increases). This observation is only for a specific distribution of N; results below show that the

result also holds for other distributions of N.

5.2.2 EEQS versus Cy

We next examine whether Cy and N together uniquely determine REqs foragiven A, D, and . Figures 7(a)

and (b) plot envelopes of R%Q versus Cy for two values of N and two different ERDs, for systems with
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p=09
P =100, D = P, and p = 0.9. As before, the envelopes were obtained using linear programming. Note
that for each value of N, the range of Cy is constrained as specified in (4). As was the case in Figure 6 the

envelopes of R%Q versus Cy are very similar for both types of ERDs. The envelopes also have similar shape

and orientation for both values of W and for different values of p (not shown). However, unlike the envelopes

for N there is no particular pattern to the distributions of N that yield the minimum or maximum value of
R%Q at different values of Cn.

The plots in Figure 7 show that Cn and IV together are not sufficient to determine the behavior of Rgqs

as a function of workload parallelism. However, the envelopes show that, for the parameter values examined,
R%Q is minimum when Cy is minimum and is maximum when Cy is maximum, and that the range of

possible mean response times is low for low Cy.

5.2.3 Rggs versus E[1/7(N)]
The linear programs in Figure 5 with f(N) = 1/y(N) are used next to obtain envelopes of R%Q versus
E[1/~(N)] for given values of A and D, and a given function . Note that E[1 /7(N)] can vary from 1/v(P)

(when N = P) to 1 (when N = 1). Figure 8(a) and (b) plots the envelopes for two different ERDs and two

different values for p, given that P = 100 and D=rP.
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For the linear ERD in Figure 8(a) we observe that there is very little spread between the minimum and
maximum values of Rggs for a fixed value of E[1/N]. For sublinear ERDs as in Figure 8(b) the spread
is somewhat larger but is still quite small. These results provide evidence that E[1/v(N)] almost uniquely
determines Rggs(r = 0) and is thus the key parameter of available parallelism for uncorrelated workloads.

If in general Rpgs increases (nearly) linearly as a function of E[1/y(N)] = S/D holds in general for

workloads (A, Fn,Fg,7 = 0, 7, E(j) = 7(j)) then the following simple interpolation approximation for

-REQS should be accurate for these workloads:

= E\w| -5\ =
Rpos(Fn,r=0) = (,._[%z_—ja]__(i_i_ﬂ_)_ Reos(N =1,7=0)+
(P

I
1 P)

1-E |4
(_T._[Z_i"_’_].) Regs(N = P,r =0). (13)

We validated the above approximation against simulation estimates of Rggs, for the concave ERDs shown
in Figure 2 as well as the linear ERD. For all experiments we found the interpolation on E[1/~4(N)] to be
extremely accurate. (More than 95% of the validations had relative errors between -5% and 15%, and the

maximum relative error was about 30%.) Thus, within the accuracy of the above interpolation approximation,

E[1/~(N)] is a key determinant of EQS mean response time.
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The qualitative behavior of Rpqs versus the key parameter E[1/7(N)] =5/D = S, yields the following

insights into the performance of EQS as a function of N when r = 0.

(1)

(2)

®3)

(4)

Since Rpgs increases nearly linearly in E[1/4(N)], a workload with a lower value of E[1/v(N)] has a

smaller mean response time.

Since 1/4(P) < E[1/4(N)] < 1/4(1) it follows that REos(N = P) < Regs(Fn) < Rpes(N = 1).
That is, N = P is optimal and N =1 is pessimal for the workload (A, Fn, Fp, 7 =0, v), which is

generalization of the mean response time bounds of Section 3.

We next consider distributions of N between the two extremes of N =1 and N = P. In particular,
consider two distributions Fy, and Fn, such that N2 <q N1 (i.e., P[N2 €n] 2 P[N; <n),1<n < P).
Under this condition it is shown in [25] that E[f (Ny)] < E[f(Ng)] for any nonincreasing function f.
Setting f = 1/ it follows that E[1/v(N1)] < E[1/7(N2)] and thus Regs(Fn,) < Regs(Fn,)- Thus, a
stochastic increase in available parallelism leads to a decrease in mean response time for the EQS policy.
Hence the EQS policy does not discourage and may encourage users to increase program parallelism

(as long as the ERD is nondecreasing).

A stochastic increase in parallelism also increases the mean parallelism. What if the mean parallelism
is held constant but the variability in parallelism changes? More precisely, consider N1 = N2 and
Ny <, Na, which means that E[f(N1)] < E[f(IN2)] for all convex functions f [25]. If v is concave then
1/ is convex and it follows that Repgs(Fn,) < Rpos(Fn,) if N1 <y Na. Thus the mean response
time of EQS decreases with a decrease in variability of N if v is concave and N remains fixed. Note
that for the bounded distributions considered in this paper the highest variability in N for a fixed Nis
when N has a K»(1, P,.) distribution and the least variability in N is when N is constant. Also recall
(from 4) that for a given W, the Ka(1, P,-) has the highest Cy and the constant distribution has the
lowest Cy. Thus for a given N, EEQS is maximum when Cy is highest and is minimum when Cy is

lowest. This results generalizes the corresponding results for specific workloads in Figures 6 and 7.

Note that results (1) and (2) above contrast with studies of fork-join queueing systems that have shown

parallelism to be harmful for other scheduling disciplines, particularly at high loads [14, 26, 3].
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5.3 Rpgs as function of ERD Sublinearity

Intuition suggests that system performance should improve with a decrease in synchronization and commu-
nication overheads. This is also shown analytically, since an increase in y decreases E[1/~(N)] which in turn
decreases Rpgs. This section addresses the following further questions about the behavior of Rggs as a

function of ERD sublinearity:
o How stable is the system as a function of ERD sublinearity?
e Precisely how does Rggs behave as the ERD sublinearity increases for given functional forms of 7?7

o How does the behavior of Rpgs change with the functional form of v?

(i) System stability versus degree of sublinearity
Under the assumption of negligible preemption and scheduling overhead, and the fairly weak assump-
tion that E(z) = z for 0 < z < ¢ where c is a constant greater than zero, the stability condition for
a system with the EQS scheduling policy for any ERD + is the same as for the linear ERD, that is
A < P/D or p < 1. This stability property of the EQS policy is not shared by several other processor
scheduling policies for parallel systems. For example, consider the FCFS policy with a workload having
N = P and ERD +. This system behaves like an M/G/1 system with mean service time T = D /v(P)
and thus the stability condition is A < y(P) /D. That is, the upper bound on arrival rate for stable
operation of the FCFS system depends on ~(P) and degrades as the sublinearity of 7 increases. If

~(P) = P/2 then the upper bound on A is half that of the EQS system.

(ii) Sensitivity of Rpos to ERD sublinearity and type
The sensitivity of Rpgs to the degree of ERD sublinearity is examined for the following two specific

ERD functions. In each function the degree of sublinearity is controlled by a single parameter.

(a) v(k) =k k= 1,2,...,N,0< ¢ <1 Whenc=0we obtain the constant ERD (k) = 1, and
when ¢ = 1 we obtain the linear ERD ~(k) = k. Thus we control the degree of sublinearity by

varying ¢ from 0 to 1. This ERD is plotted in Figure 2(a) for different values of c.

(b) fy(k)=-(~1—t—-ﬁ-2£ k=1,2,...,N,0< B <oco. When 8 =0, we obtain v(k) = 1, and when 8 = c©

k+38 "’

we obtain the linear ERD. Thus we control the degree of sublinearity by varying § from 0 to oo.

This ERD is plotted in Figure 2(b) for several values of 3.
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Figure 9 plots REos, estimated from approximation (9), versus ERD sublinearity, v(P)/P, for each
of the above ERDs, the H and L workloads of Table 2, and two different values of p. For each curve,
P = 100 and D = P. For both ERD types we observe that sublinearity has a fairly small impact on
overall mean response time for the L workload, since a significant fraction of the jobs are sequential
and the service time for sequential jobs is independent of ERD sublinearity. On the other hand, for
the H workload the ERD sublinearity has a significant impact on mean response time. Furthermore,
the precise behavior of Rpgos as a function of ERD sublinearity differs for the two different types of

ERDs, and the difference increases as p increases.

For the ERD (k) = (1 + B)k/(k + B) the mean response time of EQS decreases dramatically when
~4(P) increases from 1 to 0.5P, and then decreases only very gradually as y(P) varies from 0.5P to
P For the ERD (k) = k°, as p increases the mean response time decreases more gradually for
4(P) in the range of 1 to 0.5P. Rpqs behaves differently (at moderate to high load) under these two
ERD types because of the different behavior of these ERDs when processor allocation is low, say in
the region of 0-0.20P (see Figure 2). At higher load, jobs are allocated fewer processors, and for any
fixed average allocation of processors k < P, say k=10, the curves (in Figure 2) that correspond to
particular increases in (P) more rapidly approach rate k for the ERD controlled by 3 than for the
ERD controlled by ¢. (Note that for the H workload and p > 0.7, the mean number of jobs in the

system as obtained from the interpolation on p is greater than 10 under all ERDs.)

One conclusion of this sensitivity study is that, as intuition might suggest, the EQS policy provides
better performance to workloads that have the initial part of their ERDs (say the first 10-20%) close
to linear. Another conclusion is that if the ERD has this property, REQS is relatively insensitive to
ERD sublinearity in the range of y(P) > 0.5P, particularly if the workload is not fully parallel and p

is less than 0.9.

5.4 Summary of insights for 7 =0

In this section the following properties of the EQS policy for uncorrelated workloads with E = v were derived

from the interpolation approximation in (9).

TNote that the degree of insensitivity of Rpgs to ERD sublinearity when v(P) > 0.5P ig partially due to the fact that the H
workload contains a fraction of sequential jobs, whose service times dominate in the overall mean service time estimate. For a
fully parallel workload, the decrease in Rpgs as v(P) increases is still gradual for 7(P) > 0.5, but has somewhat more negative

slope than the H workload.
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(i) D and S, = E[1/7(N)] as well as X and P, are the key determinants of REggs-

(ii) Regs increases linearly with D for a given value of p and is insensitive to higher moments of D (e.g.,
Cp).

(iii) Parallelism Considered Useful: REgs decreases with a stochastic increase in available parallelism. In

particular, N = P is optimal and N =1 is pessimal for the EQS policy.
(iv) For a concave ERD « Rpqs decreases with a decrease in the variability of available parallelism.

(v) Graceful degradation with ERD sublinearity: In the absence of preemption and scheduling overhead,
the stability condition for the EQS system is the same for sublinear ERDs as for the linear ERD (i.e.,
) < P/D). Furthermore, if the workload ERD is close to linear when processor allocation is 0 — 20%

of P, 'R-EQS is relatively insensitive to ERD sublinearity at higher processor allocations, given that the

applications have at least 50-60% efficiency on P processors.

6 Behavior of Rggg for Correlated Workloads

In Section 5 the behavior of EQS was studied using the following approximation for uncorrelated workloads:

P
EEQS(-FNJ' = 0) = Zpk-REQS(N =k,r= 0)1 under (’\a 'y ‘7:115, g 71E(.7) = 7(])) (9)
k=1
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To study the behavior of REpqgs for correlated workloads, we make a key observation about the following

approximation for Rpos under general workload conditions, which was derived in Section4.2:

P om—

— — D k

Rpqs(Fn,7) = E P Reos(N = k,7 =0), Dh =pk~——.ﬁlrc = pi (1 -7 TZ-I_V—.) . (11)
k=1

Comparing (11) with (9) shows that REeos(Fn,r) is obtained by replacing py in (9) by pj,. We note that
pl, > 0 and kazl p}, = 1. Hence p' = (p,-...,pp) is a pmf for a random variable N’ € {1,...,P}. This
implies that if we use the random variable N’ instead of N in approximation (9) we will obtain an estimate
for Rpgs(Fn,r). Thus we can view the behavior of —REQS under a correlated workload as equivalent to
the behavior of Rpgs under an uncorrelated workload with a different distribution of available parallelism.
Formally,

Bros(Fn,r) ~ Rpgs(Fa,m =0), under (A, Fp, -7, B(j) = 7(5))- (14)

6.1 REQS as a function of job demand and parallelism

When r > 0, as in the case of 7 = 0, D is the only determinant of EEQS with respect to job demand. This
is true because approximation (11) is a weighted sum of the mean response times of EQS under constant
available parallelism, which depend only on the first moment of demand and not on higher moments. (Note
that the weights p}, do not depend on D since the ratio of Dy/D is independent of D, for k=1,2,...,P.)
Regarding the key determinant of REQS with respect to the distribution of available parallelism for
correlated workloads, in Section 5 we showed that E[1/y(N )] is the key determinant of Regs(Fn,r = 0)
(given that A, D, and 7 are fixed). This, together with approximation (14), implies that E[1/y(N "] is the

key determinant for Rpos(r). Simplifying E[1/v(N N] we get

=[] = Lt

B if’ Dy 1

s | =T
“=""'D (k)

= i? = Sp.
D

Thus S, is the key parameter for job parallelism, workload correlation, and job execution rate determinant.

Moreover, the result that Rpgs increases (nearly) linearly as a function of Sy, as per Figure 8, holds for
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correlated workloads since it holds for all distributions of N in uncorrelated workloads. We can show that
under nondecreasing 7, S, (r) is minimum when N = P and maximum when N = 1, and a stochastic increase
in N causes S,, to decrease. Thus for correlated workloads the N = P workload has optimal performance
and the N = 1 workload has pessimal performance. Unlike the case of 7 = 0 for a fixed N, S, does not
necessarily decrease with decrease in variability of N. For example, when 7 =1 it follows from Theorem A.2
in Appendix A that for concave v and concave N/4(N), Sy is minimum when variability in IV is maximum
and is maximum when variability in N is minimum. Thus, since property (v) in Section 5.4 is expected to
hold generally for uncorrelated workloads, all of the properties of Rpgs summarized in that section apply

to workloads with 7 > 0, except property (iv).

6.2 Rggs as a function of 7

We now study the behavior of Rpos when workload correlation increases. Recall from (14) that the behavior
of EQS under correlated workloads and a distribution of available parallelism Fy is the same as the behavior
of EQS under no correlation and a distribution of available parallelism Fy+. The pmf of N', p', is related to

the pmf of N, p, as follows:

Thus, p}, < pr for k < N and p}, > p for k > N. As a result the random variable N’ has stochastically
higher available parallelism than N (ie, N’ >, N). The intuitive reason for the increase in effective
available parallelism is that under correlated workloads, jobs that have small demands and exit the system
quickly have on average smaller parallelism and leave behind jobs that have larger available parallelisms on
average.

As seen in Section 6.1 a stochastic increase in parallelism causes Rgeos(r = 0) to decrease and hence
Rpgs(r) decreases with correlation, under the given model of workload correlation and given that D remains
unchanged. The intuition for this result is that as r increases, larger demand jobs have larger available
parallelisms, and this causes them to complete faster than if they had lower parallelisms as in uncorrelated
workloads. (Consider for example the case where a sequential job in an uncorrelated workload runs on one
processor but the remaining processors are idle.)

Concerning the quantitative behavior of .REQS as a function of r, Figure 10 depicts Regs (as obtained
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from approximation (11) versus 2 for the H and L workloads, two types of ERDs (one linear and one
sublinear), and two values of p. The quadratic dependence of Rgqgs on 7 (under the given workload model),
which is shown in the interpolation on r (12), is evident in the figure. Rpgs decreases more sharply for the I
workload than for the H workload, but for both workloads there is a significant decrease in mean response time
as r increases. The results show that EQS is a high performance policy under highly correlated workloads.

Note that again that this property is not shared by all scheduling disciplines.

7 Conclusions

In this paper the performance of the idealized Spatial EQuiallocation policy, EQS, was analyzed under a
workload model that includes general distribution of total job processing requirement (demand), general
distribution of available parallelism, a general nondecreasing execution rate determinant (ERD) for all jobs,
and controlled correlation between mean demand and available parallelism. First, sample path analysis
was used to derive mean response time bounds for EQS. These bounds show that for exponential demands
that are uncorrelated with available parallelism and the same concave ERD for all jobs EQS has optimal
performance when all jobs are fully parallel, and under general demand, available parallelism, execution
rate, and correlation, EQS has pessimal performance when all jobs are fully sequential. Second, approximate

analysis was used to solve for Rpos under the general assumptions of the workload model. This analysis
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was made possible by reducing the EQS system under the assumption of constant available parallelism to
a known queueing system, namely Kelly’s symmetric queue. Extensive validations against simulation show
that the mean response time approximation is extremely accurate; all 2561 estimates validated were within
15% of simulation estimates, and about 95% of the cases had under 5% relative error.

The approximate analysis yielded the insights that, within the accuracy of the model, (1) mean total
processing requirement D, and normalized mean service time, Sn := 5/D, are the key determinants of
-REQ.‘S‘; REQS increases linearly in each of these determinants, (2) REQS decreases with a stochastic increase
in available parallelism, in particular, it is optimal when all jobs are fully parallel and pessimal when all
jobs are fully sequential, (3) for uncorrelated workloads and a concave workload ERD Rggs decreases with
decrease in variability of available parallelism, (4) REpos decreases with increase in workload correlation
(for fixed D), and (5) in the absence of preemption and scheduling overhead the EQS system has the same
stability condition for sublinear ERDs as it does for the linear ERD, and its mean response time is relatively
insensitive to parallel program overheads if the workload is not fully parallel and the ERD is nearly linear
for small processor allocations.

Although the above results were derived assuming that all jobs have the same execution rate function,
~, careful thought reveals that the results are likely to hold more generally as long as job execution rate
on j < N processors is uncorrelated with available parallelism N. The results except for the third are also
likely to hold when the execution rate on j < N processors is positively correlated with available parallelism.
Thus, the key properties of the system that lead to the nice performance behavior are (a) equiallocation of
processing power, (b) jobs can dynamically redistribute their work among their allocated processors, and
(c) jobs with available parallelism n > § generally execute at least as efficiently on j processors as jobs with
available parallelism j. The results explain why several previous studies of systems that satisfy assumptions
(a) and (b) have observed high performance. If property (c) does not hold for a given equiallocation system
(e.g., an EQ policy under workloads where E(j) = (j/N)v(N)) then some of the results should continue
to hold and other results do not hold. For example, insensitivity of mean response time to coefficient of
variation in demand, Cp, should continue to hold, but the result that mean response time decreases with
“increase” in available parallelism will not necessarily hold, and system performance can be expected to
be more sensitive to ERF sublinearity. Thus, for high-performance multiprogrammed parallel systems, the

development of architectural and software support that allows jobs to dynamically and efficiently redistribute
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their work across their processor allocation is highly desirable.
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Appendix

A Constraints on System Parameters

The constraints on system parameters developed below delineate the design space for evaluating the quali-
tative behavior of the EQS policy and are also used to identify stress tests for validating mean response time
approximations. Below achievable lower and upper bounds on Cy and S are derived as a function of the
free parameters of the model, namely N, D, r, and 7.

A.1 Constraints on Cy

In the workload model N is bounded above by P because a program cannot make use of more than P
Processors. As a result, the coefficient of variation of N, Cy is generally not independent of N. For example,
i# N =1o0r N =P, Cy =0. The following proposition provides bounds on Cy in terms of N.

Proposition A.1 For a given N,

0<Cn < \ﬁ\r_(—lif_-_i—).ﬁq.
N

The lower bound is achieved when N is constant and integer-valued for all jobs, and the upper bound is
achieved when N has a K2(1, P, %‘;—1}’-) distribution.

Proof. The lower bound is trivial. The derivation of the upper bound is as follows. Since Cy = on/N an
upper bound for oy is needed. By definition,

0% = E[N? -~ N

P P
EIN? = Y pek? = Y mef(k), (15)
i=1

i=1
where f(z) = z°. An upper bound on E|N?] can be derived by observing that f is a convex function, that

is,
flaz+(1-a)y) <af(@)+(1-a)f(y), 0O0Losl

Choosing « such that a-14 (1 —a)P =k, that is, o = (P —k)/(k — 1), gives the following bound for f(k),

fE) = fla-1+(1-a)P) < af(l)+(1-@f(P) = 52514 £Z2P.

Using this bound in (15) it follows that,

P
P—k k-1
E[NY < . 2
[N] < ;Pk(P__l 1+P-—1P)

= p-itPoit

= N(P+1)-P.
Hence, ,

E[N?|-N N -

N N

which yields the required upper bound. From the derivation it follows that this upper bound is attained
when N has nonzero mass only at 1 and P. n
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A.2 Constraints on S

First consider S for general ERDs in terms of D,r, N,and 7.
Lemma A.1 _
= _— 1 D N
§=(1-r? DE[————-] +r2=E[————-]. 16
A-rDE|lxm] * TR P W (16)
Proof. Since S = D/v(N) the correlation model in Section 2.3 yields

7-5[) = Lfost + 09 50)

L J
(DE [;y-(—l]—v-)} + -0 FE [T(NJVS] ’

Il

from which (16) follows. B

Equation (16) shows that _ _ _
S=1-r)8(r=0) + r*S(r=1).

For the case of r = 0 we have the following bounds on S.
Theorem A.l For a concave ERD 7, a given value of N, and r =0,
D — —(P-N N-1 1
< — < 8§ <D . .
=@ C (P—1+P—1 ,,(p)>
The lower bound is attained when N is constant (i.e., Cny = 0) and the upper bound is attained when N has
a K2(1, P, 5=) distribution (mazimum Cy ).

=l ol

Proof. Since « is concave, 1/7 is convex [24] and the proof is similar to the proof of Proposition A.1. &
For the linear ERD the bounds on § forr =0 reduce to the following form:

Corollary A.1 For the linear ERD, a given value of N, andr =0,
D _ — =+ N-1
=<85<D|{l——5—1}-
NT T ( )

When r = 1 the reverse conditions for minimum and maximum S are obtained, as shown in the following
theorem.

Theorem A.2 If N/y(N) is concave then for a given Nandr=1,

_"g(.P-J’\r'+7v’—-1_ P><-—-< D
N\P-1 P-1 @) =" =~ AN

The lower bound is attained when N has a K2(1, P, —’%{—}?—) distribution (mazimum Cn) and the upper bound
is attained when N is constant (i.e., Cn =0 ).

Proof. See [15] B
From Theorems A.1 and A.2 we obtain the following corollary.

Corollary A.2 If v is a concave ERD such that N/y(N) is concave then
S(r=1) < S(r=0).
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Proof. From Theorem A.2 S(r = 1) < D/4(N) under the given conditions for 7, and from Theorem Al
D/~(N) < S(r =0). |

To summarize the above results, note that for a concave ERD 7, for uncorrelated workloads S is minimum
when Cy is minimum and S is maximum when Cy is maximum. For a concave ERD 7 such that N/v(N)
is concave, and for fully correlated workloads, S is maximum when Cy is minimum and S is minimum
when Cy is maximum. For the latter conditions on 7, TG decreases with workload correlation 7. (The above
derivations only proved S(r = 1) < S(r = 0), but using (16) in addition to this bound shows that that S

decreases with 7.)

B Proofs of Theorems 4.1 and 4.2

Theorem 3.1 If £ and m are constants such that £ < m, then under the workload assumptions
()‘a -,exp(l/D),r = 017 € SC,E(]) = 7(.7)))

Rpgs(m < N<P) < Rpes(1<N<O).

Let T; = (EQS, \, m < N <P, exp(1/D), r =0, 7 € €%, B(j) = (), and
let 'y = (EQS, A 1< N <L, exp(l/D)’ r=0,7€ £, E(]) = ’Y(J))
The following lemma is used in the proof of this theorem.

Lemma B.1 Suppose there are K jobs in system L'y such that the allocation of processing power to these jobs

is (a1,az,.-.,0K), and suppose there are M > K jobs in system T'1y such that the allocation of processing
power to these jobs is (b1, be,. .. ,bar). Then

K K

S ylas) = Y (b))

=1 =1

(Note that the summation is from 1 to K on both sides.)

Proof. Since the ERD «, which is the same for both systems, is concave and nondecreasing

K K
;v(bi) < Ky (Z—’;}ﬁl) < Ky (%) (17)

Since b; < 4,i=1,2,...,K,and v is nondecreasing
K
S (i) < Kv(0).
g==1
The above inequality together with (17) yields
K
3 4(5:) < K min(y(8), 7(P/K)) < K min(y(m),7(P/K)), (18)
i=1

where the last inequality follows because £ < m and v is nondecreasing.
To see that

K
K min(y(m), 7(P/K)) < D v(as), (19)
i=1
consider the following two cases:
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(i) m > P/K:
Ifm > P/K thena; = P/K,i=1,2,... , K (since P/K is the equiallocation number and the available
parallelism of each job in I'; is at least m). Hence

K
K min(y(m),7(P/K)) = K7(P/K) = (a).

i=1
(i) m < P/K:
Since m < P/K each job in I'y is allocated at least m processors. That is, a; > m, i = 1,2,..., K.
Hence
K
K min(y(m),7(P/K)) = Ky(m) < ) (as).
izl
This proves inequality (19). The lemma follows from inequalities (18) and (19). B

Proof of Theorem 3.1. This theorem is proved by sample path analysis, making use of the following
observations:

(i) If a job is allocated processing power z then the residual life time of the job is exponentially distributed
with rate y(z)p.

(ii) If there are k > 0 jobs in system I';, i = I, II, at time t with the 4" job having a processor allocation
ofz;,1 <j <k, then the time to the next departure from I'; is exponentially distributed with rate

Sh v(=s)n-

Let Q;(t) be the number of jobs in system T; at time ¢, ¢ = [, I1. Let af(t) =~(ax)/P, k=1,2,... ,Q1(D),
where a is the processor allocation to the k** job in T'y at time t. Similarly let alf(t) = y(b)/P, k =
1,2,...,Qri(t), where by is the processor allocation to the kt* job in T’y at time ¢. Thus the kth job in T;
departs with rate ok (t)Pp, i € {I,1I}.

Coupling of Sample Paths in T’y and U'yr

Fix the arrival times of jobs to be the same in I'; and T'y;. Fix sequences of integers {Nf }%2, and
{N/1}2, for available job parallelisms in I'; and Tj; respectively, where m < N] < P and 1 < NH < ¢,
i=1,2,.... Consider that potential job completions [31] occur in each of I'; and I'ys at jumps of a Poisson
process with rate Pu. Fix the same potential completion instants {T}22, in both I'; and I'y;. To generate
actual job completion times in T'y and T'zy let {U;}2, be iid. Uniform[0,1) random variables. At the rth

potential completion instant T.., the k** job in T; departs if

k-1 k
Ur € [Z aé(T:),ZaﬂT:)) , k=12, Qit), i€{LII} (20)
j=1 j=1

This ensures that the probability that the &** job departs from I’; is al(Ty).

Sample Path Analysis
Using the above coupling of sample paths we show by an induction over time that for every sample path,

forallt >0

Qr(t) £ Qu(®). (21)

We carry out the induction only over arrival instants and potential completion instants since no jobs depart
in between these event times. Let {t;}52, be the sequence of arrival and potential completion times arranged
in increasing order. Let both I'; and Ty start out with zero jobs each. Then clearly (21) is satisfied at
¢ = t;. Assume that (21) is true for all ¢ < ¢;. Since no jobs arrive or depart in (t;,t5+1) (21) is also true for
all t; < t < tj41. We now prove that (21) is true at t = ;41. Consider all possible events at time ¢;41.
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1. Job Arrival:
By the induction hypothesis it follows that

Qr(tis1) = Qr(t;) +1 < Qut;) +1 = Quiltjs1)-

2. Potential Completion:

(a) No departure from each of I'; and I'y:
Q1(tjr1) = Qu(t;) < Qui(ty) = Qui(ti+1)-
(b) Departure from I'y but not from Crr:
Q1(ti1) = Qr(ty) - 1 < Qu(t;) — 1= Qur(tin) — 1 < Quiltisa)-
(c) Departure from each of I’y and [yp:
Qr(tjs1) = Qr(t;) ~ 1 < Quu(ts) — 1= Qur(tj+1)-

(d) Departure from T'y; but not from I'y:
This implies that

Qri(t;) Qr(t;)
U, € [0, > of'(t51) ], and Ur € S al(t5a), 1) (22)
ta=1 3z=1

where tj11 = Tr, the rth potential completion instant, 1 <7 < j+ 1. Since these two intervals
overlap, we have

Qr(t;) Qri(ts)
Z a{(t;+l) < Z afl(t;+1). (23)
ix=1 i=1

Since Qr(t;) < Qri(t;) (induction hypothesis) we have from Lemma B.1 that
Qr(t;) Q1(t5) Q1(t;) Qi(ti)

- 1 -
E o (t74) = P Z ¥(b:) £ P Z v(a:) = Z a; (t741)- (24)
i=1 i=1 i=1 i=1
(23) and (24) together imply
Qu(t5) Qu(t;) Qui(ti)
S afl(t) < Y altra) < Yo e (),
i=1 i=1 i=1

which shows that Qr(¢;) < Qri(t;). Hence
Qr(tjs1) = Qr(t;) < Quults) — 1 = Qur(tja)-

This completes the proof by induction. Thus, we have shown for every sample path that Q1(2) < Qri(t),
vt > 0. Hence for every sample path

— .1 .1 —
3= tim } [ Qs < Jim 7 [ Quu(s)ds =T

from which it follows by Little’s Law [28] that Rr, < Rr,,; for every sample path. Now uncondition on
arrival times, available parallelisms, and potential completion times. |
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Remark: Note that the above proof does not require the assumption of Poisson arrivals. The arrival process
can be any GI process.

Theorem 3.2 Let I'1 be a system with the EQS policy and primitive workload variables
{(A;i, Di, N; = K, E),i = 1,2,...}, where A; is job i’s arrival time, D; its total demand, N; its available
parallelism, and E; its ezecution rate function. Let these primitive variables have arbitrary marginals (given
that N; > k, and the other variables make sense, e.g., D; > 0) with arbitrary dependencies among them. Let
T'1r be a system with the EQS policy and the same workload as T'; except that N; = k for alli = 1,2,....
Then _ _

‘RFI SRFII’ k=12,...,P

Proof. Let Q(t) be the set of jobs in system I'; at time ¢, and likewise, let Q;r(t) be the set of jobs in
system T'y7 at time t. We prove this theorem by suitably coupling sample paths for I'; and T'y7, and showing
that for every sample path Q;(t) € Qr(t), for all ¢ 2 0, from which it will follow that Ry 1 S Rp .
Coupling of Sample Paths in I'y and g

Fix {4, D;}$2, as the same for both I'y and I'y7. For system I'; choose a sequence {N{}&2, such that
Nf >k i=12,... For system I'y7 fix Nl =fforali=12,... Pick a sequence of execution rate
functions {E]}$2, for I'y where E! is nondecreasing, i = 1,2,.... Fix the execution rate function for job ¢
in system Ty as Ef(z) = Ef(z),for 0<z <k, and Ell(z) = Bl (k), z > k.
Sample Path Analysis

Under the above coupling of sample paths we show by induction over time that for every pair of coupled
sample paths, for all £ > 0,

Qr(t) € Qrr(?)- (25)

Let af(t) and all(t) be the allocations of processing power to job i in system I'; and Iy, respectively, at
time t. Note that af(t) = 0if ¢ & Qr(t), and all(t)=0ifi ¢ Q' (t). From (25) it follows that

al(t) > afl(t), i€ Q') (26)
because

o/’ ()

il

min (k, P/|Qr1(t)])

min (N}, P/|Q1:(¢)]),  since Ni>k

min (N{,P/IQI(t)[), since |Qr(t)| < 1Qrr(¥)]
al(t).

IN A IA

The last inequality holds because if job i gets N} processors in 'y then al(t) = NJ and if job i gets less
than N/ processors then it gets at least as many as the equiallocation number P/|Q;(t)|, by definition of
the EQS policy.

We carry out the induction over arrival and departure times in T'; and T'77. Let {t;}32, be the sequence
of arrival and departure times in I'r and T'1z arranged in increasing order. Let both I'; and 'y start out
with zero jobs each at t = 0. Then clearly (25) is satisfied at t = to. Assume that (25) is true for all ¢ < t;.
Since no jobs arrive or depart in (t;,%;+1) it follows that (25) is true for all ¢ < ;4. We now prove that (25)
is true at t = t;41. Consider all possible events at time f;41.

1. Arrival of job k:
By the induction hypothesis it follows that

Qr(ti1) = Qr(t;) U {k} C Qrr(ty) U {k} = Qrr(tis).
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2. Departure from I'; only:
Or(tir1) C Qu(t;) € Qri(ty) = Qurltj+a)-

3. Departure from both I'y and 'y
Suppose job £ departs from I'r and job m departs from I'y;. Then we have the following cases depending
on how £ is related to m:

(a) £=m:
Q1(tjr1) = Qi) ~ {€} € Quui(ty) — {m} = Qur(tj+1)-
(b) £ # m:

Depending on whether or not m and £ are present in Qy(t;) and Qpr(t;), respectively, we have

the following cases:

(i) m € Qs(ty):
This is impossible. The reason is that m € Qi(t;) = m € Qr(tj+1) because £ # m.
Since Qy(s) € Qri(s), for all 0 < s < tj41, it follows from (26) that ol (s) > all(s) for
Am < 8 < tjt1. Since job m has not departed from I'; by time ¢;41, we have

tit1 tit1
D > / EL (al,(s))ds > / B (alX(s))ds.
0 0

Hence job m has not departed from I'y; by time #;41, which is a contradiction.

(i) m & Qr(t;), L € Qrr(ty):
Since m & Qr(t;), we have by the induction hypothesis that Qs(t;) C Qri(t;) and since £
departs I'; but not I'yy at time ¢541 it follows that

Q1(tj41) C Lrrltjvr)-

(i) m ¢ Qr(t;), € & Qur(ty):
Similar to case (i), it is impossible that £ € Qr(t;) and £ ¢ Qri(t;)-

4. Departure from I';y only:
Suppose job m departs from I'zz. Then either m € Qy(t;) orm ¢ Qr(t;). The former case is impossible
as in case 3(b)(i). In the latter case Qr(t;) C Qui(¢;) and Qr(tiy1) € Qrr(tj+r)-

This completes the proof by induction which shows that for every sample path Q;(2) € Qrr(t). Therefore,
job 4 departs from I'y at least as early as it does from from I'r7, from which it follows that the response time
of job i in I' is less than or equal to its response time in I’y for every sample path, i =1,2,.... Therefore
Rp < Rp ;p for every sample path. Unconditioning on {(4;, D;, NI,ED),i=1,2,...} yields the final result.

|
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