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Abstract

A smooth approximation p(x,) to the plus function: max{x, 0}, is obtained by
integrating the sigmoid function 1/(1 + e™**), commonly used in neural networks.
By means of this approximation, linear and convex inequalities are converted into
smooth, convex unconstrained minimization problems, the solution of which ap-
proximates the solution of the original problem to a high degree of accuracy for
a sufficiently large. In the special case when a Slater constraint qualification is
satisfied, an exact solution can be obtained for finite o. Speedup over MINOS
5.4 was as high as 515 times for linear inequalities of size 1000 x 1000, and 580
times for convex inequalities with 400 variables. Linear complementarity problems
are converted into a system of smooth nonlinear equations and are solved by a
quadratically convergent Newton method. For monotone LCP’s with as many as
400 variables, the proposed approach was as much as 85 times faster than Lemke’s
method.

1 Introduction

The plus function
(z)+ = max{z, 0}

where z is a real number, plays a fundamental role in mathematical programming in the sense
that many problems can be reformulated using this function. For example, a system of inequalities
g(z) < 0, where g is a function from the n-dimensional real space R" into R™, can be reformulated
as the unconstrained minimization problem: mingcg- ||(g(z))+]|, where (2); is taken to mean an m-
vector of plus functions applied componentwise. Similarly the nonlinear complementarity problem

0<z L F(z)>0

where F': R* — R™ and L denotes orthogonality, is equivalent to z — (z — F(z)); = 0. Our basic
idea in this work is to approximate the plus function by a smooth parametric approximation p(z, a)
where a is a positive number. Note that (z); = [° o(y)dy, where o(z) is the step function:

()_ 1 ifz>0
TEI=Y 0 ifz<0
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In the extensive neural network literature [7], the step function is very effectively approximated by

the sigmoid function
1
S((U,Ol) = m, a>0
See Figures 1 and 3. In this work we utilize the integral of the sigmoid function as an approximation

to the plus function (), as follows:

T

1
s(y,@)dy = z + —log(1 + e %) (1)

(84

() ~ pl(e,0) = |
For even moderate value of a, the function p(z,a) is a good approximation to the plus function,
see Figures 2 and 4. As « approaches infinity, p(z,a) approaches z, from above and remains
continuously differentiable as many times as we wish. Hence first order and second order gradient
methods can be used to solve the reformulated problem involving the p function. We treat a as a
parameter in the function p(-, ). Hence when we say p' or p~!, we mean the derivative or inverse of
p with respect to the first variable with the parameter o fixed. We immediately note the following
basic properties of p(z,a) that are easy to verify.

Lemma 1.1 Properties of p(x,a),a >0

1

1. p(z,q) is k-times continuously differentiable for any positive integer k, with P(z,a)= T

and p''(z, @) = ﬁ—f‘%:-gz—)—z—
2. p(x,a) is strictly convex and strictly increasing on R.
3. p(z,a) >z, for allz € R.
maxyep{p(e, o) — z.} = p(0,a) = 252,
limy| oo p(2, @) — 24 =0, for all a > 0.
limy_oo p(z,a) = x4, for all z € R.

p(z, ) € (0,00) for allz € R,a > 0. The inverse function p~" is well defined for z € (0,00).

P S T AT

]’)(173,0!) > p(maﬂ); fOT‘ a < ﬂ; Tz € R.

Smoothing techniques have been used for {;-minimization problems [4] and in multi-commodity
flows problem [11] using a linear quadratic smoothing function with encouraging numerical results.

We now summarize our results. In Section 2 we treat linear inequalities by converting them
to unconstrained differentiable minimization problems. First we give a necessary and sufficient
condition for existence of a solution, and then give a uniqueness condition for the unconstrained
minimization problem. We prove that when o is large enough, the solution of the unconstrained
problem can approximate the solution of original linear inequalities to any desired accuracy. For
the case when the solution set of the linear inequalities has an interior point, an exact solution
to the linear inequalities is obtained for sufficiently large but finite a. Even for the case when
the original linear inequalities are unsolvable, our method still gives an approximate solution in a
least error sense. In Section 3 we treat convex inequalities in a similar manner to that of Section
9. In Section 4 we consider the linear complementarity problem (LCP) by solving a system of
differentiable nonlinear equations. We give a sufficient condition for the existence of solution for
the nonlinear equations and bound the distance between this solution and the solution set of LCP.
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Figure 1: The step function o(x):=1ifx>0,0ifx <0
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Figure 2: The plus function (x), := max{x, 0}

()«

10



-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 3: The sigmoid function s(x,a) := I—;S:;; with a =5
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Figure 4: The p function p(x,a):=x + 2log(1 4 e™**) with a = 5



Also, we prove that if « is large enough, we can get an exact solution to the LCP by a one-step
purification of the approximate solution. In Section 5, some numerical results are given for linear
and convex inequalities as well as monotone LCP’s.

We now briefly describe our notation. For f : R — R and € R", the notation f(z) will
denote a vector in R™ defined by its components (f(z)); = f(z;),2=1,---,n. The notation R™*"
will denote the set of m-by-n real matrices. The notations 0 and 1 will represent vectors with
components 0 and 1 of appropriate dimensions. The notation || - ||; and || - ||, will denote the I
and [, norms respectively. A monotonic norm is any norm such that ||y|| < ||¢|| whenever |y| < |z].
For a differentiable function f: R* — R™, Vf will denote the m X n Jacobian matrix of partial
derivatives. For a twice differentiable function f: R®™ — R, V2f is the n x n Hessian. The set of
minimizers of mingex f(z) will be denoted by argmingex f(%).

2 Linear Inequalities
We consider the following system of linear inequalities
Az <b (2)

where A € R™*" and b € R™ are given. Let X denote the solution set of (2). We shall employ two
error functions for the linear inequalities (2) defined by:

fi(z) = ||p(Az — b, )|, = 17p(Az — b, @) (3)
and
fa(z) = [|p(Az = b, @)|3 (4)
As an approximate solution to (2), we propose to solve
mingeg» f(2) (5)

where f(2) is either f,(z) or f,(z). Thus we replace the combinatorial problem of solving a system
of linear inequalities by a deterministic unconstrained minimization of a differentiable function.
The function f(z) defined by (3) or (4) is convex on R". It is strictly convex on R" if the matrix
A has full column rank. The following theorem characterizes the solvability of (5).

Theorem 2.1 Ezistence of Solution Let A€ R™ ", b R", and let f(z) be defined as in (3)
or (4). Problem (5) has a solution if and only if 0 # Az < 0 has no solution.

Proof (=) Suppose that 0 # Az < 0 has a solution zp. Let T be the solution of problem (5).
Then for any A > 0, AT — b # AT+ Azg) — b < AT —b. So f(T+ Azo) < f(T), contradicts the fact
that T € arg mingeg~ f(2).

(<=) Since 0 # Az < 0 has no solution, the set ¥ = {Az — b|Az — b < Az, — b} is closed and
bounded for any fixed z, € R*. By the continuity of the ||p(-, @)||, there exists a point 7 € ¥ such
that ||p(7, @)|| < ||p(y,a)|l,y € Y. Consequently, there exists a T such that AT — b = 7. Hence
problem (5) attains its minimum at Z. O

Now we will give conditions for the uniqueness for the solution of problem (5). Let L,(f) =
{2z € R"|f(z) < p} denote the level set of f(z).



Theorem 2.2 Let A € R™*", b € R", and let f(z) be defined as in (3) or (4). The following are
equivalent:

1. For some p € R, L,(f) is compact and nonempty.
2. Forall p € R, L,(f) is compact.
3. Az <0,z # 0 has no solution.

4. Problem (5) has a unique solution.

If, in addition, the solution set X of (2) is nonempty, then each of above is equivalent to

5. The solution set X s bounded.

Proof (1 = 2) Follows from the convexity and continuity of f(z).

(2 = 3) If Az < 0, z # 0 has a solution y, the for any @ € R", z € Ly)(f), and A > 0, we
have
Az + Ay) —b < Az —b. (6)

Hence f(z+Ay) < f(2). Therefore x4+ Ay € Ly)(f). This contradicts the compactness of L y(f)-

(3 => 4) Suppose problem (5) has no solution. Since f(x) is continuous and bounded below
by zero, there exists a sequence {x;} such that ||zy|| — o0 , as k — oo and f(z;) — infyer f(2) >
Lk

0. Hence there exists a g > 0 such that f(z;) < p. Notice that the sequence {m} has an

accumulation point Z. Let {IT:TI’:T} denote the subsequence converging to T. Since f(zy,) <, for f
defined by (3) or (4), we have that Az, — b < p~'(p, @)1 or Azy, — b < p~'(\/B, @)1 respectively.
Dividing both sides by ||zy,||, and letting 7 — oo, we get AZ < 0 and T # 0, which contradicts 3.
So problem (5) must have a solution. Since Az < 0, ¢ # 0 has no solution, the matrix A has full
column rank. Therefore f(z) is strictly convex, and the solution of (5) is unique.

(4 => 1) Let 2* € argminger~ f(2). Then Lj)(f) = {z*} which is nonempty and compact.

(5 <> 3) If, in addition, the solution set X of (2) is nonempty, the boundedness of X is
equivalent to Az < 0,z # 0 having no solution, which is 3. Hence that is equivalent to each of
conditions 1 to 4. O

From the above two theorems, it is easy to see that if the matrix A is of full column rank, the
minimization problem (5) has a solution if and only if its solution is unique.

In the following, we will prove that a solution of (5) gives an approximate solution of (2). First
we will state an error bound lemma for linear inequalities.

Lemma 2.1 Error bound [2] [5] Suppose that the linear inequalities Az < b have a nonempty
solution set X. For any z, there exists an T € X such that

lz = Zlls < pp(A)I(Az = b)4]ls, (M)

for some positive constant us(A) and any vector norm || - ||p-



Since p(z, &) majorizes z,., p(Az — b, &) serves as an error bound also for any monotonic vector
norm || - ||g. We thus have that

[[:E - THﬁ < ,LLﬁ(A)Hp(A:E - b?a)Hﬁv (8)

where T and pg(A) are the same as in Lemma 2.1. We now give an estimate of the error in satisfying
the inequalities (2) by any exact solution of (5).

Theorem 2.3 Let the solution set X of (2) be nonempty. Let f(x) be the function defined in (3)
or (4) and let = ( ) and z*(a) be solutions of (5) with f = fi and f = f, respectively. There exist
z(2Y(@)) and z*(2*(w)), both in X, such that

o’ (@) - 2 (2 (@)l < Z==myp(A)
and o 2
(@) = 2*(22(@))ls < —==v/mp(A

where ui(A) and py(A) are the same as in Lemma 2.1.

Proof By Lemma 2.1, there exists an T € X, such that

lz(a) = Zlls < np(ANI(Ax(a) — b)4lls < up(A)llp(Az(a) — b, a)l|s (9)
Since z(a) € argmingeg» f(2), it follows that

o< [ o)l =228 it =,
seen s s < o e 1520

Combining the above two inequalities, the conclusion follows. O

Therefore, by choosing « sufficiently large, z(a) can approximate a solution of (2) to any desired
accuracy. In the case when X has an interior point, for a large enough, the solution z(a) of (5)
solves the linear inequalities (2) exactly. We give this result below in Theorem 2.4 after establishing
a preliminary lemma.

Lemma 2.2 For positive numbers 6 and (3, there exists a positive @ such that for all a > @,
p(—'éa CU) < g'
Proof By definition, ap(—6,a) = a(—§ + log(1 + e**)/a) = log(1 + e~*?). Since lim,_. log(1 +

e~ %) = 0, there exists a positive number @ such that for all a > @, p(—6, @) < g 0

Theorem 2.4 Suppose that the solution set X of (2) has a nonempty interior. Let z(a) denote a
solution of (5). Then there exists an @ > 0, such that for any a > @, z(a) € X.

Proof By assumption, there exists an & € R™ and § > 0 such that AZ — b < —be. Let f(z) be
defined by (3), and z(a) denote a solution of (5). Let § = 62 by Lemma 2.2, there is an @ > 0
such that for all @ > @&, mp(—6,a) < 13(%—% Hence

Ip(Az(e) = b, 0)lli = f(z(a)) < f(8) = [[p(A& = b, )]s



log 2

o
Hence Az(a)—b < p~!(*E2)1 = 0. Therefore z(a) € X. For f defined as in (4), let § =
similar argument follows. 0

For an inconsistant system of linear inequalities, our proposed method will still give a useful

result in the form of a point z(a) € argmin,cg~ f(z) that minimizes the infeasibility apppprox-
imately. In fact a multiple of value of f(z) bounds the distance of x to the set of minimizers of
II(Az — b),||; for the case when f = fi, see [8]. If we let &' and 2 denote solutions of the inconsis-
tent system Az < b in the sense of least /;-norm and [,-norm respectively, and if we let z!(a) and
2%(a) be minimizers of f as defined in (3) and (4) respectively, then we have that

< mp(—é,a) <

(A2 (a) = b)y s < (Az® = b), [y + T8

and
mlog 2
[(Aa(@) = Bl < (Aa? - D)ol + L7282
In addition, we can bound the distance between z!(a) or z*(a) to the solution set as follows.

Theorem 2.5 Let 2!(@) and z%(a) denote the solutions of (5) with f defined as (3) and (4). Let
X, and X, denote the solution sets of mingeps ||(Az —b)4||1 and mingep~ ||(Az —b)4 ||, respectively.
There exist o1(A,b) > 0 and o4(A,b) > 0, such that for some z*(2'(a)) € X, and 2?(2*(a)) € X,

le*(@) — ' (2 ()]l < 01(4,0)

mlog?2
a

and

l6%(a) - (e (@)l < 20a(A, B 4 L),

Proof It is easy to see that ' € X is equivalent to ' being a solution of the following linear
programming:

minimize 17z
. Az-b<=z (10)
subject to 250
Let u be a dual solution of above LP, then (z (a), (Az'(a) — b)4,u) is an approximate dual pair.

By Lemma 5.2.1 of [12], there exists a z'(z'(a)) € X; such that

le* (@) — &' (2! ()l < o1(A,0)(|(A2}(e) = b)4[lr — [I(Az’ (27(@)) = B)4 1)+ < oA, D)

Similarly, 2 € X, is equivalent to z* being a solution of the following quadratic programming:

mlog?2
"

minimize 22Tz
) , Ar - b< z (11)
subject to 2> 0
Then (2%(), p(A(z*(a) - b), @), diag(p'(Az*(a) — b, a))p(Az*(a) — b, @), 0) is an approximate dual
pair. By Lemma 5.3.2 of [12] and some tedious computation, we get the desired conclusion. 0

Remark 2.1 Suppose that the solution set of (2) is nonempty and bounded, then the level sets of
f(z) are compact and f(z) is strongly convex on its level sets. Also note that f(x) is differentiable
as many times as we wish, hence we can apply any first or second order algorithm of unconstrained
minimization to get linear, super-linear, or a local quadratic rate of convergence.



3 Convex Inequalities

In this section, we consider system of convex inequalities
g(z) <0 (12)

where ¢ : R* — R™. We shall assume that g(z) is convex and continuous on R". Let X be the
solution set of (12).
In a similar manner to the case of linear inequalities, we consider the following functions:

f(2) = file) = Ip(g(2), @)l = 17p(g(2), @) (13)
and
f(z) = fol2) = llp(g(z), )|l (14)
where p(.,«) is defined in (1). Again we solve
mianR"f(m) (15)

to get an approximate solution to the convex inequalities (12). Let rc(g) denote the recession cone
of a proper convex function g, that is re(g) = {Y|suPyeaom ,(9(z +y) — g(2)) < 0}, where dom g is
the domain of g [14]. Now we will state a condition under which (15) has a solution.

Theorem 3.1 Let g : R® — R™ be continuous and convex and let f(z) be defined as in (13) or
(14). The following are equivalent:

1. For some p € R, L,(f) is compact and nonempty.
2. For all up € R, L,(f) is compact.
8. NiZPre(g:) = {0}
4. Problem (15) has nonempty compact solution set.
If, in addition, the solution set X of (12) is nonempty, then all above are equivalent to

5. The solution set X is bounded.

Proof (1 = 2) Follows from that f(z) is closed proper convex.

(2 = 3) Suppose there exists a nonzero vector y € Ni=T"re(g;). For arbitrary fixed =z € R”,
y € relg,o)(gi), ¢ = 1,---,m. Hence for any A> 0,24 Ay € Lywy(9:), gi(z + Ay) < gi(z) and
f(z + My) < f(z). Therefore x + Ay € L (f). This contradicts the compactness of level sets.
f(=)

(3 = 4) Suppose not, then there exists {z;} such that ||z4| — c0 , as k — o0 , and flzy) —
infyern f(z) > 0. Therefore there exists a u such that L,(f) is nonempty and unbounded, hence
re(f) # {0}. Let 0 # y € rc(f), for f defined in (13). We have that g;(z + Ay) < f(= + Ay) < f(=).
Hence z + Ay € Ljy(g:),i =1,---,m. Hence 0 # y € Ni=Trc(g;). This contradicts 3. Similarly,
the case of f defined by (14) can be proved.

4 = 1) Let 2* € argmingepe f(z). Then Lj»y(f) which is nonempty and compact.
f(=*) P

(5 <= 3) If, in addition, solution set X of (12) is nonempty, X is bounded if and only if
Ni=mre(g;) = {0}, which is 3. Hence condition 5 is equivalent to each of conditions 1 to 4. 0
Following are some results similar to those of Section 1. We omit the proofs.
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Theorem 3.2 Suppose that solution set X of (12) be nonempty. Let f(z) be the function defined
in (18) or (14) and let 2*(a) and z*(a) be solutions of (15) with f = f, and f = f, respectively.

(i) Let X be bounded and let g satisfy Slater constraint qualification: g(&) < 0 or let g(x) be
differentiable and satisfy the Slater and asymptotic constraint qualification [6]. Then there
evist ' (z*(a)) and z%(2*(a)), both in X, such that

lo

2
lo* (@) ~ ' (2" ()]s < “o=mC;

and
log 2

«

l2*(a) = 2*(2*())ll. < ——v/mCs,
where Cy and Cy are constants dependent on g(z) [13, 6].

(ii) If the Slater constraint qualification is satisfied by g(x) < 0, then there exists an @ > 0 such
that for any a > @, z'(a) and z*(a) solve the convex inequalities (12) exactly.

Note that f(2) is convex, and is continuously differentiable as many times as g(z) is. However,
f(z) is not strictly convex in general as was the case for linear inequalities. In the following we will
give a condition which ensures the strict convexity of f(z).

Theorem 3.3 Suppose that g(z) is conver and twice continuously differentiable on R™. Let

Vo) =0,y £0 = 37 (3 Vg())y > 0 (16)

t=1

for each x € R™. Then f(z) is continuously twice differentiable, strictly convex on R™ and strongly
convex on any bounded set.

We note the following simple conditions that ensure the satisfaction of condition (16)
1. For some 1, g;(¢) is strongly convex on R".
2. SUZ™ gi(x) is strongly convex on R™.

3. Let I C {1,---,m} denote the index set of linear inequalities, and g;(z) = alz — b;,¢ € I.
Then {a;};cr has rank n.

4 The Linear Complementarity Problem

Consider the linear complementarity problem of finding an @ in R™ such that
Mz +q¢>0,2>0,27(Mz+q)=0 (17)

where M € R**" and ¢ € R™. We shall denote this problem by LCP(M,q). It is very easy to see
that @ is a solution of LCP(M, q) if and only if z is a solution of the following system

t=(z—Mz—q)y (18)

If we introduce the p(:, @) function as an approximation to the plus function, then we have the

smooth system
z=plz— Mz -q,a) (19)

as an approximation to (18). We begin with a simple preliminary result.

10



Lemma 4.1 The following are equivalent:
(Z) T = p<'L - yva)
(1) e + e =1

_ log(l—e=¥)
(i) @ = — B,

Proof
z=p(e—y,0) =gy EEIT)
<= ay = log(1 + e*¥~o%)
e =14 e
e e =1
= e =1l-e"
— g = _Ioggl-»e“’y!.

o

g
By using (19) and the above lemma, we know that  solves (19) if and only if = solves the
following system of nonlinear equations.

e 4 e M) = (20)

This is an interesting symmetric reformulation of an approximate solution to LCP(M,q). Let
»q
1 Iz , .
o) = glle™ 4 e — 1|3 (21)

We will show that under the assumption that M is a Py matrix, that is a matrix with nonnegative
minors [1], then all the stationary points of (21) are solutions of (20). First we will state a simple
lemma for P, matrices.

Lemma 4.2 Suppose M € R™*" is a P, matriz. For any positive diagonal matriz D = diag(dy,- -, d,),
the matriz D+M is nonsingular. '

Proof Suppose D + M is singular, then there exist a nonzero @ € R" such that (D 4+ M)z = 0.
Therefore z;(Mz); = z;(—d;z;) = —d;z?, which is negative whenever z; # 0, ¢+ = 1,---,n. This
contradicts Theorem 3.4.2 of [1]. 0

Theorem 4.1 Consider LCP(M,q) with M € Py. Let z(a) be a stationary point of mingep~ f(2),
where f(z) is defined by (21). Then x(c) is a solution of (20).

Proof For f(z) defined in (21),
Vf(z) = —a(diag(e™*®) + MTdiag(e=*M=+D)) (e 4 e~*(M=+0) _ 1)
= _a,(d,ia,g(ea(Mm-i-q)—ar) + ]VIT)diag(e—a(ﬂlx+q))(e—az + e—a(Mztq) _ 1).

Since diag(e*™M=+9)-22) and diag(e~*(M=+7)) are positive diagonal matrices, it follows by by Lemma
4.2 that () is a solution of (20). a

Note that the class of P, matrices contains the classes of P matrices, positive semi-definite
matrices and row-sufficient matrices [1]. For this class of matrices, if f(z) defined by (21) has a
stationary point, that point is also a solution of (20). Now we establish the existence of a solution
to (20) for P, N Ry matrices. A matrix M is called an Ry matrix if the only solution to LOP(M,0)
is the zero vector [1].

11



Theorem 4.2 Consider LCP(M,q) with M € Py N Ry. The system of nonlinear equations (20)
always has a solution.

Proof Let f(z) = ;||z —p(z — Mz —q,@)||3. First we will prove that the level set of f(z) is compact
if M € Ry. Suppose not, then there exists a sequence {z;} C R" and a positive number C such
that |||l — 00 as k — o0, and ||z — p(zr — May — ¢, )]s < C. Then

lox — (2 — Mz — @)ills <ok — play — Moy — ¢, 0)|lo + ||(2x — Mz, — q)4 — p(er — Mz — q, )2
< C + I{nlogV

Note that there exists a subsequence {k;} such that { ”Txk'f—n—;} converges to some T € R". Dividing
both sides of the above inequality by ||z,||» and 1ettinglz' — o0, we get ||T — (T — MT)4|: = 0.
So 7 solves LCP(M,0) and T # 0. This contradicts the fact that M is an Ry matrix. Since f(z)
is continuously differentiable and the level sets of f(z) are compact, mingeg» f(#) must have a
solution z(a), which satisfies V f(2) = 0 with

Vf(z) = (diag(p'(z — Ma — q,a) — 1) + M )diag(p'(z - Mz — q,a))(z — p(z — Mz — q,a)).

Since 0 < p'(z,a) < 1 and M € Py, then by using Lemma 4.1 and Lemma 4.2 we get that z(a)
satisfies (20). a

Now we give an error bound for the solution of the original LCP(M,q) in terms of a solution
to (20) but skip the proof.

Theorem 4.3 Consider a solvable LCP(M,q) with M € Ry. Let x(a) be a solution of (20). Then
there exists an z(z(a)) which is a solution of LCP(M,q) such that

() — 2(e(@)l < (01, ) V82,

where (M, q) is a constant, see Theorem 2.2.1 [12].

The following theorem proves that if « is sufficiently large, then a solution of (20) can be purified
to a solution of LCP(M,q). In the following theorem, we assume that all the elements of matrix
M and vector g are integers and n > 2. Let L is the size of LCP(M, q) defined by [3]

i=n j=n

=D > log( iaul>+210g lg:]) + log(n?)] + 1.

1= j=1

Theorem 4.4 Suppose that LCP(M,q) is solvable. Let z(c) be a solution of (20) with o > @ =
V/n2Y. Then 2(a) can be purified to a solution of LCP(M,q).

Proof Since z(a) is a solution of (20). we have z(a) > 0, M2(a) + ¢ > 0 and by Lemma 4.1
10g(1,.e—°r(M1(a)+q))
z(a) = — . Hence

[s 4

=a(Mz(a)+ log(1 —e™¥ n _n
o(a)(Ma(a) +q) "= LECZE) & <y

for all & > @ = /n2C. By the purification procedure described in Appendix B [3], (a) can be
purified to a solution of LCP(M,q). O

12
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Figure 5: Linear Inequalities

5 Numerical Results

We now give a summary of our computational experience with the algorithms described in this
paper. All the algorithms were run on a DECstation 3100. All problems were randomly generated.
The smoothing algorithms were implemented in C. Lemke’s method was written in FORTRAN.
The CPU times for the smoothing algorithms and Lemke’s method do not include the time to input
data. The time of MINOS5.4 [9] is the execution time for subroutine M5SOLV and also does not
include the input time.

For linear and convex inequalities, we use the BFGS algorithm to solve the unconstrained
minimization problem for variables up to 400 for linear inequalities and 150 for convex inequalities.
For larger problems, limited memory BFGS algorithm [10] was used. Starting with a = 5, we
increased o by a factor of 1.05 to 1.2. The algorithm terminates when infeasibilities are less than
1.0e-7. Figure 5 depicts the ratio of CPU time taken by MINOS5.4 to the time taken by the
smoothing algorithm as a function of problem size n. Figure 6 gives a similar plot for convex
inequalities. In this case, 90 percent of inequalities were linear and 10 percent were nonlinear and

of the form
gz(l) — em]‘/[:c—l—q:v-c +az — b

where M is a positive semidefinite matrix.

For monotone linear complementarity problems, we used a Newton method with a safeguarded
linear search to solve the (20). Harwell Library Routine MA28 was utilized to solve the sparse
system of linear equations. We started with @ = n=°" and increased it by a factor of 1+ 8//n.
The algorithm terminated when ||(—2), (=Mz = ¢)4, {|z:(M2z + )il }1<i<nllo < 1.0e = 7. Figure 7
shows the time multiple of Lemke’s method versus the smoothing method for the monotone linear
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complementarity problem plotted as a function of the density of the matrix M. We note that the
best improvement over Lemke’s is obtained for very sparse problems.

We conclude by giving a table, Table 1, which shows the potential of our smoothing methods

indicated by the maximum speedup that was achieved over standard algorithms. This table in-
dicates that smoothing techniques can be very effective in solving convex inequalities and linear
complementarity problems and hence should be studied further. In the future, we plan to general-
ize smoothing techniques to various problems such as linear programs, convex programs, nonlinear
complementarity problems and neural networks.

| Problem | Speedup | Over | Size l
Linear Inequalities | 515 MINOS | 1000 x 1000
Convex Inequalities | 580 MINOS | 210 x 400
LCP 85 Lemke | 400

Table 1 Maximum speedup over Minos or Lemke
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