The Power of Choice in
Scheduling Parallel Tasks*

Walter Ludwig
Prasoon Tiwari

Technical Report #1190

November 1993

The Power of Choice in Scheduling Parallel Tasks*

Walter Ludwig Prasoon Tiwari

Computer Science Department

University of Wisconsin-Madison
Madison WI 53706

{ludwig,tiwari}@cs.wisc.edu

November 22, 1993

Abstract

A malleable parallel task is one that can be executed on any number of processors,
with its execution time being a function of the number of processors allotted to it. A
nonmalleable parallel task is one that requires a specific number of processors. Given
n independent parallel tasks and m identical processors, we consider the problem of
scheduling these tasks to minimize average completion time. Even though this is a clas-
sical scheduling problem, the first results in this direction were obtained only recently
by Turek, Schwiegelshohn, Wolf, and Yu [Proceedings of the Fifth SIAM Symposium on
Discrete Algorithms, 1994]. They presented an algorithm for scheduling nonmalleable
parallel tasks with an approximation factor of 32. We give an algorithm for scheduling
malleable tasks that has an approximation factor of 2, under the assumption that for
each task, work is a nondecreasing function of the number of processors allotted to
the task. Our algorithm and analysis incorporate an improved lower bound on average
completion time for the nonmalleable problem. We also show that Turek et al.’s algo-
rithm for the nonmalleable problem can be extended to the malleable problem, while
preserving the approximation factor. The resulting algorithm does not require any as-
sumptions on the task execution times. The running time of our malleable schedulers is
dominated by the cost of determining a minimum weight perfect matching in a bipartite
graph.

*Partially supported by National Science Foundation grant CCR-9024516.

1 Introduction

We consider the problem of scheduling parallel tasks to minimize average completion time.
Suppose that we are given n independent tasks. Each of the tasks can be executed by
any number of processors, and its execution time is a function of the number of processors
allotted to it. The number of processors allotted to a particular task remains fixed for the
duration of its execution. We are also given m identical processors with which to execute
the tasks. The goal is to construct a nonpreemptive schedule that minimizes the average
completion time of the tasks. We call this the malleable average completion time problem
(MACT).

The nonmalleable average completion time problem (NACT) is the same, except that

the number of processors required for each task is specified as part of the problem instance.

MACT is a generalization of NACT, and NACT is NP-complete in the strong sense [BLK83].
Therefore, we will consider allot approximation algorithms for these problems. We will eval-
uate these algorithms in terms of approximation factor and running time. Note that we use
the term ‘running time’ to refer to the time required by an algorithm to construct a sched-
ule. On the other hand, we use ‘execution time’ to refer to the time required to complete a
given task, and ‘completion time’ to refer to the time in a given schedule when a given task

is completed.

Scheduling to minimize average completion time is well-studied in the case of tasks that
each require a single processor, and many variations have been considered. (See [LLKS92] for
a survey.) However, results for the natural extension from single-processor tasks to parallel
tasks have been harder to come by. It was only recently that Turek, Schwiegelshohn, Wolf,
and Yu [TSWY94] demonstrated a NACT algorithm with an approximation factor of 32,
the first proof of a constant approximation factor for NACT. Contrast this to the problem of
scheduling parallel tasks to minimize total schedule length (or makespan), for which it has
long been known that a simple list scheduling approach suffices to guarantee an approxima-
tion factor of 2 [GG75]. Furthermore, several authors have investigated scheduling malleable
parallel tasks, and all of them have been concerned about makespan, and not about average
completion time. (See, for example, [TWY92, LT94, BB90, DL89, FKST93, CYW92].)

Our main result is an algorithm for MACT with an approximation factor of 2, under
the assumption that for each task, the work required is nondecreasing with the number of
processors allotted to it (Theorem 5). (The work required to complete a malleable task
is the product of the number of processors allotted to it and its execution time for that

number of processors.)

This result is built upon three preliminary results, which are of independent interest.
The first of these results is an algorithm ALLOT that finds an allotment of processors to
malleable tasks that is optimal in the following sense. When the allotment is applied to
the tasks, and then they are scheduled using a NACT algorithm, the resulting two-step
MACT algorithm has the same approximation factor as the NACT algorithm (Theorem 3).
This MACT algorithm does not require any assumptions on the task execution times. Thus

ALLOT can be used to construct a MACT algorithm with approximation factor 32.

The two-step approach to malleable task scheduling was introduced by Turek, Wolf, and
Yu [TWY92] for the problem of minimizing makespan. Their algorithm generates a set of at
most mn allotments, one of which is the allotment of an optimal schedule (although it is not
known which allotment). Then an algorithm for the nonmalleable makespan problem is used
in conjunction with each of the generated allotments, and the best of the O(mn) schedules
is selected. The present authors [LT94] improved this result, demonstrating an algorithm
with running time O(mn) that finds a single allotment that can be used in conjunction with
an algorithm for the nonmalleable makespan problem, preserving the approximation factor
of that algorithm. Thus, our algorithm adds only an O(mn) term to the running time of
the nonmalleable makespan algorithm, rather than multiplying it by O(mn). Furthermore,
if for each task, work is nondecreasing and execution time is nonincreasing with the number
of processors allotted to it, the running time of the allotment selection algorithm can be

improved to O(nlog® m).

The second result gives an upper bound on approximation factor for NACT in terms
of the maximum processor requirement over all the tasks: a lower maximum processor
requirement results in a better upper bound (Theorem 2). (Feldmann, Kao, Sgall, and
Teng [FKST93] applied this idea to the problem of scheduling parallel tasks on-line to
minimize makespan.) In particular, if no task requires more than half of the processors,

then an approximation factor of 2 can be achieved.

This result can be used as follows to improve the approximation factor for MACT in
the case when, for each task, work is nondecreasing with the number of processors. First
use ALLOT to find an allotment, and then modify the allotment so that no task uses more

than half of the processors.

The third result is a new lower bound for NACT, on which the previous result depends
(Theorem 1). Our bound can be viewed as an extension of the bound due to Eastman,
Even, and Isaacs [EEI64] for weighted single-processor tasks. It is an improvement of the
“squashed area” bound used by Turek et al. [TSWY94] in the analysis of their NACT

algorithm.

This work was motivated by scheduling problems arising from the Condor distributed
batch system [LLMS88, LL90]. Other problems arising in this context are discussed in

Section 7.

The rest of the paper is organized as follows. In Section 2, we give an overview of our
results, stating the main theorems. In Section 3, we present a new lower bound for NACT.
In Section 4, we consider a simple NACT algorithm, and prove an approximation factor in
terms of m and the maximum number of processors required by any task. In Section 5, we
present a method of choosing an allotment of processors to tasks for MACT. In Section 6,
we demonstrate a MACT algorithm with approximation factor 2 for the case when work is

nondecreasing. Finally, Section 7 contains conclusions and open problems.

2 Statement of Results

Suppose we are given a set A of n independent nonmalleable tasks, and m identical proces-
sors. Associated with each task T; € A is an execution time requirement ¢; and a processor
requirement p;. The task T; requires p; processors for the full duration of its execution.
Let ¢; denote the completion time of task T; in a given schedule. Let C' = Sy ¢; denote
the sum of the task completion times for a given schedule. The objective is to construct a
schedule that minimizes C'. This amounts to minimizing the average completion time. Let
Cop: denote the optimal value of C. Let C4 denote the value of C for the schedule that
results from applying algorithm A.

To prove an approximation factor, some lower bound on C,p¢ is needed. A simple lower

bound for C,p¢ is given by
H=Yt, (1)
i=1

the sum of the task execution times. Another lower bound is based on the amount of work
required by each task. Suppose that the tasks are ordered such that pit; > p;yitiyy for all
i € [n — 1], where [n — 1] denotes the set of integers {1,2,...,n — 1}. Let

1 SN

m i=1

Turek et al. [TSWY94] call this the “squashed area” bound, and they proved that it is a
lower bound on C,,;. This bound can be viewed in the following way. Replace each task
T, with a task that has the same work requirement, but that has processor requirement m.
(Then its execution time requirement is p;t;/m.) If these new tasks are scheduled in order

of nondecreasing work, then the sum of their completion times is precisely A.

These two lower bounds are used by Turek et al. [TSWY94] to prove an approximation
factor of 32 for their NACT algorithm. We present a new lower bound for NACT that

dominates A, as stated in the following theorem.

Theorem 1 For any instance of NACT, suppose that the tasks are ordered such that p;t; >
Pig1tipr for alli € [n—1]. Then

=St
2 “ (3)
Our bound can be expressed as A + %H - %W , Where

1
W= E;piti (4)

is the total work requirement divided by the number of processors. Observe that H > W,

and therefore our bound dominates A.

Consider the following algorithm for NACT. Sort the tasks according to nondecreasing
work requirement. Then schedule them in order, beginning the execution of each task as

soon as enough processors become available. This is the least work first (LWF) algorithm.

The improved lower bound of Theorem 1 is essential to the following result for LWE'.

Theorem 2 For any instance of NACT, let 1 = max;{p;} be the mazximum number of

processors required by any task. Let p = max{ 2, 2}. Then
CLVVF S pcopt- (5)

The running time of LWF is O(nlogn).

Unlike NACT, in MACT we choose the allotment of processors to tasks, and therefore we
determine r. We will make use of this to show a 2-approximate algorithm for MACT under

the assumption that for each task, work is nondecreasing with the number of processors.

Let M be a set of n independent malleable tasks. In MACT, the execution time of task
T; is specified by a function p; : [m] — IR. Let C%t denote the value of C for the optimal
schedule of the given problem instance'. Let C denote the value of C for the schedule

that results from applying MACT algorithm A to the given problem instance.

1\We use the superscript M to distinguish the malleable case from the nonmalleable case.

Given an instance of MACT, an instance of NACT can be derived by choosing an
allotment 5 = (py, ps, - - -, Pn) Of processors to the tasks of the MACT instance. We call this
the f-derived instance. This instance can then be scheduled using an algorithm for NACT.
This two-step process constitutes an algorithm for MACT. We would like to be able to
choose 7 so that the two-step MACT algorithm has the same approximation factor as the
NACT algorithm. Qur next result shows that this can be done if a lower bound on Cyp; of

a certain form is used to prove the NACT algorithm’s approximation factor.

Theorem 3 Suppose that [= M\ A + Ao H + AW is a lower bound on Copt for NACT,
where A\, Ay, and A3 are constants, and Ay > 0. Then if we are given a NACT algorithm
A with running time R(m,n) such that C4 < pL, then there is a MACT algorithm A’ with
running time O(n® + mn?) + R(m,n) such that C¥, < pC¥,.

Observe that since A and H are both lower bounds on Cpy, for any Ay, Ay > 0 such that
M+ Ay =1, we have \{ A+ A H < Copr. (W is also a lower bound on Cpy, but W < A and
W < H.) Turek et al. [TSWY94] use the lower bound }A + £ H to prove an approximation
factor of 32 for their NACT algorithm, which has running time O(nlogn). Therefore, we

get the following result.

Corollary 4 There is a MACT algorithm with running time O(n® + mn?) and approzima-
tion factor 82.

The first step of the algorithm A’ of Theorem 3 is to choose an allotment 7 using
an algorithm that we call ALLOT. Out of all possible allotments, ALLOT chooses one
that minimizes the lower bound L for the derived NACT instance. The value of L for
that allotment is thus a lower bound for the MACT instance. Then applying the NACT

algorithm A gives the desired approximation factor.

ALLOT consists primarily of constructing a weighted complete bipartite graph with 2n
vertices, and then finding a minimum-weight perfect matching in G' using the Hungarian
method [Kuh55]. Under the nondecreasing work assumption, computing the edge weights
involves finding the row maxima of certain totally monotone matrices. This is accomplished
using the fast matrix-searching algorithm due to Aggarwal et al. [AKM*87]. The running

time of ALLOT in this case is O(n® + mn). Otherwise, its running time is O(n® 4+ mn?).

Let w;(p;) = p; t;(p;) denote the amount of work required by task T; when p; processors
are allotted to it. Suppose that for each task, work is nondecreasing with the number of

processors, i.e., w;(j) < w;(j + 1) for all j € [m — 1]. Then a much better approximation

5

time f(t) 9(y)

PToCessors t Y

(a) (b) (c)

Figure 1: A schedule and its corresponding functions f(t) and g(y)

factor can be achieved using the following algorithm. Use ALLOT to find an allotment p
that minimizes the lower bound of Theorem 1. Then construct an allotment § by setting
¢; = min{p;, [2]} for all 7 € [n]. Finally, schedule the g-derived NACT instance using LWF.
Call this algorithm MLWF. We will prove the following theorem.

Theorem 5 Suppose that w;(5) < wi(j + 1) for all j € [m — 1]. Then
Clluwr < 200 (6)

The running time of MLWF is O(n® 4+ mn).

3 The NACT Lower Bound

Given a schedule for a set of nonmalleable tasks AV, let s; denote the starting time of task

T;. (Thus, ¢; = 8; + ;.) Let cmax = max;ep){c;} be the makespan of the schedule.

Let E(t) = {T; € N : s; <t < s;+t;} be the set of tasks that are being executed at
time t. Let F(t) = {T; € N : s; + t; < t} be the set of tasks that have been completed at
time t. Let f(t) = |F(t)] + Crepq 5 be the number of tasks that have been completed
at time t, including fractional tasks. Let g(y) = min{t : f(t) = y} be the time required to
complete y tasks. Observe that if f(¢) is strictly increasing, that is, if at all times for the

duration of the schedule at least one task is being executed, then g = f~!.

See Figure 1 for an example schedule and a graph of the corresponding functions f(?)
and g(y). The dashed boxes in Figure 1(c) correspond to the completion times of the tasks.

The sum of the areas of the dashed boxes is the sum of the task completion times. It seems

natural that the function g(y), which gives the time required to complete y tasks, should

be closely related to 5" ¢;. The following lemma states the precise relationship.

Lemma 6 Any schedule of N satisfies
n n 1 n
doa= / gy + 53 b (7)
i=1 0 i=1

Interpreting this lemma geometrically, it says that the area inside the dashed boxes that
is above the plot of g(y) is equal to half the sum of the task execution times. In order to

prove the lemma, we make use of the following fact.

Lemma 7 Suppose a,b € IR are such that f(a) = b. then
a b
| et [oway = a (8)

The geometric interpretation of this lemma is as follows. The rectangle with vertices
(0,0), (a,0), (a,b), and (b,0) has area ab and is divided into two parts by the plot of f(z).
The area on one side of the plot is [’ f(t)dt, and the area on the other side is fob g(y)dy.

Proof of Lemma 6: We proceed by induction on n. For the basis, suppose that n = 1.
Then ¢(0) = 0, g(1) = ¢;, and g(y) = s1 + yt; for y € (0,1]. Then

[oy =s:+ 31)

Therefore, .
1
/O gy + st = s+t = (10)

For the induction step, suppose that n > 1. Let Ny = {T},Ty,...T-1}. Let Ny = {T,,}.
Viewing the schedules of A'; and N, as being independent, let f;(t) and g;(y) be defined

appropriately for the schedule of Ay, and let fy(t) and g»(y) be defined appropriately for
the schedule of 5. Observe that f(t) = fi(t) + falt).

By the induction hypothesis, we have

n-1 -1 n—1

1
Yea=/ awd+;3t (11)
i=1 0 i=1

and

1
1
Cp = /0 gZ(y)dy + “Q“tn (12)

Therefore it is sufficient to show that

/Ong(y)dyz /Onnlgl(:t/)der/01 92(y)dy,

and then we get the desired result by adding equations (11) and (12) together.

Now f(Cmax) = 7y fi(Cmax) = n — 1, and fo(cmax) = 1, so by Lemma 7, we have

/Ong(y)dy = cmaxn~—/ocwf('t)dt
- eim— / TR + F())de
0
= cmax(n—l)~/0 fl(t)dt—l—cmax—/omx fa(t)dt
n-1 1
= /0 gl(y)dy+/o 92(y)dy.

|

We are now ready to proceed with the proof of Theorem 1. Recall that we are assuming

that p;t; > pipatips for all ¢ € [n — 1.

Proof of Theorem 1: By Lemma 6, we know that

n n 1 n
> e =/ 9(y)dy + §Zt,~. (13)
i=1 0 i=1

So we want a lower bound on g(y). That is, for any given y € [0, 7], we want a lower bound
on the time required to complete y tasks. For each 7 € [n], let ; € [0, 1] denote the fraction
of task T; that is completed. The value of the following optimization problem gives us the
bound we seek.

min,, 2 e Dili

: n (14)
subject to Y, T, =y

Let ¢ = n — |y]. Then it can be shown that the optimal solution of (14) is

Il

1 forie{g+1,9+2,...,n}
0 forie {1,2,...,9—1}
Y-

ly].

H

*k
T
*
T
*
q

Let g*(y) denote the value of (14) as a function of y. Then
1 n
* = 'ti *
7y = — i§=1 pitix}

The next step is to determine the value of [° ¢*(y)dy. One way to do this is by observing

that g*(y) corresponds to the optimal m-processor schedule of a task set A in which each

8

task T/ requires p, = m processors and has execution time #; = p;t;/m. In this schedule,

the completion time of task T} is given by ¢} = 3 -; ;. Then applying Lemma 6, we have
n n 1 n
/ gy = D oci—5 2t
0 fz]l i=1
n n 1 n
= D 2 t—52
i=1

iil I=1] .

= ;it§~§;t§
1 SN, 1

= E;(Z“ﬁ)ﬂti-

Then the result follows from (13).]

4 Analysis of LWF for Scheduling Nonmalleable Tasks

Recall that the LWF algorithm for NACT is simply to schedule the tasks in order of non-
decreasing work. In this section, we will prove Theorem 2, establishing an upper bound on
the approximation factor of LWF. This can be achieved using a slightly weaker lower bound

on Cyp; than the bound we proved in Theorem 1. Let

| 1<
= — - s)piti + 5 i :
w3 g+ 53 (15)
be the lower bound of Theorem 1. Let

A 7RI
& = R;(z—l)p,tz-%Q;tz

n n n
= Z‘l* Z P1t1+lzti- (16)
i=1 m I=i4+1 2 i=1

Then & < . We will use & to prove the approximation factor for LWF. The contribution
of task T; to (16) is L Y7L, miti + 5t Let

1 &
a; = — Z pltl- (17)
m l=i41
Observe that " .
a = (ai + —2—'51'). (18)

Then a; can be viewed as a goal for the starting time of task T;. In particular, if task 7;

begins execution no later then §a; for some §, then its completion time is da; + t;, which

9

does not exceed the contribution of T; to & by more than a factor of max{6,2}. Then to
prove an approximation factor for LWF, we only need to find 6 such that every task satisfies
8 S 6ai.

Lemma 8 Let r = max;ep,){pi} be the largest number of processors required by any of the
tasks in N'. Then using LWF guarantees

m
8 < ——
“m-r+1"

(19)

for all T; € V.

Proof: Consider a task 7T, € M. Execution of task T; is scheduled after tasks T; 41, Tiyo, ..., 10
are scheduled, but before any of the other tasks are scheduled. Then not more than
Y h=it1 Puty work is done before T; begins execution. Observe that there are not more
than r — 1 idle processors at any time when there is at least one task that has not been
started yet. Then there are at least m — 7 4 1 processors busy at all times until s;. We
conclude that
1 n
s < mor i1 > bt

k=il
m

e (3.
m-—7r-+1

Lemma 9 Let p = max{-",2}. Then LWF satisfies

Crwr < pé. (20)

Proof: By Lemma 8,

Cowr =)¢

m
< e q;)
< ;(m_wlaﬁtz)
- 1
< Z(pai+p—2-ti)
=1
= pa.

10

Proof of Theorem 2: By Lemma 9 and Theorem 1,

pé

Cuwr <
< pa
<

pcopt-

5 Choosing an Allotment of Processors to Malleable Tasks

In this section, we describe our algorithm ALLOT for finding an allotment of processors
to a set M of malleable tasks. The allotment will be chosen to minimize a lower bound
on Cop for NACT. Given a MACT instance, the quantities A, H, and W introduced in

Section 2 can be extended in a natural way to the p-derived NACT instance. Let
1) = 30 (21)
Recall that w;(p;) = p; * t;(p;). Let
W(p) = % é w;i(pi)- (22)

Recall that computing the bound A requires ordering the tasks according to nonincreasing
work. For malleable tasks, this order may vary for different allotments. For any permutation

o on [n], let

_ 1 &
A(p,o) = ;;}:kwo(k)(z%(k))

k=1
1 _1,.
= -~ ; o (Dwi(p;)- (23)
The lower bound that we are seeking is then

A(p) = min{A(p, 0)}. (24)

A permutation ¢ that minimizes A(p, o) is characterized by the following definition.

Definition 10 An allotment p induces a permutation o if Wo(k)(Po(r)) = Wok+1)(Po(k+1))
for allk € [n—1].

11

The following lemma is an immediate consequence of (23) and Definition 10.

Lemma 11 For any allotment p, let o be a permutation that is induced by p. Then for any

permutation T, we have A(p,) > A(p,0).

Thus if p induces o, then A(p, o) = A(p). Note that if § induces o, then o(k) = i means

that 7; is the kth largest task in terms of work when the allotment p is used.

Suppose that I = A\ A+ A H + A3W is a lower bound on C,y; for NACT, where Ay, Ay,

and A; are constants, and A; > 0. Let
L(p,0) = MA(B, o) + A H(P) + AsW(p). (25)
Then

1p) = min{Z(50))
= MA(P) + A H (D) + AW (D).

is a lower bound on C,y, for the p-derived instance. Furthermore,

L}V[

i

min{L(p,)}
min{L(p))

It

is a lower bound on C¥, for MACT. Our goal, then, is to find an allotment j that satisfies
LM = L(p). But rather than finding an allotment directly, we will find it by way of a

permutation that it induces.

Observe that

™ = min{L(p,0)}
= n}in{/\lA(ﬁ, o)+ A H(P) + AW (D)}

= mm{A] Zo (Dwi(p:) + /\221 (pi) + As— sz (pi)}

7=l

= r}rjuun{z “(f Y@ wi(ps) + Aoti(pi) + (Pz)]} (26)

If we know a permutation o that is induced by an optimal allotment, then the contri-

bution of each task to L(p,o) can be minimized individually as follows. Let
G0 F) = Lk, (5) + Aate) + ~2ui(j) (27)
i\Js - m i\J 2t mwz J

12

be the contribution of task T; to (26) when it is allotted j processors and o(k) = . That is,

Hp0) = Y bilpis ™ 0). (28)

Then
(k) = min {6,) (29)
is the minimum possible contribution of task T; to L(p, o) if o(k) = 4. So for a given task Tj,
if we know o~'(¢), then we can determine the allotment of processors p; to T; by choosing
p; such that
bi(piy 07 (4)) = Li(o 71 (4)). (30)
(There may be multiple choices of p; that satisfy (30).) The allotment p that minimizes

L(p, o) for a given permutation o is characterized by the following definition.

Definition 12 A permutation o induces an allotment p if £;(p;, 07 (2)) = £;(071(2)) for all
T e M.

We can determine a permutation o that is induced by an optimal allotment in the
following way. We construct a full bipartite graph G = (U,V, E). The set U contains one
vertex for each task in M. The set V contains one vertex for each integer in [n]. The
vertices in V should be interpreted as possible values of o~1(¢) for each task 7;. Assign to
edge (T}, k) the weight £;(k). Find a minimum-weight perfect matching M in G. Let o be
the permutation that corresponds to the matching M. That is, if the edge (T}, %) is in the
matching M, then o(k) = i¢. Then select an allotment p that is induced by o. Call this
algorithm ALLOT.

Observe that given an allotment, it is easy to find a permutation that it induces. But
ALLOT finds an optimal allotment by first finding a permutation that it induces, and then

finding an allotment that is induced by that permutation.

Lemma 13 ALLOT finds an allotment p that satisfies L(p) = L™. The running time of
ALLOT is O(n® + mn) if w(j) < w;(j + 1) for all T; € M and all j € [m — 1]. Otherwise,

its running time is O(n® + mn?).

For the proof, we will make use of some additional lemmas. Let

b(o) = ifa(k)(k) (31)

be the weight of permutation o, which is the weight of the corresponding matching M in

G.

13

Lemma 14 For any allotment p, let o be a permutation that is induced by p. Then b(o) <
L(p).

Proof: The weight of ¢ is given by
bo) = (™) (32)
By the definition of 4;(j, k), we have
1) = 3 4,77 (). (33)
By (29), £:(c7(?)) < 4;(j,071(4)) for any j. Therefore,
o) = 3o ()

< i:fi(z?n o7(1))
= L(p).

Lemma 15 For any permutation o, let p be an allotment that is induced by o. Then

L(p) < b(o).

Proof: The permutation o induces the allotment , and therefore £;(p;, 07 (4)) = £;(07(%))-

Then the weight of o is

o) = Dohlo™()

>~ tlpis (1)
L(5,0)
L(5).

i

v

Lemma 16 Let M be a minimum-weight perfect matching in G. Let o be the permutation

corresponding to M. Let p be an allotment induced by o. Then p satisfies LM = L(p) = b(c).

14

Proof: Let § be any allotment, and let 7 be a permutation that is induced by §. Then by

Lemma 14,

L(g) = b(r). (34)
The permutation ¢ corresponds to a minimum-weight matching, so

b(r) > b(o). (35)

By Lemma 15
b(o) > L(p), (36)
because ¢ induces p.

Therefore, by (34), (35), and (36), we have
L(§) > L(p), (37)

and thus LM = L(p).

Now suppose that b(c) > L(p). Let ¢’ be a permutation that is induced by p. Then by
Lemma 14,

L(5) > H(o"). (38)

Then it follows that b(c) > b(o'), contradicting the fact that o corresponds to a minimum-

weight matching. Therefore, b(o) = L(p). a

Now that the correctness of ALLOT has been established, it only remains to determine

its running time.

The first step in ALLOT is to construct the graph G. The edge weights £;(k) can
be determined by computing £;(7, k) for each j € [m]. Then a total of O(mn?) steps are

required to construct G.

If the nondecreasing work assumption holds, then there is a faster way of computing the
edge weights. The following lemma demonstrates a property of the values of £;(j, k) for a

given task T; that can be used to determine the edge weights quickly.

Lemma 17 Suppose that task T; € M satisfies w;(j) < wi(j + 1) for all j € [m —1]. Let
X be an n X m matriz with entries y; = —{;(m + 1 — j, k). Then X is totally monotone.

That s, for all k; < ky and j; < ja, we have xy,;, < Ty,;, implies Tp,;, < Tp,j,.

Observe that —£;(k) is the maximum entry in row k of X. Aggarwal et al. [AKM*87]

have shown that the row maxima of a totally monotone matrix can be found by querying

15

O(n + m) entries of the matrix. As each entry of X can be computed in constant time,
we therefore can determine £;(k) for a given task T; and all values of k € [n] in O(n + m)
steps. Thus it takes O(n? + mn) steps to construct the graph G under the nondecreasing

work assumption.

Proof of Lemma 17: Suppose instead that there exist ky, ko, 71, 72 € [n] such that k; < ko,

and j; < jo, and p,;, < Tg,j,, and Tp,j, > Tp,j,. Then we have
—Kl(m+l-j1,k1)< —ez(m‘*‘l_‘]g,kl) (39)

and
—Li(m41 - J1,ks) > —Li(m + 1 = ja, ka). (40)

Observe that for any j, k,, and k, we have
. . A .

67, k2) = (5 k) = (ks =) —wi(5). (41)
Then rewriting (40) as

G(m 41— g1, k) < bi(m A+ 1 — o, ka), (42)
and adding (39) and (42), we get

A , At .

(ks — kl)”ﬂ'{wi(m +1-g1) < (k2 - kl)“n;wi(m +1 - ja). (43)

Therefore we have
wi(m+1-7;) <w(m+1-— 7). (44)

But observe that m + 1 — j; > m + 1 — j,, and therefore by the nondecreasing work

assumption, w;(m + 1 — j;) > w;(m + 1 — j,), contradicting (44). a

A minimum-weight matching in G can be found in O(n®) steps using the Hungarian
method [Kuh55], which is due to Kuhn. Thus the total running time is O(n® + mn) under
the nondecreasing work assumption, and O(n® 4+ mn?) otherwise. This completes the proof

of Lemma 13 from which Theorem 3 follows directly.

6 MACT with Nondecreasing Work

We now consider the case of malleable scheduling where each task T; € M satisfies w;(j) <
wi(j+ 1) for all j € [m —1].

16

Given an instance of MACT, let
o(p) = A3) + SH(P) - 3W(F). (45)
By Theorem 1, a(p) is a lower bound on C,y; for the p-derived instance of NACT. Let
o = min{a(p)}. (46)

Then o™ is a lower bound on C27,. Let

- N - _
&p) = A(P) + 5 H(p) ~ W(p). (47)
As in (16), &(p) is a lower bound on Coyp; for the p-derived NACT instance.

Consider the following MACT algorithm. Use ALLOT to find an allotment p that
satisfies a(p) = a™. Define an allotment 7" by p§’> = min{p;,7}. Let r = [Z], and
schedule the p(")-derived NACT instance using LWF. We call this MACT algorithm MLWF.

Lemma 18 For any allotment p, and any r > f—”zl],
&(7") < a(p). (48)

Proof: Our goal is to show that H(5") < H(p) + W(p), and that AP - W(p") <
A(p) — W(p). Then the lemma follows by adding half the first inequality to the second
inequality.

First, we will show that A(p(") — W(p") < A(p) — W(p). Let o be a permutation that
is induced by 7. Then A(F") < A(p",0) by Lemma 11. Observe that " < p; for all

i € [n], and therefore by the nondecreasing work assumption, wi(p") < wi(p;). Then
AP -w(E") < AED,0) - WD)
LS g-1() _ (r)
= — -1 A n
EICORITY

IA

’%i(”ul(i) — Dwi(p;)
= A(p) - W(p).

Next, we show that H(3") < H(p) + W(p). It is sufficient to show that for each task
T:, we have #;(p{") < t:(p:) + pi * ti(pi)/m. ¥ p; < r, then P = p;, and it is clear that
t,-(pgr)) < t;(p;) + p; * ti(p;)/m. Suppose instead that p; > r. Then p{” = r. Now it suffices

to show that t;(r) < t:(p:) + pi * t:(p;)/m. By the nondecreasing work assumption, we have
o ti(r) < pi* ti(pi)- (49)

17

Since p; < m, we also have
’I‘*ti(’l‘> S m*tz(p,) (50)

Then adding together (49) and (50), we get
QT*ti(’f‘) S m*ti(pi) + p; *tz(pz) (51)

Dividing both sides by m yields

() < () + pi i) . (52
Then since 2 > 1, we have
ti(r) < t:(pi) + pi * (i) /m. (53)
Therefore,
H(p") < H(p) + W(p). (54)

O

Proof of Theorem 5: By Lemma 13, we can find an allotment such that a(p) = o™

in O(n® 4+ mn) steps. Let r = [5]. Let p = max{;"5,2} = 2. Recall that CHwr is
the value of C that results from scheduling the p{")-derived instance using LWF. Then by

Lemmas 9 and 18, we have

CMwr < 26(p™)
< 2a(p)
— QO!NI
< 200

0

Consider the special case of MACT in which for each task T;, a processor requirement p;
and an execution time t; are given. But we have the option to use fewer than p; processors,
with a corresponding linear slowdown in execution time. That is, the execution time of
task T is given by ¢;(7) = p;t;/j for any j € [p;], and t;(j) = t; for j > p;. This is known as
virtualization [FKST93]. We call the problem of scheduling virtualizable tasks to minimize
average completion time VACT. VACT is a special case of MACT with nondecreasing work.
In VACT, allotting p; processors to each task minimizes the bound a(p). Then a schedule
can be constructed by using LIWF on the p(")-derived NACT instance, as in MLWF. Call
this algorithm VILWF.

18

Theorem 19 For any instance of VACT,
Cwr < 200, (55)

The running time of VLWF is O(nlogn).

For our MACT algorithm under the nondecreasing work assumption, we have assumed
that each task could be allotted any number of processors up to m. But it may be that the
set S; of possible allotments to task T; is a proper subset of [m]. Then instead of choosing
a maximum allowable number of processors to allot to each task r = [%] that applies to
all the tasks, we can choose an individual upper limit r; for each task. We can select an

allotment 5 to minimize the NACT lower bound as before, and then we need only determine

r; for tasks that have p; > [2]. For these tasks, let r; = arg min;jes, max{ 27, 7}. (For
tasks that have p; < [2], we can use r; = [7] as before.) Then we use the allotment),
where p{”) = min{p;,r;}. Let p = maX;efp) max{~—"--, 2} Then the resulting MACT

(3

algorithm is p-approximate.

Note that p depends on the sets ;. For example, if §; = {1,m} for all ¢ € [n], then it

may not be possible to guarantee p < m using this method.

7 Conclusions and Open Problems

A natural extension of the problems we have considered is scheduling to minimize weighted
average completion time. That is, along with each task T; is associated a weight u;. The
new objective is to minimize Y ., u;c;. We will use NWACT and MWACT to refer to the
weighted versions of NACT and MACT. The results of Theorems 1, 2, 3, and 5 can all
be extended to weighted tasks. For the NWACT lower bound and scheduling algorithm,
the weighted tasks should be ordered by the ratio of work to weight p;; /u;. Note that
Corollary 4 does not extend to weighted tasks, because no algorithm for NWACT is known
to have a constant approximation factor. The current state of affairs is summarized in
Table 1.

Any nonmalleable problem can be formulated as a malleable problem, and therefore
there cannot be an improvement in the best known approximation factor for a malleable
problem (with no assumptions on task execution times) without a corresponding improve-
ment in the nonmalleable problem. In the other direction, improved approximation factors
for nonmalleable problems carry over to their malleable counterparts provided that the

lower bound used to prove the approximation factor of the nonmalleable algorithm is of a

19

‘ makespan ACT WACT

nonmalleable 2 [GGT75] | 32 [TSWY94] | ?
malleable 2 [TWY92, LT94] | 32* ?
malleable, nondec. work | 2 [BB90] | 2* 2*

*this paper
Table 1: The best known approximation factors for scheduling parallel tasks

certain form. This follows from Theorem 3 in the case of minimizing average completion
time, and from previous results [TWY92, LT94] in the case of minimizing makespan. Thus
NACT and NWACT appear to be the best places to look for improved results.

As mentioned in Section 1, this work was motivated by the Condor distributed batch
system. Condor is designed to make the best use of the computing power available in
a workstation environment. However, under Condor [LLM88, LL90], machines must be
relinquished when their owners return to use them. Therefore, schedulers must be able to

handle unexpected variations in the number of available processors.

In the problems that we have considered, it is assumed that we have complete infor-
mation on all the tasks. But in a scheduling environment such as Condor, not all of this
information is available. Therefore, it would be useful to investigate what results are pos-
sible with less information. For example, suppose that for each task and for each possible
number of processors, we do not know the execution time, but we know the speedup relative
to the single-processor execution time of that task. Or suppose that we have an estimate
of the execution time, and its accuracy is governed by some known distribution. These
variations can be applied to the problem of minimizing makespan as well as the problem of

minimizing average completion time.

Faster algorithms for MACT are desirable. The O(n®) term in the runtimes of our
schedulers represents the cost of finding a minimum weight perfect bipartite matching. A
faster algorithm for finding a perfect matching whose weight is within a constant factor
of the optimal can be used to make the scheduler faster at the expense of increasing its

approximation factor.

References

[AKM*87] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applica-

20

[BBYO]

[BLK83]

[CYW92]

[D1.89]

[EEI64)

[FKST93]

[GGT5]

[Kuhb5]

[LL90]

[LLKS92]

[LLMS8S]

tions of a matrix-searching algorithm. Algorithmica, 2:209-233, 1987.

K. Belkhale and P. Banerjee. Approximate algorithms for the partitionable
independent task scheduling problem. In Proceedings of the 1990 International
Conference on Parallel Processing, vol. I, pages 72-75, 1990.

J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject
to resource constraints: Classification and complexity. Discrete Applied Math-
ematics, 5:11-24, 1983.

M. Chen, P. Yu, and K. Wu. Scheduling and processor allocation for the execu-
tion of multi-join queries in a multiprocessor system. In Proceedings of the 8th

International Conference on Data Engineering, pages 58—67, 1992.

J. Du and J. Leung. Complexity of scheduling parallel task systems. SIAM
Journal on Discrete Mathematics, 2(4):473-487, 1989.

W. L. Eastman, S. Even, and I. M. Isaacs. Bounds for the optimal scheduling of
n jobs on m processors. Management Science, 11(2):268-279, November 1964.

A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng. Optimal online scheduling
of parallel jobs with dependencies. In Proceedings of the Twenty-F'ifth Annual
ACM Symposium on the Theory of Computing, pages 642-651, 1993.

M. Garey and R. Graham. Bounds for multiprocessor scheduling with resource
constraints. SIAM Journal on Computing, 4(2):187-200, June 1975.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Re-
search Logistics Quarterly, 2:83-97, 1955.

M. J. Litzkow and M. Livny. Experience with the Condor distributed batch
system. In Proceedings of the IEEE Workshop on Experimental Distributed
Systems, 1990.

E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys. Sequencing and schedul-
ing: Algorithms and complexity. In Handbook of Operations Research and
Management Science, Volume IV: Production Planning and Inventory. North-
Holland, 1992.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor—a hunter of idle work-
stations. In 8th International Conference on Distributed Computing Systems,
pages 104-111, 1988.

21

[LT94] W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable parallel tasks.
To appear in Proceedings of the 5th SIAM Symposium on Discrete Algorithms,
1994.

[TSWY94] J. Turek, U. Schwiegelshohn, J. L. Wolf, and P. S. Yu. Scheduling parallel tasks
to minimize average response time. To appear in Proceedings of the 5th SIAM

Symposium on Discrete Algorithms, 1994.

[TWY92] J. Turek, J. Wolf, and P. Yu. Approximate algorithms for scheduling paral-
lelizable tasks. In 4th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 323-332, 1992.

22

