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Abstract

We consider an extension of the horizontal linear complementarity
problem, which we call the extended linear complementarity problem
(XLCP). With the aid of a natural bilinear program, we establish vari-
ous properties of this extended complementarity problem; these include
the convexity of the bilinear objective function under a monotonicity
assumption, the polyhedrality of the solution set of a monotone XLCP,
and an error bound result for a nondegenerate XLCP. We also present
a finite, sequential linear programming algorithm for solving the non-
monotone XLCP.
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1 Introduction

In the past couple years, the horizontal linear complementarity problem
(HLCP) has received an increasing amount of attention among researchers
interested in the family of interior-point methods for solving linear programs
and complementarity problems. This surge of interest originates from an a1-
ticle by Zhang [14] who used the HLCP as a unifying framework for the con-
vergence analysis of a class of so-called “infeasible-interior-point algorithms”.
Subsequent work in this area includes [2, 6, 11, 13]. Independently, Szna-
jder and Gowda [12] have studied some matrix-theoretic properties and their
roles in the horizontal and vertical LCPs. Inspired by this flurry of activities
and other applications (like the one described in [4]), we became interested
in undertaking a further study of the HLCP. In particular, our goal in this
paper is twofold: one, to derive some basic results of the HLCP along the
line of the classical LCP [3]; and two, to present an alternative solution
method for the HLCP (particularly, for the “nonmonotone” problems).

The problem we shall study in this paper is defined as follows. Let M
and N be two real matrices of order m X n, and let C' be a polyhedral set in
R™. The extended linear complementarity problem, which we shall denote
XLCP (M, N,C),is to find a pair of vectors (z,y) € R such that

Mz~ NyeC, z Ly,

where the notation @ L y means that 2 is orthogonal to y, i.e., 2’y = 0.
When m = n and C consists of the single vector p € R", this problem
reduces to the HLCP that has motivated our work. The feasible region of
XLCP (M, N,C) is denoted FEA(M, N,C); it is defined to be the set

FEA(M,N,C)={(z,y) € RY : Ma — Ny € C},

which is a polyhedral subset of R3*. We shall say that the XLCP (M, N, C')
is feasible if FEA(M, N,C) # {. The set of complementary solutions of the
XLCP (M, N,C) is given by

SOL(M,N,C)={(z,y) € FEA(M,N,C): 2 L y}.



2 The Equivalent Bilinear Program

Associated with the XLCP (M, N,C) is a natural bilinear program defined
on the same feasible region:

minimize 2Ty
subject to (z,y) € FEA(M,N,C).

We shall denote this problem by BLP (M, N,C). The BLP (M, N,C') should
be contrasted with the “natural” quadratic program that one associates with
the standard LCP (¢, M) which corresponds to the special case of the XLCP
(M,N,C)withm =n, N = I,and C' = {—¢}. Thelatter quadratic program
is [3]

minimize 27 (¢ + M2)

subject to x>0, ¢+ Mz > 0. (1)
One important distinction between this program and the BLP (M, N, (') is
that the former is defined by the variable = only, whereas the latter involves
the pair (z,y). We shall see shortly that the BLP (M, N, C) plays a similar
role in the study of the XLCP (M, N,C) as (1) in the LCP (¢, M).

Since the objective function of BLP (M, N, () is clearly nonnegative on
FEA(M, N,C), the XLCP (N, N,(C) is equivalent to the BLP (M, N,C)
in the sense that a pair of vectors (,y) solves the former problem if and
only if (z,y) is a globally optimal solution of the latter problem with a
zero objective value. Moreover, by the well-known Frank-Wolfe Theorem
of quadratic programming [5], the BLP (M, N,C) always has an optimal
solution provided that it is feasible. Of course, it is in general not neces-
sary for an optimal solution of the BLP (M, N, () to have zero objective
value. In what follows, we shall establish several results that pertain to the
relationship between the XLCP and the associated BLP.

Proposition 1 Let M and N be m x n matrices and C' a polyhedral set in
R™. The bilinear function f(z,y) = a7y is convexr on the set FEA(M,N,C')
if and only if the following implication holds:

[(af,y) € FEA(M,N,C),i=1,2] = (a* —=2%)T(y' = ¢*) > 0. (2)

Proof. By an easy calculation, it can be verified that the following identity
holds for any two pairs of vectors (z?,%*) € R*™ and any scalar T,

r(@)Ty' 4+ (1= 7)(@*)"y = o(r)Ty(r) = 7(1 = 7)(a' = 2*)T(y" — ¥°),



where
a(T) ! z?
=T ) + (1 —_ T) . |-
y(7) y y?
Thus, the claimed equivalence follows easily. Q.E.D.

With the somewhat notorious reputation of the bilinear function, the
above proposition is a pleasant surprise in that it exhibits an important
instance in which the BLP (M, N, () is actually a “convex program” (in the
sense that it has a convex objective function on the feasible set). Indeed,
when one specializes this result to the case of the standard LCP (g, M), one
may conclude that if M is a positive semidefinite matrix, then the bilinear
form Ty is a convex function on the set {(z,y) € RY" : M2 —y = ¢}. This
fact, though trivial to prove, seems to have been completely overlooked in
the LCP literature.

To state the next result which gives a sufficient condition for every
Karush-Kuhn-Tucker (KKT) vector of the (general) BLP (M, N,C) to be
a solution of the XLCP (M, N,(), we recall that a matrix L € R™*™ is
copositive on a cone I C R™ if uT Lu > 0 for every u € K. Also, we denote
the recession cone of the set C' by 0*C'; finally, the dual cone of a set S C R™
is denoted S5™.

Proposition 2 Let M and N be m X n matrices and C' a polyhedral set in
R™. If the matriv MNT € R™*™ s copositive on (0TC)*, then every KKT
vector of the BLP (M, N,C), if it exists, solves the XLCP (M, N,C'). Thus,
if in addition FEA(M,N,C) # 0, then SOL(M,N,C) # (.

Proof. Without loss of generality, we shall represent the set C' in the

following form:
C={ueR"™: Au > b},

for some matrix A € RY*™ and vector b € R*. Then we have
(0FC) ={ve R™:v = AT ) for some X € R.},

and the BLP (M, N,C) becomes

minimize 2Ty

subject to AMz - ANy >0
(z,y) 2 0.
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Now, if (2,y) is a KKT vector of the BLP (M, N, ('), then there exist non-
negative vectors A € R, and (r,s) € R*" such that

y=MTATN +7, 2= ~-NTATA +s
2Tr = yTs = \T(AMz — ANy —b) = 0.
Clearly, we have
Ty =aTy—MT(AMaz —~ ANy —b) —rTa — sTy
= —aTy 4+ \Th
= _(=NTAT) + YT (MTATA + 1) + AT
= NTAMNTATA — 175 4 AT(b— AMs + ANT)
= _(ATA)MNT(ATA) 4 1Ts) < 0

where the last inequality follows from the copositivity of M NT on (0+C)*.
Since 27y is nonnegative, it follows that (¢,y) € SOL(M, N, C).

The last assertion of the proposition holds because the BLP (44, N, (')
must have an optimal solution if it is feasible, and such a minimum solu-
tion must also be a complementary solution by what has just been proved.

Q.E.D.

In order to combine the above two propositions, we establish a lemma
which gives a sufficient condition for the matrix M N7 to be positive semidef-
inite (hence copositive on any cone).

Lemma 1 Let C be a polyhedron in R™ and let M and N be square matrices
of order n. If FEA(M,N,C) # 0 and the pair (M, N) satisfies the condition:

[Ma' =Ny € C,i=1,2]= (a' =227 (y' —¢*) > 0, (3)
then MNT is positive semidefinite.
Proof. We first show that the following implication holds:
Mz - Nye0tC = 2Ty > 0. (4)
Indeed, let (z,y) be a pair of vectors satisfying Ma — Ny € 0tC. For an

arbitrary pair of vectors (&,7) € FEA(M, N, (), we have (Z,7) + 7(2,y) €
FEA(M, N, C) for all scalars 7 > 0. By the implication (3), it follows easily



that 2Ty > 0. Since the origin is always an element in the recession cone, it
follows that
Mz—-Ny=0= 2Ty >0.

Hence, (M, N) is a column monotone pair in the sense defined in [12]. In
particular, by Theorem 6 in this reference, it follows that M N7 is positive
semidefinite. Q.E.D.

When m = n and C consists of a singleton, condition (3) is equivalent
to the column monotonicity of the pair (M, N), which in turn is equivalent
to two conditions: (i) M + N is nonsingular, and (ii) MNT is positive
semidefinite [12, Theorem 6]. By this characterization, it is easy to construct
pairs of matrices (M, N) for which M N7 is positive semidefinite but (M, N')
is not column monotone. Such matrices will thus provide XLCPs (M, N, (')
for which the associated BLP (M, N, (') will have the property that every
one of its KKT points will be a solution of the XLCP but the BLP itsell
is not a convex program. A pair of matrices (M, N) with the property
that MNT is positive semidefinite will be called a monotone product pair.
Unlike a column monotone pair, a monotone pair (M, N) need not contain
any nonsingular column representative matrix (as defined in [12]).

3 Monotone Problems

We say that a pair of n x n matrices (M, N) is monotone with respect to
the polyhedral set C C R", or in short, (M, N,C') is a monotone triple, if
the implication (3) holds. (Note that this definition requires that M and N
be square.) Summarizing the discussion in the last section, we may state
the following result for a XLCP with a monotone triple (3, N,C').

Theorem 1 Let C' be a nonempty polyhedron in R* and let M and N be
square matrices of order n. Suppose that (M, N) is monotone with respect
to C and that FEA(M,N,C) # 0. Then the following statements hold:

(a) the bilinear function a™y is convex on FEA(M,N,C);

(b) SOL(M,N,C)# 0 and SOL(M,N,C) is a polyhedron.

Proof. Only the polyhedrality of SOL(M, N,C') requires a proof. We ob-
serve that SOL(M, N,C) is a convex set by (a). Since the BLP (M, N,C)
is a quadratic program and the set of optimal solutions of any quadratic



program is equal to the union of a finite number of convex polyhedra [9],
the convexity of SOL(M, N, C) must imply its polyhedrality. Q.E.D.

Under the assumptions of Theorem 1, it is possible to give an explicit
(polyhedral) representation for SOL(M, N,C). Instead of presenting such
an expression in its fullest generality, we shall devote the remainder of this
section to discuss the HLCP which has C = {—¢}. For this case, we first
introduce a special set associated with a column monotone pair. (A remark:
Although the next three results can be proved by invoking the close connec-
tion between a column monotone pair and a positive semidefinite matrix,
our derivation is more direct and reveals some interesting features of the
HLCP.)

Proposition 3 Let (M, N) be a column monotone pair of n X n matrices.
Let
K(M,N)= {(u,v) € R*: Mu— Nv=0,u Ll v}.

Then (u,v) € K(M, N) if and only if there exists a vector A in the null space
of MNT 4+ NM7T such that
w=-NT\, and v=MT)\ (5)

Thus, K(M,N) is a linear subspace of R*".

Proof. The column monotonicity of (M, N) implies that (@, %) € K(M,N)
if and only if (%,?) is an optimal solution of the (equality constrained)
quadratic program:

minimize ¥

subject to Mu — Nov =0,

v

and 479 = 0. Thus, if (7,7) € K(M, N), then there must exist a vector A
such that (5) holds; moreover, we must have

MMNTN = —uTv=0.

Since MNT is positive semidefinite, it follows that (MNT + NMT)\ = 0.
The converse is easily proved. From this characterization of the set (M, V),
it follows trivially that this set must be a linear subspace. Q.E.D.



In the next result, we shall give two representations of the solution set
of the “monotone” HLCP:

Mz —Ny+qg=0

(6)
(2,9) >0, @ Ly, o

where (M, N) is a column monotone pair. One representation is valid in
general, and the other is valid in the case when the problem is nondegenerate,
i.e. when it has a solution (Z,y) satisfying £ + 7§ > 0. Throughout the
remainder of the paper, we shall write (M, N, q) for (M, N,{—q¢}).

Proposition 4 Let (M, N) be a column monotone pair of n x n matrices
and let (2°,y%) € SOL(M, N, q) be arbitrary. Then

SOL(M,N,q)={ (z,y) € FEA(M,N,q):

2Ty’ +yTa® =0, (z,y) € (2% y°) + K(M, N)}. )

If the HLCP (M, N, q) is nondegenerate, then
SOL(M,N,q) = {(z,y) € FEA(M,N,q):27y" + y"2° = 0}. (8)
Proof. Since (2°)7y° = 0, we may write
2Ty =aTy’ +yTa’ + (2 — ) (y — ¥°).

By the column monotonicity of (3, N), it follows that (z,y) € SOL(M, N, q)
if and only if (2,y) € FEA(M, N, q), 2Ty’ +y72% = 0, and (z—2°)T(y—y°) =
0, or by Proposition 3, if and only if (z,y) belongs to the right-hand set in
(7).

Suppose that the HLCP (M, N, ¢) is nondegenerate. It suffices to verify
that the right-hand set in (8) is contained in SOL(M, N, ¢). Take any vector
(z,y) belonging to this right-hand set. Let (Z, 7) be a nondegenerate solution
of the HLCP (M, N,q); then (2°,4°) € (Z,79) + K(M,N). Since (z,y) €
FEA(M, N, q), we can verily, by the characterization of the set (M, N)in
Proposition 3, that

2Ty’ +yTa’ =T+ yT T (9)

Indeed, for some vector A, we have



Multiplying the first equation by (y — y°)* and the second equation by
(2 —2%)T, adding the resulting equations, and using the fact that (29Ty° =
zTy" + T2% = 0 and M(z — 2°%) — N(y — 3°) = 0, we immediately deduce
the desired equation (9). Consequently, we have 27§+ 3”& = 0 which easily
implies 27y = 0 by the nondegeneracy of the solution (Z,7). Q.E.D.

The polyhedral representations (7) and (8) allow us to obtain some error
bounds for the monotone HLCP. Although some such bounds have been
obtained in [8] for the general HLCP, they are valid only for test vectors
that lie in a compact set. In what follows, we shall use (8) to obtain a
sharpened error bound for the nondegenerate, monotone, HLCP.

Corollary 1 Let (M, N) be a column monotone pair of n x n matrices. If
the HLCP (M, N, q) has ¢ nondegenerate solution, then there exisis a con-
stant o > 0, dependent on (M, N, q), such that for all (x,y) € FEA(M, N, q),

dist((z,y), SOL(M, N, q)) < oaTy,

where “dist” denotes the distance (measured by any norm) from a vector to
a set,

Proof. It suffices to apply the well-known error bound for polyhedra [7,
10] to the representation (8) and to note that for any solution (2°,y°) €
SOL(M, N, q) and feasible vector (z,y) € FEA(M, N, ), we have

2Ty’ + 4"’ = 2Ty — (2 — ") (y - ¢°) <y

This establishes the corollary. Q.E.D.

4 A Finite SLP Algorithm

We now return to the general XLCP (M, N, ). The bilinear programming
formulation of this problem allows us to compute a solution by solving a
finite sequence of linear programs (SLP) when the triple (M, N, (') satisfies
the assumptions of Proposition 2. Since these assumptions are considerahbly
more general than the column monotonicity property (for one thing, M
and N need not be square matrices), the SLP procedure is applicable to a
broader class of XLCPs than the (square) monotone class.

The algorithm described below was formulated in [1] and its finite ter-
mination was established for bilinear programs, not necessarily convex. We



shall rephrase the algorithm for the BLP (M, N, (') and use the convergence
results from the reference to establish its finite termination. In essence,
this algorithm is a modified Frank-Wolfe algorithm for solving the BLP
(M, N,C) as a quadratic program, whose convergence was originally proved
for convex functions [5].

An SLP Algorithm. Start with any feasible (2°,y%) € FEA(M,N,C). In
general, determine (2+!, y**1) from (2%, y") as follows:

e Let (u',v') be a vertex optimal solution of the linear program:
minimize a7y’ + yTa’
subject to (z,y) € FEA(M,N,C).

o Stop if (u¥)Ty! + (v))T2t = 2(a") Tyl

o Otherwise, let
git? a ) @t . ut
, = — T; . Ti ) ’
yz-{-l yz ,Uz

€ argmin, epo (e + (0’ — o)) (5 + (o' —y)).

where

Theorem 2 Let M and N be m x n matrices and C' a polyhedral set in R™.
Suppose FEA(M,N,C) # 0. If the BLP (M, N,C) has the property that
every one of its KKT points solves the XLCP (M, N,C), then in a finite
number of iterations, the above algorithm will produce a vertex (u',v') €
FEA(M, N,C) satisfying (u*)Tv' = 0.

Proof. Note that the sequence {(z%,y*)} generated by the SLP algorithm is
bounded because it lies in the convex hull of the vertices of FEA(M, N, (')
and (2% 79°). Hence {(z%,y")} has at least one accumulation point (Z,%)
which must satisfy the minimum principle necessary optimality condition [1,
Theorem A.1], and hence the KKT conditions for the BLP (M, N,C). By
assumption, it follows that (z, 7) solves the XLCP (M, N, (). Consequently,
zT§ = 0. By [1, Theorem A.2], a vertex (u’,v') generated by the SLP
algorithm solves the BLP (M, N, C) with zero minimum. Hence this vertex
also solves the XLCP (M, N,C). Q.E.D.
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Sufficient pairs of matrices

Specializing Theorem 2 to the HLCP (M, N,q), we obtain the following
corollary.

Corollary 2 Let (M, N) be a monotone product pair of n X n matrices. If
the HLCP (M, N,q) is feasible, then in a finite number of iterations, the
SLP algorithm will produce a vertex solution of this HLCP.

Inspired by the class of (row/column) sufficient matrices [3, Section 3.5],
we can broaden the class of monotone product pairs of matrices. Specifically,
we say that a pair of n x n matrices (M, N) is row sufficient if the following
implication holds: with A = (M, N) € R™**",

u
[( )ErangeAT, wov <0| = uov=0,
v

where “range” denotes the column space of a matrix and o denotes the
Hadamard product of two vectors; i.e., x oy is the vector whose components
are the products of the corresponding components of z and y. Similarly,
(M,N) is said to be column sufficient if the following implication holds:
with A = (M, -N) € R»>,

v

U .
[( ) enull 4, uov<0| = uov=0,

where “null” denotes the null space of a matrix. Finally, the pair (M, N) is
said to be sufficient if it is both row and column sufficient.

While a monotone product pair must be row sufficient but not necessarily
column sufficient, a column monotone pair must be (both row and column)
sufficient. The role played by the (row/column) sufficient pair in the HLCP
is similar to that by the (row/column) sufficient matrix in the standard LCP.

For the sake of completeness, we state the following characterization result
for the HLCP.

Theorem 3 Let (M, N) be a pair of n x n matrices.

(a) The pair (M, N) is row sufficient if and only if for every vector ¢ € R”
for which the HLCP (M, N, q) is feasible, every KKT vector of the BLP
(M, N,q) solves the HLCP (M, N, q).

11



(b) The pair (M,N) is column sufficient if and only if for every vector
q € R", the solution set of the HLCP (M, N, q), if nonemply, is convez.

Proof. Assume that (M, N) is a row sufficient pair. Suppose that (z,y) is
a KKT vector of the BLP (M, N, q). Then there exist vectors A € R", and
(r,s) € R such that

y=MT\+r, z2=—-NTA+s

2Tr = yTs = 0.
By a similar derivation as in the proof of Proposition 2, we can show that
zoy=—((MTN)o(NTX)+10s).

Thus, (MTA)o (NTA) < 0. The row sufficiency of (M, N) therefore implies
that (MTX) o (NTA) = 0 which in turns yields z oy = 0.

To prove the converse in (a), suppose that the pair (M, N) is not row
sufficient. Then, for some vector A € R", we have (MT))o (NTA) <0 and
(MTX);(NTX); < 0 for at least one component i. Let

y=(MTN, r= (M7

s= (NI, o= (NTNA)-
where 2% and 2~ denote, respectively, the nonnegative and nonpositive part
of a vector z. Also let ¢ = Ny — M. It is then easy to verify that (z,y) is
a KKT vector of the BLP (M, N, q) with (7, s) as the corresponding multi-
pliers; nevertheless, z is not complementary to y. Thus (a) holds.

To prove (b), suppose the pair (M, N) is column sufficient. Let (2%, y)

for 7 = 1,2 be two solutions of the HLCP (M, N, ¢). It is then easy to verify
for all components k= 1,...,n, we have

0> (2! — 2®)u(y" - 9*)e = —(2398 + 2iyp)-

Since we also have M(a! — 2%) — N(y* — y?) = 0, it follows that z;y; =
23yt = 0 for all k. In turn, this easily implies that

(ra* + (1= 1)) (1 + (1= 7)) = 0

for all 7 € [0,1]. Thus, the convexity of SOL(M, N, ¢) follows. Conversely,
suppose that (M, N) is not column monotone. Then there exists a vector

12



(z,y) € R* satisfying Mz — Ny =0,z0y <0, and 2;3; < 0 for at least one
index 7. Let
—q=Mat - Nyt = Mz~ - Ny~

It is then easy to verily that (2%, y™) and (2, y~) are solutions of the HLCP
(M, N, ¢) but that these solutions are not “cross complementary”; i.e., either
(zt)Ty™ > 0 or (27)Ty*t > 0. The latter cross complementarity property
is easily seen to be both necessary and sufficient for the solution set of any
HLCP to be convex. Q.I.D.

It follows immediately from Corollary 2 and Theorem 3 that if (M, N)
is a row sufficient pair, then the SLP algorithm will compute a solution to
the HLCP (M, N, q) for every ¢ for which FEA(M, N, q) # 0.

In [12], a pair of square matrices (M, N') was defined to be row monotone
if (MT,NT) is column monotone. We have previously mentioned that a
column monotone pair must be (column and row) sufficient. Nevertheless,
a row monotone pair need not be either column or row sufficient. Indeed,
borrowing from [12, Example 2], let us consider the pair

M:[?)/Q 1/2}71\7:{2 1]’
~1/2 —1/2 10

which is obtained by transposing respectively the matrices C' and D in the
cited example. The pair (M, N) is row monotone because as shown in the
reference (C, D) is column monotone. But the pair (M, N) is neither column
nor row sufficient. Column sufficiency is violated with

u=(2,0), v=(-1,5);
whereas row sufficiency is violated with
w=(-1/2,-1/2), v=(1,0).

The reason for this dichotomy is that the definition of row monotonicity in
[12] was tailored for the vertical LCP and was not shown to have any relation
to the HLCP. On the other hand, the column and row sufliciency defined
herein have direct implications for the HLCP. Thus, it is not surprising that
these (column/row) sufficiency and monotonicity concepts for matrix pairs
would be quite different.

13



References

[1] K.P. Bennett and O.L. Mangasarian, “Bilinear Separation of Two Sets
in n-space”, Computational Optimization and Applications (1994)
forthcoming.

[2] J.F. Bonnans and C.C. Gonzaga, “Convergence of Interior Point
Algorithms for the Monotone Linear Complementarity Problem?”,
manuscript, INRIA, Rocquencourt (October 1993).

[3] R.W. Cottle, J.S. Pang, and R.E. Stone, The Linear Complementarity
Problem, Academic Press, Boston (1992).

[4] B. De Moor, “Mathematical Concepts and Techniques for Modelling of
Static and Dynamic Systems”, Katholieke Universiteit Leuven, Fakul-
teit der Toegepaste Wetenschappen, Departement Elektrotechniek,
Leuven, The Netherlands (1988).

[5] M. Frank and P. Wolfe, “An Algorithm for Quadratic Programming”,
Naval Research Logistics Quarterly 3 (1956) 95-110.

[6] O. Giiler, “Generalized Linear Complementarity Problems”, Mathe-
matics of Operations Research (1994) forthcoming.

[7] A.J. Hoffman, “On Approximate Solutions of Systems of Linear In-
equalities”, Journal of Research of the National Bureau of Standards
49 (1952) 263-265.

[8] Z.Q. Luo and J.S. Pang, “Error Bounds for Analytic Systems and
Their Applications”, Mathematical Programming (1994) forthcoming.

[9] Z.Q. Luo and P. Tseng, “Error Bound and the Convergence Analysis
of Matrix Splitting Algorithms for the Affine Variational Inequality
Problem”, SIAM Journal on Optimization 2 (1992) 43-54.

[10] O.L. Mangasarian, “A Condition Number for Linear Inequalities and
Linear Programs”, in G. Bamberg, and O. Opitz, eds., Proceedings
of 6. Symposium iiber Operations Research, Augsburg, 7-9 September
1981, Konigstein, Verlagsgruppe Athenaum/Hain/Scriptor/Hanstein
(1981) pp. 3-15.

14



[11]

R.D.C. Monteiro and T. Tsuchiya, “Limiting Behavior of the Deriva-
tives of Certain Trajectory Associated With a Monotone Horizontal
Linear Complementarity Problem”, manuscript, Department of Sys-
tems and Industrial Engineering, University of Arizona, Tucson (De-
cember 1992).

R.Sznajder and M.S.Gowda, “Generalizations of Py- and P-Properties;
Extended Vertical and Horizontal LCP’s”, Linear Algebra and its Ap-
plications (1994) forthcoming.

R.H. Tiitiinci and M.J. Todd, “Reducing Horizontal Linear Comple-
mentarity Problems”, manuscript, School of Operations Research and
Industrial Engineering, Cornell University, Ithaca (October 1993).

Y. Zhang, “On the Convergence of a Class of Infeasible Interior-Point
Algorithm for the Horizontal Complementarity Problem”, SIAM Jour-
nal on Optimization (1994) forthcoming.



