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Abstract

The complexity of parallel applications and parallel processor scheduling policies makes both exact anal-
ysis and simulation difficult, if not intractable, for large systems. In this paper we propose a new approach
to performance modeling of multiprogrammed processor scheduling policies, that of interpolation approwi-
mations. We first define a workload model that contains parameters for the essential properties of parallel
applications with respect to scheduling discipline performance, yet lends itself to mathematical analysis. Key
features of the workload model include general distribution of total job processing time, general distribution
of available job parallelism, and a simple characterization of parallelism overheads. We then show that one
can find specific values of the system parameters for which the parallel system under a given scheduling
policy reduces to a queueing system with a known (closed-form) solution. Finally, interpolation between
the points with known solutions is used to arrive at mean response time estimates that hold over the entire
system parameter space. The interpolation approximations readily yield insight into policy behavior and are
easy to evaluate for systems with hundreds of processors.

We illustrate the approach by developing and validating models of three scheduling policies, under the
assumptions of linear job execution rates and independence between job parallelism and processing time.
We discuss several insights and results obtained from the analysis of the three policies under the assumed
workloads. One result clarifies and generalizes observations in two previous simulation studies of how policy
performance varies with the coefficient of variation in job processing requirement. Another result of the
interpolation models yields new insight into how policy performance varies with job parallelism. We also
comment on the generalizations of these insights for workloads with less restrictive assumptions.

*This research was partially supported by the National Science Foundation under grants CCR-9024144 and CDA-9024618.



1 Introduction

The algorithm for scheduling jobs on the processors of a multiprogrammed parallel computer can have
a significant impact on system performance. Parallel processor scheduling disciplines have been studied
using system measurement [10, 23, 44, 46|, simulation [9, 17, 18, 24, 50}, and analytic modeling methods
8, 16, 19, 25, 27, 28, 34, 35, 42]. While these studies have yielded various specific insights, the general
performance characteristics of parallel scheduling policies still remains poorly understood. Questions such as
which policies dominate over various regions of the system design space and which workload characteristics
are the key determinants of policy performance remain largely unanswered.

Measurement studies are necessarily limited to specific mixes of applications, whereas simulation studies
are limited to specific workload assumptions (e.g., particular distributions of job processing requirement).
Analytic models have the potential to be efficient, broadly applicable, and readily yield insight, but to date
analytic models of parallel processor scheduling disciplines have been limited in three respects. First, the
models involve numerical solution of sets of simultaneous equations that yield no direct insight into the
functional relationship between system performance and particular workload parameters. Second, the sets of
simultaneous equations typically grow superlinearly in the number of processors thus limiting their solution
to small system sizes, such as 20 or fewer processors. Third, all but one of the previous analytic models
either assume exponential distributions of job service time [19, 35], or assume independent and identically
distributed (i.i.d.) task execution times (implying a specific degree of correlation between total job demand
and the number of tasks in a job) [16, 25, 27, 28, 34, 42]. Regarding the former assumption, experience from
uniprocessor systems suggests that relative policy performance can be highly sensitive to the (second moment
of) job service demand distribution, and that total job demand can have significantly higher variability than
the exponential [33, 43]. Relative scheduling policy performance for parallel systems may also be sensitive
to the degree of correlation between available job parallelism and total job service requirement. Thus, the
particular assumptions in previous analytic models potentially limit the applicability of the results, as well
as the ability to study policy behavior. The model in [8] allows general job processing requirement, but to
apply their analysis one needs to know the probability that a job is allocated a given number of processors
as a function of job type and system utilization. These probabilities may be difficult to obtain for many
scheduling policies.

The above limitations suggest a need for alternative models of parallel processor scheduling disciplines.



In this paper we define (1) a workload model that captures the significant features of parallel applications in
a few simple parameters, and (2) a new approach for deriving mean response time equations that are efficient
to evaluate for kiloprocessor systems and that yield direct insight into which workload parameters are the key
determinants of scheduling policy performance. The workload model allows general distribution of available
job parallelism, sublinear as well as linear job execution rates (i.e. speedup curves), and general distribution
of total job processing requirement. For the sake of space, we define the workload model for the case of no
correlation between a job’s available parallelism and processing requirement. Simple extensions that allow full
correlation and arbitrary correlation are also possible [21]. The model lends itself to mathematical analysis,
yet allows for broad applicability of the results and provides the basis for a fairly complete understanding of
policy performance.

The approach we propose for obtaining mean job response time equations is that of interpolation approx-
imations. That is, we first find points in the parameter space for which the parallel system, under a specific
scheduling policy, reduces to a queueing system with a known (closed-form) solution for mean response time.
We then interpolate among the points with known solution to arrive at mean job response time formulas over
the entire parameter space. Although the approach is “ad hoc” in nature, extensive validations show that
it can yield reasonably accurate results. Since the formulas are extremely efficient to evaluate and readily
yield insight into policy behavior, the approach may offer the right trade-off between accuracy on the one
hand, and efficiency, insight, and applicability on the other.

We illustrate the interpolation approximation approach and the insights that can be derived from it for
three parallel scheduling policies and a particular set of workload assumptions. These assumptions include
general distribution of total job processing requirement, linear job execution rates, and no correlation between
job demand and job parallelism. The approach can be applied to cases of sublinear execution rates and
correlated workloads [21], but focusing on the more restrictive assumptions simplifies the exposition of the
technique, which is the primary purpose of this paper.

The interpolation approximation approach has previously been applied to multiserver and fork-join
queues. In section 2, we review interpolation approximations that have appeared in the previous litera-
ture and define the three scheduling policies considered in this paper (FCFS, EQ, and PSAPF). Section 3
presents our workload model and system assumptions. In section 4 we show how the FCFS and EQ policies,

under particular values of the system parameters, reduce to queues with known solutions. In section 5 we



present the interpolation approximations that yield the mean response time over the entire parameter space
for each of the EQ and FCFS policies. We also present validations of the approximations in that section. In
section 6 we derive and validate interpolation approximations for the mean response time under the PSAPF
policy. Section 7 presents some results and insights obtained from the interpolation models and comments
briefly on the relationship between these results and the results in previous papers. Finally, section 8 presents

a summary of our conclusions.

2 Background

In this section we first outline the interpolation approximation approach and summarize such approximations
that have appeared in previous literature. We then define three scheduling policies that have been proposed

in previous literature, whose performance will be analyzed using interpolation approximations.

2.1 Interpolation Approximations

The underlying principle behind interpolation approximations is simple: use the known to predict the un-
known. The first step is to derive efficient solutions at extreme values of system parameters, for example,
light and heavy traffic limits of mean response time. The next step is to form a function that interpolates
between the extreme points in a way that approximates system behavior. The interpolation is on the pa-
rameter for which exact results are derived under extreme values. In some cases it is necessary to normalize
the measure of interest before forming an interpolation function, and then ‘unnormalize’ the function to
obtain the desired approximation. For example, if the interpolation is on system utilization, p, the mean job
response time is first multiplied by 1 — p so that the heavy traffic limit does not go to infinity.

The following is a summary of interpolation approximations that have appeared in previous literature.
Cosmetatos interpolates between the mean waiting time in an M/D/c queue and in an M/M/c queue to
obtain an approximation for the mean waiting time in an M/G/c queue when the coefficient of variation
in service time Cx < 1 [4]. The parameter of interpolation is C%. (The approximation can be used as
an extrapolation for Cx > 1.) Burman and Smith perform a linear interpolation between light and heavy
traffic limits of the ratio of the mean delay in a single server FCFS queue with non-homogeneous Poisson
arrivals to the mean delay in an M/G/1 FCFS queue with the same mean arrival rate and service time

distribution [2]. In [3] they use a similar approach to obtain estimates for the mean delay in single server



and multiple server FCFS queues (sequential jobs) with more general arrival processes. Fleming interpolates
between light and heavy traffic limits of the moments of the waiting time distribution in an M/G/1 Round
Robin queue [6]. Simon and Willie estimate response time characteristics in priority queueing networks using
interpolation approximations based on simulation and heavy traffic limits [37]. Reiman and Simon [30], and
Reiman et al. [31] provide interpolation approximations for the moments of response time and queue lengths
in a variety of single server queueing systems using light and heavy traffic limits as well as derivatives of
the computed measure at light traffic. Fleming and Simon derive interpolation approximations for response
time distributions in several single server queues, based on a similar approach [7]. Whitt [47], Fendick and
Whitt [5] interpolate between light and heavy traffic limits to obtain approximations for a measure they call
mean steady-state workload (or virtual waiting time) in a GI/G/1 queue and in general single server queues
without independence conditions. Varma and Makowski [45] propose interpolation approximations for the
mean response times of a symmetric fork-join queue with general inter-arrival and service time distributions.

Although interpolation approximations have been used for the analysis of single server, multiserver, and
fork-join queues, we have not encountered the use of this technique for the analysis of parallel processor

scheduling policies.

2.2 Processor Allocation Policies

Three parallel processor scheduling policies in the previous literature are considered in this paper: FCFS,
EQ, and PSAPF. The FCFS policy is very simple and has been shown to have high performance for specific
workloads [42]. The EQ policy is an idealization of the class of schedﬁling policies that allocate an equal
fraction of processing power to each job in the system, subject to the constraint that a job is never allocated
more processors than its available parallelism. An example of such a policy is the default CM-5 scheduler
for jobs that fit in the memory of a single partition. Previous studies have shown that variants of the EQ
policy have high performance under a variety of workloads [44, 17, 23, 10, 16, 35, 24]. Finally, we examine
the PSAPF policy proposed in [18] because of its potential for high performance for workloads where job
processing time is correlated with parallelism [18, 16]. Furthermore, this policy allows us to illustrate an
interesting aspect of the interpolation approximation approach.

Each of the policies is defined in the context of a global or central job queue. The three policies are defined

in terms of the processing power that they allocate to jobs in the queue, and not in terms of the allocation



of processors to individual tasks within a job. All three policies make use of the available parallelism in the

jobs to decide how many processors to allocate to each job in the system. We define the available parallelism

of a job to be the number of processors the scheduler believes the job can make productive use of.

(i)

(i)

FCFS!: The FCFS policy allocates processors to jobs on a first-come-first-serve basis. Fach job is
allocated processors as they become available up to a maximum of its available parallelism. Processors
released by a departing job are first allocated to the job in service (if any) whose allocation is less than
its available parallelism and then to jobs waiting for service. For example, if there are five jobs in a
100-processor system and the available parallelism per job is (50, 25, 100, 10, 10), then the allocation of
processing power is (50, 25, 25, 0, 0). This policy has been studied under different workload assumptions

in previous literature [28, 18, 25, 17, 42, 16].

EQ: The dynamic EQuiallocation policy allocates an equal fraction of processing power to each job in
the system unless a job has smaller available parallelism than the equiallocation value, in which case
each such job is allocated as many processors as its available parallelism, and tﬁe equiallocation value
is recursively recomputed for the remaining jobs. Allocation of processing power for the above example
is (27.5, 25, 27.5, 10, 10). Reallocation of power can occur on job arrivals, job departures, and changes

in a job’s available parallelism.

Partitioning of processing power can be spatial, temporal, or some combination of the two [44, 17,
23, 10, 16]. The analysis in this paper holds for any of these cases. Both simulation and analytic
models for the EQ policy, based on various workload assumptions, have appeared in the previous

literature [17, 16, 35, 24].

PSAPF: Preemptive Smallest Available Parallelism First. The central job queue is a preemptive queue
that is ordered in ascending order of available job parallelism. Jobs with the same available parallelism
are served in first-come-first-serve order. As in the FCFS policy each job is allocated processors as
they become available (or preempted) up to a maximum of its available parallelism, and processors
released by a departing job are first allocated to the job in service (if any) whose allocation is less than

its available parallelism and then to the jobs waiting for service. Processor allocation for the above

1The FCFS policy is defined for the case that available parallelism is fixed throughout the life of a job, as assumed in the
workload model in section 3. There exist extensions to the policy for the case where the available parallelism of the job changes
during its lifetime and the system scheduler can detect and react to the changes.



example is (50, 25, 5, 10, 10). Processor allocation to jobs can change upon job arrivals, job departures,
and changes in job parallelism. This policy was proposed in [18] and also studied in [16, 17] under

specific workloads.

3 Model

A goal of this work is to develop a system model that is broadly applicable, characterizes the essential
features of parallel workloads with a small number of parameters, and is easy to analyze. Below we define
a system and workload model that we believe achieves these goals and comment on the trade-offs between
realism and tractability that were made when constructing the model. Finally, we give a brief review of the

model notation, which will be used throughout the remainder of the paper.

3.1 System Model

We consider an open system model with P identical processors, a central job queue, and a scheduling
policy denoted by ¥. Note that the central job queue is a conceptual model; the actual implementation of
the queue might allow for distributed access. We assume zero scheduling and preemption overhead, with
the understanding that the actual implementation of a particular scheduling policy will include limits on
preemption rates (i.e., delayed preemptions) so as to reduce overhead to a small fraction of the productive

execution on the processors. We next describe our workload model.

Processor 1

Job Queue

Processor P

Parallel Jobs

Figure 1: Open System Model



3.2 Workload Model

Jobs arrive at the system according to a Poisson process with rate A as shown in figure 1. All jobs are

considered to be statistically identical. Each job is characterized by the following random variables:
(1) Total service demand (execution time on one processor) D,
(2) Available parallelism N € {1,2,..., P},

(3) Execution rate function E : [0, P} — [0, N], which is nondecreasing and has the following properties:

< 1<z <N,
E(z‘) ST Tr s
= E(N), N<z<P

The system operates as follows. Upon arrival each job joins the central job queue. At each time ¢ > 0,
the P processors are allocated to jobs present in the queue according to the processor allocation policy ¥. If
a(t) processors are allocated to a job at time ¢, then its demand is satisfied at rate E(a(t)). The job leaves
the system upon completion of its total demand, D. The available parallelism, N, of a job is the number
of processors the system scheduler believes the job can productively use. The workload model assumes that
this value is fixed throughout the lifetime of the job. The workload model also assumes that the job actually

can’t use use more than N processors productively (i.e., E(z) = E(N) for N < z < P).
We make the following assumptions:

¢ The available job parallelism, NV, has a general (bounded) distribution, F, with mean N and coefficient
of variation? Cy. The probability mass function of N is specified by p = (p1,p2,.-.,pp), where
pi=Pr[N=i,i=1,...,P.

e E is derived from a deterministic function «, that is nondecreasing and is such that y(z) = =z for
0<z<1andv(z)<zforl <z < P. Werefer to v as the execution rate function (ERF) of the
workload. The ERF # is said to be linear if y(z) =z, forall 0 <z < P.

For all jobs with available parallelism N, E(N) = v(N). This is the only assumption needed for the
reductions in this paper that pertain to the FCFS, PSAPF, and temporal EQ policies. The reductions
for spatial EQ and the interpolation approximations in this paper require a specification of the execution
rate E(j) on j < N processors. Several alternatives are possible. The assumption in this paper is that
the work for a job can be dynamically redistributed across the number of processors allocated to it such
that it executes as if it has available parallelism equal to the processor allocation, i.e., E(j) = v(j), for
1 < j < N. This could be appropriate, for example, for applications based on the work queue model,
or in certain cases where the processes of a job are timeshared on the allocated processors. Another
alternative is that parallelism overhead is roughly the same on fewer processors as on N processors,

ie, E(j) = —J]\ffy(N ) for 1 < j < N. This case might be appropriate, for example, for a system with

2The coefficient of variation of a random variable is defined as the ratio of the standard deviation to the mean.



jobs that have fixed parallelism in which overhead is primarily due to message passing software and
processing load is balanced across the processors, e.g., through judicious cyclic rotation of processes.
The two cases reduce to the same E(j) when v is linear, which is assumed in the reductions and
interpolation approximations in this paper.

In cases where the allocated processing power, z, is nonintegral we use a linear interpolation between
v(lz]) and y([z]) to compute E(z).

o The total job processing demand, D, is independent of N and E.

o D has a general distribution, Fp, with mean D and coefficient of variation Cp.

The service time of a job when executing on N processors is denoted by the random variable S = D /v(N)
with mean S. Under the assumption of linear execution rates, S = D/N.

Important generalizations that improve both the flexibility and the potential applicability of the above
workload model, compared with previous models of parallel scheduling policy performance, include the
general distribution of available job parallelism, the general distribution of job demand, and the general
nondecreasing execution rate function. All but one previous study have assumed specific distributions of
demand and/or parallelism. Furthermore, there is a fairly simple extension to the above model to allow
controlled correlation between job demand and available parallelism [21]. However, as stated in section 1
this is beyond the scope of this paper.

The workload model defined above contains three simplifying assumptions, each of which represents
a trade-off between analytic tractability and the simplicity of the parameter space on the one hand, and
generality of the model on the other hand. The first is the assumption of constant available parallelism per
job, the second is the assumption of a fixed execution rate, E(k), whenever the job is allocated k processors,
and the third is the assumption of the same deterministic function « for all jobs. The first assumption is
realistic for static processor allocation policies, in which a job runs to completion on whatever number of
processors is initially allocated to it. The assumption is also realistic for certain systems and/or workloads
where processor allocation is dynamic. For example, if the job is based on a work queue model and can
continuously adapt to any given number of processors up to a maximum value of N throughout (most of)
its lifetime, or if the system scheduler assumes the job’s parallelism is fixed (as in the CM-5). Similarly,
the second assumption is realistic for static scheduling policies and for certain cases of dynamic scheduling
(i.e., when execution rates are nearly linear and/or when parallelism overheads including load imbalance
are relatively evenly distributed throughout the execution of the program, on any number of processors).

Furthermore, since the purpose of the model is to analyze scheduling policy behavior and performance, as



opposed to obtaining precise mean response times for the applications, assumptions that approximately
represent key workload characteristics while keeping the model tractable and the parameter space simple,
are acceptable even when they don’t precisely describe the behavior of individual applications. For example,
if jobs have varying available parallelism, one can view the model with constant available parallelism as
capturing the contention that occurs between phases of different jobs, where a phase is a portion of the
job in which available parallelism is constant. Similarly, although jobs actually have differing degrees of
sublinearity, one can view the model as representing how policy generally performs as execution rates are
more or less sublinear. Extensions that would further increase the applicability of the model yet preserve its
tractability and parameter simplicity would be desirable, but appear to be quite difficult to obtain.

We will use the linear ERF to illustrate the reductions and interpolation approximation technique in the
remainder of the paper. This greatly simplifies the explanation of the technique yet still allows for obtaining
insights from the results pertaining to the sensitivity of policy performance to job demand and parallelism
parameters. We comment in section 7 on how the key parallelism parameters obtained by assuming linear
execution rates generalize to the case of sublinear job execution rates. We have also derived reductions and

interpolation approximations for mean response time under sublinear execution rates [21].

3.3 Notation

Table 1 provides a summary of the notation for the system and workload model defined above. The following

notation specifies a particular system, denoted by I', and its associated workload:

I = (\I,, PJ /\) ]:Dy fN)

Implicit in the above notation is the assumption of Poisson job arrivals, independence between D and N, and
linear execution rates. To indicate a general distribution of demand or available parallelism we simply leave
the notation as Fp or Fu, respectively. To indicate a system with specific distribution functions, we will
use notation that should be widely understood, such as N = 1 or Uniform(1,P) for the available parallelism

distribution, and exp(u) or Hy for the distribution of D.
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Table 1: System Notation

W

Processor allocation policy (e.g., EQ, FCFS, PSAPF)
Number of processors in the system

Arrival rate of jobs

Fp

Sl

Co

Total job demand
Distribution of job demand
Mean job demand

Coeflicient of variation in job demand

System utilization

??2’0

Pl

Available job parallelism

Distribution of available parallelism
Probability[N =d],i=1,...,P
(p1,p2,---,PP)

Mean available parallelism across all jobs

=

Execution rate function

Job service time on N processors

Mean job service time

X il v

Mean response time for policy ¥ € {EQ, FCFS,PSAPF'}
Estimator for mean response time under policy ¥, obtained

using an interpolation approximation on parameter z

M/G/1p

An M/G/1 system with a processor of capacity P.

4 Reductions to Queueing Systems with Known Solutions: FCF'S,

EQ

In this section we show how the parallel system model, under the FCFS or EQ scheduling policy, reduces
to queueing systems with known solutions for particular extreme values of the model parameters. We first

review the queueing systems with known solutions that are used in the reductions. We then present the

reductions followed by a summary of the results obtained from these reductions.
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4.1 Queueing Systems with Known Solutions
4.1.1 The M/G/c Queue

Consider an open multiserver queue with sequential work as shown in figure 2. We consider the special case
of an M/G/c queue in which jobs arrive according to a Poisson process with rate A, and have i.i.d. service
times with mean T and coefficient of variation C,. Server utilization is given by p = AZ/c, ¢ being the

number of servers.
Servers

Q O arrivals
O

departures

:
!
!
» : ey
|
|
!

Figure 2: Multiserver queue with sequential work

There is no known exact solution of the mean response time of the M/G/c (FCFS) queue. As a result
there have been a number of approximations for R, /G /c in the literature [32, 39, 40, 48, 49]. Of particular
interest to us is the simple approximation proposed in [32] for the mean number in a GI/G/c queue, which

leads to the following approximate formula for Ry, /a/c

p‘/2(6+1)(1 +C§)
221 —-p)

1)

Rujere = T+

Note that this approximation is exact for ¢ = 1 and ¢ = co. Using this approximation and the fact that

Ry /Gjc PS = RM/M/C [33], one can derive the following approximation:

_ _ p\/2(c+1)
Ruyjgre ps = T+ i) (2)

We note that this approximation has a much simpler form than the exact expression for mean response time
in the M/G/c PS queue. It is also exact for ¢ = 1 and very accurate as shown by validations in [32] for the

M/M/c queue. We use the approximate expressions given by (1) and (2) for the reductions in section 4.2.
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4.1.2 The Symmetric Queue

Kelly defines a queue to be symmetric if it operates in the following manner [11].

(i) The service requirement of a job is a random variable whose distribution may depend upon the class
of the job.

(ii) A total service effort is supplied at the rate ¢(j), where j is the total number of jobs in the queue.

(iii) A proportion «f(l,7) of this effort is directed to the job in position I (I = 1,2,...,7); when this job
leaves the queue, jobs in positions { + 1,1+ 2,...,j move to positions [,! +1,...,j — 1, respectively.

(iv) When a job arrives at the queue it moves into position [ (I = 1,2,...,7+1) with probability a(l,j+1);
jobs previously in positions [, + 1,...,j move to positions { + 1,1+ 2,...,5 + 1, respectively, where j
is the total number of jobs in the queue as seen by the arrival.

Note that ¢ and « are parameters of the symmetric queue.

Theorems 3.8 and 3.10 of [11] state that for a stationary symmetric queue with a Poisson arrival process
with rate X and an arbitrary distribution of job service time, S, the steady state probability of ¢ jobs in the
queue is given by

bat

7&'1':'—-1:"———, ZZO,l,Z, (3)
=1 8()
where
o0 i -1
=25, and b= |5 —2—| .
‘ - [Za M, ¢(l>}

The steady state probabilities can be used to obtain the mean number in the system and thereby the mean

response time.

4.2 Reductions for EQ and FCFS

We consider two types of points in the parameter space for finding reductions. The first is when available
parallelism, N, is constant across all jobs. The second is light and heavy traffic limits. For constant
parallelism and light traffic, we find reductions for FCFS and EQ; the heavy traffic limit is derived for EQ

and for a restricted case for FCFS.

4.2.1 Constant Available Parallelism (N = k)

By constant available parallelism we mean that N =k, 1 < k < P, for all jobs in the system. The mean

response time under EQ and FCFS for N = k, when k evenly divides P is given by the following proposition.

13



Proposition 4.1

Reo(N =k) = Ruyyc/e ps»

Rrers(N =k) = Ryycjer
In particular,

Rpq(N =1) = Ryja/p ps»
Rpers(N =1) = Ryyq/ps

Proof. See appendix.

where ¢ = —, Pmodk=0. (4)

=y

c:%, P mod k = 0. (5)

Rpo(N =P) = Ryje/1p Ps
Rrpcrs(N =P) = Ryjops

The reduction for EQ(N = k) in Proposition 4.1 holds only when P mod k = 0. The following reduction

holds for all k =1,2,..., P.
Proposition 4.2

Req(N = k) = Rsymmetric queue(#(j) = min(j - &, P), e(l,5) =1/j], k=1,2,...,P.

Proof. See appendix. B

From Proposition 4.1 we estimate the mean response time of EQ when N = k and P mod k = 0, by
using expression (2) with & = D/k, and the mean response time of FCFS by using expression (1) with
Z = D/k and C, = Cp. These expressions can be evaluated even when c is not an integer, yielding a simpler

expression for EQ than the exact results from Proposition 4.2, as follows:

D pVAEHD

—REQ(N:]C) = Z—I—_X(_l——-—p)—’ k=12,..., P, (6)
—_ D V(541 (1 4 o2
Rrors(N=k) ~ _k_+p 2)\(1(_/)) D), k=1,2,...,P (7)

Note that both these approximations are exact when N = P since approximations (2) and (1) are exact for
¢ = 1. We tested the validity of the EQ approximation (6) using the exact expression from the symmetric
queue reduction [11], and found the relative errors to be typically less than 2%.

An important observation from approzimations (6) and (7) is that Rpo(N = k) depends only on mean

demand (D), whereas Rpors(N = k) depends on C% as well as D

14



4.2.2 Light and Heavy Traffic (p=0,p=1)

At light traffic, that is, as p — 0, the mean response time under either EQ or FCFS is simply the mean job

service time on N processors, S. Since S = D/N and D and N are independent, we have

gI_I)I(IJREQ =;%RFCFS=S=DE[1/N]. (8)

We present an informal derivation of the mean response time under heavy traffic for the EQ policy. As
p — 1, an arriving job finds greater than P jobs in the system with probability 1. Hence the processing
power allocated to each job in the system under EQ is less than 1 when p — 1. In this case the available
parallelism of a job does not have an impact on system performance. In particular, when p — 1 the mean
system response time for any distribution of N reduces to the mean response time when N = P. By
Proposition 4.1, Rpqo(N = P) = Ryjg/ip ps = (D/P)/(1 — p) which follows from setting ¢ = 1 and

% = D/P in (2). Thus, we obtain the following heavy traffic limit?:

(9)

| o

lim (1 - p)REq =
We do not have a corresponding general heavy traffic limit for the FCFS policy. However, for the case of
constant available parallelism we can obtain the following approximate heavy traffic limit from (7):

1im(1 - ,D).R_pcpg(_N = k) S
p—1 2

We note that this heavy traffic limit does not depend on k.

4.2.3 Summary of Results for EQ and FCFS

To summarize the results of the reductions derived thus far, figures 3(a) and (b) plot the normalized mean
response time?, F(p,k) = (1 — p)Ru(p,N = k), ¥ € {EQ,FCFS}, where k = 1,2,..., P denotes the
fixed value of parallelism assumed for all jobs. The curves are plotted for P = 100, and mean job demand
D = P = 100. Figure 3(a) contains the curves for the EQ policy, and for the FCFS policy when Cp = 1.
(Note that the EQ curves hold for all values of Cp, and that the reductions for the FCFS policy yield the

same values when Cp = 1.) Figure 3(b) contains the curves for the FCFS policy when Cp = 5.

3The independence assumption between D and N simplifies the derivation, but the result also holds for correlated workloads.
4The reason for normalizing the mean response time is that we can observe the behavior at low as well as very high utilizations
on the same plot.
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Several points are worth noting about the results in figure 3. First, for both policies and all values of
Cp, F(0,N) = DE[1/N], which is equal to D/k when all jobs have parallelism k. Second, since F(1,N)
is equal to D/P for EQ and F(1,N = k) is equal to D(1 + C})/(2P) for FCFS, the curve for normalized
mean response time at p = 1 is flat in both plots. Finally, for the EQ policy F(p, P) is equal to D /P, which

yields a curve of constant value for N = P in figure 3(a).

F(rho,N) F(rho,N)

100 — 00—

U — 05 tho 20 e 05 1o
N=k 80 o0 N=k 80 Jo5~0
(a) EQ, Cp >0 (b) FCFS, Cp =5
FCFS, Cp = 1

Figure 3: Normalized Mean Response Time

D=P=100

In figure 4(a) and (b), we’ve plotted the normalized mean eztra time, G(p, k) = (1 — p)Xw(p, N = k), for
constant parallelism k = 1,2,..., P, and all other parameters as in figure 3(a). The extra time, X = R -5,
is the time spent in the system other than the service time S. In other words, X is the penalty incurred
due to resource contention. The mean extra time is thus given by X = R — 5, which equals R — D/k when
N = k. Note that the range on the Y-axis in figure 4(b) is 13 times that in figure 4(a) due to the influence
of C% on system performance for the FCFS policy. We observe that G(p, N) is constant at extreme values
of p (0 at p=0and D/P at p =1). For extreme values of N, it is linear for N = P, but highly convex for
N = 1. That is, when N = P, G(p, P) = pD/P for EQ and p(1 + C%)/(2P) for FCFS, and when N =1,
Gp,1)=(01~- p)WM/M/p for EQ and (1 — p)WM/G/p for FCFS as seen from Proposition 4.1.

In the next section we will interpolate between the response time and extra time values obtained for
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Figure 4: Normalized Mean Extra Time

D =P =100

particular points in the system parameter space. The plots in figures 3 and 4 will aid in determining how

the interpolations should be constructed.

5 Interpolation Approximations for Rpg and Rpcrs

In this section we use the reductions of the previous section to derive interpolation approximations for REeo
and Rpopg that hold over the entire range of the system parameter space. We first consider interpolation
on p to derive an approximation for REQ. Second, we consider interpolations on N for both policies. Third,
we derive interpolations on the distribution of N, p = (p1,...,pp), for both policies. The interpolations are
followed by validations using simulation and exact analysis. All three interpolations for EQ are exact when

p — 1, i.e., they yield the heavy traffic limit for EQ given by (9).

5.1 EQ: Interpolation on p

Let F(p) = (1 — p)Rpq(p). The light and heavy traffic limits, F(0) and F(1), are given in equations (8)

and (9) of section 4.2.2. Figures 3(a) and 4(a) suggest that a linear interpolation between F(0) and F(1)
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would be more accurate than a linear interpolation between G(0) and G(1), and that the former interpolation
may be reasonably accurate (particularly for workloads with moderate to high parallelism). We thus proceed
to define this interpolation.

A linear interpolation between F(0) and F(1) yields the following estimator for F{p).

Flp) = (1-p)F(0)+pF(1)

(1—p)S + pD/P.

i

Dividing F(p) by (1 — p) we obtain the desired estimator,

5 A F(p) s, P
~ PP N\PJ P
Frqw Rpg =1, S+155

Il

1l

DE[L/N] + i——f—;g (10)

I

We note that this approximation is exact for the special case when N = P, which is easily seen by comparing

equations (6) and (10) when N = P.

5.2 EQ and FCFS: Interpolation on N

The next interpolation is applicable to both policies and uses the results derived in section 4.2 for extreme
values of available parallelism (N =1 and N = P), where N = 1 and N = P, respectively. Figures 3 and 4
suggest that a simple linear interpolation on N is likely to be more accurate if the approximation is for the
mean extra time than for the mean response time, particularly for light to moderate traffic. We thus proceed
to define this interpolation.

Let ¥ denote one of EQ or FCFS, and let Xy = Ry — 5. A linear interpolation on N yields the following

estimator for Xy,

Xy = (%—‘_—YF) Xe(N=1)+ (g—:—%) Xo(N =P), (11)

where Xy (N = 1) and Xy (N = P) are derived from equations (6) and (7), by setting k= 1 and k = P, i.e,,

o pV2(PHL) . p D

XE =1) 8 " . N=P)= —— e |

_ T P40 5 Fopyo PL+CH)D
Xrers(N=1)= ) , rers(N =P) = Si-p) P
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Substituting the above values in equation (11), the full interpolation approximations are:

= N PN\ pV2P+1) (N 1 D
~ Moo= P p_Z

_ _ . P - N\ pV2P+) N-1\ p D| [(1+C%
T ~ N = DE[1/N =) 2.
Rrors Rpcrs [/NI+3 =3 21— p) t\po1) 1= pP 2 (13)
Note in the above approximations that )A(;V"C s = XEﬁQ(l + C%)/2.

5.3 EQ and FCFS: Interpolation on p

We now derive interpolation approximations for EQ and FCFS that use all of the reductions for constant
available parallelism, N = k for k = 1,2,..., P, derived in section 4.2. These approximations are more
accurate than the previous interpolations on N, as will be shown by validations.

The systems with constant parallelism have extreme values for the distribution of N, that is, p = ¢,
1 <k < P, where g, is a vector of length P having a 1 in the k** component and 0's for all other components.
An interpolation through the mean response times at these extreme points (Ry(N = k) ) yields the following

form of approximation for both policies.

From approximation (6) for Rgo(N = k) (section 4.2) we get

7 Z D e (19
= preet . A+ e ]
EQ Pk p) AM1-p)
Similarly, from approximation (7) for Rrors(N = k) (section 4.2) we get
—
FCFS = Pk 1= ) B /\(1 =) 5 . ;

We again note that X5, 6 = X%Q(l + C%)/2.
As in the interpolations on p and N, the interpolation on pis an ad hoc approximation. There is, however,

reason to believe that it can be more accurate. First, it uses P data points for interpolation as compared
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to 2 each for the interpolations on p and N. Second, from figure 3 we note that the mean response time
of EQ and FCFS when N = k changes very gradually with & in the range of moderate to high k. A linear
combination of these mean response times could thus be expected to be an accurate estimator for workloads
where all jobs have moderate to high parallelism. Third, when N takes on one of two extreme values, either
1 or P, the interpolation on p reduces to the interpolation on N. Thus we might expect the interpolation
on p to be accurate when Cy is low (e.g., constant N or N between two values of k that are moderate to
high) and to perform as well as the interpolation on N when Cl is high (e.g., N takes on one of two extreme

values). Validations will show that this intuition is largely correct and that the interpolation on p is in fact

significantly more accurate than the interpolations on p and N.

5.4 Model Validations

We validate the analytic interpolation approximations for the mean response time under EQ and FCFS
against simulation results and against special cases of exact analysis. We first provide the parameter settings
for the validation experiments, after which we present a summary of validations, and finally we present error

plots for example parameter settings.

5.4.1 Validation parameter settings

For all validations, D is set to P. We varied the other model parameters as follows:
(1) P: 20,100,500,and 1000.

(i) Fp: Exponential, and 2-stage Hyperexponential (Hy) with Cp = 5
As will be shown, the inaccuracy of the approximations for the FCFS policy increases as Cp increases.
Thus, Cp = 5 serves as a stress test for those approximations. We also ran a few test experiments, and
found no appreciable difference between the observed errors for cases with deterministic or two-stage
Erlang demand distributions compared to cases for the exponential distribution, and no appreciable
differences in observed errors for cases with Gamma (Cp = 5) distributions of job demand as compared

with the cases with Hs.

(iii) p: 0.1 t0 0.9. (Since D = P, p=A.)
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(iv) Fn: bounded-geometric, constant, and uniform.

The bounded-geometric distribution [17, 15], is specified by

where G = Geometric(p).

N — P, with probability Pz,
min(G, P), with probability 1 — Pnag,

In the validations we ensured coverage of extreme values of Cy and N which served as stress tests.

Table 2 and 3 list the parameter settings for all distributions of N considered in the validations. In
table 2 the parameter settings for the bounded geometric distributions are arranged in three groups of
three, and within each group in decreasing N. It can be shown that for a fixed value of N, the bounded-
geometric distribution with lowest Cy has Ppe = 0.0 and the bounded-geometric distribution with
highest Ciy has p = 1 [20}. Thus, the first group of three are low Cy workloads, the last group are high
Cy workloads, and the middle group are workloads with intermediate Cy. There are fewer workloads
in table 3 than in table 2 mainly because the simulations were very time-consuming for P = 500, 1000.
However, workloads for which significant errors were observed in the approximations at P = 20,100

are also included in the P = 500, 1000 experiments.

Table 2: Validation Workloads for N: P=20,100

Distribution Parameter Settings
Bounded- Praz 0.0 0.0 0.0 0.1 0.1 0.1 09 05 0.1
Geometric P 0.005 1/(0.5P) 1/(0.1P) 0.01 1/(04P) 09 1 1 1

Constant | N=1, N=P/4, N=P/2, N=3P/4, N=P
Uniform | (1P), (1,P/2), (P/2,P)

Table 3: Validation Workloads for N: P=>500,1000

Distribution Parameter Settings
Bounded- Pra:z 09 0.1 0.1
Geometric D 1 1/(04P) 0.9

Constant | N=P/10, N=P/4, N=P/2, N=3P/4, N=P
Uniform P, (1,p/2)
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All approximations were vglidated against exact analysis when N = k, and against simulation otherwise.
Exact estimates for Rpg(IN = k) were obtained by reducing the system to a symmetric queue (see Propo-
sition 4.2). Exact estimates for Rrors(N = k) were obtained using matrix-geometric analysis [29, 26, 38].
For the estimates obtained by simulation almost all had 95% confidence intervals with less than 5% half-
widths [14]. To obtain the confidence intervals, we used the regenerative method for many of the data points

and the method of batch means whenever the regenerative method was too time consuming.

5.4.2 Summary of Validation Results

Figures 5 and 6 present histograms that summarize all of the validation experiments for the EQ and FCFS
approximations. The total number of data points for the EQ validations was 306 for P=20,100, and 172 for
P=500,1000. The same is true for FCFS at each value of Cp = 1 and Cp = 5, thus leading to a total of 956
validations for FCFS.5

First, consider the EQ histograms in figure 5. Since simulation estimates for R-EQ were statistically the
same for different values of Cp we do not specify any value of Cp in the histograms for EQ. We observe that
all three approximations for Rpq are fairly accurate for small and large numbers of processors, and that

the interpolation on p has extremely low error for all cases examined. In fact, the maximum relative error
that was observed for IA%%Q was only —2.6%. The interpolation on N tends to underestimate Rgq and the

interpolation on p tends to overestimate Rgqg. These trends can be predicted from the plots in figure 4(a).
The worst case errors for the interpolation on N were for (N = P/4, p = 0.9). This is consistent with the
data in figure 4(a), noting that the error at higher p will be magnified when the normalized mean extra time
is divided by 1 — p. The worst case errors for the interpolation on p were for (N = P/4, p = 0.7), which is
also consistent with the data in figure 4(a), noting that as N decreases the mean response time is dominated
by the mean job service time (e.g., at N = 1). Note that for these cases of constant N the interpolation on
p is extremely accurate.

Now consider the FCFS histograms in figure 6. We first note that for Cp = 1 the FCFS histograms
are almost the same as the EQ histograms. The worst case errors at Cp = 1 for Ré\fc rg were for the same

workloads as the worst case errors for RévQ. Comparing the results for Cp = 5 we note that the performance

of both the FCFS approximations degrades with Cp. However, most of the data points are still within an

5Many simulation experiments were run on the Condor distributed system [1].
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Figure 5: Summary of Validations: EQ

acceptable range of error, i.e., within —5% to 35% error for the interpolation on p and within +35% for
the interpolation on N. We also observe that in general the interpolation on p is more accurate than the
interpolation on N and that the interpolation on p overestimates mean response time (i.e., is conservative) in
the majority of cases examined. At Cp = 5, the worst case errors for the interpolation on N were located at
(P =100, N =75, p=0.2) and (P = 1000, N = 100, p = 0.9). Interestingly, the worst case errors for the

interpolation on p were also located at constant N, that is, (N = 3P/4, p = 0.2). This is non-intuitive since

R%C rg interpolates among Rrors(N = k) and we had an off-the-shelf solution available for Rrcrs(N = k).
The explanation is that approximation (7) for Rrors(N = k) turns out to be somewhat inaccurate at high
Cp, low to moderate utilization, and k between P/4 and 3P/4. The trade-offs between accuracy and simple
approximations that readily yield insight still favor the use of this available solution for the M/G/c queue,
but the validation results suggest that the approximation for FCFS scheduling in a parallel system could be

improved if a more accurate closed-form approximation can be found for the M/G/c queue.

5.4.3 Example Validation Experiments

To illustrate how the interpolation approximation accuracy varies with various model parameters, we present
example plots of relative error versus utilization for specific distributions of N, specific values of P, and in

the case of the FCFS policy, specific values of Cp. The distributions of N considered are bounded-geometric
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with parameter settings given in table 4. Note that these workloads have high (H), moderate (M) and low (L)
average parallelism, respectively. We found the errors for these three workloads to be fairly representative
for bounded-geometric distributions. We observed that the accuracy of the interpolation on N decreases
with decrease in Cy, this is also true for the uniform distribution. For the constant N distribution Cy is
lowest and the errors were also higher for the interpolation on N. For the interpolation on p the constant N

distribution reflects errors in the reductions rather than in the interpolation itself.

Table 4: Three example workloads for N

Symbol | Parallelism | Pp,q P P=20 P=100
N Cn N Cn
H High 0.9 1.0 18.10 0.31 | 90.10 0.33
M Moderate 0.1 |1/(0.4P) | 870 0.77 ] 43.14 0.80
L Low 0.1 0.9 3.00 1.89 ] 11.00 2.70

In figures 7(a) and (b) we plot the relative percent error for each of the three interpolation approximations
for REQ as compared to simulation estimates, for the H, M, and L workloads. These figures show that, as
expected, the interpolation on p accurately predicts Rpqg for the H workload, but overestimates REpg for
the M and I workloads. The interpolation on N is accurate for the H and L workloads as expected, but it
underestimates EEQ for the M workload. The interpolation on p is the most accurate approximation and
its estimation is very close to the simulated values.

Figure 8 presents example percent errors for the FCFS interpolation approximations for Cp = 1,5 and
P =100. We observe that the interpolation on p performs fairly well for all three example workloads, with
errors within 10% of the simulation estimates for both low and high Cp. The interpolation on N performs

as well for the H and L workloads, but its accuracy is significantly lower for the M workload when p > 0.5.

6 Analysis for PSAPF

In this section we consider interpolation approximations for the PSAPF policy. The analysis using interpola-
tion approximations thus further illustrates the utility of this approach for analyzing and understanding the
relative performance of parallel scheduling policies. We first present reductions for PSAPF and then use the

reductions to derive interpolation approximations for Rpsapr. As before we validate the approximations

25



SO0~

Q= =t [Tl

=Moo =0Tv

- Q= = [Tl

@--a Interpolation on p
&> Interpolation on p

o--0 Interpolation on N

=R
8 M g g9
EMHB_‘..
Om—‘:B & é\@ -Ar———f}ﬁrx—mp
| RSN
pC
-84

(a) P=20

@5 Interpolation on p
s—a Interpolation on p

8, o--o Interpolation on N .
P
e
r -8
r 8 I By
| T
e -
ST -5 S P g g iy
t S i
4 \Q !
g 8] M AN /
\Q 1
r | N8
I‘ N
o -16 °
r

00 02 04 ; 06 08 1.0
(b) P=100

Figure 7: Example Validations for EQ

s—a Interpolation on p

o--0 Interpolation on N

[
o2}
g
£

00 02 04 5 06

(a) Cp=1

0.8

1.0

a—a Interpolation on p

&--0 Interpolation on N

=R N e R R Rav]
T
o0
.
B
-

| M "
g -16] |
r N \\
224 &
(8] ] AN /Q
r 32 \G”G

(b) Cp =5

Figure 8: Example Validations for FCFS, P = 100

26



using simulation and exact analysis.

6.1 Reductions

We derive reductions for PSAPF under the case of constant available parallelism. When all jobs have the
same available parallelism the PSAPF policy reduces to simple FCFS scheduling. Hence the reductions for

PSAPF when N = k are the same as the reductions for FCFS that were presented in section 4.2. Thus,
— — P
Rpsapr(N =k) = Bujgje; €=+, Pmodk=0.

In particular,

Rpsapr(N =1)=Rpyjg/p, and Rpsapr(N =P) = Ry c/ip-

Using the M/G/c approximation in (1), the reduction for Rpsapr(N = k) is thus asin (7), i.e.,

_ b VAED( L ch)
(N =k) =~ — = ..., P
Rpsapp( k) % + 1<) , k=1,2,...,P (16)

Note that the fact that PSAPF reduces to FCFS when all jobs have constant parallelism enables the use
of interpolation approximations to analyze a policy that might otherwise be very difficult to analyze. Also

note that the reductions for the PSAPF policy are summarized in figures 3 and 4.

6.2 Interpolation Approximations

The estimates for Rpsapr(N = k) can now be interconnected to yield interpolation approximations for
Rpsapr over the entire parameter space. As before, the reductions at constant parallelism provide the
basis for two types of interpolations: (1) interpolation on N between the endpoints X psapr(N = 1) and
-X—pSAPF(N = P), and (2) interpolation on p among all of the reductions Rpsapr(N = k). Furthermore,
since the workloads analyzed in this paper have no correlation between demand and parallelism, we will

again derive a simple linear interpolation on N and a simple weighted sum interpolation on p, yielding:

- ~ (P-N\= — N-1\+ =7
BBsapr ~ S+ < )XPSAPF(N =1)+ ("‘—*“) Xpsapr(N = P) (17)

P-1 P -1
mo e (52) 8050 (222) 2 2 (12),
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and

P
R%SAPF ~ ZkaPSAPF(N =k) (19)
k=1
B [pV*F D] oy o
~ D | D
~ DE[1/N]+ ) ( 5 > . (20)

Note that these approximations are identical to the corresponding interpolation approximations for mean
response time under the FCFS policy. One might expect lower accuracy in the simple interpolations for the
PSAPF policy, since the interpolations do not reflect the priority given to jobs with lower available parallelism.
However, there are specific cases where FCFS and PSAPF can be expected to have similar performance (e.g.,
exponential job demands and high system utilization), and a previous simulation study [17] has shown that
for specific distributions of D and N, PSAPF is not significantly better than FCFS when D and N are
independent and when Cp < 5. We thus believe that it is worthwhile to start with the simple interpolations,
and to improve upon these interpolations if validations show that improvement is needed. Note that if
the simple interpolations validate well, then the interpolation approximations yield the substantial insight
that the FCFS and PSAPF policies generally have similar performance when demand and parallelism are
uncorrelated.

It is worth noting that correlated workloads are also of interest, but are beyond the scope of this paper.
Uncorrelated workloads are of interest because the actual degree of correlation in real workloads is unknown
and may be quite weak. (Certainly any given parallel system is likely to have both fully parallel jobs that
execute quickly and jobs with lower parallelism that require large amounts of CPU time.) Furthermore, a

complete understanding of policy behavior includes the uncorrelated case.

6.3 Validation Experiments

Figure 9 presents histograms that summarize the validations of the PSAPF approximations. The validation
parameter settings are the same as those of section 5.4. The total number of data points was 306 for each
value of Cp when P=20,100, and 172 for each value of Cp when P=500,1000, thus leading to a total of 956
validations. The approximations were validated against exact analysis for constant NV and against simulation
otherwise.

From figure 9 we observe that the relative errors in the PSAPF approximations are very similar to those
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for FCFS in figure 6. In particular, the interpolation on p is highly accurate at Cp = 1, the overall accuracy of

both PSAPF approximations degrades with Cp, and at Cp = 5 the interpolation on p tends to overestimate

mean response time whereas the interpolation on N shows no strong tendency towards underestimation or

overestimation of mean response time. We note that at Cp = b the errors for PSAPF are somewhat higher

on average than those for FCFS. The worst case errors for f%—],?v; apr and R}% sapp in the P=20,100 histogram
for Cp = 5 were located at (P = 100, N = Uniform(50,100), p = 0.3,0.4). The worst case errors in the
P=500,1000 histogram for Cp = 5 were located at (P = 1000, N = 100, p = 0.9) for the interpolation on N,
and (N = 3P/4, p = 0.2) for the interpolation on p. Thus, the approximation tends to be most inaccurate
for workloads with constant parallelism or with very low values of Cy.

Figure 10 presents example percent errors for the PSAPF approximations for Cp = 1,5 and P = 100.
The example workloads are the same as those in figures 7 and 8. We observe that both interpolations on N
and p are very accurate for the H and M workloads, the accuracy of the interpolations for the M workload
degrades with Cp, with the interpolation on p having more positive errors.

One source of the error at high values of Cp is that we used approximate estimates at the end points
N = k as given by (16) instead of exact solutions. To estimate the amount of error due to this factor we
computed exact solutions for Rpsapr(N = k) by means of matrix-geometric analysis and then used the
same interpolation methods as (17) and (19). Using this approach for P = 20, 100 we found that worst case
errors (for Uniform N) at Cp = 5 went down to about 60% and in the great majority of cases examined
the approximation is within 15% of the simulation estimates. Although the use of exact solutions at the
end points improves the accuracy of the PSAPF approximations, we note again that the exact estimates at
N = k are obtained using numerical analysis and thus they yield no direct insight into policy behavior as
a function of the system and workload parameters. Since for most cases the simple approximations have
relative error within —35% to 35% range, these approximations are sufficiently accurate for the policy insights
and comparisons discussed in the next section.

In concluding this section we note that another possible way to improve on the interpolation approxi-
mations for PSAPF is to consider modifying the interpolation on p to account for the priority given to jobs
with smaller parallelism [22]. Due to space constraints, and because it is not needed for the comparisons in

the next section, we do not pursue this approach further in this paper.
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Figure 9: Summary of Validations: PSAPF
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Figure 10: Example Validations for PSAPF, P = 100
7 Preliminary Insights and Results

In this section we illustrate the use of interpolation approximations for deriving ready insight into (1) policy
behavior as a function of model parameters, and (2) relative policy performance. Both the insights and the
policy performance comparisons will be interpreted relative to the accuracy of the models as determined
by the validation experiments in sections 5 and 6. In cases where we focus on particular regions of the
design space to sharpen the insights, we will select regions where the interpolation approximations have high
accuracy.

We first discuss the key workload parameters for the mean response times of the EQ, FCFS, and PSAPF
policies that are directly obtained from the interpolation approximations. We then compare the performance
of these three policies on the basis of one of the key workload parameters. The results in this section are
for the workload assumptions that were used in deriving the interpolation approximations, i.e., general
distributions of D and N, no correlation between D and N, and linear job execution rates. We also point

to how some of the results generalize for correlated workloads and/or nonlinear execution rates.
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7.1 Insights into Key Workload Parameters

The interpolation approximations from sections 5 and 6 readily indicate that that Cp is a key determinant
of policy performance, under the workload assumptions stated above. The impact of Cp on scheduling
policy performance has been observed in some previous studies. The interpolation approximations clarify
and generalize those results. The approximations also indicate that E[1/N] is perhaps a parallelism measure
that is a key determinant of policy performance. The significance of the parallelism measure E[1/N] has not

to our knowledge been previously pointed out or tested. Below we discuss these points in greater detail.

7.1.1 Functional Dependence on Job Demand

All three interpolation approximations for Rgg (equations (10), (12), and (14)) depend only on D and
not on higher moments of job demand. In particular, the approximations for EEQ are independent of Cp.
This result generalizes the observation in a previous simulation study [17], which showed that for specific
distributions of D and N, Rgq is independent of Cp.

The mean response time estimates of FCFS and PSAPF (equations (13), (15), (18) and (20)) depend
not only on D but also on Cp. In particular, these response time estimates increase linearly in C%. Two
previous simulation studies [18, 17] have shown that for specific distributions of demand and parallelism
Rrors and Rpgapr increase with Cp; however, they did not show the (approximate) linear dependence on
2.

For workloads with sublinear execution rates and/or correlation between D and N, one might expect the
same functional dependencies on parameters of the demand distribution for each policy. This intuition is

born out by extensions to the interpolation approximations for these workloads [22].

7.1.2 Functional Dependence on Parallelism

Measures of workload parallelism include N and E[1/N]. While N captures the average available parallelism
of jobs, E[1/N] captures the mean execution time of jobs (since E[1/N] = S/D). Below we discuss the
insights into the impact of these parallelism measures on policy performance that can be obtained from the
interpolation approximations, and corroborate that insight with experimental results.

The interpolation on p for the EQ policy (approximation (10)) readily shows that Rll,«?Q increases linearly

with E[1/N]. Approximations (12) and (14) show a similar dependence on E[1/N] at low utilization, but it is
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not clear how E[1/N] impacts the mean extra time component of these two approximations. It is nevertheless
clear from all three approximations that at low utilizations E{1/N] is the key workload parallelism parameter.

In figures 11 and 12 we give experimental results that are motivated by the interpolation approximation
results and that suggest that E[1/N] is a strong determinant of EQ policy performance throughout the range
of utilization, including very high utilizations such as p = 0.95. Each of these figures gives the full distribution
of available parallelism for each of two workloads as well as the approximate mean response time for the
workloads as a function of p, estimated by the interpolation on p. Both figures are for systems with P = 100
processors. In figure 11 workload W; has the same mean and coefficient of variation of available parallelism as
workload Wy, but much lower E[1/N]. The figure shows that W, has significantly lower mean response time
than W, throughout the range of system utilization. In figure 12 workloads W3 and Wy have very different
values for mean available parallelism but the same value for E[1/N]. These two workloads have very similar
mean response time, for all values of p. Thus N does not have (much) impact on the performance of EQ
when E[1/N] is constant, while E[1/N] can have significant impact on performance when E[N] is constant.
The figures provide evidence that the key parallelism measure for Rgq is E[1/N] rather than N. Note
that E[1/N] contains higher moments of N than simply N and thus it conveys more information about the
available parallelism distribution. For workloads with sublinear execution rates and/or correlation between
D and N the natural generalization of E[1/N] is the normalized mean service time S/D, which will again
convey information about the distribution of N. (Further results are needed to corroborate the hypothesis
that this is the parallelism metric that is the key determinant of performance for those workloads.)

The interpolations on N and p for the FCFS and PSAPF policies, like the corresponding interpolations for
EQ, do not directly show which parameters of the parallelism distribution are the key determinants of policy
performance, except at light load. However, the reductions for the FCFS and PSAPF policies under constant
parallelism, summarized in figure 3, show that when Cp =5 Rrors and Rpsapr can decrease with decrease
in E[1/N].6 To see this more clearly, Figure 13 plots the points in figures 3(a) and (b) for p = 0.9, yielding
the approximate mean response time under constant parallelism (from approximations (6),(7), and (16))
versus parallelism &, for P=100, Cp = 5, D = P, and p = 0.9. We see that Rrors and Rpgapr increase
with available parallelism (i.e., a decrease in E[1/N]) after k = 5. In contrast, Rpg decreases as available

parallelism increases (i.e., as E[1/N] decreases) for this workload. Similar trends have been observed in a

6At Cp = 1, the behavior of FCFS and PSAPF is similar to the behavior of EQ.
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previous simulation study [15] for a different distribution of N.
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7.2 Policy Comparison

We now focus on a quantitative comparison of EQ against FCFS and PSAPF under the assumption of
no correlation between D and N, and linear execution rates. As discussed above, Cp is a key parameter

that influences the relative performance of EQ, FCFS, and PSAPF. From the interpolations on N and pin

sections 5.2 and 5.3 we saw that Xrorg = X (1 + C%)/2, which implies that

> Rpors, Cp <1,
REo = Rrcrs, Cp=1,
< Rpcrs, Cp>1.

Since our estimators for Rpgapr are the same as the estimators for Rpcrs the same relation holds between
REQ and Rpsapr. We illustrate these comparisons in figure 14 using the M and L workloads of parallelism

(see table 4 in section 5.4.3). Note that for this figure we estimated Rpq using the interpolation on p which

is most accurate for this policy. For Rpsapr and Rrcrs we give both the interpolation on N and the
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interpolation on p, in order to illustrate the range of estimated performance for these policies under these
workloads. Note that the uncertainty in the estimated policy performance is small compared to the perfor-
mance differential between EQ and the other two policies and thus the interpolation approximations derived
in this paper have enabled a broad comparison of the policies for the workloads that satisfy the model as-
sumptions. A previous simulation study [17] showed similar policy comparison results for a hyperexponential

distribution for D and specific distributions of V.
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From figure 14 we note that for Cp >> 1 the performance of FCFS and PSAPF is considerably worse
than that of EQ. Since general purpose computer system workloads typically have high Cp [33, 43] this
result is relevant to practical systems.” Furthermore, the results show that relative policy performance can
be strongly influenced by Cp, indicating that it is important to interpret the results of scheduling policy
performance comparisons in the context of the assumed distribution(s) of job demand. Had we restricted
the workload model to only exponential job demands we would have concluded that all three of EQ, FCFS,

and PSAPF perform about the same. We also would have concluded that Rrors and Rpsapr decrease

7Note that we have also measured the squared coefficient of variation in service times on our local CM-5 to be ranging from
7.84 to about 25, with the higher end being more typical.
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with available parallelism, which is untrue when Cp is high.

8 Conclusions

In this paper we have shown how the technique of interpolation approximations can be applied to the analysis
of parallel system scheduling policies to yield very simple and highly efficient performance models that readily
yield insight. First we defined a workload model that enables the analysis yet includes general distribution
of total job processing requirement, general distribution of available job parallelism, and sublinear as well
as linear job execution rates (although, for the sake of space and clarity in the exposition, the sublinear
execution rates were not included in the interpolation approximations). Second, for each of three parallel
scheduling policies, EQ, FCFS, and PSAPF, we found points in the parameter space for which the parallel
system reduces to a queueing system that has a known solution. Note that the general distribution of
job demand is tractable since there are known solutions of single server and multiserver queues that allow
for general job demands. Third, we showed how three types of interpolations can be used to obtain mean
response time estimates over the entire parameter space. All three interpolations have a very simple structure
and, coupled with the closed-form estimates at the end-points, they readily yield insight into the parameters
that are key determinants of system performance. Thus, in much the same way that current parallel systems
are built by interconnecting off-the-shelf microprocessors, we have interconnected off-the-shelf solutions at
extreme values of the model parameters to obtain a parallel system performance model. Furthermore, just
as different parallel processor interconnection networks provide different levels of performance, validation
experiments reveal that different interpolation techniques provide different degrees of accuracy.

Extensive validations show that the interpolation models are sufficiently accurate for the purposes of
comparing policy performance and gaining insight into policy behavior. Also, the loss in accuracy due to
the use of closed form approximations rather than exact analysis at the end-points is small compared to the
gain in insight provided by the model.

The interpolation approximations yielded the insights that (1) FCFS and PSAPF have similar perfor-
mance (for all distributions of total job service requirement) when available parallelism and total service
requirement are independent, (2) the coefficient in job demand (Cp) is a key determinant of FCFS and
PSAPF performance, whereas mean response time under EQ is insensitive to the second and higher mo-

ments of job demand, and (3) E[1/N] where N is the available job parallelism is a key determinant of the
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EQ policy performance for workloads with linear execution rates and independence between job demand and
available parallelism. The functional dependence of policy performance on E[1/N]is a new observation. The
results for the Cp parameter clarify and generalize results from previous work [17], and show that relative
policy performance is sensitive to job demand distribution. For example, the EQ policy outperforms FCFS
and PSAPF when Cp is greater than 1, whereas FCFS and PSAPF outperform EQ when Cp < 1. Since the
typical job demand distributions in parallel workloads are as yet unknown, conclusions that are reached in
studies of relative policy performance generally need to be interpreted in the context of the assumed demand
distribution(s).

In further research we are extending the applicability of the models to include static scheduling policies,
sublinear job execution rates, and workloads with (a controlled degree of) correlation between demand and
available parallelism. We are also developing interpolations on other system parameters that have even
higher accuracy than those considered in this paper. These models can then be used to further explore the

parameter space for scheduling policy performance.
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Appendix

In this appendix we prove Propositions 4.1 and 4.2.
Proposition 4.1

Rpo(N =k) = Ryyc/e ps» c=
Rrcrs(N =k) = Ryyc/e, c=
In particular,

Rpq(N =1)=Rug/p ps»  Ree(N =P)=Ruyja/, ps
Rpors(N =1)=Ryyg/p,  Rrors(N = P) = Ruyjaps,

Proof. We first give the proof for the EQ reduction. Let I' = (EQ, P, A, Fp, N = k), P mod k = 0. When
there are Q < ¢ jobs in T, each job receives k amount of processing power. When there are Q > ¢ jobs in T',
each job receives P/Q amount of processing power. This is precisely how an M/G /c processor sharing (PS)
queue allocates processing power to jobs, where each of the ¢ servers has a processing power of k.

Now consider the proof for the FCFS reduction. Let I' = (FCFS,P,A,Fp,N = k), Pmod k = 0.
System I" operates as follows. A job that arrives when system I' is empty gets £ processors. Subsequent jobs
that arrive also get k processors unless all processors are occupied. When a job departs it releases all k of
its processors as a single unit. The first job waiting in the queue (if any) thus gets all k processors released
by the departing job, and so on. Thus an arriving job waits for service in FCFS order and upon service gets
k units of processing power throughout its lifetime. At any point in time there are at most ¢ = P/k jobs in
the servers. This means that system I' behaves like an M/G/c system with ¢ = P/k processors, in which
each job has one task with service requirement z = D/k. | |

Proposition 4.2
REQ(N = ]\7) = ﬁSymmetric queue[¢(j) = min(j ) k‘,P), a(l;j) = 1/j], k=1,2,...,P.

(Note that k does not need to evenly divide P as in Proposition 4.1.) ,

Proof. Let I' = (EQ,P,\,Fp,N = k), 1 < k < P. If there are not enough jobs to utilize all processors
then the total service effort of I' is ¢(j) = 7 - k, since each job is allocated exactly k processors. If there are
enough jobs to utilize all processors then the service effort is ¢(j) = P. Thus ¢(j) = min(j -k, P).® Since the
EQ policy allocates an equal fraction of processing power to all jobs it follows that a(l,7) = 1/j,1=1,...,7J.
This would not hold if maximum parallelism was not constant across jobs because jobs with small available
parallelisms could get fewer processors than the equiallocation value. | |

8Note that for a sublinear ERF +y and spatial partitioning the service effort is ¢(j) = j - min(k, v(P/7)).

39



References

[1] A. Bricker, M. Litzkow, and M. Livny. Condor Technical Summary. TR 1069, Computer Sciences Dept.,
Univ. of Wisconsin-Madison, January 1992.

[2] D. Burman, and D. Smith. Approximate Analysis of a Queueing Model with Bursty Traffic. Bell System
Tech. Jnl. 62 (1983), 1433-1453.

[3] D. Burman, and D. Smith. An Asymptotic Analysis of a Queueing System with Markov-Modulated
Arrivals. Operations Research 34, 1 (1986), 105-119.

[4] G. Cosmetatos. Some Approximate Equilibrium Results for the Multi-Server Queue (M/G/r). Opera-
tional Research Quarterly 27, 3 (1976), 615-620.

[5] K. Fendick, and W. Whitt. Measurements and Approximations to Describe the Offered Traffic and
Predict the Average Workload in a Single-Server Queue. Proc. of the IEEE 77, 1 (Jan. 1989), 171-194.

[6] P. Fleming. An Approximate Analysis of Sojourn Times in the M/G/1 Queue with Round-Robin Service
Discipline. ATéT Bell Labs. Tech. Jnl. 63, 8 (Oct. 1984), 1521-1535.

[7] P. Fleming, and B. Simon. Interpolation Approximations of Sojourn Time Distributions. Operations
Research 39, 2 (1991), 251-260.

[8] E. Gelenbe, D. Ghoshal, and S. Tripathi. Analysis of Processor Allocation in Large Multiprocessor
Systems. Proc. of the Interntl. Conf. on the Performance of Distributed Systems and Integrated Comm.
Networks, Kyoto, Japan, Sept. 1991.

[9] D. Ghosal, G. Serazzi, and S. Tripathi. The Processor Working Set and Its Use in Scheduling Multipro-
cessor Systems. IEEE Trans. on Software Engg. 17, 5 (May 1991), 443-453.

[10] A. Gupta, A. Tucker, and L. Stevens. Making Effective Use of Shared Memory Multiprocessors: The
Process Control Approach. Tech. Report, Computer Sciences Dept., Stanford University, July 1991.

[11] F. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons, 1979.

[12] L. Kleinrock. Queueing Systems, Vol I: Theory. John Wiley & Sons, New York 1975.

[13] L. Kleinrock. Queueing Systems, Vol II: Computer Applications. John Wiley & Sons, New York 1976.
[14] S. Lavenberg (Ed). Computer Performance Modeling Handbook. Academic Press, New York 1983.

[15] S. Leutenegger. Issues in Multiprogrammed Multiprocessor Sharing. Ph.D. Thesis, Tech. Report #954,
Computer Sciences Dept., Univ. of Wisconsin-Madison, Aug. 1990

[16] S. Leutenegger, and R. Nelson. Analysis of Spatial and Temporal Scheduling Policies for Semi-Static
and Dynamic Multiprocessor Environments. Research Report - IBM T.J. Watson Research Center,
Yorktown Heights, Aug. 1991.

[17] S. Leutenegger, and M. Vernon. The Performance of Multiprogrammed Multiprocessor Scheduling Poli-
cies. Proc. of the ACM SIGMETRICS Conf. on Measurement & Modeling of Computer Systems 18, 1
(May 1990), 226-236.

[18] S. Majumdar, D. Eager, and R. Bunt. Scheduling in Multiprogrammed Parallel Systems. Proc. of the
ACM SIGMETRICS Conf. on Measurement & Modeling of Computer Systems 16, 1 (May 1988), 104-
113.

[19] S. Majumdar, D. Eager, and R. Bunt. Characterisation of programs for scheduling in multiprogrammed
parallel systems. Performance Evaluation 18 (1991), 109-130.

40



[20] R. Mansharamani. Efficient Analysis of Parallel Processor Scheduling Policies. Ph.D. Thesis, Computer
Sciences Department, University of Wisconsin, Madison, WI, November 1993.

[21] R. Mansharamani, and M. Vernon. Performance Analysis of the EQuipartitioning Parallel Processor
Allocation Policy. In preparation.

[22] R. Mansharamani, and M. Vernon. Comparison of Processor Allocation Policies for Parallel Systems.
In preparation.

[23] C.McCann, R. Vaswani, and J. Zahorjan. A Dynamic Processor Allocation Policy for Multiprogrammed,
Shared Memory Multiprocessors. ACM Transactions on Computer Systems 11, 2 (May 1993), 146-178.

[24] V. Naik, S. Setia and M. Squillante. Scheduling of Large Scientific Applications on Distributed Memory
Multiprocessor Systems. Research Report RC 18621, IBM T. J. Watson Research Center, Yorktown
Heights, Jan. 1993. Proc. of the 6th SIAM Conf. on Parallel Processing for Scientific Computation.

[25] R. Nelson. A Performance Evaluation of a General Parallel Processing Model. Proc. of the ACM SIG-
METRICS Conf. on Measurement & Modeling of Computer Systems 18, 1 (May 1990), 13-26 .

[26] R. Nelson. Matrix Geometric Solutions in Markov Models - A Mathematical Tutorial. Research Report
- IBM T.J. Watson Research Center, Yorktown Heights, Apr 1991.

[27] R. Nelson, and D. Towsley. A Performance Evaluation of Several Priority Policies for Parallel Processing
Systems. COINS Tech. Report 91-32, Computer and Info. Sciences, Univ. of Mass.-Amherst, May 1991.
(To appear in JACM.)

[28] R. Nelson, D. Towsley, and A. Tantawi. Performance Analysis of Parallel Processing Systems. IEEE
Trans. on Software Engg., April 1988, 532-540.

[29] M. Neuts. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic .Approach. The John
Hopkins University Press, 1981.

[30] M. Reiman, and B. Simon. An Interpolation Approximation for Queueing Systems with Poisson Input.
Operations Research 36, 3 (1988), 454-469.

[31] M. Reiman, B. Simon, and S. Willie. Simterpolation: A Simulation Based Interpolation Approximation
for Queueing Systems. Operations Research 40, 4 (1992), 706-723.

[32] H. Sakasegawa. An Approximation Formula Ly = ap?/(1 — p). Annals of the Institute of Statistical
Mathematics 29, 1 (1977), 67-75.

[33] C. Sauer, and K. M. Chandy. Computer System Performance Modeling. Prentice-Hall, Englewood Cliffs,
New Jersey, 1981.

[34] S. Setia, M. Squillante, and S. Tripathi. Processor Scheduling on Multiprogrammed, Distributed Memory
Parallel Systems. Proc. of the ACM SIGMETRICS Conf. on Measurement & Modeling of Computer
Systems 21, 1 (May 1993), 158-170.

[35] S. Setia, and S. Tripathi. An Analysis of Several Processor Partitioning Policies for Parallel Computers.
Tech. Report CS-TR-2684, Univ. of Maryland, May 1991.

[36] S. Setia, and S. Tripathi. A Comparative Analysis of Static Processor Partitioning Policies for Parallel
Computers. Proc. of the Interntl. Workshop on Modeling, Analysis and Simulation of Computer and
Telecomm. Systems (MASCOTS’93), January 1993.

41



[37] B. Simon, and S. Willie. Estimation of Response Time Characteristics in Priority Queueing Networks
via an Interpolation Methodology based on Simulation and Heavy Traffic Limits. Computer Science
and Statistics: Proc. of the 18th Symposium on the Interface, American Statistical Association, 1986,
251-256.

[38] M. Squillante. MAGIC: A Computer Performance Modeling Tool Based on Matrix-Geometric Tech-
niques. Proc. of the 5% Interntl. Conf. on Modelling Techniques and Tools for Computer Performance
Evaluation, Feb. 1991.

[39] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. Wiley 1983.

[40] Y. Takahashi. An Approximation Formula for the Mean Waiting Time of a M/G/c Queue. Jnl. of the
Operations Research Society of Japan 20, 3 (1977), 150-163.

[41] Thinking Machines Corporation. The Connection Machine CM-5 Technical Summary. Cambridge, Mas-
sachusetts, October 1991.

[42] D. Towsley, C. Rommel, and J. Stankovic. Analysis of Fork-Join Program Response Times on Multi-
processors. IEEE Trans. on Parallel and Distributed Systems, July 1990, 286-303.

[43] K. Trivedi. Probability and Statistics, with Reliability, Queueing and Computer Science Applications.
Prentice-Hall, 1982, pp. 130.

[44] A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory
Multiprocessors. Proc. of the 12th ACM Symp. on Operating System Principles, Dec. 1989, 159-166.

[45] S. Varma, and A. Makowski. Interpolation Approximations for Symmetric Fork-Join Queues. To appear
in Proceedings of Performance’93.

[46] R. Vaswani and J. Zahorjan. The Implications of Gache Affinity on Processor Scheduling for Multipro-
grammed, Shared Memory Multiprocessors. Proc. of the 18th ACM Symposium on Operating System
Principles, October 1991, 26-40.

[47] W. Whitt. An Interpolation Approximation for the Mean Workload in a GI/G/1 Queue. Operations
Research 37, 6 (1989), 936-952.

[48] R. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall, Englewood Cliffs, New Jersey,
1989.

[49] D. Yao. Refining the Diffusion Approximation for the M/G/m Queue. Operations Research 33 (1985),
1266-1277.

[50] J. Zahorjan, and C. McCann. Processor Scheduling in Shared Memory Multiprocessors. Proc. of the
ACM SIGMETRICS Conf. on Measurement & Modeling of Computer Systems 18, 1 (May 1990), 214-
225.

42



