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Abstract

An increasing number of deductive systems are now either avail-
able or becoming available (e.g., Aditi, CORAL, EKS, LDL, LO-
GRES, LOLA, NAIL-Glue, RDL, XSB). The workshop schedule fea-
tures twelve papers describing a range of applications, and demo pre-
sentations of several implemented systems. The proceedings contain
all presented papers, and short demo descriptions. The papers are
in order of presentation, followed by demo descriptions; included are
descriptions of two demos that are not on the presentation schedule.
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Workshop on Programming with Logic
Databases

Vancouver, B.C., Canada, October 30, 1993
In Conjunction with ILPS 93

An increasing number of deductive systems are now either available
or becoming available (e.g., Aditi, CORAL, EKS, LDL, LOGRES, LOLA,
NAIL-Glue, RDL, XSB). A number of applications have been developed us-
ing these systems, typically by the system developers, although this should
change as the systems are more widely distributed. It is clear that writing
effective programs requires users to understand some broad principles, and
differs in significant ways from writing programs in languages like C, or even
Prolog. In systems that also provide some support for object-orientation,
developing good programming techniques is even more important. Further,
the scope of the domains for which these systems provide a good platform
is little understood. Understanding these issues better, and developing sub-
stantial applications in a variety of domains, is essential to the future of the
field.

The goal of this workshop is to provide a forum for users and imple-
mentors of deductive systems to share their experience. The emphasis will
be on the use of deductive systems — all papers deal with actual programs in
some direct way. The schedule features twelve papers describing a range of
applications, and demo presentations of several implemented systems. (Ad-
ditional demos will proceed in parallel with the scheduled presentations.)
The proceedings contains all presented papers, and short demo descriptions.
The papers are in order of presentation, followed by demo descriptions in or-
der of presentation; there are also descriptions of two demos that are not on
the presentation schedule, but will proceed in parallel with the presentation
track.

This workshop was made possible through the efforts of a number of
people. Eric Kolotyluk at SFU organized the hardwarde for the demonstra-
tions, Bernie Kowey helped with registration and local arrangements (in-
cluding an extension in the room availability!), Francesca Rossi co-ordinated
the workshop program, and Jiawei Han did a fine job of local arrangements,




in addition to being on the program committee. The program committee
members reviewed submitted papers at very short notice and ensured that
the workshop features a strong technical program.

I thank everyone involved for the work and time that they have gener-
ously contributed to the organization of this workshop.
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Program Committee:

Oris Friesen (Bull) Raghu Ramakrishnan (U. Wisconsin)
Jiawei Han (SFU) S. Sudarshan (Bell Labs)

David Kemp (U. Melbourne) Dick Tsur (SBOC and U. Texas)
Jerry Kiernan (IBM Almaden)  Laurent Vieille (Bull)

Werner Kiessling (U. Muenchen) Carlo Zaniolo (UCLA)

Inderpal Mumick (Bell Labs)

Organizer Local Arrangements
Raghu Ramakrishnan (U. Wisconsin) ~ Jiawei Han (SFU)
raghu@cs.wisc.edu han@cs.sfu.ca



Schedule of Presentations!

SESSION 1: 8:00 — 10:00
Overview of the Workshop: 8:00 — 8:20

Talks: 8:20 — 9:40
An Aditi Implementation of a Flights Database, J. Harland and K.
Ramamohanarao (Dept. of CS, Univ. of Melbourne)

What One Genome-Mapping Lab Needs From Its Database, N. Good-
man, S. Rozen and L. Stein (Whitehead Institute for Biomedical Research,

MIT)

MIMSY: A System for Analyzing Time Series Data in the Stock Market
Domain, W.G. Roth, R. Ramakrishnan and P. Seshadri (CS Dept., Univ. of
Wisconsin-Madison)

Efficient Visual Queries for Deductive Databases, D. Vista (Dept. of
CS, Univ. of Toronto) and Peter T. Wood (Univ. of Cape Town)

Demo Presentation 1: 9:40 — 10:00

ADITI, J. Vaghani, K. Ramamohanarao, D. Kemp, Z. Somogyi, P.
Stuckey, T. Leask and J. Harland (Univ. of Melbourne)

Coffee Break: 10:00 — 10:20
SESSION 2: 10:20 — 12:20

Demo Presentation 2: 10:20 — 10:40

CORAL, R. Ramakrishnan and P. Seshadri (Univ. of Wisconsin-Madison ),
D. Srivastava and S. Sudarshan (AT&T Bell Labs)

1The papers in the proceedings are ordered as in the schedule. Short demo descriptions
are included at the end.
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GLUE/NAIL, M. Derr (AT&T Bell Labs) and Geoff Phipps (Sun Mi-
crosystems)

Lunch: 12:20 — 1:30
SESSION 3: 1:30 — 3:30

Demo Presentation 4: 1:30 — 1:50

XSB, K. Sagonas, T. Swift and D.S. Warren (Dept. of CS, SUNY at
StonyBrook)

Programming the PTQ Grammar in XSB, D.S. Warren (Dept. of CS,
SUNY at StonyBrook)

AMOS: A Natural Language Parser in LOLA, G. Specht, B. Freitag
and H. Schuetz (Institut fur Informatik, Technische Universitat Muenchen,)

A New User’s Impressions on LDL++ and CORAL, P. Hsu and C.
Zaniolo (CS Dept., UCLA)
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An Aditi Implementation of a Flights Database

James Harland and Kotagiri Ramamohanarao
Department of Computer Science
University of Melbourne
{jah,rao}@cs.mu.oz.au

1 Introduction

A common example application for a deductive database system is a flights database, i.e. a
system that can answer questions such as “What is the cheapest flight between Melbourne
and New York?”. This appears to be a relatively simple problem, as it is merely finding the
shortest distance between two nodes in a weighted directed graph. However, in practice
there are several implicit constraints and default preferences which complicate the picture;
generally, a passenger will usually want a flight which is as cheap as possible, minimises
the time spent in transit, leaves on a specified date and arrives before a certain deadline.
There also may be circumstances in which the passenger is prepared to accept a seemingly
sub-optimal flight in order to satisfy a particular preference. For example, John may ask a
travel agent to book him the cheapest flight from Melbourne to London. When told that
this will involve a twelve hour wait in transit in Singapore, he then asks that he travel via
Bangkok, even though it will cost an extra §100. However, when told that only Shonky
Airlines flies to Bangkok, he decides to spend an extra $300 to travel with Deluxe Airways,
even though there are two cheaper flights.

In this paper we describe our experiences with an implementation of such an application
in the Aditi deductive database system, which has been developed at the University of
Melbourne [2] (see the references in [2] for more ‘on deductive databases per se). This has
become the standard demonstration for the Aditi system. There are several reasons why
a flights database seems to be a good choice for such a demonstration.

Firstly, recursive rules are needed. In our experience, it seems that deductive databases will
not become commercially accepted until they are perceived to be not only at least as reli-
able, robust and efficient as relational systems, but also to represent a significant advance
in technology. As a result, an example implementation, such as the Aditi flights database,
will' need to incorporate features that relational systems do not have, and recursive rules
appears to be the best example of such a feature.

Secondly, the recursive rules involved are not those for transitive closure. Such rules can
be mimicked by transitive closure operators in languages such as SQL, and often appear to
be toy-like. Clearly the transitive closure of the basic flights relation is not only massive,



it is generally fairly useless. In addition, the problem of finding a flight schedule is not
simply a path minimisation problem either. For example, a passenger may not want the
cheapest or shortest flight overall, but the cheapest flight which avoids certain airlines, or
minimises the amount of time spent at intermediate stops.

Thirdly, large amounts of information are involved. For example, the worldwide timetable
for British Airways alone fills a book of around 250 A5 pages. This means that there is no
shortage of data for testing purposes or for demonstrating the abilities of the system.

Fourthly, there is a variety of constraints associated with queries. For example, a passenger
may wish to leave no earlier than 8.00am, unless he can save more than $100 by doing so.
In a deductive database system, such constraints can be expressed simply and easily.

Finally, the problem is a natural one and easily understood. For these reasons we believe
that a flights database is an appropriate demonstration of the abilities of a deductive

database system.

This paper is organized as follows. In Section 2 we give a brief introduction to the Aditi
system and the Nu-Prolog interface to Aditi. In Section 3 we describe the data design for
the flights database, and in the following section the description of the rules of the system.
In Section 5 we present some performance results for the system, and finally in Section 6
we present our conclusions.

2 Aditi

2.1 The Aditi System

Aditi! is a deductive database system which has been developed at the University of Mel-
bourne. Programs in Aditi consist of base relations (facts) together with derived relations
(rules), and are in fact a subset of (pure) Prolog. Queries are a conjunction of atoms (as
in Prolog), and a bottom-up evaluation technique is used to answer queries. In finding all
answers to a given query, Aditi, like many deductive database systems, uses algorithms and
techniques developed for the efficient answering of queries in relational database systems.
Thus we expect that Aditi need not be less efficient than a relational system for purely
relational queries. Aditi also uses several optimisation techniques which are peculiar to
deductive databases, particularly for the evaluation of recursive rules. These techniques
include magic sets, supplementary magic sets, semi-naive evaluation, predicate semi-naive
evaluation, the magic sets interpreter and the context transformation [1].

1Aditi is named after the goddess in Indian mythology who is “the personification of the infinite” and
“mother of the gods”.




Aditi is based on a client/server architecture, in which the user interacts with a front-
end process, which then communicates with a back-end server process which performs
the database operations. There are three kinds of server process in Aditi: the query
server, which manages the load that Aditi places on the host machine, database access
processes, one per client, which control the evaluation of the client’s queries, and relational
algebra processes, which carry out relational algebra operations such as joins, selections
and projections on behalf of the database access processes.

There are four main characteristics of Aditi which, collectively, distinguish it from other
deductive databases: it is disk-based, which allows relations to exceed the size of main
memory; it supports concurrent access by multiple users; it exploits parallelism at several
levels; and it allows the storage of terms containing function symbols. It has been possible
for researchers to obtain a beta-test version of Aditi since January 1993, and a full release
of the system is expected soon. The current version of Aditi comes with a Prolog-like
(text-based) interface, a graphical user interface, interfaces to both SQL and Ingres and a
programming interface to Nu-Prolog. It is also possible to embed top-down computations
within Aditi code.

2.2 The Nu-Prolog Interface

A useful feature of Aditi is that there is a “two-way” interface between Aditi and Nu-
Prolog, in that a Nu-Prolog program can make call to Aditi, and an Aditi program can
make calls to Nu-Prolog. In this way a Prolog program can be used either as a pre- (or post-
) processor for Aditi, or as a tool for intermediate computation within Aditi. This interface
is transparent, in that a call to Aditi within a Nu-Prolog program appears just like any
other Nu-Prolog call, and a call to Nu-Prolog within an Aditi program looks just like any
other Aditi call. This makes it very simple to transfer code between Aditi and Nu-Prolog
and vice-versa(provided, of course, that there are no termination problems introduced by
the switching of execution mechanism). For example, to find a list of connections using
the Aditi relation paths and then using Nu-Prolog to reverse the list, one would use the

code below.
paths(X,Y,Paths), reverse(Paths, RevPaths)

where reverse is the usual Nu-Prolog reverse predicate. This code would remain the
same if the reverse predicate was written in Aditi and the paths predicate was written
in Nu-Prolog.

Sometimes a programmer may desire more control than is possible in the transparent
interface. For example, it may be useful to make a call to Aditi to determine what flights



satisfy a given constraint, and then sort and pretty-print all these flights. For purposes such
as this, it is also possible to access Aditi from Nu-Prolog via a table and cursor mechanism.
When a call to Aditi is made via the dbQuery predicate, a handle is returned, which can
be used to obtain a cursor, i.e. a pointer to the next tuple in the answer relation. This
cursor can then be used to step through the relation as many times as required. This not
only gives the Nu-Prolog programmer more control over the answers to Aditi queries, but
may also improve performance for certain applications.

The embedding of Aditi within Nu-Prolog means that we can have a Nu-Prolog program
prompt for input, pose the query to the Aditi system, sort the answers according to some
user-specified preference, and display the flight information for each answer in an interactive
and meaningful way. This not only provides more flexibility, but also makes it possible
to connect existing systems to Aditi in a simple way. The ability to call Nu-Prolog from
Aditi means that we can mix top-down and bottom-up computations. For example, in the
flights database there is a need to calculate the day of the week corresponding to a given
date. The program to compute the day from the date is not particularly large, but contains
a significant number of tests (such as whether the given year is a leap year or not) and
very little data. Whilst this program may be evaluated in either a bottom-up or top-down
fashion, it turns out that top-down evaluation is significantly more efficient, and hence
we make a call to this top-down program from the bottom-up one when the conversion is
required. In our experience list processing predicates are also generally significantly more
efficient when evaluated top-down than bottom-up. In this way we can make good use of
existing efficient code within the database engine.

3 Flight Information

There are several pieces of information associated with a given flight — its origin and
destination, the date and time of departure, the flight number, and so forth. Given that
a passenger may wish to travel between two arbitrary places, when it comes to storing
this information, it seems natural to store this information for each “hop”; in other words,
whilst a given plane may travel from Melbourne to Sydney to Auckland to Honolulu to Los
Angeles to Chicago, a passenger may wish to travel from Auckland to Honolulu. Hence
we would store this particular sequence as five separate flights, rather than one long flight.
This also simplifies the problem of pricing information, as otherwise we would have to know
how to divide up a given price into sub-component. This, of course, is a trade-off, in that
in order to make answering queries faster we increase the storage needed. Given the large
amounts of information involved we cannot be too blasé about storage requirements, but
this particular trade-off seems to be worthwhile. This method of storage also seems to be
an appropriate level of granularity, in that a passenger wishing to go to a somewhat obscure




place may need to travel to an intermediate hub, and from there to the destination. Storing
each “hop” means that such the requisite search can be performed in a more straightforward
manner than if each complete plane journey was used as the base unit of information.

Another consideration is the patterns involved in airline schedules. Whilst timetables
change from time to time, and vary with expected demand from season to season, many
schedules are organised on a weekly basis, in that for a specified period of time, the schedule
is the same from week to week. This means that rather than store each flight individually,
which would involve large amounts of repetition, we store the weekly schedule once, and
then determine whether there is a flight on a given date from the appropriate weekly
schedule. This, again, is a trade-off, in that it involves significantly less storage, but
makes searching for a flight more involved. However, as the extra computation is to
determine the day of the week corresponding to a given date, this again seems like a
worthwhile compromise, as it would seem that performing this calculation is preferable to
storing each flight individually. For these reasons, flight information is stored in a relation
flight weekly which has ten attributes, given below:

Origin, Destination, Dtime, Atime, Incr, Airline, Number, Day, V from, V._to

where the flight is from Origin to Destination, departing at Dtime and arriving at Atime.
Incr indicates how many days later than departure the flight arrives; this will often be 0,
but can also be 1, and sometimes 2. Airline and Number specify the airline and flight
number respectively, and Day the day of the week that the flight leaves. V_from and V_to
give the dates between which the schedule is valid. Thus a Qantas flight from Sydney
to Los Angeles which departs four times a week during the (southern) winter would be
represented as the following four tuples:

sydney,los_angeles,2000,1900,0,qantas,qf007 ,wed ,date(1,6,1993) ,date(31,8,1993)
sydney,los_angeles,2000,1900,0,qantas, qf007,fri,date(1,6,1993) ,date(31,8, 1993)
sydney,los_angeles,2000,1900,0,qgantas, qf007,sat,date(1,6,1993) ,date(31,8, 1993)
sydney, los_angeles,2000,1900,0,qantas, qf007 ,sun,date(1,6, 1993) ,date(31,8,1993)

Thus to determine whether such a flight departs on the 11th of August 1993, all we need
do is determine which day of the week this is. As it is a Wednesday, we find that there is
indeed such a flight on that day, being Qantas flight 7, departing at 8pm, and arriving in
Los Angeles at 7pm on the same day.

The way that such a query would be expressed is as follows:
7- day(date(11,8,1993), Day), flight(sydney, los_angeles, Dtime, Atime,

Incr, Airline, Number, Day, V.from, V_to), between(V_from, date(11,8,1993),
V_to).

10



where day is a relation between dates and days of the week, and between(D1, D2, D3) is
true if D2 is a date no earlier than D1 and no later than D3. In the system we incorporate
such queries into the flight between relation.

4 Assembling a Flight Schedule

Retrieving flight information is one thing; putting together a schedule is quite another
— not only do we need to satisfy constraints such as allowing a minimum time between
flights (as well as any constraints given by the passenger), but due to the large amounts
of information involved, we also need to ensure that the search procedure is feasible. This
is particularly acute when there is no direct flight from the origin to the destination, as
the choice of intermediate stops is, in principle, vast, but in practice there are usually only
a few realistic choices. For example, if a passenger wishes to travel from Melbourne to
Los Angeles, we need only consider trans-Pacific flights, and there is no need to consider
flights to Europe or Asia. Hence the search procedure should avoid consideration of flights
via London, Bombay or Tokyo, but presumably consider flights via Sydney, Auckland or
Honolulu. Various heuristics may be employed to determine the most suitable routes,
such as the locating the nearest city with a direct flight to the destination, travelling to
the nearest “hub” airport, or finding the route which is shortest in time and/or distance.
Given that such heuristics will vary according to local airline policies and may change with
time, we have chosen to use a single relation to guide the search. This relation specifies
which intermediate stops are feasible for a given origin and destination. The intention
of the feasible relation is to exclude from consideration routes which are clearly of no
benefit. In the above example, the feasible relation includes the tuples

melbourne, auckland, los_angeles
melbourne, sydney, los_angeles
melbourne, honolulu, los_angeles

but London, Bombay and Tokyo are not included as feasible intermediate stops for a trip
between Melbourne and Los Angeles.

This relation is defined using both a base relation and a set of rules. This allows us to take
advantage of some regularities in the feasible routes, such as commutativity. For example,
it is feasible to travel from Melbourne to Auckland to Honolulu to Los Angeles, and hence
it is feasible to travel in the reverse direction as well. In addition, it is simple to state
principles such as “Honolulu is a feasible stop for all flights from Melbourne to somewhere
in North America” as rules. Such a rule is given below.

11




feasible(melbourne, honolulu, Z) :- place(Z, north.america).
Thus the default code to find a flight schedule is as follows:

trip(From, To, Ddate, Earliest, Latest, Stime, Ddatel, Dtime, Adate, Atime,
[flight (From, To, Ddatel, Dtime, Adate, Atime, A, 1) -

flight_between(From, To, Ddate, Earliest, Latest,
Ddatel, Dtime, Adate, Atime, A, N).

trip(From, To, Ddate, Earliest, Latest, Stime, Ddate2, Dtime, Adatel, Atimel,
flight(Stop,To,Ddatel,Dtimei,Adatel,Atimei,A,N).F) -

feasible(From, Stop, To),

trip(From, Stop, Ddate, Earliest, Latest, Stime,
Ddate2, Dtime, Adate, Atime, F),

NewEarliest = Atime + 100,

NewLatest = Atime + Stime,

flight_between(Stop, To, Adate, NewEarliest, NewLatest,
Ddatel, Dtimel, Adatel, Atimel, A, N).

Note that trip is similar to the transitive closure of the flight_between relation, but it is
actually subtlely different, due to the restriction that each “hop” must be feasible. The first
five arguments to flight_between must be bound, specifying the desired origin, destination,
departure date, and the earliest and latest times of departure. The other arguments return
the actual flight information, including departure and arrival times, the airline and flight
number, and the number of “hops” used in the trip. Note also that the arrival date is
given as well, as for international flights, this may be different from the departure date. In
fact, the departure date is given as well, which is for reasons of extensibility. Currently the
system only searches within a departure “window” of 48 hours or less; longer periods will
not result in any more flights being found. It is possible to extend this to be any interval,
so that searches such as that for a flight any time in the next four days might be simply
expressed.

The first six arguments to trip must be bound, not only to include the information passed to
flight_between, but also to include the maximum amount of time the customer is prepared
to wait in transit. Once the recursive call to trip has returned, the window is then shifted,
so that there is at least one hour between flights.

12



Another way in which heuristics can be useful is to use the same airline for the duration of
the trip. This will often reduce the cost, as well as simplify travel arrangements. Also, the
passenger may wish to specify a particular airline, due to a personal preference or some
inducement such as a frequent flyer discount.

The way that this is expressed in the system is to add an extra argument to the trip
relation, so that the recursive rule becomes

trip_air(From, To, Ddate, Earliest, Latest, Stime, Airline,
Ddate2, Dtime, Adatel, Atimel,
flight(Stop,To,Ddatei,Dtimel,Adatei,Atimei,Airline,N).F) i-

feasible(From, Stop, To),

trip_air(From, Stop, Ddate, Earliest, Latest, Stime, Airline,
Ddate2, Dtime, Adate, Atime, F),

NewEarliest = Atime + 100,

NewLatest = Atime + Stime,

flight_between(Stcp, To, Adate, NewEarliest, NewLatest,
Ddatel, Dtimel, Adatel, Atimel, Airline, N).

Note that the variable Airline in both the call to trip.air and flight between ensures
that the airline is the same for each “hop”.

Calls to trip.air are expected to have the first six variables bound, specifying the origin,
destination, and the desired departure date, as well as the earliest and latest times on
that day that the passenger is prepared to fly, and the maximum time to be spent at each
intermediate stop. The seventh argument may be either given, or will be computed — the
former case when the passenger has a particular airline in mind and nominates it, and the
latter case when the passenger has no particular choice, provided that the same airline is
used all the way. Thus a typical query to this rule would be:

trip_air(melbourne, los_angeles, date(1,11,1993), 1000, 2200, 200, qantas,
Ddate, Dtime, Adate, Atime, Flights)

Thus all tuples returned for this query will be those representing Qantas flights. Note that
all these tuples will be returned, amongst others, as answers for the query

trip_air(melbourne, los_angeles, date(1,11,1993), 1000, 2200, 200, Airline,
Dbate, Dtime, Adate, Atime, Flights)

13




This is a good example of the use of logic programming techniques for this application, in
that the airline argument may be either instantiated, in which case the binding is used to
narrow the search, or left uninstantiated, in which case values are found for the variable.

5 Performance Results

In this section we present some performance measurements on the flights database. The
four queries we are reporting results on all involve a hypothetical traveller called Phineas
Fogg who wants to travel around the world as fast as possible. The four queries differ in
the constraints imposed on the tour.

o Tour 1 must visit Asia, Europe, North America and the Pacific region.
e Tour 2 must visit Asia, Europe and North America.
e Tour 3 must visit Europe, North America and the Pacific region.

e Tour 4 must visit Europe and North America.

The tours must visit the named regions in the order in which they are given; all tours start
and finish in Melbourne. )

We have two implementations of the code that finds trips (sequences of flights) between
cities. One uses a daily schedule that associates the availability of flights with an abso-
lute date; the other uses a weekly schedule that associates this information with days of
the week, subject to seasonal restrictions. Airlines usually publish their schedules in the
compact weekly format, but this format requires some processing before use.

We have tested all four queries with both daily and weekly schedules, with the predicate
finding trips between cities compiled with the magic set optimization and with the context
transformation, and with the schedule relation being stored without indexing, with dynamic
superimposed codeword indexing and with B-tree indexing. The keys used for indexing are
the origin and destination cities together with the desired date of travel. The reason why
we did not include data for the case when the trip-finding predicate is compiled without
optimization is that that predicate is allowed only with respect to queries that specify
the starting-date argument, and therefore the predicate cannot be evaluated bottom-up
without first being transformed by a magic-like optimization. The test results appear in
table 1, whose speedups are computed with respect to the magic transformed program
using no indexing. Speedups for a given query follow the time and the colon.

The table tells us several things. First, the context transformation consistently yields
results 20% to 40% better than the magic set optimization. Second, the type of indexing

14



Results for Phineas Fogg queries with daily schedule

Query Data Dsimc Btree

Magic Context Magic Context Magic Context

Tourl || 381.1: 1.0 | 282.3: 1.3 20.5: 18.6 | 14.4: 26.5 | 17.5: 21.8 | 13.9: 274
Tour2 || 294.4: 1.0 | 232.3: 1.3 16.9: 174|117 252 || 14.1: 20.9 | 11.0: 26.7
Tour3 Il 360.2: 1.0 | 266.5: 1.3 | 18.0: 20.0 | 14.0: 25.7 || 15.4: 23.4 | 13.5: 26.6
Tourd || 285.6: 1.0 | 211.1: 1.3 | 14.2: 20.0 | 11.7: 24.4 || 12.7: 22.5 | 10.5: 27.1

Results for Phineas Fogg queries with weekly schedule

Query Data Dsimc Btree

Magic Context Magic Context Magic Context

Tourl 303: 1.0| 24.3: 1.2 28.6: 1.1]21.4: 14279 1.1]}23.2 1.3
Tour2 246: 1.0| 19.4: 1.3 235 1.0]16.6: 1.5 23.3: 1.1}18.1: 1.3
Tour3 98.9: 1.0] 23.0: 1.2 253 1.1]20.7: 141261 1.1]22.0: 1.3
Tour4 92924: 1.0 17.8: 1.3119.3: 1.2]151: 1.5(20.5: 1.1 16.8: 1.3

Table 1: Results for Phineas Fogg queries
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has a significant impact only for the daily schedule, in which case the schedule relation
contains 54,058 tuples.

The four queries have 18, 12, 57 and 38 answers respectively. This is not apparent from
the table due to two reasons. First, the tours with more answers are those that visit fewer
regions and thus call trip a smaller number of times. Second, the cost of the joins invoked
by trip depend mostly on the sizes of the input relations and very little on the size of the
output relation.

As one expects, accessing such a large relation without an index has a large penalty, ranging
from about 17-fold to about 24-fold. For these queries the trip predicate always specifies
all three of the key arguments of the schedule relation, so B-tree indexing is as effective
as it can be. Dsimc indexing yields slightly lower performance (by about 10% to 20%),
mainly because dsimc uses the keys only to restrict its attention to a set of pages and
cannot focus directly on the tuples of interest within those pages.

For the weekly schedule, in which the relation contains 1,044 tuples, most of the time is
spent in computation, not retrieval, and so the type of indexing makes little difference:
there is less than 10% variation among all the numbers. The main sources of this variation
are probably the differences between the overheads of the various indexing methods.

6 Conclusion

Tt is our belief that deductive database systems will need to be demonstrably impressive
in order to gain commercial acceptance, and that a flights database, like the Aditi version
of one described in this paper, is a good example of the application of techniques peculiar
to deductive database systems. We have demonstrated this system to people interested in
finding out more about deductive database systems, and the reaction has been generally
quite positive. The system has also been a useful test for Aditi. For example, we have
used a flight relation containing 54,000 tuples to test the way that Aditi reacts under
load. Whilst this particular application has been produced by the developers of Aditi, it
seems that such a demonstration system is necessary in order to get others interested in
using deductive database systems in a significant way. We are actively encouraging such
interaction, as well as pursuing further Aditi applications.
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Abstract

MapBase is a database that stores information about short DNA se-
quences called markers and about the positions of markers along the
chromosomes of an organism. It also stores information about ex-
perimental steps carried out on the markers. For modeling and per-
formance reasons, we built MapBase on top of a C++-based object-
oriented database management system. We describe MapBase’s current
design, and examine the requirements that, together with the under-
lying database management system, have shaped it. Analysis of the
design’s strengths and weaknesses indicates that MapBase requires im-
proved support from the underlying database management system. We
conclude that MapBase’s most pressing needs are for a more power-
ful ad hoc query facility and for more flexibility in schema evolution.
We believe that a deductive query language could provide the support
we need and greatly improve the integration between MapBase and its
clients.

1 Overview and Requirements

MapBase is a critical component of the genome-mapping efforts at the White-
head Institute/MIT Center for Genome Research. These efforts will require
completion of over 2.5 million experiments, each of which requires several steps.
Broadly speaking, the purpose of these experiments is to find short DNA se-
quences called “markers” and to determine their locations on the chromosomes
of an organism, thereby generating a genome map. MapBase records both the
experimental steps and the conclusions about markers derived from these ex-
periments. For more details on MapBase’s role in genome mapping please see
[Goo93, GRS92].

Several critical requirements have driven MapBase’s current design:

R-1. The need to model complex data types, for example DNA sequences and
genome maps. DNA sequences are like strings, but they have a restricted

IThis work was supported by funds from the National Institutes of Health, National
Center for Human Genome Research, grant number P50 HG00098.
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R-4.

R-5.

R-6.

alphabet, and require special operations, such as reverse complementa-
tion (see below), that can’t easily be provided in today’s relational sys-
tems. A genome map is, abstractly, a sequence of groups of markers
with inter-group distances. The map must also record multiple possible
positions of markers for which experimental data is inconclusive.

. The need to accommodate rapid changes in experimental protocols as

genome-mapping technology evolves. In essence, the Genome Center
is engaged in continual process re-engineering. As a result, MapBase
requires a major schema change at least every two months, and the fre-
quency of schema changes is, if anything, increasing. In this respect,
MapBase’s requirements differ from those of some other (deductive)
molecular biology databases (e.g. [SGT, GST93]), which are primarily
concerned with querying experimental results.

. The need for a client/server architecture with the ability to supply data

to clients written in many different languages. In addition to the Map-
Base database, the system includes a map construction program called
MAPMAKER|LGAt87], a program called PRIMER [LDL91] for analyz-
ing markers, numerous small application programs, user interface pro-
grams, and programs to control laboratory machines. For pragmatic and
historical reasons, these programs are written in a variety of program-
ming languages: C, C++, Smalltalk, Perl, and Lisp. The Macintosh is
the desktop platform of choice among our users, who often enter Map-
Base data by means of Excel spreadsheets created on these machines.
Most data analysis programs run on Unix workstations, although a few
programs run only on Macintoshes or PCs.

The need for high performance. Our users’ response-time expectations
are high; they are accustomed to having computers on their desks, and
they expect to be able to access MapBase as quickly as they can access
local data on their desktop Macintosh. Our peak retrieval load requires
the transfer of 140,000 bytes to a particular application program; the
system accomplishes this in about 30 seconds. We expect the peak up-
date and retrieval rates to grow by a factor of 10 over the life of the
project.

The need for concurrent multi-user access. Different users must be able
retrieve data from MapBase and update it concurrently.

The need for reliability. Mapbase must be able to survive both soft fail-
ures and disk failures without loss of data. It is also necessary to ensure
that the data in MapBase make sense. This will be particularly impor-
tant as the number of different client applications updating MapBase
grows.
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In addition to the requirements above, we have one meta-requirement. We
wish to avoid becoming locked into any one OODBMS. OODBMSs are new
technology, and we want to be able to take advantage of future improvements
regardless of the system that offers them.

[t’s worth mentioning at this point why we think deductive query languages
could be important for MapBase. As we discuss below, our current design
falls short of fully satisfying our requirements for schema flexibility (R-2) and
a client/server architecture (R-3). A deductive query language would let us
pose many ad-hoc queries that we now would have to code imperatively and
compile into the database. Although most MapBase queries are not recursive,
some are, and it is possible that if we had a deductive query language we would
pose more recursive queries. Furthermore, if the deductive query language
were extensible by providing support for user-defined functions and abstract
data types, we would have the option of prototyping queries in the deductive
language, and then, if performance requirements so dictate, move performance-
critical predicates into the database.

In the following sections we discuss how MapBase’s design tries to satisfy
these needs using a C-++-based object-oriented database management system
(OODBMS). We analyze the strengths and weaknesses of the current design,
and describe additional support that MapBase will require from its underlying
database management system.

2 Current Design

We decided to build MapBase on top of an OODBMS because of our re-
quirements for data modeling (R-1) and performance (R-4). We also con-
sidered a relational database management system, Sybase [MD92], which is
the most widely used relational system in molecular biology research. We de-
cided, however, that, in the long term, it would be too hard to satisfy our
modeling requirement, R-1, with Sybase. We chose ObjectStore because we
judged it to be the most mature of the OODBMSs at the time the choice was
made. We also considered ONTOS[ONT92], 0,[0,91], VERSANT[Ver93], and
GemStone[BOSI1].

Because ObjectStore offers the ability to store instances of any C++ class,
we were able to model complex data types, as required by R-1. In addition,
ObjectStore provides excellent single user performance, provided the database
fits in a main memory cache, which helped satisfy our requirement R-4, for

high performance.?
Having selected ObjectStore, we were faced with a number of further issues:

2Performance degrades rapidly when the database exceeds the cache. However, Object-
Store is designed to exploit very large caches and allows the system administrator to easily
control the cache size. As the database grows, we deal with the performance impact by
buying more memory and increasing the cache size.
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I-1. Multi-user performance is troublesome because of lock contention. We
found it difficult to avoid hot spots in storage allocation and other low-
level areas. We experimented with ObjectStore’s versioning capability,
but in our tests this imposed too great a performance overhead on both
queries and updates.

I-2. ObjectStore offers no roll-forward recovery. Therefore a disk crash or a
dirty crash of the database management system can destroy all updates
since the last database backup.

1-3. In the first release of ObjectStore that we used there was no system
support for schema evolution.® Although the use of C++ classes made
extending the schema conceptually simple, a schema change could inval-
idate the database and make it inaccessible. Since ObjectStore provided
no way to re-load the database when this happened, a schema change
had the same effect as a disk crash.

]-4. Transaction commits are time-consuming, possibly because of the time
it takes to write the database to disk and re-acquire dropped locks.

I-5. ObjectStore provides a limited language-independent application pro-
gram interface (API) through its interpretive query mechanism:* Only
the “where” clause can be supplied at run time, it can invoke only a re-
stricted class of functions, and it cannot, in general, invoke the operations
associated with abstract data types stored in the database. See [Obj92],
pages 184-191.

We were able to address these issues with a single cluster of closely related
techniques.

The keystone of our solution was to implement MapBase as a multi-
connection server that mediates between client requests and the underlying
database. This server, from the point of view of the underlying database, is a
single user. To avoid the need to implement our own locking and transaction
roll-back, the server offers only single-statement transactions to its clients.
The lack of multi-statement transactions is not ideal, of course, but we deem
it to be an acceptable tradeoff at present; naturally we would prefer both good
performance and-multi-statement transactions.

To satisfy our requirement R-3, the need for a client /server architecture,
the interface between application programs and the MapBase server is en-
tirely text based. All commands and data are represented as character strings.
Commands can be updates, retrievals, or control messages (such as set-date
or commit-transaction), and usually take parameters. To put data into the

30bjectStore Release 2.0 provides more support for schema evolution. See [Obj92],
pages 265-323.

4The elegant ObjectStore query expressions described in [OHMS92] (and referred to as
ObjectStore DML in [Obj92]) must be embedded in C++ and compiled.
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database, an application program converts the data to text, and sends it as
parameters to appropriate MapBase update commands. Retrievals are accom-
plished in two ways:

1. The MapBase server provides a simple, home-brew interpretive query
language that allows select operations, count aggregates and sorting.

2. Retrievals that cannot be expressed in this language are coded in C4++
and compiled into the Mapbase server.

In either case, the server responds with a stream of textual results, which the
program converts to the desired internal representation.

With a single MapBase server interpreting text commands we were able to
address issues I-1-1-5:

I'-1. Multi-user performance is improved because there is no lock contention:
the MapBase server is the only process using the underlying database.

I'-2. The server supplies roll-forward recovery by logging all updates to a
separate disk. The log is a logical log; it contains the update commands
in their text representation.

I'-3. We evolve the schema by re-running all the roll-forward logs. If the
schema change has invalidated any update statements in the logs, we
must write an ad hoc program to appropriately revise the logs.

I'-4. The server amortizes the cost of commits by piggybacking them. The
server performs a commit at approximately 10-minute intervals. Uncom-
mitted updates can be recovered from the roll-forward log.

I'-5. The text commands and queries understood by the server constitute
an API suitable for multi-lingual clients. Simple selection queries and
count aggregates can be ad hoc. Other queries must be compiled into
the MapBase server.

Figure 1 is a diagrammatic representation of MapBase’s architecture.

Creating a server has allowed us to satisfy most of our key requirements.
However, the limitations of our home-brew, ad-hoc query facility remain a
problem, and we expect them to become more of a problem as we move into a
new phase of our laboratory experimentation. These limitations have already
cramped our design of the schema because we tend to make only those schema
changes that can be easily accommodated by our home-brew query language.
In addition, these limitations raise administrative difficulties when a query
that cannot be expressed in our ad-hoc language requires the server to be
recompiled.

In addition, our requirement R-2 for allowing MapBase to reflect changes
in laboratory workflow is satisfied only with an uneasy compromise that still
requires occasional database reloads for schema evolution.
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Figure 1: Architecture of the MapBase System.

3 What We Want From a Query Facility

In light of the continuing problems posed by the limitations of our ad hoc
query facility, we would like to find a more powerful one that can be adapted
to MapBase. It would also be desirable if such a facility could decrease the
need to evolve the schema at the ObjectStore level. To try to understand what
capabilities we want in a query facility, we consider, as examples, some queries
that MapBase must answer.

3.1 DNA Sequence Operations

We represent DNA strands as sequences of the characters G, A, T, and C, that
is, as strings in a restricted alphabet.’ Each potential marker in MapBase
is associated with a primary DNA sequence. MapBase also keeps track of
many subsequences of its primary DNA sequences, which it does by recording
the length and starting position of the subsequence.® We wouldn’t want to
explicitly store these subsequences because of the possibility of introducing
inconsistencies, and because we want to conserve space to keep the database

5Fach letter denotes a particular constituent nucleotide. For more details on the biology

please refer to e.g. [Lew90]
6For technical details please see [Goo93, GRS92].
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Figure 2: Left and Right Primers and Reverse Complementation.

The forward sequence is read left-to-right, and the reverse sequence is read
right-to-left. Only the forward DNA sequence is stored in the database.

in physical memory. Therefore, a ubiquitous operation on DNA sequences is
to take a subsequence of a DNA sequence.

Another common operation on DNA sequences is called “reverse comple-
mentation”. A DNA molecule is a double helix consisting of two DNA strands
(unpaired sequences). One strand is conventionally referred to as the “for-
ward” strand, while the other is referred to as the “reverse” strand. (The
reasons are not important here.) Given a forward sequence, the reverse com-
plementation operator produces the matching reverse sequence, and vice versa.
To do this, reverse complementation reverses the order of the sequence, and
then substitutes the nucleotides according to the Watson-Crick base pairing
rules: GeC and T A. For example, the reverse complement of GATTC-
CGGG is CCCGGAATC. Naturally, when we store a primary DNA sequence,
we store only one strand.

MapBase queries often require the reverse complement of a sequence. For
example, in the laboratory mapping protocol, short DNA sequences are tagged
at either end with even shorter sequences called “primers”. The left primer
is part of the forward sequence and the right primer is part of the reverse
sequence. To find the left primer we need its starting position and length on
this sequence; to get the right primer we use the starting position and length
of the matching nucleotide sequence on the forward sequence, and compute
the reverse complement of this subsequence (see figure 2).

For efficiency reasons, it is important that we be able to provide built-in
predicates for ubiquitous operations like substring and reverse complementa-

tion.
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3.2 Ready-For

A marker has a large number of boolean “ready-for” methods that keep track
of its progress through the laboratory protocol. The methods are coded in
C++ and linked into the MapBase server. For example, the steps for the early
part of the analysis of a potential marker sequence are as follows:

1. Enter the sequence, S into MapBase.

2. Use a C-language client to duplicate-check S by comparing it to all se-
quences known to MapBase.

3. Use a (different) C-language client to check to see if any part of S closely
resembles some sequence published in the national GenBank [BCC*91]
database, in which case S might be associated with a known gene.

(many other steps)

The C-language client in step 3 invokes a program called BLAST, which runs
on a National Center for Biotechnology Information computer[AGM*90]. One
of the ready-for conditions is ready for BLAST. Each night the client men-
tioned in step 3, above, queries MapBase for all markers where ready for-
BLAST is true; for each such marker it retrieves from MapBase the DNA se-
quence needed as input by BLAST. Ready for BLAST is true for a marker, m,
if either the following criteria are true:

e m has a sequence,

e m has been duplicate checked against previous sequences and no dupli-
cates were found (i.e. at step 2), and "

e m has never been examined by BLAST,

or

e m was previously examined by BLAST, but at an earlier date than the
last duplicate-checker run (perhaps because the DNA sequence was re-
vised by re-doing step 1).

This example illustrates both the pluses and minuses of the current design.
On the plus side, ready-for relationships are easily represented in C++ as cal-
culated marker attributes. But, on the minus side, this representation means
that part of the laboratory protocol is hard-coded into the database server.
Even a trivial change to the protocol, such as doing the BLAST search before
the duplicate check, forces us to recompile and relink the server.

25




3.3 Map Position

In our mapping experiments, markers are first assigned to one of the chro-
mosomes and then ordered relative to one another. Our mapping strategy’
generates two types of orderings. The “framework” ordering involves markers
that map unambiguously to a unique position. It is represented as an ordered
list of markers with inter-marker distances. The “placement” ordering involves
markers whose position is less certain. These markers are placed on the map
by giving their distance relative to the nearest framework marker, and they
can have multiple placements. Map position queries involve calculating the
transitive closure over the framework and placement orderings. The query
7signed distance("MPC101","MPC3003",D), (bind D to the signed distance
between these two markers) must do the following:

1. If MPC101 and MPC3003 are on different chromosomes, or if one or the
other isn’t yet mapped, return an undefined result (the query is mean-
ingless).

2. If they are both framework markers, find all intervening markers and
add up the distances between them. If MPC101 is above MPC3003 on the
chromosome, the sign of the result is positive; if MPC3030 is above MPC101
the sign is negative.

3. If one or both of the markers is a placed marker, find the nearest frame-
work marker(s), calculate the distance between these two framework
markers using rule (2), and adjust the distance by the placement to
framework distance(s).

In MapBase this type of query is handled by an attribute called map_position
which calls a C++ method which implements the rules given above. The
map_position attribute is in turn used to answer queries involving the relative
positioning of markers, the most frequent of which is to request all markers
that map between a named pair of markers.

3.4 Pool Address

One of the types of mapping experiments performed in our laboratory is to de-
termine which members of a set of approximately 25,000 large DNA segments
called yeast artificial chromosomes (YACs) contain the small fragments we use
as markers.®2 We cannot simply determine the sequence of each of these 25,000
segments because they are far too large; instead we use a simpler chemical test
to determine if a YAC contains the marker sequence.

"Technically, here we are discussing mapping by “genetic linkage” analysis (see [Lew90]).

8Technically, here we are discussing “physical mapping”, which uses methods different
from genetic linkage analysis.
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In order to avoid performing 25,000 individual experiments for each marker,
the YACs are arrayed on a three dimensional grid and then pooled along
the X, Y and Z coordinates to form a number of X, Y and Z coordinate
pools. Each marker is then tested against each of the X, Y and Z pools. In
a completely successful experiment, there is a single positive pool for each of
the three coordinates, leading to a unique (X,Y,Z) address. However, due to
experimental error there can be ambiguous or contradictory results: there may
be a coordinate missing, such as (19:8:7), or there may be multiple positives
for a given coordinate, such as (19:8:4,5).

In ambiguous cases the laboratory usually repeats the experiment. Some-
times this results in a unique address, but in other cases a different ambiguous
result is obtained. Suppose, for example, that the first time an experiment is
run the address (19:8:7) is determined, while on the repeat experiment, the
address is (19:7:3). These two incomplete results can be merged to obtain a
complete address, namely (19:8:3). MapBase handles ambiguous addresses by
calculating the intersection of the vectors of all partial addresses known for the
marker. This facility is implemented as a special-case query written in C++,
since it cannot be handled in our limited ad-hoc query language.

3.5 Other Criteria

Expressiveness is not our only criterion for an ad-hoc query facility. Architec-
tural issues, such as ease of adaptability to ObjectStore or another OODBMS,
and the ease with which application programs can form queries and receive
data are also important. And, of course, we must still satisfy our original
requirements R-1-R-6.

Among these, schema evolution is still a problem in our current system. As
mentioned above, MapBase’s schema must continually evolve as the Genome
Center revises its experimental work flow. For example, we order for each
marker a quantity of the short DNA sequences called “primers” (discussed
in 3.1). We receive 96 primers (left and right primers for 48 markers) in a box.
A box has become a unit of work for a lab technician, so we recently started
to record the association between marker and box.

In a deductive database, this change could be easily accommodated by
adding a new base predicate box (Marker_id,Box.id,Date,User), indicating
that we received the primers for Marker_id in Box-id, with this information
recorded on Date by User. Lest this seem trivial, consider that when we made
this change in the current system, it required 108 lines of C4++ code and
required us to re-link the MapBase server.
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4 Can We Use a Deductive Database?

The requirements for genome mapping pose several problems for the OODBMS
we chose: we are hindered by the lack of an ad-hoc query language, poor multi-
user performance, lack of schema evolution (at least in the original version),
and the lack of roll-forward error recovery. We worked around these prob-
lems by creating a home-brew query language, a logging facility, and a multi-
connection transaction server. However, in the process of working around these
limitations, we discarded essentially all of the OODBMS’s native transaction
control and query facilities, and are using it as a persistent store server.

We are still hampered by the limitations of our ad-hoc query language and
by difficulties in modifying the schema to accommodate rapid changes in the
laboratory protocol. We hope to remedy these limitations in the next major
revision of MapBase.

Several possible solutions have presented themselves:

e We considered trying to adapt an object SQL language such as
CQL++ [DGJ92] or ZQL[C++] [Bla93] to MapBase. However, neither
language has an interpreted implementation at present. There are two
reasons that ad hoc queries require interpreted query execution rather
than run-time compilation and loading:

— Tt takes too long to compile even a short .C file (e.g. around 25
seconds on a Sparc 10, for a 73-line file plus headers), which is
unacceptable in terms of our performance and response require-
ment, R-4.

— An error in a dynamically loaded .o file can crash the MapBase
server. It is unacceptable that a coding error in a single, ad hoc
query make the database unavailable to all clients during recovery.

One commercial company, Dharma, is trying to provide a portable, in-
terpreted, object SQL [Dha], but it seems that a port to ObjectStore
would be too much work for us.

e We could ﬁove to another OODBMS, such as VERSANT or O,, that
would provide fully general ad hoc queries and more flexibility in schema
evolution.

e We could adapt a deductive, object-oriented query facility to our exist-
ing database. For example CORAL [RSS92, RSSS] and LDL [AOTZ,
CGK89a, CGK89b, TZ86] were constructed in a way that might make
it feasible for us to do this. Primary issues here would be performance
and the ability add abstract data types and user-defined functions to the
system (basically our requirements R-1 and R-4) above.
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e We could move to a deductive, object-oriented database management
system such as Aditi [VRK*, VRK'90], ConceptBase [Con],
EKS-V1 [VBKL90], or Glue-Nail [DMP93] (or CORAL or LDL). Pri-
mary issues here would be, again, performance and the ability to add
abstract data types and user-defined functions to the system. Additional
considerations would be the robustness and data-administration facilities
of the underlying storage manager.

A deductive, object-oriented query facility that supports user-defined predi-
cates and abstract data types would be very attractive. We currently must
compile queries such as the map position query into the MapBase server, but
such queries would be directly expressible in a deductive query language (but
not in a relational language). The need for user-defined predicates and abstract
data types is illustrated by the subsequence and reverse complementation op-
erations. For efficiency’s sake we would want to provide these as built-ins.

There are also a number of “data mining” or “data dredging” [Tsu90]
queries that we would like to pose. We hope to be able to write them using
a deductive query language. Even if they prove to be too slow using the
deductive language, it would still be worthwhile to have a system in which we
could prototype such a query without writing hundreds of lines of C-++ code.
Once the query is prototyped, we could decide whether it was useful enough
to justify a re-write in an imperative language.

We are currently reviewing a number of deductive database management
systems and another OODBMS in an attempt to find a suitable platform on
which to build the next version of MapBase.
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MIMSY: A System For Analyzing Time Series Data in the Stock
Market Domain

William G. Roth* Raghu Ramakrishnan
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Abstract

This paper describes a real-world application built on top of the CORAL deductive database
system. This application is meant to demonstrate the power of CORAL not only as a deductive
database but also as a generic extensible database system. Mimsy is a stock market historical
reporting system that can answer questions about daily stock market pricing data. The paper
describes the Mimsy system, and issues related to its design and implementation.

1 Overview

CORAL [RSS92] is an extensible deductive database system developed at the University of Wisconsin.
While providing all the functionality of a logic programming environment, CORAL also provides the
functionality of a general-purpose extensible database system [RSSS93]. The system includes an inter-
preter capable of processing a declarative rule-based language and an imperative environment where
CORAL can be accessed from within a host language(C++ [ES90]). This environment is geared toward
the building of non-trivial database applications.

Mimsy is a system for asking questions about stock market data, and has been built on top of CORAL.
The goal is to provide an SQL-like language specifically geared toward the application of querying stock
market data. Mimsy is inspired by a commercial application sold by Logical Information Machines, Inc.,
called MIM! [Lew92]2. Like MIM, Mimsy allows the user to execute ad hoc queries against the stock
market data. It should be noted that Mimsy is at once both more powerful and less powerful than
MIM. For example, MIM has an extensive set of date primitives, whereas Mimsy has only a rudimentary

The work of the authors was supported by a David and Lucile Packard Foundation Fellowship in Science and Engi-
neering, a Presidential Young Investigator Award with matching grants from DEC, Tandem and Xerox, and NSF grant
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2 «“Mimsy” is meant to be thought of as an adjective meaning MIM-like.
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Figure 1: The design of the Mimsy system

subset. However, MIM’s range of extensibility is rather limited, while Mimsy’s extensibility has the full
range of expressiveness of declarative CORAL, by virtue of the fact that it is built on top of CORAL.

Mimsy consists of three logical components.

e an interface that accepts queries in the form of the Mimsy query language.
e a translator that converts the Mimsy query into corresponding CORAL queries.
o the Mimsy server that processes the CORAL queries and returns the answer back to the interface

for display to the user.

A command line interface is provided for interactive querying, and a graphical point-and-click in-
terface for composing queries is also available. Utilities for sorting and graphing the results of queries
are provided. This paper, however, focuses on the Mimsy language and implementation issues. The
interface is described in detail in [Rot93].

The following points are worth emphasizing:

1. Mimsy can deal with significant amounts of data and quite complex queries, providing interactive
responsive time. The recursive query capabilities of CORAL are necessary for expressing many
natural concepts (e.g., a “bull market”, “consecutive peaks”, etc.) in this domain.

9. Tt demonstrates the power of CORAL’s extensibility features.
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3. Tt illustrates the use of CORAL in a client-server mode.

4. It is a substantial application that was completed primarily by one graduate student over one
semester. We believe that this is considerably less than the effort that would be involved in
building a similar package from scratch without the use of a system such as CORAL.

2 The Language

The basic structure of a Mimsy query is as follows:

select <something>
when <something-else>
save as <something-to-be-saved>

Both the when and the save as part of the query are optional. The select clause determines what
data will be returned to the user. The when clause determines for which dates the data in the select
clause will be shown. The save as clause specifies that the answers should be stored in a relation instead
of displaying the results of the query on the screen. We discuss how the saved relation can be used in
subsequent Mimsy queries in Section 6.2.

The data operated on by Mimsy is called a series. A series is a vector of price data. A series can
be thought of as a binary relation with the first column specifying the date or time index, and the
second column specifying the value of the series at that index. In Mimsy, a series is identified by its
ticker symbol and an identifying attribute. For example, close of abc represents the close series for
the stock whose ticker symbol is abc.

Operations, known as aggregates, can be applied to series to produce values. Aggregates and a time
range are applied to base series. For example the 30 day average of close of abc represents the
30 day moving average of the stock whose ticker symbol is abe.

2.1 The Select Clause

In the Mimsy language the select portion of the query is comprised of one or more select attributes
separated by commas. A select attribute is composed of a select expression followed by an optional
repeated clause. A select expression is a series, aggregate on a series, or an arithmetic expression
involving a series or an aggregate. Each select expression can be offset by a time period. Examples of
the select clause are shown below, that demonstrate the use of the repeat clause and the offset clause.

select close of ibm;
select 3 * close of ibm repeated for 10 days;
select the 4 day average of close of ibm + 1;
select close of ibm - close of ibm 1 day ago
repeated from the previous 2 days to
the next 3 days;
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2.2 The When Clause

The when clause is a list of predicates, separated by logical connectives that choose the dates for which
the data in the select clause is to be shown. The when clause comes in 3 flavors: relational oper-
ator clauses, change clauses, and crosses clauses. All of these clauses can be further modified by a
condition interval, which is a date range for which the condition must hold true.

The relational operator clause tests one select expression against another for a specific date. For
example:

select close of abc when close of abc > 12;
select close of abc when close of def > close of b;
select close of abc when close of abc > close of b * 6;

For these queries, the implication is that the condition holds over 1 day. For a longer date range, the
condition interval can be used. For example:

select close of xrx when close of xrx > 12 over 3 days;
The change clause tests whether a select expression is up or down over some period.

select close of abc when close of abc is up at least 10;

select close of abc when close of abc is down more than close of b;
select close of abc when close of abc is up more than 10%;

select close of abc when close of x is not down;

The crosses clause tests when one series crosses another. A cross occurs when, for example, one
stock’s price moves above the price of another when the first stock was smaller or equal in price to the
second stock in the previous time period. For example:

select close of abc when close of abc crosses close of b;

This query will select the close of abc on all dates when the close of abc crosses above or below
the close of b. The query can also specify either “above” or “below” in the crosses clause to specify
which type of cross is of interest. For example:

select close of abc
when close of abc crosses above
the 30 day average of close of abc;

2.3 Aggregates

Aggregates compute a single answer from the time range and series that are given as arguments. The
aggregates included in the system are shown in Figure 1. The average aggregate computes a moving
average of a series for the time period specified. The definition of min, max and sum are the same as in
SQL. Move represents the total change in price of the series from the beginning of the time period to the
end of the time period. Pcmove represents the total percentage change in price of the series from the
beginning of the time period to the end of the time period.

All aggregates are used as follows, using average as an example:

36



# Name Mimsy Aggregate name
1 | Average average

2 | Max max

3 | Min min

4 | Sum sum

5 | Move ‘ move

6 | Percentage Move | pcmove

Table 1: Mimsy aggregates

select the 6 day average of close of ibm
when the 3 day average of ibm is up more than 10%;

This query will show the 5 day moving average of the close of IBM on each day when the 3 day
average rises by more than 10 percent in 1 day.

3 The Translator

Once a query has been received by either the command line interface or the graphical interface, the
string is sent to the translator. If the query string acquired from the interface parses correctly, it is
translated into CORAL commands and sent to the server over a socket connection. The result of the
query, when received from the server, is read from the socket and sorted, and then displayed either
textually or graphically.

The overall task of the translator is simple. It generates CORAL rules for the when clause so that
all its results are collected into one temporary relation. This relation corresponds to the list of all dates
that satisfied all the conditions in the when clause. These are the dates for which the select clauses will
be evaluated. Separate abstract syntax trees are genarated for the select and when clauses, and are
subject to various transformations. These transformations handle date ranges, and boolean expressions.
Optimizations to handle aggregates and REPEAT clauses are also performed. Finally, the CORAL code
corresponding to the Mimsy query is generated and sent to the server. The details of the translation are
fairly complex and are described in [Rot93].

4 Series Data

There are currently 10 base series each defined for 165 stocks going back 5 years. The data for these
series comes from the University of Chicago’s Center for Research in Security Prices (CRSP). We have
actually used a small fraction of the available data, which covers over 1600 stocks, going back over 20
years. It is important to note that CORAL only brings the data relevant to stocks in a given query into
main memory; this loading is done very efficiently. Considering the entire data set supplied by CRSP
will not affect performance significantly.

The series and their keywords in Mimsy are shown in Table 2. Series 1-5 are base series. That
is, they are are actual values describing some property of the stock. Series 6-10 are composite series
that represent some kind calculation performed by CRSP on the base data. These composite series are
pre—calculated and stored as base data.
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# Name Mimsy Sequence name
1 Close close

2 | High high

3 | Low low

4 | Volume volume
5 | Shares outstanding | shares
6 | Beta beta

7 | Beta return betaret
8 | Capitalization cap

9 | Return ret

10 | Standard deviation | stdev

Table 2: Base series defined in Mimsy

5 The Server

The server is an iterative, connection—oriented server constructed as an extension to the basic CORAL
system. Operationally, the server front—end merely listens to a socket, treats whatever comes over the
socket as commands to the CORAL system, and returns the result back to the originator. However the
underlying CORAL database engine has been extended to perform efficiently in this application domain.
A new type of relation, called a fast array relation, has been added to support stock data, and all of the
series aggregates have been coded directly as CORAL “built—in” relations.

The server first loads the date translation table, which translates regular dates into date integers, and
the CORAL program to handle the date offsets. Next, the server loads in the relation that defines the
catalog of all valid series, and initializes the corresponding relations. The server then creates the dates
relation, which is a unary relation that contains a date identifier for every valid date in the system?®.
In the next step, the server loads in semantic information that will be sent to and used by both the
command line interface and the graphical interface. These catalogs include the currently defined series,
properties of series and aggregate definitions.

5.1 Fast Array Relations

One of the classic problems of dealing with stock market data is that it does not fit very well into the
relational model. In the relational data model, every “object” is treated as a table of an unspecified
(though potentially large) number of columns. The cost of maintaining this generality often makes
accessing stock market, and indeed all time-series, both space and time inefficient. Some Wall Street
investment banks have even been known to use environments like APL [GR84, Ive62] that are geared
toward dealing with vectors and matrices, and eschew the use of RDBMSs completely. Since CORAL is a
general purpose deductive database system, using the basic system would result in similar inefficiencies.

In order to allow CORAL to operate efficiently on time-series data, a new type of relation has been
added to CORAL which facilitates fast access of sequence data. FastArrayRelation is a subclass of the
CORAL Relation class and was added to the CORAL class hierarchy using the extensibility features
provided by the system. A filename is passed to the FastArrayRelation when it is created specifying
the location of the data file. The data is loaded into the file the first time the relation is iterated
over. The data is stored in the file as a binary array, so that it can be loaded directly into memory
without any translation. It is assumed that the data in the file is in the host machine’s numeric format.

3Note that the stock trading dates are not sequentially increasing. Holidays and weekends interrupt the sequentiality.
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The first column is an integer index. The second column is the value for that index, and is either a
double precision floating point number or an integer. The first column of the relation is not actually
stored. When the data is loaded, the file header information contains the number of elements in the
array and the lower bound. Using this information, the first column can be synthesized. It is assumed
that FastArrayRelations are read—only, since the stock data is relatively static.* The second column is
retrieved by a simple array access.

5.2 Aggregates

Mimsy aggregates are written to recognize opportunities for efficient execution. This is done by having
the aggregate cache its arguments and some of its computations from the previous invocation. Note
that forward motion of time is always assumed when an aggregate is being iterated across a range of
dates. For example, if the average aggregate is called on day 1 through day 20 of a series, it will cache
the number of days in the range, the name of the portfolio or series, and the sum of the values over
the range. If the next invocation is for day 2 through day 21 of the series, to compute the average it is
sufficient to get the value for the previous lower bound of the range, subtract it from the sum, get the
value for new upper bound for the range, add it to the sum and divide by the number of days in the
series. If the next invocation is not for the next day in the window, the cached values are discarded and
the computation must proceed as if called on the first day of a range. The aggregates min and max are
optimized similarly. The effect of having aggregates optimized in this way is that the aggregates will
recognize many opportunities for optimizations. This obviates the need for any higher level optimizations
other than sorting the data before the aggregates are executed.

6 Extensibility

Mimsy utilizes and demonstrates the extensibility of the underlying CORAL system. However, Mimsy
itself is also extensible at all levels, so that it is possible to enhance the system with more data, further
functionality and even greater query expressivity. This section discusses more how extensions to the

query language are handled.

6.1 Extending the Server

Users can define a new series in one of two ways.

Data can be added to the server by placing a properly formatted file in the data directory. Tools are
provided to appropriately format the data. To add a derived series to the server via a CORAL module,
the module should be loaded in by the server during startup. In both cases, information about the new
schema should be added to the server catalogs.

Definitions of new aggregates are added to the server in a similar fashion. An aggregate is defined
as follows, using “average” as an example:

seqaverage(BeginDate,EndDate,Series,Answer) .

4A sub-class of FastArrayRelations that allows inserts too is provided for the case of a time-series that needs to be
saved permanently, or temporarily.
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The aggregate computes the appropriate value from BeginDate to EndDate for the series or portfolio
and returns the result in Answer. There are two ways to define new aggregates, as new built-ins to be
compiled into the server, or as CORAL modules to be loaded into the server at startup. The catalog
of aggregate definitions needs to be updated to include the new aggregate. Some of these aggregate
definitions may involve the use of recursion (for example, a moving average), and the ability of CORAL
to specify recursive rules is useful in this regard.

6.2 Extending the Language

It is likely that a user will want to pose some queries not readily expressible in the Mimsy language,
but that can be expressed in the underlying CORAL language. For instance, in the stock market
domain, there are a variety of queries that are recursive in nature (for example, determining maximal
montonic trends, or local minima and maxima). These queries are easily expressible in CORAL since it
supports recursive rules( the appendix has a couple of examples of such queries). We provide a way to
define CORAL predicates and extend the Mimsy language to make these new definitions accessible; this
extensibility allows a sophisticated user to customize the language. Indeed, this is also the mechanism
used to refer to relations produced by the save as clause (see Section 2).

Extensibility in the Mimsy language is provided by allowing strings found at certain places in the
grammar to be passed uninterpreted to the server. Also, variables in a query that refer to variables
in extensibility strings are allowed to appear in select expressions. A special variable, “Date”, can
appear in the argument string. In the translation, the string Date will be replaced by the variable that
represents the current date under consideration. For example, suppose we had a predicate “extend” that
returned some value. For example,

select close of abc,"new_series(Date,Val)",Val
when "extend(Date,X)" and X > 12.

would be translated into:

whendates (D) += dates(D),extend(D,X) ,X>12.
?whendates (D) ,a_close(D,D0) ,new_series(D,Val) ,Di=Val,
dateuntranslate(D,X) ,print(X,D0,D1).

The extensibility strings can contain any valid CORAL code, and are interpreted to a very limited
extent by the Mimsy front-end. Some knowledge of the translation process of Mimsy to CORAL is
therefore necessary to effectively use this feature.

7 Conclusion

In developing Mimsy, we have tried to demonstrate that CORAL provides support for realistic database
applications. The extensibility features of CORAL are heavily utilized to ensure efficient performance.
The design of the Mimsy system itself involved some interesting language issues and implementation
decisions. While we have touched upon them briefly, they are discussed in detail in [Rot93]. The
system is currently being extended to handle portfolio queries, requiring significant extensions both of
the language and the implementation.
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The experience of developing Mimsy offers evidence of the power of deductive systems. The total
programming effort was about two man-months, of which about one month was spent on developing the
graphical interface. The actual design of Mimsy and acquiring familiarity with CORAL took about a
month. We note that the primary implementor of Mimsy, W.G. Roth, was relatively unfamiliar with
many of the implementation details, such as relation interfaces, when he began this project. While he
did have some familiarity with aspects of CORAL, this was probably offset by the fact that the C++
interface was in a state of flux during the course of this project. In any case, while such considerations
are hard to quantify, it is fair to note that Mimsy was designed and developed in about a semester
primarily by one programmer.

The CORAL system provided considerable support. First, the C++ interface facilitated the definition
of a number of functions needed to support the Mimsy language. Second, the extensibility of CORAL
was used to represent series data effficiently while retaining a relational view. Third, the ability to pose
ad-hoc queries relies upon CORAL to parse and evaluate rules; this allowed us to focus on high-level
issues relevant to Mimsy rather than details of query processing. Finally, the full power of CORAL rules
can be used to define additional functions to add to the power of Mimsy, and some of the pre-defined
functions are indeed defined in this way.

8 Appendix

CORAL rules defining the N-day Moving Average of a Series

Y These rules use the moving average for the previous period to
% incrementally compute the moving average for the next perioed.

Y series(SeriesName, Date, Value)
% movavg(SeriesName, NoOfDays, Date, Value)

movavg(Sname,N,Dayl,A) :-
t2(Sname,N,Day1,N,V), A=V/N.

movavg(Sname,N,D1+1,4) :-
movavg (Sname,N,D1,A1),
series(Sname,D1,01d),
series(Sname,D1+N,New), A=A1+(New-01d)/N.

% t2 just computes the average for the first N days.

t2(Sname,N,Day1,1,V) :-
from(Day1),
series(Sname,Dayi,V).

t2(Sname,N,D,M1+1,V14V2) :-

t2(Sname,N,D,M1,V1), Mi<N,
series(Sname,D+M1,V2).
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CORAL rules defining the Runs( maximal monotonic trends ) of a Series

% This program analyses a series and generates a result series
¥ that describes maximal decreasing/non-decreasing "runs" in the
% original series.

run(Sname,Date,Dir,max(<L>)) :- trend(Sname,Date,Dir,L).

% for each date, trend computes the longest current inc/dec (possibl
P g P y
% non-maximal) "run®

% the following rules deal with the case when the "observed trend" (inc/dec)
% continues on the current date.

trend(Sname,Date,nondec,L+1) :-
trend(Sname,Date,nondec,L), series(Sname,Date+L,V1),
series(Sname,Date+L+1,V2), V2>=V1.

trend (Sname,Date,dec,L+1) :-
trend (Sname,Date,dec,L), series(Sname,Date+L,V1),
series(Sname,Date+L+1,V2), V2<V1.

% the following rules deal with a '"change in direction"

trend(Sname,D1,nondec,1) :-
trend(Sname,Date,dec,L), series(Sname,Date+L,V1),
series(Sname,Date+l+1,V2), V2>=V1,

trend(Sname,D1,dec,1) :-
trend(Sname,Date,nondec,L), series(Sname,Date+L,V1),
series(Sname,Date+L+1,V2), V2<V1.

trend(Sname,Dayi,nondec,1) :-
from(Dayl), series(Sname,Dayi,V1), series(Sname,Dayl+1,V2), V2>=V1,

trend (Sname,Dayl,dec,1) :-
from(Day1), series(Sname,Dayl,V1), series(Sname,Dayi1+1,V2), V2<V1,
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Abstract

We report on the efficiency of queries formulated with the Hy*/GraphLog
data visualization system, a substantial application which utilizes the CORAL
deductive database system. Hy" itself has been used in a number of application
areas, including software engineering, network management, and the debugging of
distributed programs. We focus on the translation of GraphLog queries to CORAL
programs as well as the performance of the resultant programs on large data sets.
One source of inefficiency in programs involving recursion and query constants is
that CORAL is not able to detect that the programs are factorable. We provide an
alternative translation which always propagates constants to base relations, with

a consequent improvement in performance.

1. Introduction

Hy* is a data visualization system under development at the University of Toronto. In

Hy*, data can be visualized as a hygraph (a hybrid between hypergraphs and higraphs),

*This work was done while the author was visiting the Computer Systems Research Institute, Uni-
versity of Toronto, Toronto, Canada M5S 1A1.
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Figure 1: Visualizing a portion of the NIH class library.

on which queries filtering out information or defining new relationships can be formu-
lated. These queries are expressed in GraphLog, itself a visual query language. The
system has been used successfully in applications such as software design [6], network

management [2], and debugging of distributed programs [3].

Query processing in Hy™ is performed by translating queries (and data, if necessary)
into logic programs suitable for execution by one of three backends: CORAL, LDL,
or Prolog. In this paper, we concentrate on the efficiency of queries executed on the
CORAL backend [13]. Details of the translation to Prolog can be found in (8], while that
for LDL is described in [7]. In addition, we do not address the features of negation and

aggregation which GraphLog also provides [7].

As an example, Figure 1 shows a portion of the structure of the NIH public domain
C++ class library, visualized as a labelled, directed graph. The objects of interest,
represented by nodes, are classes, functions and variables. Relationships include the
subclass and friend relationships between classes, the contains relationship between a
class and its member functions, a reference relationship between functions and variables,

and a calls relationship between functions.

A GraphLog query on the graph of Figure 1 is shown in Figure 2. The query first
defines a relationship depends between classes, and then asks for the transitive closure

of this relationship, restricted to those classes which depend directly or indirectly on the
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Figure 2: A GraphLog query on the database of Figure 1.

class “Object.” Class X depends on class Y if X contains a member function which

calls directly or indirectly a member function of Y.

The efficiency of evaluating queries like that of Figure 2 is affected significantly by the
choice and sophistication of the translation from GraphLog to CORAL. For example, with
a careless ordering of subgoals by the present GraphLog translation, the query can take
over 3.5 minutes to execute on a database of 9124 tuples, even using the @factoring
annotation provided by CORAL. With the correct ordering of subgoals, this can be
reduced to around 31 seconds. In this paper, we provide an alternative translation for

GraphLog which reduces the execution time, in this case, to under 1.5 seconds.

Although our emphasis is on translating GraphLog queries, the techniques we de-
velop can be applied independently. In addition, we comment on other issues such as
subgoal ordering and the efficiency of various annotations with which one can control

the evaluation mechanism chosen by CORAL.

The outline of the rest of the paper is as follows. In the next section, we give a
brief description of the GraphLog query language, along with the current technique for
translating to CORAL. Section 3 is devoted to describing the alternative translation
scheme, while Section 4 provides a comparison of the efficiency of the two techniques,

using a number of sample queries and databases. Conclusions and directions for further

work are discussed in Section 5.
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2. The GraphLog Visual Query Language

GraphLog is a graphical formalism for visual manipulations of database visualizations
[5]. It is suitable for applications of database technology where the data has a graph-like
structure which can be exploited to provide visual presentations of the data [4, 6].

2.1. Syntax and Semantics

GraphLog visualizations are based on the notion of hygraphs. Hygraphs are directed
labelled graphs which, in addition to labelled nodes and edges, also contain labelled
blobs. A blob in a hygraph generalizes the concept of an edge: it is a relation from a
node, called the container node, to a set of other nodes, called the contained nodes. It
can be used to group similar objects together. Visually, it is represented as a rectangular
box associated with the container node. All contained nodes are displayed inside the

container’s box.

In GraphLog, a term is either a constant, a variable, an anonymous variable (as
in Prolog), or a function f applied to a number of terms. An edge or blob label is an
expression generated by the following grammar, where T is a sequence of terms and p

is a predicate:

E — E|E; E.E; —E;~E;(E); E+; Ex; p(T)

This is essentially a grammar for regular expressions, with “|” representing alternation,
«» concatenation, “~” inversion (a traversal from head to tail, rather than tail to head),

“—” negation (the absence of a path), “+” transitive closure, and “x” reflexive transitive

closure.

Database instances are hygraphs whose nodes are labelled with ground terms and
whose edges and blobs are labelled with ground predicates. Database instances of the
object-oriented or relational model can easily be visualized as hygraphs. For example,
an edge (blob) labelled p(X) from a node labelled T1 to a node (containing a node)
labelled Tj, corresponds to tuple (Ty, T2, X) of relation p in the relational model.

Queries are hygraphs whose nodes are labelled by terms and each edge (blob) is
labelled by an edge (blob) label. There are two types of queries: define and filter. In
both types, the query hygraph represents a pattern; the query evaluator searches the
database hygraph for all occurrences of that pattern. The difference between the two

types of queries stems from their interpretation of distinguished edges, explained below.

A define query must have one distinguished edge or blob, labelled by a positive literal.

47




The meaning of a define query is to define the predicate in this distinguished literal in
terms of the rest of the pattern. The semantics of define queries is given by a translation
to stratified Datalog. Each define hygraph G translates to a rule with the label of the
distinguished edge or blob in the head, and as many literals in the body as there are
non-distinguished edges and blobs in G. If an edge is labelled with a regular expression,

additional rules to define its predicate are necessary.

A filter query can have several distinguished edges and blobs; they represent those
objects that the user wishes to see. The query evaluator searches the database for all
occurrences of the pattern, and retains the objects that match the distinguished edges
and blobs from each occurrence. Edges and blobs defined by define queries can of course

be used in filter queries.

2.2. The Translation

As explained above, the meaning of a define query in GraphLog is to define the predicate
in the distinguished literal of the query. Suppose between nodes labelled X and Y, there
is an edge labelled p(Z), where X,Y are terms and Z is a sequence of terms. We will
denote this by p(X,Y, Z). In fact, the meaning of such an edge is given by the Datalog
fact p(X,Y, Z).

Given a define GraphLog query @ with non-distinguished edges p; (X1), .- 2n(Xn)
the translation for Q contains the following rule that defines the predicate p of the

distinguished edge p(X):

p(X) .= l](ﬁl),lz(ﬁz), .. ,ln(F‘n)l

where [;(F}) is pi(Xi), if the edge is positive, —pi(X;), if the edge is negated, or it is
defined recursively on the structure of the label according to the following algorithm:

e Inversion

X —e(2) Y corresponds to the call e(Y, X, Z).
O O

1The idea of using F; instead of X; is that constants and anonymous variables need not appear in
the call of a predicate that is associated with an expression (defined with additional rules).
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e Concatenation

X 61(21).62(22) Y
@) O

e Alternation

X el(Z)|eaZy) Y
O ge)

e Closure
X e+
O
e Kleene Closure
X ez
@) O

COT&C(X, Y, F'l,F'g) - 61(X,T, Z_1)762(T, Y, Zg)

where F. contains the named free variables of Z;
(bound terms and anonymous variables are not
included), and 7 is a variable appearing nowhere
else in the rule. Note that if a variable appears in
both Z; and Z,, then it will be carried twice in
the head.

alter(X,Y,Fy, Fy) : — ei(X, Y, Z1).
alter(X, Y, Fl, Fz) L ez(Xb, Y, ZQ)

where F. contains the named free variables of Z;.
Note that if a variable appears in both Z; and Z,

then it will be carried twice in the head.

tee(X,Y,F): — e(X,Y, 2).
tee(X,Y,F): — e(X,T, Z),tce(T,Y, F)).

where ' contains the named free variables of Z,
and T is a variable appearing nowhere else in the

rule.

kleenee(X,X,F): — e(X,Y, Z).
kleenee(Y,Y, F) : — e(X,Y, 7).
kleene.e(X,Y, F)

— e(X,T,Z),kleene.e(T,Y, F).

where F' contains the named free variables of Z,

and T is a variable appearing nowhere else in the

rule.
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Since, for the purposes of this paper, we assume only trivial filter queries, we will not
describe their translation here. As an example, the query of Figure 2 is translated to
the following Datalog program (we have omitted the full module definition for CORAL):

cl_depends(class("Object"), class(Y)) :-
tc_depends (class("Object"), class(Y)).
tc_depends(X, Y) :- depends (X, Y).
tc_depends (X, Y) :- depends(X, Z), tc_depends(Z, Y).
depends(class(X), class(Y)) :- tc_calls(function(U), function(V)),
contains(class(Y), function(V)),
contains(class(X), function(U)).
tc_calls(X, Y) :- calls(X, Y).
tc_calls(X, Y) :- calls(X, Z), tc_calls(Z, Y).

Note, in the fourth rule, how the (non-deterministic) ordering of subgoals is poor since
the complete transitive closure of calls must be computed. If, instead of formulating
the query as in Figure 2, the cl.depends was expressed using a single edge labelled
with the regular expression (contains.callst. — contains)*t, the following equivalent (if

applied to the same database), but more efficient, Datalog program would be produced.

cl_depends(class("Object"), class(Y)) :-
tc_concl(class("Object"), class(Y)).
conci(X, ¥).

concl(X, Z), tc_conci(Z, Y).
contains(X, T), conc2(T, Y).
tc_calls(TO, T1), contains(Y, T1).
calls(X, Y).

calls(X, Z), tc_calls(Z, Y).

tc_conci(X, Y)
tc_concl(X, Y)
concli(X, Y)
conc2(TO, Y)
tc_calls(X, Y)
tc_calls(X, Y)

As evident in Figure 2, GraphLog users are allowed to label nodes with (single)
constants. Thus, any translation of such a query to Datalog will result in a program
containing a single constant in the query goal, whereupon the rewriting techniques such
as magic sets [1], factoring [11] and context rewriting [9] become applicable. We assume

that readers are familiar with each of these.

CORAL provides an annotation for controlling evaluation called @factoring. This
applies the context rewriting transformation of [9]. We will use the term factoring in
the same way as in [11] to mean the reduction in the number of arguments in recursive
predicates. Context rewriting does not do this, so to avoid confusion we will refer to the

CORAL annotation as contest rewriting.
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The present translation from GraphLog to Datalog results in rules in which the
only form of recursion is transitive closure (possibly with additional arguments carried
in the head and recursive subgoal). The variable patterns are such that, given most
binding patterns for the recursive predicate, the subgoals of the recursive rule could be
reordered so that the rule is either right-linear or left-linear. As such, context rewriting
is almost always applicable (if both head and tail nodes are bound to constants the
resulting program might be neither left- nor right-linear). This is related to the problem
of overbound queries studied in [10]. With a translation to CORAL, one could circumvent
this problem by never exporting a binding pattern for a module which included both

the first two arguments of a recursive predicate being bound.

In fact, the present translation always produces right-recursive rules which, depend-
ing on the binding pattern, may or may not be right-linear. Nevertheless, it would be a
simple matter to direct the translation based on the bindings in the query. A more fun-
damental problem is that context rewriting may be an order of magnitude less efficient

than a true factoring transformation.

Rather than a translation based on the structure of the original regular expression in '
the GraphLog query, we propose an alternative translation based on a nondeterministic
finite automaton constructed from the regular expression, as originally proposed in [15].
From now on, we will refer to the former technique as the RE-translation and the latter

as the NFA-translation.

The NFA-translation can result in a Datalog program containing mutually recursive
rules. As a result, neither context rewriting nor the original factoring transformation in
[11] are applicable. In fact, the resulting programs are also not necessarily weakly right-
linear as defined by Ross in [14]%. Nevertheless, as we demonstrate in the next section,

our translation always produces a program in which every IDB predicate is factored.

3. Translating GraphLog to Factored Datalog

We assume initially that we are given a GraphLog query comprising one define query
and one filter query with a single distinguished edge. Furthermore, the define query
has only a single nondistinguished edge, in addition to its distinguished edge. The
nondistinguished edge can be labelled with an arbitrary regular expression. The filter

query simply refers to the distinguished edge of the define query.

2This is because the recursive subgoal may have more arguments bound than the head.
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Let R denote the regular expression in the query. The first step in the translation is
to construct a nondeterministic finite automaton (NFA) M which accepts the language
L(R). Now we essentially construct a regular grammar G from M in the standard
way, followed by a regular chain program based on G. Because of space limitations, we
describe only the translation when one of the nodes in the GraphLog query is labelled
with a constant. If it is the head node, we first reverse the automaton M, also performing

the inversion of each term labelling a transition in M.

1. Generate the fact s(c), where s is the initial state of the automaton, and c is the

node constant in the GraphLog query.

2. For each transition ¢ from p to ¢ labelled with e(Z), where Z may be a sequence

of terms, generate a Datalog rule as follows:

q(Y) :- p(X), e(X,Y,2).
If, instead, ¢ is labelled with --e(Z), generate:

q(y) :- e(¥,X,2), p(X).

Call the resulting program P.

3. From P generate a new program ) by performing a bottom-up propagation of the

named variables as follows.
(a) Add each fact s(c) to Q.
(b) For each rule in P containing an s subgoal, say,
£(Y) :- s(X), e(X,Y,2).
add the rule
£t(Y,U) :- s(X), e(X,Y,Z2).
to Q, where U comprises all the named variables in Z.

(c) Repeat the following process until no (syntactically) new rule is added to Q.
If there is a rule with head £(Y,U) in @ and a rule of the form

P(Y) o t(X), e(X9Y)Z)'
in P, then add the rule

p(Y,V) - t(X, U), e(X,Y,2).
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to (), where V is a sequence of named variables which includes all of those in
7 and U such that the ordering of variables is consistent throughout the set

of rules.

4. Finally add rules for the distinguished edge. These rules have as their head the
distinguished predicate and each body contains the predicate of greatest arity

generated for each final state of the automaton.

The translation for GraphLog queries in which neither node is labelled with a con-
stant is a simple modification of the above. Because of space limitations, we cannot
describe the translation for more general queries containing more than one nondist-
inghuished edges, except to say that the set of nodes produced by each “edge query”

can be passed to the next edge according to some traversal ordering of the query graph.

Note that, for the well-known ancestor query, the above translation effectively pro-
duces the left-linear transformation of [12] when the tail node is labelled with a constant,
and produces the right-linear transformation when the head of the edge is bound to a

constant.

If the GraphLog query of Figure 2 is rewritten so as to contain only one nondistin-
guished edge labelled with (contains.calls*.— contains)*t, the associated NFA is the one
depicted in Figure 3. Being at the initial state of the automaton represents being at
the node of the database graph labelled Object. Each transition in the NFA represents
the traversal of the corresponding edge. Hence, performing the transition from state s
to state g represents following a contains edge from the node labelled Object to some
node labelled Y. All such nodes are computable by the Datalog rule q(¥) :- s(X),
contains(X,Y). If each transition of the NFA is thus translated into a Datalog rule,
evaluation of the generated program determines the set of nodes reachable from Object
by following a path of the form (contains.calls*. - contains)™. The complete CORAL
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Figure 4: Another GraphLog query on the database of Figure 1.

program that is produced by the above translation is shown below.

s(class("Object")).
q(Y) :- s(X), contains(X, Y).

r(Y) :- q(X), calls(X, Y).
r(Y) :- r(X), calls(X, V).
p(Y) :- contains(Y, X), r(X).

q(¥) :- p(X), contains(X, Y).
cl_depends_bf(class("Object"), class(Y¥)) :- p(class(Y)).

Note how the IDB predicates have been factored to be unary rather than binary. A
performance comparison between this translation and the original is given in the next

section.

Let us now consider the query shown in Figure 4, which is a form of “common
ancestor” query applied to function calls. We are interested in all functions which
are called (directly or indirectly) by a function which calls (directly or indirectly) the

function destroyer.
The RE-translation yields the following:

common_anc (function(destroyer), function(F)) :-
tc_calls(function(C), function(F)),
tc_calls(function(C), function(destroyer)).
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tc_calls(X,Y) :- calls(X,Y).
tc_calls(X,Y) :- calls(X,Z), tc_calls(Z,Y).

The subgoals in the first rule are once again poorly ordered. However, the common
ancestor program is interesting because, even if the subgoals in the first rule are inter-
changed, it too cannot be factored using traditional techniques. The problerm this time
is that, no matter what ordering of subgoals is chosen, the tc.calls subgoal is called
with two different binding patterns. This means that CORAL defaults to supplementary
magic sets, with a possible order of magnitude slow down. In contrast, our factored

translation is given below:

s(function(destroyer)).

anc(Y) :- calls(Y, X), s(X).

anc(Y) :- calls(Y, X), anc(X).

des(Y) :- anc(X), calls(X, Y).

des(Y) :- des(X), calls(X, Y).

common_anc_bf (function(destroyer), function(F)) :- des(function(F)).

Here we see that both left- and right-linear rules have been generated, once again com-

puting only sets of nodes at each step. The performance of the two translations is

compared in the next section.

4. Performance Comparisons

In this section, we present some of the performance results we obtained during our
investigation. A number of different databases of facts were used in our tests; only two
are reported on below. The first was a database of flight information for airlines. It
comprised 112 facts for a single predicate, involving source and destination cities, as
well as airline names. There were 31 distinct cities, and 6 different airlines represented.

The second database has already been mentioned, namely, the NIH C++ class library.
It comprises 9124 facts, of which 2406 are calls facts, and 2755 are contains facts.

Some typical results follow (all times are in seconds and are averaged over a number of

runs on a lightly loaded Sun Sparcl0).
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A B A/B C B/C

query no. of RE  Opt. RE NFA

answers trans. trans. trans.
1. alternatingbfff 121 3.90 0.81 4.80 0.32 2.52
2. class.depends.bf 32 214.94 31.31 6.86 142 22.11
3. common.anc.bf 507 225.48 44.07 5.12 1.34 32.89

The column labelled A is the time to execute a program produced by the RE-translation
with context rewriting by CORAL. Because the RE-translation does not always choose
the best ordering of subgoals, we have modified the RE-translation with the best subgoal
order by hand. The execution of the resulting program with context rewriting by CORAL
is reflected in column B. Column C corresponds to the NFA-translation with no rewriting
by CORAL.

We have already seen test cases 2 and 3: they correspond to Figures 2 and 4, respec-
tively. Test case 1 asks for all cities reachable from Toronto using flights which alternate
between a pair of airlines. Each test case was chosen to demonstrate a particular sit-
uation. Test case 1 cannot be context rewritten as produced by the RE-translation.
However, if left-recursive rather than right-recursive rules are produced, context rewrit-
ing can be done. This is done by hand and is reflected in column B. Nevertheless,

factoring still shows a slight improvement over context rewriting.

In test cases 2 and 3, the programs produced by the RE-translation result in complete
transitive closures being computed. Execution speeds are improved by 5 to 6 times by
choosing a subgoal ordering which avoids this. As aresult, test case 2 is context rewritten
by CORAL. However, one can show that context rewriting can be an order of magnitude
less efficient than factoring on this program, a fact which seems to be borne out by
the empirical results. Test case 3 as produced by the RE-translation cannot be context
rewritten, no matter what subgoal ordering is chosen; hence, CORAL uses supplementary

magic sets. In this case, factoring achieves a speedup of over 30.

A further indication of where context rewriting can break down is given when we
want to take the reflezive transitive closure of the depends relationship, rather than
simply the transitive closure. In the above example, the answer turns out to be the
same because class Object depends transitively on itself. The program produced by
the NFA-translation exhibits no apparent difference in execution speed. However, the
program produced by the RE-translation, even with the best subgoal ordering, slows

down from an execution speed of 31 seconds to one of 249 seconds.
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5. Conclusion

We have discussed our experiences with the query evaluation component of the Hy*
data visualization system developed at the University of Toronto. We have focussed on
translating GraphLog queries into CORAL programs, providing two alternative transla-
tion strategies. In so doing, we have also demonstrated enormous differences in efficiency

between equivalent Datalog programs.

The NFA-translation, in fact, also defines an alternative semantics for GraphLog
which coincides with the semantics defined by the RE-translation when that produces a
safe Datalog program. However, the NFA-translation can produce safe programs when

the RE-translation does not. A full discussion of this is left to a future paper.

The choice between producing left- or right-linear rules when no node is labelled with
a constant should also be carefully considered. We ran tests on a database representing
the genealogy of theoretical computer science. When visualized as a graph, the fan-in
of each node is at most two, while the fan-out can be over 20. Worst-case analysis
in [10] suggests that, for such a case, left-linear rules are superior to right-linear rules.
Empirical results confirmed this: right-linear rules were on average about 40% slower

than left-linear rules for the ancestor program on this database.

Whether the NFA-translation has any advantage when extended to queries involving
aggregation or those requiring complex filtering, which can be particularly inefficient, re-
mains to be investigated. Also we have restricted our attention to recursive queries; how-
ever, nonrecursive queries involving large joins can also be inefficient using the present

RE-translation. We hope to be able to improve on this too in the future.
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INTRODUCTION: THE BUSINESS CHALLENGE

The MIS functions of modern enterprises must cope with rapidly increasing
demands and requirements. Even as the complexity and interconnection of
applications increase, the ever increasing competitive marketplace their companies
are now existing in is exercising a downward pressure on the time available for the

development lifecycle. These same competitive pressures, however, are increasing
the importance of multiple application inter-operability and semantic integration.

In this paper, we elucidate the reasons for which the deductive database technology
can play an important role in answering this business challenge, and then present
the case-study of two "data cleaning” applications under development at Pacific
Bell. These case-studies confirm the potential of deductive databases but also
illustrate the practical challenges, such as interoperability with other programming
environments and DB2 databases, that one faces in establishing this new
technology in the business world. This paper is not intended to demonstrate the
legitimacy of LDL and LDL++ as deductive database technology; this has been
discussed elsewhere [Ceta, KNZ, NaTs, Tsl, Ts2, Ullm, UlZa]. We are concerned with
LDL-++'s ability to interconnect and accomplish meaningful, practical work.

THE ROLE OF DATABASE TECHNOLOGY IN MEETING THE
CHALLENGE

In addition to the traditional functions of database technology: shareability,
persistency, concurrence control, integrity and recovery; modern database
technology is being asked to directly enforce constraints contained in the users '
requirement and specifications. Specifically, in addition to the traditional
expectations of database technology, such as integrity, sharing and recovery, these
new applications demand the consistent enforcement of complex structures and
recursively defined objects through the use of high-level languages and rules.
Conventional database systems fail to address the special requirements of such
applications.

Conventional database systems also suffer from the limited power of their query
languages. Since conventional query languages, as exemplified by SQL, are
capable of accessing and modifying data in only limited ways, database applications
are now written in a conventional, procedural language intermixed with query
language calls. Since the non-procedural, set-oriented computational model of SQL
is so different from that of procedural languages, and because of incompatible data
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types, an "impedance mismatch" occurs that hinders application development and
causes expensive run-time conversions.

THE NEED FOR DEDUCTIVE DATABASE TECHNOLOGY

For these reasons, and others, modern applications need a single, computationally
complete language that answers the needs previously discussed serving both as a
query language and as a general-purpose host language.

Relational languages are declarative and logic-based, but as implemented in
commercial relational database products, not supportive of a full logic, and have,
therefore, been limited. Nevertheless, despite the historical limitations, declarative
languages are the right direction. They provide the ability to express what one
wants, and leaves to the system substantial portions of the algorithm required to
meet the request. This ability is essential for ease of use, data independence and
code reusability.

Deductive databases represent relational languages which are both declarative and
supportive of a full logic. They take the declarative approach providing a
declarative, logic-based language for expressing queries, reasoning, and complex
applications on databases. But note that deductive databases are database

technology, not merely a programming language.
DEDUCTIVE DATABASES: MORE THAN A PERSISTENT PROLOG

A few words about Prolog. A new generation of powerful rule-based languages for
expert systems applications commanded great attention in the 80's. Among these,
Prolog is of particular interest, which has led to considerable work at building a
deductive database system, either, by coupling Prolog with relational DBMSs or by
extending Prolog with database capabilities [CGT], which retained Horn clauses
with their rule-oriented syntax and aiming to achieve a complete and harmonious
integration of logic and databases retained Horn clauses with their rule-oriented
syntax. It produced new languages and systems that combine the database
functionality and non-procedurality of relational systems, with Prolog's reasoning
and symbolic manipulation capability. Such systems have been further enriched
with knowledge representation and object-oriented constructs. Using extensions of
relational DBMSs technology, a new implementation technology was developed for
these languages to ensure their efficient support on, both, main memory and
secondary store. Among those systems [Meta,KiMS], LDL++ has reached the most
maturity [Ceta,ArOn]. Fully integrated deductive database systems have the
following distinguished traits:

Unlike procedural languages, Deductive Database technology is oriented toward a
specification-based and declarative style of computing. Indeed, DBMSs make
extensive use of data dictionaries, and rely on multiple layers of data definition and
specifications (storage schema, schema, sub-schemas, views, etc). Furthermore,
like relational DBMSs, the Logic Database system supports a high-level, logic-
based language whereby users need only to specify high-level queries, and can
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leave the responsibility for making and implementing performance-oriented
decisions to the system. Significant gains in programmer productivity, data
independence, and maintenance (i.e., over the whole software life cycle) follow
from this approach.

Frequently, in database design problems arising from incompleteness or
inconsistencies in the users' requirement are not discovered until after one has
progressed deep into the development lifecycle . Furthermore, discrepancies
between the users’ requirements and expectations and the actual implementation do
not emerge until the first running implementation is completed (after great
expenditures of time and resources).

Logic-based rule systems, such as Prolog, enable the rapid prototyping of complex
applications beyond what is possible using other systems. Their clear logic-based
semantics enhance the value of the resulting prototype as an important specificaiion
and validation artifact in the development cycle. These particular merits of logic-
based rule systems for specification driven re-engineering are extended by
deductive databases, with their strong relational database orientation and their
emphasis on declarative, formal semantics. Indeed, deductive databases can be
defined, in a nutshell, as the unification of logic-based rule systems and database
technology.

LDL++: A DEDUCTIVE DATABASE TECHNOLOGY

Originally developed at MCC, LDL (and now its successor LDL++) is one of the
first actual examples of deductive database technology. In addition to the traditional
database requirements, such as integrity, sharing and recovery, LDL++ supports
complex structures, recursively defined objects, set operations, update and retrieval
through query forms, and inter-operability with high and low level languages, and
remote access to other database management systems. In addition, LDL++
incorporates several useful concepts of object-oriented technology including object-
identity and a rich type structure with inheritance of properties from types to their
subtypes. However, in establishing object identity, LDL++ retains the "value-
orientation" of relational systems, the declarative, logic-based essence, and does not
become "tainted" with "proceduralism" as is Prolog. Thus, in summary, LDL++
supports ease of use, data independence and code reusability through a declarative,
logic-based language for both the retention of its extensional database facts and for
the expression of queries, reasoning, and complex operations.

In particular LDL++ supports:

* The notion of recovery and database transactions. These concepts are deeply
ingrained in the semantics of the LDL, where an error condition, such as the
isolation of an integrity constraint, will result in the undoing of all the updates
after the last checkpoint.

*  Unique key constraints.
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* Non-linear rules or cyclic graphs. These are much simpler to write in LDL than
in Prolog or a procedural language.

* Query optimization. The notion of a query optimizer is also part of LDL++
system [Ullm,Ceta,ArOn], increasing compatibility with relational systems,
better data independence, and enhanced program reusability.

* Stratified negation, Grouping and Non-deterministic pruning extending LDL++
beyond simple Horn Clauses [NaTs].

A FRAMEWORK FOR THE PRACTICAL APPLICATION OF LDL++
IN THE BUSINESS ENVIRONMENT: DATA QUALITY RE-
ENGINEERING

It is always a challenge to establish a new technology in the business environment.
The shift to an untried, unknown technology is seen (correctly) as a significant
business risk. Until deductive database technology is incorporated into the DBMS
product line of major database vendors, large companies will shy away from
utilizing it in any major application area which is either mission critical to the
corporation or which must be stable over a significant period of time (i.e., years,
decades, etc.). Therefore, first applications must be in support of business
functions which already represent areas of difficulty and chaos to the company and
which have a short (preferably one-time) payback cycle.

For these reasons we are introducing deductive technology into commercial use in
the area of data quality, that is, the "scrubbing" of "dirty data" from our suite of
corpotate databases. This activity is beginning to be known under the term Data
Quality Re-engineering. Data Quality Re-engineering represents a near perfect
environment for "trying out" this technology. The databases are already a mess, and
the existing applications are incapable of resolving the issues. If they were capable,
they would have done it! Also the use of the technology adds value with each
instance of usage. Thus, data quality is a reasonable arena for the first commercial
use.

But, before we can utilize the technology to "scrub" the databases of existing
applications, we have to be able to communicate with those applications existing
data stores. That is where the data "lives."

Therefore, the first capability to be demonstrated is the inter-operability of LDL++
with other languages and database environments. Then we must show that in this
heterogeneous data world, LDL++ can, in fact, be used to find and identify "dirty
data" in a commercial database.
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PROGRAM 1: LDL++ INTER-OPERABILITY WITH C++

Business Context

In the course of provisioning service to a telecommunications customer, a circuit is
associated with a network interface. Due to our multiple legacy application systems
environment, records of this relationship are kept in multiple, independent
databases. The business problem is verifying that these records are consistent
within these multiple systems. For the purpose of this demonstration, we are
focusing on the record of circuit to network interface found in a customer contact
application (CESAR), the facilities tracking system (FS), and the inter-exchange
carrier billing system (CABS). A failure to maintain global logical consistency
among these multiple applications could result in engineering being unable to
complete their work forcing an extraneous customer contact, the billing system to
produce inaccurate bills, or the customer not to receive their requested services.

The data representing the relationship between circuit and network interface was
extracted from each of these application systems, joined on circuit identifier, and
presented as a "flat file" to LDL++ in the UNIX environment. This pre-joining of
the data will not be necessary in the future with the coming availability of a
concurrent DB2 accessing capability . Single DB2 remote access will be
demonstrated in the second demo program.

Technical Context

The purpose of demonstration program 1 is to show the ability of LDL++ to call a
C++ object to perform a specified substring manipulation, a feature not currently
supported within LDL++ itself. Once established, this capability can be used in
other situations to allow the extensive use by LDL++ of predefined C++ object
libraries. Conversely, LDL++ can be called by C++ opening the door on the use of
LDL++ to provide a formally robust database environment to C++ applications.
We see this as the first small step into a future in which deductive database engines
will provide a logically sound, industrial grade database repository underlying
object-oriented, user-facing applications.

Job Run Procedure

Step 1. The client uses SQL and/or special programs to fetch the data from three
databases, join them together, and load them into the UNIX environment.

Step 2. Using AWK or C++, convert the data to LDL++ database predicate format.
as in the following example:

p(ALN, 1, 'CIRCUITID01X-001", 'XH--, '04DS9.15', '04DUS5.56', "YH--', '04DS9.15',
'04DUS5.56', "XH--', '04DS9', '04DUS', '04DS9', '04DUS5', '04DS9', '04DUS)).
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Step 3. Code the LDL++ program and C++ module. The following is an example
extracted from a recent successful data quality project in which LDL++ played a
significant role [GARC]. The full LDL++ program contained more than 10 pages of
complex rules and took several hours for the live production run.

LDL++ PROGRAM

database( { p(string,integcr,string,suing,suing,string,sn'ing,sn'ing,
string,string,string,string) }).

import foreign
1d1_substring($Str: string, $Begin: integer, $Size: integer, SubStr: string) from
1d1_substring.o'.

% @ - QUERY FORM  ------
export duplicate_rcds(X,B).

export mismatch_ NCC(X,B,C,F.I).
export mismatch_NCI(X,B,D,G).

export mismatch_NCI2(X,B,E,H).
export mismatch_FS_NCI(X,B,J ,L,N).
export mismatch_FS_NCI2(X,B,K,M,0).

export rule_broken(X,A,B,C,D,E,F,G,H,1,].K).

% RULE 1.
% none of the circuit id's should be the same

duplicate_rcds(X,B) <-
PCXB, s ssass ), PCLXLB, s s sssss ),
X ~=X1.

% RULE 2.
% FS's NCC should be same as CEASAR's & CABS's NCC

mismatch_ NCC(X,B,C,E,I) <-
p(A’XQB ’C,D)E$F’G,H’I’J’K)’(C’C) ~= (F,I)'

% RULE 3.
% CEASAR's NCI should be same as CABS's NCI

mismatch_NCI(X,B,D,G) <-
p(A,X,B,C,D,E,F,G,H,I,J,K),D ~= G~

% RULE 4.
% CEASAR's NCI2 should be same as CABS's NCI2
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mismatch_NCI2(X,B.E,H) <-
p(A,X,B,CD.EF,GHLIK)E ~=H.

% RULE 5.
% (first 5 chara of) FS NCI should be same as first 5 chara of CEASAR & CABS'

NCIL

mismatch_FS_NCI(X,B,J,L,N) <-
p(A’X’B’C,D’E’F7G’H’IQJ7K)7
1dl_substring( D, 1, 5, L),
1dl_substring( G, 1, 5, N),
(J3,J) ~= L.N).

% RULE 6.
% (first 5 chara of) FS NCI2 should be same as first 5 chara of CEASAR &

CABS' NCI2.

mismatch_FS_NCI2(X,B,K.M,0) <-
p(A,X,B,C,D.E,F,G,H,LJ.K),
1d1_substring(E, 1, 5, M),
1dl_substring( H, 1, 5, O),
(K,K) ~= (M,0).

% Summarize RULE 2 TO RULE 6 into one single LDL++ rule.

rule_broken(X,A,B,C,D,E,F,GHLJK) <-
p(A,X,B,C,.D,E,F,G,H,LJK),
1dl_substring(D, 1, 5, L),
1d1_substring( G, 1, 5, N),
1dl_substring( E, 1, 5, M),
1d1_substring( H, 1, 5, O),
(C,CD.E,J.J K K) ~= (F.I,GH,LNM,O).

/*************************************************************
* This is C++ module called by LDLA++.
* This function creates a sub-string given the starting location

* and the size -
**************************************************************/

#include <string.h>
#include <stream.h>
#include <1dl_extern.h>

// Make sure that the name is not mangled
extern "C"
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{
LdlStatus 1d1_substring(LdlObject str, LdlObject begin, LdlObject size, LdlObject
substr); }

LdiStatus 1d1_substring(LdlObject str, LdlObject begin, LdlObject size, LdlObject
substr)

LdiStatus status = LDL_FAIL;
if (1d1_entry_pQ))
{
if ((1d1_string_p(str))

&& (1d1_int_p(begin))
&& (1d1_int_p(size)))

char* str_value;
int begin_value;
int size_value;

if ((str_value = 1d1_get_string(str))
&& (begin_value = 1d1_get_int(begin))
&& (size_value = 1d1_get_int(size)))

int str_len;
str_len = strlen(str_value);

if ((str_len > 0)
&& (begin_value > 0)
&& (size_value > 0)
& & (begin_value <= str_len))

{
LdlObject local_substr;
if (begin_value + size_value - 1 <str_len)

char temp_ch;
int  null_location;

null_location = begin_value + size_value - 1;
temp_ch = str_value[null_location];
str_value[null_location] = \0';
local_substr = 1d]_create_string(&str_value[begin_value- 1D;
str_value[null_location] = temp_ch;
)
else
local_substr = 1d1_create_string(&str_value[begin_value-1]);
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1d]_assign_argument(substr, local_substr);
1d1_delete_object(local_substr);
status = LDL_SUCCESS;

}

else
cerr << "\nExternal Error (substring): Invalid arg values" << end;

}

else
cerr << "nExternal Error (substring): Can not get arg values" << endl;

)

else
cerr << ™nExternal Error (substring): Illegal arg types" << endl;

}

return(status);

Step 4. Run the LDL++ program:

1dl++(1)> open ../iris2.rul
Opening file : ../iris2.rul ... done.
1d1++(2)> compile
Compiling all query forms in global module ... done.
1di++(3)> initdb moreTst.fac
Initializing database from moreTst.fac ... done.
1d1++(4)> query duplicate_rcds(X,B)
Querying : duplicate_rcds(X,B) ...

(1, CIRCUITID01X-001)

(6, CIRCUITID06X-023)

(7, CIRCUITID07X-023)

The number of records is 3.
1d1++(5)> query mismatch_NCC(X,B,C,F,I)
Querying : mismatch_NCC(X,B,C,F)]) ...

(1, CIRCUITID01X-001, XH--, YH--, XH--)
(2, CIRCUITID02X-006, XH--, XH--, ZH--)
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The number of records is 2.
1dl++(6)> query mismatch_NCI(X,B,D,G)

Querying : mismatch_NCI(X,B,D,G) ...
(3, CIRCUITID03X-023, 04DS9.15, 04DS9.33)

The number of records is 1.
1dl++(7)> query mismatch_NCI2(X,B,E,H)

Querying : mismatch_NCI2(X,B.E,H) ...
(4, CIRCUITID04X-021, 04DU5.56, 04DUS5.44)

The number of records is 1.
1dl++(8)> query mismatch_FS_NCI(X,B,J,L,N)

Querying : mismatch_FS_NCI(X,B,J.L,N) ...
(5, CIRCUITID05X-022, 55555, 04DS9, 04DS9)

The number of records is 1.
1dl1++(9)> query mismatch_FS_NCI2(X,B,K,M,0)

Querying : mismatch_FS_NCI2(X,B,K,M,0) ...
(6, CIRCUITID06X-023, 66666, 04DU5, 04DUS)

The number of records is 1.

LDL++ INTEROPERABILITY WITH ANOTHER DATABASE:
LDL++ AND DB2

Business Context

Many (most) applications within our corporation use the Common Location Edit
(CLEDIT) database application to validate location information associated with
company equipment, premises, and service. Within the various types of location
information, a large number of multi-valued dependencies exist. The existence of
invalid combinations of location information within the CLEDIT application allow
invalid patterns of information to become established within multiple independent
applications databases. The business problem is to prevent invalid combinations
from becoming established within the CLEDIT reference tables and also provide the
capability to access independent applications and "scrub” their existing databases
for "old garbage" which may have been established in the past.
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Technical Context

The purpose of demonstration program 2 is to show the ability of LDL++ to access
aremote DB2 database. The particular cardinality constraint being checked is that
the combination of geographic code, parcel code, and property index maps to a
single location code.

LDL++ PROGRAM

%
% Demo for showing the integration of LDL++ with DB2

% using the NDB server.
%

database( {  db2::'fsys.cledt_cloc'( cledt_loc_id:CHAR(16),

loc_pactel_cd:CHAR(11),
geo_terr_cd:CHAR(2))

local_name cledt _cloc

from netdbsrv

use fsys

user_name  Sxtsou

host_name  techlab

client_ip_address '129.34.223.10'

rpc_program_number 536870992

rpc_version_number 1

password XXXX,

db2::'fsys.cledt_parc'( cledt_loc_id:CHAR(16),

actg_parc_cd:CHAR(3),
prop_idx_cd:CHAR(1))

local_name cledt_parc

from netdbsrv

use fsys

user_name  SXtsou

host_name  techlab

client_ip_address '129.34.223.10'

rpc_program_number 536870992

rpc_version_number 1

password XXXX}).

% Query forms

export answer(W,Z).
export answer($W,Z).
export all($A,B,C,D).
export group($A,B).
export duplicate($A,B).
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% Rules
answer(W,Set) <- duplicate(W,U), group(W,Set).
duplicate(LocPactelCd,<(GeoTerrCd1, ActgParcCdl, PropldxCd1)>) <-
all(LocPactelCd, GeoTerrCd1, ActgParcCd1, PropldxCdl),
all(LocPactelCd, GeoTerrCd2, ActgParcCd2, PropldxCd2),
(GeoTerrCd1, ActgParcCdl, PropldxCdl) ~=
(GeoTerrCd2, ActgParcCd2, PropldxCd2).

group(LocPactelCd,<(GeoTerrCd, ActgParcCd, PropldxCd)>) <-
all(LocPactelCd, GeoTerrCd, ActgParcCd, PropldxCd).

all(LocPactelCd, GeoTerrCd, ActgParcCd, PropldxCd) <-
cledt_cloc(CledtLocld, LocPactelCd, GeoTerrCd),
cledt_parc(CledtLocld, ActgParcCd, PropldxCd).
/¥ log
1dl++(6)> query all('AVLNCAI11',B,C,D)
Querying : all'AVLNCAI11'B,C,D) ...
(AVLNCAL11, AD, 00A, B)
(AVLNCAL11, AD, 100, A)
(AVLNCALl1, AD, 100, B)
The number of records is 3.
1dl++(9)> query answer('AVLNCA11',B)
Querying : answer(AVLNCAIL',B) ...
(AVLNCAL11, {(AD, 00A, B), (AD, 100, A), (AD, 100, B)})

The number of records is 1.

CONCLUSION

In this paper we have shown the ability of a deductive database (LLDL++) to support
inter-operability with other programming languages and databases. In addition, we
have used this interconnection to perform several simple searches for "dirty data."

Now that connection is established, we intend to continue investigating the
capabilities of the declarative, deductive database environment t0 uncover, correct,
and prevent the corruption of large, independent applications. Of particular interest
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is the potential of LDL++ to serve as the underlying database engine for C++
development.

It is only through the deployment of new, productive, and adaptable technology,
such as deductive database, that the MIS functions of modern enterprises will be
able to effectively respond to the rapidly increasing demands and requirements
placed upon them by modern business. . The ever increasing competitiveness of
the marketplace will continue to increase the importance of multiple application
inter-operability and semantic integration.
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Abstract

We describe a system being built at UCLA to support spatio-temporal
analysis and queries on very large databases of atmospheric data. De-
ductive database technology is being used for detecting and tracking
evolving physical phenomena on massive data sets produced by com-
bined atmospheric and ocean global models.

The architecture of our system is based on the tight coupling of an
LDL++ system with external database systems, such as Postgres and
Quilt. This provides a computing environment where complex queries
and reasoning on spatial and temporal data can be easily expressed and

efficiently supported.

1 Introduction

Modern information systems are faced with the challenge of supporting increas-
ingly sophisticated applications spanning several databases and a spectrum of

1Work partially supported by Hughes Aircraft, under the University of California
MICRO-92 program, and by NASA under the HPCC/ESS NRA-92 program .

74



data types ranging from traditional alphanumeric data to multimedia infor-
mation. Many of these applications require complex analysis to be performed
in the spatial and temporal dimensions to discover important phenomena and
monitor trends taking place in the application domain under investigation.
Applications range from earth and space sciences to resource exploration, se-
lective marketing and sales analysis.

The objective of this research project is to provide new technology whereby
complex queries and reasoning on temporal and spatial data can be (i) easily
expressed, (ii) efficiently supported and (iii) integrated with similar technology
on traditional data. Toward the goal, we are

o developing an integrated model for spatial and temporal data and effi-
cient representation and reasoning on spatial-temporal knowledge.

o building a prototype to serve as a demonstration vehicle for the pro-
posed technology, and as a testbed for measuring the effectiveness and
performance of the proposed solutions.

Our approach consists of building primitives for expressing and model-
ing spatial and temporal relationships and patterns on top of a deductive
database system, that currently supports rule-based reasoning, and the rapid
prototyping of intelligent database applications. Our objective is to construct
a powerful system which will facilitate the task of describing, searching for,
and making complex decisions on multimodal data patterns (spatial, temporal
and alphanumeric).

This paper is organized as follows. In section 2 we describe the require-
ments of the application domain and our pilot implementation. The design
of a language that integrates LDL++ and EPL and which supports spatial
queries is discussed in section 3. The architecture is described in section 4 and
section 5 concludes the paper.

2 Application

We are working with atmospheric scientists on the analysis of atmospheric
data. We will first use a synthetic data set generated from the UCLA coupled
general circulation model AGCM [1, 7} which combines atmospheric and ocean
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global models. The simulation data is free of incomplete or contradicting infor-
mation, and thus it will facilitate the validation of our prototype environment.
This will then be applied and enhanced to deal with measurement data and
satellite images.

AGCM produces values on horizontal velocity, potential temperature, wa-
ter vapor and ozone mixing ratio, surface pressure and ground temperature.
It also stores fields corresponding to diagnostic variables, such as precipita-
tion, cloudiness, surface fluxes of sensible and latent heat, surface wind stress
and radiative heating on each grid on the surface of the earth. Typically,
output is written out to the database at 12-hour (simulation time) intervals,
but this can be controlled so the model can be run with different resolutions.
The lowest resolution version of the coupled GCM produces approximately 5
Gbytes of data per simulated year. A 100-year long GCM simulation with
high-resolution generates approximately 50 Tbytes of output.
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Figure 1: A Cyclone Map

We are interested in capturing features (usually spatial) and tracking them
over time, one example is the monitoring of cyclone tracks and cloud forma-
tions. We define a cyclone as an area in which circular geostatic winds are
occurring. As illustrated in Figure 1, the center of a cyclone is a local mini-
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Figure 2: Cyclone Tracks at Sea Level Over Time

mum in the sea level pressure and its extent is the largest isobar that forms
a closed contour enclosing the local minimum. The sea level pressure at grid
points over the earth are provided by the AGCM at regular time intervals. At
successive time intervals, a cyclone appears at different points, and a sequence
of such points for a given cyclone is called a “track” or trajectory (see Figure
2). In addition, the maturity of a cyclone at a certain time is closely related to
the shape of its associated cloud formation. So cloud formation type becomes
another time-varying attribute of a cyclone.

3 The Approach

Deductive databases [8, 4, 9, 10] extends relational database technology by
supporting complex objects and queries, rule-base reasoning, and rapid pro-
totyping through the use of a logic-based language. Although very little work
has been done to integrate spatial and temporal information in a deductive
database environment up to now[14, 12], we believe that a logic-based de-
ductive database language can allow scientists to conveniently pose complex
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queries and reason about spatial and temporal knowledge.

3.1 LDLH++

LDL++[18] is a second-generation deductive database system. It is based
on Horn clause logic, a subset of first-order predicate calculus, which gives it
superior expressiveness over traditional database query languages like SQL or
QUEL. To enhance the usefulness of LDL++ in GIS applications, we are
extending LDL-+-+ with spatial and temporal constructs. These new ba-
sic constructs can be combined freely to represent complex spatio-temporal
knowledge and allow reasoning on that knowledge.

3.1.1 Temporal Extensions

Traditional DBMSs only allow queries on the current state of the database.
However, our application involves tracking of phenomena in time, which is
very common in GIS applications. As a result, we need a mechanism that
allows us to easily and efficiently reference the state of an object at different
times.

As defined in [13], the transaction time of a fact in temporal databases
refers to the time when the fact is stored in the database, and from that
time it is reflected in the results of subsequent queries. It may be sufficient
for traditional applications, but for atmospheric science applications, data
collection and processing is time-consuming, and hence the updating of the
database with the collected data and any derived information will be delayed.
Therefore, the database must support valid time, which is the time when the
fact is true in a modeled reality. Temporal selection of objects based on valid
time can be supported in £LDL++. Temporal selection, similar to spatial
selection, is analogous to selection in relational algebra. Each predicate and
object is augmented with a timestamp which marks their valid times. X[t]
denotes an object X’s state at time ¢. The predicate pred[t](X,Y’) means the
relationship pred between objects X and Y is true at time ¢, and remains so
until changed at a later time ¢' > ¢; it is equivalent to pred(X[t], Y[t]). Note
that the time annotation only makes sense for temporal objects (whose state
is time varying); the annotation doesn’t change the value of constants. For
example, coord(10,10)[¢] is equivalent to coord(10,10) for all times ¢ since the
coordinate (10,10) represents the same location regardless of time.
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We are also investigating extensions that make it easier to express complex
event patterns in a rule-based form. Therefore, we have designed and im-
plemented an event pattern language (EPL) on top of LDL++. This allows
the specification of complex event patterns as part of the query goals. For
example, the following rule:

formation time(X) <- ep(+cyclone(Y)), X = Y.evtime.

can be used to get the time of formation of cyclones. The EPL predicate
ep(<event-pattern>) is true when there is a sequence of events that matches
<event—pattern>.

An event pattern is expressed as a regular expression of primitive events
augmented with predicates. Primitive events in EPL are update events to a
database table or a clock event. Update events of a database table are of the

following forms:

o +<table-name>(X) : insertion of a tuple X into <table-name>.
e -+<table-name>(X) : update of a tuple X in <table-name>.

o -<table-name>(X) : deletion of a tuple X in <table-name>.

Given events ey, ..., €n, and predicates py, ..., Pn, the following event pattern
constructors:

e any: any primitive event,

(~ e1): an event pattern that does not match e,

A(*,€1): a sequence of zero or more e1’s,

A(n,e1): a sequence of n e;’s,

o < e1,€,...,en > a sequence consisting of ei, immediately followed by
es, ..., immediately followed by en,

le1, €2, ..., en): < e, A(*, any), ez, A(x, any), . . ., A(x, any), en >,

{e1,€2,...,€n}: an event pattern that matches any of e; (1<¢<n),

€1,P1,---,Pn = an event pattern e; satisfying pi, ..., Pn,
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3.1.2 Spatial Extensions

We also propose to extend LDL++ to support spatial reasoning by introducing
the basic 2-D spatial data types point, line, polygon, and rectangle. The logical
representation of a spatial object can be derived from its physical representa-
tion. Different geometric objects have different set of geometric properties. A
geometric object can be logically represented as a set of geometric features.

geom C {location, extent, length, direction, slope, size, shape}

For example, a point being a 1-dimensional geometric object, only has a lo-
cation and empty extent. point = {location, extent}. Besides selecting facts
based on the values of their alpha-numeric attributes as in traditional database
applications, we also want to be able to retrieve spatial data based on their
spatial properties.

A set of predicates are defined on the spatial data types. They are efficiently
supported by hierarchical spatial data structures (e.g. quadtree[11]), and can
be categorized as spatial selection and spatial join operators.

A spatial select operator selects spatial objects on the basis of their geo-
metric properties. Spatial selection is analogous to relational select. It either
retrieves a geometric property (size, location,etc) of a geometric object or iden-
tifies facts that satisfy some predicate on the spatial properties of an object.

e area( $X, Area )%: evaluates the area of polygon X.

e perimeter( $X, Perimeter ): evaluates the perimeter of polygon X.

o centroid( $X, Centroid ): finds the location of polygon X’s centroid.
On the other hand, spatial join predicates join spatial objects based on

their spatial relationship with some other spatial objects. They evaluate and
identify interrelationships between sets of spatial objects.

e in_window( X, $Window ): finds all spatial objects Xs that lie in a
rectangular window.

2In the declaration of query forms in LDL++, bound arguments are prefixed with an
$. The other arguments are free. Our system also supports query forms with bounded
arguments in place of free arguments.
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o closest_to( X, $Point ): finds the spatial object that is closest to a point.

o within( X, $Y, $Distance ): finds all spatial objects Xs that lie within
certain distance from spatial object ¥

e at( X, $Point ): identifies all spatial objects Xs at a point.

e passthrough( X, Y ): identifies all lines X's that passes through polygons
Ys.

e adjacent( X, Y ): identifies pairs of spatial objects that lie adjacent to
each another.

o contain( X, Y ): identifies all spatial objects Xs that is contained in Y's.
A polygon can contain points, lines, and polygons, while a line can only
contain points or lines.

o intersect( X, Y, Z ): locates the intersection Z of spatial objects X and
Y, which can either be a line or polygon. The intersection of 2 polygons
is a polygon, the intersection of a line and a polygon is a line, while that
of 2 lines is a point.

The above predicates can be efficiently supported by using quadtree as the
underlying spatial data structure. A spatial join degenerates to a spatial selec-
tion if all but one of the spatial arguments are fixed. Also, spatial operators,
selections, and joins become simple spatial predicates which are either true or
false if all the arguments are bound.

In addition to these new built-in predicates, LDL-++ also allows the defini-
tion of new geometric datatypes and predicates in C++. This gives users the
ability to develop specialized geometric algorithms that operate on the spatial
data structures efficiently.

4 Example Application

In this section, we show a few example queries in a cyclone tracking application.
We have 2 tables in our database,

{cyclone( Id:inetger, X:float, Y:float ) }
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which is updated as cyclones appear, move, and dissipate, and
{cyclone_track( Id:integer, Track: [(time,float,float)] )}

which stores cyclone tracks as lists of 3-dimensional points in space and time.

Query 1: Identify the location of formation of cyclones.

creation_location(ID, X, Y) <-
ep(+cyclone(U)), ID = U.id, X = U.x, Y = U.y.

Query 2: Identify all pairs of cyclones that come within 50 miles of LA within
a month of each other.

cyclone_pair(ID1, ID2) <-
ep( [ -+cyclone(X), distance(X.x, X.y, 'LA’, D1),
-+cyclone(Y), Y.id "= X.id,
distance(Y.x, Y.y, ’LA’, D2),
D1 <= 50, D2 <= 50,
Y.evtime - X.evtime <= one_month

]
), ID1 = X.id, ID2 = Y.id.

Query 3: Find cyclone tracks which starts within a certain time interval
and region (Vindow), and which last longer than a certain range and reach
minimum pressure below a given millibar value.

find_track( Id, Track, Intrv, Range, Window, SLP ) <~
cyclone_track( Id, Track ),
startDuring( Track, Intrv ),
startInWindow( Track, Window ),
rangeGT( Track, Range ),
minPressurelT( Track, SLP ).

startDuring( [(Time,_,_)|_], Intrv ) <-
contain( Intrv, Time ).

startInWindow( [(_,Lat,Lon)|_], Window ) <-
contain( Window, pt(Lat,Lon) ).

)
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rangeGT( Track, Expected_range ) <-
range( Track, Actual_range ),
Actual_range >= Expected_range.

minPressureLT( Track, SLP ) <~
minPressure( Track, Min_SLP ),
Min_SLP < SLP.

where range, and minPressure are aggregate predicates in LDL++.

5 Architecture

Our objective is to build a prototype system testing various techniques and
demonstrating the feasibility and benefits of semantic processing of atmo-
spheric and earth sciences data. This processing combines searches on al-
phanumeric data (such as annotations and system generated keywords de-
scribing images), summary data (such as 3-D contours and iconic abstracts)
and pixel-based images. The most effective query-execution strategies in such
a multimedia database intermingles searches in the different media domains
to exploit their interrelationships and reduce the search space [2]. Therefore
we propose the architecture as shown in Figure 3.

The advantages of this architecture include practicality and flexibility, ob-
tained by combining the strengths of various database systems and prototypes
available at UCLA. The Postgres extended relational database system(16] is
used to store, search and manage alphanumeric information. At the core
of the system there is an integration layer which coordinates the underlying
systems, and supports high-level functions such as spatio-temporal reasoning
on multimedia domains. This integration layer currently uses the LDLA+
system for spatial temporal queries. In addition, LDL++ has an open ar-
chitecture towards other DBMSs. These features allow efficient and flexible
access to multimedia data stored in underlying databases, as needed to real-
ize this architecture. Of particular importance, e.g., is the ability of taking
full advantage of externally defined ADTs such as those provided in Postgres.
Image and spatial data, managed by existing GISs, will also be connected and
used in a similar fashion.

Another important function of such integration is the extraction of index
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terms, characteristic shapes and similar summary data to be used for object
indexing. This data ingestion process is basically a bottom-up operation that
feeds summary data to the upper layer and to the Alpha-numeric DB and
Shape DB. Due to the variety of applications and data types that we would
want to support it is clear that such a system must be extensible and allow
users to provide the “transducers” that extract the indexing features for an
object. The extraction of the index entries can be computation intensive and
will be executed on a supercomputer platform.

6 Conclusion

In this paper, we have described the uses of a logic based data language
(LDL++) in a prototypical atmospheric science application. Spatio-temporal
extensions to LDL++ allow scientists to easily query and reason about spatio-
temporal information. In addition, query processing is enhanced by the use
of active content-based indexes that are supported by LDL++ in a straight-
forward manner.

There are still many issues that need to be addressed by the database and
GIS communities to make temporal GIS commonly available. In particular,
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query processing and optimization[3, 5], support of multiple level storage [15,
17], and parallelism[6] are a few areas that we are currently pursuing.
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1 Introduction

We are involved in a cooperative study with a group of EOS [1] investigators at
the University of Washington relating to the development and implementation of
spatially-distributed models of water, sediment and solute transport in the Amazon
river basin. A detailed examination of the requirements and computational activities
of these investigators revealed that adequate computational support for the formula-
tion and iterative construction/testing of their models was severely lacking [3]. The
overall goal of our project is to design and develop a system providing computational
support that would permit these and other investigators to achieve their scientific goal
more efficiently [2, 3]. We believe that the efficiency of such individuals is measured
greatly in terms of how quickly they can find appropriate solutions to problems in
their domain of application. Our research involves understanding the nature of earth
science investigations and subsequently the design and development of a Modeling
and Database System (MDBS) [4] to provide explicit, high-level support for model
development and database construction, maintenance and access. The focus of the
current paper is on the study of logic based languages appropriate for implementing
applications that involve spatial data and scientific computations. One such appli-
cation is the problem of water routing in the Amazon basin which is discussed in
detail.

In the modeling of scientific phenomena, an activity of fundamental importance,
is the organization of knowledge into conceptual domains (C-domains), which consist
of collections of entities and transformations across entities. An important goal of sci-
entific activity is the discovery of appropriate representational domains (R-domains)
for these C-domains. In particular, we may view scientists as employing lattices of

*Supported in part by NSF grant IRI-9117094.

87




domains, in which relatively high-level C- and R- domains are defined inductively in
terms of low-level domains; e.g., low-level domains like polygons and line segments
may be used to define high level domains like Digital Elevation Models (DEM) and
Drainage Basins. Each R-domain is implemented by one abstract R-domain and a set
of isomorphic concrete R-domains. Abstract R-domains provide specifications of the
elements and transformations, while concrete R-domains define the structures of the
elements and realize the transformations. Languages used by scientists should allow
them to construct and apply an extensible and potentially very large collection of R-
domains and transformations, thus generating a “complete” set of concepts that they
need for modeling some set of phenomena. Such languages should be largely declar-
ative in nature. Coupled with the knowledge that ‘algorithm = logic + control’ we
were prompted to use logic programming languages in our implementation. The use
of logic programming languages allows the possibility of not only describing, but also
of coding and optimizing, the implementations of a system in a uniform framework.
We chose the deductive database language CORAL [5] as our basis.

In this paper, we briefly report our experiences of using CORAL in our scientific
applications. A large set of R-domains was built in CORAL. Higher level domains
were constructed from primitive domains, thus creating a domain hierarchy. In gen-
eral, R-domains form a lattice in which inheritance of both structure and transforma-
tions occurs naturally. Also, a simplified version of an application of major importance
to Earth scientists was coded in CORAL. It involved the construction of a drainage
network from a DEM, and the application of a spatially-distributed, time-sliced hy-
drological model in order to compute the discharge of runoff from the network. We
found that logic programming based languages are good for applications which are
not computationally intensive. Mixing some control primitives (e.g., pipelining, or
other annotations in CORAL) into pure logic or relational programming languages
improves the performance to a significant degree. Finally, coupled with imperative
languages such as C-++, logic programming languages appear capable of providing
a reasonable basis for developing applications which can even be computationally
intensive. Along with the MDBS project, we have also designed a model for manag-
ing the metadata of R-domains and transformations, which we represent in the same
database of CORAL relations. This allows queries on the metadata to be expressed
in CORAL.

This paper is organized as follows. The development of the complex spatial ab-
stract and concrete R-domains and their associated transformations, together with
the Amazon watershed example is the focus of Section 2. Section 3 describes the
experiences of coding in CORAL. Conclusions are presented in Section 4.

2 Application Development in CORAL

R-domains have been used to formulate the data model for MDBS, where a C-domain
is represented by (a) a single abstract R-domain that corresponds to the C-domain
and its associated transformations and (b) a set of isomorphic concrete R-domains,
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each of which implements the abstract R-domain and its transformations in terms
of a specific, but distinct, representation. Polygons, for example, can have several
concrete representations such as sequences of points or sequences of line segments.

2.1 Spatial Domains

A library of spatial domains with their associated transformations is created in
CORAL. The characteristics used to define a concrete R-domain include

1. the domain name,

9. the structure or representation of the elements in the domain, e.g., set, tuple
etc.

3. constraints on the values of domain elements, e.g., constraints that differentiate
a convex polygon from the general class of polygons etc.,

4. a set of transformations for elements of the domain.

The library includes primitive domains such as point with X- and Y- coordinates,
point.pairs and further complex domains such as polygons, rectangles and rasters.
Transformations on these created domains also form part of the library. For example,
the following code represents the detection of colinear points when the domains point
and line have been defined.

pt_colinear(Pointl, Point2, Point3) :-
Line = line(Pointl, Point2),
pt_is_on_line(Point3, Line).

pt_is_on_line(Point, Line) :-
Point = point(X,Y),
Line = line(point(X1,Y1),point(X2,Y2)),
Y = ((Y2-Y1)/(X2-X1))*(X-X1) + Y1.

An important mechanism for the inductive construction of new R-domains involves
the application of constructors (e.g., line in the above program, or set, tuple, etc.) to
elements from previously defined domains, which may also have constraints defined
on their values. It is worthwhile to note that such constraints induce the inheritance
structure on the R-domains, e.g., defining the domain convez polygon from the domain
polygon by placing constraints on the structure of a polygon.

2.2 Water Routing Computation

We used CORAL to code an application problem which we are investigating with
a group of EOS investigators. One of the basic problems which these earth scien-
tists are facing is to construct computational models which represent the routing of
water, sediment and solutes down the whole of the Amazon River watershed. This
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Figure 1: Simplified View of the Discharge Computation

problem is relatively complicated in terms of the structure of the various domains
and transformations and the size of the datasets that are required for an adequate
analysis.

In Figure 1, we show the datasets and operations that provide a simplified view
of the problem. Each dataset corresponds to an element in some concrete R-domain
and the operations correspond to transformations on domain elements. The sequence
of computations involves first choosing DEMs of interest by intersecting them with
an appropriate area (region around Manaus) and then combining them into a single
DEM. Rainfall data from points inside this area and for specific time periods are
retrieved and interpolated over the DEM. The DEM is used to generate an “isochrone
map” that models the flow of water from each point in the DEM to the mouth of
the river. Hydrographsis a domain of representations of the discharge of water at the
mouth as a function of time.

DEMs are represented as a grid structure with tuples comprising pairs of point
coordinates and their corresponding elevations. These tuples are stored as ground
facts in CORAL. Each point on the grid has eight points adjacent to it, the neighbors.
For example, the code for the neighbor relation would be:

neighbor(point(I,J), point (M,N)) :-
dem(point(I,J), ), dem(point(M,N), _),
I-1 <=M, M <= I+1,
J-1 <= N, N <= J+1.

Water flows from a point to its neighbor having the least elevation. The mouth
of the DEM/watershed is the point from which there is no further drainage. The
isochrone map or the “equal travel distance map” which consists of lines connecting
points located equally reachable from the mouth of the basin, is thus generated. For
generating the flow path from each point in the DEM to the basin mouth, we have:
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final_flow(point(From_X1, From_¥Y1), point(To_X1, To_Y1)) :-
one_flow(point (From_X1, From_Y1), point (Next_X1, Next_Y1)),
final_flow(point (Next_X1, Next_Y1), point(To_X1, To_¥1)).

where one_flow generates facts corresponding to the flow between adjacent nodes in
the DEM.

Rainfall data at observation points are recorded at fixed intervals of time. In
other words, we have layers of data, each corresponding to a time instant, containing
rainfall measurements for all the observation points. These layers are termed Rain
Rate Field Layers (RRFL). For computational purposes, the data are organized in the
form of relations with individual tuples consisting of the time of recording, coordinate
of the observation point and the rainfall measurement at the particular instant of
time. This data, from observation points located within the DEM area (Manaus), are
to be interpolated over the DEM, thus generating the Grid Rain Rate Field Layers
(GRRFL). The process of interpolation may be denoted as :

Ierrri(t,p) = 2 (Igzpa(/tgl ZIS Z z,z.;t)()l’a q))

where

Igrrri(t,p) : interpolated intensity at point p for time slice %,

Ingrr(t,q) : recorded intensity at observation point ¢ for time slice t,

dist(p,q) : Euclidean distance between points p and g, and

2 : represents the sum over all observation points ¢ in the rain rate layer.

Finally, the discharge at the mouth of the watershed is computed by taking the
isochrone map and the interpolated rainfall layers generated by the previous modules.
The corresponding CORAL code is:

discharge(Del_dist, Time_n, sum(<Rate>)) :-
Dist = Del_dist * Time_n,
iso_points(Pt_d, Pnts),
Pt_lyr = Dist - Pt_d + 1,
grrfl(Dist, Pt_lyr, Pnts, Rate),
Pt_d <= Dist.

where

Del_dist : Measure of computation step, and
Timen : Time instant at which discharge is to be computed.

This is the runoff at the mouth of the basin as a function of time.

The whole exercise is important in modeling the quantity of water flow at various
points in the Amazon watershed as a result of rainfall in the region. Storms can be
localized and the impact of each of them on the flow can be estimated. It can be used
to predict future events based on results of collected data.
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2.3 Metadata Management and User Interface

We also use CORAL to manage the metadata effectively within the database and
to implement, in part, a simple user level interface. We briefly explain the use of
CORAL in these two aspects.

Metadata management is necessary in scientific applications. Users often need to
search for appropriate datasets/algorithms from databases to design their computa-
tion models. In our database, metadata provides the description of the abstract and
concrete R-domains, their structures and transformations. We store the metadata in
four kinds of relations in CORAL. They are:

1. the abstract relation for storing characteristics of the abstract R-domains: the
names, sub/super-domains relationships, and the corresponding transforma-
tions;

9. the concrete relation which describes all the concrete representations for each
abstract domain, the structural representations, the constraints on the elements
in the domain and the transformation implementations;

3. an element relation for each abstract domain describing the elements; and

4. the isomorphism relation containing transformations between different concrete
domains of the same abstract domain.

For example, an abstract R-domain for DEM would be described as a tuple:

abstract
(AbsDomain, ConDomains, Transformatioms, SupDomains, SubDomains) .
abstract (dem, {dem_PointElevPair, dem_Binary},
{[elev_at, [dem,point], [elevation]],
[eight_neighbor, [dem,point], [pointSetl]l},
{raster’},

-).

Each element relation can store information relating to the nature of the dataset
defining the element. This includes basic header information which is used commonly
(as part of the Spatial Data Transfer Standards) for describing the contents of binary
files containing Landsat Images or DEMs. The information includes the resolution of
data, the coordinates defining the boundaries and the name of the place etc. Another
important field, Lineage, can also be incorporated to reflect the error propagation at
various stages of computation and element creation from existing datasets.

Metadata can be queried regarding the existence of elements, domains, trans-
formations and the interrelations across domains. One important feature for using
CORAL for defining the schema is its ease of use compared to other database systems.
Tables can be defined declaratively and data, elements, tuples/facts can be added in-
crementally without concerns for restrictions on buffer size. Populating tables is as
simple as editing a text file. All column boundaries and type checks are taken care
of by CORAL at the time of query evaluation.

92



We have also experimented with CORAL in implementing a small set of user level
commands that allow easy manipulation of databases. We use predicate names in
CORAL to represent functions that are performed by a code segment. Such “key-
words” can be incrementally added to represent compositions across functions by
using existing predicates. Thus, while the command set is rigid and terse it is easily
extendable. An example is the command apply, which takes as input a function
(transformation) and applies it to the elements of a concrete R-domain. Suppose we
wish to compute the perimeter of a polygon. It is the sum of all the line segments
forming the polygon. The code segment pgon_perimeter is shown in the following.

pgon_perimeter (Polygon, Perimeter) :-
Polygon = polygon(PointSeq),
ptSeq_to_lsegSeq(PointSeq, LineSegSeq),
apply_to_all(lseg_length, LineSegSeq, LengthSeq),
list_sum(LengthSeq, Perimeter).

apply_to_all(_, [1, [1).

apply_to_all(Function, [Input|IList], [Output|OList]) :-
apply(Function, Imput, Output),
apply_to_all(Function, IList, OList).

Here the function apply-to_all applies the given function to the input list. Similarly,
for computing the area of a polygon, we use function composition by employing the
signed sum of the area of individual trapezoids constituting the polygon:

pgon_area(Polygon, Area) :-
apply_sequence( [pgon_signed_area, num_abs], Polygon, Area).

pgon_signed_area(Polygon, SignedArea) :-
pgon_to_trapezoidSeq(Polygon, TrapezoidSeq),
apply_to_all(trapezoid_signed_area, TrapezoidSeq, AreaSeq),
1list_sum(AreaSeq, SignedArea).

We feel that this feature i.e., creation of new functions using low-level primitive ones,
is very crucial in developing large applications.

3 Observations

CORAL has provided our first exposure to the use of a logic programming language
in developing a large scale application. The facts that CORAL was a new language
and that the declarative style of programming is different from the imperative, was
initially a source of problems. At the time of our application development, CORAL
was still in a premature stage of development (version 0 and the first cut of version 1).
All features had not been implemented. Presumably CORAL has evolved into a much
more stable system since then. Our main effort is to share the experiences of using a
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logic programming language for implementing scientific applications involving spatial
databases. We summarize the following four aspects: declarativeness, performance,
improvements, and useful (expected) features.

3.1 Declarativeness

Tts declarative nature makes CORAL fairly easy to work with. The online help is
useful for the beginners. The constructs are similar to those of an imperative language
(e.g., assignment, expression evaluation).

It opens a new domain of working for scientists. Being largely declarative in
nature, logical phenomena can be modeled with relative ease. It is our estimate that
many scientist teams focus up to 50% of their time on computational issues that
are irrelevant to their scientific research [4]. We believe that a large part of this is
consumed in management of files, input/output, memory, data structures and the
like, many of which can be implicitly taken care of when we use CORAL. Thus,
scientists can focus their attention on what phenomena need to be modeled rather
than how it should be done.

3.2 Performance

Comparing its performance to imperative languages would not be doing justice to
CORAL. The difference becomes apparent when dealing with CPU-intensive com-
putations, e.g., while generating the isochrone map (isolines), working with DEMs
of relatively small sizes (100 x 100 = 10,000 point grid). But then, computing the
transitive closure over a large number of points would be equally intensive for all logic
languages.

One important feature of CORAL is its integration with C++, thus supporting
both the declarative and imperative programming styles. CORAL commands can be
embedded in C++ to make an “extended” C++. This proves extremely useful for
CPU-intensive work, e.g., for isolines module, the drainage network was ascertained
in an imperative fashion using C++ and subsequent rainfall computations were com-
puted in a declarative style without breaking the relation abstraction. We found that
having the support of an imperative language is not only of value for purposes of ef-
ficiency, but is actually necessary for coding computational tasks. In our application,
estimating the isochrone map was the bottleneck, taking almost 30 minutes (in the
run time of about 31 minutes for the total application) for a small 50 x 50 = 2,500
point DEM grid. The module was about half of the application in terms of the size of
code, and extremely CPU-intensive. However, when we coded the same computation
in C+-+, with embedded CORAL, the same task just took 11 seconds (without any
optimization). We could have optimized on the CORAL program, but still any fig-
ure in minutes for a DEM as small as 2,500 points, is not comparable to imperative
languages.

94



3.3 Improvements

We achieved improvement without using C++ by generating ground facts from declar-
ative modules on a one-time basis, e.g., the neighboring points and the detection of
flow from a point to an adjacent point, can be precomputed and remains unchanged
for a particular DEM. This greatly reduced the execution time since most of the
computation of transitive closure was eliminated.

Annotations provided the tools to make the programs run efficiently. Since they
can be used to provide directives on a per-module basis, different annotations can be
used at places according to the requirements. We were able to increase efficiency to
a considerable extent using annotations like pipelining, permitted speedups of almost
10-14% for some modules. Some annotations that could have helped us, had not been
implemented in the initial versions of CORAL.

3.4 Other Useful Expected Features

One feature that the initial versions of CORAL lacked was a stable database support
for persistent relations. While operating on large DEMs, domains and all associated
transformations with only in-memory support, we faced problems regarding lack of
free space.

The usefulness of CORAL in our application would have increased if it were pos-
sible to have the CORAL engine running as a backend query processor to which
commands could be piped or sent using streams. This could lead to the integration
of CORAL with other software packages if required.

Finally, debugging features in CORAL posed a problem while the application was
being developed. The initial versions were not equipped with an interactive debugger,
so error detection during execution was not simple.

4 Conclusion

Using a logic-based, declarative language leads to a culture shock for programmers
experienced in using imperative languages. The concepts of variable definitions and
iterations is replaced by predicates, facts and recursion. For beginners, not worrying
about the underlying memory management and access methods, is in itself, a big
difference. As far as our project was concerned, CORAL provided the necessary infra-
structure for development, but what it lacked was support for persistent relations.
The initial versions were not equipped with a very stable link with the EXODUS [6]
data management system, so loading spatial domains and transformations at each
stage became a bottleneck. For the project, the ideal use of CORAL came as part of
metadata management. It was very well designed, easy to use and largely extensible.
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Abstract

There have been numerous attempts to identify applications that benefit from and
that exploit the unique features of declarative languages, in general, and deductive logic, in
particular. This paper outlines a scenario in the data mining, or knowledge discovery,
application domain that has been defined by potential users in the “real world.” The scenario
is illustrated using a pseudo-language that has been developed in an advanced development
project at Bull Information Systems. The scenario described here would seem to be
applicable to a large number of problems in many different application areas.

1. Introduction

For some time researchers have been casting about for appropriate application areas
for the deployment of declarative and deductive logic database systems. Most of
these attempts to identify candidate application domains have been conducted by the
researchers and developers of the systems [Tsur, Kris]. If deductive logic database
systems are to become popular in the marketplace, it is mandatory that “real world”
prospective users of those systems (e.g., end-users, application developers,
knowledge workers) become involved in identifying their advantages for given
application domains. This paper is an example of such an endeavor, and as such, it
is not a research paper.

This paper describes an actual situation in which the declarative components of a
Deductive and Object-Oriented Database (DOOD) system are applied to solve
information requirements that exist today. It is important to note that these
requirements have been identified by the prospective users, not by the system
developers. These requirements cannot be satisfied by current database
management systems (DBMSs) in the marketplace.
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The application domain consists of a part of the public school system in the United
States. The DOOD system described here is the product of an Advanced
Development Project at Bull Information Systems and is not available as a
commercial product. This system will be referred to in this paper as NEXT-
GENERATION.

This paper represents the point of view of a knowledge worker: the user of the
DOOD system. Its purpose is to demonstrate the real-world applicability of
DOOD systems in general, and of declarative logic in particular. Section 2
discusses the background and sets the context for focusing on the public school
application domain. Section 3 discusses the nature of data mining. Section 4
introduces the knowledge-worker environment provided by NEXT-
GENERATION in which the public school officials can operate. Section 5
develops a scenario that utilizes a declarative logic language to perform data-mining
activities. Finally, Section 6 discusses the advantages provided by this approach and
why this approach is superior to using features provided by existing systems, such
as SQL-based DBMSs.

2. Background

As public school districts in the United States move toward site-based management
and increased local control, a number of new issues have been identified. Many of
these issues are motivated by the need of school officials to access and evaluate
various kinds of socioeconomic data in the school neighborhood. One of the most
serious problems from a database perspective is how to integrate a collection of
databases and apply them in ways that are dramatically different from their intended
use. For example, school officials often must resort to importing data by hand into
spreadsheets and performing rather crude and simplistic analyses based on
elementary binary relationships among data elements. Not only do the various
installed data models not support the new needs, the current state of the technology
does not support their principal tasks: data mining and knowledge discovery.

The situation is ripe for demonstrating support for data mining kinds of activities.
Additionally, it is paramount in such an environment to integrate (on the desktop)
various commodity tools, such as spreadsheets, Computer Aided Design (CAD)
tools and Geographical Information Systems (GIS).

This paper discusses a specific program that has been established to provide
assistance to the local school districts in one part of the United States. To protect the
privacy of this organization, it will be referred to in this paper as the Inter-School
Program (ISP). The data available comes from many government sources at the
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federal, state, and local levels. The agencies involved in providing data span almost
all socioeconomic services and support provided to the community. The
information includes census data (i.e., demographics), criminal data, educational
performance data, and social services and assistance data (e.g, welfare). The
objective of the program is to make this data available to school administrators
(such as school principals and superintendents) to help them formulate policy and
make decisions based on a comprehensive and collective view of each individual's

data.

The school administrators that have provided input, have evidence that among the
myriad volumes of data is knowledge upon which they can base decisions. They
acknowledge that they generally start out having no specific queries in mind, but
after browsing through the data, queries tend to suggest themselves. They have
already successfully demonstrated this to a limited degree, using spreadsheets and
hard-copy paper reports. But they are clearly in need of more sophisticated and
refined sets of supporting software tools.

The problem definition is quite open-ended due to the administrators’ limited
understanding of what lies within the data. It appears that their understanding of
what they can extract from the data is based on nothing more than conjecture and
speculation. Yet, they clearly have the domain knowledge to cooperatively guide
the search. This is a classical case of data mining (or knowledge discovery) and is
where NEXT-GENERATION and deductive logic programming can play a role.

3. Data Mining

What is data mining? It is a term used to suggest the discovery of knowledge not
implicitly stored in the database being queried. It is usually used in conjunction with
data that is not collected for any particular purpose or at least not for the purpose the
questioner has in mind. The data volumes are usually very large, and the sources
are frequently quite diverse and often of an historical nature (e.g., census data,
complete project data compiled from numerous subcontractors, DNA sequence
data, etc.).

The process of data mining usually begins with a poorly formed notion of the task
to be performed, which can be called an hypothesis [Tsur]. This hypothesis is
refined through iterative steps during which human judgment is employed by
analyzing the results and determining whether or not further refinement is
necessary. If no more refinement is found to be necessary, then in the judgment of
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the human user, the task has been completed. The result of the task is that the
hypothesis has been confirmed, disproven or remains unproven.

The problem until now has been how to process and analyze the data. Users have
been forced to use different and sometimes incompatible tools (such as
spreadsheets, DBMSs, etc.) or to develop complex and resource-expensive
specialized applications. With the emergence of declarative logic-based systems,
these users have an opportunity to analyze their data in a much more consistent and
powerful fashion.

4. A DOOD Environment for Knowledge-
Workers

The deductive technology of NEXT-GENERATION derives from the EKS
System prototype [Baye], but it incorporates object-oriented features both at the
architectural and language levels. In addition to a data model with objects and
values resembling that used in the O2 system, it supports a data manipulation
language with a Datalog-based declarative component (to write deduction rules and
integrity contraints) and a more classical imperative component (to write methods
and functions). It is built on a storage manager having many features in common
with object-managers, rather than with more traditional relational data stores.

Without going into a detailed description of NEXT-GENERATION (because of
proprietary considerations), some of its basic features are described here. The
knowledge-worker who uses NEXT-GENERATION has some acquaintance with
deductive logic. The core of a NEXT-GENERATION schema consists of types
and predicates. A type is a named set of values. Types are made up of some basic
internally-defined data types (such as integer, boolean, character, etc.) plus user-
defined types, which are sometimes referred to as abstract data types. User-defined
types can be created with the help of NEXT-GENERATION-provided type
constructors, which allow one to create complex collections and structures, such as

tuples, sets, lists, bags.

Predicates define relationship patterns between NEXT-GENERATION values.
The pieces of information stored in a NEXT-GENERATION database are the facts
built up as instances of the predicates. A predicate closely resembles a relation or a
class.

A basis predicate is characterized by having a self attribute, of type ref (refisa

4
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NEXT-GENERATION-specific data type), such that the value of this self attribute
uniquely identifies the corresponding (explicit) fact throughout the lifetime of the
database (i.e., it plays the role of an object identifier). Basis predicates are
updatable. (A fact for a basis predicate is also referred to as an object and is the
means whereby object-orientation can be supported by NEXT-GENERATION.)
Facts for a basis predicate can be explicitly stored as part of the content of a
database, or they can be derived by the rules that define this basis predicate. Below
is an example of a basis predicate:

City (ref Self,
string[20] Name,
string[30] Country,
integer4 Population)

A virtual predicate does not have a self attribute. Thus facts built up as instances of
a virtual predicate do not have a fact identifier. Facts corresponding to a virtual
predicate can only be derived (i.e., they cannot be explicitly stored). Virtual
predicates are not updatable. They can be thought of as being similar to views in a
relational system. Below is an example of a virtual predicate:

City (string[20] Name,
string[30] Country,
integer4 Population)

The NEXT-GENERATION knowledge-worker operates in a client/server
environment. The NEXT-GENERATION tools (modeling tools, query tools, etc.)
are available from the desktop personal computer, and the data and schema
definitions reside on a server system that can maintain and manage multiple
databases.

5. A Scenario

Below is a typical scenario that might be followed by a knowledge-worker in a
public school environment who has access to the ISP data and to the NEXT-
GENERATION system. The first-person narrative style is used below to better
simulate a real-world situation.

I am the school principal of a high school in some large city in the United States.
Lately I have become concerned over the possible increase in drug use within my
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school district. My fears have been motivated by rumors and unconfirmed reports
from students and teachers. If these reports are true, I would like to confirm them
and identify the responsible parties. I would especially like to know if there is a core
of students who might be soliciting or recruiting other students into this pattern of
behavior and in what part of the district they reside.

So, the challenge is to uncover some pattern that will allow me to make an
informed assessment. First, I need to understand what data I have available for
examination. Then, I need to formulate some meaningful hypotheses and test them
against the available data.

The data comes from three separate sources provided through the ISP. Each source
deals with a different data group. One group consists of criminal justice data
dealing with crimes in the urban area in which my school is located. Another group
contains public schools data for the school district that includes my school. It has
data such as student grades, age, addresses and attendance history. The last data
group consists of census track data.

The criminal justice data consists of the following sort of information: subject’s
name,booking data including date and location and the category of the cause for
booking (e.g., drug-related, vehicular offense).

The public schools data is the most extensive, and it can be categorized into three
logical groupings: student data, course data and attendance data.

The census track data contains household information gathered as part of the most
recent census for the area in which my school is located.

The following picture contains an approximation of the schema that is managed by
NEXT-GENERATION. The data common to a course in which a student is
enrolled (such as “grade received”) has been factored out and placed in the

enrolled_in predicate.
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student course census

enrolled_in

‘ crime_record

attendance_record

list
of
dates

The data below contains an approximation of the schema content that will actually
be displayed by NEXT-GENERATION.

student:

course:

enrolled_in:

school_id, student_id, name tuple (last, first, middie), sex, address tuple
(street number, street name, apartment number, city, state, zipcode),
phone_no, birth_date tuple (year, month, day), student_home_room,
student_grade_level, student_special_education_needs, guardian tuple (last,
first, middle).

course_id, course_name, section_name, section_period_number,
room_number, instructor_name tuple (last, first, middle), year_and_semester.

ref enrollee, ref course, grade_received.

attendance_record: ref enrolled_in, list (tuple date tuple(year, month, day), period, semester,

crime_record:

census_data:

instruction_day_number, present_flag, excused_flag, ill_flag, tardy_flag,
explanation text).

booking_id_number, subject_name tuple (last, first, middle), booking_date
tuple (year, month, day), booking_loc, statute_violation_category.

household_address tuple (street number, street name, apartment number,
city, state, zipcode), school_district.

The following data contains a sample of the NEXT-GENERATION pseudo-syntax
for some of the persistent predicate schema definitions.
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declare persistent type year_month_dayType tuple {

year integer2,
month integerl,
day integerl

K

declare persistent type full_nameType tuple {

last_name varstring[32],
first_name varstring[32],
middle_name varstring[32]

};
declare persistent type addressType tuple {

house_number varstring{10],
street_name varstring[32],
apartment_number varstring[6],
city varstring[32],
state string[2],
zip_code string[10],

K
The student predicate contains information about each student

declare persistent basis predicate student (

school_id string[5],
student_id string[8],

name full_nameType,
sex string[1],
address addressType,
phone_no string[8],
birth_date year_month_dayType,
student_home_room string[3],
student_grade_level stringf2],
student_special_education_needs stringf2],
guardian full_nameType

)

Now I want to formulate a working hypothesis and test it against the data. I suspect
that students may be “cutting” classes to sell drugs to one another or to share
drugs with each other. I would like to find out if that is true. If it is true, then I
would like to find out which students are responsible for this activity. So, as an
overall hypothesis, I am going to assume that there is some relationship between
unexcused absences from classes and drug use. I also assume that there is some
data stored in the databases that would allow me to validate this hypothesis.
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I proceed as follows:

First, I formulate an hypothesis.

Then, I translate that hypothesis into a query.

Then, I execute the query and observe the results.

If the results do not verify or invalidate the hypothesis, I will reformulate or

refine the query and go to step #3.

el

Since we are going to deal with drug use, we need to have some way of defining
who qualifies as a drug user. Therefore, my first hypothesis will need to deal with
how to define an actual user of drugs.

So, I hypothesize that a drug user is someone who has a criminal record and has
been arrested for a drug-related crime.

When I translate this into a NEXT-GENERATION rule, I get the following
syntactical definition (for the sake of simplicity let us say that the category for drug-
related offenses is encoded as the numeric constant “750”):

declare persistent derived predicate drug_user (name full_nameType) {
drug_user (name N)
<- crime_record (subject_name N, statute_violation_category 750)

)

I execute the above statement and examine the results.

On examining the results, I notice that I have retrieved a very large number of
people in the crime_record database (i.e., all of those who have committed drug-
related offenses). Moreover, I realize that I do not know which ones of these are
students. So, I need to reformulate my hypothesis.

I subsequently hypothesize that a drug user (for my purposes) is a student who has
a criminal record and has been arrested for a drug-related crime.

Translating this into an NEXT-GENERATION rule, I get the following definition
in NEXT-GENERATION syntax:

declare persistent derived predicate drug_user (name full_nameType) {
drug_user (name N)
<- student (name N)
and crime_record (subject_name N,
statute_violation_category 750))
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I execute the above statement and examine the results. This time I am satisfied with
the results, so I have a working definition for “drug user.”

Now, I need to form an hypothesis that will help me to define a potential “recruiter”
for drug usage and/or purchase. I now know (from the last query executed) that a
small number of students have actually been arrested for drug use. It is reasonable
to suspect that other students have been influenced by these users. If so, then these
other students have probably been “hanging around,” or associating, with the drug
users. Before I can confirm this suspicion, we would like to identify those students
who have had some “contact” with the users identified above.

The question becomes, how to define that “contact.” Perhaps (I hypothesize) such
“contact” can be defined by a relationship that focuses on course periods that are
missed by some set of students. I decide to pursue this line of reasoning.

The next question becomes one of deciding how to use the attendance data that is
available to me. I know that I have an attendance record for each course in which
every student has been enrolled for every day of instruction.

I first need to identify those students (and the associated date) who have missed at
least one course period with an unexcused absence. The pseudo-syntax for such a

derived fact is:

declare persistent derived predicate gone_one_period (

name full_nameType,
absent_date year_month_dayType,
absent_period integer2

)

{gone_one_period (name N, absent_date D, absent_period P) distinct
<- student (self S, name N)

and enrolled_in (self E, enrollee S)
and attendance_record (enrolled_in E,
present_flag[X] FALSE,
excused_flag[X] FALSE,
date[X] D,
period[X] P
)
b

After executing the above statement and examining the results, I have the name,
date and period number for all unexcused absences. It occurs to me that here may
be a hidden pattern here that is not explicitly stored in the databases. That is, I
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would like to know if the students who have been “cutting” classes have had
contact, either direct or indirect, with those students we have identified as drug

users above.

By direct contact, I mean those who have personally associated with the identified
drug users. By indirect contact, I mean students who have personally associated
with students who have personally associated with students who have personally
associated with students . . . who have personally associated with the identified
drug users. (This is a typical example of a recursive query.) I will call this set
“candidate_at_risk_students.”

Next, I need to define what I mean by a “candidate_at_risk_student.” In other
words, what constitutes “being in contact with” or “associating with?”

I will define this as follows: Those students who have been absent without an
excuse on the same day and for the same course period as a drug user will be
defined as an “at-risk student.” Moreover, those students who have been absent
without an excuse on the same day and for the same course period as another
«“candidate_at_risk_student” will themselves be classified as
“candidate_at_risk_students.”

First, we want to define a rule that we can use to identify companions. We will
define companions as those pairs of students who have missed one course period

together.

declare persistent derived predicate companion (

name full_nameType,
date_together year_month_dayType,
period_together integer?2,
associated_with full_nameType

{companion (name C, date_together D, period_together P, associated_with A)
<- gone_one_period (name C, absent_date D, absent_period P)
and gone_one_period (name A, absent_date D, absent_period P)
and not equal (A, C)

K

Now, retrieve all students (call them “candidate_at_risk_students”) who have
missed 1 course period either with a drug_user or with another
candidate_at_risk_student. We need to be careful here, because we want to retrieve
these associations in a temporal manner. That is, if namel misses a class with
name2 on datel, then we are interested in who else missed a class with name2 after

datel.
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declare persistent derived predicate candidate_at_risk_student (

name full_nameType,
date_together year_month_dayType,
period_together integer2,
associated_with full_nameType

)
{candidate_at_risk_student (name C, date_together D, period_together P,
associated_with A)
<- companion (name C, date_together D, period_together P,
associated_with A)
and drug_user (name A);
candidate_at_risk_student (name C, date_together D, period_together P,
associated_with A)
<- candidate_at_risk_student (name C1, date_together D1,
period_together P, associated_with A)
and companion (name C, date_together D2, period_together P,
associated_with C1)
and greater_than (D2, D1)
)

I know that some students attend external schools, such as “magnet” schools and
others are transferred to different schools for various reasons. I am curious about
how many of the candidate_at_risk_students live within the school boundaries of
the school which they attend. In order to perform this query I need to access the
census track data.

declare persistent derived predicate in_district (

name full_nameType,
home_address addressType,
school_id string[5],
household_address addressType

)
{in_district (name I, home_address A, school_id S)
<- candidate_at_risk_student (name I)
and student (student_id I, school_id S, address A)
and census_data (household_address A, school_district S)

)

It suddenly strikes me that a far more interesting query would be to find out how
many candidate_at_risk_students attend schools in districts other than the one to
which their household belongs. So I define an “outsider” predicate using the
concept of negation simply by adding the keyword “not” to the above rule and
changing the predicate and rule names from “in_district” to “outsider.”.
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declare persistent derived predicate outsider (

name full_nameType,
home_address addressType,
school_id string{5],
household_address addressType

(outsider (name I, home_address A, school_id S)
<- candidate_at_risk_stadent (name I)
and student (student_id I, school_id S, address A)
and not census_data (household_address A, school_district S)

)

This demonstrates how easily one can form the negation of a given query within
the NEXT-GENERATION syntax. I now have a list of candidate_at_risk_students
who are going to schools outside of their home districts. This may give me some
insight into how external influences are affecting student behavior.

6. Summary and Discussion

The above scenario helps to illustrate that deductive logic and declarative
programming certainly have a role to play in the world outside of academia. The
kind of data mining activity discussed above is generally applicable to many
domains beyond that of the public school system. It is especially useful in areas
where the data comes from numerous sources and is arranged in a flat, or
relational, format, because the relationships that exist among such data elements are
generally hidden and are ripe for discovery by a DBMS that can exploit the
semantic power of logic.

The scenario also illustrates the usefulness of features such as recursion and
negation. In fact, negation, as used in the last stage of the above scenario, is a very
natural notion to end-users and knowledge-workers. It is normal to pose a query
and then, when the answer is not revealing (or perhaps is too voluminous), to pose
the negation of the same query.

It is well known that recursion is not supported by existing SQL-based systems, so
a good deal of the above scenario would have required some host language
procedural code if attempted in SQL. Although SQL does support a “pot in”
construct, the correct use of negation in SQL is far from intuitive. To perform the
negation scenario outlined above would require some rather complex SQL syntax.
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There are many other logic database concepts that will prove to be useful to today’s
users in the commercial marketplace. This paper has tried to illustrate a few of
them, but much more remains to be done. What is most important is that, as we try
to identify areas of applicability for deductive logic, it is imperative to involve the
potential users in the “real-world,” such as the ISP users who have provided the
input to the scenario described above.
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Abstract

The XSB language is an implementation of the Prolog programming language that
supports tabling. As such it is an implementation of SLG-def resolution, a subsystem of
SLG resolution [CW93]. It can also be seen as an integration of OLDT evaluation into
Prolog. The resulting language is significantly more declarative than Prolog, allowing the
programmer to concentrate on the specification of the problem and devote less time to
avoiding infinite loops and resolving other procedural issues as required in Prolog.

Tn 1973 Richard Montague published an influential paper on formal semantics for natural
language, entitled The Proper Treatment of Quantification in Ordinary English, or PTQ
for short [Mon74]. In that paper he gave a formal grammar for a fragment of English,
a formal logical language IL, and a translation from English sentence derivations to IL,
thereby providing a logical semantics for English sentences in his fragment. In [War79),
I described an implementation of the PTQ framework, including a parser, translator and
logic simplifier. That implementation was done in the LISP programming language.

In this paper I describe a re-implementation of the PTQ system in XSB. The original
implementation of PTQ in LISP took me several years; the re-implementation in XSB took

several days.

1 Introduction

Prolog has long been recognized as a powerful language for natural language processing. Indeed,
the needs of natural language processing constituted a major part of Alain Colmerauer’s original
motivation for the design and implementation of Prolog [CKPR73]. However, when actually using
Prolog for processing natural language grammars, several limitations become apparent. One
claim often made by Prolog proponents is that by programming in Prolog, one gets the parser “for
free”. This has some truth if one can stay completely within the Definite Clause Grammar (DCG)
formalism and use the recursive descent parsing one obtains from Prolog. (The DCG formalism
is provided through a simple preprocessor in most Prolog systems and supports a very simple and

*Supported in part by the National Science Foundation under Grants No. CCR-9102159 and USE-9150417.
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elegant way of writing annotated grammars.) However, for larger projects, one rather quickly
finds that recursive descent parsing is seriously deficient, with its limitations requiring avoidance
of left-recursive grammars and careful left-factoring to avoid exponential recomputation. So for
lazge projects one is forced to write one’s own parser, introducing considerable computational
overhead, and thereby losing much of the power and original attractiveness of Prolog. We note,
however, that unification is retained, and that can also be a very powerful and helpful tool.

The XSB system is an implementation of Prolog that supports tabling. It is an implemen-
tation of a subsystem of SLG resolution [CW93] and a variant of OLDT resolution [TS86].
Because it uses tabling, it can correctly process left-recursive grammars. Indeed it will cor-
rectly and finitely handle all context-free grammars. As Prolog’s evaluation strategy results in a
recursive-descent parsing algorithm when applied to DCG’s, so XSB’s tabling strategy results in
a variant of Earley’s parsing algorithm [Ear70]. So with XSB, one can use the DCG formalism
directly and get an Earley parser “for free”. This makes XSB very attractive for implementing
many gramimars.

In [Mon74] Richard Montague presented a grammatical system that showed how one could
provide a reasonable logical semantics for an interesting subset of English. He was interested
in problems of pronouns and their antecedents, and wanted to provide a complete account of
their semantics. He was also interested in certain philosophical problems present in most logic-
based treatments of natural language semantics. For example, most logic-based systems, given
a sentence such as “John seeks a unicorn”, would generate its meaning to be something like
“There is an X such that unicorn(X) and seeks(John,X).” However, this seems hardly an adequate
representation of its meaning, since the English sentence can be true and yet there be no unicorns,
whereas the logical statement, when true, implies the existence of a unicorn. The system that
Montague gave in PTQ showed how such problemmatical sentences could be handled in a formal
logic without encountering such nonintuitive results.

The PTQ system includes a grammatical component that provides an inductive definition
of a set of English sentences. Montague did not give this definition in any particular grammar
formalism, but just as an inductive definition of a set of strings. To provide a language for
specifying the meanings of these sentences, Montague gave the syntax and semantics of a formal
logical language, which he called Intensional Logic (IL). IL is a complex modal variant of type
theory. To provide meanings for the English sentences, he mapped them to formulas in IL. This
was done by a recursive definition over the definition of English sentences: for every word of
a basic category in the syntax, he provided an IL formula; and for every syntactic rule that
combined English phrases to form larger phrases, he provided a semantic rule that combined the
corresponding IL subformulas to form an IL formula for the larger phrase.

Several of the syntactic rules in PTQ are naturally left-recursive. For example, rule S10
combines an IV phrase with a adverb to create another IV phrase, as in combining the IV phrase,
“walk in the park,” with the adverb, “slowly,” to obtain the IV phrase, “walk in the park slowly.”
This is most naturally modeled with the left-recursive context-free rule: IV ~— IV IAV. Also,
rules of conjunction are left recursive, as are the most natural representations of the rules of
quantification. Of course, it is always possible to transform a context-free grammar with left
recursion into another grammar that recognizes the same language but does not contain left
recursion. So one possibility would be to transform Montague’s rules to eliminate their left
recursion. However, since the semantic rules correspond one-for-one with the syntactic rules,
it is highly desirable to use the syntactic rules as they are. Any modification to the syntactic
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rules would require a corresponding change to the semantic rules. One could argue that such a
change would really modifying Montague’s system, and therefore such an implementation would
be implementing some other system, not PTQ.

For these reasons we must process the left recursive grammar as it is. These considerations led
me in [War79] to propose and implement in LISP a tabling interpreter for Augmented Transition
Network grammars, a formalism popular at the time for representing complex grammars. I
implemented the PTQ syntax and semantics using that system. Later, after coming to learn of
Prolog, it was immediately clear to me that the tabling would apply to Prolog, which eventually
led to the XSB system. Pereira and Warren in [PWB80] argue cogently why Prolog is a better
formalism than ATN’s for representing complex grammars. Now with XSB, a Prolog system that
can handle the left-recursion of PTQ, it seemed appropriate to reconsider the implementation of
PTQ using DCG’s. This paper describes the results of this endeavor.

The paper is structured as follows: Section 2 gives a brief introduction to the syntax of
PTQ and describes the grammar. Section 3 briefly describes the logic 1L, its representation
and algorithms for simplification, and gives the rules of translation from PTQ. Section 4 gives
examples and timings for processing certain sentences under both an OLDT meta-interpreter
and the XSB system. Section 5 concludes.

2 PTQ Syntax

In PTQ Montague gave a rather complex inductive definition of sets of phrases of various syntactic
categories. Rather than repeating that definition here, the reader interested in the details is
referred to [Mon74]. Here I will simply give the resulting grammar, glossing over the difficulties
enountered in reformulating these rules into a form for which a parser exists. For details of this
reformulation the reader is referred to [FW78, War79].

Here we give an intuitive description of how PTQ treats pronouns and antecedents by de-
scribing an analogy between English sentences and programs written in a statically scoped pro-
gramming language, such as Pascal. So we are here using Pascal as an analogy to English (as
Montague perceived it.) Consider an analogy between program variables in Pascal and noun
phrases in English. In Pascal, each program variable must be explicitly declared. That declara-
tion determines a scope, in which all occurrences of the declared identifier refer semantically to
that same program variable. In English, as Montague saw it, the analogue of a program variable
is a term (or noun phrase). But rather than using the same identifier each time the semantic
object is referenced, the full term is used only the first time; subsequently a pronoun is used. For
example, in Pascal, one might say “X := Y+1; Y := X;”, and in English one might say, “John
loves Mary, and she loves him.” In the Pascal fragment, the two occurrences of the X refer to the
same program variable; in the English fragment, the words “John” and “him” refer to the same
semantic object. So the problem in parsing English, under PTQ, is to find the proper coreferents.
Also, of course, terms are not declared in English, as program variables must be in Pascal, so the
parser must also find the scope of the term. In PTQ, the scope can be a sentence, an intransitive
verb phrase, or a common noun phrase, and the parser must find all the possibilities.

Tt is clear that such a grammar for English would be highly ambiguous. Montague intended
his grammar to produce all logically possible structures, given a sentence. It was viewed as the
job of some other (unspecified) component to determine which of several (or many) parses is
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most likely intended in any given context.

The parser maintains a symbol-table-like structure, called the store. The store, which is
associated with a nonterminal, contains a list of the terms in the portion of the string spanned.
Tt also contains a representation for each pronoun. Then at points at which there may be a
“declaration”, the store is scanned for terms and pronouns that might be coreferent. For those
that are found, a substitution rule (Montague’s counterpart to a declaration rule) is applied and
the participating term and pronouns are deleted from the store.

The DCG rules are given in Figures 1 and 2. Each nonterminal has at least two attributes:
the first in which the parse tree is returned, and the last which contains the store.

The DCG rules are labeled by the names Montague gave to the clauses in his inductive
definition of the syntax. There were rules S1-S17. (S17 dealt with past and future tenses of
sentences, and we have not included it here.) The typical structure of a rule first has calls to
parse the constituents, then an append to combine the stores returned for the constituents, and
finally a call to st/3 which simply constructs the parse tree for the current nonterminal using
the parse trees of the constituents. The nonterminal symbols beginning with “b” (as in biv/2 or
bte/2) represent “basic” categories, and interface to the lexicon (not shown here.) They always
recognize words.

Consider the sentence, “John loves a woman and she loves him.” One of the two parses
for this sentence is shown in Figure 3. Parsing “John” uses the third clause for te/4. It calls
tel/4 to get a term, in this case the basic term (bte) “John”, and then puts it in the store and
returns “trace(_)” as the parse. Similarly “loves Mary” is parsed using the S5 rule for iv/3.
These constituents are put together using the S5 rule for s/2. “she loves him” is parsed similarly,
but using the second clause for te/4 to recognize the pronouns and put them in the store. The
second s/2 rule, implementing Montague’s 511, conjoins these two phrases and concatenates
their stores. Then rule S14 implemented by the last clause for s/2, applies twice, once to remove
“John” and “him” from the store, and once to remove “a woman” and “her”. At this point, the
variables representing the semantic objects are unified, indicating for example that the subject
of the first subsentence, trace(.), and the object of the second subsentence, pro(-), are coreferent,
with both variables becoming A. (The predicate get.term.pros/3 finds and removes a term and
some following pronouns, identifying their variables.) These substitution rules construct the final
parse. The fact that these pairs may be removed in either order is what causes there to be two
parses for this sentence.

There are two features of this grammar worth noting here. First, it is simple. The rules of
the grammar (after a little study) are really a very straightforward translation of Montague’s
inductive rules. Second, this grammar would not execute under Prolog. There are several
instances of left-recursive rules: the conjunction rules for sentences, terms, and intransitive verb
phrases; the rule adding an adverb to an intransitive verb phrase; the rule for adding a relative
clause to a common noun phrase; and, perhaps most importantly, the subtitution rules S14-
S16. Reformulating this into a grammar without left recursion would certainly complicate the

grammar immensely.
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Y St is the Store: a list of records term(Te,Var,Gen), pro(Var,Gen)

s(T,St) --> % s4
te(Te,sub,_G,St1), iv(Iv,s,St2),
{append(St1,5t2,5t), st (T,s4, (Te,Iv))}.
s(T,St) --> % s11
s(S1,5t1), word(and), s(S2,5t2),
{append(St1,St2,5t), st(T,sila,(51,52))}.
s(T,St) --> % si1
s(S1,5t1), word(or), s(52,5t2),
{append(St1,St2,5t), st(T,s11b,(51,52))}.
s(T,St) --> % s14
s(T1,5t1),
{get_term_pros(term(Te,X,_Gen),Sti,St), not_occurs_in(X, (Te,St)),
st (T,s14,(X,Te,T1))}.

iv(Iv,T,[1) --> biv(Iv,T). % S1
iv(Iv,T,St) --> % S5
btv(Tv,T), te(Te,obj,_G,St),
{st(Iv,s5,(Tv,Te))}.
iv(Iv,T,St) --> % s12
iv(Ivi,T,St1), word(and), iv(Iv2,T,St2),
{append(St1,5t2,St), st(Iv,s12a, (Ivi,Iv2))}.
iv(Iv,T,St) --> % s12
iv(Iv1,T,St1), word(or), iv(Iv2,T,St2),
{append (St1,5t2,St), st(Iv,s12b,(Ivi,Iv2))}.
iv(Iv,T,St) --> % s10
iv(Ivi,T,St1), iav(Adv,St2),
{append(St1,5t2,5t), st(Iv,s10,(Ivi,Adv))T}.
iv(Iv,Tn,St) --> % S7
bivt(Vb,Tn), s(T,St),
{st(Iv,s7,(Vb,T))}.
iv(Iv,T,St) --> % S8
biviv(Vb,T), iv(Ivi,i,St),

{st(Iv,s8,(Vb,Iv1))}.
iv(Iv,T,St) --> % sié6
iv(Iv1,T,St1),

{get_term_pros(term(Te,X,_Gen),Sti,St), not_occurs_in(X, (Te,St)),
st (Iv,s16,(X,Te,Iv1))}.

Figure 1: DCG for PTQ (Sentences and Verb Phrases)

1155




jav(Adv,[]) --> biav(Adv). % Si
iav(Adv,St) --> Y% se
pr(Pp), te(Te,obj,_G,S5t),
{st(Adv,s6, (Pp,Te))}.

te(Te,C,G,St) --> tel(Te,C,G,St).
te(Te,C,G, [pro(%,6)]) --> % for S3, S14-S16
pro(_Pro,G,C),
{st(Te,pro,X)}.
te(Te,C,G,S5t) --> % for S14-S516
te1(M,C,G,St1),
{st(Te,trace,X), append(Sti,[term(M,X,G)],St)}.

te1(Te,_C,G,[]1) --> bte(Te,q).
te1(Te,_C,G,St) --> h s2
det (Det), cn(Cn,G,St),
{st(Te,s2,(Det,Cn))}.
te1(Te,C,G,5t) --> Y% S13
te(Te1,C,G,St1), word(or), te(Te2,C,_,5t2),
{append(St1,5t2,5t), st(Te,s13,(Te1,Te2))}.

en(Cn,G,[]1) --> ben(Cn,G).
cn(Cn,G,St) --> % 83
cn(Cni1,G,St1), word(such), word(that), s(T,St2),
{delete_some(pro(X,q),5t2,5t3), append(St1,5t3,5t),
st(Cn,s3, (X,Cn1,T))}.
cn(Cn,G,St) --> % S1b6
cn(Cni,G,St1),
{get_term_pros(term(Te,X,G),Sti,St), not_occurs_in(X, (Te,St)),
st(Cn,s15, (X,Te,Cn1))}.

Figure 2: DCG for PTQ (Adverbs, Terms, and Nouns)
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s14
A
john
sl14
B
s2
a
woman
sila
s4
trace(4)
sb
love
trace(B)
sé
pro(B)
sb
love
pro(4)

Figure 3: Parse for “John loves a woman and she loves him”

3 PTQ Semantics

For Montague, the syntax of PTQ was the least interesting part. It existed only to support the
semantics, which we describe here. Again we will not go into great detail (I spent several years
trying to understand the implications of these definitions), but refer the interested reader to the

original source.
The logical language Montague used as the target for his translation of English he called

IL. We will give the syntax of IL using the symbols we use in our ASCII representations in our
implementation. The logic is typed, so first is the definition of the types:

1. e and t are types, the types of individuals and the type of truth values, respectively.

2. Whenever A and B are types, then < A, B > is a type, the type of functions from objects
of type A to objects of type B.

3. Whenever A is a type, then < s, A > is a type, the type of functions from possible worlds
to objects of type A.

The definition of the meaningful expressions of type a of IL (M E,) is as follows:

1. Variables are identifiers with capital initial letters; constants are identifiers with lower-
case initial letters. Each constant and variable has a type (which we leave implicit in our

representation).
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‘galk’ ==> X\ (walk @ (*X))
¢John’ ==> P\ ((*P) @ (“john))
‘love’ ==> P\ X\ (*P @ ("(Y\ (love @ (*Y)) @ (*X))))

ta? ==> P\ Q\ exists(X,(*P @ X /\ *Q @ X))

Figure 4: Some Translations of English Words to IL

2. If « € ME, and U is a variable of type b, then U\ o € ME >, (the A-abstraction rule
where \ is the ) operator and written in infix notation.)

3. fa € ME > and B € ME,, then a@f € ME,, (the rule of function application.)
4. ¥ a,f € ME,, then a = € ME;.

5. If ¢,9 € ME,, and U a variable, then not(¢), (¢ /\ ), (¢ \/ ¥), (¢ — > ¥), ezists(U, §),
all(U,¢) € ME,, (the sentential connectives and quantifiers.)

6. If « € ME, then ("a) € ME., >, (the intension of a.)
7. If @ € ME,.> then (xa) € ME,, (the extension of a.)

The semantics of these meaningful expressions is given through a model theory, which we
will not describe here. In this model theory certain operations on meaning expressions preserve
their meanings. In particular, the A-calculus operations of a-reduction and (a2 minor variant of)
B-reduction preserve meanings.

The translation of English sentences into meaningful expressions in IL begins with the trans-
lation of English words. In PTQ many of the English words translate directly to constants in
IL. These constants tend to have a rather complex type, but because of the so-called “Meaning
Postulates”, many of these constants are logically equivalent to meaningful expressions of a much
simpler type. So we translate the words to these simpler-typed expressions. Examples of the
translations of words are given in Figure 4.

For example, the English word ‘walk’ is translated into a function that takes an intensional
object and sees whether the logical constant walk is true of it. The English word ‘John’ translates
to a set of propositions true of the intension of the individual john. The English article ‘a’
translates to, essentially, an existential quantifier.

For each syntactic rule, there is a semantic rule that creates meaningful expressions for
compound phrases by combining the meaningful expressions of its constituents. Figure 5 gives
these semantic rules as represented in our Prolog program.

These rules just construct more complex expressions from simpler ones. For example, the
rule for s creates the meaning of a sentence from the meanings of a subject and a verb phrase,
by applying the meaning of the subject to the intension of the meaning of the verb phrase. For
example the meaning of “John walks” is obtained from this rule by combining the meanings
of “John” and “walks”, resulting in: (P\ ((*P) @ (“john))) @ (“(X\ (walk @ (*X)))).By
M-reducing this, we can obtain: walk @ (*john). (We also applied the identity *-Xx) = X.)
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st (Te,s2,(Det,Cn)) :- Te <== Det@ “Cn.

st(Cn,s3,(X,0n1,T)) := Cn <== X\ (Cni@X /\ T).
st (T,s4,(Te,Iv)) :- T <== Te@ “Iv.
st (Iv,s5,(Tv,Te)) :- Iv <== Tv@ “Te.

st (Adv,s6,(Pp,Te)) :- Adv <== Pp@ “Te.

st (Iv,s7,(Vb,T)) :- Iv <== Vb@ °T.
st(Iv,s8,(Vb,Ivl)) :- Iv <== VbQ "Ivi.
st (Iv,s10,(Adv,Ivl)) :- Iv <== Adv@ "Ivi.
st(T,s11a,(S1,52)) :- T <== S1 /\ S2.
st(T,siib,(Si,SZ)) 1= T <== S1 \/ S2.

st(Iv,sl2a,(IV1,Iv2)) :- Iv <== X\ (IviexXx /\ Iv20X).
st (Iv,s12b, (Iv1,Iv2)) :- Iv <== X\ (IvieX \/ Iv2@X).

st (Te,s13,(Tel,Te2)) :- Te <== P\ (Tel@P \/ Te2QP).
st (T,s14, (X,Te,T1)) :- T <== Te@ ~(X\T1).

st (Cn,s15,(X,Te,Cn1)) :- Cn <== Y\Te@ ~(X\ (CniQY)).
st (Iv,s16,(X,Te,Ivl)) :- Iv <== Y\Te@ ~(x\ (Iviey)).
st (Te,trace,X) :- Te <== P\ *PQX.

st (Te,pro,X) :- Te <== P\ *PQX.

X <== X. Y all translations

Figure 5: Semantic Rules for PTQ
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These Prolog rules execute to construct the “direct translation” of any English sentence (or
phrase) in the grammar. All we needed to do was change the definition of the predicate st/3
to make it construct semantic representations (i.e., expressions in IL) rather than syntactic ones
(i.e., parse trees.)

These rules when executed generate a direct translation for every parse of a sentence. For
example, for our sentence “John loves a woman and she loves him”, the program generates two
direct translations:

(A\* A0~ j)@~ (B\(C\D\exists(E,* COE/\* DCE))@
~ woman@~ (F\((G\* G@B)@~ ((H\I\* H@
~ (J\love@* J@* I))@" (K\* KQF))/\(L\* LeF)@
~ ((M\N\* M0~ (0\love@* 0@* N))@~ (P\* P@B)))))

(A\B\exists(C,* AQC/\* BGC))@~ woman@~ (D\(E\* EQ" j)@
~ (F\((G\* GOF)@~ ((H\I\* H0~ (J\love@x J@* I))@
~ (K\* K@D))/\(L\* LeD)@~ ((M\N\* M@~ (0O\love@* 0@+ N))e@~ (P\* PQF)))))

Needless to say, these are not particularly enlightening. It also happens to be the case that
they are logically equivalent and can be shown to be so simply by A-reducing and replacing an
expression of the form *(~(M) with the logically equivalent M. We have defined a predicate in
XSB, Ired/2, to do this. Applying lred to these gives us just one answer:

exists(A,woman@A/\ (love@* AQj/\loveQ@jQ* A))

which is much more readable, saying much more perspicuously that there is an X such that X is
a woman and John loves X and X loves John.

It turns out that this property of there being several direct translations that all A-reduce to
the same meaningful expression is very common. That is, the grammar is very highly ambiguous
syntactically, but not so ambiguous semantically. One strategy is to generate direct translations
and then A-reduce them all at the end to find the unique meanings; another is to A-reduce each
meaningful expression as it is constructed, and return only reduced expressions. This has the
possibility of greatly reducing the parsing ambiguity by reducing the combinatorial explosion of
multiple parses. For example, by reducing two parses to one in each of two parallel constructions,
we reduce the number of parses that need to be constructed on the higher level from four to one.

In order to modify the program to do the reductions on each internally constructed expression,
we need only change the definition of <==/2. We change it to:

X <== Y :~- lred(Y,X).

With this definition, reduction is done at each step as meanings are constructed. Note that
the elimination of the duplicates generated by common reductions is done automatically by the

underlying tabling mechanism of the XSB system.
In the next section we look at how this reduction in number of parses impacts performance.

120



4 FEvaluation and Statistics

We have not done a comprehensive study of the performance of the PTQ grammar executing
under the XSB system. We have run a few examples in several ways to get a general idea
of the costs and tradeoffs of processing PTQ sentences under XSB. There are two kinds of
comparisons that we can do. Firstly, we can compare XSB with an alternative implementation
of the same grammar. We no longer have the Lisp program of [WarT79] to compare with. Also,
we have been unable to get this program to compile and run under the CORAL system [Ram90],
but this may be due to the early version we tried. We can, however, run the Prolog program
developed here on another evaluator. We had previously written a metainterpreter in Quintus
Prolog that does tabling, a system we called the XOLDT system. With only a few additional
declarations, the XOLDT metainterpreter will execute the PTQ grammar. Thus we can compare
the times for processing various sentences under XSB evaluation of the program and under
XOLDT metainterpretation of the program.

Secondly we can compare the times to execute the grammar to create all the direct translations
for a sentence with times to generate all distinct meanings of the sentence. As described above,
by A-reducing the meaningful expressions representing the meanings of each subcomponent as it
is constructed, we end up generating only distinct meanings. We have run these two different
ways of processing meanings under the XSB system.

We have used three sentences as our initial examples. The sentences are:

1. John believes that Mary wishes to walk in a park.
2. Mary believes that John finds a unicorn and he eats it.
3. John tries to find a unicorn and wishes to eat it.

(Sentences from Montague’s fragment do tend to be rather strange.)

Sentence No. of No. of. Time for | Time for | Time for
Dir. Trans. | Red. Trans. | OLDT dir { XSB dir | XSB red

1. 167 9 26.8 7.5 2.5

2. 42 3 82.0 14.2 3.0

3. 5 1 1.45 0.65 0.60

The examples are run on a Sparc2 and the times given are in seconds. Several comments are
worth making. The huge number (167) of direct translations for the first sentence arises from
the fact that there are three noun phrases that can have many scopes and orders. The other
two have fewer direct translations since the pronouns constrain the possible scopes of the noun
phrases.

In comparing the times taken to get the direct translations using the XSB engine with those
using the XOLDT metainterpreter, we should note that only 5 predicates are tabled. Much of
the computation is being done directly in Prolog, and the XOLDT metainterpreter calls compiled
Prolog for Prolog code. Since Quintus Prolog is several times faster than XSB Prolog, the fact
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that XSBis this much faster than the metainterpreter on the PTQ grammar is jmpressive- Also,
note that indeed doing the )-reduction on each subsentential expression does drastically reduce
the number of answers generated and decreases the execution time.

5 Conclusion

The algorithm for process'mg PTQ described in this paper 18 not exactly the one of {War79]. In
this implementatron, the store and its associated information is passed up the parse tree only-
This can be seel in the grammar rules: the appends ol follow the grammar symbols and build the
tables to retur? to the caller. In {Wa.r791 and in the first XSB program for PTQ, som® information
was passed downwards. Information concerning potent'ral antecedents Was passed down the tree
so that when @ pronount was encountered; the system could determine its antecedents. Passing
this information down resulted in mMOTe table entries and therefore less sharing. go to see if
passing ipformation UuP was better, 1 recoded the algorithm. With the XSB system, 1 was able
to change the algorithm in about 2 day. Actually, it Was the unification of Prolog that made
this so easy- n LISP, 1 wanted t0 make the decision of an antecedent at the point of seeing the
pronoun, 50 1 could co-index the pronoun and the antecedent and put that index in the parse
tree at that point. In Prolog, with unification, 1 did not need to have the index at the time 1 put
:t into the t7€% 1 could simply put @ yariable into the parse tre€ and later at 2 higher point in
the parse, Whet 1 determine the antecedent, 1 just unify the index and the variable in the tree.
Of course, this could have been programmed :n LISP, but it would have required signiﬁcantly
more programm'mg effort.

The question semains as t0 how this relates to Deductive Databases. Note that this prograt
requires SO of the more advanced features of deductive DBs, such a8 handling of variables
and structures: But these have been discussed 1D the DDB community, -8 in CORAL- (We
did try to see if this grammar could Tun under CORAL, but were unsuccessful. More effort
and knowledge of CORAL than we had available at the time would be necessary:) Also, the

more traditional features of databases (and hopefully of deductive databases) such as an ability
o store and maintain 1aTge yolumes of persistent data, would come in handy for large patural
language systems. For example, realistic lexicons for natural language ¢l be very large am

must be indexed, and must be updatable.
A final note is that the tension between top-down and bottom-uP process'mg that is currently
being worked out :n the database community also existed in the area of grammars and language

theory- And the solutions seem to be similar-
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In this paper we present the set-oriented bottom-up parsing system AMOS which is a major
application of the deductive database system LOLA. AMOS supports the morpho-syntactical
analysis of old Hebrew and has now been operationally used by linguists for a couple of years.
The system allows the declarative specification of Definite Clause Grammar rules. Due to the
set-oriented bottom-up evaluation strategy of LOLA it is particularly well suited to the analysis
of language ambiguities.

1 Introduction

In this paper the set-oriented bottom-up natural language parsing system AMOS, a major
application of the deductive database system LOLA [3, 2], is presented. The AMOS system
serves for the morpho-syntactical analysis of old hebrew text and is intensively used by linguists.
A grammar for old Hebrew [12] has been formalized as a Definite Clause Grammar (DCG) and
represented as a LOLA program. The Definite Clause Grammar formalism and the evaluation
of the corresponding logic programs by a PROLOG interpreter are wellknown [11, 10]. Definite
Clause Grammars have been intended to provide a means for the declarative specification of
grammar rules which can directly be interpreted as a logic program. PROLOG-based DCG
parsers, though, suffer from a number of drawbacks

e Left-recursive rules can not be interpreted directly.
e Backtracking involves the duplicate construction of syntactic structures.

e In case of ambiguity of the grammar rules only one parse tree at a time is constructed
thus introducing another source of backtracking.

o At least if information beyond the word position within a text is required the dictionary
has to be stored as a collection of unit clauses. The connection of a PROLOG based
system with its tuple-at-a-time strategy to a set-oriented relational database needs a
buffering interface. This problem is known as the impedance mismatch problem.

Solutions have been proposed for each of the problems listed above. In [10] bottom-up parsers
for DCQ’s based on the left-corner method and interpretable by PROLOG are introduced. In
[8] a bottom-up parsing system making use of similar techniques has been described. They
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translate the original DCG rules into a PROLOG program which incorporates subgoals govern-
ing the control of the evaluation process thus gaining efficiency as compared to ordinary DCG

interpretation.
In this paper a running DCG parser with the following properties is presented:

e Grammar rules can be specified in a purely declarative way.

e Recursive rules of any type can be processed without modifications.

e There is no duplicate construction of syntactic structures.

e In case of ambiguities all applicable parse trees are constructed simultaneously.
e The dictionary can be stored in an external relational database.

Arbitrary queries concerning the entire text base can be processed.

The paper is organized as follows. Section 2 presents the general ideas underlying the repre-
sentation of Definite Clause Grammars as LOLA programs. In section 3 the AMOS system is
presented. The paper ends with some concluding remarks in section 4.

Since the original grammar rules for old Hebrew are very complex we use a simple english
example taken from [7] to explicate the essential features of the AMOS system.

The AMOS system has been developed at the Munich University of Technology in cooperation
with the research group of W. Richter, Institut fir Assyriologie und Hethitologie at the Univer-
sity of Munich. Part of the project has been funded by the ”Deutsche Forschungsgemeinschaft”
under contract Ba 722/3-3 "Effiziente Deduktion”.

2 Grammars as Logic Programs

2.1 The Grammar Rules

LOLA is a clausal logic programming language with complex terms, (stratified) negation, and
explicit existential quantification’. Consider the DCG rule

N—2...2

The corresponding LOLA rule is obtained by augmenting each (terminal or nonterminal) symbol
by two attributes describing the position within the text stream:

N(IO;Ip) b Zl(IO:II) P Zp(Ip—ls Ip)

See figure 1 for an example. Extra conditions can be represented as additional subgoals in the
body of the LOLA rule. As opposed to Prolog-related definitions of the DCG formalism we do
not need to restrict the use of recursive DCG rules in any way. In particular, left-recursive rules
are allowed. Figure 2 shows sample LOLA rules representing a simple DCG grammar. We use
the following abbreviations: s for sentence, np for noun phrase, pp for preposition phrase, vp
for verb phrase, det for determinator, and prep for preposition.

(Partial) parse trees are represented as complex (Herbrand) terms which are sucessively con-
structed during query evaluation. In the example, the parse tree terms, e.g. s (NP_TREE,VP.TREE),
occur at the additional third attribute position of rule heads and subgoals.

IMost of the LOLA systax is very close to the Prolog syntax. Variable names begin with _ or a capital letter.
Constants, predicate symbols and function symbols begin with a small letter.
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Input text:

John saw a man with a mirror

Positions:

noun verb det noun prep det noun
0 1 2 3 4 5 6 7
John saw a man with a mirror

Figure 1: Sample input text and word positions

s(X,Y,s(NP_TREE,VP_TREE)) np(X,Z,NP_TREE), vp(Z,Y,VP_TREE).

s(X,Y,s(S_TREE,PP_TREE)) s(X,Z,S_TREE), pp(Z,Y,PP_TREE).
np(X,Y,np1 (N_TREE)) := noun(X,Y,N_TREE).
np(X,Y,np2(D_TREE,N_TREE)) det(X,Z,D_TREE), noun(Z,Y,N_TREE).
np(X,Y,np2(NP_TREE,PP_TREE)) :- np(X,Z,NP_TREE), pp(Z,Y,PP_TREE) .
pp(X,Y,pp(P_TREE,NP_TREE)) prep(X,Z,P_TREE), np(Z,Y,NP_TREE).
vp(X,Y,vp(V_TREE,NP_TREE)) verb(X,Z,V_TREE), np(Z,Y,NP_TREE).

Figure 2: Rules representing simple DCG grammar

2.2 The Dictionary

The dictionary stores the terminal symbols together with their positions within the text stream
that is to be analyzed. It normally depends on the particular text to be analyzed while the
grammar rules themselves do not change. Furthermore, the dictionary is likely to consist of
a very large number of entries (see section 3). In LOLA we are able to store the dictionary
separate from the grammar rules as a collection of external relations where every lexical category
<C> corresponds to a relation <C>. Using the SQL-database interface of the LOLA system
[3, 6] these relations may reside on an external relational database system. At query evaluation
time the appropriate (portions of) the dictionary relations are downloaded into the LOLA main
memory database.

Position identifiers can easily be generated if the text is already separated into sentences. Lan-
guages without punctuation symbols, such as old Hebrew, require an additional pass. The
position identifiers specify the string position relative to a sentence marker. The coding of
string positions by position identifiers rather than difference lists is particularly suited to re-
lational databases. The dictionary, i.e. the fact base of the parsing system, can be generated
automatically. Normally it is the result of the morphological analysis of the input text (see
section 3). As usual for DCGs, additional attributes can be used, e.g. to store casus, genus, and
numerus. It occurs frequently that the morphological analysis produces ambiguous results, i.e.
different classifications for the same occurrence of a word. Every such classification is stored as
a separate tuple in the corresponding dictionary relation. Part of a dictionary database con-
taining classifications of the words occurring in the sample input sentence of figure 1 is shown
in figure 3. Note, that the word "saw” has an ambiguous lexical classification.
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Schema of Dictionary Database:

noun_rel (text_id,from,to,word,casus,genus, numerus)

det_rel(text_id,from,to,word)
verb_rel(text_id,from,to,word,person,numerus,tense, grou.ndform)
prep_rel(text_id,from,to ,word)

Dictionary relations:

noun_rel = {(ch3s1l, 0, 1, "John", nominative, masculinum, singular),
(ch3s1, 3, 4, "man", accusative, masculinum, singular),
(ch3s1, 1, 2, "saw", nominative, neutrum, singular),
...}

det_rel = {(ch3si, 2, 3, "a"),
(ch3s1, 5, 6, na'y,
R

verb_rel = {(ch3s1, 1, 2, "saw", 3, singular, past, "to see"),
R

prep_rel = {(ch3sl, 4, 5, "with"),

.}

Figure 3: Sample dictionary database

2.3 The Grammar as a LOLA Program

The complete LOLA program representing the parser for the simple grammar of figure 2 is
shown in figure 4. The first part of the program contains type declarations for each predicate
and function symbol occurring in the program starting with the predicate symbols which do not
have a result type and followed by the function symbols. In the sample program all function
symbols have the result type tree. Finally, the external relations and computed predicates
are declared. The type system turned out to be very useful to increase the programming
security. While there are reports on type systems for Prolog [9, 4] and Gddel [5], commercial
PROLOG-systems use types only for non-logical constructs e.g. arithmetics.

The second part of the program contains the defining rules for the predicates, i.e. the rules rep-
resenting the DCG grammar. The dictionary database is linked to the program using LOLA’s
database goals®. The external database facility of LOLA automatically generates SQL-code
for dictionary queries and transfers the resulting SQL-queries to the external database system.
There is also an option to cluster SQL-queries as far as possible. As described above, parse trees
are represented by complex terms. The term representing the final complete parse tree, i.e.
the term constructed by the s-rules, is graphically displayed as a tree by the user interface. To
this end the computed predicate* print_tree is called when processing the built_in subgoal

2Note, that for the sake of simplicity additional attributes such as casus are eliminated by projection. The
AMOS system, however, makes intensive use of additional attributes.

3At this point it should be mentioned that symbols can be overloaded in LOLA in the sense that the same
symbol may denote both a predicate and a function, even of different arity, without disturbing type correctness.

4Ip the current version of LOLA computed predicates are implemended as Common Lisp functions. See {3]
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$program(simple_grammar) .

Yy e Declaration of Predicate Symbols

::= parse(<number>,<tree>).

s (<number>,<number>,<tree>).
::= np(<number>,<number>,<tree>).
pp(<number>,<number>,<tree>).
vp(<number>,<number>,<tree>).
noun (<number>,<number>,<tree>).
det (<number>,<number>,<tree>).
prep(<number>,<number>,<tree>).
verb(<number>,<number>,<tree>).

Yy e e e Declaration of Function Symbols

<tree> ::= noun(<word>) | det(<word>) | prep(<word>)
| verb(<word>) | s(<tree>,<tree>)
| npi(<tree>) | np2(<tree>,<tree>)
| pp(<tree>,<tree>) | vp(<tree>,<tree>).

noun_rel (<text_id>,<number>,<number>,
<word>,<casus>,<genus>,<numerus>) .
verb_rel(<text_id>,<number>,<number>,
<word>,<person>,<numerus>,<tense>,<groundform>).
det_rel(<text_id>,<number>,<number>,<word>).
prep_rel(<text_id>,<number>,<number>,<word>).

<$db_relation> ::

<$db_relation> ::

<$db_relation> ::
<$db_relation> ::

<$built_in_function([]1)> ::= print_tree(<tree>).

% Parse Rule and DCG Rules

parse(X,Y,Tree) :- s(X,Y,Tree), $built_in([$b], print_tree(Tree)).

s(X,Y,s(NP_TREE,VP_TREE)) np(X,Z,NP_TREE), vp(Z,Y,VP_TREE).

s(X,Y,s(S_TREE,PP_TREE)) s(X,2,S_TREE), pp(Z,Y,PP_TREE).
np(X,Y,np1(N_TREE)) :- noun(X,Y,N_TREE).
np(X,Y,np2(D_TREE,N_TREE)) det(X,Z,D_TREE), noun(Z,Y,N_TREE).
np(X,Y,np2(NP_TREE,PP_TREE)) :- np(X,Z,NP_TREE), pp(Z,Y,PP_TREE).
pp(X,Y,pp(P_TREE,NP_TREE)) prep(X,Z,P_TREE), np(Z,Y,NP_TREE).
vp(X,Y,vp(V_TREE,NP_TREE)) verb(X,Z,V_TREE), np(Z,Y,NP_TREE).

t

Yo m e m Link to external Dictionary Database

noun(X,Y,noun(¥W)) :- $db($main, noun_rel(_,X,Y,W,_,_,.)).
verb(X,Y,verb(¥)) :- $db($main, verb_rel(_,X,Y,W,_,_,.,.)).
det (X,Y,det(W)) 1= $db($main, det_rel(_,X,Y,W)).
prep(X,Y,prep(W)) :- $db($main, prep_rel(_,X,Y,W)).

Figure 4: Complete LOLA program representing the simple grammar
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_____ | |
/ \ / \
np vp 5 PP
e —— S N S P
| / \ / \ / \
noun verb np np vp prep np
I ! SV PRV I S | -l
I I / \ I / \ | / \
john saw np PP noun verb np with det noun
- SN [ I . | I
/ N\ / \ I I / 0\ I I
det mnoun  prep np john saw det mnoun a mirror
| ! I =l I I
I I I / \ | !
a man with det noun a man
I I
I I
a mirror

Figure 5: Different parse trees

of the parse rule. The query :- parse(0,X,Tree) . results in the construction and display
of all possible parse trees for complete sentences®. The first argument of parse represents the
begin position, the second the end position of the sentence parsed. The third argument contains
the parse tree term. In our example the answer relation consists of three answer tuples, two
of them with end position 7 and one with end position 4. The display of the former two parse
trees is visualized in figure 5.

The reader may have noticed, that we use different function symbols as constructors of the
parse trees while the parse trees shown in figure 5 do not make this distinction. To preserve
type correctness we have to distinguish the noun phrase constructors of arity 1 (npl) from
those of arity 2 (np2). On the other hand, we want to display the parse trees with maximum
convenience for linguists. The print_tree function performs the appropriate processing of the
computed parse trees.

Instead of implementing special purpose display routines such as print_tree the explanation
facility built-in to the LOLA system [14, 15], can be used to display the parse trees together
with information how the particular trees have been derived, i.e. which rules have been applied
etc..

3 The AMOS Parsing System

The AMOS system for the morpho-syntactical analysis of old hebrew text has been implemented
applying the techniques described above. The grammar for old Hebrew [12] has been formalized
as DCG representation and written as a LOLA program [13]. The dictionary relations are

for more details on computed predicates.
5For the AMOS system it is important to consider all sentences and not only those of maximum length since

punctuation is lacking in old Hebrew.
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generated by the morphological analysis system SALOMO for old Hebrew [1] and can be stored

in an external relational database.
The sample AMOS rules®

attP(Sentence,X,Y,advP1(N_TREE,ADJ_TREE),Casus,Genus,Numerus) :-
noun (Sentence,X,Z,N_TREE,Casus,Genus,Numerus),
adj (Sentence,Z,Y,ADJ_TREE,Casus,Genus,Numerus) .

attP(Sentence,X,Y,advP2(A_TREE,ADJ_TREE),Casus,Genus,Numerus) :-
attP(Sentence,X,Z,A_TREE,Casus,Genus ,Numerus),
adj(Sentence,Z,Y,ADJ_TREE,Casus,Genus,Numerus) .

represent the grammar rule for the attribute-phrase ( attP): An attribute-phrase in old Hebrew
is a noun, followed by an adjective, or an attribute-phrase followed by an adjective. In addition,
the rules specify that congruence of casus, genus and numerus is required. The following
(simplified) AMOS rules show that even nonlinear recursion is necessary. The apposition-phrase
(appP) defines compound nouns and compound noun-phrases:

appP (Sentence,X,Y,appP (N_TREE1,N_TREE2)) :-
noun(Sentence,X,Z,N_TREE1,absolutus, _, _),
noun(Sentence,Z,Y,N_TREE2,_ , _, _).

appP (Sentence,X,Y,appP(N_TREE,A_TREE)) :-
noun(Sentence,X,Z,N_TREE,absolutus, _, _),
appP(Sentence,Z,Y,A_TREE) .

appP(Sentence,X,Y,appP (A_TREE1,A_TREE2)) :-
appP (Sentence,X,Z,A_TREE1),
appP(Sentence,Z,Y,A_TREE2) .

The AMOS program contains several more appP-rules which are more complicated and selective.
A section of the dependency graph of the AMOS program is shown in figure 6. The very
beginning of the book of the Ecclesiasts is an example of an apposition-phrase to which the
above nonlinear recursive rule is applicable. A literal translation results in:

words Kohelet son David king of Jerusalem

noun noun houn noun noun preposition noun

This can be parsed in several ways (using additional morphem attributes not mentioned here)
corresponding to the following interpretations:

o words [of] Kohelet [who was a] son [of] David [and David was] king of Jerusalem,

o words [of] Kohelet [who was a] son [of] David [and every son of David was| king of

Jerusalem,

o words [of] Kohelet [who was a] son [of] David [and who (Kohelet) was] king of Jerusalem,

o words [of] Kohelet [who was a] son [of] David [and words of the] king of Jerusalem.
AMOS derives a parse tree for each of the above interpretations. Linguists are often very in-
terested in finding such (syntactical) ambiguities.

6The real AMOS system contains more attP and appP rules than shown here. Note, that the schema of logic
predicates and base relations is extended as compared to the simple examples shown in section 2.
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preposition / constructus
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annexion

attribute numeral
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Figure 6: Section of the dependency graph of the AMOS program

The characteristics of the AMOS system are
e Large volumes of text like the Old Testament;

e Ambiguities in the dictionary due to words not uniquely classifiable at the morphological
level;

o Ambiguous parse trees as derived using the DCG rules.

The dictionary database consists of 25 relations with a total of 117 attributes. The extension
of the database relations depends on the text which is to be analyzed and may be rather large
thus preventing the downloading of the entire dictionary. However, we can still benefit from the
advantages of deductive databases. Since AMOS adopts the set-at-a-time evaluation strategy
of LOLA there is no need to parse one sentence after the other as in Prolog-based systems. We
found that processing an entire paragraph or chapter gives the best performance results. On
the other hand, database support is needed to store the input text as well as the computed
answer relations. The AMOS dictionary for one chapter of the Genesis contains 167kBytes
with 4282 tuples. The entire Genesis has already 7.250 MBytes with 185 897 tuples, and the
Old Testament has 108.750 MBytes with 2.7 Mio. tuples.

The complete morpho-syntactical parser for old Hebrew is represented by about 200 LOLA
rules. The program contains 4 linearly recursive, 13 mutually recursive, and 1 nonlinearly
recursive (quadratically recursive) predicate symbols.

An overview of the AMOS system architecture is shown in figure 7. Frequently used queries
are precompiled and can be invoked by the user. In addition, the system allows ad-hoc queries.
The system is running on UNIX workstations with Allegro Common Lisp, Lucid Common Lisp,

and AKCL.
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Figure 7: Overview of the AMOS system architecture

4 Conclusion

We have described the AMOS parsing system for old hebrew text. The system has been
implemented using the LOLA system. Only the predicate causing side-effects, i.e. print._tree,
had to be encoded in the host language. There are considerable advantages as compared to
Prolog based systems, e.g. the indepence of rule order and the ability to handle any type of

recursion directly.
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Ping-Yu Hsu and Carlo Zamniolo
Computer Science Department

University of California
Los Angeles, CA 90024

1 Introduction

The genesis of this submission is the graduate class on Deductive Databases
offered at UCLA in the Spring of 1993. The first author learned LDLA++
and implemented the examples described in this paper and other applica-
tions as class assignments; then he proceeded with learning the Coral system,
re-developing these applications and additional ones on such a system, and
submitting a comparative study as a term-paper for the course. The sec-
ond author suggested further experiments and made editorial improvements
aimed at communicating the valuable know-how thus acquired on the rela-
tive strengths and limitations of the two systems. The technical impressions,
however, remain those of the first author—a new user to both systems.

A first objective of this paper is helping new users, and a second one is to
provide some feedback to deductive database researchers and system designers.
In this perspective, rather than pursuing a direct comparison between the two
systems, the paper compares the factual views derived from our experience
with the systems with the a-priori expectations derived from reading various
papers and manuals authored by the designers.

According to its designers, LDL+-’s main goal (and improvement with
respect to the old LDL system) was that of making the system more friendly
for new users and naive users. Thus LDL++ ’s design rationale lead to a
minimalist’s “ keep-it-simple approach”: the language was kept simple and
declarative [Zan2]. Moreover, great efforts were made to provide seamless in-
terfaces to SQL databases and C++, inasmuch as most real-world applications
were expected to be in conjunction with pre-existing databases and software

packages [Zan2).
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According to its designers, Coral’s goal is that of providing a wide range
of evaluation and optimization strategies to ensure better performance and
a richer programming environment [RSS 92]. To that end, Coral allows the
programmer to control the optimization strategies used, and to exploit the
operational semantics of programs: Coral supports an imperative module in
addition to interfaces to C++.

Therefore, the design goals of the two systems are very different, and our
experience confirmed that both systems have largely achieved their original
design goals. However, this positive conclusion holds only as a first approxi-
mation, since in both systems there is room for improvement.

By revealing these limitations, this study will help a hopefully growing
throng of new users to calibrate their expectations, and will encourage the
designers and implementors to improve their systems and overcome current
limitations in the next release.

2 Using the Systems

2.1 Ease of Learning

Enticing new users and less sophisticated programmers is the stated goal of
LDLA++ [Zan2]. In fact, our experience confirms that LDL++ seems easier
to learn. In £LDL~++, the user only needs to become familiar with the logical
rules: there is only one meaning for each program and every part of the logic
is in the program. On the other hand, Coral supports a rich set of options,
such such as pipeline, no_rewriting, select, aggregate selection, etc., which
modify the meaning of programs in order to make them more efficient. Our
experience indicate that these can complicate the life of first-time users and
more naive programmers, who have to learn both the “normal” meaning of
a program and the variations caused by annotations. (Occasionally, to really
understand the meaning of annotations a user must become familiar with
the ways in which Coral evaluates and optimizes programs.) The presence
of an imperative module, and the possibility of having delete goals in rules,
can also add to the complexities faced by a first-time user. On the other
hand, it should be noted that only few annotations are actually needed to
control the meaning of programs (as opposed to controlling its performance).
Thus, novices should be encouraged to ignore annotations and concentrate on
mastering the programming paradigm under the basic default options provided
by the system. This more didactic approach deserves to be fully explored in
the future, since it appears capable of overcoming most problems previously
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discussed.

While analysis confirmed that LDL++ was attuned toward first-time users
and naive programmers, this conclusion must be qualified by several caveats
and additional considerations. Much of the effort of learning how to program
in LDL-++ was not specific to the system but, rather, had to do with the
problem of mastering the deductive programming paradigm—e.g., safe rules,
function symbols and recursion. Students, such as the first author, who had
a previous experience with Prolog, were favored in certain respects, but they
also seem to have initially a harder time with certain concepts such as the
bottom-up execution of recursive predicates. The task of learning the deduc-
tive programming style represents a large percentage of the overall investment
required from a new user and is basically independent of the system. For
instance, when learning LDL++, the first author benefited from a two-hour
introduction by the instructor, and used his previous Prolog experience. Yet,
to master the deductive programming paradigm, he had to spend several hours
on the system. New users to Coral should also be prepared to dedicate addi-
tional time to learn how to make effective use of its non-declarative constructs.

Finally, the current versions of LDL++ and Coral have inadequate debug-
ging and tracing facilities. In both systems, the output generated in debugging
mode is obscure, and almost impossible for a new user to understand—hard
for experienced users as well.

2.2 Functionality

After the initial learning phase, users reach the stage in which they are reason-
ably familiar with a system and know how to design and develop applications
with it. At this stage, users’ satisfaction depends on several such as the level
of confidence and productivity they have achieved. In the following sections,
we evaluate various characteristics that are most critical in this respect, such
as functionality, completeness, reliability and development turn-around time.

Both £DL++ and Coral provide the necessary functionality to write ap-
plications in the rule-based programming paradigm. The basic rules in the two
languages are in fact very similar, but there are differences in the data types
and built-ins they support. These differences can impact the the usability of
a system and the performance of applications. For instance, the if-then-else
statement of LDL++ can be easily replaced by a pair of rules containing
negation, but it is hardly redundant from a practical viewpoint, inasmuch as
it makes the program more expressive and efficient.

Coral supports a rich set of built-functions, such as printf, which allows a
user to print some output in the screen, and display-timer(), which allows a
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user to get the profile of a program running time. LDLA++ is lacking some of
these built-ins; in particular, it only supports a limited form of printf statement
(and current documentation on this topic leaves a lot to be desired). This
limitation is particularly hard on new users who need to print intermediate
results on screen for debugging purposes.

Both systems support sets and lists, but Coral also supports multisets.
However, our release of Coral seems to be missing some important functions,
including operators such as union or append, that are needed in this context.
Also, variables are not allowed in sets (i.e., between { and 138

Coral supports a rich collection of ready-to-use set-aggregates, but the set-
aggregate mechanism in LDL++ is more powerful inasmuch as it allows users
to define his/her own aggregation functions. Experienced users are likely to be
pleased with the power that this extensibility entails (at little cost for them,
inasmuch as they will quickly re-use and modify set-aggregate definitions used
in the past). New users, however, are likely to find the task of writing the basic
aggregates too taxing. An ideal system should, perhaps, provide a predefined
library of set-aggregates along with user-programmability.

2.3 Development Environment

In Coral, programs can be separated into several modules and only the parts
that are updated have to be re-compiled. Modules are described in several
LDL+-+ papers, but are not implemented yet; in the current LDLA++, the
whole program has to be re-compiled after each change. LDLA++ achieves a
reasonable speed of compilation, but, in Coral, the same program will normally
compile faster; moreover Coral’s modules further expedite the turn-around on
compilation.

Neither system is mature and stable enough to prevent nasty surprises
for a user, particularly when an error occurs at run time. LDL++ seems
more stable since we only experienced strange behavior when the programs
had bugs, and the system would seldom aborted even in the presence of bugs.
(With Coral, aborts are more frequent, and we had a correct program that
would ran after it was split over several modules, but not in the original form.)

2.4 Choice

Our study did not dwell into areas, such as non-monotonic constructs in nega-
tion, which represent open areas of current research for which the systems
provide very different solutions [Zan2]. However, we pursued a comparison of
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the choice constructs, which were similar in the two systems, and were used
frequently in our applications.

LDL++ provides choice as a built-in predicate, while the approach of Coral
is to use annotation [RSS 92]. The scope of a choice function in LDLA++ is -
the body of the rule containing the choice goal. The scope of annotation in
Coral is the set of all rules defining a predicate (i.e., a procedure in logic
programming parlance). In terms of expressive power, the two approaches are
equivalent, since it is easy to show that by the introduction of additional rules
or predicates one approach can simulate the other. For specific applications
however, one approach may lead to terser programs than the other.

For instance, finding the shortest distance between pairs of nodes of a
graph, where each edge counts as a unit of cost, can be expressed in Coral as
follows (in our Coral system we had to simulate choice with min).

Example 1 (Choosing using min in Coral)

dist(X,Y, 1) « edges(X,Y,).

dist(X,Y, Dist) « dist(Z,Y,Dist1), edges(X,Z,-),
Dist = Distl + 1.

@aggregate_selection dist(X,Y,Dist) (X,Y) min(Dist).

Here, no two arcs in dist, can have the same end-node, independent of
the rule that produced them, since Coral imposes a constraint over the whole
predicate. This example illustrates an effective use of annotations in Coral—
and the fact that “annotations” play a critical role in defining the the meaning
of a Coral program.

In LDL++ instead, the functional dependency constraint declared by
choice holds only for the atoms generated by the rule containing choice. Thus,
the constraint does not “see” values generated by other rules, and in our
particular case, the Y’s added by the first rule. Thus an additional goal
—edges(X, Y, .) must be added to avoid edges looping back to those old nodes.

Example 2 (LDL++ with Choice)

dist(X,Y, 1) « edges(X,Y,").

dist(X,Y, Dist) «— dist(Z,Y,Dist1), edges(X,Z,-),
- edges(X, Y, - ), Dist = Distl + 1,
choice((X,Y),(Dist)).
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3 Performance

Tt is well-known that any database vendor can produce benchmarks where a
given system outperforms the others. This ended-up being also the case for
the small set of applications, which were given as a class assignment with sole
intent of having the students to learn concepts, such as stratification and con-
stant pushing, by writing a toy compiler for a Datalog-like language. The code
for three such applications, called notstratify, constantpush and maz_depth, are
given in the Appendix. The program notstratify tests the handling of lef/right
recursive programs by the systems; the program constantpush stresses the abil-
ity of the two system of caching intermediate results to compute faster, while
the program maz.depth evaluates the uses of choice.

The results of running these programs are shown in Table 1, Table 2 and
Table 3. These benchmarks were measured on a dedicated Sun Microsystems
workstations, with a memory capacity sufficiently large (32Mbytes) as to ex-
clude that page faults would have a major impact on the performance of the
two systems. The versions of the two systems we used were those current in
September 1993.

The Coral designers have put a significant effort! into optimizing the per-
formance of programs [RSS 92]. This effort has paid up handsomely, and, for
simple programs, Coral has a performance advantage. For programs consisting
of few rules, each rule containing only one or two joins on database relations,
we found the execution time of Coral to be in the order of 40% to 65% below
that of LDL++. (These execution times are comparable to those of the old
LDL system, but without its compilation overhead.) However, we found that
this advantage can diminish, or even disappear, in some complex programs,
such as those that use linear recursion and larger modules.

3.1 Discussion

Tables 1 and 2 provide a good illustration of the fact that comparing perfor-
mance is never a simple task. A Coral program can be written either in several
modules or in one module. In Table 1, the execution times improve once the
modules are merged, while in Table 2 they grow. A possible explanation of
this behavior is that we are seeing the effect of some preparation time (e.g.,
setting up the supplementary magic tables). This effect becomes more visible
in in Table 2, since the overall execution times are reduced dramatically. In

1This has concentrated on high-level optimization. Lower level, WAM-like optimization
can yield significant additional improvements, both for Coral and LDL+-+.
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Table 1 instead, the overall execution dominates the preparation phase and
times improves as the modules are merged together.

Thus, Coral users should be aware that, at times, it is better to optimize
Coral programs by breaking them into modules, even if there is no optimization
between different modules. For instance, notstratifyin Coral is 16% faster than
that in LDL++ when the program is written in the same module and about
the same speed when the program is written in different modules.

LDL++ | Coral(five modules) | Coral(same module)
notstratify 62.66 61.26 53.78
max_depth 2222.49 | 302.20 105.70
constantpush | 27.21 76.20 58.33

Table 1: Intermediate predicates are not stored to database

An important lesson for the users of both systems is on the importance
of storing intermediate data. Both LDL++ and Coral offer this ability, but
in very different ways. In LDL+4-+, a predicate with prefix '+’ signifies the
system to store the predicate in database, whereas, in Coral, a separate imper-
ative module is necessary to store a predicate into database. In our programs,
predicates of dep.atom/4 and dep_rule/5 are derived predicates and are ref-
erenced by many rules. Table 1 shows the times obtained without storing
dep.atom/4 and dep.rule/5 in the database. Table 2 shows that the times for
the same programs with dep_atom/4 and dep-rule/5 stored in database can
be a order of magnitude smaller. Therefore, the users should be aware that
storing intermediate data can save a lot of time in both £LDL++ and Coral 2.

Tables 1, 2 and 3 contain several other points that should be of interests
to the designers and users of the two systems. A first concern pertains to
the speed with which the two systems implement recursive predicates. Several
examples of lef-linear recursion occurred in our examples. The comparative
times for notstratify were typical of these examples. Thus, it appears that for
this kind of recursion, Coral loses the advantage that it normally has for non-
recursive rules. Thus, we concluded that LDL++ must have implemented a
more efficient approach to left-linear recursion.

Consider now the constantpush entry in Table 1. In this example, LDLA++
has a performance advantage which is well beyond what can be explained with
a better scheme for left-linear recursion. In our view, this instead reflects the
capability of a system to reduce duplicate work, as when there is caching of

2The time spent in storing the facts in the database was a negligible fraction of the
overall time.
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old results for future usage. Explicit caching is available in Coral’s through
the “save.module” annotation; but in addition, both systems incorporate some
degree of implicit caching in their executions. In LDL-++ this is accomplished
through a client-server architecture, whereby several calling goals (the clients)
can request a next-tuple from the server that, e.g., returns a lazily-computed
new tuple of a recursive predicate. This strategy appears to work well in
the example at hand. The kernel of constantpush is reachable/2. Under our
example, reachable/2 is executed eight times and five of them are repetitions
of previous requests. In LDLA++, a single query "reachable(7,X)” takes 16.81
seconds. Encapsulated in constantpush, the eight calls to reachable/2 take less
than 27.21 seconds. On the other hand, a single query "?reachable(7,X)” takes
about 9 seconds in Coral and the eight calls on reachable/2 in constantpush .
take about 76 seconds when programs are written in several models.

In many cases, however, Coral’s execution implicitly achieves some of the
benefits of caching. For instance, we know that conspush is executed twice in
constantpush. Hence, the execution time should be at least 9 times 8 times
2, which is 144. In fact, from Table 1, the execution time is 76 seconds,
which is only half of the expected time. Thus, when the second conspush is
requested Coral only takes 0.11 additional seconds. In other situations, the
savings is less than what it is achievable. Thus, five of the eight executions of
reachable/2 are repetitions. From Table 1, however, merging programs only
improve Coral’s performance from 76.20 to 58.33 seconds. Here, Coral waits
98 seconds before returning the first answer to the query reachable/2 (a time
longer than the total execution time in LDL+-+). Since a duplicate query is
answered later at almost no cost, we ventured to guess that this behavior is
actually the result of the supplementary-magic execution strategy Coral uses.

LDL++ | Coral(five modules) | Coral(same module)
notstratify 7.77 6.39 17.59
max.depth 11.90 5.15 8.64
constantpush | 0.98 5.70 16.07

Table 2: Frequently referenced predicates are stored in database

We also found several areas which require further attention by the LDLA++
designers and implementors. The program maz_depth combines choice and
linear recursion. From Table 1, we see that LDLA++ is significantly slower
than Coral, albeit the difference is reduced when intermediate predicates are
stored—Table 2. (The engine of maz_depth is dist/8 which was invoked 462
times in this experiment.) Given LDL-++’s good performance on linear re-
cursion, we cannot but blame LDL++’s choice as the culprit (although we
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have not decided yet whether this is merely an optimization issue, or semantic
differences with respect to Coral constructs also play a role).

Another weak point of LDL++ was non-linear recursion. The ‘naive’ def-
inition that computes Fibonacci number by a quadratic rule, would run much
faster in Coral than in LDL-++, to an extent that suggests that Coral is using
a better compilation method.

LDL++ | Coral(five modules) | Coral(same module)
notstratify 7.41 6.30 20.08
max.depth 36.22 11.60 19.65
constantpush | 2.05 16.34 73.93

Table 3: Doubling the data with frequently referenced predicates stored in DB

While this comparative study has been of very limited scope, it has has
nevertheless identified areas of opportunity for improvement in both systems.

Several other tests were performed in addition to those presented in the
tables. While these experiments confirmed our tentative conclusions discussed
above, they pointed out several other areas that deserve further investigations
and a second look by the designers. For instance, Table 3 shows the same
programs as Table 2 once the size of the database is doubled. The execution
time of notstratify does not change much (as expected since the time needed
to run its main procedure path does not increase much). The times for the
other two programs more than double, in a fashion that seems to indicate that
there are several factors involved, which deserve further investigation.

4 Conclusion

This paper represents only a modest first step in the right direction, but, in
our view, a useful one. By comparing a new user’s experience with two of the
leading deductive database systems we have derived know-how that can help
both the users and the designers.

In particular, new users of the systems should have derived a better un-
derstanding about the strengths of the two systems and how to use them to
their advantage (e.g., in the areas of modularization and caching).

In terms of the relative performance of these systems, our results indicate,
that there are several areas where either system shows strengths or weaknesses
with respect to the other.

The designers are thus given the opportunities of understanding the sources
of such differences and to improve their systems.
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The applications of the lessons learned in this study will foster the progress
of deductive database technology and its deployment in commercial applica-
tiomns.
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A Programs

A.1 The Program Max Depth

The basic program consists of that described in Section 2.4, and the following
rules:

max_depth(Dist)«distance(D), max(D, Dist).
distance((D))+ dep-atom(X,-,-,-), dep_atom(Y,-,-,-),
X ~= Y, dist(X,Y,D).
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A.2 The Program Notstratify

The main purpose of notstratify in this paper is to compare the strength of
LDLA++ and Coral in handling linear recursive program. The most important
and time consuming predicate in notstratify is path /4. The predicate of path/4
is defined as following in LDLA++

path(Cur, DST, {DST}, {Rule})« edges(Cur, DST, Rule).

path(Cur, DST, Visted, NSSTR )« path(Mid, DST, Vistedl, NSSTR1),
edges(Cur, Mid, Rule),
% Mid should not have been traversed
~member(Mid, Vistedl),
union({Mid}, Vistedl, Visted),
union(NSSTR1, {Rule}, NSSTR).

Edges/3 can be viewed as facts in this case and member/2 and union/3
are system defined functions. Hence, path4/ is a linear recursive predicate.
Path/4 of Coral version is as follows.

path(Cur, DST , Ds, Rs)« edges(Cur, DST, Rule),
add(DST,{},Ds), add(Rule,{},Rs).
path(Cur, DST, Visted, NSSTR)« path(Mid, DST, Vistedl, NSST R1),
edges(Cur, Mid, Rule),
% Mid should not have been traversed
not member(Mid, Vistedl),
add(Mid, Vistedl, Visted),
add(Rule, NSSTR1, NSSTR).

Edge/3 can be treated as facts, member/2 is a system defined function and
add/3 is a user defined, non-recursive function which added an element to a
set.

The reason for the change is that set union is not implemented and a vari-
able is not allowed to appear between { and } in Coral. While differences
between union/3 of LDL++ and add/3 of Coral are also a factor in determin-
ing the running times, we concluded that this was not the major one.

A.3 The Program Constantpush

Constantpush also employed linear recursion. However, in this case, we em-
phasizes more on the ability of being able to cache intermediate result than
compute the result fast. The most important predicate in this example is
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reachable/2, which is a linear recursive program. In our test example, reach-
able/2 is called eight times with three sets of arguments. That means five out
of the eight executions are repetition. If the system comes with a good cache
system, then the execution time can be reduced dramatically.

The program of reachable/2 looks about the same in both versions. In

LDL++ we have:

% (S) is the set of nodes that can be reached by P
reachable(P,(S))+ reach(P,S).

% reachable/2 never fails

reachable(P,{})« ~reach(P,S).

9% check whether there is an path between P,S
reach(P,S)« edges(P,S,-).

reach(P,8)« reach(Mid,S), edges(P,Mid,.).

The point here is not how much time the system spent to compute reach-
able/2, but how much time the system saves by using cache.
In Coral, the statement

conspush(Pn, Arity, Argtemp, (Rule),(Atoms) )«
cp(Pn, Arity, Argtemp,X,T,Z,Rule,Atoms).

is illegal. Thus, the program was changed to

conspush_rule(Pn, Arity, Argtemp, makeset((Rule)),-)
cp(Pn, Arity, Argtemp,X,T,Z,Rule,Atoms).

conspush_atom(Pn, Arity, Argtemp, _,makeset(({Atoms)))«
cp(Pn, Arity, Argtemp,X,T,Z,Rule,Atoms).

Reachable/2 is called by c¢p/7. In Coral, cp/7 is called twice with the same in-
put argument. That means reachable /2 may be invoked sixteen times, instead
of eight times. This scenario could in theory damage Coral’s performance a
lot. To our surprise, however, we found that this repetition did not hurt the
actual performance much.
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Abstract

A prototyped deductive database system, LogicBase, is being developed in Simon
Fraser University as a testbed for efficient query evaluation in deductive database
systems. This paper introduces the LogicBase project: its design principles, query
evaluation methods, implementation considerations and some testing results. A major
feature of the LogicBase system is its chain-based query evaluation method which is
unique in the family of deductive database systems. The method is motived by the fol-
lowing observations: (1) most popularly studied recursions can be compiled into highly
regular chain or pseudo-chain programs; (2) the compilation may capture the bindings
which could be difficult to be captured otherwise; and (3) because of the regularity,
simplicity and exactness of compiled chain programs, efficient query evaluation can be
performed by exploration of the available query constraints, integrity constraints, recur-
sion structures, and other features of the programs. Interesting chain-based evaluation
techniques, such as chain-following, chain-split, constraint pushing, partial evaluation,
etc., have been developed in the project. In this paper, we introduce the chain-based
query evaluation method, briefly present the design and implementation of the Log-
icBase project, compare the chain-based query evaluation method with other methods,
and outline the future research and development plan of the project.

1 Introduction

As an important extension to relational database approach, research on deductive database
represents a promising direction towards declarative query processing, high-level database

*This work was supported in part by the Natural Sciences and Engineering Research Council of Canada
under the grant OPG-3723 and a research grant from the Centre for Systems Science of Simon Fraser
University.
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programming, and the integration of logic programming and relational database technology
[23]. Deductive database technology has wide applications in business data management,
engineering databases, spatial databases, and knowledge-base systems [6, 26]. With the
maturity of deductive database research, many deductive database systems or prototypes,
such as LDL [6], Glue-NAIL! [18], CORAL [20], EKS-V1 [30], ADITI [29], etc. have been
developed and reported in recent years.

Although many deductive database systems adopt the syntax of logic programming lan-
guages, the interface for a deductive database system can be SQL-like, icon-based, etc. The
system can be constructed based on an extended relational or entity-relationship model or a
deductive and object-oriented (DOOD) model and be supported by an object-oriented back-
end [28]. A database system is deductive if it supports high-level views by sophisticated
deduction rules and a declarative query interface.

Since a deductive data language extends a relational query language to at least Horn
clause logic, efficient evaluation of recursions in deductive databases has been an important
issue in deductive database research [2, 27]. As many researchers [21, 2, 6, 18, 20, 29] have
noted that Prolog implementations are inappropriate for deductive database applications
due to its order-dependent and tuple-at-a-time evaluation, repeated computation of subgoals,
possible infinite recursive looping, and its difficulty at judging the completeness of the search.

Many techniques have been proposed and studied for efficient query evaluation in de-
ductive databases [16], which results in two influential classes of deductive query evaluation
methods: (1) top-down evaluation, represented by the query/subquery approach [30], and
(2) bottom-up evaluation, represented by magic sets computation and semi-naive evaluation
[2, 6, 18, 20, 29]. These methods explore set-oriented evaluation, focus of the search on query
relevant facts, with freedom of looping and easy termination testing, and have achieved im-
pressive results. However, because a recursion is more or less treated as a black box by these
methods without a detailed analysis of its particular structure, it is difficult to capture the
regularities of a particular recursion and maximally utilize the information about constraints
and recursion structures in query evaluation.

The LogicBase project adopts a different approach in deductive query evaluation, which
relies on query-independent compilation and chain-based query evaluation. The former
(query-independent compilation) [13, 9]) transforms a set of deduction rules into highly
regular compiled forms, which facilitates quantitative analysis of queries and efficient query
evaluation; while the latter (chain-based query evaluation) explores set-oriented evaluation
of each compiled chain with appropriate constraint transformation and pushing, reducing
unnecessary or redundant computation, and judgement of termination. The method can be
viewed as a natural extension to relational query evaluation method and an integration of a
top-down evaluation (by starting with the query as a goal) and a bottom-up evaluation (by
set-at-a-time evaluation without infinite looping and repeated computation of subgoals).

The paper is organized as follows. In Section 2, we analyze why it is interesting to
explore chain-based query evaluation. In Section 3, we introduce the LogicBase project and
outline the algorithms. In Section 4, we present some experimental results, summarize our
discussion and outline the future development plan.
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2 Why chain-based query evaluation?

Although recursions can be in complex forms, most recursions in practical applications can
be compiled into chain or chain-like forms to which efficient query analysis and evaluation
techniques can be explored [13, 12]. We examine the strength and limitation of the chain-
based compilation and evaluation technique.

2.1 Capture of more bindings in query binding propagation

First, by compiling complex recursions into highly regular chain forms, the selection-pushing
technique can capture more bindings in complex recursions than those using traditional rule
rewriting techniques, such as the magic rule rewriting [1, 27, 2]. This is illustrated by the
following example [13].

Example 2.1 Traditional rule rewriting techniques may encounter some difficulties in the
propagation of bindings in some recursive rules [13], which is demonstrated in the analysis
of the following recursion.

Suppose that a query “? —r(c,¢1,Y)” is posed on a linear recursion defined by {(1), (2)},
where ¢’s are constants, X’s and Y’s are variables, and r is a recursive predicate defined by
EDB predicates a, b and e.

r(X:,X,Y) < e(X1,X,Y). (1)
r(X, X,Y) « a(X,Y),r(X2, X1,Y1),5(X2, ). (2)

Following the binding propagation rules [27, 2], the bindings in the adorned goal, r*/, are
propagated to the subgoal r in the body of the recursive rule, resulting in an adorned subgoal,
rfbf as shown in (3), which are in turn propagated to the next expansion, resulting in r///,
as shown in (4), which cannot propagate any bindings further to subsequent expansions, and
the binding propagation terminates.

(X, X,Y) e abf(X,Y),rfbf(Xg,Xl,Yl),bbb(.Xg,Yl). (3)
r¥ (X, X1, Y))  —  a (X, Y), i (Xs, X, V), B X, Va). (4)

This kind of binding propagation relies on the backward binding propagation only, in the
sense that the bindings are propagated from the head to the body in a rule and from the IDB
subgoal in the body of a rule to the head of its unifying rule (the rule which unifies it). For
this recursion, the propagation cannot reduce the set of data to be examined in the semi-naive
evaluation because the derived magic set contains the entire data relations. Furthermore, it
is easy to verify that reordering of the subgoals cannot improve the evaluation efficiency.

For such recursions, binding information should be propagated in both forward and back-
ward directions. That is, bindings should also be propagated forward from the body to the
head in a rule and from the rule unifying the IDB subgoal to the corresponding IDB subgoal
in the body of the original rule. Such a propagation cannot be caught by the traditional
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approaches but can be captured by the compilation (or normalization) of linear recursions

[13].
For this recursion, its normalized, equivalent form is presented below.
r(X:,X,Y) « e(X,X,Y). (5)
r(X1,X,Y) « a(X,Y),t(X3). (6)
t(X1) «  a(X1,U),b(X2,U),1(Xa). (7)
t(Xl) A C(X2)X‘1,}/j.); b(X27K) (8)

Obviously, the bindings of the query r®/ can be propagated to any expansions in the nor-
malized recursion. 0

The detailed compilation technique is presented in [13], which shows that a single linear
recursion (with one linear recursive rule and one or more nonrecursive rules) can be com-
piled, independent of query forms, into either a bounded recursion (a set of nonrecursive
rules) or a chain recursion (a formula consisting of a single chain or a set of synchronous
chains). Moreover, many application-oriented recursions can either be compiled into (i)
asynchronous chain recursions [12] and be evaluated by partial transitive closure algorithms
[15, 14], or (ii) be compiled into synchronous chain forms (e.g., the same generation recur-
sion) [2] and be evaluated by counting, magic sets [1, 2], or other chain-based evaluation
methods [9]. Furthermore, algebraic simplification can be performed on the compiled ex-
pressions, and quantitative analysis can be performed by incorporation of query constants,
integrity constraints and database statistics.

2.2 Chain-following and chain-split evaluation

The second strength of the method is that systematic and quantitative analysis can be
performed on the compiled recursions to generate efficient query evaluation plans, such as
chain-following vs. chain-split evaluation.

Since many recursions can be compiled into chain forms, chain-based evaluation should
be explored on the compiled recursions. Chain-based evaluation can be viewed as an exten-
sion to relational database query analysis and optimization techniques because a compiled
chain consists of an infinite set of highly regular relational expressions. The compilation
makes explicit the regularity of the operation sequences in a recursion, on which quantita-
tive analysis and optimization can be explored systematically. Such a quantitative analysis,
similar to the access path selection and query plan generation for relational queries, can
be performed based on the characteristics of the compiled chains, query instantiations, in-
quiries, integrity constraints, and database statistics of extensional relations [9]. Notice that
quantitative analysis has been incorporated in many other recursion handling methods to
generate different query evaluation plans as well.

Although function-free recursions cover an interesting class of recursions in deductive
databases, many recursions in practical applications contain function symbols, such as struc-
tured data objects, arithmetic functions, and recursive data structures (lists, trees, sets,
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etc.). By transforming functions into functional predicates, the compilation and evaluation
techniques developed for function-free recursions can be extended to functional ones [9]. Fur-
thermore, the method can be generalized to logical programs containing modularly stratified
negation [20] and those with higher-order syntax and first-order semantics [5]. Therefore,
compilation of recursions into chain and pseudo-chain forms represents a powerful program
transformation technique which transforms recursion into simple, easily-analyzable forms
and facilitates the application of efficient evaluation methods.

In general, the chain-based query evaluation method consists of chain-following, chain-
split, existence checking, and constraint-based evaluation techniques.

The simplest chain-based evaluation is chain-following evaluation, which starts with a
highly selective end of a chain (called the start end) and proceeds towards the other end
of the chain (called the finish end) and then possibly to other chains. It simulates partial
transitive closure processing in the case of single chain recursion [15, 14] and the counting
method [1, 7] in the case of multiple chain recursion.

Example 2.2 The recursion length defined by {(9), (10)} can be compiled into a double-
chain recursion. For the query “? — length([a,b,c], N)”, the adorned normalized rule set is

{(11), (12)}.

length([],0). (9)
length([X|L1], suce(N1)) «- length(Ly, Ny). (10)
length®(L,N) « L="[,N="0. (11)

length (L, N) « cons’f(X, Ly, L), length™ (L1, Ny), succ’?(Ny, N). (12)

The query can be evaluated by counting [1]. Starting at L = [a, b, c], the cons-predicate is
evaluated, that derives L = [b,c], and count (a variable in the counting implementation) is
incremented by 1. The evaluation of the cons-chain terminates when L; = [] and count =
3. Then N; = 0 (obtained by the evaluation of the exit rule) initiates the succ-chain, which
is evaluated count times and derives the length of the chain, N = 3. ]

Depending on the available query bindings, some functional predicates in a chain gener-
ating path may not be immediately finitely evaluable, or the evaluation of a chain-generation
path may generate a huge intermediate relation. In this case, a chain generating path can
be partitioned into two portions: immediately evaluable portion and buffered portion. The
former is evaluated but the latter is buffered until the ezit portion (the expression which
corresponds to the body of the exit rule) is evaluated. Then the evaluation proceeds in
a way similar to the evaluation of a multi-chain recursion, except that the corresponding
buffered values should be patched in the latter evaluation. Such an evaluation technique is
called chain-split evaluation [9]. Here is one such example.

Example 2.3 The recursion append defined by {(13), (14)} can be compiled into a single-
chain recursion. For the query “?—append(U, V, [a, b])” whose adorned predicate is appendf®,
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the adorned normalized rule set is {(15), (16)}.

append((], L, L). (13)

append([X|L1], Ls, X|Ls]) «  append(La, Lo, Ls). (14)

append (U, V,W) « U= V="W (15)
append’ (U, V,W) « cons? (X, Wh, W), append? (U, V, Wy),

cons® (X1, Uy, U). (16)

Since the chain “cons(Xi,Us,U), cons(Xy, Wi, W)” cannot be finitely evaluated as a
whole based on the only available binding on W, a chain-split evaluation technique should be
applied in the evaluation. That is, the chain should be split into two portions: (1) the immedi-
ately evaluable predicate “cons(Xy, W1, W)”, and (2) the buffered predicate “cons(X1, Uy, U)”.

The evaluation proceeds as follows. The evaluation of the exit rule derives the first
set of answers: “U = [|” and “V = [q,b]”. The evaluation of the recursive rule proceeds
along the immediately evaluable predicate “cons(X1, W1, W)” which derives “W; = [b]” and
«X, = a” from “W = [a, b]”. Then X; is buffered, and W; is passed to the exit rule, making
“V = [b]” and “U; = [|”. Then the buffered U-predicate becomes evaluable since X; and U;
are available. The evaluation derives “U = [a]”. Thus, the second set of answer is {U = [d],
V = [b]}. Similarly, the evaluation may proceed along the immediately evaluable predicate
“cons(X1, Wy, W)” further, which derives the third set of the answer: {U =[a,b], V = []}.

(W

2.3 Constraint pushing and existence checking evaluation

Beside the distinction of chain-following vs. chain-split evaluation, another important strength
of the method is the systematic analysis and exploration of available constraints.

Taking the evaluation of a single-chain recursion as an example, we examine how to push
query constraints (or instantiations) at both ends of a compiled chain. The processing should
start at a more restrictive end (the start end) and proceeds to a less restrictive end (the finish
end). It is straightforward to push query constraints at the start end of the chain. However,
care should be taken when pushing query constraints at the finish end.

Example 2.4 An IDB predicate travel(FnoList, Dep, Arr, Fare), defined by {(17), (18)},
represents a sequence of connected flights with the initial departure city Dep, the final arrival
city Arr, and the total fare Fare, where edb_flight is an EDB predicate representing the
stored flight information.

travel([Fno, Dep, Arr, Fare) « edb.flight(Fno, Dep, Arr, Fare). (17)
travel([F'no|FroList], Dep, Arr, Fare) «
edb_flight(Fno, Dep, Int, Fy), travel(FnoList, Int, Arr, F3), Fare = F, + F>. (18)
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The recursion can be compiled into a single-chain recursion {(19), (20)}.

travel(L,D, A, F) «

edb_flight(Fno, D, A, F), cons(Fno,|], L), sum(F,0, F). (19)
travel(L,D, A, F) «

edb_flight(Fno, D, I, F1), sum(Fy, Sy, F), cons(Fno, Ly, L), travel(Ly, I, A, 51). (20)

Suppose a query is to find a set of (connecting) edb_flights from Vancouver to Zurich
(Switzerland), with at most 4 hops and with the total fare between $500 to $800, that is,

? — travel(FnoList,vancouver, zurich, F),
F > 500, F < 800,length(FnoList,N),N < 4.

According to the compiled form, D, L and F are located at one end of the chain (called the
departure end); whereas A, L, and S; are at the other end of the chain (called the arrival
end). The information at the departure end is, (i) D = “vancouver”, (i) 500 < F < 800,
and (iii) FroList = L,length(FnoList,N), N < 4; whereas that at the arrival end is, (i)
A = “zurich”, (ii) Ly = [|, and (iii) 51 = 0.

Since the information at the arrival end is more selective than that at the departure end,
the arrival end is taken as the start end. Thus, all the query constraints at this end are
pushed into the chain for efficient processing.

The query constraints associated with the finish end cannot be pushed into the chain in
iterative evaluation without additional information. For example, pushing the constraint,
“Fare > 5007, into the chain will cut off a promising connection whose first hop costs less
than 500. On the other hand, it is clearly beneficial to push the constraint, “Fare < 8007,
into the chain to cut off the hopeless connections when the accumulative fare is already be-
yond 800. However, a constraint like “Fare = 800” cannot be pushed into the chain directly,
but a transformed constraint, “Fare < 800”, can be pushed in for iterative evaluation.

A systematic way to push query constraints at the finish end can be derived by examining
the interactions between query constraints and monotonicity constraints [9]. If the value (or
the mapped value) of an argument in the recursive predicate monotonically increases but
does not converge to a limit during the evaluation, a query constraint which blocks such an
increase is useful at reducing the search space in iterative evaluation.

Based on the monotonicity constraint of the argument Fare, a termination restraint
template, “Fare # C”, is set up, where C is a variable which can be instantiated by a
consistent query constraint. For example, a constraint, “Fare < 800”7, or “Fare = 8007,
instantiates the template to a concrete termination restraint, “Fare # 800”. However, the
constraint, “Fare > 5007, is not consistent with the termination restraint template. Thus,
it cannot instantiate a termination restraint. An instantiated termination restraint can be
pushed into the chain for efficient processing.

Similarly, a constraint, “Dep = ‘vancouver’”, can be used for constraint pushing if we
have the airport location information and a constraint: same flight direction (a monotonic
constraint on flight direction). A concrete termination restraint, such as “longitude(Dep) #
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longitude(vancouver)”, can be derived from the analysis of the query constraints and mono-
tonicity constraints of the recursion, and the tuples generated at any iteration with the
departure airports located to the west of Vancouver is pruned in the chain processing. Also,
the constraint, “length(FnoList, N), N < 4”, can be pushed into the chain in the iterative
evaluation. 0

Notice that because of the availability of compiled chains and their precise connection
information, it is straightforward to perform a detailed analysis of the monotonicity behavior
of each chain and perform appropriate constraint transformation and constraint pushing for
efficient evaluation. It is difficult to do so without precise compiled chain information.

Furthermore, with the availability of compiled chain information, it is easy to apply exis-
tence checking evaluation [9], which terminates the evaluation without an exhaustive search
at the finish end of the chain if the query requires only to validate the existence of some
answer to this end of the chain. This is illustrated by the following example.

Example 2.5 The recursion “member(X, L)”, defined by {(21), (22)}, is a single-chain re-
cursion by normalization. The normalized rule set with the adorned head “member®(X, L)”

is {(23), (24)}-

member(X, [X|L1]). (21)
member(X,[Y|L1]) < member(X,L). (22)
member®(X,L) « cons’*(X, Ly, L). (23)
member®(X,L) « cons(Y, Ly, L), member®(X, Ly). (24)

A query, “?—member(a, [b,a,c,d])”, can be evaluated by an existence checking evaluation
algorithm because the variables at both ends of the chain are instantiated but not inquired.
Notice that “L = [b,a,c,d]” must be the start end, otherwise the cons-predicate is not
finitely evaluable.

The evaluation proceeds as follows. The evaluation of the exit rule derives no answer since
“Ii = [a,¢,d]”, but “b # X”. The evaluation of the recursive rule derives “L; = [a,c¢,d]”,
and “member(a, [a,c,d])”. It is evaluated to true since “member(a, [a, ¢, d])” satisfies the exit
rule. The evaluation terminates because one true answer validates the query. The evaluation
of the recursive rule has to proceed until “L; = [|” in (24) only if L contains no element a.
In this case, the answer to the query is false. O

2.4 Limitations of chain-based query evaluation method

Since a (single) linear recursion can be compiled into a chain form or a bounded recursion
[13], chain-based evaluation can be applied to such a recursion. Similarly, a nested linear
recursion (which is a linear recursion in which some subgoal in the rule is defined in turn by
a linear recursion) can also be compiled so and be evaluated by chain-based evaluation. For
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example, the popular n-queens recursion “ngueens(N,Q@s)” [25] is a typical nested linear
recursion, and efficient evaluation plans can be generated by our method for different query
bindings, such as “? — nqueens(8,@s).” and “? — nqueens(N,[3,1,4,2]).”, independently
of the ordering of rules and subgoals in the recursion definition.

Many complex recursions, though cannot be compiled into highly regular chains, may
still have interesting regularities among the variable connections in the recursive rules. For
example, the tower_of_hanoi recursion “hanoi(N, A, B,C, Moves)” [25] is a typical nonlin-
ear recursion which cannot be compiled into highly regular chain forms. However, because
of the regularity of its binding passing across two recursive subgoals in the recursive rule,
the expansions of the recursive rule still demonstrate certain chain-like regularity and the
portion in front of or behind each recursive subgoal in subsequent expansions can be treated
as a pseudo-chain in the query analysis. Thus, the chain-based query evaluation method
can still be applied to such recursions, and queries such as “? — hanoi(3,q,b,¢, M oves)” or
“? — hanoi(N,a,b,c,[a to b,a to c,bto c,a to b,c to a,c to b,a to b]).” can still be analyzed
systematically and be evaluated efficiently [11].

However, this does not imply that chain-based evaluation can be applied effectively to all
kinds of recursions. This is because some recursions may not have regular variable passing
patterns and cannot be compiled into chain or even pseudo-chain forms. For example, the
nonlinear recursion r, defined by {(25), (26)}, belongs to this class.

T'(X,.Xl,Y) R a(.X,Y),T(Xl,th,K),T‘(.Xz,X&Y&),b(X3,Yi,Yﬁ). (25)
r(X,X1,Y) « e(X,X1,Y). (26)

Thus a major limitation of the chain-based evaluation method is its limited applicability to
complex classes of irregular recursions.

In principle, chain-based evaluation is applicable to only a small subset of all the possi-
ble recursions. However, in practice, it is difficult to find a meaningful irregular recursion
to which chain-based evaluation is inapplicable. This puzzling phenomenon could possibly
be explained by the simplicity and regularity of human’s thinking in writing recursive pro-
grams: A recursive program with no obvious expansion regularities is difficult for human to
comprehend. Based on this phenomenon and the fact that chain-based evaluation may take
advantages of the regularities of recursion structures to generate efficient query evaluation
plans, our design of LogicBase takes chain-based evaluation as a major evaluation technique
and leaves a more general technique, such as the generalized magic sets method, as an as-
sistant one and be applied only when chain-based evaluation cannot derive efficient query

evaluation plans.

3 Design and implementation of LogicBase

As a testbed for deductive query evaluation, a deductive database system prototype Log-
icBase has been designed and is being implemented in Simon Fraser University. The project is
focused on the efficient evaluation of both function-free and function-bearing (functional) re-
cursions. In comparison with the advanced features and extensions beyond recursive query
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evaluation, such as modularly stratified negation, negation with well-founded semantics,
recursion with aggregation, etc. which have been implemented in many other deductive
database systems [21], LogicBase can only be considered as a primitive prototype. Exten-
sions to the system to include those features are in the future development plan.

3.1 Major algorithms: compilation and chain-based query eval-
uation

The current implementation of the LogicBase project consists of two major function blocks:
(1) deduction rule compilation, and (2) chain-based query analysis and evaluation.

3.1.1 Deduction rule compilation

Deduction rule compilation consists of two major units: (1) classification (classification
and simplification of recursions), and (2) compilation (compilation and normalization of
recursions).

The classification unit takes a complex recursive program as input, rectifies it, eliminates
mutual recursions when possible, simplifies the recursion when appropriate, and identifies
the class of recursions to which the program belongs [12, 10]. By this processing, a recursion
is classified into one of the following classes: (1) (single) linear recursion, (2) nested linear
recursion, (3) multiple linear recursion, (4) regular nonlinear recursion, and (5) irregular
recursion [12, 10].

The compilation unit takes the preprocessed recursion and compiles (normalizes) it into
a chain program, when possible, based on a compilation (normalization) algorithm described
in [13]. The compiled recursion is stored in the system for later query analysis and query
evaluation.

3.1.2 Chain-based query evaluation

LogicBase implements a few interesting algorithms besides chain-based evaluation method
to accommodate different kinds of recursions. Based on the class of a compiled recursion, a
query evaluation method is selected by the following algorithm.

Algorithm 3.1 Selection of a query evaluation method for a compiled recursion.
Input. A compiled recursion.
Output. A selected query evaluation method.
Method.
CASE recursion OF

o Function-free
— asynchronous chain recursion: é-wavefront algorithm.
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— synchronous chain recursion: the magic sets method.
— otherwise: the generalized magic sets method.
e Function-bearing /* containing function symbols, also called functional recur-
sion. */
— when chain-based evaluation applicable: chain-based evaluation.
— otherwise: the generalized magic sets method.

END O

Rationale (for Algorithm 3.1).

Since function-bearing recursions have many different characteristics from function-free
ones, we separate the two kinds of recursions and apply different evaluation methods.

For a function-free recursion, if it is compiled into an asynchronous chain recursion [12],
a simple but relatively efficient partial transitive closure algorithm, §-wavefront algorithm
[12], is applied. There have been many other eflicient database-oriented partial transitive
closure algorithms developed recently (such as [14, 15]), which could be applied here for
further performance improvement. If it is compiled into a synchronous chain recursion (e.g.,
the same-generation recursion), the magic sets method applies [2]. Otherwise (such as a
nonlinear recursion), the generalized magic sets method applies [4].

For a function-bearing recursion, we apply chain-based evaluation, when applicable, and
a generalized magic sets method, otherwise. Since a functional recursion does not have a
finite least fixed point in general, the evaluation using the generalized magic sets method
terminates when reaching a specified maximum number of iterations. However, since we
have not found a practically interesting functional recursion to which chain-based evaluation
is inapplicable, this algorithm is left there only for handling some unexpected cases. O

Obviously, the core of the evaluation of a function-bearing recursion is the chain-based
query evaluation algorithm which is presented as follows.

Algorithm 3.2 Chain-based evaluation of a normalized (; functional) chain recursion.

Input. (1) A normalized (functional) chain recursion, (2) a set of integrity constraints, (3)
a query predicate, and (4) a set of query constraints.

Output. A query evaluation plan which incorporates the query constraints.

Method.

1. Test whether the query is finitely evaluable and terminable (using the algorithm pre-
sented in [8]). If it is not, stop.

9. Perform query binding analysis and determine (1) the start point of the chain process-
ing, and (2) the predicate evaluation order. The analysis is based on (1) the available
query bindings, (2) integrity constraints, (3) the structure of the recursion, (4) pred-
icate selectivity based on the provided query and integrity constraints, and (5) the
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average fan-out ratio of a predicate. Immediate evaluability and evaluation efficiency
are the two major concerns in the ordering of the predicates.

3. Apply the query constraints associated with the start end as query instantiations to
reduce the size of the initial set. If the whole chain is not immediately evaluable,
the chain should be split into two portions with the immediately evaluable portion
evaluated and the remaining portion buffered until the finish of the evaluation of the
exit portion (chain-split evaluation). If the finish end of the chain is not inquired in
the query, apply the ezistence checking evaluation.

4. If the finish end has associated query constraints, and there are monotonicity con-
straints available, apply the constraint-based evaluation by pushing the constraint or
the transformed constraints, when possible, into the chain predicate(s) for efficient eval-
uation. Notice that these evaluation techniques can be combined: e.g., a constraint-
based, chain-split evaluation can be applied if the query satisfies the conditions of both
evaluation algorithms.

5. The query constraints which has not been used during the iterative evaluation of the
recursion should be used at the end of the iterative evaluation. a

Rationale (for Algorithm 3.2).

Step 1 is necessary since a query must be finitely evaluable and terminable. It is performed
using the methods discussed in [8]. Step 2 is necessary and correct since the correct ordering
of the predicates will lead to finite and efficient evaluation. Step 3 is correct because the
iterative query evaluation can be determined by a query binding analysis. The most selective
information should be pushed into the compiled chain for initial processing [3]. If a chain is
not immediately evaluable, the chain-split evaluation should be applied based on the query
binding analysis [9]. If the finish end of the chain is not inquired in the query, the existence
checking evaluation can be applied since it is adequate to find one answer which validates
the chain. Step 4 is correct since the constraint information associated with the finish end
should be maximally used when possible to reduce the search space. Step 5 is obviously
necessary since the remaining query constraints, if not applied before, must be applied at
the end of iterative processing to satisfy the query. o

The algorithm explores different evaluation directions, predicate ordering, the regularity
and the structure of a recursion, and the maximal usage of query constraints and integrity
constraints. The step-by-step analysis of sophisticated queries on a normalized chain re-
cursion and the generation of efficient query evaluation plans provide high promise on the
efficient evaluation of such programs. However, the optimality of the algorithm is not claimed
here because the actual generation and selection of the query evaluation plan is a sophis-
ticated and costly process, exponential to the size of the set of predicates in the recursion
and the number of available access paths [16]. Similar to the dynamic query plan generation
and query optimization in relational systems [27], one can only expect to derive suboptimal
query evaluation plans at a reasonable cost of query optimization [2, 16].
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4 Summary

The LogicBase system is being implemented based on the compilation and query evalua-
tion algorithms described in the previous section. The system identifies different classes of
recursions, eliminates mutual recursions when possible, and compiles recursions into chain
recursions when appropriate. Queries posed to the compiled recursions are analyzed sys-
tematically with efficient query evaluation plan generated. Queries are executed mainly by
chain-based evaluation, together with several other query evaluation methods, such as the
generalized magic-sets method [4], the é-wavefront algorithm [12], etc. The system is being
tested on different kinds of recursions and queries with interesting experimental results and
good performance. The system will be demonstrated in the workshop, using some interesting
test programs, including many logic programs from Prolog textbooks [25].

As indicated in the introduction section, the current implementation of the LogicBase
system is a primitive testbed for evaluation of deductive queries. Except for deductive
query evaluation, most other features in many deductive database systems have not been
incorporated in the implementation of LogicBase. The following two major features are
planned to be incorporated in the future development of the system.

e Aggregation and modularly stratified negation.
e Towards a deductive and object-oriented database system.

There have been many interesting studies on the incorporation of these features in the frame-
work of the magic-sets and query-subquery methods [19, 22, 17, 21, 24]. The incorporation
of these features in the framework of chain-based evaluation is under investigation.

In summary, the LogicBase prototype system may represent an interesting alternative to
efficient query evaluation in deductive database systems and may be worth further exami-
nation and development in deductive database research. This is our motivation to propose
a demonstration of the LogicBase system prototype in the “Logic Database” workshop.
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The Aditi Deductive Database System

Jayen Vaghani, Kotagiri Ramamohanarao, David Kemp, Zoltan Somogyi,
Peter Stuckey, Tim Leask, James Harland
Department of Computer Science, University of Melbourne
Parkville, 3052 Victoria, Australia
{jayen,rao,kemp,zs,pjs,tsl,jah } @cs.mu.oz.au

Aditi! is a deductive database system which has been developed at the University of
Melbourne. 2 Programs in Aditi consist of base relations (facts) together with derived
relations (rules), and are in fact a subset of (pure) Prolog. Queries are a conjunction of
atoms (as in Prolog), and a bottom-up evaluation technique is used to answer queries. In
finding all answers to a given query, Aditi, like many deductive database systems, uses
algorithms and techniques developed for the efficient answering of queries in relational
database systems. Thus we expect that Aditi need not be less efficient than a relational
system for purely relational queries. Aditi also uses several optimisation techniques which
are peculiar to deductive databases, particularly for the evaluation of recursive rules. These
techniques include magic sets, supplementary magic sets, semi-naive evaluation, predicate
semi-naive evaluation, the magic sets interpreter and the context transformation.

Aditi is based on a client/server architecture, in which the user interacts with a front-
end process, which then communicates with a back-end server process which performs
the database operations. There are three kinds of server process in Aditi: the query
server, which manages the load that Aditi places on the host machine, database access
processes, one per client, which control the evaluation of the client’s queries, and relational
algebra processes, which carry out relational algebra operations such as joins, selections
and projections on behalf of the database access processes.

There are four main characteristics of Aditi which, collectively, distinguish it from
other deductive databases: it is disk-based, which allows relations to exceed the size of
main memory; it supports concurrent access by multiple users; it exploits parallelism at
several levels; and it allows the storage of terms containing function symbols. It has been
possible for researchers to obtain a beta-test version of Aditi since January 1993, and a
full release of the system is expected soon. The current version of Aditi comes with a
Prolog-like (text-based) interface, a graphical user interface, interfaces to both SQL and
Ingres and a programming interface to Nu-Prolog. It is also possible to embed top-down
computations within Aditi code.

A beta-test version of Aditi is available to interested researchers, and a full release of

the system is expected soon.

1 Aditi is named after the goddess in Indian mythology who is “the personification of the infinite” and

“mother of the gods”.
2This research is supported in part by the Australian Research Council, the Center for Intelligent

Decision Systems, and the Collaborative Information Technology Research Institute.
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The CORAL Deductive

Raghu Ramakrishnan

Divesh Srivastava

CORAL [2, 3] is a deductive database system that supports a
powerful declarative query language. The language supports gen-
eral Horn clause logic programs, extended with SQL-style group-
ing, set-generation, and negation. Programs can be organized
into independently optimized modules, and users can provide op-
timization hints in the form of high-level annotations. The sys-
tem supports a wide variety of optimization techniques. There
is an interface to C-+-+ that enables programs to be written in
a combination of imperative and declarative styles. A notable
feature of the CORAL system is that it is extensible. In partic-
ular, new data types can be defined, and new relation and index
implementations can be added. An interface to the EXODUS
storage manager [1] provides support for disk-resident data (both
base and derived relations can be disk-resident), transactions and
crash-recovery.

CORAL is available as source code (C++) from fip.cs.wisc.edu
at no charge. Versions compatible with g++ and AT&T C++
are available; the system has been successfully ported to Decsta-
tions, Sun Sparcstations, and HP workstations, to our knowledge.
CORAL is distributed with extensive documentation, including
a tutorial user manual and a large suite of example programs.
It is currently installed at over 125 sites and is being used for
instruction as well as in research projects. The demonstration is
intended to illustrate some of the important features of the sys-
tem, to exhibit a wide range of programs that benefit from these
features, and to emphasize that substantial applications can be
and have been developed using CORAL.

The features demonstrated include the following:
e general recursive rules

e non-stratified negation, aggregation and set-generation

e non-ground data structures such as difference-lists

*This research was supported by a David and Lucile Packard Foun-
dation Fellowship in Science and engineering, a Presidential Young In-
vestigator Award, with matching grants from Digital Equipment Cor-
poration, Tandem and Xerox, and NSF grant IRI-9011563.

tThe address of the first two authors is Computer Sciences De-
partment, University of Wisconsin, Madison, W1 53706, U.S.A. These
authors’ email addresses are {raghu, praveen}@cs.wisc.edu.

iThe address of the last two authors is AT&T Bell Laboratories,
600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A. These authors’
email addresses are {divesh, sudarsha}@research.att.com.
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e C+--+ interface, and its use for extensibility

e support for modules

¢ disk-resident base and derived data

e a graphical explanation package

e a stock market analysis system built as a CORAL applica-
tion

We also illustrate the following issues related to program eval-
uation:

e program transformations such as Magic Templates (and vari-
ants) and Context Factoring.

o run-time techniques including Semi-Naive Evaluation (and
variants) and Prolog-style “pipelined” evaluation.

e the use of high-level annotations to optionally guide opti-
mization on a per-module basis.

With respect to performance, we show that:

e reasonable performance is achieved on a wide range of pro-
grams

e performance can often be tuned by a good organization of
the program plus some annotations(hints)

e program compilation is fast, making interactive program de-
velopment convenient
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Demonstrating the Glue-Nail Deductive Database System

Marcia A. Derr Geoffrey Phipps
AT&T Bell Laboratories Sun Microsystems Laboratories
mad@research.att.com phipps@eng.sun.com

The Glue-Nail deductive database system [1, 2] provides two complementary languages for pro-
gramming applications. The Nail declarative language is used to express simple and complex queries
or views. The Glue procedural language augments queries with control structures, update opera-
tions, and input/output procedures. In this demonstration, we guide the audience through a typical
session of compiling and running a Glue-Nail program.

A Glue-Nail program consists of one or more modules of Glue procedures and Nail rule sets.
Each module can be compiled separately. The Glue compiler translates Glue procedures into the
IGlue target language. It also extracts Nail queries and their associated rule sets and passes them
to the Nail compiler. The Nail compiler translates its source into IGlue code, using appropriate
transformation and evaluation strategies. The IGlue code that is generated by either compiler may
be optionally analyzed and improved by the static code optimizer. In the final compilation step, the
linker gathers all relevant IGlue code into a gingle file.

The IGlue interpreter loads the IGlue program and reads into memory any disk-resident relations
that the program will access. As the interpreter executes each instruction, it calls the run-time
optimizer, when appropriate, to adapt query plans to changing parameters of relations. When the
interpreter halts, it writes to disk any persistent relations that have been updated. The interpreter
includes tracing and profiling tools for demonstrating or debugging its operation.

The Glue-Nail system was developed at Stanford University as part of the NAIL! Project. The
current implementation supports single-user applications with databases that fit in main memory.
The system has been tested on a variety of applications including a logic simulator, a flight reservation
system, scheduling and allocating resources for building construction, and bill-of-materials.

Availability: The front and back ends of the Glue-Nail system are distributed separately. Requests
for the Glue and Nail compilers should be sent to Geoffrey Phipps. Requests for the IGlue interpreter
should be sent to Marcia Derr.
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The XSB Programming System

K. Sagonas, T. Swift, and D.S. Warren
Dept. of Computer Science, Suny at Stony Brook

Version 1.4.0 of XSB, a Prolog-based Logic Programming System, is now available. XSB extends
the standard functionality of Prolog to include implementations of SLG resolution (tabling) and of
HiLog terms. '
SLG resolution is useful for recursive query computation, allowing programs to terminate cor-
rectly in many cases where Prolog does not. Users interested in Parsing, Program Analysis, and
memory-resident Deductive Database applications may benefit from XSB.
XSB’s SLG implementation:

e Is incorporated at the emulator level for maximal efficiency. The speed improvement over
meta-interpreters written by the XSB group is 2-3 orders of magnitude, with considerable
improvements in space as well.

e Evaluates programs with (left-to-right modularly) stratified negation and aggregation at the
engine level. The current version evaluates programs with general negation at the interpreter
level.

o Allows for declaration of tabled predicates either automatically by the system or manually by
the user.

e Provides standard tabling predicates which can be used to program a number of applications
like meta-interpreters for the well-founded semantics (provided as an example program).

e Allows full Prolog functionality in tabled code, including cuts (subject to weak semantic re-
strictions), meta-logical predicates, ‘alsecond-order predicates, etc.

HiLog supports a type of higher-order programming in which predicate symbols can be variable or
structured. This allows unification to be performed on the predicate symbols themselves in addition
to the arguments of the predicates.

XSB’s HiLog implementation:

o Includes a fully integrated HiLog preprocessor. HiLog terms can be used anywhere in XSB,
including the interpreter level.

e Includes compiled HiLog. Higher-order predicates execute at about a 50% overhead over
comparable compiled first-order predicates.

e Provides a number of meta-logical standard predicates for HiLog terms.

The new version also offers novel indexing along with faster I/O than previous versions and
emulator improvements. Users are offered the choice of Prolog-style hash-based indexing, or first-
string indexing. In the hash-based indexing, users can index on various arguments or on multiple
arguments, removing a limitation of Prolog for data-oriented queries. Furthermore, users can in-
dex clauses with first-string indexing which builds a discrimination net, and reduces the need for
backtracking.

Version 1.4.0 of XSB has been tested on over a dozen hardware and operating system platforms.
1 It is available through anonymous ftp from cs.sunysb.edu, and through Gopher.

Queries can be directed to xsb-contact@cs.sunysb.edu.

1 Currently SPARC, MIPS, Intel 80x86 and Motorola 680x0 chips have been tested; for operating systems, SUNOS,
SOLARIS, IRIX, ULTRIX, LINUX, 386BSD, AMIGA-DOS, HP-UX, System V.3, SCO Unix, and Mach have been
tested.
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Outline of the LogicBase Demonstration®
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The LogicBase demonstration consists of 2 sections:

1. Compilation of complex linear recursions.

Complex linear recursion can be compiled into highly regular chain forms or normalized
rewritten rules. The demo will show two examples:

(a) strange;, an example shown in the LogicBase paper. It requires the bi-directional bind-
ing propagation.

(b) stranges, another complex linear recursion consisting of mutliple V-units. It requires
sophisticated efforts for normalization.

There are more than 50 complex linear recursions stored in the same test subdirectory and
workshop attendees may play with them after the presentation.

2. Chain-based query evaluation for function-bearing linear recursions.

The following query evaluation examples will be shown in the demo. Notice that all the rules
in a recursion and all the sub-goals in a rule are completely order-independent. One can
change the orders in many ways and re-execute the programs. Due to the time limitation, we
will show only a few executions with order-swapped programs.

(a) append: Queries with different bindings on the append recursion, such as append-bbf,
append-bfb, append-ffb, append-bbd, append-fbf, etc. will be tested on the same program
with no hints to the system.

(b) nqueens: Different queries on the same nqueens recursion (with no hints to the system),
such as “7—nqueens(5,Qs).”, “?—ngqueens(N, [4,1,3,2]).”, “? _nqueens(5,[5,1,3,2,4]).”
“? — nqueens(N,Qs).”, etc. will be tested on the system.

(c) isort: Different queries on the same isort recursion (insertion sort), such as “?7 —
isort([1,5,7,2,6],Qs).”, “? — insort(Ls,[1,2,3,4]).”, “7 — isort([1,5,2,4],[1,2,5,4]).”
“? — nqueens(L1, L2).”, etc. will be tested on the system.

(d) flight: The popular air-flight reservation example will show that different constants and
constraints can be pushed smartly into the recursion for efficient evaluation.

There are many other interesting examples in the testing directories. The demo will show more
examples when time permits. Workshop attendees are welcome to play with other examples after
the demonstration.

*This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under
the grant OPG-3723 and a research grant from the Centre for Systems Science of Simon Fraser University.
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Overview of the deductive database system LOLA
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The centerpiece of the deductive database system prototype LOLA is a logic program-
ming language with functions and negation, i.e. a proper superset of DATALOG. The
LOLA language has an iterated fixpoint semantics and integrates deduction and efficient
data access using relational techniques. LOLA provides automatic access to external re-
lational database systems via a SQL interface. In addition, functions of the host language
Common Lisp can be called from within LOLA programs and vice versa. There is no
integrated update language. Updates to the base relations must be performed using the
host language.

LOLA rules and queries are organized into units that consist of both definitions, i.e. a set
of rules, and type declarations for every constant, function symbol, and predicate symbol
occurring in this unit. Polymorphic types are supported.

As opposed to Prolog-like top-down interpreting systems, LOLA queries are compiled into
a set-valued expression in a top-down phase. In a subsequent - possibly deferred - bottom-
up phase this expression is evaluated and the appropriate set of answer tuples is returned.
The basic evaluation scheme is semi-naive fixpoint iteration. Several optimizations, among
others the magic set transformation, can optionally be applied. An explanation facility is
integrated into the system.

The LOLA system is implemented in Common Lisp and has been tested on UNIX plat-
forms with Allegro Common Lisp, AKCL, and Lucid Common Lisp. LOLA is available
via FTP . Please direct requests to lola-request@informatik.tu-muenchen.de.

For more information on the LOLA system see the articles listed below.
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Extending Deductive Databases with Object Orientation
A Presentation of the ECRC/IDEA Yearl-Demo
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The IDEA project at ECRC is focusing on the design and support of a high-level conceptual
interface for a knowledge processing environment, based on an object-oriented conceptual model
and a declarative rule language. The resulting system will provide advanced functionality to raise
the quality of interaction with users and applications as well as the quality and efficiency of data

management.

Part of the work is carried out in the context of the ESPRIT EP6333 project of the same name
(started in June 1992 and projected for four years). The ESPRIT consortium comprises some
of the most renown institutions and researchers in the database field: BULL (prime contractor),
ICL, the Imperial Cancer Research Fund, INRIA, TXT Ingeneria Informatica, and the Politecnico

di Milano.

Up till now the focus has been on the design of the high-level conceptual interface of the IDEA
system. The developed interface extends the rule formalism by adding object orientation. ECRC is
using its ECL*PS® logic programming environment as a basis for the environment to be developed.
The persistent storage facilities offered by ECLPS¢ supports efficient storage of deductive rules
and will be augmented to serve as an internal low level object manager offering efficient storage
facilities for complex objects. Also experiences from the development of the EKS-V1 system in
the areas of query optimization and integrity constraints will guide the design decisions for the

IDEA system.

It is in the context of the ESPRIT project that the IDEA technology will be validated by appli-
cations in three domains. ICRF (in collaboration with ECRC) will develop a decision support
system for molecular biology researchers. The other application domains are software testing and
electricity network control.

The current prototype is a fast first implementation and its sole purpose is to serve as a demon-
strator for the kind of functionality that the final IDEA system will offer. Documentation and
information can be obtained from:

Willem Jonker

European Computer-Industry Research Centre
Arabellastrasse 17

D-81925 Munich

Germany
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The Hy+ system [CM93] provides a user interface with extensive support for visualizing and
querying structural (or relational) data as hygraphs [Con92], a convenient abstraction that generalizes
several diagrammatic notations.

Hy+ supports visualizations of the actual database instances and not just diagrammatic repre-
sentations of the database schema. Given the large volume of data that the system must present to
the user, it is fundamental to provide her with two fundamental capabilities: the ability to define
new relationships (or derived data), and an innovative way of using queries to decide what data to
show. Using Hy+’s show capability the user can selectively restrict the amount of information to be
displayed. This filtering of irrelevant data is fundamental if one is to have any hope of conveying
manageable volumes of visual information to the user. Selective data visualization can be used to
locate relevant information, to restrict visualization to interesting portions of the data, and to control
the level of detail at which the information is presented.

To describe queries, Hy+ relies on a visual pattern-based notation. The patterns are expressions
of the GraphLog query language [Con89, CM90]. Overall, the system supports query visualization
(i.e., presenting the description of the query using a visual notation), the (optional) visualization of
the data that constitutes the input to the query, and the visual presentation of the result.

Hy+ and GraphLog have been successfully applied in areas where it is helpful to visualize the data
using hygraph based diagrams, such as: exploring C++ source code [CM93], formal software design
documentation and object code overlay structure [CMR92]; browsing the structure of hypertext
documents [CM89]; debugging distributed and parallel programs [CHM93]; and supporting network
management [CH93]. '

The Hy+ system is implemented as a front-end, written in Smalltalk, that communicates with
other programs to carry on tasks such as data acquisition, query evaluation, hygraph layout [Noi93],
and invoking external programs to browse the objects represented by the visualizations (i.e., editing
source code in a software engineering application). The front-end provides browsers that let users
interact with the hygraph-based visualizations, as well as supporting parsing, query translation,
back-end communication and answer management. There are three back-end query processors used
by the system: LDL [NT89], CORAL [Ram92], and a previously developed GraphLog interpreter
implemented in Prolog [Fuk91]. The reader is referred to [CMV93] for a description of the use of
deductive database technology in the Hy+ system.
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