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Abstract

An important advantage of infeasible interior-point methods compared to feasible
interior-point methods is their ability to be warm-started from approximate solutions.
It is therefore important for the convergence theory of these algorithms not to de-
pend on being able to alter the starting point. In two recent papers, Yin Zhang and
Stephen Wright prove convergence results for some infeasible interior-point methods.
Unfortunately, their analysis places a restriction on the starting point. It is easy to
meet the restriction by altering the starting point, but this may take the point farther
away from the solution, removing the advantage of warm-starting the algorithms. In
this paper we extend Zhang and Wright’s results to apply to arbitrary strictly positive
starting points. We then present an algorithm for solving the Box-Constrained Linear
Complementarity problem and prove its convergence.

1 Introduction

Quite often, in using an iterative method to solve a problem, it is possible to use a previously
derived approximate solution as a starting point. Such a starting point may be available, for
example, as the result of solving a “nearby” problem. When such an approximate solution is
used as a starting point, we say that the algorithm has been warm-started. Warm-starting is
particularly important in the context of sequential quadratic programming. Here, a difficult
problem is tackled by solving a sequence of easier subproblems. Typically, the solution of
each subproblem provides an excellent starting point for solving the next subproblem in the
sequence. It is therefore important to consider how well an algorithm can be warm-started.

Until recently, interior-point methods were not amenable to warm-starting. The difficulty
was that such methods required that the starting point be strictly feasible. This was an
unfortunate constraint since a solution to a nearby problem would not, in general, be feasible.
Thus, it would have to be modified to bring it into the feasible region—a process which would
typically carry it farther away from the solution.

*This material is based on research supported by National Science Foundation Grant CCR-9157632 and
the Air Force Office of Scientific Research Grant AFOSR-89-0410.
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More recently, infeasible interior-point methods have been developed, which differ from
(feasible) interior-point methods by allowing the iterates to violate the equality constraints
while strictly satisfying the inequality constraints. Put differently, the iterates are infeasi-
ble with respect to the equality constraints, but are interior to the region defined by the
inequality constraints. We call this region the inequality-feasible region or more simply the
i-feasible region.

The relaxation of the feasibility requirements allows these infeasible interior-point meth-
ods to handle warm starts quite effectively. Typically, the problems can be formulated in
such a way that the only difference between the current problem and the nearby problem is
in the equality constraints. Thus, with only a slight modification, the solution to the nearby
problem can be used as the starting point for the current problem. This slight modification
is needed simply to move the point from the boundary of the i-feasible region to the interior
of the i-feasible region, and can be arbitrarily small.

A significant amount of work has been devoted to the development of infeasible interior-
point algorithms. This line of research first produced practical algorithms along with numer-
ical tests and comparisons, which demonstrated superior practical performance of this class
of algorithms. See, for example, [Ans89, Ans91, LMS91, LMS92, MMS89, Meh92, KMT92,
Miz93], and [Pot92a, Pot92b].

More recently, a number of theoretical papers have been written which analyze conver-
gence and complexity behavior of various algorithms. See, for example, [KMM91, Wri92a,
Wri92b, Zha92], and [2Z92]. Of particular importance is the paper by Yin Zhang, [Zha92]. In
it, Zhang demonstrates global Q-linear convergence and polynomial complexity for a class of
infeasible interior-point methods for a generalization of the linear complementarity problem
called the horizontal linear complementarity problem. This work is particularly significant
because the class of algorithms Zhang analyzes is closely related to already existing algo-
rithms with proven effectiveness. More recently Stephen Wright [Wri92a, Wri92b] extended
Zhang’s algorithm to produce two algorithms that achieve local Q-quadratic convergence.

Unfortunately, both Zhang and Wright place a restriction on the starting point that will
pose problems when warm-starting the algorithms. Their restriction is very easy to satisty
if we are allowed to vary the starting point. However, this completely defeats the purpose of
warm-starting, since changing the starting point may take us farther away from the solution.
Fortunately, the restriction on the starting points is unnecessary. Demonstrating that fact
is the primary purpose of this paper. Indeed, we will show that both Zhang’s and Wright’s
convergence results are valid starting from arbitrary i-feasible starting points.

The extended convergence results also make it possible to extend one of Wright’s algo-
rithms to derive an algorithm for the box-constrained linear complementarity problem and
to prove global Q-linear and local Q-quadratic convergence for it.

The paper is organized as follows. In Section 2 we describe the horizontal linear comple-
mentarity problem and present Zhang’s algorithms for solving it. We then extend Zhang’s
convergence results to apply to arbitrary strictly positive starting points. In Section 3 we
state one of Wright’s algorithms for solving the linear complementarity problem and extend
his convergence results to apply to arbitrary strictly positive starting points. Finally, in
Section 4 we discuss our algorithm for the box-constrained linear complementarity problem,
and prove convergence results for it.



Some words about notation are in order. Unless otherwise specified, ||| denotes the
Euclidean norm of a vector. Iteration numbers appear as superscripts on vectors and matrices
and as subscripts on scalars. A subscript on a vector (or matrix) represents either a subvector
(submatrix) or a component of the vector (matrix).

In expressions, vectors are assumed to be column vectors unless explicitly transposed.
Commas are used to separate columns of matrices, semicolons are used to separate rows.
For example, if we have the expressions z = (z,y) and w = (;¥), then z is a matrix with
columns z and y, whereas w is a column vector formed by concatenating = and y.

We use the notation (+)4, (), and | - | to represent the plus, minus, and absolute value
operators, respectively, for vectors. That is, 24 := (max(z1,0);...; max(zy,,0)), z- =
(max(—x1,0);. .. ;max(—z,,0)) and |z| := (|21} .. ;|Zal)-

We also refer to the sets IR, and IR, which represent the nonnegative real numbers
and the positive real numbers, respectively.

2 Zhang’s Algorithm for the Horizontal Linear Com-
plementarity Problem

The horizontal linear complementarity problem (HLCP) [CPS92] can be stated as follows:

(HLCP) Find (z,y) € IR" x IR" such that

Mz + Ny—nh
F($77J) = ( XY@J > =0, (:c,y) >0,

where M, N € R™" e,h € R", X = diag(z),Y = diag(y),e = (1,1,--- ,1)T. Note that
if N = —I, this is exactly the linear complementarity problem (LCP), which we discuss in
Section 3.

In his paper [Zha92], Yin Zhang presents two algorithms for solving the horizontal linear
complementarity problem. The first algorithm is a very general algorithm about which a
number of useful lemmas can be proved. The second algorithm is a special case of the first
for which Zhang proves a global Q-linear convergence result.

For convenience of discussion, Zhang defines the following sets:

S ={(z,y) € R*: h= Mz + Ny, (z,y) > 0,z'y = 0},i.e., the solution set,
A= {(z,y) € R*™: h = Mz + Ny},
F ={(z,9) € A: (z,y) > 0},1e., the set of feasible points,

Fyp = {(z,y) € A: (z,y) > 0},i.e., the set of strictly feasible points.

Zhang’s algorithms can be described as centered and damped Newton methods that
work as follows: given a starting point (z°,3°) > 0, both algorithms generate a sequence
of strictly positive iterates { (z*,9")} that, under appropriate assumptions, converge to a
solution (z*,y*) of (HLCP).

To prove his results, Zhang makes the following assumptions on the problem:
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Assumption 2.1 For any (z,y) € A and (2,9) € A, (x— %) (y—9) > 0, i.e. A is the
graph of a monotone operator.

Assumption 2.2 F # 0, i.e., a feasible point exists.

It is known that Assumptions 2.1-2.2 imply the existence of a solution (z*, y*) to (HLCP)(see
[G1i192, Theorem 3.1]). It is also well-known that Assumption 2.1 is satisfied by linear pro-
grams, convex quadratic programs, and monotone linear complementarity problems.

In addition to these two explicit assumptions, Zhang also makes an implicit assumption
about the starting point. Given a point (u% v°) € A (such a point exists by Assumption 2.2),
Zhang proves his convergence results by choosing a starting point (z%,9°) > 0 that satisfies
(z°,4°) > (u®,v°). Tt is easy to find such an (z°9°) (simply choose z° = max((,u°) and
y° = max(¢,v°) for some ¢ > 0). However, since we are interested in warm-starting the
algorithm, we do not want to change the starting point. Thus, given a fized starting point
(2°,4°) Zhang’s results are based on the following implicit assumption:

Assumption 2.3 There ezists (u®,v°) € A such that (2°,3°) > (u,2°).

We shall spend the remainder of this section proving Zhang’s results without this implicit
assumption. We start with Zhang’s first algorithm.

Algorithm 1—- Zhang’s First Algorithm

Given (z°,¢4%) > 0, for £ =0,1,2,..., do

1. Choose oy € [0,1) and let pp = %:r,kTy’“. Solve the following linear system for
(AzF, Ay)
1) M N\ [(Az\ _ [(h— MzF— Ny
YV X/ \Ay)  \-X*Y* +opure)’

2. Choose a steplength a; € (0,1] and

-1
min((X*) LAz, (YE) LAYk, —1/2)

o < G =

Let z° = zF + aAzk and 3+ = y* + apAyF.

Step 1 of this algorithm is derived by applying one step of Newton’s method to the

equation
0
Flz,y) = )
(,9) (a;;pu;e)

The term opuie is used to bias the search direction toward the path of centers, and is thus
called the centering term. In addition, the Newton step is damped (i.e., multiplied by ay, < 1)
to keep the next iterate positive.



We shall prove a number of technical lemmas about Algorithm 1, which we will then
use to prove Q-linear convergence of Zhang’s second algorithm, which is a special case of
Algorithm 1. We shall also use these results in Section 3 to prove convergence results for
one of Wright’s algorithms for the linear complementarity problem.

We begin as Zhang does by constructing an auxiliary sequence {(u*,v¥)}. Given a pair
(u%,2%) € A, for k=0,1,... we define

(2) WPt = b 4 (AP + 2 — k), R = oF g (AYF 4+ yF - 0P),

where ¥, v¥, Az® and Ay* are defined in Algorithm 1. The sequence is strictly a tool
for analyms and is not actually computed. The following lemma summarizes some of the
properties of the auxiliary sequence.

Lemma 2.4 Let {(zF,y*)} and {o} be generated by Algorithm 1, {(u*,v*)} be given by (2)
and vy, = [1;=3(1 — o). Then for k >0

1. (uF,v*) € A, i.e., h = MuF + NoF;

k k

2. % — uF = 1 (2° — u°) and yF — vF = pp(y°® —%);

3. |zF — uF| = pz® — w0 < |2° — u0| and |y* — vF] = pely® — 00 < Jy° — O

Proof Statements 1 and 2 are proven in [Zha92, Lemma 4.1]. Statement 3 follows immedi-
ately from Statement 2 and the fact that 0 < v, < 1. 0

Lemma 2.5 Let (2°,°) € R, x R",, (u%,v°) € A, (2,9) € F, and let {(z*,y*)} be gen-
erated by Algorithm 1. Then, under Assumptions 2.1-2.2, for all k > 0,

@) (@) ) T+ G- @ - ) e

ga“:Tg)+x (] +7/h<l$ —ul|Tg+|y° =02

[Tl =07,
Proof Define {(u*,v%)} according to (2). Then, by Lemma 2.4(1), (u*,v*) € A, so (& —
)T (9 — v*) > 0, by Assumption 2.1.

Using this fact,

&+ vg|z® —

(4) f:Tyk+@T.’13k+( ’LLI” Tyk+( Uk)T k
<i'yh +y b+ (2% — uP) Ty + (yF — ") b + (& — uF)T(§ — oF)
( )’

— TG+t g+ (@ — ) TP+ (0F = 0F)TE + (aF - uF)T(F - o).



(& — (2° = u) )Ty + (5 — (3° = ")) s’
ATy g ok — (20 — w0 Ty — (4° — o*) T2k
< 3Tyb + 975" — (2 — uP)TyF — (4F —v*) ¥ (by Lemma 2.4(2))
< 8Ty +5TaF + (aF — uF) T 4 (F — o)
<&Tg+ab o + (@ — )T+ (F =0 TE 4+ (@ - d)T(E - 0F) (by (4)
< 2Tg+ a2t b+ |2 = uF|Th + |yF — 0P| TE 4 o — uF| Ty — 0| (since (£,7) > 0)
— 37§+ kayk +v(|2° — W07+ |y — 0|73 + vgla® — 20T |y° — 7))
(by Lemma 2.4(3)).
O

Lemma 2.6 Let {(z*,y")} be generated by Algorithm 1 in such a way that ¢o 2 o8y for
some ¢o > 0 and let (z*,y*) be a solution to (HLCP). If for some i, =i > 0, then the
sequence {y*} is bounded. Similarly, if yf > 0, then {z}} is bounded.

Proof Define 7 :=z* — (2° — z*)_ and § := y* — (y° — *)-. By applying Lemma 2.5 with
(£,9) = (u°,v°) = (2*,y*), and noting that z*Ty* =0, we get
T
"T v * * * * *
<o TyF (2 = 2Ty 10— Tt e = 2Ty - )
< o+ [2° — 2Ty + |y° — | T2 4 |2 — 2|y’ — g7 = C.
Thus,

n

(6) > (itzyf + xfg"]z) <C.

1=1

Now, §j; = min(y?,y}) > 0 and #; = min(z?, z}) > 0. So, each term on the left side of (6) is

nonnegative. Therefore, for all 1, v
:z:fyZ < (C, and :fzyf <C.
Thus, if §; > 0, then {z¥} is bounded. Similarly, if & > 0, then {yf} is bounded. 0
The next lemma is the counterpart in our paper to [Zha92, Lemma 6.1].

Lemma 2.7 Let {(z*,y*)} be generated by Algorithm 1 in such a way that ¢o 2 2F gk > By
for some ¢o, 8 > 0. For any (z*,y*) € S, let (u°,2°) := (2%, y") and generate {(u*,v%)}
according to (2). Then there exists K > 0 such that

|2# — ub| Tyt + |y — of| T

< K.
kayk



Proof Partition the indices {1,...,n} as follows: Hy := {i: 20 > z},y) > yi}, Hy := {3 :
) < x}‘}, Hs = {i:y? < y;}. Note that Hy N H3 = () since one of z} and y} is zero for each
i and (z°,9°) is strictly positive

By Lemma 2.4(2), 2f — uf = () — }) and yf — vf = vi(y7 — ¥}), so
1o — o] = (zF — uF), forie HyUH;, k= o] = (yk —oF), forie HiUH,,
(uf —zf),  fori€ Hy, ' (vF ~9f), for i € Hj.

By Lemma 2.6, i € Hy = z} > 0 = {yf} is bounded = {v}} is bounded. Similarly, for
i € Hs, {F} and {ul} are bounded. Thus, there exists K7 > 0 such that |y¥ + v < K for
i € Hy, and |z¥ + u¥| < K; for 1 € Hs. Thus,

k_uk]T,yk + 1,!/]\ » ’Uk}T.'Ek

< CC*Tyk +,y*T$k + les _ uk]Tyk + ]yk i ’UleSCk + (x —u ) (y _ 'Uk)
(By Assumption 2.1)

=Ty 4 (2F = P Ty o+ (- 0F) Tt P Ty +Z{:c — uF +(yf—~vf)a;f}
i€Hy

+ 3 ! { ub — sBYyF + (yF - }+ > { of — u)yf + (vf yf)xf}

icHy 1€ H3

|z

= (2" —uF)Ty* + (" = ") 2"+ > { zf — uf)(yF vf)—kxfyf}
i€ Hq

+Z{uffyz-1):r + ubof — 2Fyf + z} yz}+2{vf — ubyf 4 uFof — ohyF + o %}

i€Hy i€Hs
_—:a:’“Tyk—f—(a:k—~uk)Ty*+(yk—v '+ > (2 —uf)(f o)
1€ Hy
+ 37 (uF = af)( Y 4+ oF) + 3 (@F + uF)(vf - of)
i€EH, i€ Hs
T g . . ik
< zFTyF o |oF — Ty R o T Y el — |l - of|
1€ Hy

+ 5 jaf — b K + D Ky - of|

1€ Ho 1€ Hgs
LT L. *
< zF yF 4+ (ix" — ¥ Ty* + |y =0T+ Y el — wdlly) — o]
i€ Hy

i€H? i€H3

+ 5 (2 —u K+ Y Kily? — vf[) (By Lemma 2.4(3)).



So,

2P — uk|Tyb + [y — vF| T2k

Tk
ok Tyk

1 * *
<14 = [z —a® Ty + Jy° =0 Ta" + Y Ja? — u)lly] — o]
IB i€ Hy

+ 5 2l =K+ Y Kl -] | =
i€ Hy i€ Hg

a

We are now ready to discuss Algorithm 2. This algorithm is identical to Algorithm 1
except that the steplength ay, is defined more precisely. We use the following merit function:

d(z,y) :=x'y+||Mz+ Ny — hl.

The first term in this merit function measures the complementarity gap and the second term
measures the infeasibility. Clearly, a point (z*,3*) is a solution to (HLCP) if and only if
(z*,9*) > 0 and ¢(z*,y*) = 0. For convenience we make several additional definitions:

z(a) == 2" + aAz®, y(a) = y" + oAy,

¢(O!) = (]5(.’)3(0!), y(a)), br = ¢(mk7 yk)'

The steplength o, is chosen so as to minimize the merit function ¢(cr) subject to the following
constraints:

(7a) e [0,1],

(7b) z(a ) >0, y(a)>0

(7c) 2(0)Ty(e) > (1 - a)ua®’

(7d) z(a)y(@); > (v/m)z(@) y(a), i=1,...,n.

where v € (0,1) is chosen so that v < min(X°Y%)/(z° " y°/n).

Condition (7d) is used to prevent the iterates from prematurely getting too close to
the boundary of the positive orthant. Condition (7c) gives a priority to feasibility over
complementarity, and implies that
ka,yk

—— 2>
T o = Yk
20T y0

(8)

The algorithm can now be stated as Algorithm 2.

Note that Algorithm 2 is a special case of Algorithm 1, so all the lemmas proved for
Algorithm 1 also apply for Algorithm 2. In particular, since ¢ is a decreasing sequence,
it follows that z* ' y* < ¢o, for all k. We now show that Algorithm 2 has global Q-linear
convergence.



Algorithm 2— Zhang’s Second Algorithm

Given (2°,9%) > 0, for £ =0,1,2,..., do
1. Choose o € [0,1) and let py = %:ckTyk. Solve the linear system (1) for (Az*, AyF)

2. Set the steplength oy by minimizing ¢(e) subject to the constraints (7).
Let zF+! = 2% + aAzF, and y*+! = y* + aAy*.

Let (u®, %) € A and let {(u®,v*)} be defined by (2). Define

n 1/2 [xk . uleyk + lyk _ ?)k]T:L.k
(9) &=z P ’
Y Tty
2 0 0|T},0 0
op? 2]z — ul| Ty — P
(10) N, =1 — 201 + 7 + xOTyO )

(11) Wy = (fk + &+ ﬂk)2 :

where ¥, y* arise from Algorithm 2. Note that if (z*,7*) > (u”,v*) (Assumption 2.3), then
these quantities are identical to the ones defined by Zhang. However, we now prove Zhang’s
main convergence theorem without Assumption 2.3.

Theorem 2.8 Let {¢*} be generated by Algorithm 2 with o* satisfying 0 < o < o* < 1/2.
Then {¢*} converges to zero at a global Q-linear rate, i.e., there exists 6 € (0,1) such that

P < (1-6)¢", k=0,1,2,---.

The proof is identical to Zhang’s proof except that we use the following lemma in place of
[Zha92, Lemma 6.2]. Our proof follows the spirit of the proof of [Zha92, Lemma 6.2] closely.

Lemma 2.9 Let {(zF,y*)} and {(AzF,Ay*)} be generated by Algorithm 2 and let
DF .= (YF)Y/2(X*)~1/2. Then

“D"’Awk‘f + ”(Dk)”lAykuz < wkkayk.

Moreover, the sequence {wy} is bounded, i.e. there is a constant w > 0 such that wy < w,
for all k.

Proof Define ) 172
b 1= (\[DkAa:k}{ + |(0F Ay ) .

Notice that ”D’%&xk“ <t and H(D’“)‘lAy’“H < t.
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. By (1), (z* + Az*, y* + Ay*) € A. Thus, by Lemma 2.4(1) (AzF +2* —u*)T(Ay* +y*
v*) > 0. So,
(12) Amk’TAyk
= [(Az® + 2 — uF) = (zF — O TI(AYF +¢F —0F) = (vF —oF)]
= (Az" + 2* — uF)T(AyF +yF — o) — (AF + ok — uF)T (% — oF)
_ (:17’” i uk)T(Ayk + yk _ Uk) + (xk _ uk)T<yk _ 'Uk)
_Aka(yk _ Uk) _ (xk _ uk)TAyk _ (mk _ uk)T(yk _ vk)
= (D" (y* — v!)]T[DFALH] — [DF(aF — u)]T(DF) T Ay
m (:UI” _ uk)T(yk _ 'Uk)

> e (DF) Yy — vF|ty — e" DF|z" — uF|ty — (5* - u*) T (y* — oF).

v

Consider now the two terms involving D* in the above inequality. By the construction of

{(z*,5%)} (see (7d)),

T,k
Ty n
(13) TF S :y"
This leads to "
(ka’yk)l/sz — [kayk(Xkyk)—l}l/2yk < <_7:I’_> Y'k:’
Y
and
Tk T & :
(14) eT DF|gk — uF| = (a8 y") /e [(aF y*)/2DH]|a* — uF|
' ok T yk
1/2
< nzk 'y ! el Y|zk — u¥|
B Y ok Ty
1/2
B nkayk / la,k . ukiTyk
- Y hTyk
Similarly,
T 6\ 12 Tk
GT(Dk)—llyk _ ,Ulcl < nz® y* ly* — Uk[TiUk_
- v kayk
Thus,
—_— nkayk 1/2 |2k — uk|Tyk + [yF — oF| T2k o
N b Tk ty — (a* — uF)T (" = o"),
Y
which by (9) is equivalent to
T Ak Tk
(15) A:El” Ay’” > ——(.’17]” @/k)l/ngtlc _ (xk _ uk)T(yk _ 'Uk).
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Also from Lemma 2.4(2) and (8),
(16) (aF — uF)T(y* = o*) = (1) (a® — ") " (y° = ")
< (v)?|2® = u®| [y’ —2°

Tk
- vph k|2 — w0 T|y® — |

- 20T y0
So,
17)  zF Y[l = 204 + 02 /7]
n : 2
= Z <xfyf“ — 201y + M)
i=1 v
1 O'ZMZ
>3, (wfyf~2akuk+ . ’“) (by (13))
f=1 (24

) (ome — XY )|
xRy R (AT + XA (by (1)
= (1)% + 2A2F Ay

(t)® — 2($kTyk)l/2§ktk —2(z* —u®)T(yF = ") (by (15))
kTykle _ uOIT

v

VLT ly0 — 0]

T
> (tp)? — 2(z* ")t — 2

T o (by (16)).
20y

Thus, from (10),
b2 — 2(a* ) ety — o yF, < 0.

The quadratic £ — 2(zk T k)2t — o TyFn, is convex and has a unique positive root at

t = (fk 4+ /€k2 + 77k> (kayk)l/Z.
This implies that \
Tk T
t? < (ﬁk + &2+ "7k) z* yF = wpz® ok

Clearly, {n:} is bounded. Moreover, from Lemma 2.7 and (8), {{x} is also bounded. Hence,
{wy} is bounded. .

We now turn our attention to a special case of (HLCP) and extend some global and local
convergence results due to Wright using the technical lemmas proven above.

11



3 Wright’s Algorithm for the Linear Complementarity
Problem

The linear complementarity problem (LCP) [CPS92] is defined as follows:

(LCP) Find (z,y) € R™ x IR™ such that
y=Mz—h, (z,9)>(0,0), z'y=0.

Note that this is a special case of (HLCP) with N = —1I.

In a recent paper [Wri92a], Stephen Wright presents a locally Q-quadratic algorithm for
solving (L.CP) which is based on Zhang’s algorithm for (HLCP). In fact, Wright’s algorithm
is a special case of Zhang’s Algorithm 1. Unfortunately, Wright’s convergence results, like
Zhang’s, suffer from the same restriction on the starting point (2°,3°) (see Assumption 2.3).
In this section, we will remove this assumption so that Wright’s results will apply to arbitrary
strictly positive starting points.

The calculation of the search direction in Wright’s algorithm is exactly the same as in
Zhang’s algorithms. By substituting N = —I into (1), we get the following equation for
calculating the search direction (AzF, Ay¥).

(15) M =1\ [AzF\ [ h— MzF+yF
vE XEJ\AyR ] T\ =XFY*e + opure)

The same substitution into the merit function gives us ¢(z,y) =z 'y + ||y — Mz + h.
The definitions of u, X*,Y* z(a), and y(«) are unchanged.

The difference in Wright’s algorithm is that the constraints placed on the steplength
are relaxed in order to achieve local Q-quadratic convergence. Given the parameters v €
(0,1), and S, € [0,1), the steplength oy is calculated by minimizing the function d(a) =
$(z(a),y(a)) subject to the following constraints:

(19a) a€[0,1],

(19b) z(a) >0, yla)>0,

(19¢) 2()Ty(e) > (1= B)(1 — a)na®' 4P,
(19d) z(a)y(a) > (y/m)e(@) y(a), i=1,...,n.

The condition (19c) is a relaxation of the condition (7c) enforced by Zhang’s Algorithm 2.
Setting B, > 0 allows the reduction in the complementarity gap to exceed the reduction in
the feasibility, thereby allowing larger steps. Note that by setting Br = 0 we get Zhang’s
algorithm.

Another notable difference is that Wright’s algorithm can use a different - at each
iteration in condition (19d). In fact, the local Q-quadratic convergence is dependent on
being able to choose successively smaller choices of vy at each iteration.

The complete algorithm is given in Algorithm 3.
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Algorithm 3— Wright’s Algorithm

Given v € (0,1/2),0 € (0,1/2),p € (0,7),
¢ > 0, and (2°,¢°) > (0,0), with z0y? > 2vpq;

to — 1,70 < 27;

for k=0,1,2,...
i o= 0(ah, ) < 6
then Compute a “fast” step by setting oy « p, B — 7™,
and 7, — (1 + ™) and solving (18)—(19)
to calculate (Az*, Ay*) and ay;
if Pk + oAz, yF 4+ aAy®) < poy
then (zFt1,y* 1) — (2%, y*) + o (Az*, AyF)
b1 — T+ 15
go to next k;
end if
end if
Compute a “safe” step by setting oy, € [0,1/2], B =0,
and v = Yx_1, and solving (18)-(19)
to calculate (Az* Ay*) and ay;
(.’L‘k+1, yk+1) — (xk7 y’“) + Oék(AZEk, Ayk)
tpr1 < Tk
go to next k;
end for.

At each iteration, either a safe step or a fast step is taken. A safe step works exactly like
Zhang’s algorithm; we set (; = 0 and hold - constant for the next iteration. A fast step
works by setting By > 0 and oy = . It is these fast steps that allow the algorithm to attain
local Q-quadratic convergence. Unfortunately, a fast step requires reducing the size of v
for subsequent iterations. Therefore, the fast step is only taken if it results in a significant
decrease in ¢. If it doesn’t, the step is discarded and a “safe step” is taken instead.

We again will find it convenient to refer to the sets S, A, F, and F, defined earlier. For
convenience we restate their definitions here with N = —1I:

S={(z,y) e R*™:y =Mz —h,(z,y) > 0,2y = 0},i.e., the solution set,
A={(z,y) e R™:y= Mz — h},
F ={(z,y) € A: (z,y) > 0},i.e., the set of feasible points,

F.={(z,y) € A: (z,y) > 0},i.e., the set of strictly feasible points.

Wright proves two convergence results for his algorithm. First, he shows that the algo-
rithm has global Q-linear convergence. Second, he shows that the algorithm attains local
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Q-quadratic convergence. His results are based on the following explicit assumptions:
Assumption 3.1 M is positive semidefinite.
Assumption 3.2 (LCP) has a strictly feasible point (Z,7), that is Fy # 0.

Assumption 3.3 The solution set for (LCP) is nonempty and, moreover, there is a strictly
complementary solution (x*,y*).

Wright’s results, like Zhang’s, are also dependent on Assumption 2.3. These assump-
tions are more restrictive than Zhang’s assumptions. Assumption 3.1 is equivalent to As-
sumption 2.1 in the case of LCP, but Assumption 3.2 is stronger than Assumption 2.2. In
fact, Zhang’s assumptions are sufficient to prove the global Q-linear convergence. However,
Wright’s more restrictive assumptions are used to prove the local Q-quadratic convergence.
We now proceed to prove global Q-linear convergence of Wright’s algorithm using only As-
sumptions 2.1-2.2.

Note that since Wright’s algorithm is a special case of Algorithm 1, Lemmas 2.4-2.7 are
applicable for it. We shall also need the following result from [Wri92a]:

Lemma 3.4 Let f := [I2,(1 — Bi) where B is defined in Algorithm 3, and let py =
28y /n. Then > 0 and

pr > Bugpo, and

oyt > Bua® Ty,
Proof [Wri92a], Lemmas 3.1 and 3.2. 0

We now define the quantities fk,ﬁk, and @y, which we use to establish the convergence
rates:

(20) é B (ﬁ) 1/2 lwk _ uk]Tyk + ],yk _ vk[Txk
ke Vr ok Tyk ’
. ((Tk)z zyklx() “"UOIT]yO_"UO[
21 =1-— 204 + + = )
(1) G ¢ Tk B0 Ty0
. . 2
(22) Wy, 1= (51; + V(&) + ﬁk) :

Note the similarity to the definitions of &, 7, and wy in (9), (10) and (11). £ is identical to
&, except that it has v, in the denominator instead of 7. 7, differs from 7, only by dividing
the last term by 3.

Lemma 3.5 Let {(zF,y")} and {(Az*,AyF)} be generated by Algorithm & and let
DF .= (Y¥)V/2(X*)~Y/2. Then

“DkAwkHQ + “(.D’“)_lzlykll2 < wkkayk.

Moreover, the sequence {wy,} is bounded, i.e. there is a constant w > 0 such that wy < w,
for all k.
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Proof The proof is similar to the proof of Lemma 2.9 with the following changes:
1. Replace &, 1k, and wy by ék, Ak, and @y, respectively.
2. Replace (16) with the inequality

T b

BTyk|g0 — 40T

Ba0Tyo

VLT ly° — 09|

(23) (z* — uw) T (y* - o) <

which we justify by Lemmas 2.4(2) and 3.4.

3. Replace the last line of (17) with

Tk
z* yF[1 = 205 + op vk

Vkkayklﬂvo . uOIT]yO _ UO|

Tk
> (tk)2 — 2(171» y’”)l/katk —2 B.’IJOT@}O (by (23)).
We then get the inequality
Tk T
()2 < (& + /(&) + )z y* = wpa® g~
Clearly, {n;} is bounded. Moreover, from Lemmas 2.7 and 3.4,
n \? |5 — uk| Tyt + |y — | Tk n\ /2
el = | — P <|{=] K,
Yk Ty Y
so {&} is also bounded. Hence, {wy} is bounded. 0

We can now state the global Q-linear convergence theorem.

Theorem 3.6 Under Assumptions 2.1-2.2, there is a constant 6 € (0,1) such that

¢k+1§(1—6>¢ka k:Oa"'v
that is, Algorithm 8 converges globally and Q-linearly.

Proof The proof is identical to the proof of [Wri92a, Theorem 4.2] but using fk, Mk, and wg
in place of &, Mk, and wy, and also using Lemma 3.5 in place of [Wri92a, Lemma 4.1]. 0

We now turn our attention toward proving global Q-quadratic convergence. We shall
need to use Wright’s stronger assumptions 3.1-3.3.
We first prove two lemmas which place bounds on the iterates (z*,3*). We need the

following definitions:
B = {i|lz} >0}, N ={ily; >0}.

where (z*,y") is the strictly complementary solution guaranteed by Assumption 3.3. Note
that NUB = {1,2,...,n} and NN B =0.

15



Lemma 3.7 Let {(z*,y*)} be generated by Algorithm 3. There is a constant Cy > 0 such
that

(24a) i€ N=af <Cu, v >7/Ch,
(24b) i€ B=yf<Cyu, o >v/Ch

Proof Define 7 := z* — (2 — 2*)_ and § = y* — (y° — y*)-, where (z%,y*) is the
strictly complementary solution guaranteed by Assumption 3.3. By applying Lemma 2.5
with (2,9) = (v, v°) = (z*,9"), and noting that z*Ty* =0, we get

(25)
FTyk 4 T2k
S IEkTZ/k + Vlc(l-'lfo " m*lTy* + [yo m TJ*ITJJ* + I‘TO _ m*]leo _ y*l)
0 k| T, 0 %] T % 0 x| T1],,0 _ %
:xﬂyk<1+yk<lx et M e M yl))
gk Ty
< C’lkayk, by Lemmas 2.4(3) and 3.4,
where 0 T 0 T 0 T),,0
G, = <1+lw 2Ty + |y — g Tt + |20 — 2Ty’ — v
0y
Thus,
n T _
(26) ) (@T?Jf + a7 ?]z) < G g

Now, §; = min(y?, ) > 0 and &; = min(a?,2}) > 0. So, each term on the left side of (26)
is nonnegative. Therefore,

2fg; < nCipg, and  Fyf < nChu.
Note further that for i € N, g; > 0, so
nC’l

i

8
. e
IA

K,

Similarly, for 7 € B, Z; > 0 and B
Yy = = Mk
z

1

A

Finally, we obtain our result by taking

= 1 1
C; = nCymax <max —, max -:) .
i€B I; 1€N
Then for i € B, zF < Cypuy, and by (19d)

k. k k ~ TkHEk Yk Y
8 > o = Yr > 22— 2
iYi = Tkl Yi = :cf - Cy T Cy

Similarly, for i € N,y < Cipy, and zf > v/Ch. 0
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Lemma 3.8 Let {(z*,y*)} be generated by Algorithm 3. There is a constant Cy > 0 such
that

(27) 0<zb <y 0<yf<C.
Proof Define # :==% — (2° — Z)_ and § := § — (y* — §)—, where (Z,7) is the strictly feasible

-y
point guaranteed by Assumption 3.2. Note that (Z,9) > 0. Now, by applying Lemma 2.5
with (£,9) = (u°,v°) = (2,7), we get

(28) ARTEE S A
<775+ a vF + (e -2 TG+ [ - g TE |20 - 3Ty - g
<3+ P+ 20—z Tg+ 0 -9z +12° — 2Ty’ — 7

Hence,
~ )

. C . C .
0<y,’;‘§§;—_2, O<xi-”§_2 i=1,2,...,m.

The result is obtained by setting

~ 1 1
Cy := (3 max (,max —, max -;) .

Z:l,‘..,’n j}l 2:1,,7?. yZ

a

The remainder of Wright’s results can now be proved simply by replacing all references
to [Wri92a, Lemmas 3.4 and 3.5] by references to our Lemmas 3.7 and 3.8.

Theorem 3.9 Under Assumptions 8.1-8.3, there is an € > 0 such that if K is the smallest
integer such that ¢x < €, then

1. the algorithm will take fast steps at iteration K and at all subsequent iterations, and

2. the sequences {u} and {¢r} converge @Q-quadratically to zero.

Proof The proof is identical to the proof of [Wri92a, Theorems 6.3 and 6.4], but using
Lemmas 3.7 and 3.8 in place of [Wri92a, Lemmas 3.4 and 3.5]. 0

Corollary 3.10 Algorithm 8 has local Q-quadratic convergence.

Proof Follows immediately from Theorem 3.9. 0
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4 Algorithm for Box-Constrained LCP

We now turn our attention to linear complementarity problems with more general constraints.
In particular, we consider the box-constrained linear complementarity problem (BLCP).
Before we state this problem, we need to make some definitions. Let B .= 117, [l;, u;], where
I; € [-00,00) and u; € (—o0,00] and for each i, at least one of [; and u; is finite. We also
define a generalized inner product ((-,-), ) : R" x R" x IR* — R, by

(w,v),2) = > wilzi=)+ > viu—2z).

1€{i:l;>—~00} ie{iui<oo}

The box-constrained linear complementarity problem (BLCP) can now be stated as fol-
lows:

(BLCP) Given M € R"*", ¢ € R", find a vector
triple (z,w,v) € R™ x R" x IR" such that
w—v=Mz+q,
zeB, w>0, v>0
((w,v),2z) = 0.
Note that the linear complementarity problem is a special case of the box-constrained
linear complementarity problem (simply set { = 0 and v = 00).

We now make some observations about (BLCP). Let us partition the indices according
to which bounds are finite.

H:={i:—oco <lyu; <oo}, J:={i:u;=o00}, K:={i:l;=—oo}

Note that H,J, and K are disjoint and further that HUJUK = {1,... ,n}. Without loss
of generality, we can assume that the rows and columns of M and the vectors ¢, !, and u are
ordered so that the indices in H occur first, those in J occur second, and those in K occur
last. Let p, s, and t be the size of the sets H,.J, and K respectively.

Note that if (z*,w*,v*) is a solution to (BLCP), then w} = 0, and v} = 0. Thus, we can
remove wy and vy from the problem. This motivates the definition of the set

G = {(w,v) € R* xR" : wg = 0,v; = 0},
We now define an invertible linear map L : G; — IRP*® x RP** by

L(w,v) = (W, 1),

. w . v
where W := H and =1 2.
Wy VK

Our plan now is to create an algorithm that generates iterates {(z*,%"*,9*)} such that
(%, wk vF)} = {(#*, L7 (@*,9*%))} converges to a solution (z*,w*,v*) of (BLCP). To

18



do this, we shall exploit the fact that (BLCP) can be reformulated as an LCP with higher
dimension. We shall now discuss this reformulation.
Define the maps

X R*xG — R = (z,w,v) — (zg — lg, 25 — L7, UK — 2K, VH),

Y :R"xG — R"7? = (2,w,v) — (wy,ws, Vk, by — 2H).

In order to refer to the last p components of X and Y, we define the set of indices H=H+n.
For example, if z = X (z,w,v), then z; = vy. Now, define the set

Gy = {(T,’y) e R™7 x R™7 T+ Yy =ug— ZH}
We can now define an invertible linear map 7' : IR" XG; — G, by the relation
T(z,w,v) := (X(z,w,v),V(z,w,v)).

We are now ready to state the reformulation of (BLCP). Let

(29) (z,y) == T(z,w,v),
Myg  Mp; —Mpr 1
~ Mg M;; Mg 0O
30 M= ,
(30) ~Mgy —Mgy Mgrx 0O
-1 0 0 0
—qi — Mgglg — Mujl; — Mpgur
; —qy — Mygly — Myl — Mjgug
31 ] _ y = R
(31) ' qr + Myguly + Mgsly+ Mgrgug mi=mn+p
—ug + g

With these definitions, (BLCP) is equivalent to the linear complementarity problem
formed by replacing M, h, and n in (LCP) by M, h, and m, respectively. Thus, given
a starting point (2%, w® v°) € (R™ xG;) NIRY, we can solve (BLCP) simply by applying
Algorithm 3 with the starting point (2, 3°) := T(2°,w°,v°). If the algorithm finds a solution
(z*,y*) of (LCP) with M = M, h = h, then (z*,7*) € Go and (2*,w*,v*) := T~} (z*,y*) is a
solution of (BLCP).

Our plan now is to substitute (29)—(31) into Algorithm 3 and to simplify in order to
produce an algorithm that generates iterates {(2¥, w*, 9*)}, such that for all £,

T(2*, L7 (", %)) = (zF,9F),

where {(z*,y*)} are the iterates generated by Algorithm 3. Throughout our discussion, we
will occasionally find it convenient to refer to (w*,v*). In such cases, we are implying the
relationship (w*,v*) = L~1(dF, o%).
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We look first at the equation used to calculate the search direction. Direct substitution

into (18) yields

(32)

0
0
0

where R := diag(z—I[), and S := diag(u—=z). By the fourth row of this system, Azh

Muw
Mg
—Mgw
I,
T/V}”}

Mp,
]\{[J']

~Mg s

0
0
Wk
0
0

Mg I
~Mg 0
Mgrx 0O
0 0
0 0
0 0
VE 0
0 Sk

-, 0 0 0
o -I, 0 0
0 0 -IL 0
0 0 0 -I

Ry 00 000
0 Rt 0 O
0 0 St 0
0o 0 0 Vg

wh — vl — Mpg.2*

0

wh — My.2F —q;
'Uﬁrs{ -+ .M[("Zk -+ K

~WEREe + oppie
~WERke + o pre
~VESEe + opure
~VESke + opure

Azh
Am’}
Azh,
Azk
Ayg
Ay
Ay’f(
Ayg

—4H

= —Ay%.

We can thus replace the last equation of (32) with —V*Az¥, + S§Azh = ~VESke + opuxe.
Removing, the fourth row and the last column, we get

(33)

My

My
My
0
Wk
0
0

Myg I
M;x
My
0
0
~Vi
0

P
0
0
0
0
0

k
SI-I

-, 0 0 Azh,
0 —-I, O Azh
0 0 I —Azh

Ry 00 Ax%
0 Rt 0O Ayg
0 o sk|| ad
0 0 O Ayt
wh — ok — Mp.2* — qn

wh — My.2* —qy

*—’Ul;( - .7\4]{.21]c — 4K
~WERNe + opure
~WEREe + oy pke
~VESEe + oppure
~VESke + oppke

Finally, moving column 4 to column 6, and switching rows 6 and 7, we obtain the equation

(34)

(

M
Wk

_Vk

“! w Iv\ [AZF
R¥ 0 Ak | =
0 Sk) \ApF
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—R*W ke + oppre
—SkVke + oppre

—q— M2 —vF ¥
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where

Axl}'[ Ayt Azh
Az Ak |, AwF = ( fg), AP = ( ﬁ),
—AzF Ayy Ayk

I, 0 I, 0
IW = 0 .[5 ; I\/ = 0 0 N
0 0 0 I
- Wk 0 0 ks VE 0O 0
k. H k. H *
W "(o w5 0)’ V“(o ov,’g)’

- (Ry O »  (Sg 0
hee () 5= (B 3)

We now turn our attention to the equations governing the calculation of the steplength.
Let us define the merit function

(2, 0,0) = $(zy),  where (3,) = T(z,w,0).
Then ¥(z,,9) = ((w,v), z) + [Jlw — v — Mz — q||. Define

z(a) == 2 + aA2”,
w(a) = 0* + add*,
d(a) == 9% + aADF.

Direct substitution into (19) gives the following equations for calculating the steplength for
the BLCP-algorithm:

(35) Q= argofnin P(z(a), w(a), i(a))

subject to

(362) a € [0,1],

(36b) | < z(a) <u, and (w(a),d(a)) >0,

(36¢) ((wla), v(e)), z(e) > (1= )1 = a){(w*, "), 2",
(36d) (z(a); — L)w(@)i > (ye/2n){(w(a),v(a)), 2(a)), i€ H{JJ,
(36¢) (i — 2(@)i)v(@); = (y/2n){(w(e), v(a), 2(@)), i€ HJK.

Finally, we note that from Algorithm 3, u = ot Tyt fm = ((w*,v%), 25)/(n + p). The
complete algorithm is given in Algorithm 4.

By construction, there is a 1 1 correspondence between the iterates {( ,y’“)} of Algo-
rithm 3 and the iterates {(z*, %", 9*)} of Algorithm 4 given by T(z’C L=1(ak, o%)) = (aF, y¥).
Thus, we can prove convergence results for the iterates {(2*, %, %)} of Algorithm 4 simply
by analyzing the iterates {(z*, y*)} of Algorithm 3.
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Algorithm 4— BLCP Algorithm

Given v € (0,1/2),0 € (0,1/2),p € (0,7),
¥ >0, and (29,90, 9°) with I < 2° < u, (@°,2°) > 0,
(2; — li)w; > 27ypo for i € HU J, and vz(uz — 2;) 2 2y forv € HU K
to 1,70 < 27;
for k=0,1,2,...
i = (e, 08) < ¢
then Compute a “fast” step by setting oy « pg, B + bk,
and v «— (1 ++%) and solving (34)-(36) to calculate
(AZF, Ak, AD¥) and oy;
i (e apd, 0 + oA, 0+ 0 0) < g
then (1, @F+L §4F1) — (25, 0k, 0F) + ap(AZF, AdF, AR,
thy1 <t + 1
go to next k;
end if
end if
Compute the “safe” step by setting oy € [0,1/ 2], B < 0,7k +— Yo-1
and solving (34)-(36) to calculate (AR, Ak, AD*) and ay;
(2P L P pFH)  (2F, 0, 0F) + (A2, Aw’“ ADF),
tps1 < tk;
(2L Pt 58— (z(a), Do), D(ow));
go to next k;
end for.

We now state several convergence theorems for Algorithm 4. These results are based on
the following assumptions:

Assumption 4.1 M is positive semidefinite.

Assumption 4.2 (BLCP) has a point (2,,9) € T = {(z,w,v) : | < z < u, L(w,v) >
0,wg =0,v; =0} and @ — 9= Mz +q.

Assumption 4.3 The solution set for (BLCP) is nonempty and, moreover, there is a
strictly complementary solution (2*,w*,v*), that is z{ = l; => w; > 0 and 27 = v; =
vy > 0.

The following lemma, shows that the above assumptions guarantee the assumptions for
the convergence of Algorithm 3.

Lemma 4.4 Given the relationship between (BLCP) and (LCP) defined by equations (29)
- (81), (i) Assumption 4.1 = Assumption 3.1; (i1) Assumption 4.2 = Assumption 3.2; (iii)
Assumption 4.8 = Assumption 3.3;
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Proof (i)

@y, 2", w)M(z;y; 2 w)

= CIIT[\/IHHH;' + xTMHJy + yTMJH:c — ]}TMHKZ - ZTMKH.'E + z Tw
—w' Iz -+ yTvMJJy — yTMJKZ - zTMKJy -+ ZTMKKZ
=(z',y", =2 )M(z;9;—2),

so M is positive semidefinite whenever M is positive semidefinite.
(i) If (z, @, ) € T, then we can define (Z,7) := T(2,w, 7). Clearly, (Z, 7) > 0. Moreover,

Zy — lu My ZzZ+qn WH
Mr—h=nr| 7Y | pe| MiEre by
U — ZK —MgZ—qk Uk
vy Ug — Zg U — Zg

Thus, (Z,7) is a strictly feasible point for (LCP).

(iii) By a similar argument to (i), if (2*,w*,v*) is a strictly complementary solution
of (BLCP), then (z*,y*) := T(z*,w*,v*) is a solution to (LCP). It is easy to check from
Assumption 4.3 and the definition of T' that z; = 0 implies y; > 0, so that (z*, y*) is strictly
complementary. 0

We can now state the following convergence theorems for Algorithm 4.
Theorem 4.5 Under Assumptions 4.1-4.3, there is a constant 6 € (0,1) such that
Yrpr < (L=0), £=0,1,2,...,
that is, Algorithm 4 converges globally and Q-linearly to a solution of (BLCP).

Proof By construction, 1, = @, where ¢ is as defined in Algorithm 3. The result follows
from Theorem 3.6. 0

Theorem 4.6 Under Assumptions 4.1-4.3, there is an € > 0 such that if K is the smallest
positive integer such that ¢ < €, then

1. Algorithm 4 will take fast steps at iteration K and at all subsequent iterations, and

2. the sequences {u} and {¥r} converge Q-quadratically to zero.

Proof Follows directly from the definitions of y and 14 and Theorem 3.9. 0
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5 Summary and Conclusions

In this paper, we have extended the convergence results of Zhang and Wright to apply to
arbitrary strictly positive starting points. This extension is important because it allows the
convergence theory to be applied to cases where the algorithms are warm-started from points
not satisfying Zhang’s and Wright’s restrictions.

The extension also plays an important role in proving the convergence results of the BLCP
algorithm discussed in Section 4. Recall that the restriction imposed by Zhang and Wright
on the starting point can easily be satisfied simply by making the starting point (2%, 9°)
large in every component. However, in the analysis of the BLCP algorithm, we defined
(z°,9°) = T(2°,w° v°) so that (z°,3°) is required to lie in the range of T'. In particular,
Ty +yg = ug — L, so increases in the components of zx must be offset by decreases in the
components of y;. Thus, for the (BLCP), it may not be possible to find a starting point
that meets the restriction. By removing the restriction from the convergence results, this
difficulty is eliminated.
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