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Abstract
We analyze the deformation of an isotropic, homogeneous circular membrane due to
a uniform static pressure applied to one side. The solution is obtained as a perturbation
expansion in terms of the pressure. In our analysis the stress is approximated by taking
only terms linear in the Euler strain, and thus the analysis applies only to deformations
that have small strain. It does include nonlinear geometric effects since the strain is a
nonlinear function of the deformation gradient. This theory does not include bending

effects, which is reasonable in most paper and film applications.
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1. Introduction.

In this paper we present a derivation of equations describing the shape of a membrane
disk subjected to a uniform static pressure on one side. We use a perturbation expansion
in terms of the pressure and determine the deformation as a function of the pressure. The
equations are nonlinear since the normal and radial displacements are not of the same

order in the perturbation parameter.

f The work of this author was supported in part by the U.S. Army Research Office
under grant DAAL03-91-G-0094



Our interest in this problem arises from a desire to better understand the burst test or
Mullen test which is used throughout the paper, paperboard, and corrugated paperboard
industries as a measure of product integrity. In the burst test, a paper specimen is clamped
by circular, rigid clamps and loaded by a rubber diaphragm, which in turn is displaced by
a fluid. The pressure causing the specimen to rupture is called the burst factor. This test
was designed to simulate a paper maker’s old test of paper, where paper makers would
hold a sheet of paper and try to puncture the paper with their thumb.

Other researchers have analyzed the deformation of paper by one of two methods.
Early work assumed the shape of the deformed surface was a spherical cap [1], 9], and
[12]. This shape was used because it simplified the analysis and seemed reasonable based
on previous work [3]. Recently, Suhling [10] has found that the shape of the deformation
associated with this geometry is not spherical, but more nearly parabolic. This result
agrees with the results obtained in this paper. His analysis used a form of von Karman
plate theory for nonlinear materials. The system of partial differential equations was solved
using the finite element numerical analysis technique. Suhling found that the contribution
of bending was negligible; the dominant effect was due to membrane forces. His finite
clement results agree with experimental measurements of the out-of-plane deformations.

The previous theories have proved inadequate for predicting the deformation associ-
ated with this geometry because the shape is not spherical and the deflections are very
large compared to the thickness. This paper provides an alternative analysis which imposes
no limitation on the shape of deformation or the material constitutive behavior. The sole
limitations of this analysis are that bending effects are negligible and the strains are small.

The equations for rotationally symmetric deformations were derived by Foppl [7] and
generalized by Bromberg and Stoker [2]. These are the equations for the first significant
terms we obtain in section 4. Analytical methods for obtaining the solution as a power se-
ries were presented by Henky [8] and analyzed by Dickey [4]. Dickey presented a numerical
method, based on an integral equation, for obtaining the solution.

In this paper we present a more modern derivation of the equations, first obtaining a
general form and then, by a perturbation analysis, obtaining the equations of Féppl. The

advantage of our method is that it can be easily extended to cover the case of anisotropic
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media, as we intend to do in a subsequent paper. Secondly, we present an efficient numerical
method for obtaining the solution of the system of equations. Finally we compare or results

to experimental measurements.

The outline of the paper is as follows. In section 2 the basic system of equations is
derived for a rather general membrane. In section 3 we discuss the constitutive relation for
the membrane and in section 4 we begin the perturbation analysis of the equations. The
solution of the first significant terms of the perturbation analysis is the topic of section 9,
an efficient numerical method of evaluating the first significant terms is given in section
6. In section 7 we compare the analytical results to several experimental results. The
conclusions of the analysis, as well as topics for further work, are stated in section 8.
There are two appendices, the first discussing the Lamé moduli for a membrane, and the

second is devoted to proving a result from section 5.

9. Derivation of the General Membrane Equations.

We model the membrane as a two-dimensional surface and consider its behavior un-
der deformation. Take an undeformed two-dimensional body, call it €2, and consider the
deformed body, ¥(Q), to be the result of a mapping ¥ from  into R3. In our applica-
tion Q is a disk of radius D. The deformation gradient of ¥ is F' = V. Using polar

coordinates (p, ) on the disk £ in R?, and cylindrical coordinates (7, 9,z)in R3, we have
Py P

\I](pv (P) = (?“(P, 99>a 0(/): 30), 2(p, <P)) and

o 1or
dp pOy
o6 r 90
F=|r— —-——
dp pOy
bz 102
Op pOy

The Jacobian for the transformation is J = det(FTF)/2. The unit normal to the surface

T(Q) at T(p, ), call it 17, is the cross-product of the two columns of F, normalized to
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have unit length. We have

80 0z 0z 00 \

dpdp  0pdp
7 = l(.a_i_@f__?_’l?}_> £ (2.1)
r \Op Op  OpOp M
008 _ 00 0r
Opdp  OpOyp

where

z\/[‘Z:(QQQf._Q_Z_Qf)_)z _}_é(azﬂr 87‘0z)2 (67*(‘%) 3967‘)2'

Bp0p  Opdp) ' \Opdp 00y

r

To derive the equations describing the deformation of the membrane, we consider a
small subdomain P of €. The deformed membrane contains the subdomain ¥(P) and we
assume that the boundary transforms nicely, i.e., OU(P) = ¥(dP). At a point ¢ in 0¥ (P)
the outer unit normal to ¥ (P) in the tangent plane to @ (P) will be denoted 7. If 7 is the
unit tangent vector to W (P), then M = 7 X 7, assuming the usual orientations.

We now consider the static force balance on the membrane. This is simply the balance
between the resultant pressure force and the force due to the deformation of the materials

on each portion. Mathematically this is expressed as

- / pom da = / T -7 dl (2.2)
Jw(p) Jow(P)

where pg is the uniform static pressure per unit area, T is the Cauchy stress tensor, and ¢
is the arc length along 0¥ (P).
Our first form of the force balance equation comes from applying the divergence the-

orem to (2.2). We obtain

- / pon da = / div (T) da,
Ju(p) Jw(p)

and since P is an arbitrary domain,

—pom =div 1. (2.3)
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Together with a constitutive relation expressing the stress T' as a function of F, equation
(2.3) describes the deformation of the membrane under the pressure force.

From a computational standpoint equation (2.3) is unsatisfactory since the divergence
operator is defined in terms of the unknown surface. We now reformulate the problem to
use derivatives on the undeformed region. This is essentially a change of variables in the
integrals in (2.2).

By definition of the Jacobian we have that the left-hand side of (2.2) transforms to

—Po / m da = —po / mJ dA,
Jw(P) Jp

using dA as the measure on P, and where J = det(FTF)l/ 2. Also, the right-hand side of

(2.2) transforms to

/ T7 dl = TG# dL
v (P) Jop
where 7 is the unit outer normal on 9P,
G=FFTF)'J (2.4)

and L is arc length on OP. The tensor G maps the outer normal on OP to the outer normal
on OU(P). The tensor TG is the Piola-Kirchhoff tensor for the membrane. Applying the

divergence theorem on P we have

—Po / mJ dA = / DIV (TG) dA,
J P J P
giving the equation

—pomJ = DIV (TG) . (2.5)

We use the notation of Gurtin [6], in which DIV refers to the divergence operator in the
undeformed coordinates, and div refers to the deformed coordinates.
Equation (2.5) is a nonlinear partial differential equation for the position vector of the

deformed membrane as a function of its position in the undeformed membrane. Given the
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constitutive relations that relate T' to the deformation gradient, the system (2.5) determines
the displacement.
For the problem of the burst test, we consider paper to be a membrane and held fixed

at the edge of the disk of radius D, giving the boundary conditions

»(D,$)=D, 0(D,$)=9, and z(D,$)=0.

3. The Constitutive Relation.

Tn this section we address the determination of the stress tensor T' as a function of the
deformation gradient F, and material properties. By invariance to the observer, see [6], T

has the form

T = FTFT

where T' is some tensor function of F' T We also have that T vanishes when FTF =1,
i.e., there is no stress when there is no deformation.
Rather than consider the tensor T in general, we consider the expansion of T' into

linear and higher order terms, we have
T =T(E)+ O(|EII")

where T} (+) is a linear mapping of the material strain tensor E to the stress tensor T. Since

T, is linear, by invariance of observer, see [6], T1 must have the form

Ty = 20E + X tr(B)I (3.1)

where i and X are the Lamé constants for the two-dimensional surface. These constants

are related to the three-dimensional Lamé constants f and A by

h

b= ph A= TN

where h is the thickness of the membrane, as shown in Appendix 1. We take for the

material strain tensor the Euler strain E = $(FTF —I).
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In terms of Young’s modulus and Poisson’s ratio, see Appendix 2. we can rewrite

(3.1) as

. 1
T = 15”2 (1= v)E + v te(B)])
—

Yh 1 1
= ~(1-v)(FTF - Zy tr(FTF — .
e <2( v)(F*F I)+21/t1(F F I)I)
We approximate T by the linear part T}, restricting ourselves to the case of small

strains. Thus the equation (2.5) can be written
—potJ = DIV (FT,J).

using the definition of G, see (2.4).

We also now nondimensionalize the problem to prepare for the perturbation analysis.
We replace the coordinates (p,¢) and (r,0, 2) by (Dp, ) and (Dr,0, Dz), where now p
and 7 vary from 0 to 1, recall that D is the radius of the circular membrane. We also drop
the subscript of 1 on Th.

We then write the above equation as

—enJ = DIV (FTJ), (3.2)
where
. (1- %) Dpo
- Yh
and

T=01-v)E+vtr(E).
The boundary conditions for the burst test in nondimensional form are then

71(17,&) =1, 0(1a¢> = ¢, and Z(1>¢) = 0. (33)

From now on all quantities are nondimensional.
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4. Perturbation Expansion of the Solution.

We begin our analysis of equation (3.2) by performing a perturbation expansion of
the solution using ¢ as the perturbation parameter. For & = 0, it is easily checked that
T(p,¢) = (p,p,0) is a solution, we assume that this solution is unique.

We consider the solution of (3.2) for all values of v with 0 <v <1, and small values
of €. Even though the interpretation of the results may not be physically applicable at
v = 1, the mathematical problem is well-defined. The solutions we obtain at v = 1 may
be regarded as an appropriate limiting case for v near 1.

Because the deformation perpendicular to the plane of the membrane is a different
order than the deformation within the plane, it is necessary to use fractional powers of ¢

in the expansion. We write

r=p+elPr + e23ry +0(e),
0=+ etl20, + 220, + 0(e), (4.1)

2=ty + P2 +0(e).

The choice of the fractions for the exponents on € is a result of the analysis. In general,
one should expand r, 0, and z in arbitrary powers of €. Tt comes out of the analysis that
those given in (4.1) are the only ones giving a solution. Notice that the subscripts on the
terms of the expansions for r, 8, and z are equal to the power of gif3,

The symbolic manipulation software MACSYMA [11] was used in the analysis given
next. Its use reduced the possibility of errorsin the manipulations and gave several valuable

insights.

Our first result, the proof of which is in Appendix 2, is:

Theorem 4.1.

ri(p,p) =0 and Oi(p,)=0.
The displacement gradient F' is expanded in powers of € as

F=Fy+ePF +e*PF +0()
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and Theorem 4.1 gives us the forms

10 8 8
Fo = 0 1 p Fl - 8” 1 a~
Z1 Z1
00 -
dp p Oy
Ory  10r2
op p O¢
399 Ta 399
Fy = — = -
? 5 o
Oza l@zz
dp p Op

We then have
FTF et (Fér +61/3F1T -+ EZ/BFQI"F +O(€))(F() +El/3F1 +82/3F2 -+ ()(E))

— FTFy +'3(Ff Fy + Fl Fo) + 2/3(FTFy + F Fo + FLFy) + O(€?)

ara (87:1)2 10ry 06y
22+ = S p—

I pTE dp dp p Op o | +o).
1ory | 00 22+29€z+<}_%>“ |
pop = Op p dp  \pdyp

This gives the expansion of the Jacobian J = det(FTF)'/? as

o a’l‘g To 892 821 2 1 8271 2
o148 z(..__+_~+_._) +(.__> +(_.__> 0
dp  p Oy Op p O¢ (©)

Bre 1o 00\ 1 (8z\>  1[10z\’
J=14+2B | =4+ =4+ = - ===
f=le {<8p+p+0¢>+2<5p> +2<p890>}+0(5)

We also have

and

E= %(FTF — 1) =&*BEy + 0(e)

?_7:_2.+}.(9€%_1_)2 1(,1_?_7:_2_+ 592)
dp 2\ 0p 2\ p Oy p@p

B, = )
(L o) ey 21 (100)]
2 \pOp dp p 0o 2\pdy

with
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We obtain for equation (3.2)
FTJ =TG = FEJ = ¢*3FyBy + eF1 By + O(e'?).
Substitution of these expansions in (3.2) results in
ey = 2PDIV(Fy Ey) + eDIV(F By + O(e'®)

where 17 is the unit vector in the positive s—direction. The system of equations for ro,
0, and z; are obtained by taking the first two equations to 0(£2/3) and the third equation
to O(e).

The DIV operator acting on a tensor S;; with i =1,2,3 and j = 1,2 in polar coordi-

nate representation has the form

1 8(/)511) 1 8512 522
DIVS); = - + - - =
PIVSh ==, T ap  »

1 6(p521) 1 5522 512
DIVS)y = - + = + ==
( ) dp p Op

1 8(p531) 1 8532
DIVS); = — + = :
(OIS} = =0, T 10 oy

5. Solution for the first significant terms.

Because of the symmetry of the domain, and the symmetry of the boundary conditions,
i.e., 7o =0, 6 = 0 on the boundary of the disk, we can take 9, equal to zero everywhere
and have ro and z; be independent of ¢. This gives the system of ordinary differential

equations

1d drs ro 1 /dz1\? v {dra 1 {dzn 2 o

el = AN ettt _ 2l === _ 2 =0 5.1

pdp[p<d0+yp+2<dp> ﬂ p<dp+2(dp> p? (5:1)
1d <d21> Cl’l‘g To 1 (d21>2
il Y et LA —_1. (5.2
pdp {p dp (d/) p 2 \dp (5:2)

The solution of the system (5.1) and (5.2) is given by the following theorem.
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Theorem 5.1. Let L(r) be the solution of the differential equation

2L dL  2(1-v?)
+ PR

dr? dr L2

T =0 (5.3)

with L(0) = 1 + v, and, for v # 1, let the functions A(r) and B(t) be given by

1
A= /0 T % (5.4)

B(r) = (292 + (1= 0)D)/(1 = v?), 6.

ot
wt
S’

and define the value of the positive parameter o by B(a) = 0, then solution of (5.1) and
(5.2) is given by

1 _
ra(p) = ypBlap’)a™V?

For v = 1 the solution is
ro(p) =272 p(1 - p%)

za(p) =27 (1 - p%).

The solution of (5.3) is easily computed using a simple transformation and a Taylor
series, from which the series expansions of A(7) and B(7) can be obtained. The result is
an efficient numerical procedure for obtaining values for 7o(p) and z1(p). The numerical
procedure to evaluate the functions A and B is discussed in the section 6.

We now prove Theorem 5.1. Equation (5.2) can be integrated once to give

(5 i)

using the condition that ro, z1, and their first derivatives are finite at p = 0.

We now change variables with

p=(r/a)/?
1
re = Za"5/67'1/2B(T) (5.8)

2 = Zo —a 2B A(T)
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with B(0) = 1 and A(0) = 0. The scaling with the parameter and the boundary
conditions are easily motivated by considering the Taylor series expansion of 7o(p) and
21(p) around the origin. Since 72(1) = 0, we obtain a as the solution to B(«) = 0, and
since z;(1) = 0, we have that Zo = a~2/3 A(ar). Values of o and Zy as functions of v are

given in Table 1.

v o Zo
0.0 0.2350 0.7183
0.1 0.3000 0.7012
0.2 0.3778 0.6867
0.3 0.4708 0.6743
0.4 0.5823 0.6637
0.5 0.7162 0.6547
0.6 0.8778 0.6472
0.7 1.0744 0.6410
0.8 1.3161 0.6361
0.9 1.6173 0.6324
1.0 2.0000 0.6300

Table 1

With the transformation (5.8) the system of (5.1) and (5.7) becomes

rB" + 2B’ +87AA" 4+ (6 —20)A% =0

27B' + (1 +v)B+87A” = (A)7".

Taking twice the first equation of this system and subtracting the derivative of the second

equation gives the equation
(1-v)B +4(1-v)A” = —((ANYH".
Setting L(7) = (4'(7))~!, we obtain, for v # 1,

B =-L'/(1-v)—4/L*. (5.10)
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Note that for = 1, we have that A’() is constant. We consider the case v =1 later.
Substituting the expression for B’ from (5.10) in the second equation of (5.9) we
obtain
(1+v)B=2rL'/(1-v)+ L. (5.11)
This formula gives L(0) = (1 +v)B(0) =1 +v.
Differentiating (5.11) and equating the derivative of B with the formula in (5.10), we

obtain the equation for L
7L+ 2L +2(1—v*)/L* =0,

which is (5.3), and with the boundary condition L(0) = 1+v determines a unique solution.

Once L(7) is obtained, we then obtain B(r) by (5.11) and obtain A(r) by

A(r) = /0 —E%gjdo

which is equation (5.4).
The function L and the parameter o completely determine the solution of the system

(5.1) and (5.2). This completes the proof of Theorem 5.1.

6. The Numerical Method to Evaluate z; and rs.

In this section we discuss the numerical evaluation of the functions L, A, and B that,
by Theorem 5.1, are used to determine the functions z; and roy by (5.6).
We first show how to compute L(7). It is not hard to check that L(7) for general v is

related to L(7) for v = 0, which we call Lo(7), by the relation

L{t) = (1+4+v)Lo <%~}Z—j—;—§7> (6.1)

This relation was discovered with the aid of the symbolic manipulation language MAC-
SYMA, [11].

We determine Lo(7) as a power series in 7. Let

Lo(r) =Y dp7" (6.2)
k=0
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with do = 1. We rewrite equation (5.3) as
L3(rLg 4+ 2Lg) = —

Substituting (6.2) in this expression we obtain

i [ > didjduk(h+ 1]t = -2,

m=1 it+jt+k=m
For m equal to 1, we easily obtain d, = —1. For m greater than 1, we obtain

m=1 m—k

d2dmm(m -+ 1) Z ( L dm—j—kd; )dk b(k+1)

to determine the coefficients d,, recursively.

The coefficients d,,, grow geometrically. The radius of convergence was estimated using
the ratio test on the first 100 terms, and was found to be between 0.47 and 0.48. Since
we require the evaluation of Lo for 7 at most 0.25, the power series can be used with 20
or fewer terms. Some values of the coefficients are displayed in Table 2. The series is also
used to evaluate L.

The reciprocal of Lo can be computed as

Lo Z CkT

by the formulas ¢o = 1 and

m=1

Cm = — E dem—lc .
k=0

Values of ¢, are displayed in Table 2.

The series for A(7) is then




m dpm Cm
0 1.00000 1.00000
1 —1.00000 1.00000
2 —0.66667 1.66667
3 —0.72222 3.05556
4 —0.94444 5.83333
5 ~1.37037 11.38889
6 —2.12522 22.55423
7 —3.45240 45.10716
8 —5.80372 90.86327
9 —10.01663 184.04195

10 —17.65217 374.39085

11 —31.63996 764.28079

12 ~57.51381 1564.70984

13 —105.78964 3211.18846

14 —196.56074 6603.77030

15 —368.41284 13604.66947

16 —695.78218 28070.73418

17 —1322.86550 57997.25720

18 —2530.07012 119972.39115

19 —4864.60373 248438.36363

20 —9397.79906 514957.71646

Table 2

The value of o can be determined by Newton’s method with B(7) evaluated by (5.11)
and B'(7) evaluated by (5.10). Relatively few Newton iterations are required to determine
the value of a.

For v = 1, we have that A’'(r) is constant, as we observed from equation (5.10). The

system (5.9) is easily seen to have the solution

These formulas can also be obtained from definitions (5.4), (5.5), and (6.1) by taking the
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limit as v tends to 1. For v = 1 the value of « is 2, and from (5.8) we have

ra(p) =27 p(1 )
f(p) = 27231 - ).
In Figure 1 the displacement is displayed for the case with ¥ = 0.3 and ¢ = 0.2.. The

dots mark the deformed positions of the points whose undeformed positions are p = 0,

0.25, 0.5, 0.75, and 1.

0.50 -
z 0251 v=0.3
g =02
| ! . s L 1 s s
0.00 0.25 0.50 0.75 1.00
radius
Figure 1

7. Comparison with Experiments.

In this section we apply the results of the analysis to compare with experimental
results. For the first comparison we use the data obtained in tests conducted by the U.S.
Navy on the deflection of steel plates [5]. We compare our results with experiments using
steel disks of radius 10 inches and either one-eighth or one-sixteenth of an inch thick.
Although the primary interest in these experiments was with the plastic deformation at

large strains, there are sufficient data at low strains in the elastic deformation range with
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thickness pressure deflection deflection

(Ibs. /in®)  experimental analysis
1/16 25 0.31 0.32
1/16 50 0.42 0.42
1/16 100 0.50 0.51
1/8 50 0.35 0.33
1/8 100 0.46 0.42
1/8 200 0.62 0.53

Comparison of experimental and analytical results for STS
Table 3

which to compare our analytical results. Also, the tests show that the steel was essentially
isotropic for small deformations, but was orthotropic for plastic deformations.

There are several qualitative agreements that can be made immediately. Several of
the figures in [5] show that the pressure is proportional to the cube of the center deflection.
Selected values that show good agreement are given in Table 3, showing the results for
special treatment steel (STS). From the stress-strain curves, Young’s modulus is computed
to be Y = 3.0 107 lbs. per ft2 and we take Poisson’s ratio to be 0.29, which is typical of

most steels. The value of ¢ is
. (1—v?)Dp
Yh

where h is the thickness of the disk. The formula for the approximate center displacement
is €1/3D Z, where Zj is the center deflection computed from (5.6), see Table 1. For higher
pressures, the center deflection was larger than that predicted by this analysis, reflecting
either the limited validity of the approximation from the perturbation analysis, the plastic
behavior of the material, or both.

It is also reported in [5] that the strain at several points on the disk is proportional
to the square of the center deflection (Fig. 31 of [5]). This agrees with our analysis that
shows that strain is proportional to €2/3 and the center deflection is proportional to glf3,

A second set of comparisons can be made with the finite element calculations of
Suhling [10] to model the deformation of paper board in the burst test. Although his
model is for an anisotropic material, there is good agreement with several data sets. For

his data giving the center deflection as a function of pressure (actually pressure divided
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by thickness) there is excellent agreement with the conclusion that the center deflection
is proportional to the pressure to the 1/3 power, see Table 7.1 of [10]. Over the range of
po/h from 0.125 to 30.0 the value of Zg (po/h)l/3 varies between 0.02493 and 0.02499. Also
the normal stresses at the center were proportional to po/h to the two-thirds power over

the same range of po/h.

Appendix 1. The Lamé moduli for the two-dimensional membrane.

In this appendix we determine the Lamé moduli and constitutive equations for two-
dimensional membranes by analysis of three-dimensional bodies using the theory of elas-
ticity.

Consider the standard linear relation between stress T and strain E for a three-

dimensional isotropic elastic solid,
T =2uE + X tr(E) . (7.1)

The constants 1 and A are the Lamé moduli of the material. We consider the case where
the material is assumed to be in a plane stress condition, i.e., Ty3=Ti3=Te3=0. This
situation arises when considering a membrane, for which the third dimension of the body
is negligible in thickness, and we are concerned only with the stresses and strains in the
plane of the membrane. We actually define the membrane by asserting that all stresses lie
in the plane of the membrane.

We wish to reformulate (7.1) as
t=2ne+Mtr(e) I. (7.2)

where ¢t and e are the two-dimensional stress and strain, respectively, in the plane of the
membrane. The form of the stress in terms of the strain given in (7.1) is the most general
form for a linear function of the strain that is invariant under change of observer when the
material is isotropic. The same is also true for (7.2), however for two dimensions there is
the additional requirement that there be a line of symmetry, or equivalently, that the two

sides of the two-dimensional surface be indistinguishable.
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Note that the symbol I is used for both the three-dimensional identity matrix, or
tensor, in (7.1) and the two-dimensional identity matrix in (7.2). This should cause no
difficulty, especially if one remembers that tr(I) is 2 or 3, depending on whether it is the
two-dimensional or three-dimensional case.

Consider equation (7.1) for the situation in which 7" has the form
t 0
(0 1)
and we easily determine that E has the form
e 0
b= (0 E3,3> '
From (7.1) and T3 3 = 0 we obtain
A
E33=—— tr(E).
8= "9, r(E)

and since tr(E) = tr(e) + E3 3 we obtain

2
T 2u+ A

tr(E) tr(e) .

Therefore, from (7.1), we may write the upper left two-by-two block as

7
=2 tr(e) I
t ue+2#+)\ r(e)
from which we conclude that
- 21
p=p and A= 2;;)\.

For linear three-dimensional elasticity, Young’s modulus ¥’ and Poisson’s ratio v are
defined by
_ p(2p+3)) A

d =
Y and v TTESY
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or, in terms of p and A,

A < <
y:_f‘_(ﬂi;\l and v = A_.
2p+ A 2+ A
With these definitions we can rewrite (7.1) as
1—-v
T=Y (1-v)E+vitr(E)I) .

(1+v)(1-2v)
and we can rewrite (7.2) as

Y
t =

T 1-v

~(1=v)e+vir(e)I) .

“

If, as in section 3, the stress in the membrane is measured per unit length, then the

stress ¢ and strain e are averaged over the thickness of the membrane, giving

St

1{’:’/2 (=) e+v i@ D),

where the bars over the stress and strain reflect the averages through the membrane, and
also that  is measured as force per unit length. This gives the Lamé moduli as used in
section 3.

Appendix 2. The proof of Theorem 4.1.

In this appendix we prove Theorem 4.1. To order gl/3 by (2.1) the vector m is

_s9n
= Op 1 2/3 1/3
m=| _apdn |06 y=|0]+0(E").
poyp 1
14+ O0(e/?)

The displacement gradient F' is

F = Fo +61/3F1 +O(£2/3)
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where

o O

1 0 dp pOy
o 1), ol ®n
0 0 dp  Op  p

0n 102

dp p Op

To evaluate J and FTF — I, we first evaluate FTF.

FTF = (FT + PFT + O(**)(Fo + ¢'/°Fy + O(?))

= FIFy + *(Ff Py + FT Ry) + O(°)

o, On
0 d
— 1/3 P pop 2/3
I+ 2 20, 90 on +0(e*?).
Pop 9o b
So
E:%@fF*nzw”%ﬁ+0@W%
with
o, Oy
dp pOy

Ey

06, 06

+
Pop e " p

Also J = det(FTF)!/2, hence
J=1+0(?)

and so,
FEJ = PR By + 0(*%),
or,
or, O
dp pOy
891 801 1
_ _1/3 ¢vi o YVl L 2/3
FEJ =¢ 3 a¢*"p + 0(*?).
0 0
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Using the first two equations of the system (3.2), we have two equations for r; and 0.

10 ( 6r1>+_1_8 ~M<801+71
“pop\"p 2 Op? O
19 ( 2@_@) 1%, | 2 oy

0===—1{p + 221
pdp\" 0p/) pOp®  p*> O

(7.3)

Note that the boundary conditions for 7; and 6; on the boundary of the disk are that they
both vanish, see (3.3) and (4.1).
By multiplying the first equation of (7.3) by pr; and integrating over the disk, we

obtain, after some integration by parts,

871> (107‘1>2 (7*1>2 (7‘1691))
0= SELY () (252 ) Jeded
//<< p Op p p oy ) )" pev

Similarly, by multiplying the second equation in (7.3) by p*6; and integrating over the

() () (2 oo

Adding one-half of this second equation to the preceding one, we obtain

ary 1or) <7«1>2 1<8p91>2 1 (960,
0“//(< ) <p5‘90>+ ) Tile ) talay) )t

Since the integrand is a sum of squares and must be nonnegative, we conclude that r; and

disk, we obtain

6, vanish on the disk. This completes the proof of Theorem 4.1.

8. Conclusions.

We have given an analysis of the deformation of a circular membrane when subjected
to a uniform static pressure. We have shown that the analytical results agree well with
the experimental data using steel plates subjected to high pressures and finite element
calculations for membranes.

The analysis leads to a efficient procedure for the calculation of the membrane shape
as a function of Poisson’s ratio, Young’s modulus, thickness, membrane radius, and the

static pressure for small strains.
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