CENTER FOR
PARALLEL OPTIMIZATION

PARALLEL VARIABLE DISTRIBUTION
by

M. C. Ferris & O. L. Mangasarian

Computer Sciences Technical Report #1175

August 1993

Parallel Variable Distribution®

M. C. Ferris' & O. L. Mangasarian'

August 1993

Abstract

Variables of an optimization problem are distributed among p processors so that
each processor has primary responsibility for updating its own block of variables while
allowing the remaining variables to change in a restricted fashion (e. g. along a steep-
est descent, quasi-Newton, or any arbitrary direction). This parallelization step is
followed by a fast synchronization step wherein the affine hull of the points computed
by the parallel processors and the current point are searched for an optimal point.
Convergence to a stationary point under continuous differentiability is established for
the unconstrained case, as well as a linear convergence rate under the additional as-
sumption of a Lipschitzian gradient and strong convexity. For problems constrained to
lie in the cartesian product of closed convex sets, convergence is established to a point
satisfying a necessary optimality condition under Lipschitz continuous differentiability
of the objective function. For problems with more general constraints, convergence
is established under stronger conditions. Encouraging computational results on the
Thinking Machines CM-5 Multiprocessor on a subset of the publicly available CUTE
set of nonlinear programming test problems are given.

*This material is based on research supported by the Air Force Office of Scientific Research Grant AFOSR~
89-0410 and National Science Foundation Grants CCR-9157632, CCR-9101801 and CDA-9024618

tComputer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, Wisconsin
53706, email: ferris@cs.wisc.edu, olvi@cs.wisc.edu.

1 Introduction

We consider the problem

min f(z) (1.1)

zEX

where X is a nonempty closed convex set in the n—dimensional real space R™ and f: IR" —
IR has continuous first partial derivatives on IR™. Our objective in this paper is to distribute
p

p blocks 1, ... ,z, of the variable z, where 7; € R™, an = n, among p processors. Given

. l=1 . .
7t € IR™, processor [has primary responsibility for updating block z; € IR™ of the iterate z*
by solving the following problem.

Parallelization:

(i,) € argming, , f(z, 7} + DiAp)
such that (z;, 2t + D) € X (1.2)
i = (yf, 2t + DX
Here | denotes the complement of [in {1,...,p}, A\f € IRP~!. The matrix Dl? €
R“*P1) ig an ny-by—(p — 1) matrix. It is formed by taking an arbitrary direction

di € R, breaking it into blocks of d° € IR™ consistent with the distribution of the
variables z, and placing these vectors along the block diagonal of Dt as follows:

dj

D% = -1 . . (13>
L+1

(]
1+2

i dp |
Once the points 2%, I = 1,... ,p, have been computed by the p parallel processors, the affine
hull of the points {z¢,z%, ... ,z%} is typically searched for a best point by a synchronization
step as follows.

Synchronization:

P
gl = plat 4> ket

k=1

. p .

(b, ph, .. ph) € argmin f(uos’ +) ppz™

0 P 10,1y 11
e = (1.4)
Lox" + Z,ukxzk e X
such that k=1

po+ D ik =1.
k=1

We note immediately that a fundamental difference between our method and that of block
Jacobi for solving nonlinear equations [4] and coordinate descent [18] is the presence of the
“forget-me-not” term z%+ Di)r in problem (1.2). Thus in contrast with block Jacobi and
coordinate descent where the coordinates of the blocks of variables z; handled by the other
processors are held fixed, our parallel subproblems (1.2) allow these blocks of variables to
move in arbitrary directions D%, typically generated using steepest descent or quasi-Newton
directions in the space of these variables. This novel idea allows each parallel processor to
obtain a better minimum and endows the algorithm with a robustness property that makes
it difficult to fail.

We outline the contents of the paper now. In Section 2 we consider the unconstrained
case and establish convergence of our algorithm by using ideas similar to those of the parallel
gradient algorithm proposed in [12]. We also establish a linear convergence rate for the
unconstrained algorithm. In Section 3 we consider problems with block separable constraints,
that is where the constraints are a cartesian product of closed convex sets. In Section 4 we
consider more general constraints and in Section 5 we give some preliminary computational
results. We conclude with some brief remarks in Section 6.

We briefly describe our notation. The sequence {z%},i=1,2,..., will represent iterates
in the n—dimensional real space IR® generated by some algorithm. For [=1,... ,p, 7t € R™

P

will represent an m;—dimensional subset of the components of z*, where an = n. The

I=1
complement of I in {1,...,p} will be denoted by [and we write z* = (z},2%), [= 1,... ,p.
For a differentiable function f: R™ — IR, Vf will denote the n—dimensional (row) vector
of partial derivatives with respect to z, and V,f will denote the n;—dimensional vector of
partial derivatives with respect to z; € R™, [=1,...,p. If f has continuous first partial
derivatives on IR®, we say f € C*(IR™). If f has Lipschitz continuous first partial derivatives
on IR™ with constant K > 0, that is:

Vi) = Vi@ <Kly-zl, Ve,ye R

we write f € LCL(IR™). Unless stated otherwise, ||-|| denotes the Euclidean norm, that is
|lz|| = V2Tz, for z in a finite-dimensional space of appropriate dimension. A differentiable
function f: IR™ — IR, is strongly convex on IR™ with constant £ > 0 if

F@) - 1(&) - V@) —2) > § Iy -3l Yo,y € R

3

or equivalently
(Vi) - V@) (y—2) > klly—=|*, Yo,y e R".

We adapt the definition of a forcing function [15, p. 479} for our purposes.

Definition 1.1 Forcing Function: A forcing function o is a continuous function from
the nonnegative real line Ry into itself such that 0(0) =0, a(&) > 0, for £ > 0 and for every
sequence of nonnegative real numbers {&;}:

a(&) — 0 implies & — 0.
Some typical examples of forcing functions are

€, ¥€%, max{o1(€), 02(€)}, min{o1(€), 02(€)} and o2(01(§)),

where « is a positive number and o (§) and o5(§) are forcing functions.

2 Unconstrained PVD

We begin by stating and establishing convergence of a parallel distribution algorithm for
the unconstrained minimization problem (1.1), where X = IR™. In this case, we define a
stationary point z as any point such that V f(z) = 0.

Theorem 2.1 Unconstrained PVD Algorithm: Let f € LCi(R"). Start with any
20 € R". Hawing 2%, stop if Vf(z?) = 0. Otherwise, compute z**' as follows:

Parallelization: Forl=1,...,p compute % € R™ such that

(yi, o) € arg minxl,/\l_f(xl,xzi_;. Diyy)

| A (2.1)
gt = (yf,ab+ DX

Here D¢ is an my-by-(p — 1) matriz generated from an arbitrary direction d € R" as
in (19). | |
Typically, d* = —V f(z*)/ |V f(z*)]]-

Synchronization: Compute ' € IR" such that
f(@**) < min f(z"). (2.2)
=1y,

Typically, 1 is computed as in (1.4).

Convergence: For a bounded sequence {d*}, either the sequence {z'} terminates at a sta-
tionary point ¢ or each of its accumulation points is stationary and lim; oo V f (z%) = 0.

Proof Forl=1,...,p define the auxiliary functions 6}: R™*P~Y - IR, as follows:
04 (zy, Np) = flzy, ot + DiXp). (2.3)
Then
Vi@, M) = [Vof (w1, 35+ DiN), Vif (@, 35 + DiA)D}] (2.4)

Since f has a Lipschitz continuous gradient and {d*} is bounded, it follows that 6! also
has a LlpS(‘hltZ continuous gradient with constant K, say. Define now, for [= 1,...,p,
(21, 7)) € R~ a5 follows

1 Tf ok
~ & VA0, (2.5)

By the Quadratic Bound Lemma A.2, it follows that for {=1,...,p

(1) = (2},0)

i, i 2
0i(al, 0) — 62, vi) 2]lvel o) (26)
But by the PVD algorithm parallelization step (2.1)
6i(yi, M) < 0i(21,). (2.7)

Hence the last two inequalities yield for I =1,...,p

if i TARY 1 irai Ml
Gi(a}, 0) = Bi(wh, M) 2 57 |V 0 (2.8)
or
F(z) = fy}, o + DINY) > 2K |vo; (a:;,O)U 21{1 |v.£((@]’ (2.9)
By noting the definition of z in (2.1) we have
£ = 16 = g [Vt @) t=1 (2.10)
Hence summing over [and dividing by p gives
2
- = ™) — |V f(z* 2.11
p;f MMZ)] = 5o, IV (@) (2.11)
But from the synchronization step (2.2) we have the inequality
i+1 18
) < -—}: (2.12)
p :
Combining the last two inequalities gives
. . . 12
fah) ~ fl@™h) 2 (z") (2.13)

By the PVD algorithm {:rz} terminates at an z¢ only if Vf(z?) = 0. Suppose now
V£(z?) # 0for all i and that {z% } converges to Z. Since the sequence {f(2*)} is nonincreasing
by (2.13) and has an accumulation point f(Z), it converges to f(Z), by Lemma A.1. By (2. 13)
we have that

:1‘ 27 - 7:_7+1 >
0= lim (f(2%) ~ f(=¥7) 2 }iooszl

o

[. (2.14)

Hence lim;_,o ||V f(#)||” and Vf(Z) = 0. The limiting property of the sequence {V f(z z4)}
also follows from (2.13). 0

If we further assume that the function f is strongly convex on IR" then the PVD sequence
{2'} converges linearly. We state the result as the following theorem.

Theorem 2.2 Linear convergence of PVD algorithm: If in addition to the assump-
tions of Theorem 2.1 the function f is strongly convezr with constant k > 0, then the sequence
of iterates {x'} generated by the PVD algorithm converges linearly to the unique solution T
of (1.1) at the linear root rate

w1l < (2t - @) (1 -1 (;@-)) 215)

Proof The proof follows from (2.13) and the linear convergence theorem, Theorem A.3 of
Appendix A. O

We turn our attention now to optimization problems with block separable constraint sets.

3 PVD with Block Separable Constraints

We consider the following problem in this section:

2%1§1f(T) = l%g%l flzy,...,zp) (3.1)
P

p
That is, = € H‘Xl, where X;, I = 1,...,p are closed convex sets in R™, [= 1,...,p,

=1
an = .

Before we specify our PVD algorithm for this above problem, we need a few definitions
and some preliminary results. We begin with the concept of an optimality function.

Definition 3.1 Optimality function: For the problem mingex f(z), f: R* — IR and
X CIR", the function ¢: X — R is an optimality function if :

(i) ¢(z) >0 on X.

(i) = € argmingex f(z) = é(z) = 0.
(i) & is nonconstant and lower semicontinuous on X.

A stationary point for the optimality function is an x € X such that ¢(z) =0.

The nonconstancy condition is merely to rule out the trivial case of #(z)=0. If X =R"
and f € CY(IR™), then ¢(z) := ||V f(z)|| is an optimality function for minsemr- f(z), and
the notion of a stationary point is standard. If X is a closed convex set in IR™, then the
following function determined from the minimum principle [11, 7] serves as the minimum
principle optimality function:

d(z) = — min (Vi) z+de X, |d||l, < a}, forsomea>0. (3.2)

A simple argument shows that ¢ is lower semicontinuous on X when f € C(IR™). Further-
more, if 7 is a stationary point for ¢, then

0=mig (VI @)y~)| Iy - 2l < a}.

Hence, 7 € argmin,cx {Vf(Z)(y —)| lly — Zllo, < a}. Since the objective function is linear
in y and X is convex, it follows that Z € argmin,cx Vf(Z)(y — Z) also, or equivalently that

TeXand Vf(Z)(y-2) 20, Vye X. (3.3)
This is precisely the minimum principle necessary optimality condition and we have

Lemma 3.2 If T is a stationary point for the optimality function ¢ gen in (3.2), then T
satisfies the minimum principle (3.3).

We show now that using an Armijo stepsize rule [1] along a bounded Frank-Wolfe al-
gorithm direction [9] produces a function decrease that dominates the minimum principle
optimality function (3.2). This relationship will be needed in establishing the convergence
of our PVD algorithm. However, we emphasize that the PVD algorithm does not employ
either the Frank—Wolfe algorithm or the Armijo stepsize.

Lemma 3.3 For the problem mingey f(z) where X is a conver subset of R" and f €
LCL(IR™) consider the following direction—stepsize procedure for a given x € X:

Direction (Frank-Wolfe):

d € arg min V f(z)d. (3.4)
fdl, <o

Stepsize (Armijo): v = max{l, 3,5 } such that

f(@) = f(o+vd) 2 ~5Vi(@)d (3.5)

Then for
et =z +vd (3.6)
it follows that
f@) = f(=") = a(¢(2)) (3.7)

where ¢ is the minimum principle optimality function defined in (8.2), o is the forcing
function given by

o(6) = min {26, €'} (38)
Proof By the Quadratic Bound Lemma A.2
f@) = fotvd) > v(-Vi()d - dlP)
— (V@) K—” diP - 5V F(@)a)

> —‘Q“Vf(v"?)

whenever £~ |d|I> < =1V f(z)d. Hence by the stepsize choice, either v = 1, or else when v
is replaced by 2v the last inequality is violated, that is

Kv||d|* > —~~2~Vf(x)d.

Since the direction generated by (3.4) satisfies ||d|| < o, it follows from the last inequality
and the possibility that v = 1, that

1

> mingl, ———
y_mln{, Sl I

Vf (w)d} : (3.9)

Using this lower bound on v in (3.5) gives the desired inequality (3.7), after replacing
—V f(z)d by ¢(z) using (3.2). 0

Before stating and proving convergence of our PVD algorithm we need to define a dis-
tributed optimality function over the block separable constraint set.

Definition 3.4 Distributed optimality function: For the problem (38.1) we define the
distributed optimality function

o(z) = l}i(bl(x) (3.10)

where ¢;: X — IR and forl=1,...,p
(1) ¢i(z) >0 on X.

(i) ¢ € argmin, cx, f(y, 21) = ¢u(z) =0.
(111) ¢ is nonconstant and lower semicontinuous on X.

A stationary point for the optimality function (3.10) is an © € X such that ¢(z) = 0.

We note that »
z € argmin f(z) = ¢(z) =D _di(z) =0.
1=1

zeX

An example of a distributed optimality function for problem (3.1) is the following:

¢l<T> = — g min Vlf(x)dl (311)
<o

The following lemma shows that a forcing function for the distributed optimality function
(3.10) also forces any constituent partial optimality function to zero.

Lemma 3.5 If o is a forcing function, then for any J C {1,...,p},

o(p(z')) = 0 = 3 dila?) = 0,

led

where ¢ is the distributed optimality function given by (3.10).

Proof Since o is a forcing function it follows that
. . p .
a(p(") = 0 = ¢(z") = di(z") — 0.
1=1

However, by definition ¢;(z*) > 0, from which the result follows. 0

We are ready to state our PVD algorithm for (3.1) and establish its convergence.

Theorem 3.6 Block Constrained PVD Algorithm: Let f € LCL(IR™) and let X; be
nonempty convex sets in R™ forl=1,...,p. Start with any z° € R™. Having x*, stop if
$(z?) = 0. Otherwise, compute = as follows:

Parallelization: Forl=1,...,p compute % € R" such that

(v, /\}—) € arg minmhkl.f(xl, :E} + D%)\l-)
such that 7, € X, «t+ Dixje ITh—; X, (3.12)
s#l

g = (yf, 7t + DX

Synchronization: Compute z*7' € X such that

f(z) < min f(z"). (3.13)
I=1,..,p

Convergence: For a bounded sequence {d'}, either the sequence {z'} terminates at a sta-
tionary point ©* or every accumulation point of {z'} is stationary, that is it satisfies
the minimum principle necessary optimality condition (3.8) and lim; . ¢(z*) = 0.

Proof First of all, note that by choosing z; = z¢ and)\; = 0 in (3.12), it follows that
flzit) < f(a*) for I = 1,...,p. Furthermore, f(z**') < f(z*) for all I by (3.13). Hence
the sequence {f(z%)} is nonincreasing. If {2’} does not terminate at a stationary point z*
of the minimum principle optimality function, then let {z%} converge to Z. Since {f(z%)}
has an accumulation point f(Z), it must converge to f(Z) by Lemma A.1. In particular, it
follows that f(z*) — f(z*') — 0. To complete the proof of the theorem, we will show that
this implies that ¢(z*) — 0. Since ¢ is lower semicontinuous it follows that ¢(z) = 0 and by
Lemma 3.2, the minimum principle (3.3) is satisfied at Z.
Asin the proof of Theorem 2.1, we define the auxiliary functions 6:: RMHE-D 5 R for
I=1,...,pby
0($l7) ‘f(mlvxl+D/\>

with gradient determined by
Vi(a1, \p) = [Vof (@1, 5+ DiN), Vif (m1, 3§ + DA D]

Using the boundedness of {d'} we conclude that these gradients are Lipschitzian with con-
stant K7, say. Define now, forl = 1,...,p, (2,) by an Armijo step (3.5) along the bounded
Frank-Wolfe direction (3.4) applied to the parallel subproblem (3.12) at the point «:

. . . - p
min { f(z, xr+ DpXp) | 7 € Xy, 77+ Di); e H X

TLAT s=1
s7#l
. . . . p
= grlng 0 (z, Ap) | o1 € Xy, zp+ DA€ SI—IlXS (3.14)
s;l
By Lemma 3.3 we have that for [=1,...,p
6i(x},0) = 6 (21, i) 2 ou(4'(2%)) (3.15)

where ¢!(z?) represents the minimum principle optimality function associated with (3.14),
and o) is the forcing function defined by (3.8). But by the PVD algorithm parallelization
step (3.12)

0 (yi, A < 6; (21, 1) (3.16)
Hence the last two inequalities yield for [=1,...,p
(a1, 0) — 0 (v, \D) > ou(¥' (")), (3.17)
or
f(') = f(yi, 2t + DD 2 on(@'(a)). (3.18)

10

Noting the definition of 2% in (3.12) we have

f@) - f(@) > a(@'(a’)), I1=1,...,p. (3.19)
Thus, forl=1,...,p

f@) = f(a) = 0 = a(¢!(z")) — 0.

By invoking Lemma 3.5 it follows from the particular form of YH(z?) for (3.14) that for
l=1,...,p
a(P'(z%) = 0 = $i(a") =0,

p

where ¢;(2°) = — miny,ex, Vif(2*)(y;—2}). But since > #i(z') = — mingex Vf(a*)(y—2*) =
=1

$(z*), we have that

max {f(z') ~ f(z")} = 0 = (") =0,

I=1,....,p
or equivalently

f(z) — ‘min (@) = 0 = ¢(z*) — 0. (3.20)

I=1,....p

But from the synchronization step (3.13) we have
flz") < lIl{liIl f(z). (3.21)
=1,.,p

Combining (3.20) and (3.21) gives
f(a) = f(a) = 0 = ¢(z') =0 (3.22)
as required. 0

We now turn our attention to a problem with a more general nonlinear constraint set.

4 PVD with General Constraints

We consider in this section the following problem
min f(z) such that g(z) <0 (4.1)

where f: R” — IR and g: R” — IR™ are C'(IR"). It turns out that if the constraints are
not separable in the sense of Section 3, having a stationary point that results from minimizing
the objective function with respect to individual blocks of variables 1,... ,Zp and subject
to the problem constraints g(z) < 0 does not results in a useful point as was the case for
the unconstrained minimization problem of Section 2, or the separable constraint case of
Section 3. This is easily illustrated by the following simple example in R

min 22 + 75 such that 21 + z2 > 2. (4.2)

11

This strongly convex problem has a unique global solution at Z; = Z; = 1. However, the
point z; = 0.5, zo = 1.5 is a global minimum with respect to each of z; and z, separately,
subject to the problem constraint. That is

0.5 = argmin {z} +2.25| s > 05}
T)

1.5 = argmin {0.25 + 2| 3y > 1.5}
T2

This property is possessed by all points in the first quadrant lying on the constraint z; +
zy = 2. Nomne of these points are of any use except the solution Z; = Z; = 1. Therefore,
it seems that the only sensible way to distribute variables for problems with inseparable
constraints is to convert them to unconstrained problems or to problems with separable
constraints. Obvious methods for doing so are exterior penalty [8] and augmented Lagrangian
methods [16, 3] for handling inseparable constraints while leaving separable constraints as
explicit ones. However, a disadvantage of exterior penalty is the unboundedness of the
penalty parameter, while the augmented Lagrangian formulation essentially changes the
minimization problem into a saddle point problem. An approach that avoids both of these
difficulties is the dual differentiable exact penalty function [10] formulation

max O(z,u,7) = Liz,u) - —;—7 VoL (z, u)|? (4.3)

(z,u)ER™™ >0
where L(x,u) is the standard Lagrangian for (4.1)
L(z,u) := f(z) +u’g(z). (4.4)

Various theorems [10] relate (4.3) to (4.1), but the key point is that the penalty parameter
~ remains finite and the objective function is differentiable. Thus (4.3) appears to be a rea-
sonable formulation of the problem (4.1) with inseparable constraints as one with separable
constraints to which the algorithms of Section 3 are applicable.

Preliminary computational results for the parallel variable distribution algorithm are
given in the next section.

5 Computational Results

In this section we report on some preliminary computational results with the PVD algorithm
for unconstrained optimization. Our implementation is written in Split-C [6], a parallel ex-
tension of the C programming language primarily intended for distributed memory multipro-
cessors. Split-C is designed around two objectives. The first of these objectives is to capture
certain useful elements of shared memory, message passing, and data parallel programming
in a familiar context, while eliminating the primary deficiences of each paradigm. The sec-
ond is to provide efficient access to the underlying machine, which in our work is a Thinking
Machines CM-5. In our implementation, shared memory is used to handle data associated
with the current best solution and termination conditions. Split—C facilitates easy coding of
the synchronization problem which obtains its data via message passing, while allowing the

12

data for the subproblems to be physically distributed across the processors. Much of this can
also be carried out using CMMD [17], the message passing library of the CM-5. However,
Split—-C enables the code to be written in a more readily portable manner.

The current implementation uses MINOS 5.4, a newer version of [13], to solve both
the parallel subproblems and the synchronization problem. MINOS uses a Quasi-Newton
approach for each of these problems. MINOS was chosen as the optimization tool since it is
very reliable, efficient and can be called easily as a subroutine. Furthermore, although other
codes may be more efficient for unconstrained optimization (for example, implementations
that consider sparse Hessians or approximations), MINOS can also be used to solve large—
scale constrained problems. This will enable the unconstrained code used to report results
in this section to be generalized for the algorithm given in Section 3.

The test problems used below are a subset of the problems from the constrained and
unconstrained testing environment (CUTE) [5]. Both the problems and tools for linking
algorithms with the problems are available via anonymous ftp. The problems are written in
SIF (standard input format), and include many practical and large-scale examples.

We now give 8 tables of results. The first four tables are on smaller sized problems for
which our parallel code could run on one processor. The results reported are for two different
choices of directions. In Table 1 and Table 2 the results are obtained using a zero direction,
which we will refer to as PVDO0. This is closely related to the parallel gradient algorithm [12].
Essentially, this corresponds to a form of the block Jacobi method with synchronization for
solving the problems, but is covered by our convergence analysis. Table 1 gives total time in
seconds and the total number of function (and gradient) evaluations, while Table 2 reports
the speedup efficiency as calculated by

Time on 1 processor

(Time on p processors) * p (5-1)

The next two tables, Table 3 and Table 4 give the same results for an implementation
using the auxiliary directions d* generated using a diagonal scaling of the gradient. The
diagonal scaling is determined using an extra evaluation of the gradient in each processor
to determine an approximate size for the Hessian matrix corresponding to that index. The
precise scaling used is the reciprocal of the ith component of the following vector:

Vi(z+e) = Via),

where z is the current point and e; represents a vector which has ones in the ith block
of variables and zeros elsewhere. We label the corresponding tables with PVD. As above,
Table 3 gives the times and function evaluations for PVD, while Table 4 reports the speedup
efficiencies as calculated by (5.1) for PVD.

The final four tables report on the same algorithms PVDO and PVD, but with larger
problem sizes. In fact we were unable to run these problem instances with only 1 or 2 blocks
due to the lack of sufficient memory on the processors of the CM-5 for running MINOS on the
subproblems. Thus Table 5 has results only for 4, 8 16 and 32 processors. The calculations
of speedup efficiency in Table 6 are carried out using the following form:

Time on 4 processors * 4
(Time on p processors) * p

(5.2)

13

Table 1: PVDO: Time(s) and function evaluations

Problem (Size) 1 proc 2 procs 4 procs 8 procs

sec (fn evals) | sec (fn evals) | sec (fn evals) | sec (fn evals)
ARWHEAD(500) 12 (50) | 6 60) | 4 81) | 4 (105)
BRYBND(500) 32 (11) | 17 92) | 10 122) | 7 (129)
DIXMAANB(300) 5 (52) | 4 65) | 2 &7 | 2 (132)
DQDRTIC(500) 19 (50) | 14 (70)| 5 | 4 (110)
DQRTIC(500) 270 (533) | 120 (801) | 69 (1149) | 66 (1804)
FREUROTH(500) | 1300 (1878) | 880 (3627) | 480 (4452) | 320 (4870)
LIARWHD(500) 28 (76) | 8 I (121) | 9 (200)
MOREBV(100) 63 (1399) | 38 (2010) | 29 (3199) | 31 (6020)
NONDIA(500) 24 (1) | 12 (105) | 5 90) | 4 (131)
NONDQUAR(500) | 29 63) | 16 (100) | 9 (140) | 5 (163)
PENALTY2(100) 93 (1897)| 30 (1128)| 19 (1257) | 10 (903)
POWER(500) 45 (85) | 21 (124) | 9 162) | 7 (260)
QUARTC(500) 270 (533) | 120 (801) | 69 (1149) | 66 (1804)
SINQUAD(500) 08 (149) | 14 (82)| 6)| 5 (94)
TOINTGSS(500) 15 62)| 9 63)| 4 (73) | 4 (128)
TQUARTIC(500) | 44 95)| 6 67| 4 60) | 2 (68)
VAREIGVL(500) 26 (72) | 16 &7 | 9 (124) | 8 (187)

14

Table 2: PVDQ: speedup efficiencies

Problem (Size) 2 procs | 4 procs | 8 procs
ARWHEAD(500) 96.8 68.2 37.5
BRYBND(500) 94.1 80.0 57.1
DIXMAANB(300) 72.9 60.7 30.4
DQDRTIC(500) 67.9| 99.0| 594
DQRTIC(500) 1125| 97.8| 511
FREUROTH(500) 73.9 67.7 50.8
LIARWHD(500) 179.5 87.5 39.8
MOREBV/(100) 82.9| 543| 254
NONDIA(500) 100.0 | 127.7 69.8
NONDQUAR(500) | 90.6| 84.3| 67.1
PENALTY2(100) | 155.0| 1224 116.2
POWER(500) 107.1 125.0 82.7
QUARTC(500) 112.5 97.8 51.1
SINQUAD(500) 350.0 437.5 235.6
TOINTGSS(500) 85.2 | 98.7| 457
TQUARTIC(500) 338.5 297.3 220.0
VAREIGVL(500) 81.3 69.1 41.7

15

Table 3: PVD: Time(s) and function evaluations

Problem (Size) 1 proc 2 procs 4 procs 8 procs

sec (fn evals) | sec (fn evals) | sec (fn evals) | sec (fn evals)
ARWHEAD(500) 12 (50) | 6 62) | 4 77y | 4 (97)
BRYBND(500) 33 (71) | 25 (119) | 11 (131) | 11 (207)
DIXMAANB(300) 5 (52) | 2 60) | 2 81) | 2 (104)
DQDRTIC(500) 19 (50) | 6 (59) | 4 81) | 4 (113)
DQRTIC(500) 280 (533) | 110 (583) | 52 (763) | 46 (1198)
FREUROTH(500) | 1400 (1878) | 170 (462) | 740 (6960) | 970 (14250)
LIARWHD(500) 29 (76) | 45 (141) | 75 (680) | 6 (145)
MOREBV(100) 65 (1399) | 41 (2253)| O O o)
NONDIA(500) 24 (71) | 330 (3505) | 7 179) | 0 0
NONDQUAR(500) | 30 (63) | 13 (103) | 8 (130) | 4 (132)
PENALTY2(100) 96 (1897) | 42 (1590) | 31 (1908) | 20 (1702)
POWER/(500) 46 (85) | 17 (110) | 8 1) | 7 (255)
QUARTC(500) 280 (533) | 110 (583) | 51 (763) | 46 (1198)
SINQUAD(500) 100 (149) | 15 (86) | 56 (620) | 9 (175)
TOINTGSS(500) 15 (62) 7 (60) 4 (73) 5 (120)
TQUARTIC(500) | 46 ©5) | 7 59) | 5 94) | 4 (133)
VAREIGVL(500) 27 (72) | 15 89| 5 (89) | 4 (106)

16

Table 4: PVD: speedup efficiencies

Problem (Size) 2 procs | 4 procs | 8 procs
ARWHEAD(500) 96.8 | 68.2| 375
BRYBND(500) 66.0| 75.0| 375
DIXMAANB(300) 113.0 68.4 34.2
DQDRTIC(500) 150.8 105.6 62.5
DQRTIC(500) 127.3 134.6 76.1
FREUROTH(500) 411.8 47.3 18.0
LIARWHD(500) 32.2 9.7 60.4
MOREBV/(100) 79.3 52.4 38.7
NONDIA(500) 2.9 1.8 41.7
NONDQUAR(500) | 1154 | 92.6| 83.3
PENALTY2(100) 114.3 77.4 60.0
POWER(500) 135.3 147.4 79.9
QUARTC(500) 127.3 137.3 76.1
SINQUAD(500) 333.3 | 446 | 1420
TOINTGSS(500) 113.6 89.3 36.8
TQUARTIC(500) 328.6 250.0 155.4
VAREIGVL(500) 90.0| 125.0| 80.4

17

Table 5: PVDO0: Time(s) and function evaluations

Problem (Size) 4 procs 8 procs 16 procs 32 procs
sec (fn evals) | sec (fn evals) | sec (fn evals) | sec (fn evals)
ARWHEAD(1000) | 14 (85) | 11 (120) | 9 (158) | 10 (253)
BRYBND(1000) 28 (119) | 26 (205) | 20 (216) | 27 (354)
DIXMAANB(1500) | 31 (84) | 25 (134) | 23 (227) | 29 (387)
DQDRTIC(1000) | 28 (101) | 10 (107) | 10 am | 8 (285)
FMINSURF(1024) | 20 (102) | 16 (139) | 19 (239) | 18 (283)
MOREBV/(1000) 97 (250) | 53 (366) | 32 (597) | 25 (1054)
NONDQUAR(1000) | 31 (143) | 24 (269) | 17 (246) | 26 (425)
POWER(1000) 35 (173) | 20 (269) | 31 (449) | 92 (827)
SINQUAD(1000) 19 (83) | 13 (93) | 10 (116) | 11 (163)
TOINTGSS(1000) | 18 (90) | 10 115) | 11 (222) | 11 (379)
TQUARTIC(1000) | 14 68) | 8)| 6 99) | 5 (146)
VAREIGVL(1000) | 32 (135) | 20 (184) | 22 (249) | 32 (394)
WOODS(1000) 20 (126) | 14 (159) | 15 (237) | 41 (397)

18

Table 6: PVDO: speedup efficiencies

Problem (Size) 8 procs | 16 procs | 32 procs
ARWHEAD(1000) 63.6 38.9 17.9
BRYBND(1000) 53.8 35.0 13.0
DIXMAANB(1500) 62.0 33.7 134
DQDRTIC(1000) 1414 71.4 41.2
FMINSURF(1024) 62.5 26.3 13.9
MOREBV(1000) 91.5 75.8 48.5
NONDQUAR/(1000) 64.6 45.6 14.9
POWER(1000) 87.5 28.2 4.8
SINQUAD(1000) 73.1 47.5 21.6
TOINTGSS(1000) 92.8 40.9 20.5
TQUARTIC(1000) 87.5 63.6 35.0
VAREIGVL(1000) 80.0 36.4 12.5
WOODS(1000) 71.4 33.3 6.1

19

Finally, Table 7 gives the timings and function evaluations for the larger problems with
the auxiliary directions generated by the scaling of the gradient direction. Table 8 gives the
corresponding speedup efficiencies for PVD on the larger problems using (5.2).

Table 7: PVD: Time(s) and function evaluations

Problem (Size) 4 procs 8 procs 16 procs 32 procs
sec (fn evals) | sec (fn evals) | sec (fn evals) | sec (fn evals)
ARWHEAD(1000) | 15 80) | 8 92) | 9 (139) | 9 (216)
BRYBND(1000) 32 (133) | 26 (208) | 26 (319) | 33 (554)
DIXMAANB(1500) | 27 (90) | 16 (104) | 13 (142) | 17 (259)
DQDRTIC(1000) 14 B | 9 (114) | 10 (175) | 11 (254)
FMINSURF(1024) | 21 (100) | 16 (135) | 13 (172) | 25 (300)
MOREBV(1000) | 120 (390) | 95 (835) | 36 919) | 39 (1787)
NONDQUAR(1000) | 42 (166) | 12 (158) | 12 (195) | 11 (294)
POWER(1000) 41 (230) | 24 (292) | 24 (331) | 80 (677)
SINQUAD(1000) | 160 (623) | 30 (247) | 22 (271) | 32 (449)
TOINTGSS(1000) | 12 (76) | 11 (122) | 11 (181) | 10 (282)
TQUARTIC(1000) | 15 (89) | 12 (146) | 9 (209) | 10 (351)
VAREIGVL(1000) | 27 (118) | 11 (116) | 14 (181) | 19 (342)
WOODS(1000) 41 (184) | 12 (136) | 16 (211) | 29 (381)

We note that there are some very high speedup efficiencies (over 437%) as well as some
very low ones (4.8%). We believe that the reason for the low efficiency is that the problems
size is not sufficiently large for the number of processors employed. More precisely, in order
to attain high speedup efficiency the ratio of the size of the synchronization subproblem to
the size of the parallel subproblems (approximately Pni) must be small. This hypothesis is
generally borne out by the numerical results.

Comparing PVDO0 and PVD, it is more difficult to say which is the clear winner. For
example, comparing the speedup efficiencies for the larger problems (Table 6 and Table 8),
62 % of the efficiencies for PVD are higher that those for PVDO0. Thus, there is a slight
indication that PVD is more efficient.

We believe that further experimentation on much larger problems with and without
constraints is warranted and might reveal a clearer indication of efficiency as well as better
algorithmic strategies. These strategies include a variety of different choices for d' in the
parallel subproblems. In addition, asynchronous implementation might overcome some of
the low efficiencies obtained by our synchronous algorithm.

20

Table 8: PVD: speedup efficiencies

Problem (Size) 8 procs | 16 procs | 32 procs
ARWHEAD(1000) 92.6 43.1 20.8
BRYBND(1000) 61.5 30.8 12.1
DIXMAANB(1500) 84.4 51.9 19.9
DQDRTIC(1000) 75.3 35.7 15.9
FMINSURF(1024) 65.6 40.4 10.5
MOREBV(1000) 63.2 83.3 38.5
NONDQUAR(1000) | 175.0 87.5 47.7
POWER(1000) 85.4 42.7 6.4
SINQUAD(1000) 266.7 181.8 62.5
TOINTGSS(1000) 54.5 27.3 15.2
TQUARTIC(1000) 62.5 40.3 18.8
VAREIGVL(1000) 122.7 48.2 17.8
WOODS(1000) 170.8 64.1 17.7

21

Computational results for multicategory discrimination problems using a closely related
algorithm to PVDO can also be found in [2].

6 Conclusion

Blocks of variables of optimization problems were distributed among parallel processors with
each processor taking primary responsibility for updating its assigned block while not for-
getting about the other variables by allowing them to vary in a restricted but plausible
fashion. A synchronization scheme optimizes over the points obtained by the parallel pro-
cessors. Convergence results were given for the unconstrained as well as the constrained
cases. Preliminary computational results indicate the proposed method has the potential
for high parallelization speedup efficiency. An asynchronous implementation, whereby each
parallel processor optimizes over the currently available points from the other processors may
further increase speedup efficiency. Further theoretical and computational studies are needed
to obtain even faster parallel algorithms that take advantage of the powerful multiprocessors
that are now available.

Acknowledgement

We are indebted to Ms. Chunhui Chen, a PhD student of one of the authors (OLM) for
valuable suggestions regarding the proofs of Theorem 2.1 and Theorem 3.6.

22

A Appendix
For convenience we state some of the results needed in the paper.

Lemma A.1 If the nonincreasing sequence of real numbers {f:} has an accumulation point
f then {fi} converges to f.

Proof We first prove that {f;} is bounded below. Let f;; — f. If {f;} is unbounded below
then there exist 4, j for which we have

7 i (Since {f;} is unbounded below)
i =z 1y (Since {f;} is nonincreasing)

fs = f (Since {f;,} converges to f)

\%

which is a contradiction. Hence {f;} is bounded below and it converges. It must converge
to f because for a convergent sequence all accumulations points are identical to the limit of
that sequence. O

Lemma A.2 Quadratic Bound Lemma: [14, p. 144], [4, p. 639] Let f € LC}(IR™)
then

F) = £(a) - Vi)~ 2) < [f(0) ~ f(&) = V@ - 9] < 5y~ 3l o,y € R,

Theorem A.3 Linear Convergence Theorem: Let f: R® — R, let {z'} C R", let
S ={z] f(z) < f(=°)}. If f € LOK(S) and

F@) = f@™) 2 o |VIE)

2

(A1)

for some o> 0,1=0,1,2,... then every accumulation point T of {x%} is stationary, that is
ViEz)=0.

If in addition, f is strongly conver with parameter k > 0, then {z'} converges to the
unique solution T of mingerr f(z) at the linear root rate:

ot~ < (s - o) 1- 23‘(’?2)% .

Proof For the first part, let % — Z. Then
f(@) - f@i) = fah) - f@) > o |ViE)| 2 0.

Taking the limit as j — oo and invoking the continuity of V f we get:

0= f(z)— f(Z) > a||[VF@)|* > 0.

For the second part of the theorem, we note that strong convexity guarantees that S is
compact and f is strictly convex. Hence {2’} must have at least one accumulation point Z

23

which minimizes f(z) on IR". By the strict convexity of f and the first part of the theorem,
every accumulation point must be the same and hence the sequence {z'} converges to Z
which is the unique solution of mingegr» f(x).

We establish now the linear root rate of convergence of {z'}. We have

i 112
CU—.T“,

2o = o5t - 9500}

'~ &| > (Vf(a') - V(@) (a'—2) > k

|V £(a)

where the last inequality follows from the strong convexity of f. Hence (A.1) implies

fla®) = (=) = ok?

. 2
:U“-—i"” .

Upon using the Quadratic Bound Lemma A.2 the last inequality yields

20k?
K

fla') = f(@*) 2 (f(z*) = f(@)).

This is equivalent to

(1- 25 (1) - 100 >) - @)

By induction we have then

e - 1) < (1- 29 (116 - 1@ (A2

Again from strong convexity we have that

7~z + V@) - 2)

Fa) -~ 1(@) > &

or

(F () - 1@)) " =

Using the last inequality in (A.2) gives

o' -3 < (1 - 23‘?2>% (—i— (@) - f(fc)))

as required. O

(N1

24

References

[1] L. Armijo. Minimization of functions having Lipschitz-continuous first partial deriva-

2]

tives. Pacific Journal on Mathematics, 16:1-3, 1966.

K.P. Bennett and O.L. Mangasarian. Serial and parallel multicategory separation. Com-
puter Sciences Department Technical Report 1165, University of Wisconsin, Madison,
Wisconsin, July 1993.

D.P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic
Press, New York, 1982.

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation. Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

I. Bongartz, A.R. Conn, N. Gould, and Ph.L. Toint. Cute: Constrained and uncon-
strained testing environment. Publications du Départment de Mathématique Report
93/10, Facultés Universitaires De Namur, 1993.

D. Culler. The Split-C Programming Language. Computer Science Department, Uni-
versity of California, Berkeley.

M.C. Ferris and O.L. Mangasarian. Minimum principle sufficiency. Mathematical Pro-
gramming, 57(1):1-14, 1992.

A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequential Unconstrained
Minimization Techniques. John Wiley & Sons, New York, 1968.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3:95-110, 1956.

S.-P. Han and O.L. Mangasarian. A dual differentiable exact penalty function. Mathe-
matical Programming, 25:293-301, 1983.

O.L. Mangasarian. Nonlinear Programming. McGraw-Hill, New York, 1969.

O.L. Mangasarian. Parallel gradient distribution in unconstrained optimization. Tech-
nical Report 1145, Computer Sciences Department, University of Wisconsin, Madison,
Wisconsin 53706, April 1993.

B.A. Murtagh and M.A. Saunders. MINOS 5.0 user’s guide. Technical Report SOL
83.20, Stanford University, 1983.

J.M. Ortega. Numerical Analysis, a Second Course. Academic Press, 1972.

J.M. Ortega and W.C. Rheinboldt. [terative Solution of Nonlinear Equations in Several
Variables. Academic Press, 1970.

R.T. Rockafellar. Augmented Lagrange multiplier functions and duality in nonconvex
programming. SIAM Journal on Control and Optimization, 12:268-285, 1974.

25

[17] Thinking Machines Corporation, Cambridge, MA. CMMD Reference Manual, Version
3.0, 1993.

[18] P. Tseng. Dual coordinate ascent methods for non—strictly convex minimization. Math-
ematical Programming, 59:231-248, 1993.

26

