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Abstract

Performance tuning improves a compiler’s performance by detecting errors and missed
opportunities in its analysis, optimization, and code generation stages. Normally, a com-
piler’s author tunes it by examining the generated code to find suboptimal code sequences.
This paper describes a collection of tools, called compiler auditors, that assist a compiler
writer by partially mechanizing the process of finding suboptimal code sequences. Although
these code sequences do not always exhibit compiler bugs, they frequently illustrate problems
in a compiler. Experiments show that auditors effectively find suboptimal code, even in a
high-quality, commercial compiler.

After writing a high-quality compiler, its authors improve it with the time-consuming and te-
dious process of examining generated assembly code to find inefficient code sequences that could
run faster or consume less space. These sequences direct a compiler writer’s attention to places
in the compiler at which improved analysis, optimization, or code generation would result in bet-
ter code. Typically a compiler writer finds this suboptimal code by reading assembly-language
listings of compiled code (see, for example Briggs [6]). Performance tuning of this sort is un-
avoidable for two reasons. Compilers are large and complex programs that will contain bugs that
affect the performance, but not correctness, of generated code. More fundamentally, compiler
writing is an art in which the insight necessary for effective heuristics arise from identifying past
mistakes.

This paper describes a technique for partially automating the tedious process of detecting
suboptimal code. In this approach, specialized programs, called compiler auditors, examine
a complete instruction and data trace of a compiled test program and dynamically detect se-
quences of executed instructions that could have been compiled better. The auditor reports
these sequences to the compiler writer, who still must examine the designated portions of the
compiled program to determine if the code can be improved and how to modify the compiler.
The advantage of compiler auditing is that auditors direct a compiler writer’s attention to per-
formance problems faster than a manual search and more reliably than intuition. Information
and feedback from tools of this sort can reduce the time and effort required to produce a mature,
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high quality compiler that generates efficient, as well as correct code. The approach is simple
and requires a small investment of time and effort.

A compiled code sequence is suboptimal if a shorter or faster sequence of instructions produces
the same effect on the program’s state. Suboptimal code arises from three sources:

e Defects in a compiler, which can either be errors of omission in which a compiler writer
did not consider a case or errors of commission in which the compiler is actually incorrect
(i.e., has a bug). For example, a code generator may not produce a decrement-and-branch
instruction because it is not included in the code-generator tables or because an earlier
stage improperly normalized a loop’s bounds.

o Conservative program analysis, which sacrifices precision in particular cases for correctness
in general. In this case, a compiler does not perform an optimization because it cannot
guarantee a necessary prerequisite. Frequently, program analysis is improved by identifying
special cases that can be precisely analyzed.

e Heuristic algorithms, which do not always produce good results. A good example is graph-
coloring register allocation, which addresses an NP-complete problem whose precise, effi-
cient solution is not possible. The primary way to understand and improve a heuristic’s
performance is to examine its behavior on real programs.

These compiler problems are manifest as performance, not correctness, deficiencies and will not
be detected by a typical user or inattentive compiler writer. The compiled code computes the
correct output, albeit more slowly than necessary. Isolating and correcting these problems is
costly. The decision whether to fix a problem depends on the performance cost of suboptimal
code and the frequency with which it is produced. Compiler writers typically guess at the latter
parameter. Another application for a compiler auditor is to examine a large body of code to
determine how often a suboptimal code sequence arises.

Suboptimal code can be detected either by statically examining generated instructions or by
dynamically examining a program trace. The first alternative is the basis of many compilers,
which operate by generating simple code and then improve it by identifying and replacing
suboptimal code (e.g., [8, 18]). Compiler writers typically tune their compilers by applying the
same process in a more intuitive and ad-hoc way on the compiled code. Manually performing
this process is difficult and error-prone, particularly for large procedures with complex control
flow, because a human must mentally compute large program traces and slices. In addition, a
compiler writer may easily miss an optimization twice: first when writing a compiler and then
when tuning it. Finally, when applied to a compiler’s assembly output, this approach misses
inefficiencies introduced at lower levels such as the assembler and linker. As an example, a group
at CSRD examined the Cedar parallelizer to determine why it could not restructure the Perfect
Club benchmarks [4, 10]. This process was expensive and required several person-months per
benchmark [16].

Another alternative is to examine the stream of instructions when a program executes. An
auditor can either use this stream to directly identify inefficient sequences or it can construct
a dynamic program slice to find redundant computations [1]. This process has the advantages
that it is cheaply and easily mechanizable, does not require sophisticated static analysis, and
concentrates on frequently-executed traces in a program. On the other hand, this approach
changes the definition of suboptimal. Code executed in a sequence or slice is suboptimal for a
particular execution. On other paths through the program, the code sequence may be optimal.
Consequently, a code sequences does not demonstrate a compiler bug, rather it illustrates a
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Figure 1: A compiler auditor uses the instruction and data references trace from a test program to detect

shortcomings in the compiler that compiled the program. The trace is produced by the qpt tracing system [13, 3].

potential problem. However, the hypothesis of this work—justified by the evidence in Section 3—
is that if a code sequence is suboptimal for one execution, it is likely to always be suboptimal.

The remainder of this paper describes how to construct compiler auditors for different facets
of a compiler and demonstrates that they can illustrate inefficiencies in a compiler. Section 1
describes in detail the basic framework of the auditors, and how particular auditors can be
created. Section 2 discusses how the output produced by auditors can be refined for a compiler
writer. Section 3 provides empirical evidence for the efficacy of our approach. Finally, Section 4
discusses related work.

1 Awuditing

Although different auditors operate differently, they function in the common framework shown
in Figure 1. The compiler being audited compiles a test program (test-prog.c) into an exe-
cutable file (test-prog). The qpt tracing system [3, 12, 13] instruments the executable file so
it writes a highly-condensed trace file (test-prog.QTrace). gpt also produces a trace regen-
eration program (test-prog-regen.c) that reads the condensed trace and emits a stream of
events: execution of an instruction (with its address and line number); basic block entry (with
its address); read or write of a memory location (with its address); initiation, iteration, and ter-
mination of a loop (with a unique loop identifier); entry and exit to a function (with its address);
and memory allocation and deallocation (with the chunk’s size and address). The regeneration
code is linked to a specific compiler auditor module (xxx-audit.c) to form a compiler auditor
that can audit many executions of a test program with different input data. Also, the trace file
from one program execution can drive many audits.

In the following, we discuss the design and implementation of three different auditors:
register-usage auditor, common-subexpression elimination auditor, and loop-invariant auditor.
Auditors for other uses can be constructed similarly. Some of these are considered in Section 1.3.

1.1 Register Usage Auditing

Register usage auditing nicely illustrates the strengths and weaknesses of the compiler auditing
paradigm. Tt detects three kinds of redundant register-memory instructions:

o A redundant load, which loads a value that is already in a register.



type addr;
type reg.desc = record valid : boolean end;

// Map mem address to set of register descriptors
var holds : addr — set of reg_desc;

// Map each register (number) to unique descriptor
var reg : array[0.max.reg no] of reg_desc;

Omn read of memory location z into register d:
foreach r € holds(z) do
if r.valid then
print “Redundant load of”, x, “which is in reg”, 1;
remove regld] from holds;
add reg[d] to holds(z);
regld].valid « true;

On modification of register d (not including load):
reg[d].valid — false;

On write of register s to memory location z:
if reg[s] € holds(z) and reg[s].valid then
print “Redundant store of reg”, s, “to location”, x;
if —regls].valid then
// Delayed cleanup: value of register s was previously modified
// and no memory location holds current value
remove reg[d] from holds;
holds(z) « {reg[s]};
reg[s].valid — true;

On function entry and exit:
for i — 0 to max_reg._no do reg[il.valid — false;

Figure 2: Algorithm for detecting redundant loads and stores.

o A redundant store, which saves a value to a memory location that already holds the
identical value.

o A redundant spill, which saves a register to the stack frame and then restores it while
another register is either dead or holds a live value that is unused in spill range.

Keep in mind that this auditor detects redundancies along a single execution path. An appar-
ently redundant operation may be necessary along other, unexecuted paths or the redundancy
may be impractical to detect statically. Nevertheless, redundancies can elucidate shortcomings
in various parts of a compiler. For example, common subexpression elimination (CSE) should
eliminate redundant loads. Dead-store elimination should remove unnecessary stores [9] and a
register allocator need not store an unmodified, spilled value. A register spill while another reg-
ister holds a dead value indicates that the register allocator unnecessarily spilled a value along
at least one path.

Register auditing operates by tracking the relationship between the contents of registers and
the contents of memory locations. Figure 2 details how this relationship is computed. After

a load operation, the destination register and the source memory location hold equivalent val-



type addr;
type reg_desc = record access.time, spill_time : time;
candidate to_spill : set of int
end;
var reg . array[0..max_reg.no] of reg_desc;

On read of memory location z into register d:
reg[d].accesstime — current_time;
if load is part of register spill then
for 1 «— 0 to max_reg.no do
if (reg[i].accesstime < reg[d].spill time) then
regli].candidate_to_spill «— regli].candidate_to_spill U {d};

On modification of register d (including load):
regld].access time «— current_time;
foreach r € reg[d].candidate_to_spill do
print “Unnecessary spill of register”, r, “while”, d, “is dead”;
reg[d].candidate_to_spill — 0;

On write of register s to memory location z:
if store is part of register spill then
reg[s].spill time «— current_time;

On use of register u (including store):
reg[u}.access_time «— current.time;
foreach r € reg[u}.candidate_to_spsll do
print “Spill of register”, r, “while”, u, “is unused”;
reglu].candidate_to_spill — ;

On function entry and exit:
for ¢ +— 0 to max._reg.no do
if regli] is callee-saved then
save/restore Tegli].accesstime and reg[i).spill_time;
else
regli].access_time «— current_time; reg[i).spill lime — 0;

Figure 3: Algorithm for detecting redundant spills.

ues. Similarly, after a store to memory, the source register and destination memory location are
equivalent. However, unlike a load, a store destroys the equivalence between other registers and
the target memory location. Machine operations that modify a register also destroy the equiva-
lences between the register and memory locations. At function boundaries, all relationships are
broken, under the assumption that a compiler does not perform interprocedural memory-access
analysis.

The register-memory equivalences help detect redundant loads and stores. A load is redun-
dant if the memory location’s value is already in a register. Similarly, a store is redundant
if the source register and target location are equivalent. Since the equivalences are based the
source of the values, not the literal values themselves, this technique does not report spurious
redundancies when two instructions manipulate the same bit-pattern.

Detecting redundant spills requires the additional mechanism in Figure 3. The field ac-
cess_time records when a register was last read or modified and the field spill_time records when
it was last spilled to the stack frame. When a spilled value is reloaded into register s, any register
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r that has a access_time before s’s spill_time is unused since its spill and might have held the
value instead of forcing a spill. Register 7 may be live, in which case the allocator’s choice of
register s is defensible. However, if the value in r is subsequently redefined before being used
(i.e., is dead), the allocator spilled the wrong variable. The auditor also notes which registers
are live, but unused while another register is spilled.

A simple heuristic identifies loads and stores that are part of a spill because they write to the
current stack frame at a constant offset from the frame pointer (or stack pointer, if the machine
has no frame pointer).! Access and spill times for callee-saved registers are retained across calls
because these registers are unaffected by the call.

As an example of redundant load detection and report, consider the following excerpt from
the report on auditing the Unix utility compress (compiled using MIPS cc with optimizations
off:

820 loads @0x4019d8 (output+300), in reg 15 from load 0x4019a8 (output+252)
Basic Block b5:

0x004019a4: lw r14,-32176(gp)

* 0x004019a8: 1w r15,-32128(gp)
0x004019ac: nop
0x004019b0: addu r25,r14,r15
0x004019b4: sw r25,-32176(gp)
0x004019b8: 1w r24,-32176(gp)
0x004019bc: 1w r9,-32128(gp)
0x004019¢0: nop
0x004019c¢4: sl1l r10,r9,3
0x004019¢8: bne r24,r10,0x401a78

0x004019cc: nop
Basic Block 6:

0x004019d0: lui r18,0x1000

0x004019d4: addiu ri18,r18,6064
* 0x004018d8: 1w r17,-32128(gp)

0x004019dc: 1w ri1,-32112(gp)

0x004019e0: nop

0x004019e4: addu r8,ril,ri7

0x004019e8: sw r8,-32112(gp)

The first line tells the number of times that a defect occurred (820) and the program counters
of the two loads, which are also reported as offsets from the routine (output). Basic block 5
dominates block 6 and no other block jumps to block 6, so a register-to-register transfer of r15
to r17 would be faster than reloading the value at 0x4019d8.

1.2 Common Subexpression and Loop-Invariant Code Auditing

Auditors for common subexpression elimination and loop-invariant code motion compute and
compare the dynamic slices of the computation that produce the values in each register. These
slices are directed acyclic graphs (DAGs) that contain the operands and sequence of operations
that produced the value in a register. If the DAGs for two registers are isomorphic, the later
computation is redundant since its result could have been obtained from the first calculation

1T,0ad and store at a constant offset occasionally arise from other constructs, such as array references with a
constant index, but they are infrequent.



type addr, operator;
type expr = record op : operator; argl, arg2 : expr; end
var reg : array[0..max reg no) of expr;

On read of memory location z into register d:
set reg[d] to mk_ezpr (1d, z);

On write of register s to memory location x:
invalidate existing mk_ezpr (1d, ¢) node;

On computation rd « 75y o rs9:
set reg[d] to mk_expr (o, reg[rsi], reglrss]);

To set register d to expression e:
for i + 0 to max.reg.mno do *
if reg[i] = e then
print “Expression”, e, “is already in register”, i;
regld] —¢;

On function entry:

for i + 0 to max.reg.no do
if reg[i] is callee-saved then save reg[i];
else regli] — null;

On function exit:

for i «— 0 to max.reg.mo do
if reg[i] is callee-saved then restore regli];
else regli] — null;

Figure 4: Algorithm for detecting redundant common subexpressions.

[11]. To detect loop-invariant code, each DAG node is labeled with the shallowest dynamic loop
nesting depth at which it could be calculated. Loop invariant code has a nesting depth less than
the current loop’s nesting depth.

Figure 4 outlines the process of detecting common subexpressions. Fach operation builds a
new expression DAG from the expression DAGs of its operands. Before saving the new DAG,
the auditor compares it against the expression DAGs already in the registers to detect identical
expressions. All machine operations are represented as DAG nodes including loads, which appear
as an operation on the memory address. When the contents of a memory location changes,
extant references to the location are invalidated so they differ from subsequent references to
the location’s new contents. Only expressions for callee-saved registers are preserved across call
boundaries.

This process can be efficiently implemented with the techniques of hash consing and reference
counting. Hash consing uses a hash table to map an operator-operand-operand triple to a unique
DAG node [17].? The benefit of uniquely representing nodes is that equality testing reduces to

2Hash consing can canonicalize arguments to commutative and associative operators. The auditor used for
Section 3 does not canonicalize operations.



pointer equality. In addition, combining reference counting with hash consing eliminates the
need to iterate over registers (at line *) in the expected case in which expression e is newly
created (i.e., a reference count of 1) and so no register holds it.

Detecting loop-invariant expressions requires additional fields in each DAG node to record
the dynamic loop nesting level and iteration at which the expression is computed and a flag
signifying whether it is loop-independent. Arguments of a loop-invariant operations are either
computed at a lower loop level or are themselves loop-invariant. The implementation is simple
because qpt generates events for loop entry, loop re-entry and termination. The dynamic current
level and iteration are adjusted at these events appropriately.

Below is an example illustrating a common subexpression detected in a unoptimized version
of compress:

6562 times: CSE R15 @0x401944 (output+152) == CSE R9 Q0x401954 (output+168)
(- 0x8 (& ©@0x10001760 0x7)
Basic Block O:

0x004018d0: 1w r16,-32176(gp)

Basic Block 1:

0x004018£8: andi ri6é,ri6,0x7

0x00401940: 1i ri4,8

* 0x00401944: subu ri5,r14,r16
0x00401948: subu ri7,ri7,rib
0x0040194c: 1w r24,72(sp)
0x00401950: 1i r25,8

* 0x00401954: subu r9,r25,r16

The first line reports how often (6562) the common subexpression on the second line occurs at
the two instructions. A register-to-register transfer of ri15 to r9 at 0x401950 (in place of the
two instruction currently at 0x401950 and 0x401954) would be faster.

We should point out an important limitation in our method. Because of register reuse,
this process does not detect all common subexpressions that a compiler could eliminate before
register allocation. Once again, an example from compress:

Basic Block O:

0x00401840: 1w r16,-32176(gp)

Basic Block 1:

0x004018£8: andi ri6,r16,0x7

0x00401900: lui r25,0x1000
* 0x00401904: addu r25,r26,r16



0x00401908: 1bu r25,1608(r25)
0x0040190c: nop

0x00401910: and r8,r24,r25

0x00401914: 1w 9,72(sp)

0x00401918: nop

0x0040191c: sllv ri0,r9,ri6

0x00401920: lui ri1,0x1000
* 0x00401924: addu rii,rii,rié

If register r25 had not been reused at 0x401908, the recomputation of (+ 0x1000 r16) into
r11 would be detected.

1.3 Auditing Other Optimizations

Other compiler optimizations can be audited. Induction variable elimination auditing can track
successive values assigned to a register by instructions within a loop. Tracking the values in
a register without considering the instruction will miss induction variables if the register is
subsequently reused for another purpose.

Dead code, with respect to a dynamic execution, is the instructions not run in a particular
execution and is easy to find. However, a large fraction of a program may not run in any
execution of a program, so this audit may not be helpful.

2 Validating Audit Reports

Compiler auditors produce a large number of reports. After an auditor examines a test program,
the compiler writer needs to validate the reports by detecting places at which the compiler could
have generated better code. Manually sifting through an auditor’s complete output is extremely
tedious. This section describes several techniques to partially automate the validation of audit
reports. These techniques complement an auditor by using static analysis to classify the reports,
so the compiler writer can concentrate on valid reports. The static validity criteria for audit
reports are not always able to automatically distinguish valid and invalid reports. Even so, the
criteria help reduce the number of invalid reports that must be manually considered.
An audit report can be classified into one of three categories:

¢ Valid reports. These report inefficiencies that are independent of the execution path
through the program. As discussed above, these reports do not necessarily mean that the
compiler could generate better code. For example, consider loop-invariant code in which
the calculated expression is a single instruction. A compiler might (justifiably) recalculate
the expression to avoid keeping a register occupied through the loop.?

e Invalid reports. These report inefficiencies that hold only for some executions of the
audited program. Depending on the input, some paths in the program may never be taken
and thus, in all realizable executions, an inefficiency might show up. However, as with any
optimization, a compiler must be conservative and conclude that inefficiencies that do not
occur along all paths are invalid.

301 course, a compiler writer can adjust the loop-invariant auditor to report only expressions above a threshold
size.
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Figure 5: (a) Criteria for a valid report of redundant load. (b) Problem in automatically telling whether a

report is valid.

o Unnecessary reports. Often, an auditor generates many reports on a single point in
the program. For example, a common subexpression within a loop arises when the same
operation is applied at two places (both within the loop) to the same operands. Each
time around the loop, the operand registers hold different expressions. Many common
subexpressions are detected and reported, but only one place in the assembly code need
be changed. All but one of these reports is unnecessary, because the latter ones do not
provide additional information.

Keep in mind that several factors mitigate the burden of invalid reports. First, short program
executions suffice since a suboptimal code sequence only need execute once. Second, the compiler
writer only must find the first valid report in the auditor’s output. At this point, the compiler
can be changed and the process reapplied.

In the discussion, program counters (e.g., PC1 and PC2) denote points in the control flow
graph of the subroutine under consideration.

2.1 Redundant Loads

Consider an auditor report that the contents of memory location M is in register r at PC1 and
7 still holds M at PC2, at which point M is loaded into another register s (see Figure 5). The
auditor will report that (for a particular execution), the load at PC2 is redundant, because M
is already in r. This report is valid, if the following conditions hold:

1. PC1 dominates PC2 in the control flow graph,
2. 7 is not modified along any path from PC1 to PC2, and
3. M is not modified along any path from PC1 to PC2.

The first and second conditions can be checked automatically. The third condition is the problem.
In general, it is impossible to determine if a store instruction on a path from PC1 to PC2 modifies
location M. However, in a number of cases, we can obtain precise information about memory
modifications. If only one path exists between PC1 and PC2, then the memory trace shows
that M is not modified (or else, no report would be produced). Moreover, if no store instruction
executes on any path from PC1 to PC2, the third condition trivially holds. Finally, we can
make observations from the base-offset pairs in store instructions, but no general technique will
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determine if a store instruction can modify M. Finding a dependence between the store and
load instruction requires higher-level semantic information; for example, array indices from their
respective statements [19].

Checking for partial redundancy [15] generalizes the validity test. PC1 may not dominate
PC2, but r may hold the contents of M at PC2 along all paths from the entry point. This
criteria also runs into a similar problem since any store instruction along a path to PC2 may
modify M.

An audit report that violates either condition 1 or condition 2 is invalid. The compiler writer
must examine the remaining reports to determine if condition 3 is violated. Redundant stores
are treated similarly.

2.2 Redundant Spills

Consider a report that register 7 is spilled at PC1 and, later in the execution, at PC2 another
register s is defined and not used between PC1 and PC2 (implying that s is dead at PC1). To
validate this report, we must decide if s is actually dead along all paths after PC1. If so, the
spill of r at PC1 is unnecessary and the report is valid. This property can be automatically
checked.

Another problem is that many registers may be dead during the spill. The additional reports
are not very useful, except to indicate the number of opportunities that the compiler missed.
Simple postprocessing can combine these reports into a single report.

2.3 Redundant Common Subexpressions

Common subexpressions are similar to redundant loads. However, instead of checking that a
memory location is not modified along all paths, we must check that inputs to an expression
are not modified along all paths. Consider a report that register r contained expression I at
PC1 and r still holds F at PC2, where F is recomputed. The report is valid if the following
conditions hold:

1. PC1 dominates PC2,
2. 7 is not modified along any path from PC1 to PC2, and
3. Inputs to E are not modified along any path from PC1 to PC2

In general, E is an expression that includes memory locations, registers, and constants. E
changes if any of its memory locations are modified. As discussed above, without a general
method to determine that a store instruction does not affect a memory location along a path,
condition 3 cannot be mechanically validated.

Again, the validity test can be generalized by checking for partial redundancy. But this
again run into the same problem as in redundant loads. Also, as mentioned earlier, a common
subexpression in which both PC1 and PC2 are in the same loop can generate many unnecessary
audit reports that can be combined by simple postprocessing.

2.4 Loop Invariant code

Consider a report that expression F, computed at PC1, is loop invariant relative to the loop
surrounding PC1 (see Figure 6). The report is useful if E is actually loop invariant and the
calculation of E can be safely moved into a loop pre-header. The report is valid if all possible
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automatically tell whether the report is valid.

executions of the loop result in a loop-invariant calculation at PC1. In general, it is impossible to
determine this property automatically because of memory references. An operand of expression
E may be a memory location. No general technique can determine if the location is modified
in some execution of the loop. However, we can easily check if the code motion is profitable by
testing whether PC1 dominates all loop exits [2].

2.5 Tools for Validation

The previous discussion shows that classification of auditor reports can only be partially au-
tomated. In the end, the compiler writer must examine the compiler’s output at the points
identified by an auditor. We developed a small set of utilities that are of immense help when
examining the output. To quickly see which source instructions corresponding to a (dynami-
cally) generated DAG, we provide a tool that computes a static slice (in assembly instructions)
relative to a particular instruction. Other tools also produce a block-by-block listing of each
subroutine’s disassembled machine code, along with a graphic display of the control flow graph.
These tools enable a compiler writer to quickly examine an audit report and determine whether
it illustrates a flaw.

3 Empirical Evaluation

To evaluate the utility of compiler auditing, we implemented the register, common subexpression,
and loop invariant auditors and tested them on low- and high-quality compilers. The hypothesis
tested by these experiments is: if an auditor identifies a code sequence as suboptimal for one
trace, it is suboptimal in general and illustrates a problem in the compiler. This section present
the experimental results confirming this hypothesis.

12



Program Lines | Instructions Function
compress (C) 1,510 6,144 Unix compress utility
matrix10 (F77) | 439 15,360 10 x 10 matrix multiply
tomcatv (F77) 195 15,360 mesh generation program

Table 1: Test programs. matrix10 is a adapted from the SPEC Benchmark matrix300. tomcatv is also a
SPEC Benchmark, adapted to process a 17 x 17 grid. (C) indicates a C program. (F77) indicates a Fortran 77
program. Lines is the number of sources lines (excluding libraries). Instructions is the static number of machine

instructions (including libraries) in the optimized version of the program.

3.1 Experimental Results

The tests were run on a DECstation 3100, which uses a MIPS R2000 processor and the MIPS C
compiler and Fortran compiler (both version 4.1). The MIPS compilers are generally regarded to
be high-quality compilers that perform most standard optimizations including common subex-
pression elimination, loop invariant code motion, and graph-coloring register allocation [7]. To
test a high quality compiler (high), test programs were compiled at -O2, which performs all
intraprocedural optimizations. To simulate a low quality compiler (low), the test programs were
compiled at -00, which performs no optimization. In all experiments, we did not audit library
code to save time.

Table 1 lists the characteristics of the test programs. Each test program was run on a small
input (to minimize the cost of tracing and auditing). The disassembled code was examined, by
hand, to determine which reported deficiencies were due to missed compiler optimization and
which were artifacts of executing a single path. Table 2 lists the number of potential defects
uncovered (excluding the unnecessary reports; see Section 2) by the auditors and the fraction
that a careful examination revealed to be suboptimal (valid reports). In general, since auditors
produce many reports, we scrutinized reports arising from only the principle functions.

3.2 Analysis

The figures in Table 2 show that register and common subexpression auditing effectively uncover
a manageable quantity of suboptimal code sequences and that, with two exceptions, at least 50%
of these code sequences point to places at which the high-quality compiler could be improved.
Loop invariant auditing in compress did not yield any valid reports; probably because compress
is a carefully-written utility program, and its loop invariant expressions were removed at source
level. As expected, more defects and a higher frequency of valid defects were found in the
low-quality compiler.

A large fraction of the register and subexpression defects uncovered by the auditors arise
from the interaction of the MIPS code generator and assembler. MIPS extends the underlying
machine’s instruction set with pseudo instructions that the assembler simulates by generating
several actual instructions. Unfortunately, the assembler does a poor job of optimizing the
resulting code (even within a basic block), so code sequences like:

lui r18,0x1000
Jui r23,0x1000
lui r30,0x1000
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Register Auditing

high low
Program | Portions examined Defects | Valid Defects | Defects | Valid Defects
compress | compress(), output() (246 lines) 14 7 (50%) 40 31 (78%)
matrixi0 | SAXPY (9 lines) 4 2 (50%) 14 13 (93%)
tomcatv MAIN (first 30 lines) 58 58 (58%) 58 58 (58%)

Common Subexpression Auditing

high low
Program | Portions examined Defects | Valid Defects | Defects | Valid Defects
compress | compress(), output() (246 lines) 3 3 (100%) 4 4 (100%)
matrix10 | whole program 25 17 (68%) 6 4 (67%)
tomcatv whole program 13 5 (39%) 35 25 (71%)

Loop-Invariant Code Auditing

high low
Program | Portions examined Defects | Valid Defects | Defects | Valid Defects
compress | compress(), output() (246 lines) 11 0 (0%) 5 0 (0%)
matrix10 | whole program 30 25 (83%) 38 38 (100%)
tomcatv whole program 34 19 (56%) > 200 > 100

Table 2: Results of auditing the MIPS compiler at -O2 (high) and -00 (low). Defects include both valid and
invalid reports, but exclude unnecessary reports. Valid defects were verified, by hand, to be places at which the
compiler could generate better (faster) code. To keep the task manageable, we examined only certain subroutines
in the test programs. Also, each loop was limited to iterate at most five times (except in compress). The high
accuracy for tomcatvis a result of examining a straight-line code sequence. Also, the identical number of high and
low defects for this program is a coincidence. Finally, register auditing numbers are a bit inflated since the MIPS

architecture does not have a load_double instruction, and the two loads that simulate it generate two reports.

addiu r30,r30,1320
addiu r23,r23,1288
addiu r18,r18,1904

occur, even in optimized code. This shortcoming is particularly noticeable in compress, which
uses many global variables and data structures whose addresses are manipulated by unoptimized
instructions.

The optimized version of matrix10 contained more CSEs than the unoptimized version be-
cause the code for two unrolled loops (including one in sazpy!) contains many identical operation
on induction variables that were introduced by unrolling. The number of defects detected in
tomcatv is very large. The reason is that it consists of a single function, which has many nested
loops and extremely large basic blocks. In the unoptimized code, many redundancies occur in
the address calculation for two dimensional arrays. The high-quality compiler, on the other
hand, missed many optimization opportunities due to loop unrolling.

In performing the audits described above, we also uncovered other shortcomings in the
MIPS compiler. For example, large stack-allocated arrays sometimes forced variables to a point
in the stack frame where they could not be referenced with a load or store instruction’s 16-bit
immediate. Placing scalar variables first in a stack frame would correct the problem.
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4 Related Work

McNerney used an abstract interpretation to validate optimizations in a compiler for the Think-
ing Machines CM-2 [14]. He statically analyzed the compiler’s intermediate form for a program
to show equivalence between unoptimized and optimized code. Like this work, he did not prove
properties about the compiler, but merely demonstrated the absence of errors for a particular
input. Unlike this work, his tool demonstrated compiler correctness, not performance, and re-
lied on static analysis, which restricted the programs that could be checked. The most serious
restriction—which had little effect since the compiler had a similar restriction—was that loops
had to be data independent. Compiler auditing, on the other hand, works for any program.

Boyd and Whalley [5] also developed a tool, wpoiso, for detecting errors in a compiler’s
optimizer. vpoiso automates a binary search for the optimization phase that performed a non-
semantic-preserving transformation by selectively disabling optimizations and comparing the
resulting program’s output against the unoptimized program’s output. Unlike compiler auditing,
this tool detects correctness, but not performance errors, in a compiler. Obviously, tools that
detect both types of errors are useful in developing a compiler.

5 Conclusions

Compiler auditing illustrates performance weaknesses in a compiler. By examining a trace
of compiled code, auditors quickly exhibit suboptimal code sequences without the need for
complex or expensive static analysis. Although these sequences are suboptimal for only one
path, experience has shown that this property strongly indicates that the code is suboptimal
in general and it should be examined by the compiler writer. Additional tools help a compiler
writer sift through audit reports to detect valid ones.

Auditors will never replace compiler writers. However, information and feedback from tools
of this sort can reduce the time and effort required to produce a mature, high quality compiler
that generates efficient, as well as correct code. The approach is simple and requires a small
investment of time and effort, which can have large benefits.
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