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Abstract

Algorithms and programs transform their input into their output. Incremental computa-
tion concerns the re-computation of output after a change in the input. An incremental
algorithm, consequently, transforms a change in input into a change in output. Incre-
mental algorithms, also called dynamic or on-line algorithms, are becoming increasingly
important given the popularity of interactive systems, which must respond efficiently to a
user’s actions, which are usually “modifications” of an “input document”.

In the context of incremental computation, small changes in the input are likely to
cause correspondingly small changes in the output. It is natural to attempt to identify the
part of the previous output that is no longer “correct” and “update” it. Where it is not
possible to identify the affected part of the output exactly, an incremental algorithm may
attempt to identify a conservative approximation (that is, an over-estimation) of the
affected part of the output. Given some part of the output that needs to be recomputed,
an incremental algorithm would benefit by processing only the portion of the input it
needs to process in order to generate that part of the output. The effectiveness or
efficiency of an incremental algorithm depends on how accurate an approximation to the
affected region it can identify and on the overhead it incurs in doing this.

This thesis presents results—upper bound results, lower bound results, and experi-
mental results—for several incremental computation problems. What is common to all
these results is that we seek to determine the efficiency of an algorithm by analyzing how
accurate an approximation to the affected region it identifies and on the overhead it
incurs in doing this. In particular, we try to analyze the complexity of incremental algo-
rithms and problems in terms of a parameter || 8| that measures the size of the change in
the input and output. An incremental algorithm is said to be bounded if the time it takes
to update the output depends only on the size of the change in the input and output (ie.,
[181]), and not on the size of the entire current input. Otherwise, an incremental algo-
rithm is said to be unbounded. A problem is said to be bounded (unbounded) if it has
(does not have) a bounded incremental algorithm. The results established in this thesis
illustrate a complexity hierarchy for incremental computation from this point of view.
These results are summarized below.

We present efficient O(||8]| log ||8]]) incremental algorithms for several
shortest-path problems—the single-sink shortest-path problem, the all-pairs shortest-path
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problem, and a generalization of the single-sink shortest-path problem due to Knuth—
establishing that these problems are all polynomially bounded. These results show that it
is possible in these problems to identify, without much of an overhead, exactly the part of
the output that needs to be updated.

We present an 0(2“5”) incremental algorithm for the circuit value annotation
problem, which matches a previous Q2!1311y Jower bound for this problem. Conse-
quently, this establishes that the circuit value annotation problem is an exponentially
bounded problem. We also present experimental results that show that our algorithm, in
spite of a worst-case complexity of ©(2!1311), works well in practice, often identifying a
very good approximation to the affected output with very little overhead.

We present lower bounds showing that a number of problems, including graph
reachability, dataflow analysis, and algebraic path problems, are unbounded with respect
to a model of computation called the sparsely-aliasing pointer machine model.

We present an O (]| 3| logn) incremental algorithm for the reachability problem in
reducible flowgraphs, which identifies the affected output exactly, but with an O (logn)
factor overhead.

We present an algorithm for maintaining the dominator tree of a reducible
flowgraph, which identifies a reasonable approximation to the affected output and
updates it efficiently. ‘
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Chapter 1

Introduction

Observe constantly that all things take place by change, and accustom thyself to
consider that the nature of the Universe loves nothing so much as to change the things
which are, and to make new things like them.

—Marcus Aurelius

The subject of this thesis is incremental computation—computation with dynamic or
changing data.

A batch algorithm takes an input and computes an output that is some function of
the input. Such algorithms are also called off-line algorithms. Incremental computation,
in contrast, is concerned with updating the output as the input undergoes changes. An
incremental algorithm for computing a function f takes as input the “batch input” x, the
“batch output” f (x), possibly some auxiliary information, and a description of the
“change in the batch input”, Ax. The algorithm computes the “new batch output”
f (x + Ax), where x + Ax denotes the modified input, and updates the auxiliary informa-
tion as necessary. (See Figure 1.1.) A batch algorithm for computing f can obviously be
used in this situation—it is called a start-over algorithm in this context. But often this
will not be the most efficient way of maintaining the output. For instance, in many appli-
cations, the “input” data x is some data structure, such as a tree, graph, or matrix, while
the “output” of the application, namely f (x), represents some “annotation” of the x data
structure—a mapping from more primitive elements that make up x, e.g., graph vertices,
to some space of values. It is often the case that small changes in the input cause
correspondingly small changes in the output and it would be more efficient to compute
the new output from the old output rather than to recompute the entire output from
scratch. Incremental algorithms, also called dynamic algorithms or on-line algorithms,
do exactly this.

Examples of programs that make good use of incremental computation include
spreadsheets and word processors. WYSIWYG—what you see is what you get—word
processors, common in the world of personal computing, usually display part of a format-
ted document, and, as the user makes changes to the input document, they continuously
re-format the document and update the displayed page. In general, incremental computa-
tion is potentially useful in any context in which users “build” or “construct” some



“object” gradually, and this object has to be repeatedly processed in some fashion as it is
| being built up. Some examples of such contexts are program development, document
development, and computer-aided design.

Changes that necessitate re-computation are not always made by human users. A
number of programs repeatedly modify some data and re-process the modified data in the
course of their normal execution. The motivation for much of the previous work on
dynamic data structures, in fact, originates from such situations. Such a situation also
arises, for example, in an optimizing compiler that iteratively optimizes an input pro-
gram, by applying a sequence of optimizing transformations, one after another. Each
transformation changes the program in some fashion, and may make it necessary to
reconstruct various internal representations of the program for subsequent use.

This thesis presents a collection of new results—upper bounds, lower bounds, and
experimental results—for various incremental-computation problems. What is common
to all these results is that the complexity of the algorithm or the problem is measured, in
each case, not in terms of the input size, as is usually done. Instead, the complexity is
measured in terms of an adaptive parameter that is a measure of the size of the change in
the input and the output. Thus, we express the complexity not as a function of the size of
the input but as a function of the size of the shaded regions in Figure 1.1.

A common way to evaluate the computational complexity of algorithms is to use
asymptotic worst-case analysis and to express the cost of the computation as a function
of the size of the input. However, for incremental algorithms, this kind of analysis is
sometimes not very informative. For example, when the cost of the computation is
expressed as a function of the size of the (current) input, the worst-case complexity of
several incremental graph algorithms is no better than that of an algorithm that performs
the computation from scratch [Che76,Zad84, Hoo87, Car88,Mar90]. In some cases
(again with costs expressed as a function of the size of the input), it has even been possi-
ble to show a lower-bound result for the problem itself, demonstrating that no incremen-
tal algorithm (subject to certain restrictions) for the problem can, in the worst case, run in
time asymptotically better than the time required to perform the computation from
scratch [Spi75,Eve85,Ber90]. For these reasons, worst-case analysis with costs
expressed as a function of the size of the input can sometimes fail to help in making com-
parisons between different incremental algorithms.

This thesis explores a different way to analyze the computational complexity of
incremental-computation problems. Instead of analyzing their complexity in terms of the




A batch algorithm
for computing f

An incremental algorithm
for computing f

Modified Output:
f(x +Ax )

Moadified Input:
X +AX

} Modified Aufiliary

-~

Ifformation :

.........................................

Figure 1.1. The above picture depicts the abstract problem of incremental computation. The shaded re-
gions above denote the change in the input and the output. We denote the “size” of the change in the input
and the output by ||8]|. The dotted lines around the auxiliary information signify that it is optional infor-
mation maintained by the algorithm and that it can vary from incremental algorithm to incremental algo-
rithm. The time taken by an incremental algorithm to process an input change will obviously depend on
the cost of updating the auxiliary information. The parameter || 3| measures only the change in the input
and the output and is, hence, a lower bound on the amount of work any incremental algorithm for the prob-
lem must do.
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size of the entire current input, we concentrate on analyzing incremental algorithms in
terms of the size of an “adaptive” parameter, denoted by CHANGED, that captures the
changes in the input and the output. For the moment, we define CHANGED informally
as CHANGED = A input + A output, where Ainput represents the changes in the input
data and A output represents the differences between the old solution f (input) and the
new solution f (input + Ainput). The size of CHANGED following an input change )
will be denoted by ||8]].

An incremental algorithm is said to be bounded if, for all input data-sets and for all
changes that can be applied to an input data-set, the time it takes to update the output
solution depends only on the size of the change in the input and output (i.e., l181]), and
not on the size of the entire current input. Otherwise, an incremental algorithm is said to
be unbounded. A problem is said to be bounded (unbounded) if it has (does not have) a
bounded incremental algorithm.

For certain problems, analyzing the complexity of an incremental algorithm in
terms of the parameter ||3|| provides a way to distinguish between different incremental
algorithms where no such method was previously known. For instance, previous work
has shown that, when the cost of the computation is expressed as a function of |inpuz|,
no incremental algorithm for the single-source shortest-path problem with positive edge
lengths (SSSP>0) can (subject to certain restrictions) perform better than the best batch
algorithm, in the worst case [Spi75, Eve85, Ber90]. In other words, with the usual way of
analyzing incremental algorithms—worst-case analysis in terms of the size of the current
input—no incremental shortest-path algorithm would appear to be any better than merely
employing the best batch algorithm to recompute shortest paths from scratch! In con-
trast, we show in Chapter 4 that SSSP>0 has a bounded incremental algorithm that runs
in time O(||8]| log |I8]|) (whereas any batch algorithm for SSSP>0 will be an
unbounded algorithm). This running time is within a log factor of the updating costs
intrinsic to the problem.

The major contributions of this thesis are:

e  Efficient incremental algorithms that can handle “unit” changes such as the inser-
tion or deletion of a single edge for the single-sink/source shortest-path problem
with positive length edges (SSSP>0) and the all-pairs shortest-path problem.

e  An efficient incremental algorithm that can handle arbitrary changes in the input for
a generalization of the SSSP>0 problem.
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e  Anincremental algorithm for the circuit value annotation problem that appears to be
of practical utility.

e  Anincremental algorithm for maintaining reachability information in a flowgraph.

e An incremental algorithm for maintaining the dominator tree of a reducible
flowgraph.

e  Experimental results on the performance of three incremental algorithms for the cir-
cuit value annotation problem.

e Lower bound results for the incremental versions of various problems, such as graph
reachability, dataflow analysis, and algebraic path problems.

e A complexity hierarchy for incremental computation that arises from the various
results mentioned above.

e A survey of generalizations of the shortest-path problem along different dimensions,
and an exploration of a new problem—the grammar problem—that combines these
generalizations.

In the remainder of this chapter we present an overview of the organization of this
thesis and discuss the above results in more detail.

In Chapter 2 we discuss the need for incremental computation in a number of
applications and the relevance of incremental graph algorithms. We present an overview
of the problems addressed in this thesis, discuss the difficulties involved in analyzing the
computational complexity of incremental algorithms, motivate our approach to analyzing
the complexity of incremental algorithms in terms of the parameter ||18]], and present the
complexity hierarchy of incremental computation that emerges when we adopt this
approach.

In Chapter 3 we introduce the terminology and notation used in this thesis. In par-
ticular, we define the parameter ||3]|, and the concepts of bounded and unbounded incre-
mental algorithms and problems.

In Chapter 4 we show that various shortest-path problems have efficient,
polynomially-bounded, incremental algorithms. In particular, we  present
O (]3] log ||8]]) incremental algorithms for updating the solution to the single-sink
shortest-path problem with positive-length edges (SSSP>0) and the all-pairs shortest-
path problem with positive-length edges (APSP>0) after the insertion or deletion of an
edge. We show that these algorithms can be adapted to work even in the presence of
negative-length edges, as long as all cycles in the graph have a positive length. All these
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algorithms identify exactly the part of the output that needs t(; be updated and perform
the update without much of an overhead.

Chapter 5 is a survey of various generalizations of the shortest-path problem. We
review the definition of algebraic path problems and the lattice-theoretic formulation of
dataflow analysis problems, and establish the equivalence of these problems. The
equivalence of these two problems has been implicitly suggested in some of the previous
work on these problem frameworks, but no formal relationship between the problems has
been established to our knowledge. We discuss a generalization of the shortest-path
problem due to Knuth. We show that these generalizations of the shortest-path problem,
along different dimensions, can be naturally combined to yield an interesting problem,
the grammar problem and study this problem. We show how some results relating
dataflow analysis problems to maximal fixed point computation carry over to the gram-
mar problem.

Chapter 6 presents an incremental algorithm for a generalization of the shortest-
path problem. This generalized problem is a special case of the grammar problem. Like
the algorithms presented in Chapter 4, the algorithm presented in this chapter identifies
the part of the output that is affected exactly, without much overhead. In the case of the
shortest-path problem, the results in this chapter show how the results in Chapter 4 can
be generalized to the case of arbitrary changes in the input graph.

Chapter 7 presents exponentially bounded incremental algorithms for various ver-
sions of the circuit value annotation problem. The complexity of these algorithms
matches a previously established lower bound for this problem. This lower bound sug-
gests that it is not possible, in the circuit value annotation problem, to compute a good
approximation to the affected output without much overhead. However, it is possible
that the worst-case instances where this happens are rare. This chapter also presents
experimental results on the performance of three different algorithms for the dynamic
circuit value annotation problem, including a previously proposed algorithm, which show
that, in practice, it might be possible to identify good approximations to the affected out-
put without incurring much overhead.

Chapter 8 concerns lower bounds for incremental algorithms. The lower bounds
are established with respect to a model of computation called the sparsely-aliasing
pointer machine model. Graph reachability is shown to be unbounded with respect to
this model of computation. Various algebraic path problems as well as dataflow analysis
problems are shown to be unbounded by reducing the graph reachability problem to these




problems.

Chapter 9 presents unbounded incremental algorithms for two related problems:
the problem of maintaining reachability information for a reducible flowgraph, and the
problem of maintaining the dominator tree of a reducible flowgraph. The incremental
reachability algorithm can be adapted to work for arbitrary graphs, but it is particularly
efficient for reducible flowgraphs with a time complexity of O (|| 31| logn). The reacha-
bility algorithm identifies the exact change necessary to the output, in the case of reduci-
ble flowgraphs, but incurs an overhead factor of O (logn) in doing this.

Chapter 10 concludes the thesis.



Chapter 2

On Incremental Algorithms and Their Complexity

In general, the time taken by an algorithm grows with the size of the input, so it is
traditional to describe the running time of a program as a function of the size of its
input. ... The best notion for input size depends on the problem being studied.

—Cormen, Leiserson, and Rivest, Introduction to Algorithms

The goal of this chapter is to present the motivation for the work described in this thesis,
to describe the problems addressed in this thesis, to explain the reasons for the approach
to complexity analysis adopted in this thesis, and to review related work briefly.

2.1. Incremental Algorithms: Why and Where?

Incremental computation is potentially useful in any context in which users “build” or
“construct” some “object” gradually, and this object has to be repeatedly processed in
some fashion as it is being built up. Such a context leads to the typical edit-process cycle
where, in each iteration of the cycle, the users edit and modify the object, and then re-
process it. We now give some examples of such situations and a brief overview of some
work that has been done in these areas.

Software Development

Programming, or software development, is one context where the situation
described above is very common. Both programming-in-the-small and programming-in-
the-large involve the edit-compile-execute cycle and the need for incremental processing
has been long recognised in this area. The process of separate compilation and linking,
in fact, grew out of this need. We can distinguish between two types of approaches to
research in incremental processing in this area (and other areas as well). One approach
centers around the use of an integrated system, which combines the editor and the pro-
cessing tool. The user uses a special editor to edit the object he or she is creating—a pro-
gram, in the case of software development—and the system performs the necessary re-
processing as the user modifies the object. The second approach has been to concentrate
on achieving incrementality in the various phases involved in compilation (or whatever
processing one might wish to do). There has a considerable body of work on incremental
algorithms for scanning, parsing, dataflow analysis, compilation, and linking. The gen-
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eration of an incremental programming environment by integrating the various incremen-
tal phases is a separate problem, which has unfortunately not been addressed much.

Language Sensitive Editors and Attribute Updating. Language-sensitive edi-
tors incorporate knowledge about a specific programming language—its syntax and pos-
sibly some parts of its semantics as well. These are special editors meant for editing pro-
grams written in a particular programming language. Such editors can perform a seman-
tic analysis of the (possibly incomplete) program being edited and provide immediate
and useful feedback to the user about the syntactic and semantic errors in the program, as
and when the user makes them. An example of a semantic error is a call to a function or
procedure with the wrong number or type of arguments. Since these editors have to per-
form a semantic analysis of the program after each change the user makes to it, they have
come to rely heavily on incremental static semantic analysis. Research in this area was
initiated by Demers, Reps, and Teitelbaum (see [Dem81], [Rep82], [Rep83], and
[Rep84]) who pioneered the use of an attribute-grammar based specification of a
language and its semantics in automatically generating a editor for that specific language.
There has been a lot of subsequent work in incremental attribute evaluation and in its
applications, which are not restricted to static semantic analysis. The proceedings of
recent conferences and workshops on attribute grammars [Der90, Alb91] are an excellent
source of references to work in this area. Other work in this area includes: [Yeh83],
[Joh83], [Joh82], [Joh85], [Jon86], [Rep86], [Kap86], [Hoo86] [Hoo87], [Fil87],
[Yeh88], [Wal88), [Par88], [Kai89], [Tei90], [Jon90], [Zar90], [Fen90], [Vor90],
[AIb90], [Pec90], [Hud91].

We list below some references to work on performing the various phases of compi-
lation incrementally. See [Abm88] for a general discussion about incremental compila-
tion.

Scanning and Parsing. [Ghe79], [Ghe80], [Weg80], [Jal82], [Agr83],
[Kai85], [Ham88], [Bal88], [Jab88], [Hee90], [Jai%0], [Beedl], [Wir92].

Dataflow Analysis. There has been a considerable amount of work in the area of
incremental dataflow analysis. The recent dissertation of Marlowe [Mar89] is a good
source for references in this area and for an overview of this area of research. Some of
the other work in this area includes: [Ros81], [Ryd82], [Gho83], [Zad83], [Zad84],
[Tan85], [Coo086], [Bur87], [Bur87a], [Car88], [Wan], [Ryd88], [Mar90], [Bur90],
[Bur90a], [Ros90], [App9l], [Pol92].
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Compilation and Linking: [Fri83], [Fri84], [Fri84a], [Rei84], [Sch84],
[For85], [Cro851, [Pol85], [Pol86], [Tic86], [Coo86], [Fuj88], [Tay88], [Sch88],
[Tic88], [Lin89], [Ku89], [Gaf90], [Quo91], [Bur93], [Sha93].

Document Processing )
Authors, either of small reports or large books, have a need, very similar to that of
programmers, for incremental systems. While the edit-format-print-proof-read cycle is
the analogue of the edit-compile-execute-debug cycle in programming, the WYSIWYG
editors and document-formatters are the analogues of the language-sensitive editors in
programming. The following are some references to work in this area: [Cha8l],
[Cha87], [Bro88], [Che88], [Che88a], [Che88b], [Har89], [Har91], [Mur92].

VLSI Design

Hardware design is accomplished today with the use of a number of CAD tools,
which are often computation intensive. The iterative process of design has, conse-
quently, engendered a need for incremental systems for hardware design. Some refer-
ences to this area of research are: [Ous84], [Tay84], [Sco84], [Ous84a], [Car87],
[Car89].

Some other contexts for incremental computation are:

Constraint Solving: [Bor79], [Kon84], [Van88], [Fre90], [Hen90], [Vor90a].

Reason Maintenance: [Doy79], [Doy79a], [Per84], [de86], [de86a], [de86b],
[Sha88], [Smi88], [McA90].

Query Processing: [Shm84] [Shm90], [Wol91], [Man88].

2.2. Why Incremental Graph Algorithms?

This thesis deals with incremental graph algorithms. Why are incremental graph algo-
rithms of interest? Graphs have become pervasive in the field of computer science
because of their usefulness in modelling and formalizing problems in a number of areas.
The use of graph algorithms is, consequently, very common in all kinds of tools. Graph-
theoretic problems encountered in the areas of compilers and dataflow analysis, for
instance, include the following: graph reachability, identifying the strongly connected
components of a digraph, generating the SCC condensation of a graph, topologically
sorting the vertices of a dag, constructing the dominator tree of a graph, and graph color-
ing [Aho86]. Graph problems of various kinds are also encountered in VLSI design.
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In this section we briefly review the various problems addressed in this thesis,
some of their applications, and the previous work on these problems. A more complete
discussion of related work on these problems appears in the corresponding chapters later
on.

2.2.1. The Reachability Problem

In the single-source reachability problem the input consists of a graph with a dis-
tinguished source vertex. The problem is to determine the set of all vertices in the graph
that are reachable from the source vertex. In the all-pairs reachability problem, more
commonly known as the transitive closure problem, one is interested in determining for
every pair (u,v) of vertices in the graph if v is reachable from u.

Both the batch version and the dynamic version of the reachability problem have
numerous applications and have attracted wide attention. See, for instance, [Ita86],
[Pou88], [Ita88], [Yell, [Ber92], and [Mar92]. Note that the dynamic reachability
problem is related to the problem of cycle-testing: the problem of checking if a graph
remains acyclic as edges are inserted and deleted from it. The need for cycle-testing
arises in deadlock detection and in unification. The dynamic reachability problem also
arises in the areas of databases [Yan90], truth maintenance, belief revision
[Smi88, McA90], and incremental rule processing [Wol91]. The dynamic reachability
problem is closely linked to the incremental dataflow analysis problem, the problem of
maintaining a strongly connected component condensation of a graph, and the dynamic
domination problem. It also has connections to garbage collection.

2.2.2. The Shortest-Path Problem

The shortest-path problem, a combinatorial optimization problem, is a special case of the
network flow problem. As Ahuja et al. [Ahu89] put it, “Shortest path problems are the
most fundamental and also the most commonly encountered problems in the study of
transportation and communication networks.” Since shortest-path information can be
used for routing in a communication network, the possibility of changes in the network,
say due to a link failure, make the incremental shortest-path problem relevant to routing.
The applications of the shortest-path problem, however, are not restricted to the
areas of transportation and communications networks. For instance, the shortest-path
problem finds an interesting application in the problem of breaking paragraphs into lines
(and the sirmilar problem of determining appropriate page breaks for a document) in the
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context of document formatting. The following algorithm for determining the “optimum
breakpoints”, due to Knuth and Plass [Knu81], has been used in TeX. Given a paragraph
that has to be formatted into a number of lines of length close to a given line-length, con-
struct a graph in which the vertices represent the potential breakpoints—points where a
line break can occur legally—in the paragraph. Add an edge between any two poten-
tially successive breakpoints. The length of the edge denotes the “cost” of having all the
text between these two breakpoints in a single line—for instance, if there is not much text
between the two breakpoints, and the words would be spaced far apart, or if there is too
much text and the line would look very cramped, then the cost would be high. One then
looks for a shortest path from a vertex representing the beginning of the paragraph to a
vertex representing the end of the paragraph.

A problem related to the shortest-path problem is that of determining the longest
paths in an acyclic graph. This problem, the critical path problem, has applications in
scheduling and circuit design, among other things.

Knuth [Knu77] proposed a generalization of the single-source shortest-path prob-
lem, which captures the flavor of dynamic programming, and discusses its applications.
This problem is reviewed in Chapter 5.

A number of people have previously addressed various versions of the dynamic
shortest-path problem, and their work is reviewed in Chapter 6.

2.2.3. The Circuit Value Annotation Problem

A circuit is a dag in which every vertex u is associated with a function Fj,. Every vertex
u corresponds to a value S, that is to be computed by applying function F, to the values
computed at the predecessors of vertex u. The circuit value annotation problem is to
compute the output value associated with each vertex. The dynamic version of the prob-
lem is to maintain consistent values at each vertex as the circuit undergoes changes
[Par83, Rep83, Hoo87, Alp89, Alp90].

From a systems-building perspective, the dynamic circuit value annotation prob-
lem is important because it is at the heart of several important kinds of interactive sys-
tems, including spreadsheets [Bri79, Par83] and language-sensitive editors created from
attribute-grammar specifications [Rep88]. The dynamic circuit value annotation problem
is also of interest because the computation performed by an arbitrary program can be
represented by a circuit and utilized in incremental execution of the same program
[Hoo87]. Alphonse [Ho092], a system for automatically generating efficient incremen-
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tal systems from simple exhaustive imperative program specifications, makes use of
incremental algorithms for the circuit value annotation problem.

Previous work on this problem includes [Par83], [Hoo87], [Alp90], and [Ram91].
Since the vertices in the circuit have to be evaluated in a topological order, this problem
is also related to the problem of maintaining a topological ordering of the vertices in an
acyclic graph, as the graph undergoes modifications such as the insertion and deletion of
edges. However, it is not necessary to maintain a topological ordering of the vertices for
the dynamic circuit value annotation problem. A dag is said to be correctly prioritized if
every vertex u in the dag is assigned a priority, denoted by priority (u), such that if there
is a path in the dag from vertex u to vertex v then priority (u) < priority (v). Alpern et al.
[Alp90] outline an algorithm for maintaining a correct prioritization of the circuit, and
use it for the dynamic circuit value annotation problem.

2.2.4. The Dominator Tree Problem

A vertex u, in a graph with a source vertex, is said to dominate a vertex v if all paths in
the graph from the source vertex to v pass through u. The domination relation can be
compactly represented by a dominator tree: a vertex u dominates a vertex v iff u is an
ancestor of v in the dominator tree. The dominator tree plays an important role in several
algorithms for program analysis and program optimization, and the need for updating the
dominator tree of a flowgraph arises in various contexts such as incremental dataflow
analysis. The only previous work that we are aware of on the dynamic dominator tree
problem is [Car88a].

2.3. Evaluating Incremental Algorithms: Why and How?

Algorithms may be evaluated either analytically or experimentally. In this section we
review some of the difficulties encountered in evaluating incremental algorithms using
either of these methods and some of the previous work in this area. Similar observations
on the difficulty of evaluating incremental algorithms appear in [Car88a, Ber92].

In evaluating an algorithm, one is interested in determining the resources required
by the algorithm, including both the computational time required and the memory or
space required. This section, like most work in this area, will concentrate primarily on
the time requirements of incremental algorithms. It should be noted, however, that, in
the context of incremental computation, the space requirements of algorithms are an
important consideration, since some incremental algorithms can potentially end up stor-



ing and maintaining too much auxiliary information.

2.3.1. Analytical Evaluation of Incremental Algorithms

An analytic complexity measure of an algorithm provides us with an estimate of the
resources required by that particular algorithm. An analytic complexity measure of a
problem itself, on the other hand, describes “how difficult” that particular computational
problem is. A comparison of two upper bounds, that is, the complexity measures of two
algorithms for the same problem, can be useful in determining which of the two is a
better algorithm. A comparison of a lower bound (that is, the complexity measure of a
problem) with an upper bound (that is, the complexity measure of an algorithm for that
problem) can be used to understand how well the particular algorithm does in relation to
the intrinsic difficulty of the problem, and to figure out if there is much scope for
improvement over the particular algorithm under consideration.

One of the first problems that one must come to grips with when dealing with algo-
rithms for incremental-computation problems is that the criteria that one commonly uses
to assess the performance of algorithms for batch-computation problems can be unsatis-
factory. In particular, a common way to evaluate the time complexity of a batch algo-
rithm is to use asymptotic analysis and to express the cost of the computation as a func-
tion of the size of the input; however, for incremental-computation problems, this kind of
analysis can have several drawbacks:

e It may fail to distinguish between two different incremental algorithms for a prob-
lem, one of which is clearly superior to the other. (In many cases, it even fails to
distinguish between an incremental algorithm and the batch start-over algorithm.)

e It can mislead one into believing that the batch start-over algorithm is optimal for a
given incremental-computation problem.

For example, consider the problem of updating the attributes in a derivation tree of
an attribute grammar after a tree modification. Both the incremental attribute-updating
algorithm given in [Rep83] and the batch start-over algorithm have worst-case complex-
ity of O (|input|). Furthermore, because for some attributed trees certain modifications
require every attribute in the tree to be given a new value, the incremental attribute-
updating problem has a lower bound of Q(|input|). Ordinarily one says that an algo-
rithm whose asymptotic running time matches the lower bound for the problem is asymp-
totically optimal, from which one would conclude that the batch start-over algorithm is




asymptotically optimal for the incremental attribute-updating problem.

The above example illustrates that asymptotic worst-case complexity measure,
expressed as a function of the size of the input, can be inadequate in the case of
incremental-computation problems. Several researchers have previously remarked on
this inadequacy, and some have explored alternatives to this conventional complexity
measure. These alternatives, which are reviewed below, include alternatives to asymp-
totic analysis, alternatives to worst-case analysis, parameters other than the size of the
input, and various combinations of these alternatives.

A warning remark is appropriate before we consider these various alternative
approaches. The above discussion should not be construed as suggesting that the con-
ventional complexity measure fails completely in the case of incremental computation.
There are problems for which incremental algorithms exist with a much better worst-case
complexity measure than that of the batch start-over algorithm. An example is the prob-
Jem of maintaining a minimum spanning tree of a graph. The standard batch algorithm
for this problem runs in time O (m logn), while the incremental algorithm due to Freder-
ickson [Fre85] updates the minimum spanning tree of a graph after the deletion or inser-
tion of an edge in O (\/;1— ) time. Some other similar results include [Di89], [Epp92], and
[Epp92a].

2.3.1.1. Asymptotic Analysis Versus Micro-analysis
In asymptotic analysis one ignores constant factors and expresses the complexity of algo-

rithms using the big-O notation.! This has the advantages of simplifying the analysis and
providing a machine-independent complexity measure. The possibility of using the con-
stant factors to compare incremental algorithms with batch or start-over algorithms, when
the two have the same asymptotic complexity measure, has been explored by Cheston
[Che76]. In general, however, this may not be very useful, because incremental algo-
rithms tend to have larger constant factors than the corresponding batch algorithms, espe-
cially when they have matching asymptotic worst-case complexity measures. Under
such conditions, comparing constant factors would suggest that the batch algorithm is the
better algorithm—a conclusion that is not necessarily warranted.

'In this thesis, we use standard notations for expressing the asymptotic behavior of functions. Asymptotic
notation is discussed in most standard textbooks on algorithms, for example [Cor90}.



2.3.1.2. Alternatives to Worst-Case Analysis

Conventional worst-case complexity measure describes the time taken by the algorithm
to process a worst-case input instance as a function of the input size. If one considers the
set of all input instances of a given size, then the set of all worst-case input instances—
those input instances that the algorithm takes the most time to process—normally forms
some subset of this set. Worst-case complexity analysis has two advantages. The first is
that the complexity measure provides a performance guarantee—the algorithm will pro-
cess any input instance of a given size taking no more than the time guaranteed by the
worst-case measure. The second advantage is that worst-case analysis is usually consid-
erably simpler to perform than its alternatives listed below.

Worst-case analysis has been used with a large measure of success in analyzing
batch algorithms. There is another reason for this success apart from the two advantages
mentioned above: in many batch algorithms, the worst-case complexity measure matches
the best-case complexity measure! In other words, every input instance is a worst-case
input instance for these algorithms. For example, the straightforward matrix multiplica-
tion algorithm, for instance, takes time O(n3) to multiply any two matrices of size n X n.
Similarly, a number of basic graph algorithms, such as those utilizing depth-first or
breadth-first traversals, take time ©(n+m) to process any graph with n vertices and m
edges. The information provided by a worst-case analysis tends to become more approx-
imate and less useful as worst-case input instances become a smaller subset of the set of
all the input instances.

In many incremental algorithms and incremental-computation problems, worst-
case input instances tend to be rare. Consider the problem of updating the solution to the
single-source shortest-path problem after the deletion of a single edge. Let us compare
the batch start-over algorithm with a simple incremental algorithm A4 that works as fol-
lows: the algorithm maintains a shortest-path tree for the graph; if the edge to be deleted
is not in this shortest-path tree, the algorithm does nothing; if it is, then a batch algorithm
is used to recompute a new shortest-path tree for the new graph. (We remark that most
incremental algorithms for this problem do much better.) The worst case for this algo-
rithm, and most incremental algorithms for this problem, occurs when all shortest paths
in the currrent graph pass through a single edge, and this edge is deleted. The deletion of
this single edge effectively changes the complete solution to the problem. This worst-
case instance causes algorithm 4, as well as all known incremental algorithms, to per-
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form as much work as the best batch algorithm, taking, say, Q(m +n logn) time.? The
best case for this incremental algorithm, as well as other incremental algorithms, occurs
when the deleted edge is not in any of the shortest paths. Algorithm 4 performs almost
no work in this case, and the updating takes only a constant time. Now consider the fol-
lowing: A shortest-path tree for a graph with n vertices will have at most n—1 edges. If
we assume that every edge in the graph is equally likely to be deleted, then algorithm A4
will do a non-trivial amount of work for only n~1 of the m possible edge deletions. But
in the class of dense graphs (n—1)/m tends to zero as n grows! Thus, in this case, the
worst-case measure obviously does not convey as much information as it did in the
examples of batch algorithms listed above.

- An alternative to worst-case analysis is expected-case or average-case analysis.
Average-case analysis can be very useful, but is typically much more difficult than
worst-case analysis. Another problem with such an analysis is that it will not really pro-
vide a picture of the expected case unless the probability distribution used in the analysis
reflects reality and the probability distribution for input changes, in the case of incremen-
tal computation, is very context-dependent. However, a simple, informal and approxi-
mate expected-case analysis, like the one in the previous paragraph, can be profitably
used in demonstrating that an incremental algorithm is better than a batch algorithm.
Examples of the use of expected-case analysis for incremental computation problems
appear in [Che76, Eve85]. Pugh [Pug838] presents randomized data structures for use in
incremental computation and an expected-case analysis of operations on these data struc-
tures.

Amortized analysis is another alternative to worst-case analysis that is applicable
specifically to dynamic or on-line problems, where a sequence of operations is performed
on some dynamic data structure. (See, for instance [Tar83], or [Cor90].) Amortized
analysis concerns the average cost of an operation over a sequence of operations.
Specifically, the amortized cost of an operation is defined to be the maximum over all
possible sequences of operations of the average cost of an operation. Thus, the cost of
any sequence of operations is guaranteed to be bounded by the product of the number of
operations in the sequence and the amortized cost of an operation. In some situations,
this bound on the cost of the sequence of operations is much better than the product of

The complexity of a heap-based implementation of Dijkstra’s shortest-path algorithm depends on the kind
of heap used. If relaxed heaps are used, for instance, the complexity is O (m+nlogn). Fredman and
Willard’s AF heaps improve the time complexity to O (m +nlogn /loglogn) [Fre90al.
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the number of operations and the worst-case cost of a single operation. In such cases,
amortized analysis yields a better complexity measure than worst-case analysis.
Obviously, the amortized cost of an operation will be asymptotically better than

the worst-case cost of an operation only if worst-case operations cannot appear too fre-
quently in any sequence of operations. As Carroll observes,

An algorithm with bad worst-case complexity will have good amortized complexity

only if there is something about the problem being updated, or about the way in which

we update it, or about the kinds of updates which we allow, that precludes pathological

updates from happening frequently [Car88a].
Thus, although there are algorithms for dynamic problems that benefit from amortized-
cost analysis, such as those of Even and Shiloach [Eve81], Reif [Rei87], and Ausiello ez
al. [Aus90], these benefits are obtained only by restricting the sequence of input
modifications in some fashion. For example, the results of Even and Shiloach [Eve81]
and Reif [Rei87] for dynamic graph connectivity hold only for a sequence of edge dele-
tions, while the result of Ausiello et al. [Aus90] for maintaining shortest paths is applica-
ble only in the case of a sequence of edge insertions. In the fully dynamic versions of
these problems, where both edge insertions and edge deletions are allowed, “pathologi-
cal” input changes can occur frequently in a sequence of input changes. Thus, the
amortized-cost complexity of algorithms for the fully dynamic versions of these prob-
lems will not, in general, be better than their worst-case complexity. For instance, con-
sider the worst-case scenario described above for the case of edge deletion in the
dynamic shortest-path problem. The same edge can be repeatedly inserted and deleted.
Consequently, the amortized complexity of an incremental algorithm for the fully
dynamic shortest-path problem can be no better than the complexity of the batch algo-
rithm.

2.3.1.3. Alternatives to Input Size as Complexity Parameters

We now turn our attention to the approach to complexity analysis used in this thesis.
Complexity measures are expressed as a function of one or more parameters of the
input—input size, for example. Let us refer to these parameters as complexity parame-
ters. In the discussion of worst-case instances, in the previous section, we glossed over
one fact: the notion of worst-case input instances is not absolute but relative to the com-
plexity parameter(s) one uses. In fact, while worst-case input instances may be rare for
some choice of the parameter(s), all input instances may be worst-case input instances for




some other choice of the parameter(s), as we explain below.

The role of the complexity parameter(s) is as follows: The set of all possible input
instances is partitioned into a number of classes, where each class C, consists of the set
of all input instances for which the parameter has a specific value n. Thus, if one used
input size as the parameter, then the class C, would consist of all the input instances of
size n. An input instance in C, is a worst-case instance for an algorithm iff the time the
algorithm takes to process that input instance is roughly the maximum time the algorithm
takes to process any input instance from the same class C,. In worst-case analysis one
attempts to express the time taken to process a worst-case input instance from a class C,
as a function of the parameter value n characterizing that class. Similarly, in average-
case analysis one attempts to express the average time taken to process an input instance
from a class C, as a function of n.

If the parameter chosen is such that the time taken to process any input instance
from a given class is roughly the same, then all input instances are worst-case input
instances. In such a situation a worst-case complexity measure becomes an exact-case
complexity measure. This argument captures the importance of the “parameter” one uses
in measuring the complexity of an algorithm. It is preferable to choose the parameter so
that the time taken to process an input instance depends only on the value of the parame-
ter for that input instance. The reason worst-case analysis in terms of input size has been
successful in analyzing batch algorithms is that the time taken to process an input
instance correlates very well to the input size in batch computation.

The use of the parameters n, the number of vertices, and m, the number of edges, in
analyzing graph algorithms illustrates the above point. Depth-first search in graphs, for
instance, takes time O (n +m). Expressed as a function of n, the complexity of depth-first
search is O (nz). While depth-first search does take time ©(n +m) for every graph with n
vertices and m edges, it does not really take time O(n?) for every graph with n
vertices—it does so only when the number of edges in the graph is O(n?). Thus, if we
measure the complexity of depth-first search in terms of the parameters m and n every
input instance is a worst-case input instance, while if we measure its complexity in terms
of the parameter n, only dense graphs are worst-case input instances.

As another example, consider the single-source shortest-path problem with non-
negative length edges. A straightforward implementation of Dijkstra’s algorithm, as ori-
ginally proposed by Dijkstra, runs in time O(n?+m) = O (n?). An implementation of
the same algorithm using ordinary heaps runs in time O((n+m)logn), which is
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O (n* logn) if one were to use only the parameter n. An implementation of the same
algorithm using Fibonacci heaps runs in time O (nlogn +m), which is O (n?) in terms of
n alone. If one used only the parameter n, then one would be led to consider the straight-
forward implementation of Dijkstra’s algorithm to be as good as the Fibonacci-heap
based implementation and to consider it to be better than a simple-heap based implemen-
tation. However, both the heap-based implementations are arguably better than the
straightforward implementation. If the complexity measures are expressed in terms of
both the parameters n and m, then one is in a much better position to compare different
graph algorithms.

It is not uncommon to find people turning to other parameters when a parameter
like the input size proves to be inadequate in the above sense. Observe that an input
instance for an incremental (graph) algorithm is an ordered pair (G, d) consisting of a
batch input instance G and a change 3 to this instance. The approach used in this thesis
is to measure the complexity of incremental algorithms in terms of a parameter ||8]l¢,
which is a measure of the “size of the change in the input and the output” when change 6
is applied to G. The parameter || 3|l g, usually abbreviated to || 3||, is formally defined
in the next chapter.

In terms of the earlier discussion, the parameter || ]| induces a partition of the set
of all ordered pairs (G, 8). Each class Cy in the partition consists of all pairs (G, 8) for
which ||8]|¢ is d. Observe that there is no bound on the size of the graph G itself.
Hence, it is possible that there exists no bound on the amount of time a given incremental
algorithm takes to process an input change from class C;. An incremental algorithm is
said to be bounded if for every class C, there is a bound on the amount of time the incre-
mental algorithm takes to process an input instance from C;. In other words, an incre-
mental algorithm is said to be bounded if we can bound the time the algorithm takes to
process a change 3 to a graph G by some function of ||8]}. Otherwise, an incremental
algorithm is said to be unbounded. A problem is said to be bounded (unbounded) if it

has (does not have) a bounded incremental algorithm.3

3There is another interesting way to think about boundedness. A bounded incremental algorithm will ef-
fectively update the solution to even an infinite problem instance G as long as the change in the input and
output is finite. See Figure 2.1 for an example of an infinite input instance for the SSSP>0 problem, and a
change to this infinite graph that causes only a finite change in the output. Even though such infinite graphs
cannot be explicitly represented in a computer, the bounded incremental algorithm we present in Chapter 4
for the SSSP>0 problem is arguably an effective procedure for updating the solution even in this case.
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Figure 2.1. The figure on the left side represents an infinite graph whose vertices are points on the XY
plane with non-negative integer coordinates. The origin (0,0) is the sink vertex. There is an edge from
vertex (x+1, y) to vertex (x, y) and an edge from vertex (x, y+1) to vertex (x, y), for every vertex x.y).
Edges on the X or Y axis have a length of 1, while all other edges have a length of 2. The solid edges in
the graph indicate edges that are in some shortest paths, while the dotted edges are not in any of the shor-
test paths. The graph on the right is obtained by inserting an edge, of length 1, from the point (1,1) to the
point (0,0). The shaded region indicates the affected vertices—vertices for which the length of the shortest
path to the sink changes as a consequence of the edge insertion.

The idea of using || 8|| to measure the complexity of incremental algorithms is not
new to this thesis. This parameter was originally used by Reps [Rep84] in analyzing the
complexity of his algorithm for incremental updating of attribute values in an attributed
abstract syntax tree. The worst-case complexity of this algorithm, in terms of the input
size n, is @(n), but worst-case input instances are rare when one uses 7 as the complexity
parameter. The worst-case complexity of the algorithm, in terms of [|8]], is ©ClId1I),
but all input instances are worst-case input instances when one uses ||6]] as the com-
plexity parameter.

Alpern et al. [Alp90] similarly present a bounded incremental algorithm for the
problem of maintaining a priority ordering in a dag.

The results presented in this thesis, together with the previous results mentioned
above, illustrate a complexity hierarchy that exists for incremental computation problems
when their complexity is measured in terms of the parameter [18]|. In particular, these
results separate the classes of polynomially bounded problems, inherently exponentially
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bounded problems, and unbounded problems. The computational-complexity hierarchy
for dynamic problems is depicted in Figure 2.2. This hierarchy exists with respect to a
particular model of computation, which is discussed in Chapter 8.

2.3.1.4. On Classifying Incremental Computation Problems
In this section we look at related work on the problem of classifying incremental-
computation problems. Each classification of incremental-computation problems pro-
vides, among other things, its own answers to the following questions: When can one say
that an incremental-computation problem has a good algorithm? What does it mean for a
problem to be “incrementalizable™?

The work outlined in this thesis attempts to use the notion of “boundedness” to dis-
tinguish problems that have good incremental solutions from those that do not. Argu-
ably, incremental algorithms whose complexity is a low-order polynomial in ||8]] are

Data—flow Analysis Problems
Dominators Problem
Algebraic Path Problems

SSSP>=0
Unbounded Graph Reachability
PSSO ISR e e e s
Exponential
(K1
2 T Circuit Value Annotation Problem
(lower bound: [Alpern et al. 90])
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H8H0° T Monotonic Circuit-Value Problem
Priority Ordering [ Alpern et al. 90]
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Figure 2.2. The results established in this thesis, along with a couple of previous results (indicated above
by associated citations), illustrate a computational-complexity hierarchy for dynamic problems that exists
when problems are classified according to their incremental complexity in terms of the parameter IRl
with respect to a model of computation called locally persistent algorithms.
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“good”. Consequently, problems for which polynomially-bounded incremental algo-
rithms exist can be said to have good incremental solutions. However, we do not mean
to claim or suggest that unbounded incremental algorithms are necessarily poor incre-
mental algorithms. For instance, we present in Chapter 9 an algorithm for maintaining
reachability in a reducible flowgraph that runs in time O(|| 8| logn). This is technically
an unbounded algorithm, but it is, asymptotically, better than the batch algorithm, since
its dependence on the size of the graph is only logarithmic.

One of the drawbacks with the boundedness approach is that it seems to be of lim-
ited applicability. For instance, all decision problems produce only a single bit output.
Consequently, the concept of the “size of the change in the output” is not very useful in
such cases.

A recent complexity-theoretic study of incremental computation [Sai93], explores
incr-POLYLOGTIME, the class of problems whose dynamic versions are solvable in
poly-logarithmic time (that is, time poly-logarithmic in input size), and incr-
POLYLOGSPACE, the class of problems whose dynamic versions can be solved with
poly-logarithmic work space. They suggest that these complexity classes capture the

“intuitive notion of incremental efficiency”. While these complexity classes are
interesting enough that they merit study, it is perhaps not justifiable to consider only
problems in this class to be problems with a good incremental algorithm. We have seen
in earlier sections that problems exist for which any incrementai algorithm, in the worst
case, must do as much work as the best batch algorithm. Hoping for a poly-logarithmic
incremental algorithm may often be too ambitious.

A different approach to the problem of classifying dynamic problems was pro-
posed in a paper by Berman, Paull, and Ryder [Ber90]. (See also [Ber92].) They clas-
sify dynamic problems through the notion of an incremental relative lower bound
(IRLB). A particular problem has an IRLB of 1/ f (n) if it is possible to obtain any input
instance of size n by making at most f (n) unit changes to a “trivial input instance”.
Informally, a “trivial input instance” is an input instance for which the solution is easily
obtained; see [Ber90] for a formal definition. Thus, if a problem has an IRLB of

4Observe the similarity here to parallel computation, where NC, the class of problems that have parallel al-
gorithms that run in poly-logarithmic time using a polynomial number of processors, is usually considered
to be the class of problems that are “parallelizable”.
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1/ f (n), then it is possible to compute the solution an instance of the batch problem of
size n by starting with the solution to a trivial input instance and invoking an incremental
algorithm for the problem at most f (n) times. An IRLB provides a lower bound for the
incremental version of a problem in terms of a lower bound for the batch version of the
problem. Thus, if a problem has an IRLB of 1/ f (n) and the batch version of the prob-
lem has a lower bound of g(n), then g(n)/f (n) is a lower bound for the incremental
version of the problem.

A limitation of the IRLB approach is that the lower bounds obtained apply only to
incremental algorithms that satisfy some restrictions on the amount and kind of auxiliary
information they use. In particular, the auxiliary information should not be difficult to
compute initially—the algorithms cannot use much preprocessing time. For instance, the
o(\n log (m/n)) dynamic minimum spanning tree algorithm described in [Epp92al,
which “contradicts” the lower bound of Q(m/n) established using the IRLB technique,
does not satisfy these restrictions.

Berman ef al. discuss three classes of problems: those with an IRLB of 1, those
with an IRLB of 1/n, and those with an IRLB between 1/ Vn and 1/n. In this
classification scheme, the class of problems with an IRLB of 1 is the class with the
poorest incremental behavior. For these problems, it is possible to show that a single
modification, such as the insertion or deletion of a single edge in a graph, can change the
problem to one whose solution shares nothing in common with the solution of the origi-

nal problem (thereby reducing the batch problem to a “one-shot” dynamic problem).5
Thus, in the worst case, an incremental algorithm for a problem with an IRLB of 1 can-
not perform better than the best batch algorithm for the problem.

That a problem has an IRLB of 1 is certainly a property of interest (since the
knowledge that there are modifications for which an incremental algorithm will perform
no better than the best batch algorithm answers the question “How bad can things get?”),
but it is not clear that problems with an IRLB of 1 should be considered to be problems
with no good incremental algorithms. Some versions of the shortest-path problem have
an IRLB of 1, yet from the point of view of boundedness have a good incremental algo-

5The arguments that Berman, Paull, and Ryder use to establish relative lower bounds for various problems
are similar to the ones used by Spira and Pan [Spi75] and Even and Gazit [Eve85] to establish that no in-
cremental algorithm for the all-pairs shortest-path problem can do better in the worst case than the best
batch algorithm for the problem.
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rithm.

2.3.2. Experimental Evaluation of Incremental Algorithms
Tarjan, in his Turing award lecture, says:

Theoretical analysis of algorithms rests on sound foundations. This is not true of experi- .

mental analysis. We need a disciplined, systematic, scientific approach. Experimental

analysis is in a way much harder than theoretical analysis because experimental analysis

requires the writing of actual programs, and it is hard to avoid introducing bias through

the coding process or through the choice of sample data.
We have seen in the previous section that theoretical analysis of incremental algorithms
has its limitations and is not the final answer to questions concerning the performance of
various incremental algorithms. For instance, none of the approaches to complexity
analysis of incremental algorithms provides a satisfactory way of comparing the
numerous algorithms that have been proposed for incremental dataflow analysis, and a
similar situation exists with regard to a number of other problems that arise in practical
systems. Consequently, there is a compelling motivation for experimental analysis of
incremental algorithms

There have been relatively few papers in which the performance of an incremental
algorithm has been evaluated from an experimental standpoint. The little work that does
exist actually suggests that from a practical standpoint incremental algorithms that do not
have “good” theoretical performance (according to criteria discussed in the previous sec-
tion) can give satisfactory performance in real systems and work better than batch algo-
rithms. For instance, Hoover presents evidence that his algorithm for the circuit-
annotation problem performs well in practice [Hoo87]. Ryder, Landi, and Pande present
evidence that the incremental dataflow analysis algorithm of Carroll and Ryder [Car88]
performs well in practice [Ryd90]. Dionne reports excellent performance for some algo-
rithms for the all-pairs shortest-path problem with positive edge weights [Dio78].
Experimental evaluation of incremental algorithms poses its own problems. Ryder

et al. discuss some of the issues involved in evaluating an incremental algorithm
[Ryd90]. One of the problems is the generation of suitable test data. While this can be
difficult even for batch algorithms, it turns out to be even more difficult for incremental
algorithms. For instance, input instances for dataflow analysis are control-flow graphs
representing programs. Hence, it is quite easy to obtain typical input instances for the
batch dataflow analysis problem. But for the incremental dataflow analysis problem one
needs to generate typical sequences of modifications to the control-flow graph, and this
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can be difficult. A second problem is that incremental algorithms tend to be difficult to
implement. If one is interested in comparing a number of incremental algorithms, imple-
menting all of these algorithms is not an attractive proposition. There is a potential here
to build systems that can assist people in easily implementing, evaluating, and comparing
incremental algorithms.

In the earlier discussion of analytic evaluation of incremental algorithms we
observed the importance of the parameter used in describing the complexity measure.
We noted that it was important to use a parameter to which the time complexity of the
algorithm correlated well. This concern carries over to experimental evaluation of incre-
mental algorithms as well. Experimentation yields data from which one can empirically
determine a complexity measure of the algorithm. Consequently, one faces the same
question—in terms of what parameter should one express the complexity of the
algorithm?—in experimental evaluation of algorithms too.
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Figure 2.3. Performance results of one of the incremental algorithms for the circuit value annotation prob-
lem discussed in Chapter 7.
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The parameter ||§|| turns out to be just as useful in the experimental evaluation of
incremental algorithms as in the analytic evaluation of incremental algorithms. For
instance, the graph in Figure 2.3 plots the time an incremental algorithm takes to process
an input change as a function of ||8]|. Admittedly, the points do not fall on an ideal
straight line. But, undeniably, the graph provides evidence that this algorithm’s com-
plexity, in practice, is linear in ||8]]. This graph conveys more information than a sim-
ple plot of the “time taken to process an input change” as a function of “the input size”
would have.

In Chapter 7 we present experimental results on the performance of three incre-
mental algorithms for the circuit value annotation problem in the context of incremental
attribute evaluation in a Pascal editor, illustrating the above point further.
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Chapter 3

Terminology and Notation

Usually mathematicians avoid long theorems by the alternative device of long
definitions ... this is more economical since one definition abbreviates many theorems.
Even so, the definitions take up enormous space in ‘rigorous’ expositions ... the
definition of ‘ordinary polyhedra’ in the 1962 edition of the Encyclopaedia Britannica
fills 45 lines.

—1. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery

In this chapter we introduce the terminology and notation used in this thesis.

A directed graph G = (V(G), E(G)) consists of a set of vertices V(G) and a set of
edges E (G), where E(G) < V(G) x V(G). Anedge (b,c)e E(G), where b, c € V(G),
is said to be directed from b to ¢, and will be more mnemonically denoted by b —>c. We
say that b is the source of the edge, that ¢ is the target, that b is a predecessor of c, and
that ¢ is a successor of b. A vertex b is said to be adjacent to a vertex ¢ if b is a succes-
sor or predecessor of c. The set of all successors of a vertex a in G is denoted by
Succg(a), while the set of all predecessors of a in G is denoted by Predg(a). If K is a set
of vertices, then Succg(K) denotes agKSuccG(a), and Predg(K) is similarly defined.

Given a set K of vertices in a graph G, the neighborhood of K, denoted by N¢g(K), is
defined be the set of all vertices that are in K or are adjacent to some vertex in K: Ng(K)
= K U Succg(K) U Predg(K). The set N(K) is defined inductively to be Ng(N5H(K)),
where N%(K) = K. Let <F > denote the subgraph induced by a set of vertices F—that
is, <F > = (F, E(G)n(F X F)).

The indegree of a vertex u, denoted by indegreeg(u), is the number of edges with
u as the target, while the outdegree of a vertex u, denoted by outdegreec(u), is the
number of edges with u as the source. The degree of a vertex is the sum of its indegree
and outdegree. The subscript G will be dropped from the notation introduced above if no
confusion is likely. The degree of a graph is defined to be the maximum degree of any
vertex in the graph. The indegree and outdegree of a graph are similarly defined.

For any set of vertices K, we will denote the cardinality of K by both |K | and Vk.
We will denote the number of edges going out of vertices in K by E g . thus, E K =

Y outdegree (u). We similarly define E < to be the number of edges coming into K,
ue K

and we define Ex to be the number of edges that have at least one endpoint in K.
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We now formulate a notion of the “size of the change in input and output” that is
applicable to the class of graph problems in which the input consists of a graph G, and
possibly some information (such as a real value) associated with each vertex or edge of
the graph, and the output consists of a value S;(u) for each vertex u of the graph G. For
instance, in the case of the single-sink shortest-path problem, Sg(«) is the length of the
shortest path from vertex u to a distinguished vertex, denoted by sink(G). Thus, each
vertex and/or edge in the graph may have an associated input value, and each vertex in
the graph has an associated ousput value.

Before we formally define the parameter || 8| let us consider an example that will
motivate the definition. In the circuit value annotation problem, which was introduced in
the previous chapter, the output value for each vertex in the input dag is defined as some
function of the values computed at its predecessor vertices. Let us view an input change
as changing the function associated with one or more vertices—let us call these vertices
the modified vertices. As a result of this change, the output value associated with some
vertices (which may or may not be modified vertices) will change—let us call these ver-
tices affected vertices. Obviously, any incremental algorithm for this problem will have
to do at least work proportional to the number of modified and affected vertices. Can we
have an incremental algorithm that does no more work than this?

This goal is too ambitious. If the output value of a vertex changes, then any suc-
cessor of this vertex is a potentially affected vertex. Any incremental algorithm, in gen-
eral, will need to examine such vertices to determine if they are affected vertices. In
other words, the set of vertices that must be re-evaluated following an input change—let
us call this set MustEvaluate—includes not only modified and affected vertices but also
the successors of affected vertices. In general, evaluating a vertex’s value will require
examination of the value of each of its predecessors. This suggests that any incremental
algorithm for this problem must, in fact, take time (VipusiEvaluate + E pustEvaluate) tO PTO-
cess an input change. Consequently, we would like to define ||d|] to be
VMustEvaluate + E ;I—ustEvaluate .

The above discussion is relevant to all the problems we consider in this thesis,
since, in each case, we can express the output value of a vertex as some function of the
output values of its neighbouring vertices. (The other problems differ from the circuit
value annotation problem in that the input graphs may contain cycles in these other prob-
lems. Thus, while the circuit value annotation problem is the problem of computing the
fixed point of a non-recursive collection of equations, the other problems require the
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computation of some particular fixed point of a possibly recursive collection of equa-
tions.) However, in a problem like the single-sink shortest-path problem, the output
value of a vertex depends on the output value of its successors (as opposed to the circuit
value annotation problem where the output value of a vertex depends on the output value
of its predecessors). Thus, we need to exchange the roles of predecessors and successers
in the above discussion to apply it to the single-sink shortest-path problem. Just to sim-
plify matters, we will somewhat generously define || || in terms of the number of neigh-
bours of vertices (rather than the number of successors or predecessors) so that the
definition is uniformly applicable to all these problems.

The above discussion motivates the following terminology. If K is a set of vertices
in a graph G, then the extended size of K (of order 1), denoted by ||K ||;,¢ or just || K]|l,
is defined to be Vg +Eg. In other words, || K || is the sum of the number of vertices in K
and the number of edges with an endpoint in K. Similarly, we define ||K I < to be
Vk+E ¢ and we define [|K|| ~ to be Vg+E & . The extended size of K of order i,
denoted by ||K||; g or just ||K||;, is defined to be Vii-i (k) + Eni-1 (ky—in other words, it
is the extended size of N*"1(K). In this thesis, we are only concerned with extended
sizes of order 1 and order 2.

We now turn to the problem of defining the “size” of the change in the input and
output. '

We denote by G+3 the graph obtained by making a change 6 to graph G. A vertex
4 in G or G+8 is said to have been modified by § if 3 inserted or deleted u, or modified
the input value associated with u, or inserted or deleted some edge incident on u, or

modified the information associated with some edge incident on u.! The set of all
modified vertices in G+6 will be denoted by MODIFIED 5. Note that this set captures
the change in the input. A vertex in G+9 is said to be an affected vertex either if it is a
newly inserted vertex or if its output value in G+ is different from its output value in G.
Let AFFECTEDg s denote the set of all affected vertices in G+9. This set captures the
change in the output. We define CHANGEDg, 5 to be MODIFIEDg 5 w AFFECTEDg 5.

IThus, if an edge is modified we consider both the endpoints of the edge to be modified vertices. Again,
this simplification leads to a somewhat generous definition of ||8]|. When an edge is modified, in some
problems, like the circuit value annotation problem, it would be appropriate to consider the target of the
edge to be modified, while for some problems like SSSP, it would be appropriate to consider the source of
the edge to be modified.
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This set, which we occasionally abbreviate further to just 8, captures the change in the
input and output. The subscripts of the various terms defined above will be dropped if no
confusion is likely.

There is a small complication in considering the extended size of the set of
modified vertices. Deleted vertices and edges occur only in G, while inserted vertices
and edges occur only in G+3. Hence, we use the union of the two graphs G and G+9,
denoted by G in measuring extended sizes. We use || MODIFIED||; g as a measure of
the size of the change in input, || AFFECTED]|; g as a measure of the size of the change
in output, and ||CHANGED||; g, which we abbreviate to ||8]| is a measure of the size
of the change in the input and output. An omitted subscript i implies a value of 1.

In summary, we use both Vg and |8] to denote the number of vertices that are
modified or affected, and E to denote the number of edges that have at least one end-
point that is modified or affected, and [18]] to denote V5 +Es.

There are a couple of generalizations necessary to the above definition of |{61|
under some conditions. For some problems the output may not be unique—there may be
multiple satisfactory outputs for a given input. An example is the problem of prioritizing
a dag, where we are interested in assigning a priority to each vertex in the graph such that
priority (u) < priority (v) if there is path from u to v in the dag. Obviously, there can be
many correct prioritizations of a dag. In such problems, the set of vertices whose output
values have to be changed, following an input change, is not uniquely defined. In other
words, the notion of affected vertices is not precisely defined. Corresponding to each
possible new solution there is a set of affected vertices, and a corresponding value for
I181]. For such problems, ||3|| is defined to be the minimum extended size of the change
in the input and output over all possible new solutions [Alp90].

Another generalization becomes necessary when one considers problems where the
output computed for a vertex is not atomic but structured. That is, the output for a vertex
consists not of a single value, but of multiple values. We will define this generalization
later in Chapter 4, when we discuss the all-pairs shortest-path problem, where one is
interested in computing a vector of values for each vertex.

An incremental algorithm for a problem P takes as input a graph G, the solution to
graph G, possibly some auxiliary information, and input change 8. The algorithm com-
putes the solution for the new graph G+d and updates the auxiliary information as neces-
sary. The time taken to perform this update step may depend on G, §, and the auxiliary
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information. An incremental algorithm is said to be a bounded algorithm if, for a fixed
value of i, we can express the time taken for the update step entirely as a function of the
parameter ||8];c (as opposed to other parameters, such as |V(G)|). (The cost of
updating really depends on the model of computation—it depends on the costs assigned
to elementary operations. We use a form of the uniform cost measure [Tar83] under
which every elementary operation is assigned unit cost, subject to restrictions on the size
of the operands allowed. This cost measure is discussed in greater detail later on, in
Chapter 8.) It is said to be an unbounded algorithm if its running time can be arbitrarily
large for fixed ||81;,6-

A dynamic problem is said to be a bounded problem with respect to a model of
computation if it has a bounded algorithm within that particular model of computation.
Similarly, a dynamic problem is said to be an unbounded problem with respect to a
model of computation if it has no bounded algorithm within that model of computation.

While the above definition of boundedness is kapplicable for most of the problems
we discuss in this thesis, there are some problems where it needs to be generalized. Let
us return to a point raised earlier, in the discussion of the circuit value annotation prob-
lem. The motivation for considering the extended size of order 2 comes from the follow-
ing two points: it is necessary to evaluate vertices that are one step away from affected
vertices, and evaluating a vertex requires examining vertices that are a step away from
the evaluated vertex. An alternative, more general, approach to using the extended size
of order 2 is to assume that the cost of evaluating a function at a vertex u is given by
some known constant cost (). For any set X of vertices, define cost (X) to be the sum of
the costs of all vertices in X. We earlier noted that any incremental algorithm for the cir-
cuit value annotation problem would have to evaluate all vertices in
CHANGEDWU Succ (AFFECTED). We define Cg 5, abbreviated to Cs, to be
cost (CHANGED u Succ (AFFECTED)). Thus, Cg is the minimum amount of work an
algorithm would have to spend on evaluating functions during an update. An incremen-
tal algorithm is said to be a bounded scheduling cost algorithm if we can bound the
time taken for the update step by a function of the parameters 18]l and Cg, 5. We will
similarly ~denote the maximum  cost of evaluating any vertex in
CHANGED v Succ (AFFECTED) by M 5.

By a unit change we mean a change that modifies the information associated with
a single vertex or edge, or that adds or deletes a single vertex or edge. Other changes are
said to be non-unit changes. If f (u) is some information (either input or output) associ-
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ated with a vertex u, we will refer to its value before and after the change by f,4(«) and
Jrew(u) respectively.

There are some comments worth making about the presentation of algorithms in
the subsequent chapters. Most of these algorithms make use of sets and linked lists of
various kinds. Operations on sets and lists are often specified at a high level. Some
sophisticated implementations—e.g., a doubly linked list—of these data structures may
be required, in various cases, to make the relevant operations efficient. However, we do
not spécify the exact implementation to be used for the various sets and lists. Determin-
ing the implementation that is most appropriate in each case should not be difficult—it
should, in fact, be within the capabilities of sophisticated compilers for high level
languages such as SETL.

One final note: An alternative strategy for studying the computational complexity
of incremental algorithms would have been to restrict the input instances to graphs with a
fixed bound on indegree and outdegree, and to express incremental complexity as a func-
tion of the parameter |8|g = | CHANGEDg, ;. Instead, we have chosen to work with
problems on general graphs and express incremental complexity in terms of ||8l;c =
|lCHANGED || ; g+5- If one does restrict attention to families of bounded-degree graphs,
all complexity bounds given in the paper of the form O(f (11811;c)) can be restated as
bounds of the form O (f (k- |8|g)), where the constant k depends on i and the maximum

degree of the graph.

To bar an easy access to newcomers every scientific domain has introduced its own

terminology and notation.
—K.R. Apt, Handbook of Theoretical Computer Science, Volume B
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Chapter 4

Incremental Algorithms for Shortest-Path Problems

Access to the city was sharply restricted when the earthquake Tuesday broke the
San Francisco-Oakland Bay Bridge ... As alternate routes across the bay, drivers had
several main choices, and all of them posed problems. Taking a route to the north, and
entering San Francisco over the Golden Gate Bridge meant going miles out of the way
for the regular users of the Bay Bridge.

—New York Times (October 20, 1989)

This chapter presents polynomially bounded (O (]| 91| log ||31])) incremental algorithms
for processing unit changes for the single-source shortest-path problem and the all-pairs
shortest-path problem with positive length edges. We also show how negative length
edges can be handled as long as all cycles in the graph have a positive length. We
describe an application of the incremental algorithm for the dynamic SSSP>0 problem to
the batch SSSP problem on graphs that have a small number of negative edges (but no
negative-length cycles).

4.1. The Dynamic Single-Sink Shortest-Path Problem

The input for SSSP>0 consists of a directed graph G with a distinguished vertex sink (G).
Every edge u—>v in the graph has a real-valued length, which we denote by
length (u —>v). The length of a path is defined to be the sum of the lengths of the edges
in the path. We are interested in computing dist (u), the length of the shortest path from
u to sink(G), for every vertex u in the graph. If there is no path from a vertex u to
sink (G) then dist (u) is defined to be infinity.

This section concerns the problem of updating the solution to an instance of the
SSSP>0 problem after a unit change is made to the graph. The insertion or deletion of an
isolated vertex can be processed trivially and will not be discussed here. We present
algorithms for performing the update after a single edge is deleted from or inserted into
the edge set of G. The operations of inserting an edge and decreasing the length of an
edge are equivalent in the following sense: The insertion of an edge can be considered as
the special case of an edge length being decreased from eo to a finite value, while the case
of a decrease in an edge length can be considered as the insertion of a new edge parallel
to the relevant edge. The operations of deleting an edge and increasing an edge length
are similarly equivalent. Consequently, the algorithms we present here can be directly
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adapted for performing the update after a change in the length of an edge.

Proposition 4.1. SSSP>0 has a bounded incremental algorithm. In particular, there
exists an algorithm DeleteEdgessspso that can process the deletion of an edge in time
O (||8|| + 18| log |8|) and there exists an algorithm InsertEdgesssp-o that can process
the insertion of an edge in time O (]|3|| + |3| log 181). '

Though we have defined the incremental SSSP>0 problem to be that of maintain-
ing the lengths of the shortest paths to the sink, the algorithms we present maintain the
shortest paths as well. An edge in the graph is said to be an SP edge iff it occurs on some
shortest path to the sink. Thus, an edge u —> v is an SP edge iff dist (u) = length(u —>v)
+dist(v). A subgraph T of G is said to be a (single-sink) shortest-paths tree for the given
graph G with sink sink (G) if (1) T is a (directed) tree rooted at sink (G), (ii) V(T) is the
set of all vertices that can reach sink(G) in G, and (iii) every edge in T is an SP edge.
Thus, for every vertex u in V(T), the unique path in T from u to sink (G) is a shortest
path.

The set of all SP edges of the graph, which we denote by SP(G), induces a sub-
graph of the given graph, which we call the shortest-paths subgraph. A graph and its
shortest-paths subgraph are shown in Figure 4.1. We will occasionally denote the
shortest-paths subgraph also by SP(G). Note that a path from some vertex u to the sink
vertex is a shortest path iff it occurs in SP(G) (i.e., iff all the edges in that path occur in
SP (G)). Since all edges in the graph are assumed to have a positive length, any shortest
path in the graph must be acyclic. Consequently, SP(G) is a directed acyclic graph
(dag). As we will see later, this is what enables us to process input changes in a bounded
fashion. If zero length edges are allowed, then SP(G) can have cycles, and the algo-
rithms we present in this chapter will not work correctly in all instances.

Our incremental algorithm for SSSP>0 works by maintaining the shortest-path
subgraph SP(G). We will also find it useful to maintain the outdegree of each vertex u
in the subgraph SP (G).

4.1.1. Deletion of an Edge

The update algorithm for edge deletion is given as procedure DeleteEdgesssp»o in Figure
4.2.

We will find it useful in the following discussion to introduce the concept of an
affected edge. An SP edge x —>y is said to be affected by the deletion of the edge
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sink

SP(G) i

SP(G), after the deletion of d —> b

Figure 4.1. A graph G and its shortest-paths subgraph SP(G). The shaded region indicates the vertices
and edges that are affected by the deletion of the edge d —>b.

v —> w if there exists no path in the new graph from x to the sink that makes use of the
edge x —>y and has a length equal to dist,jz(x). Tt is easily seen that x —>y is an
affected SP edge iff y is an affected vertex. On the other hand, any vertex x other than v
is an affected vertex iff all SP edges going out of x are affected edges. The vertex v itself
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is an affected vertex iff v —> w is the only SP edge going out of vertex v.

The algorithm for updating the solution (and SP(G)) after the deletion of an edge
works in two phases. The first phase (lines [4]-[14]) computes the set of all affected ver-
tices and affected edges and removes the affected edges from SP(G), while the second
phase (lines [15]-{30]) computes the new output value for all the affected vertices and
updates SP (G) appropriately.

Phase 1: Identifying affected vertices

A vertex’s dist value increases due to the deletion of edge v —> w iff all shortest
paths from the vertex to sink(G) make use of edge v —>w. In other words, if SP(G)
denotes the SP dag of the original graph, then the set of affected vertices is precisely the
set of vertices that can reach the sink in SP(G) but not in SP(G)- {v —>w}, the dag
obtalned by deleting edge v —> w from SP (G).

Consider the example shown in Figure 4.1. Consider the deletion of the edge
d —> b from the graph. To determine the set of affected vertices we remove d — b from
SP(G) and determine the set of vertices in SP (G) that can no longer reach the sink ver-
tex. The set of affected vertices and affected edges, in this case, is shown by the shaded
region in the figure. Note that there exist shortest paths in G from vertices e, f, i, and j to
the sink that pass through the deleted edge d —>b. However, these vertices are unaf-
fected since there exist alternate shortest paths from these vertices to the sink that do not
pass through edge d —> b. On the other hand, all shortest paths from vertices d, g, and k
to the sink pass through edge d — b, and, hence, these vertices are affected by the dele-
tion of d — b.

Thus, Phase 1 is essentially an incremental algorithm for the single-sink reachabil-
ity problem in dags that updates the solution after the deletion of an edge. The algorithm
is very similar to the topological sorting algorithm. It maintains a set of vertices
(WorkSet) that have been identified as being affected but have not yet been processed.
Initially v is added to this set if v —> w is the only SP edge going out of v. The vertices in
WorkSet are processed one by one. When a vertex u is processed, all SP edges coming
into u are removed from SP (G) since they are affected edges. During this process some
vertices may be identified as being affected (because there no longer exists any SP edge
going out of those vertices) and may be added to the workset.

We maintain outdegreesp(x), the number of SP edges going out of vertex x, so that
the tests in lines [3] and [12] can be performed in constant time. We have not discussed
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procedure DeleteEdgesssp.o(G, v —> w)
declare
G- a directed graph; y —> w: an edge to be deleted from G
WorkSet, AffectedVertices: sets of vertices;  PriorityQueue: a heap of vertices
preconditions
SP (G) is the shortest-paths subgraph of G
Vv e V(G), outdegreesp(v) is the outdegree of vertex v in the shortest-paths subgraph SP (G)
Vv e V(G), dist(v) is the length of the shortest path from v to sink (G)
begin .
(11 ifv—>we SP(G) then
2] Remove edge v —> w from SP (G) and from E (G) and decrement outdegreesp(v)
{31 if outdegreesp(v) =0 then

4 /* Phase 1: Identify the affected vertices and remove the affected edges from SP(G) */
[51 WorkSet :={ v }
[6] AffectedVertices := &
7 while WorkSet = & do
[8} Select and remove a vertex u from WorkSet
[9] Insert vertex u into AffectedVertices
[10] for every vertex x such that x —>u € SP(G) do
[11} Remove edge x — u from SP(G) and decrement outdegreegsp(x)
[12] if outdegreegp(x) = 0 then Insert vertex x into WorkSet fi
[13] od
(14} od
[15] /* Phase 2: Determine new distances from affected vertices to sink (G) and update SP(G). */
[16] PriorityQueue := @
(17 for every vertex a € AffectedVertices do
[18] dist(a) := min ({ length(a —> b)+dist(b) |
a—>b e E(G)and b ¢ AffectedVertices) } v { = })
[19] if dist (a) # o then InsertHeap(PriorityQueue, a, dist(a)fi
20} od
21 while PriorityQueue # & do
[22] a := FindAndDeleteMin(PriorityQueue)
23] for every vertex b € Succ(a) such that length (a —> b) + dist(b) = dist(a) do
[24] Insert edge a —> b into SP (G) and increment outdegreesp(a)
[25] od
[26] for every vertex ¢ € Pred(a) such that length (¢ — a) + dist(a) < dist(c) do
271 dist(c) := length (c —> a) + dist(a)
[28] AdjustHeap( PriorityQueue, c, dist(c))
[29] od
[30] od
313 fi
[32] else Remove edge v —> w from E(G)
(331 £
postconditions

SP(G) is the shortest-paths subgraph of G
Vv e V(G), outdegreesp(v) is the outdegree of vertex v in the shortest-paths subgraph SP (G)
Vv e V(G), dist(v) is the length of the shortest path from v to sink (G)

end

Figure 4.2. An algorithm to update the SSSP>0 solution and SP (G) after the deletion of an edge.
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how the subgraph SP(G) is maintained. If SP(G) is represented by maintaining (adja-
cency) lists at each vertex of all incoming and outgoing SP edges, then it is not necessary
to maintain outdegreesp(x) separately, since outdegreesp(x) is zero iff the list of outgo-
ing SP edges is empty. Alternatively, we can save storage by not maintaining SP(G)
explicitly. Given any edge x —y, we can check if that edge is in SP(G) in constant
time, by checking if dist (x) = length(x = y) + dist(y). In this case, it is useful to main-
tain outdegreegp(x).

We now analyze the time complexity of Phase 1. The loop in lines [7]-[14] per-
forms exactly | AFFECTED]| iterations, once for each affected vertex u. The iteration
corresponding to vertex u takes time O (| Pred(u)]). Consequently, the running time of

Phase 1 is O( Y | Pred (u)|) = O (|| AFFECTED || ). If we maintain the SP
u € AFFECTED

dag explicitly, then the running time is linear in the extended size of AFFECTED in the
SP dag, which can be less than the extended size of AFFECTED in the graph G itself.

Phase 2: Determining new distances for affected vertices and updating SP(G)

Phase 2 of DeleteEdgesssp-o is an adaptation of Dijkstra’s batch shortest-path algorithm
that uses priority-first search [Sed83] to compute the new dist values for the affected ver-
tices.

Consider Figure 4.3. Assume that for every vertex y in set A the length of the shor-
test path from y to the sink is known and is given by dist(y). We need to compute the
length of the shortest path from x to the sink for every vertex x in the set of remaining
vertices, B. Consider the graph obtained by “condensing” A to a new sink vertex: that is,
we replace the set of vertices A by a new sink vertex s, and replace every edge x —y
from a vertex x in B to a vertex y in A by an edge x-S of length
length (x —>y)+dist(y). The given problem reduces to the SSSP problem for this
reduced graph, which can be solved using Dijkstra’s algorithm. Phase 2 of our algorithm
works essentially this way.

A similar situation arises during the course of execution of Dijkstra’s algorithm,
where we know the dist values for a subset A of vertices, and the dist values have to be
computed for the remaining vertices B. In relating the above situation in the incremental
algorithm to the situation in the batch algorithm one should note the following point.
During the course of execution of Dijkstra’s algorithm we can guarantee that the correct
dist value for every vertex in B is greater than or equal to the already computed dist value




40

length(x = y)

length(x —> y) + dist(y)

® ;5 the new sink

length(x —>w ) + dist{w)

Figure 4.3. Phase 2 of DeleteEdgesssp>0- Let A be the set of unaffected vertices and let B be the set of af-
fected vertices. The correct dist value is known for every vertex in A and the new dist value has to be com-
puted for every vertex in B. This problem can be reduced to a batch instance of the SSSP>0 problem,
namely the SSSP>0 problem for the graph obtained as follows: we take the subgraph induced by the set B
of vertices, introduce a new sink vertex, and for every edge x —>y from a vertex in B to a vertex outside B,
we add an edge from x to the new sink vertex, with length length (x —>y)+dist (y).

for any vertex in A. This is not necessarily true in the situation in the dynamic SSSP>0
problem.

Before we analyze the complexity of Phase 2, we explain the heap operations we
make use of in the algorithm. The operation InsertintoHeap (H,i,k) inserts an item i into
heap H with a key k. The operation F indAndDeleteMin (H) returns the item in heap H
that has the minimum key and deletes it from the heap. The operation
AdjustHeap (H,i,k) inserts an item i into Heap with key k if i is not in Heap, and changes
the key of item i in Heap to k if i is in Heap. In this algorithm, AdjustHeap either inserts
an item into the heap, or decreases the key of an item in the heap.
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The complexity of Phase 2 depends on the type of heap we use. We assume that
PriorityQueue is implemented as a relaxed heap (see [Dri88]). Both insertion of an item
into a relaxed heap and decreasing the key of an item in a relaxed heap cost O (1) time,
while finding and deleting the item with the minimum key costs O (log p) time, where p
is the number of items in the heap.

The loop in lines [21]-[30] iterates at most | AFFECTED| times. An affected ver-
tex a is processed in each iteration, but not all affected vertices may be processed. In
particular, affected vertices that can no longer reach the sink vertex will not be pro-
cessed. [Each iteration takes O(]||{a}ll) time for lines [23]-[29], and
O (log | AFFECTED)|) time for the heap operation in line [22]. Hence, the running time
of Phase 2 is O (|| AFFECTED|| + | AFFECTED| log | AFFECTED).

It follows from the bounds on the running time of Phase 1 and Phase 2 that the
total running time of DeleteEdgessspso IS bounded by O(||AFFECTED|| +
| AFFECTED| log | AFFECTED|), which is O(]|8]1 + 18| log |d]).

4.1.2. Insertion of an Edge

We now turn to the problem of updating distances and the set SP(G) after an edge
v —>w with length c is inserted into G. The algorithm for this problem, procedure
InsertEdgessspso. is presented in Figure 4.5. The algorithm presented works correctly
even if the length of the newly inserted edge is non-positive as long as all edges in the
original graph have a positive length and the new edge does not introduce a cycle of
negative length. This will be important in generalizing our incremental algorithm to han-
dle edges of non-positive lengths.

The algorithm is based on the following characterization of the region of affected
vertices, which enables the updating to be performed in a bounded fashion. If the inser-
tion of edge v — w causes u to be an affected vertex, then any new shortest path from u
to sink (G) must consist of a shortest path from u to v, followed by the edge v —>w, fol-
lowed by a shortest path from w to sink(G). In particular, a vertex u is affected iff
dist (u,v) + length (v —>w) + distyy(w) < distya(u), where dist (u,v) is the length of the
shortest path from  to v in the new graph, and dist 4 refers to the lengths of the shortest
paths to the sink in the graph before the insertion of the edge v —> w. The new dist value
for an affected vertex u is given by dist (u,v) + length(v — w) + distig(w).

Consider 7, a single-sink shortest-path tree for the vertex v. Let x be any vertex,
and let u be the parent of x in T. (See Figure 4.4.) If x is an affected vertex, then u must
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/W

Affected vertices

/“ sink(G)

x
Tree T

Figure 4.4. T is a shortest-path tree for sink v. If x is an affected vertex, then u, the parent of x in T, must
also be an affected vertex. Hence, the set of all vertices affected by the insertion of the edge v —> w forms
a connected subtree at the root of 7.

also be an affected vertex: otherwise, there must exist some shortest path P from u to
sink (G) that does not contain edge v —> w; the path consisting of the edge x —> u fol-
lowed by P is then a shortest path from x to sink (G) that does not contain edge v —>w;
hence, x cannot be an affected vertex, contradicting our assumption. In other words, any
ancestor (in 7) of an affected vertex must also be an affected vertex. The set of all
affected vertices must, hence, form a connected subtree of T at the root of T.

The algorithm works by using an adaptation of Dijkstra’s algorithm to construct
the part of the tree T restricted to the affected vertices (the shaded part of T in Figure 4.4)
in lines [3]-[6], [10], [11], and [16]-[19]. These lines differ from a straightforward
implementation of Dijkstra’s algorithm in the following way. When the vertex u is
selected from PriorityQueue in line [11], its priority is nothing but dist (u,v). In a normal
implementation of Dijkstra’s algorithm, every predecessor x of u would then be exam-
ined (as in the loop in lines [16]-[23]), and its priority in PriorityQueue would be
adjusted if length (x — u) + dist (u,v) was less than the length of the shortest path found
so far from x to v. Here, we instead adjust the priority of x or insert it into PriorityQueue
only if length (x —> u) + dist (1) is less than dist (x): that is, only if edge x —> u followed
by a shortest path from u to sink (G) yields a path shorter than the shortest path currently
known from x to sink (G). In other words, a vertex x is added to PriorityQueue only if it
is an affected vertex. In effect, the algorithm avoids constructing the unshaded part of
the tree T in Figure 4.4.
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procedure InsertEdgegssp.o(G, v —> w, ¢)
declare ‘
G: a directed graph
v — w: an edge to be inserted in G
c: a positive real number indicating the length of edge v —>w
PriorityQueue: a heap of vertices
preconditions
SP (G) is the shortest-paths subgraph of G
Vv e V(G), outdegreesp(v) is the outdegree of vertex v in the shortest-paths subgraph SP (G)
Y v e V(G), dist (v) is the length of the shortest path from v to sink G
begin
[11 Insertedge v —>winto E(G)
(21 length(v —»w):=c¢
[3]  PriorityQueue =&
[4]  if length(v —>w) + dist (w) < dist (v) then
(5} dist(v) := length (v —> w) + dist (w)
(6] InsertHeap(PriorityQueue, v, 0)
[7]1 elseif length(v —>w) + dist(w) = dist(v) then
(8] Insert v —> w into SP (G) and increment outdegreegp(v)
Q9 *f
[10] while PriorityQueue # & do
[11] u := FindAndDeleteMin(PriorityQueue)
[12] Remove all edges of SP(G) directed away from u and set outdegreesp(u) =0
[13] for every vertex x € Succ(u) do

[14] if length (u — x) + dist (x) = dist (u) then Insert u —> x into SP (G) and increment outdegreesp(u) fi
[15] od

[16] for every vertex x € Pred(u) do

[17] if length (x —> u) + dist (u) < dist (x) then

18] dist (x) = length (x —> u) + dist (u)

191 AdjustHeap(PriorityQueue, x, dist (x) — dist (v))

[20] else if length (x —> u) + dist (u) = dist (x) then

213 Insert x —> u into SP(G) and increment outdegreesp(x)
[22] fi

[23] od

[24] od

postconditions

SP(G) is the shortest-paths subgraph of G
Vv e V(G), outdegreesp(v) is the outdegree of vertex v in the shortest-paths subgraph SP (G)
Vv e V(G), dist(v) is the length of the shortest path from v to sink (G)

end

Figure 4.5. An algorithm to update the SSSP>0 solution and SP(G) after the insertion of an edge v —>w
into graph G.

During this process, the set of all affected vertices is identified and every affected
vertex is assigned its correct value finally. If v is affected, it is assigned its correct value
in line [5]; any other affected vertex x will be assigned its correct value in line [18].
Simultaneously, the algorithm also updates the set of edges SP(G) as follows. If v is




44

unaffected but v — w becomes an SP edge, it is added to SP(G) in line [8]. Similarly
any edge x —> u that becomes an SP edge, while x is unaffected, is identified and added
to SP(G) in line [21]. For any affected vertex u, an edge u — x directed away from u
can change its SP edge status. These changes are identified and made to SP(G) in lines
[12]-[15].

Note that unlike procedure DeleteEdgessspso, in which the process of identifying
which vertices are members of AFFECTED and the process of updating dist values are
separated into separate phases, in procedure InsertEdgesssp>o the identification of
AFFECTED is interleaved with updating. Observe, too, that the algorithm works
correctly even if the length of the newly inserted edge is negative, as long as all other
edges have a positive length and the new edge does not introduce a cycle of negative
length. The reason is that we require edges to have a non-negative length only in the
(partial) construction of the tree T. But in constructing a shortest-path tree for some sink
vertex, one can always ignore edges going out of the sink vertex, as long as there are no
negative length cycles. Consequently, it is immaterial, in the construction of T, whether
length (v — w) is negative or not.

We now analyze the time complexity of InsertEdgesssp>o- The loop in lines [10]-
[24] iterates once for every affected vertex u. FEach iteration takes time
O (log | AFFECTED) for line [11] and time O (|| {»}]]) for lines [12]-[23]. Note that
the AdjustHeap operation in line [19] either inserts a vertex into the heap or decreases the
key of a vertex in the heap. Hence it costs only O(1) time. Thus, the running time of
procedure InsertEdgesssp>o is O (|| AFFECTED|| + | AFFECTED| log | AFFECTED/),
which is O (|| 31| log 113 1]).

4.1.3. Incremental Updating in the Presence of Negative-Length Edges

It is well known that Dijkstra’s shortest-path algorithm cannot be used for graphs with
negative-length edges. The presence of zero-length edges, however, poses no problem
for Dijkstra’s algorithm. In contrast, the obstacle to updating the SSSP solution in a
bounded fashion is not the presence of negative-length edges per se but the presence of
zero-length (or negative-length) cycles.

Procedure InsertEdgesssp-o Will work correctly even in the presence of zero-length
edges, as can be verified easily. Procedure DeleteEdgesssp-o, however, may not work
correctly if the input graph has zero-length cycles because the SP graph need no longer
be a dag. (Every edge in a zero-length cycle will be in the SP graph, provided the sink is
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reachable from the cycle) If the SP graph is not a dag, then Phase 1 of
DeleteEdgesssp-o may not identify the set of affected vertices correctly. When edge
v —>w is deleted from the graph shown in Figure 4.6, for example, vertices v and u are
affected. But Phase 1 is unable to determine this because vertex v —>w is not the only
SP edge going out of v. The problem lies essentially in handling cycles in the dynamic
reachability problem. We show in Chapter 8 that there exists no bounded incremental
algorithm, within a certain model of computation, for maintaining shortest paths if zero-
length cycles are allowed in the graph.

However, bounded incremental algorithms do exist for the dynamic SSSP-Cycle>0
problem: the dynamic single-sink shortest-path problem in graphs where edges may have
arbitrary length but all cycles have positive length. First, it can be verified easily that
both DeleteEdgesssp-0 and InsertEdgessspso Work correctly even in the presence of
zero-length edges as long as there are no zero-length cycles. However, they do not work
correctly in the presence of negative-length edges for the same reasons that Dijkstra’s
algorithm does not. We will now see how these incremental algorithms for the SSSP>0
problem can be adapted to work for the SSSP-Cycle>0 problem, often with no increase in
the time complexity.

The idea is to use the technique of Edmonds and Karp for transforming the length
of every edge in a graph to a non-negative real without changing the graph’s shortest
paths [Edm72, Tar83]. Their technique is based on the observation that if the length of
each edge a — b is replaced by f (b) + length(a —>b) - f (a), where f is any function

Figure 4.6. An example to show the difficulty in updating the SSSP solution after the deletion of an edge,
if zero-length cycles are present in the graph. SP edges are represented by solid edges, and other edges by
dashed edges. It appears as though vertex v is not affected after the deletion of edge v —> w because of an
alternative shortest path via edge v —> u.
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that maps vertices of the graph to reals, then the shortest paths in the graph are
unchanged from the original edge-length mapping (though their lengths will change).
The reason is that if P is any path from a vertex a to a vertex b, then length’(P) =
f (b) + length (P) — f (a), where length’ denotes the lengths under the modified edge-
length mapping. Consequently, dist’(a,b) = f (b) + dist (a,b) — f (a), where dist denotes
the length of the shortest path between two vertices.

Hence, if we can find some function f that satisfies

f (b)+ length(a —>b) - f(a)20 (1)
for every edge a — b in the graph, then Dijkstra’s algorithm can be used to compute the
shortest paths under the modified edge-length mapping, and the lengths of the shortest
paths under the original edge-length mapping can be easily recovered from this informa-
tion. Our goal is to use this technique for the dynamic SSSP problem.

We note that such a function f is available for the problem of incrementally updat-
ing shortest paths to a sink after the deletion of an edge: we simply let f () be dist,ig(u),
the length of the shortest path in graph G from u to sink (G) before G was modified. Note
that for every edge a —> b in the original graph distyg(a) < distyg(b) + length (a —> b),
and hence, dist,; meets the properties required of f. This is not completely true since
dist, (1) is o for any vertex u from which the sink cannot be reached. However, the
deletion of an edge v —> w, where dist,4(v) is oo, causes no change in the solution, and is
trivially handled. If, on the other hand, dist,;(v) is finite, then dist, (1) is finite for
every vertex u that is visited during the update. Vertices that could not reach the sink in
the original graph are of no interest. Hence, dist,y; turns out to be a satisfactory choice
for the function f. The update algorithm works just like DeleteEdgesssp-0, except that it
uses the rescaled functions length’ and dist’ instead of length and dist. The new dist
values can be easily computed from the updated dist’ values as indicated above.

We use the same strategy for updating the solution after the insertion of an edge
v —> w. However, in the case of an edge insertion, the function dist,y can fail to satisfy
property (f) in two cases. The first case is that the transformed length of the newly
inserted edge v —>w is not guaranteed to be non-negative; however, this causes no
difficulties because, as explained in the previous section, InsertEdgesssps0  WOIks
correctly even if the length of the inserted edge is non-positive.

The second case is more problematic. The above technique for updating the solu-
tion to the SSSP-Cycle>0 problem fails for one type of input change, namely the inser-
tion of an edge v — w that creates a path from v to the sink vertex where no path existed
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before. For such an input modification, we cannot use dist,;y as the function f, since
dist,yy is e for vertex v and other vertices from which the sink was unreachable in the
original graph. However, even such an input modification can be handled in time
O()|8] - |8]) as follows. Note that in what follows we assume that dist,4(v) is o while
dist,g(w) is finite.

Consider the set U of all vertices that reach v for which dist,y is . Solve the
single-sink shortest-path problem for the subgraph induced by U with v as the sink using
the Bellman-Ford algorithm or any other suitable shortest-path algorithm. (See [Cor90],
for example.) This can be done in O(lI8]l - |18]) time since every vertex in U is an
affected vertex. This gives us the length dist(u,v) of the shortest path from u to v for

every vertex u in U. Now, define the function foy:
f(u) = distya(u) ifu ¢ U
= dist(u,v)+C otherwise
where C is a constant chosen so that the rescaled lengths of all edges except v —>w are
non-negative. Thus, C should be chosen such that for all edges x —y with x outside U

The set U of vertices that could not
reach the sink vertex in the original
graph (before the insertion of the edge
from v to w)

Figure 4.7. Updating the shortest path information, in the presence of negative-length edges, after the
insertion of an edge v —> w, when dist,4(v) is o and dist,4(w) is finite. The shaded region in the above
figure is the set U of vertices that can reach vertex v but not the sink vertex in the original graph.
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and y in U, f (y)+length(x = y)—f (x) 2 0. Substituting from the definition of f, C
should be such that dist (y,v) + C + length (x = y) — dist,;4(x) 2 0. Hence, we define C
to be max { dist,y(x)—length(x —>y)—dist(y,v) | x—>y € E(G) and x & U and
y € U }. Now, we can use an adaptation of InsertEdgesssp-o that makes use of the res-
caled lengths to perform the update to the solution.

We can think of the above method as inserting the edge v — w with its correct
length in two steps: first, the edge v —>w is inserted with a length large enough that only
vertices in U are affected; the updating for this input modification is performed using an
adaptation of the Bellman-Ford algorithm,; then, the length of the edge v —> w is reduced
to its correct length; the updating for this modification is then done using the previously
explained methods.

4.1.4. The Batch SSSP Problem in the Presence of Negative-Length Edges

We have so far restricted our attention to unit changes. We will address the problem of
updating the solution to an instance of the SSSP>0 problem after an arbitrary change in
the input graph in Chapter 6. We will meanwhile consider a special class of non-unit
changes that can be handled easily using the incremental algorithms that have been
presented in this chapter and discuss an application of these algorithms.

Consider the insertion of a number of edges v—>wy, 1, VW, all directed
away from the same vertex v, into the graph. Each edge v — w; introduces a candidate
for the new shortest path from v to the sink, whose length is given by
length (v —> w;) +dist (w;). We can easily modify InsertEdgesssp>o to handle an input
change of this kind: we would insert all these edges into the graph, compare all candidate
shortest paths to identify the best candidate, and then proceed as before.

We now consider an application of this generalized incremental algorithm to the
batch SSSP problem. Yap [Yap83] describes an algorithm for finding the shortest path
between two vertices in a graph that may include edges with negative length. This algo-
rithm works better than the standard Bellman-Ford algorithm when the number of
negative-length edges is small. We now present an algorithm for this problem that has a
better time complexity. This algorithm, in fact, solves the single-source or single-sink
problem rather than just the single-pair problem.

We first consider the time complexity of Yap’s algorithm. Let G be the given
graph. Let n denote the number of vertices in G and let m denote the number of edges in
G. Let h denote the number of edges whose length is negative, and let k denote
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min(h,n). Yap’s approach reduces a single-pair shortest path problem on the given graph
G to min(h+1,n) SSSP>0 problems on the subgraph of G consisting of only non-negative
edges, and a single-pair shortest-path problem on a graph consisting of O (k) vertices and
O (k?) edges of arbitrary (that is, both positive and negative) lengths. This yields an
Okim+n logn]+k3) algorithm for the problem, which is better than the standard
O (mn) algorithm for sufficiently small k. (Actually, Yap describes the time complexity
of the algorithm as O(knz), since he makes use of Dijkstra’s O(nz) algorithm. The
above complexity follows from Fredman and Tarjan’s [Fre87] improvement to Dijkstra’s
algorithm. The complexity of the above algorithm can be improved slightly by utilising
the recent O (m +nlogn /loglogn) shortest path algorithm due to Fredman and Willard
[Fre90a]).

We now consider how our incremental algorithm for the shortest-path problem can
be used to solve this problem better. Let u,...,u be the set of all vertices in the
graph that have an outgoing edge of negative length. Thus k’ < k. First replace all the
negative edges in the given graph G with zero-length edges. Compute the solution to this
graph by using, say, the Fredman-Tarjan improvement to Dijkstra’s algorithm. Now pro-
cess the vertices uq,...,u one by one. The vertex u; is processed by restoring the
lengths of all the edges directed away from u; to their actual values and updating the
solution using the generalization of InsertEdgesssp>o discussed above.

The updating after each insertion step takes O (||3|| + 18] log |8]) time, which is
O(m+nlogn) time in the worst case. Hence, the algorithm runs in time
O (k'[m+nlogn]). In general, the algorithm can be expected to take less time than this
bound, since all the update steps have bounded complexity.

4.2. The Dynamic All-Pairs Shortest-Path Problem

This section concerns a bounded incremental algorithm for a version of the dynamic all-
pairs shortest-path problem with positive-length edges (APSP>0).

We will assume that the vertices of G are indexed from 1..|V(G)|. APSP>0
involves computing the entries of a distance matrix, dist[1.. |V(G)], 1.. |V(G)]],
where entry dist[i, j] represents the length of the shortest path in G from vertex i to ver-
tex j. It is also useful to think of this information as being associated with the individual
vertices of the graph: with each vertex there is an array of values, indexed from
1..]V(G)|—the j th yalue at vertex i records the length of the shortest path in G from
vertex i to vertex j. This lets us view the APSP>0 problem as a graph problem that
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requires the computation of an output value for each vertex in the graph, though the
actual information may be stored in a two-dimensional array, if necessary. However,
APSP>0 does not fall into the class of graph problems that involve the computation of a
single atomic value for each vertex u in the input graph, and so, as explained below,
some of our terminology in this section differs from the terminology that was introduced
in Chapter 3.

Since MODIFIED measures the change in the input, the definition of MODIFIED
remains the same (and hence for a single-edge change to the graph |MODIFIED| =
In order to define AFFECTED, which measures the change in the output, we view the
problem as n instances of the SSSP>0 problem. Let AFFECTED, represent the set of
affected vertices for the single-sink problem with u as the sink vertex. We define
| AFFECTED| for the APSP>O problem as follows:

V(G|
| AFFECTED | = z; | AFFECTED,, |.

u=1
Thus, | AFFECTED)| is the number of entries in the dist matrix that change in value. We
define the extended size || AFFECTED || as follows:

[4(]
|| AFFECTED||; = Z || AFFECTED,, ||,

u=1
Note that for a given change 0, some or all of the AFFECTED, can be empty and, hence,
|| AFFECTED ||; may be less than |V(G)|. The parameter [18]]; in which we measure

the incremental complexity of APSP>0 is defined as follows:
II18]|; = |MODIFIED||; + || AFFECTED||;.

The parameter |3] is also similarly defined.

Though it is arguable how precisely 1811, as defined above, measures the size of
the change in the output, the above definitions are clearly in the same spirit as those from
Chapter 3.

We now turn our attention to the problem of updating the solution to an instance of
the APSP>0 problem after a unit change.

The operations of inserting and deleting isolated vertices are trivially handled but
for some concerns having to do with dynamic storage allocation. Whether the shortest-
path distances are stored in a single two-dimensional array or in a collection of one-
dimensional arrays, we face the need to increase or decrease the array size(s). We can
do this by dynamically expanding and contracting these arrays using the well-known
doubling/halving technique (see Section 18.4 of [Cor90], for example). Assume the dis-
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tance matrix is maintained as a collection of n vectors (of equal size), where n is the
number of vertices in the graph. Whenever a new vertex is inserted, a new vector is allo-
cated. Whenever the number of vertices in the graph exceeds the size of the individual
vectors, the size of each of the vectors is doubled (by re-allocation). Vertex deletion is
similarly handled, by halving the size of the vectors when appropriate. The insertion or
deletion of an isolated vertex has an amortized cost of O (|V(G)I) under this scheme:
doubling or halving the arrays takes time O(IV(G)IZ), but the cost is amortized over
Q(| V(G)|) vertex insertion/deletion operations. A cost of O(]V(G)I) is reasonable, in
the sense that the introduction or removal of an isolated vertex causes O(|V(G)|)
“changes” to entries in the distance matrix. Thus, in some sense for such operations
8] =©(]V(G)|), and hence the amortized cost of the doubling/halving scheme is
optimal.

We now consider the problem of updating the solution after the insertion or dele-
tion of an edge. As explained in the previous section, it is trivial to generalize these
operations to handle the shortening or lengthening of an edge, respectively.

Proposition 4.2. APSP>0 has a bounded incremental algorithm. In particular, there
exists an algorithm DeleteEdgeapsp>o that can process an edge deletion in time
O(||8]l2 + |8 log |3]), and there exists an algorithm InsertEdgeapsp>o that can pro-
cess an edge insertion in time O( N8Il )-

4.2.1. Deletion of an Edge

We can view an instance of the APSP>0 problem as n instances of the SSSP>0 problem.
The basic idea behind the bounded incremental algorithm for DeleteEdgeapsp>o 1S tO
make repeated use of the bounded incremental algorithm DeleteEdgesssp>o as a subrou-
tine, but with a different sink vertex on each call. A simple incremental algorithm for
DeleteEdge apsp>o Would be to make as many calls on DeleteEdgessspso as there are ver-
tices in graph G. However, this method is not bounded because it would perform at least
some work for each vertex of G; the total updating cost would be at least O(|V(G)]),
which in general is not a function of || 3||; for any fixed value of i.

The key observation behind our bounded incremental algorithm for
DeleteEdgeapsp-o is that it is possible to determine exactly which calls on
DeleteEdgesssp-o are necessary. With this information in hand it is possible to keep the
total updating cost bounded. Let us call a vertex y an affected sink if there exists some




52

vertex x such that dist(x,y) changes as a consequence of the edge deletion. Our algo-
rithm works by first computing the set of affected sink vertices, and then invoking
DeleteEdgesssp-o for each affected sink vertex.

If dist (x,y) changes as a consequence of the deletion of an edge v —>w, then all
shortest paths from x to y in the original graph must have passed through edge v —>w.
This implies that all shortest paths from v to y must have passed through edge v —>w as
well. Hence, dist (v,y) must also change as a consequence of the edge deletion. In other
words, y is an affected sink following the deletion of an edge v —>w iff dist(v,y)
changes as a result of the edge-deletion. Hence, the set of affected sink vertices is the
same as the set of affected vertices for the single-source shortest-path problem with v as
the source vertex. We know how to compute this set from our edge-deletion algorithm
for the SSSP>0 problem. In particular, let GR denote the graph obtained from G by rev-
ersing all edges in G. The set of affected vertices identified in Phase 1 when we run the
SSSP>0 edge-deletion algorithm for sink v in the graph GR yields AffectedSinks. This is
what we do in line [2] of procedure DeleteEdgespsp>0- (See Figure 4.9.) Obviously
there is no need to explicitly construct the graph GR—we use it in the algorithm descrip-
tion merely to simplify the presentation.

Once we have identified the affected sinks, we just need to invoke
DeleteEdgesssp-o for each affected sink. However, we do not use procedure
DeleteEdgessspso itself, but an adaptation of that procedure. This adaptation, presented
as procedure DeleteUpdate in Figure 4.8, differs from DeleteEdgessspso in the following
ways. First, it accepts an extra argument, vertex z, which is the sink vertex for which the
SSSP>0 solution needs to be updated. Second, unlike DeleteEdgesssp>0, DeleteUpdate
does not delete the edge from the graph, since the deletion of edge v —>w is performed
in DeleteEdgeapsp>o itself (see line [1]). Instead, it updates only the shortest-path dis-
tances to sink z. Third, and most importantly, the algorithm does not maintain either an
explicit representation of the SP dag or the outdegree of vertices in the SP dag, for the
reasons described below.

Note that there is one SP dag for each vertex in the graph. Consequently, the
amount of SP information that changes (for the entire collection of different sinks) can be
unbounded for certain edge-modification operations. For example, when an edge v —>w
is inserted with a length equal to dist (v, w), none of the entries in the distance matrix
change value, and consequently
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IV(G)I
1812 = IMODIFIED||; + ¥ ||AFFECTED, ||,

u=1

= ||MODIFIED||;.

Such an insertion can introduce a new element in the SP set for each of the different
sinks, and thus cause a change in SP information of size Q(|V(G)|). Thus, maintaining
the SP graphs for every sink would be too expensive, and would result in an unbounded
incremental algorithm. The algorithm uses, instead, the predicate SP (a, b, ¢):

SP(a, b, ¢) = (dist(a, c) = length (a — b) + dist (b, c)) A (dist(a, ¢) # o).
Predicate SP (a, b, ¢) answers the question “Is edge a — b an SP edge when vertex c is
the sink?” This check can be done in constant time.

The use of predicate SP(a, b, c) makes it important that the test in line [10] be
carefully implemented. Recall that Phase 1 is similar to a (reverse) topological order
traversal in the SP dag for sink z. We are interested in determining in line [10] if every
successor of x in the SP dag has already been “visited” and placed in AffectedVertices; if
so, then x can be placed in AffectedVertices too. In procedure DeleteEdgesssps0 We
used the standard technique for performing a topological order traversal: a count was
maintained at each vertex of the number of its successors (in the SP dag) not yet placed
in AffectedVertices; when the count for a vertex x fell to zero, it was placed in the
WorkSet. ‘

Since we cannot afford to maintain a similar count (across updates to the graph),
we need to perform the check in line [10] differently. Note that the check in line [10] can
be performed multiple times for the same vertex x. In fact, a vertex x can be checked
outdegree (x) times. If we examine all successors of vertex x each time, the cost of the
repeated checks in line [10] for a particular vertex x can be quadratic in the number of
successors it has. Instead, the same total cost can be made linear in outdegree (x) by
using one of the following strategies.

The first time vertex x is checked in line [10] we count the number of vertices y in
Succ (x)— AffectedVertices that satisfy SP(x,y,z). Whenever vertex x is subsequently
checked in line [10] we decrement its count. We add x to the WorkSet when its count
falls to zero.

Alternatively, we can represent the set of successors of a vertex as a linear linked
list. The test in line [10] requires us to scan this list to find a vertex y satisfying
SP (x,y,z) that is yet not in AffectedVertices. If we store a pointer, in vertex x, to the




54

function DeleteUpdate(G, v —> w, z) returns a set of vertices
declare
G: a directed graph
v —> w: the edge that has been deleted from G
z: the sink vertex of G
WorkSet, AffectedVertices: sets of vertices
PriorityQueue: a heap of vertices
SP(a, b, ¢) = (distg(a, ¢) = lengthg(a —> b) +distg(b, ¢)) A (distg(a, c) # =)
begin
[1]  AffectedVertices := &
[2]  if there does not exist any vertex x € Succg(v) such that SP (v, x, z) then
(3] /* Phase 1: Identify affected vertices */
4} WorkSet := { v }
[s] while WorkSet # & do

[6] Select and remove a vertex 4 from WorkSet

n Insert vertex u into AffectedVertices

81 for each vertex x € Predg(u) such that SP(x, 4, 2) do

9] if Ay € Succg(x) - AffectedVertices such that SP(x, y, z) then Insert vertex x into WorkSet fi
[10] od

{11} od

[12]  /* Phase 2: Determine new distances to z for all vertices in AffectedVertices. */
[13] PriorityQueue = Q&
[14] for each vertex a € AffectedVertices do

[15] distg(a, z) := min ({ lengthg(a —> b)+distz(b, 2) |
a—>b € E(G)and b ¢ AffectedVertices) } v {eo}
[16] if distg(a, z) # o then InsertHeap(PriorityQueue, g, distg(a, 2)) fi
[17] od
[18] while PriorityQueue # & do
[19] a = FindAndDeleteMin(PriorityQueue)
[20] for every vertex ¢ € Predg(a) such that lengthg(c — a) + distg(a, 2) < distg(c, 7) do
[21] distg(c, z) = lengthg(c —>a) + distg(a, 2)
[22] AdjustHeap( PriorityQueue, c, distg(c, z))
[23] od
[24] od
[251 fi
[26] return AffectedVertices
end

Figure 4.8. Procedure DeleteUpdate updates distances to vertex z after edge v —> w is deleted from G.

portion of this list that has not been scanned yet, then during subsequent tests on vertex x
we can resume the scan where we left it.

Even these tricks do not make the algorithm bounded in || 3|l,. The reason is that
the vertex x checked in line [10] is not necessarily a member of AFFECTED, but we are
forced to examine all successors of x. However, even if the tested vertex x is not a
member of AFFECTED it is guaranteed to be a predecessor of a member of AFFECTED.
Consequently, the algorithm is bounded in ||8]|,. In particular, the cost of Phase 1is
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bounded by O (|| MODIFIED ||, + || AFFECTED, || 2); The cost of Phase 2 is bounded by
O (|| AFFECTED, ||, + | AFFECTED, | log | AFFECTED, |).
Consequently, the cost of DeleteEdgeapspso is O ({18112 + |81 log |81).

4.2.2. Insertion of an Edge

We now present a bounded incremental algorithm for the problem of updating the solu-
tion to APSP>0 after an edge v —>w of length ¢ is inserted into G. Though similar
bounded algorithms have been previously proposed for this problem (see Rohnert
[Roh85], Even and Gazit [Eve85], Lin and Chang [Lin90], and Ausiello et al. [Aus90]),
we present the algorithm for the sake of completeness. We observe that the algorithms
described by Rohnert [Roh85], Lin and Chang [Lin90], and Ausiello et al. [Aus90]) all
maintain a shortest-path-tree data structure for each vertex, which makes their edge-
insertion algorithm somewhat faster. However, maintaining the shortest-path-tree makes
the processing of an edge deletion more expensive (and unbounded).

As in the case of edge deletion, we may obtain a bounded incremental algorithm
for edge insertion as follows: compute AffectedSinks, the set of all vertices y for which
there exists a vertex x such that the length of the shortest path from x to y has changed;
for every vertex y in AffectedSinks, invoke the bounded incremental operation
InsertEdgessspso With y as the sink. i

procedure DeleteEdgeapsp0(G, v —> W)
declare .
G: a directed graph
v —> w: an edge to be deleted from G
AffectedSinks: a set of vertices
preconditions
Y u, v e V(G), dist (u,v) is the length of the shortest path fromutov
begin
[1] Remove edge v —>w from E(G)
[2]  AffectedSinks := DeleteUpdate(G®, w —>v, v)
[3] for each vertex x € AffectedSinks do DeleteUpdate(G, v —>w, x) od
end
postconditions
Y u, ve V(G), dist (u,v) is the length of the shortest path fromutov

Figure 4.9. Procedure DeleteEdgeapsp>o updates the solution to APSP>0 after edge v —> w is deleted from
G.
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The algorithm InsertEdgeapsp>o presented in Figure 4.11 carries out essentially the
technique outlined above, but with one difference. It makes use of a considerably
simplified form of the procedure InsertEdgessspso, which is given as procedure InsertUp-
date in Figure 4.10. The simplifications incorporated in InsertUpdate are explained
below.

Recall the description of InsertEdgesssp>o given in Section 3.1.2.
InsertEdgesssp-o makes use of an adaptation of Dijkstra’s algorithm to identify shortest
paths to sink v and update distance information. However, in InsertUpdate, the dag of all
shortest paths to sink v is already available (albeit in an implicit form), and this informa-
tion can be exploited to sidestep the use of a priority queue. (Note that the insertion of
the edge v —> w cannot affect shortest paths to sink v, since the graph contains no cycles
of negative length. Hence, the dag of shortest paths to sink v undergoes no change dur-

function InsertUpdate(G, v —> w, 2) returns a set of vertices
declare

G: a directed graph

v —> w: the edge that has been inserted in G

z: the sink vertex of G

WorkSet: a set of edges

VisitedVertices: a set of vertices

SP(a, b, ¢) = (distg(a, c) = lengthg(a —> b) + distg(b, ¢)) A (distg(a, c) # )
begin
[1] WorkSet:={v—w}
[2] VisitedVertices := { v }
[3] AffectedVertices := &
[4] while WorkSet # & do
[51 Select and remove an edge x —> u from WorkSet
[6] if length(x = u) + distg(u,z) < distg(x,2) then

7 Insert x into AffectedVertices

I8} distg(x,z) = lengthg(x —>u) + distg(u,z)
91 for every vertex y € Predg(x) do

{10] if SP(y,x,v) and y & VisitedVertices then
(11} Insert y — x into WorkSet

[12] Insert y into VisitedVertices

[13] fi

[14] od

[15] fi

{16] od

[17]1 return AffectedVertices

end

Figure 4.10. Procedure InsertUpdate updates distances to vertex z after edge v — w is inserted into G.
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ing InsertEdgeapsp>0-) As explained in Section 3.2.1, the predicate SP (a,b,v) can be
used to determine, in constant time, if the edge @ —> b is part of the dag of shortest paths
to sink v. This permits InsertUpdate to do a (partial) backward traversal of this dag, visit-
ing only affected vertices or their predecessors.

For instance, consider the edge x — u selected in line [5] of Figure 4.10. Vertex x
is the vertex to be visited next during the traversal described above. Except in the case
when edge x —> u is v —>w, vertex u is an affected vertex and is the successor of x in a
shortest path from x to v. The test in line [6] determines if x itself is an affected vertex.
If it is, its distance information is updated, and its predecessors in the shortest-path dag to
sink v are added to the workset for subsequent processing, unless they have already been
visited. The purpose of the set VisitedVertices is to keep track of all the vertices visited
in order to avoid visiting any vertex more than once. For reasons to be given shortly,
InsertUpdate simultaneously computes AffectedVertices, the set of all vertices the length
of whose shortest path to vertex z changes.

We now justify the method used in InsertEdgeapspso to determine AffectedSinks,
the set of all vertices y for which there exists a vertex x such that the length of the shor-
test path from x to y has changed. This set is the set of sinks for which InsertEdgeapsp>0
must invoke InsertUpdate. Assume that x and y are vertices such that the length of the
shortest path from x to y changes following the insertion of edge v —> w. Then, the new

procedure InsertEdgeapspso(G, v —> W, )
declare .
G: a directed graph
v =—>w: an edge to be inserted in G
c: a positive real number indicating the length of edgev —>w
AffectedSinks: a set of vertices
preconditions
Y u, ve V(G), dist(u,v) is length of the shortest path from u tov
begin
{11 Insertedge v —>w into E(G)
2] lengthg(v —>w) :=¢
[3]  AffectedSinks := InsertUpdate(G*, w —>v, v)
[4] for each vertex x € AffectedSinks do InsertUpdate(G, v —>w, x) od
end
postconditions
Y u, ve V(G), dist(u,v) is length of the shortest path from u to v

Figure 4.11. Procedure InsertEdge apsp>o updates the solution to APSP>0 after edge v —> w of length ¢ is
inserted in G.
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shortest path from x to y must pass through the edge v —>w. Obviously, the length of the
shortest path from v to y must have changed as well. Hence, AffectedSinks is the set
{ y | the length of the shortest path from v to y changes following the insertion of edge
v—>w }. This set is precisely the set of all affected vertices for the single-source
shortest-path problem with v as the source, i.e., the set AffectedVertices computed by the
call InsertUpdate(GR,w —>v,v). This is how InsertEdgeapspso determines the set
AffectedSinks (see line [3] of Figure 4.11); InsertUpdate is then invoked repeatedly, once
for each member of AffectedSinks.

We now consider the time complexity of InsertEdgeapsp>o- Note that for every
vertex x € AffectedSinks, any vertex examined by InsertUpdate(G,v —>w,x) is in
N(AFFECTED,). InsertUpdate does essentially a simple traversal of the graph
<N (AFFECTED,)>, in time O( || AFFECTED; ||). Thus, the total running time of line
[4] in procedure InsertEdgeapsp>o is O(||811;). Thus, the total running time of pro-
cedure InsertEdgeapsp>o is Ol 811 1)

4.2.3. Incremental Updating in the Presence of Negative-Length Edges

The techniques described earlier, in Section 4.1.3, for handling negative edge lengths in
the case of DeleteEdgesssp carry over to DeleteEdgeapsp t0O. Note that
InsertEdgespsp-0, as presented, works correctly even in the presence of negative edge-
lengths. In InsertEdgesssp we needed to identify shortest paths to vertex v when an edge
v —> w was inserted, which we did by using an adaptation of Dijkstra’s algorithm. Con-
sequently, we had to take special care of negative-length edges. In InsertEdgeapsp, how-
ever, the shortest paths information is already available, as explained earlier. Hence,
negative-length edges are no problem in the case of InsertEdgeapsp-

4.3. Related Work

Various versions of the dynamic shortest-path problem have attracted wide attention,
beginning with Murchland’s paper in 1967 [Mur67]. There has not been much work,
however, on the dynamic single-sink or single-source shortest-path problem. Bounded
incremental algorithms were previously known only for the case of an edge insertion in
the all-pairs shortest-path problem [Roh85, Eve85, Lin90, Aus90, Aus91]. The incremen-
tal algorithm presented in this chapter for processing the insertion of an edge in the case
of the all-pairs shortest-path problem is similar to, but was developed independently of,
these bounded algorithms. A more comprehensive overview of the previous work on



dynamic shortest-path problems appears in Section 6.6.
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Chapter 5
Generalizations Of The Shortest-Path Problem

* + Survey the problem in the most natural way, taking it as solved and visualiz-
ing in suitable order all the relations that must hold between the unknowns and the
data according to the conditions. Detach a part of the condition according to which
you can express the same quantity in two different ways and so obtain an equation
between the unknowns. Eventually you should split the condition into as many parts,
and so obtain a system of as many equations, as there are unknowns.

Descartes’ universal method
—1{as described in] G. Polya, Mathematical Discovery, Volume |

In this chapter we look at some generalizations of the shortest-path problem. We review
the algebraic path problem and the dataflow analysis problem, both of which generalize
the shortest-path problem along a certain dimension, and establish the equivalence
between these problems. We then review a generalization of the shortest-path problem,
along a different dimension, proposed by Knuth. We then propose the grammar prob-
lem, a problem that combines both the above generalizations, and explore some of its
applications. We study how some results relating dataflow analysis problems to max-
imum fixed point computation carry over to grammar problems. We then study some
special grammar problems, closely related to Knuth’s problem, for which we will present
incremental algorithms in the next chapter.

5.1. An Overview of the Chapter

The algebraic path problem is a generalization of the shortest-path problem which has
been widely studied [Car71,Zim81, Mah84, Gon84, Gon84a, Rot90]. A variety of path
problems in graphs, such as those of identifying the shortest path, or the most reliable
path, or the path with the maximum capacity, between certain pairs of vertices, share a
common structure. An abstract version of these path problems, the algebraic path prob-
lem, can be defined in terms of the algebraic structure that is common to these problems,
namely the semiring or dioid. Algorithms developed for various specific path problems
have been generalized and adapted for the algebraic path problem. The advantage of
studying this algebraic formulation of the problem is that algorithms developed for it can
be used for any of the large number of path problems that fit into this algebraic frame-

work.
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Dataflow analysis concerns the static analysis of programs to identify properties of
the analyzed programs. It has numerous applications, especially in optimizing, vectoriz-
ing or parallelizing, debugging, and testing programs. Dataflow analysis problems come
in various flavors. The live-variable problem is a typical dataflow analysis problem. The
input in this case consists of a control-flow graph, which represents a program. A vertex
in the graph represents a basic block or a statement in the program. Each vertex u in the
graph is associated with two sets of program variables: defined (1), the set of program
variables that are assigned a value in vertex u, and used (u), the set of program variables
that are used before being defined in vertex . A program variable x is said to be live at’
(entry to) a vertex u iff there exists a path P from u to some vertex w such that x is in
used (w) and x is not in defined (v) for any vertex v in P-{w}. The goal is to determine
for every “program point” or vertex in the graph the set of all variables that are live at
that point.

Kildall [Kil73] showed that the various different dataflow analysis problems have a
common structure, and utilized this to define an abstract, lattice-theoretic, version of the
dataflow analysis problem—the distributive dataflow analysis problem. An algorithm for
this abstract problem—such as the one Kildall presented—can be utilized to solve any
dataflow analysis problem that fits into the abstract framework. Some of the early work
extending Kildall’s work can be found in [Kam76,Gra76,Kam77]. A recent,
comprehensive survey of the dataflow analysis problem appears in [Mar90a].

The title of this chapter notwithstanding, our interest in the algebraic path problem
and dataflow analysis stems from the fact that these problems are generalizations of the
reachability problem in graphs. We show later on, in Chapter 8, that the reachability
problem is unbounded with respect to a particular model of computation. We also show
there, using problem reduction, that various problems considered in this chapter are
unbounded.

The first part of this chapter is primarily a review of the algebraic path problem
and the dataflow analysis problem. These two frameworks are very similar—problems
that can be formulated in one of these frameworks can often be reformulated in the other
framework. Despite this similarity, work in these two areas has to a large extent pro-

ceeded independently, occasionally reproducing results.! We summarize the essential

! Tarjan, in his presentation of an algorithm for solving various path problems uniformly [Tar81, Tar81a],
does discuss problems drawn from both frameworks. Gondran and Minoux [Gon84a), in their study of
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characteristics of these frameworks, and show how the two frameworks correspond to
each other—that is, we show how problems formulated in one framework can be refor-
mulated in the other framework. This section, by reviewing the several closely related
algebraic systems that have been used for formulating algebraic path problems, also tries
to clarify the relevance and roles of the different axioms in path algebras.

The second part of this chapter concerns the grammar problem. Both algebraic
path problems and dataflow analysis problems require summarizing the set of all paths
between two specific vertices in a directed graph. If the graph is viewed as a finite state
machine, then the set of all paths between two specific vertices, that is, the set that is
being summarized, is seen to be a regular set. This view suggests a generalization of the
summary problem that requires summarizing context free languages or sets. This idea
was developed in a paper by Knuth [Knu77], where he introduced a generalization of the
shortest-path problem in graphs. ;

In this generalization, a context free grammar is given such that every derivation of
a terminal string from a non-terminal is associated with a real-valued cost, and the prob-
lem is to determine for every non-terminal of the given grammar the least-cost derivation
of a terminal string from that non-terminal. A simple example of this problem, which is
analogous to the shortest-path problem, is that of computing for each non-terminal the
shortest terminal string derivable from that non-terminal. Other examples of this prob-
lem are the nullable non-terminals problem and the useless non-terminals problem, both
of which resemble the reachability problem in graphs. The nullable non-terminals prob-
lem is to identify the set of non-terminals in the input context free grammar that can
derive the null string, while the useless non-terminals problem is to identify the set of
non-terminals that cannot derive a terminal string. Knuth lists a variety of other applica-
tions and special cases of this problem, including the generation of optimal code for
expression trees and the construction of optimal binary-search trees.

In the second part of this chapter we introduce the grammar problem, which com-
bines ideas from the dataflow analysis problem, algebraic path problem, and Knuth’s

path algebras consider problems similar to distributive dataflow analysis under the titie of generalized path
algebras, but do not relate it to dataflow analysis. However, to our knowledge, the exact relationship
between these two frameworks has not been formalized before.
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problem. In this generalization, every derivation of a terminal string from a non-terminal
is associated with a value drawn from a partially ordered set, and the problem is to deter-
mine for every non-terminal of the given grammar the meet over all derivations of a ter-
minal string from that non-terminal of the value of that derivation. The first-set computa-
tion problem—the problem of determining for each non-terminal Y the set of all termi-
nals @ such that ¥ can derive a terminal string beginning with a— is an example of this
generalized grammar problem. Interprocedural dataflow analysis problems too can be
formulated within this framework.

The problems considered in this chapter may be described as “summary problems”
because they all have the following generic structure: A (possibly infinite) set or multi-
set of values is specified by some means, and the problem is to compute some “sum-
mary” information of this set or multi-set of values. Most of the summary problems we
consider in this paper can be reduced to the computation of the maximum fixed point, in
a partially ordered set of values, of an appropriate collection of equations. We will find
that the “summary” version of the problem is a natural specification of the problem,
which is easy to understand, while the fixed point formulation of the problem permits us
to solve the problem using standard methods for finding fixed points of equations.

The rest of this chapter is organized as follows. In Section 5.2 we review the max-
imum fixed point problem. In Section 5.3 we look at the algebraic path problem and
dataflow analysis problem and the relationship between them. In Section 5.4 we study
the grammar problem.

5.2. Maximum Fixed Point Problems

We now introduce some terminology. Let (D, <) be a partially ordered set or poset. The
poset (D, <) is said to be well-founded or bounded if it has no infinite descending chain.
The greatest element in D, if it exists, will be denoted by T. The greatest lower bound
(or the meet) of two elements a and b will be denoted by a"1b. If every two elements in
D have a greatest lower bound then (D, M) is said to be a meet semilattice. The greatest
lower bound of a set of elements S will be denoted by IS or ] l;lss. The semilattice is

said to be complete or closed with respect to the meet operation if every subset of D has a
greatest lower bound in D.

A function f: D — D is said to be monotonic if f (x) £ f (y) whenever x <. It is
said to be (finitely) distributive if its application distributes over finite meets, that is if




f(@mb)=f(@nrf®),
and it is said to be infinitely distributive if its application distributes over infinite meets,
that is if
f(Ma)y= 11 f(a),
aegA aeA
for arbitrary sets A. In dataflow analysis terminology an infinitely distributive function is
also called a continuous function, though, elsewhere, a continuous function is defined to
be a function that distributes over chains.
Given a set D, we denote the set of all k-tuples of elements from D by Dk. If
(D, 1) is a meet semilattice then the partial ordering < on D induces a corresponding
partial ordering on D* based on component-wise ordering, and D* is itself a meet semi-
lattice with respect to this ordering. Further, if D has a top element then so does D, and
if D is bounded then so is D*.
We denote the set of all functions from D to D by D —> D. Given a semilattice
(D, M), a meet operation 1 is defined on D —> D as follows:
fTg =der Ax. (f ()18 (%))
(D — D, M) is a meet semilattice of functions over D. The set of all distributive func-
tions over D will be denoted by D —>,4 D. It can be verified that D —>4 D is closed with
respect to function composition and the meet operation. Hence, (D —; D, M) is itself a
meet semilattice.
Let Q be a collection of k equations in k variables x| through x;, the i-th equation
being
X =gi(x1, -5 %K),
where the variables range over values from a partially ordered set (D, <). A fixed point of
this collection of equations is a k-tuple of values satisfying the collection of equations. If
the set of all fixed points of Q has a greatest element (with respect to the partial ordering
on D¥), this greatest fixed point, also called the maximum fixed point of Q, will be
denoted by MFPp(Q). The subscript D will be omitted if no confusion is likely.
Note that the k equations above can be combined into one equation
X=GX),
where X ranges over D¥, and G : D* — D* combines the functions g, through g. (If
each g; is monotonic then G itself will be monotonic.) Hence, computing the maximum
fixed point of a collection of equations is, in some sense, no more difficult than comput-
ing the maximum fixed point of a single equation. It is well known that if G is mono-
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tonic and D¥ is bounded and has a greatest element T, then the maximum fixed point of
the above equation is given by the limit of the descending chain T2G(M2GG(T)) =2
<+« GYT) -+-. (See, for example, [Sto77].)

5.3. Path Problems in Graphs

5.3.1. Algebraic Path Problems

The algebraic path problem, a generalization of the shortest-path problem, has attracted
wide attention, principally because a large variety of problems can be formulated as alge-
braic path problems and algorithms developed for the shortest-path problem can be gen-
eralized to solve these problems. This algebraic generalization was introduced by Carre
[Car71]. Some subsequent surveys of this problem and extensions of Carre’s work may
be found in [Zim81], [Mah84], [Gon84], [Gon84a], and [Rot90).

An algebraic path problem is specified by a set § and two binary operators on S: a
“path extension” operator ® and a “summary” operator @, both of which satisfy certain ~
properties to be discussed soon. An instance of this algebraic path problem is given by a
directed graph G = (V,E) and an edge-labelling function [ that associates a value /(e)
from S with each edge e € E.

We first discuss a way of formulating the algebraic path problem suggested by the
straightforward way of formulating the shortest-path problem. Consider an instance
(G,1) of the problem. The function / can be extended to map paths in G to elements of §
as follows. The label of apathp=1[ey,€2,..., €lis defined by L(p) = l(e}) ® l(e2)
® -+ ® I(ey). If v, w are two vertices in the graph, then C (v,w) is defined to be the
summary over all paths p from v to w of [ (p):

Cv,w)y= @ Il(p).

piv—>'w
(We use the notation p : v —"w to denote the set of all paths p from v to w.)

For the classical shortest-path problem the set S is the set of reals, the operator ®
is addition, while the operator @ is “min”. Just like in the shortest-path problem, we can
define several variants of the algebraic path problem, such as the “all-pairs” variant, the
“single-source” variant, and the “single-pair” variant. In an all-pairs problem, the goal is
to compute C (v,w) for all pairs of vertices v, w € V(G). In a single-source problem, the
goal is to compute the value C(s,w) for each vertex w, where s is a distinguished source
vertex. In the single-pair problem, only a specific value C (s,?) is to be computed, where
s and t are given vertices.
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Note that the above definition of the label of a path makes sense only if ® is an
associative operator. The definition of C(v,w) also makes sense only under certain
assumptions about the operator @ . Since the order in which the labels of paths are to be
“summed” up is not specified, © has to be an associative and commutative operator.
Since the set of paths between two vertices in a graph may be infinite there is also the
question of what an infinite “summary” means.

Before addressing the issues raised above, let us first examine a second way of for-
mulating the shortest-path problem, which suggests an alternative formulation of the
algebraic path problem that avoids the concept of summary over an infinite set.

Every input instance G of the single-source shortest-path problem (SSoSP) induces
a collection of equations, the Bellman-Ford equations, in the set of unknowns { x, |
ue VG }):

x, =min( { 0 }u { [x, + length (v —>u)] | v € Pred(u)}) if u=source (G)

= min [x, +length(v — u)] otherwise.
v € Pred(u)

The maximum fixed point of this collection of equations is the solution to the SSoSP
problem if the input graph contains no negative length cycles. This suggests the idea of
defining the algebraic path problem as that of the computation of the maximum fixed
point of the following collection Qp of equations determined by an input instance P=

(G,source,l):
%= ®({1}u{lx, ® LW |v e Predw)}) if u=source(G)
= ® [x ®I(v—ru)l otherwise,
v € Pred(u)

where 1 is the identity element with respect to ®. This problem definition does not
make any assumptions about the applicability of the summary operation to infinite sets,
but it does assume the existence of a partial ordering among the values so that one may
talk of the maximum fixed point.

We now review the definition of various algebraic systems utilized in defining
various classes of algebraic path problems, consider the properties required for formulat-
ing the problem in either of the ways outlined above, and study the equivalence of the
above two definitions under some conditions.

Definition 5.1. A semiring (also known as a dioid) is a system S, &, ®, 0, T) consist-
ing of a set S, two binary operations @ and ® on S, and two elements 0 and 1 of S, satis-
fying the following axioms:
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1.(S, & ,6) is a commutative monoid:

(@) xPy=yDx (commutativity)

B)xBYDP)=xDy)Dz (associativity)

(c)x®0=x (identity)
2.(5, ® ,_1—) is a monoid:

@x®yY®2)=x®y)®z (associativity)

b)x® 1=x=1®x (identity)
3. ® distributes over @:

@x@y®)=x®y)P(x®2) (right-distributivity)

b)Y xBY)Qz=x®2)D(ydz) (left-distributivity)
4. 0 is an annihilator with respect to ®:

x®0=0=0Q®x (annihilation)

Observation 5.2. As the name suggests, semirings are closely related to rings. A ring
(with unity) is a semiring that satisfies the following additional axiom:

Vx3dy. x®y=0 (invertibility)
The definition of a ring does not normally include the annihilation axiom since it follows
as a logical consequence of the remaining axioms including invertibility.

Observation 5.3. Let (S, ©, ®, T) be a system that satisfies axioms 1(a), 1(b),2 and 3
of Definition 5.1. Let 0 denote an element not in S. Then, (Sv {5}, @D, ], 0, I) is a
semiring, where the operators © and ® are extended to handle 0 according to the iden-
tity axiom 1(c) and annihilation axiom 4. Hence, the requirement of a zero element that
satisfies axioms 1(c) and 4 is not crucial to the definition of a semiring. Note that axiom
3 implies that ® distributes over finite but non-empty summations of the form
x1Dx,® -+ Dx;. Axiom 4 can be viewed as the requirement of distributivity over the
empty sum too, since the empty sum can naturally be defined to yield the identity ele-

ment O.

Let R denote the set of reals and let Kzo denote the set of non-negative reals. Let
+and x denote the operations of addition and multiplication on reals, and let min denote
the minimum operator on reals. Both (R, +, X, 0, 1) and (R { = }, min, +, o0, 0) are
examples of semirings. The operations of the latter semiring have to be extended to han-
dle o in the obvious way, and the inclusion of e in the latter semiring illustrates Obser-
vation 5.3.
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LetS =(5, &,® ,6,T) be a specific semiring. We now define the SS-S problem
(the single-source problem determined by the semiring ), adopting the first of the two
possible formulations of the problem discussed earlier.

Definition 5.4. Given a directed graph G = (V, E), a vertex s in V, and an edge-labeling
function [ : E — S, the SS-S problem is to compute C(s,w) for every vertex w inV. We
say that (G, s, [) is an instance of the SS-S problem.

. For example, let § be the semiring (2% U { o= }, min, +, =, 0). Then, SS-S is noth-
ing other than the single-source shortest-path problem with non-negative edge lengths. If
S is the semiring ({0,1},max,min, 0, 1), then SS-S is the single-source reachability
problem. The corresponding all-pairs version of the problem is the transitive closure
problem. Hence, algebraic path problems are sometimes also known as generalized
transitive closure problems.

As we pointed out earlier, the definition of C(s,w) may involve the “summary” of
an infinite set of values, since there may be infinitely many paths between two vertices in
a cyclic graph. Unfortunately, the semiring axioms are not sufficient to extend the sum-
mary operator to infinite sets. We now consider some special semirings in which it is
possible to extend the summary operator of a semiring to handle infinite sets.

Definition 5.5. A sum-ordered semiring is a semiring S, @, ], 6, T) in which the
relation < defined by
x < z iff there exists an y such that z =x®y (sum-ordering)
is a partial ordering.
For example, (1&20 Uf{ee},+ %X,0,1)isa sum-ordered semiring. In this case the
sum-ordering defined above is the standard total ordering on reals. We now consider an
important class of sum-ordered semirings.

Definition 5.6. An idempotent semiring is a semiring (S, ®©, ®, 0, 1) that satisfies the
following addition axiom:
xDx=x (idempotence)
Observation. The @ operator of an idempotent semiring satisfies the axioms of a semi-
lattice. In other words, the binary relation < defined by:
x<Syiffx@y=x
is a partial ordering and @ is the meet or greatest-lower-bound operator with respect to
this partial ordering. It can be verified easily that an idempotent semiring is also a sum-
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ordered semiring, though the ordering as defined above is the inverse of the sum-
ordering.

But if the @ operator is a greatest-lower-bound operator, then we no longer have
any problem defining the concept of the summary of an infinite set of values. The notion
of a greatest-lower-bound applies even to infinite sets, though the greatest-lower-bound
of an infinite set need not exist in general. The greatest-lower-bound of a set X of ele-

ments, when it exists, will be denoted by @Xx. Consider an instance of the SS-$ prob-
X

lem, where S is an idempotent semiring. For every vertex u, either C (s,u) does not exist
or is a precisely defined quantity. For example, consider the idempotent semiring
(R.u { e}, min, +, e, 0), which defines the single-source shortest-path problem. If there
exists a path from s to u that passes through a negative-length cycle, then one can con-
struct paths from s to u of arbitrarily small length. Consequently, the set of lengths of all

paths from s to « has no greatest-lower-bound, and C (s, ) does not exist.? In every other
case, C(s,u) is precisely defined.

We can adopt this idea and extend the concept of summary of infinite sets to sum-
ordered semirings too. Given an infinite set X, we can define the sum of X to be the
least-upper-bound of the set of all “partial sums” of finite subsets of X: @ X =g U {
@Y : Yis a finite subset of X }. For (RO U}, + x,0,1), which is sum-ordered but
not idempotent, this yields a definition of infinite summation that is equivalent to the
standard notion of infinite summation of non-negative reals as the limit of a sequence of
partial sums. An example of an algebraic path problem involving this semiring is that of
computing the stationary probabilities of a Markov process: we have a graph with a
source vertex, and every edge has an associated value between 0 and 1, which is the tran-
sition probability associated with that edge. Consequently, the value associated with a
path is the probability that the transition sequence indicated by that path occurs. The
value C (s,u) indicates the probability of arriving at vertex 4 from vertex s.

We now turn to the problem of computing the solution to an instance of a semiring
problem. Though we may be able to meaningfully define what an infinite summary
means, we still face the problem of how one computes an infinite summary. This also
brings us to the second way of looking at algebraic path problems. We now look at a

If we add —o to the domain, then the greatest-lower-bound would exist in this case, and equal —o. Since
defining oo + (—o) is tricky, we would have to let + be a partial operator.
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special class of idempotent semirings where the two approaches to algebraic path prob-
lems are equivalent.

Definition 5.7. A closed semiring is an idempotent semiring (S, ©, ®, 0, 1) satisfying
the following additional axioms:

(a) Every countable set X has a greatest lower bound @ x (completeness)
xe X
B D )R D Yv) = ® xQ®y (infinite distributivity)
xe X y € (x,y) € XxY

The axioms satisfied by a closed semiring enable us to show that the solution
{ C(s,u) | uis a vertex } to an instance P=(G,s,l) of the single-source closed semiring
problem is the maximum fixed point of the set of equations Qp induced by the input
instance of the problem. They also make it possible to use an adaptation of the Floyd-
Warshall algorithm for the shortest-path problem [Flo62] to solve the all-pairs version of
an instance of the closed semiring problem. Well, almost. We still need a way of com-
puting infinite summaries. In using the adaptation of the Floyd-Warshall algorithm to the
closed semiring problem, it is usually assumed that implementations of the @ and ®
operators are available, as well as the operator * defined below.

Definition 5.8. A unary operator *, called closure, of a closed semiring (S, ©, ® ,0,1) is
defined as follows:

a* =de &) ai
T2
wherea® =landa'*! =a'®a.
Let us now consider a further special class of semirings.

Definition 5.9. An idempotent semiring (S, ®, ®, 0, 1) is said to be a Dijkstra semir-
ing if the underlying partial ordering is actually a total ordering, and if 1 is the least ele-
ment with respect to this ordering.

Hence, a Dijkstra semiring essentially consists of a totally ordered set S with a
least element 1 and a greatest element 0, and an operator ® that is monotonic with
respect to the total ordering such that (S, ®, T) is a monoid. The name “Dijkstra semir-
ing” follows from the fact that an adaptation of Dijkstra’s algorithm can be used to find
the solution to an instance of the SS-S problem whenever § is a Dijkstra semiring. The
identity a* = 1 holds in a Dijkstra semiring; hence, an implementation of the closure
operator is not necessary to compute the solution to an instance of the Dijkstra semiring

problem, unlike in the case of the closed semiring problem.
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5.3.2. Dataflow Analysis Problems

A lattice-theoretic framework for dataflow analysis problems was first developed by Kil-
dall [Kil73] and later refined by Kam and Ullman [Kam76,Kam77] and Graham and
Wegman [Gra76]. In this framework, the program to be analyzed is represented by a
flowgraph G with a distinguished entry vertex s. The problem requires the computation
of some information S(u) for each vertex u in the flowgraph. In general, this information
describes the possible state of the program whenever execution reaches the program
point 4. More precisely, S(«) summarizes the set of all states that can arise at point u.
The values S(u) are assumed to be elements of a meet semilattice L. The interpretation
of the meet operation is that if a € L summarizes a set of states S|, and b € L summar-
izes a set of states S5, then a[Mb summarizes the set of states SiuS,. Avaluec € Lis
associated with the entry vertex which describes the program state that can exist at the
entry vertex when the program begins execution. A (monotonic) function M (e):L —> L
is associated with every edge e in the flowgraph: the interpretation of this function is that
M (u —> v)(a) describes (summarizes) the program state at point v when after program
execution reaches point v along the edge 4 —> v, given that the program state at point u is
described by a. (The above informal explanation of the various elements involved is typi-
cally formalized via the notion of abstract interpretation. See, for example,
[Abr87,Cou77].)

The function M can be extended to map every path in the graph to a function from
LtoL:ifpisapath[ej, ez ,..., el then M(p) is defined to be M (e;) o M(ex-1) -
M (e ). The desired (meet-over-all-paths) solution S(u) is defined as follows:

Suwy=_T1_ M(@p)c)
P:s—"'u

Recall that p : s — u denotes that the meet is taken over the set of all paths p from s to
u.

A semilattice (L, 1), a set of functions F € L —> L and a constant ¢ € L, often
the greatest or least element of the semilattice, constitute a dataflow analysis framework.
We will say that the dataflow analysis framework is bounded if L is bounded, that it is
closed if L is closed with respect to arbitrary meets, and that it is monotonic, distributive,
or infinitely distributive if every function in F is respectively monotonic, distributive, or
infinitely distributive.

Every dataflow analysis framework F = (L, [, F,c) determines a specific dataflow
analysis problem, which we call the #-DFA problem. An input instance of the problem
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consists of a graph G with an entry vertex s and a mapping M from the edges of G to F.
Such an input instance induces a collection of equations:
Ss)=T1({c}u My —=s)SW) | v—>se E(G)}

S(u)= M1 M(v —>u)(S(v)), for u#s.
v—yue E(G

An algorithm for the (bounded) distributive dataflow analysis problem is an algo-
rithm that can solve the F-DFA problem for any (bounded) distributive dataflow analysis
framework ¥. Kildall [Kil73] presents an algorithm for the bounded distributive
dataflow analysis problem. In particular, he shows that the meet-over-all-paths solution
is given by the maximum fixed point of the collection of equations induced by the input
instance whenever the framework is distributive. Thus, if the framework is bounded too,
then the maximum fixed point can be computed by iteration, as explained earlier.

Kam and Ullman show that the similarly defined bounded monotonic dataflow
analysis problem is undecidable: that is, they show that no algorithm exists that can
solve the F-DFA problem for every bounded monotonic framework ¥. They also show
for monotonic frameworks that the maximum fixed point of the above equations is less
than or equal to the meet-over-all-paths solution. Thus, when the framework is bounded,
the maximum fixed point is a computable “approximation” to the desired solution.

5.3.3. The Relation between Dataflow Analysis and Algebraié Path Problems

We now study the relationship between the dataflow analysis framework and the alge-
braic path problem framework.

Theorem 5.10. Corresponding to every idempotent semiring S there exists a distributive
dataflow analysis framework ¥ such that the SS-§ problem and F-DFA problem are
equivalent. Further, if § is bounded so is ¥, and if S is closed then ¥ is infinitely distri-
butive and closed (with respect to meets).

Proof.

Let (S, 9,9, 0, 1) be the given idempotent semiring S. For every a € S let f,
denote the function Ax.x ®a. Let ¥ be the dataflow analysis framework (S, &, F, 1)
where F is the set of functions { f, | a € S }. ¥ is distributive since for any f,inF,
fix®y)=x®y)®a=x®a)®(y®a)= f,(x)® f,(y). Similarly, it follows that if §
is closed then 7 is infinitely distributive (continuous) and closed with respect to meets.

The SS-5 problem and F-DFA problem are equivalent in the following sense:
there is an isomorphism between the input instances of the two problems such that the
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corresponding input instances have the same solutions; any input instance of one of the
problems can be trivially transformed into an input instance of the other problem whose
solution readily yields the solution to the original problem instance. More specifically,
an instance (G,s,l) of SS-S problem corresponds to an instance (G,s,M) of the F-DFA
problem, where the mapping M is defined by M (e) = Axx®l(e). O

Theorem 5.11. Corresponding to every distributive dataflow analysis framework F there
exists an idempotent semiring S such that the #-DFA problem reduces to the SS-S$ prob-

lem.

Proof.

Let (L, [1,F,c) be the given dataflow analysis framework #. Assume, without loss
of generality, that L has a greatest element T. For every a € L, define the constant-
valued function g, : L — L by g,(x) = a. Note that in a dataflow analysis framework we
have a set of values L and a set of functions F, while in a semiring we have only a set of
values. We will embed both L and F into a semilattice of functions over L by identifying
every element a in L with the constant-valued function g,. Let i denote the identity func-
tion. Define S to be the smallest set of functions containing F v { g, | a € L}Yyvu {i}
that is closed under the meet operation.

We now show that § = (S, 1, 0,g7,i) is an idempotent semiring. Since [ is a
semilattice operator it satisfies the axioms of commutativity, associativity and idempo-
tence, and g 1 is the identity with respect to 1. Function composition is associative with
i as the identity element. We now verify that o distributes over [1: fio(f21f3)
A f1((f2 M f3)(x) Ax.f1(f2(x) M f3(x)) AxfL(F26eNTf1(f3(x)

A (f1 o f2)@M(Frof3)x) = (fiof2)M(f1of3). Left-distributivity can be verified
similarly. Now, g+ may not satisfy the annihilator axiom, but that is not significant. As

explained in Observation 5.3, we can introduce a new annihilator element that will make
S a semiring.

We now show that the F-DFA problem reduces to the SS-$ problem. We can
transform every instance (G,s,M) of the F-DFA problem into an instance (G”,s’,l) of the
SS-$ problem as follows. The graph G’ is obtained by adding a new source vertex s” and
a new edge s’ —> s to the graph G. The mapping [ is defined by I(e) = M (e) for every
edge e in the original graph, and [(s" —>s) = &. (The solution to this transformed input
instance associates every vertex with the constant-valued function gg, where a is the
value associated with that vertex in the solution to the original input instance.)
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Not every instance of the SS-S problem can be translated back into an instance of
the F-DFA problem, and, in this sense, the F-DFA and SS-$ problems may not be
equivalent. However, if the set of functions F contains all constant-valued functions and
the identity function and is closed with respect to the meet operation, then S = F, and the
F-DFA and SS-S problems are equivalent. []

The above theorems establish the equivalence of dataflow analysis problems and
algebraic path problems in the following sense: an algorithm that can solve every closed
semiring problem can be trivially adapted to solve every infinitely distributive dataflow
analysis problem and vice versa.

5.4. Grammar Problems

5.4.1. The Idea Behind The Problem

Knuth defined the following generalization of the single-source shortest-path problem
[Knu77]: Consider a context free grammar in which every production is associated with a
real-valued function whose arity equals the number of non-terminal occurrences on the
right-hand side of the production. Every derivation of a terminal string from a non-
terminal has an associated derivation tree; replacing every production in the derivation
tree by the function associated with that production yields an expression tree. Define the
cost of a derivation to be the value of the expression tree obtained from the derivation.
The problem is to compute for each non-terminal of the given grammar the minimum-

cost derivation of a terminal string from that non-terminal.

Example 5.12. ([Knu77]). The following example illustrates the above definition. We
will consider how an instance of the single-source shortest-path problem can be
transformed into an equivalent instance of the grammar problem. Given an instance of
the SSoSP problem, define a grammar consisting of one non-terminal N, for every vertex
u in the given graph. For every edge u —> v in the graph, we add a new terminal g, — v,
and a production N, —> gy —v(Ny) associated with the production function f defined by
f(x) = x+length(u —>v). In addition, we add the production Ny —> 0, where s is the
source vertex and O is a terminal and the production function is the constant-valued func-
tion zero. Now, there is a bijective correspondence between the set of all paths from the
source vertex to a vertex v and the set of terminal strings derivable from N,. Further, the
“costs” of corresponding paths and terminal strings are equal. Hence, the solution to the
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grammar problem instance is the same as the solution to the original SSoSP instance.

Thus, the single-source shortest-path problem (with non-negative edge lengths)
corresponds to the special case of the grammar problem where the input grammar is reg-
ular and all the production functions g are of the form g(x) = x+h (for some A 20) or
g () = 0. Further, the grammar problem corresponds to an SSoSP problem only if con-
tains exactly one production of the form N — 0; if more than one production is of this
form, then we have a “simultaneous multi-source shortest-path problem”.

' Knuth showed that it is possible to adapt Dijkstra’s shortest-path algorithm [Dij59]
to solve the grammar problem if the functions defining the costs of derivations satisfy a
simple property. In addition to the single-source shortest-path problem, Knuth lists a
variety of other applications and special cases of the grammar problem, including the
generation of optimal code for expression trees and the construction of optimal binary-
search trees.

It is possible to generalize Knuth’s problem by borrowing ideas from the algebraic .
path problem and the dataflow analysis problem. For example, it is useful to consider
cases where the value associated with a terminal string or a derivation is not a real value
but some value drawn from a partially ordered set, and the value to be computed is the
meet over the set of all values associated with the terminal strings derivable from a non-
terminal. For instance, define the value of a non-empty terminal string to be a set con-
sisting of the first character in the string, and define the value of the empty string to be
{€}. Define the summary operation to be set union. This gives us the first-set computa-
tion problem (where the set computed for a non-terminal contains € iff that non-terminal
can derive the empty string).

Before we define this generalized problem, let us consider another application that
motivates it—interprocedural dataflow analysis.

In intraprocedural dataflow analysis—dataflow analysis of programs without pro-
cedure calls—the program to be analyzed is represented by a control-flow graph with an
entry vertex. Every path p from the entry vertex to a vertex u has an associated value,
which provides information about the program state that would exist at point u if pro-
gram execution were to follow path p. The meet over all the paths from the entry to u of
the value associated with that path yields information about the program state that can
exist at point u irrespective of the path that program execution takes to reach u. Note that
a path p from the entry vertex to u may be dynamically infeasible—that is, there may
exist no input state for which program execution will follow that path under the standard
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model of execution. But it is, in general, undecidable if a given path in the graph is
dynamically feasible. Consequently, it is common in dataflow analysis to summarize the
set of statically feasible paths rather than the set of dynamically feasible paths, where a
statically feasible path may be formalized as follows: branches in a control-flow graph
are typically governed by predicates, whose evaluation determines which of the branches
should be taken; consider a non-standard model of execution in which the value of every
such predicate is determined randomly; we will refer to a path program execution can
take under this model of execution as a statically feasible path. For a single-procedure
control-flow graph every path is a statically feasible path, and, hence, the concept of a
statically feasible path seems to serve no purpose. But this concept proves to be relevant
in interprocedural dataflow analysis.

Interprocedural dataflow analysis concerns the dataflow analysis of programs with
multiple procedures. We first consider how the flow of control in a program with pro-
cedures can be represented by the multi-procedure control-flow graph. Each procedure p
is represented by a single-procedure control-flow graph that has a special entry vertex
Pentry @nd a special exit Vertex p,y;. We assume that each call-site ¢ of a procedure p is
represented by two vertices in the control-flow graph—c,,, which represents the point
just before the procedure is invoked, and cpog, Which represents the point just after the
procedure call returns. There is no edge from cpp, tO Cposr—instead, there is an edge
from cpre 1O Pentrys and an edge from p,y; 1O Cpogr, tO represent the transfer of program
control during procedure invocation and return. We will refer to these two edges as
matching interprocedural edges. Now, every possible path that program execution can
take is represented by a path in this graph. But, not every path from the entry vertex of
the graph is statically feasible. Ina statically feasible path, interprocedural edges have to
be matched, much like matching parentheses in a well-formed expression. It would be
desirable in interprocedural dataflow analysis to compute the meet over all statically
feasible paths, instead of the meet over all paths. But, how do we characterize statically
feasible paths?

Context-free grammars provide a convenient mechanism for characterizing stati-
cally feasible paths in a multi-procedure control-flow graph. (This idea appears in
[Sha81] and in [Bin91].) Given a multi-procedure control-flow graph, we can represent it
by a context free grammar such that the set of all terminal strings derivable from a given
non-terminal represents the set of all statically feasible paths between two specific pro-
gram points. The set of non-terminals N, the set of terminals T, and the set of produc-
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tions P of this grammar are defined as follows:
N={ p(u,v)|uand v are vertices }
T={e(u,v)|u—>vis an edge in the multi-procedure control-flow graph }
P={p(u,u) —> eluisavertex } v
{ p(u,w) = p(u,v)e(v,w) | u, v, w are vertices, and
v — w is a non-return edge } v
{ p(U,Cpost) = P (UsCpree (CpresQentry)P (entry+Gexir)e (qexit»Gpost) |
u is a vertex, and c is a call to procedure q }.
It can be easily verified that the terminal strings derivable from a non-terminal
p(u,v) € N do describe statically feasible paths from u to v.
This formalization of the set of statically feasible paths via context free grammars
suggests that the grammar problem may provide a convenient mechanism for formalizing
interprocedural dataflow analysis. We will see in the next section that this is the case.

5.4.2. The Problem Definition

We now define the generalized version of Knuth’s problem. Unlike the algebraic
path problem, this problem makes use only of a summary operator. The role of the
extension operator is taken over by that of “production functions”. In all the problems
we consider in this section the summary operator will be the meet or join operator over a
partially ordered set. The problem Knuth studies in [Knu77] concerns the totally ordered
set (i&zo U { e },min). The following definition is an extension of Knuth’s formulation to
arbitrary partially ordered sets.

Definition 5.13. An abstract grammar over a semilattice (D, ['1) is a context free gram-
mar in which all productions are of the general form
Y = g Xy, ..., X)),

where ¥, Xy, ..., X are non-terminal symbols, and g, the parentheses and commas are
all terminal symbols. In addition, each production ¥ — g(X1,...,Xy) has an associ-
ated function from D¥ to D, which will be denoted by g itself in order to avoid the intro-
duction of more notation. The function g is referred to as a production function of the
given grammar.

We adopt the restriction that each production in an abstract grammar have the spe-
cial form ¥ —> g (X1, . . . ,Xx) to maintain continuity with respect to the notation used by
Knuth and to simplify notation. Observe that the special form of the productions ensures
that the grammar is non-ambiguous. The terminal strings generated by such productions
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can be thought of as describing the parse trees or abstract syntax trees of some other con-
text free grammar. Thus, an abstract grammar is essentially an attribute grammar with
productions of this form, where each nonterminal has a single synthesized attribute.

For every non-terminal symbol Y of an abstract grammar over the terminal alpha-
bet Twelet L(Y)={o|oe T*and Y — *a } be the set of terminal strings derivable
from Y. Every string o in L(Y) denotes a composition of production functions, so it
corresponds to a uniquely defined value in D, which we shall call val(o).

Given a semilattice (D, ), the abstract grammar problem is to compute the value
mg(Y) for each non-terminal Y of a given abstract grammar G over (D, '), where

mg(Y) =def erzlm val (o).

We will drop the subscript in mg(Y) if no confusion is likely.

Example 5.14. ([Knu77]). Let us look at some simple examples of the grammar prob-
lem over the semilattice (=% U { e },min). Given a context free grammar, consider the
abstract grammar obtained by replacing each production Y — 0 in the given grammar by ”
the production ¥ —> go(X 1, . .., Xk), where X, ...,X; are the non-terminal symbols
occurring in 8 from left to right (including repetitions). If we define the production func-
tion gg by

goxy,. . Xk) Zder X1+ " + X3, + (the number of terminal symbols in 6)
then mg(Y), the solution to the resulting grammar problem, is the length of the shortest
terminal string derivable from non-terminal Y. If we instead define gg by

go(xy,. .. XK) =ggrmax(xy, ... X )+ 1
then mg(Y) is the minimum height of a parse tree for a string derivable from the non-
terminal Y. The nullable non-terminals problem can similarly be expressed as a grammar
problem over the semilattice ({0, 1}, min) by defining gg as follows:

go(X1s ..., Xk) Zgef Max(xy, ... %) if there are no terminal symbols in 8

=def | otherwise

Note that as a special case of the above definition gg() is O if 6 is the empty string. It fol-
lows that mg(Y) is O if ¥ can derive the null string, and 1 otherwise. [

Example 5.15. Let us now see how the first-set computation problem can be expressed
as a grammar problem. Given a context free grammar C, with a set of non-terminals N
and a set of terminals T, we want to compute for every non-terminal ¥ in N the set of all
terminals a such that Y can derive a terminal string beginning with a. To simplify the
presentation we assume, without loss of generality, that every production in C is either of
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the form ¥ —> X - - - X, where every symbol on the right-hand side is a non-terminal or
of the form Y — a where a is either a terminal or the empty string €. We construct an
abstract grammar G over the semilattice (2T, U) with N as the set of non-terminals as fol-
lows. Corresponding to every production ¥ —>a in C, G has a production ¥ —>g()
where the production function g is defined by g )={a}. Corresponding to every produc-
tion Y —> X * - - Xk, G has a production ¥ —> g(X1, . . . , Xi), where the production func-
tion g is defined by:

k
(1. o 8k) = (,U1 i) Ve,
i=
where t; = if s; contains ¢ for every j < i thens; - (e} else O,

and e = if every s; contains € then {€} else &.
Now, every terminal string o of G corresponds to a terminal string o of the original
grammar C, and it can be verified that val (o) is the set containing the first terminal in .
0

The above definition of the abstract grammar problem was motivated by Knuth’s
problem. The meet-over-all-paths formulation of dataflow analysis problems, however,
suggests a variant of the grammar problem in which every terminal string of the grammar
is associated with a function. In particular, we define the functional grammar problem
over a semilattice (D, ) and a constant ¢ € D as follows. An input instance of this
problem consists of a context free grammar G and a mapping M from the terminals of G

to D —> D. For any terminal string ot =a - - * a; we define M(o) tobe M(ay) o "+ ©
M (a,). We then consider the problem of computing the value FZ Y)M (a)(c) for each
ae Lg(

non-terminal Y of the given grammar G. In view of the explanation in the previous sec-
tion, it should be obvious how interprocedural dataflow analysis can be formalized as a
functional grammar problem.

Combining ideas from the above two problem formulations leads to the following
generalization in which the function M (o) associated with a terminal string o may be
defined in more complex ways (than in the functional grammar problem) using produc-
tion functions.

Given a semilattice (D, 1) and a constant ¢ € D, the generalized Jfunctional

grammar problem is to compute the value FZI Y)val (o)(c) for each non-terminal Y of
ae Lg(

a given abstract grammar G over (D — D, ).
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It is easily seen that the generalized functional grammar problem is really a gen-
eralization of the functional grammar problem. In particular, we can trivially reformulate
every functional grammar problem as a generalized functional grammar problem as fol-
lows. Given an instance (G,M) of the functional grammar problem, the corresponding
instance of the generalized functional grammar problem is the abstract grammar G~ over
(D — D, ") which, for every production X —> o, Y0t Y, - 0 Y04 in G consists of
the production ¥ — F (Y, ..., Ye), where the production function F is given by

F(fy, ... .fo) =M (o) 0fio - oM(op)ofi oM (o). (5.1)

Similarly, the abstract grammar problem can be easily reduced to the generalized
functional grammar problem as follows. Given an abstract grammar G over the semilat-
tice (D, M), consider the abstract grammar G’ over the semilattice (D —> D, ). For
every production X —>g(¥y,...,Yy) in G, G’ contains a production
X —F(Y,,...,Y), where the production function F is defined by

F(fi,.... o) =g (fi(x) ..., fulx)).

Unfortunately, we cannot formulate the functional grammar problem (or the gen-
eralized functional grammar problem) as an abstract grammar problem. Note that we are
interested in computing M al(e) = ( M val(a)(c) in the generalized

ae Lg(Y) ae Le(¥)

€ Lg

functional grammar problem. The problem of computing the value F;]G(Y)val (o) 18
(e =3

directly an abstract grammar problem over a semilattice of functions. This is important
because we will soon see how the abstract grammar problem can be expressed as a max-
imum fixed point problem, which can be solved using standard techniques, provided that
the semilattice is bounded.

5.4.3. The Grammar Problem as a Maximum Fixed Point Problem

The grammar problem for an abstract grammar G naturally leads to a collection of mutu-
ally recursive equations, which consists of the following equation for each non-terminal
Y in the grammar.

f(m=y_)g(£1 ..... Xk)g(f(xl)v--’f(xk))

We will refer to this collection of equations as Qg, or more briefly Q. Note that Q con-
tains one variable, f (¥), for each non-terminal Y in the grammar. Consequently, a solu-
tion or fixed point of Q consists of a value v (¥) for each non-terminal Y. A tuple of such
values will be denoted by (v(Y) | Y is a non-terminal) or just by v.
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We now show that the solution mg to the grammar problem is the maximum fixed
point of Qg, provided each production function of the abstract grammar G satisfies a
simple property.
Definition 5.16. Let (D, M) be a meet semilattice. A function g : D*¥ — D is said to be
a finitely distributive function if for every collection of k non-empty finite (index) sets
Ii,.. .. 1k
g( M xpeey M xy) = M lkg(x,-l,...,xik) 5.2)

ijel i€l (TP el x X
in the sense that if the expression on either side has a well-defined value, the expression
on the other side is well-defined too and has the same value. The function is said to be
weakly distributive if it satisfies the above property for arbitrary non-empty index sets.
and it is said to be infinitely distributive if it satisfies the above property for arbitrary
index sets,

Note that the production function defined in Example 5.15 is infinitely distributive.
Now, consider the production function F (see equation (5.1)) utilized to encode the func-
tional grammar problem as a generalized functional grammar problem. This function is
infinitely distributive over the semilattice (D —>4D, M) if all the constant functions
M (a;) occurring on the right-hand side of the equation are distributive, that is, if the
function M (a) associated with any terminal symbol a is distributive.

Let [ be the meet or join operation of a totally ordered set D. It can be easily
verified that a function from D to D is finitely distributive iff it is monotonic. If [ is
the meet operation of a bounded semilattice, then the notions of weak distributivity and
finite distributivity coincide.

In general, when [ is the meet operation of a partially ordered set D, every finitely
distributive function is monotonic, but a monotonic function need not be finitely distribu-
tive. A weakly distributive function g is not required to satisfy equation (5.2) if any of
the sets Iy ,..., Iy is empty. Let T denote the top element of D. Obviously, a weakly
distributive function is infinitely distributive iff g (x1,...,x¢) is T whenever any x; is T.

We now consider the collection of equations Q. We say an abstract grammar isa
distributive grammar if every production function of the grammar is distributive. Mono-

tonic grammars are similarly defined.

Lemma 5.17. If G is an infinitely distributive grammar then (mg(Y) | Y is a non-
terminal) is a fixed point of Q.
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Proof.
mg(Y)= 1 val(a) ( from the definition of mg(Y))
Y—'a
= M M val (o)
Y=g X,,..., X0 gXy ..., X)—>'a
= M M{val (g @, ....00)) | Xi— o
N S X { (g( 1 k)) ' i x}
= M M{gal (o), ... val (o) | Xi =" o)
Y—=gXy,. ... X,
( from the definition of val(g(ay, .. ., o))
= M M val(y),..., M val(o
Y —=3g(Xiv. s x,)g(xl——ra, (o) xk—->'a,v (@)
( since g is infinitely distributive)
= M (mg(X 1), . ...mg(Xy))
Y-“)g(Xl ..... Xk)g G ! G k
( from the definition of mg)
O

Lemma 5.18. Let G be a monotonic grammar, and let (f (Y) | Y is a non-terminal) be a
fixed point of Qg. Then, f(¥) < mg(Y) for each non-terminal Y.

Proof. It is sufficient to show for every terminal string o that if Y is a non-terminal such
that ¥ =" o, then f () < val (o). The proof is by induction on the length of the string .
Assume ¥ —°a. Then we must have ¥ — g(Xy,. ... Xk) —" g(ay,...,0) = 0.
Since each a; is a smaller string than o and X; —" o, it follows from the inductive
hypothesis that f(X;) < val(oy). It follows from the monotonicity of g that
gUf X 1)sonf (Xi)) S g (val(oy),...,val (o)) = val (o). Since (f(Y)|Yisa non-terminal)
is a fixed point of Q we have f (Y) =g (f X 1)seeen f (Xi)). The result follows. O

The above lemma generalizes the result of Kam and Ullman [Kam77] relating the
maximum fixed point (MFP) and the meet-over-all-paths (MOP) solutions to a monotone
dataflow analysis problem, since every monotone dataflow analysis problem is iso-
morphic to a monotone grammar problem.

Theorem 5.19. Let G be a weakly distributive grammar. Then (mg(Y) | Y is a non-
terminal) is the maximum fixed point of Og.

Proof. Immediate from lemmas 5.17 and 5.18. O
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The above theorem generalizes Kildall's result [Kil73] that the MFP solution
yields the MOP solution for (infinitely) distributive dataflow analysis problems and also a
similar result for interprocedural analysis due to [Sha81]. The above result shows how
grammar problems can be reduced to maximum fixed point computation problems. An
interesting feature of the grammar problem is that it is equivalent to maximum fixed
point computation problems, in the following sense: maximum fixed point computation
problems can be reduced to grammar problems, under some distributivity assumptions.
Let us say that a collection of equations is infinitely distributive if the function on the
right-hand side of each equation is infinitely distributive. For instance, the collection of
equations Qg determined by an infinitely distributive grammar G is infinitely distribu-
tive. Now, given an infinitely distributive collection of equations @, it is easy to con-
struct an infinitely distributive grammar whose solution is the maximum fixed point of
the given collection of equations, as follows. For every variable x;, introduce a non-
terminal N; and a production N; —> oo, where oo is a terminal, associated with the
constant-valued production function eo; for every equation x; = gi(x1s .. ., xy), introduce
a new production N; —>g;(Ny,...,Ny). It can be easily verified that the collection of
equations induced by this grammar trivially simplifies to the collection Q we started with.
Consequently, the problem of computing the maximum fixed point of an infinitely distri-
butive collection of equations is equivalent to the infinitely distributive grammar prob-
lem.

Now, the maximum fixed point of the collection of equations Qg can be computed
by iteration if (D, 1) is a bounded semilattice. Thus, the above theorem yields an effec-
tive algorithm for the distributive grammar problem over bounded semilattices. What
does this say about interprocedural dataflow analysis? We observed earlier that a distri-
butive interprocedural dataflow analysis problem over a semilattice (D, ) can be
reduced to a distributive grammar problem over the semilattice of functions
(D — 4D, M). Consequently, such an interprocedural analysis problem can be solved
using techniques for finding maximum fixed points provided that D —> 4D itself is a
bounded semilattice. Since computing the maximum fixed point of a collection of equa-
tions involves evaluating the right-hand side of the equations, we also need to be able to
compute the composition and meet of functions easily. (Solving intraprocedural dataflow
analysis problems using elimination techniques also requires us to be able to compute the
composition and meet of functions; thus, dataflow analysis problems solvable using elim-
ination techniques typically meet this requirement.) D —> 4D can be unbounded even if
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D is bounded. However, D — 4D will be bounded if D is finite. Thus, (Gen,Kill) type
of dataflow analysis problems (see [Aho86] or [Fis88], for instance), where the functions
involved can be represented by a pair of finite sets Gen and Kill, can typically be solved
using the above technique. This approach to solving interprocedural dataflow analysis is,
however, not new—it appears in [Sha81].

5.4.4. The SSF Grammar Problem and the SWSF Fixed Point Problem

In the previous two sections we looked at the generalization of Knuth’s problem
motivated by the algebraic path problem and dataflow analysis. In this section we return
to problems that are closer to Knuth’s problem. From the point of view of incremental
computation, the general grammar problem is difficult. Since it generalizes the algebraic
path problem and the dataflow analysis problem, it is, in fact, unbounded. (See Chapter
8.) However, we present an efficient and bounded incremental algorithm for a variant of
Knuth’s problem in the next chapter. The goal of this section is to define and study this
problem. In this section we assume that the semilattice (D, 1) is a totally ordered set—
hence, the meet operation is really the min operation.

Let [i,k ] denote the set of integers { j|i <) S k}. A function g(xy,...,x;) from
D* to D is said to be a superior function (abbreviated s. f.) if it is monotone non-
decreasing in each variable and if g (x,. .. ,xg) = x; for every i € [1,k] and for every
X1,...,X. A function g(xy,... ,x;) from D¥ to D is said to be a strict superior func-
tion (abbreviated s.s.f.) if it is monotone non-decreasing in each variable and if
gxy,...,x;) > x; foreveryi € [1,k]. An abstract grammar in which every production
function is a superior function is said to be an SF grammar. An abstract grammar in
which every production function is a strict superior function is said to be an SSF gram-
mar. Examples of superior functions over (KZO,S,oo) include max(xy,...,Xk), x+Y,

and Vx2+y?. None of these functions are strict superior functions over the set of non-
negative reals, although the latter two are strict superior functions over the set of positive
reals. Every O-ary function, that is, a function that has no input arguments, is trivially an

s.s.f.2 It can be verified that the production functions used in Example 5.14 are all supe-
rior functions. Consequently, the abstract grammars defined there are all SF grammars.
The motivation for the above definitions come from the shortest-path problem.
Recall that when a shortest-path problem is encoded as a grammar problem (see Example
5.12), the production functions used are of the form g (x) = x +h, where h is the length of
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an edge, or g()=0. The function g defined by g(x)=x+h is an s.f. function if h 20
and an s.s.f. function if A > 0. Consequently, the abstract grammar generated by an
instance of the SSoSP20 problem is an SF grammar, while the abstract grammar gen-
erated by an instance of the SSoSP>0 problem is an SSF grammar. Knuth shows that
Dijsktra’s algorithm for the SSoSP20 problem can be generalized to solve the SF gram-
mar problem. Similarly, the incremental algorithm we presented in Chapter 4 for the
SSoSP>0 problem can be generalized to solve the dynamic SSF grammar problem. We
will address the dynamic SSF grammar problem in the next chapter.

Let us now consider the fixed point formulation of these problems. We now define
two classes of functions that generalize the class of superior and strict superior functions
respectively, which will be utilized in defining the fixed point problem. We say a func-
tion g - D¥ = D is a weakly superior function (abbreviated w.s. f.) if it is monotone
non-decreasing in each variable and if forevery i € [1,k],

E(X s e s Xiy oo s X)) <X = 8(Xphe s Xise o X)) =8 (X gy oo s s XE)-
We say a function g : D% — D is a strict weakly superior function (abbreviated s.w.s. f.)
if it is monotone non-decreasing in each variable and if forevery i € [1,k],

G(X1se e s Xiy oo s X )SX; = (X, s Xin e X ) =8 (X e e 2% Xk
It can be easily verified that every s.f. is also a w.s. f., while every s.s.f. is also an
s.w.s.f. The function min(xy,...,X)1s an example of a w.s.f. that is not an s.f., while
min(xy,...,%)+1 is an example of an s.w.s.f. that is not an s.s. f. A constant-valued
function is another example of an s.w.s.f.

Now consider a collection Q of k equations in the k unknowns x| through x, the
i-th equation being

X =gi(x1, - Xk)- ()
An equation of this form is said to be a WSF equation if g; is a w.s.f., and an SWSF
equation if g; is an s.w.s.f. Note that the expression on the right-hand side of the equa-
tion need not contain all the variables and that it may be more precisely written as
xi = 8iXj; 1 Xji 20+ -+ Fjin):
We will continue to use the earlier form of the equation as a notational convenience.

The motivation for the above definitions comes from the type of equations gen-
erated by an SF or SSF grammar. Recall that every instance of a grammar problem gen-
erates a collection of equations consisting of the following equation for each non-
terminal Y in the grammar:
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d(Y): min { g(d(X 1), ..., d XY —>gX ... ,X,) is a production }.
It can be shown (see below) that if every production function is a w.s. f. then the above
equation is a WSF equation. This is because min is also a w.s.f. function, and w.s.f.
functions are closed under composition. It follows that every equation generated by an
instance of the SF grammar problem is a WSF equation. Similarly, every equation gen-
erated by an instance of the SSF grammar problem is an SWSF equation.

Tt can be shown that if each of the equations in Q is a WSF equation then Qhasa
maximum fixed point, which can be computed by an adaptation of Dijkstra’s algorithm.
We define the WSF maximum fixed point problem to be that of computing the max-
imum fixed point of a collection of WSF equations. This problem generalizes the SF
grammar problem.

However, we are interested in incremental algorithms for the fixed point problem,
and it turns out to be necessary to address a restricted version of the WSF equation prob-
lem. If each of the equations in Q is an SWSF equation, then O can be shown to have a
unique fixed point. (See below.) We define the SWSF fixed point problem to be that of
computing the unique fixed point of a collection of SWSF equations. The SWSF fixed
point problem generalizes the SSF grammar problem, since each equation in the collec-
tion of equations determined by an SSF grammar is an SWSF equation, as we show later.
(The SSoSP>0 problem is obtained as yet a further special case of the SSF grammar
problem; that is, when all edge lengths are positive, the Bellman-Ford equations are all
SWSEF.)

We now establish the various claims made above. We first establish some proper-
ties of s.w.s.f. functions that will be useful later on. Thinking about an s.w.s.f. of the
form min (x1+h1, ..., Xx+hy), where each h; > 0 may make it easier to understand the
proposition.

Proposition 5.20.
(a) Letg -D¥—> Dbeasw.s.f. andlet] < {1,...,k} besuch that g(xy, ..., %) S X
for every i € 1. Then,
g0 Y =8 1, Xk)
where y; =g, if (i € I) then o else x;.
(b) Letg .D¥—>Dbe asw.s.f. and letxy,..., X besuchthat g(xy,. ... % ...  Xk)
< x;. Then,



(1) g(X1sevvsYsen s Xi)=8X 10 oo Xy o oo, Xg) forally=g(xy, ... %, ... X))
() gX s s Yy nXp) >y forally < g(xy, ..., XisevorXp)-
(c) Ifgisasw.sf. andg(xy,...,x) <g1,--.,y) then there exists i € [1,k] such
that x; < g(x(,...,x) and x; < y;.
d) If g is a swsf. and g, ... .%o, %) # glxy, ... X, .. .Xg), then
gX 1. s Xi. . X)) > min(x;,x’) and, similarly, g(xi,... JX e Xg) >
min (x;,x;").
Proof.
(a) ¢ ais follows by repeated applications of the definition of an s.w.s.f.
(b)Letxy,...,x besuchthat g(xy,... X ..., %) Sx;. We now prove (1). Let
Y= g(X1,-. s Xy . %) We show that g(xq, .. ¥ X)) = 8X 15+ s Xis - - , Xk)
by assuming otherwise and deriving a contradiction.
g(xl,...,y,...,xk)#:g(xl,...,x,-,...,xk)
Gl e Ysen e s X)) EZX sy o0y Xg) (since g isan s.w.s.f.
FIC TR NS 73 R 95 4 € S ML ,X¢) (since g is monotonic)
167 PR SRS % B 1 6 TP U 7)) (since g is an s.w.s.f.
E(X1ye ey Yo s Xk) <Yy (from assumption about y)
G ls ey Yoo s X)) =8 (X5 500 XE) (since g is an s.w.s.f.
FICT VRIS SRR /) ¥ -1 ¢ STRNNPRS RN 1) (since g is an s.w.s.f.
The result follows. Now (2) follows as a simple consequence of (1). Suppose there

([

exists SOme y < (X, ... X, .. %) Sx;suchthat g(xy, ...,y ... ,X,) < y. Thus, we
have g(x1,...,¥,.--. %) Syand x; 2 g(xp,...,Ys ... ,%;). Using (1), but with the
roles of x; and y reversed, we have g(xy,....%;, ... %) = (X s s Yree s X)) S
which is a contradiction.
(c) We prove the contrapositive. Assume that the conclusion is false. Hence, for
every x; < g(xy, . ..,x) we have x; 2 y;. Then,
gxpy. X)) = 82152
where z; =g if (x; 28(x1, - .- , X)) then oo else x;
(from (a))
2 g(yi,...,yx) sinceevery z; 2 y;.

(since g is monotonic)

The result follows.
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(d) This follows directly from (b), since if g(xy,....%;,...,%) < x;, then
g(xl,...,x,-,...,xk)=g(x1,...,y,...,xk)forallng(xl,...,x,-,...,xk). O

We now show that the class of w.s.f. and s.w.s.f. functions are closed with respect
to function composition.

Proposition 5.21.
(@)Ifg(xy,...,x)isasw.s.f. then so is the function A (x1, . . . , X,,) defined by
B(Xys. - Xm) =def 8 (Xj, s -2 %))
where every j; € [1,m]. Similarly, if g is a w.s.f. then so is h.
(b) Let f(xy,...,%) be aw.s.f., and let g;(xy,. .. %n) be a s.w.s.f. for every
j € [1,k]. The function A(xy, ..., Xm) defined as follows is a s.w.s.f. too.
Rx1s - Xm) =def f (@1 (X153 Xm)s e - J8k(X s X))
Further, if each g; is a w.s.f., then so is h.
Proof. _ _
(a) Let g be a s.w.s.f. The monotonicity of g directly implies that h is monotonic.
Now,
h(xy,.... %) S X
= gxj, .- X)X
= g(xj, .. X;) SXj, for every p such that j, =i
= g1, ---.Y)=8xj,...,x;) wherey, =ger if (jp = 1) then oo else x;,
using Proposition 5.20(a)
= Ay s X)) TR Xy )
It similarly follows that if g is a w.s.f. then h is a w.s.f. too.
(b) The monotonicity of & follows immediately from the monotonicity of f and
g1,---5 8 Now,
h(xqy . X s Xk) S X
= [P, Y)SX where y; =ggr (X1, - - -2 Xi» - - - 2 Xk)
= fO1,-- Y0 <Y for every y; > x;
= fWi,...,w)=f@1,.... %) where w; =ger if (vj > X;) then o else y;
(using Proposition 5.20(a))
= fwi...,w)=f@1,...,y) where
wj=ggr i (gj(x1, . X ,Xg) > x;) theneoelse gj(x 1, . - . Xis - - » Xk)
= i (gj(x s o Xis .o X)) > x;) then s else g;(x, ..., ... s Xk)



89

since g; is strictly weakly superior

2 gj(xl,...,oo,...,xk)
= @) SOk Where z; =g g;(x 1, ... 00 .., Xk)
= A(X, .0 LX) SAL X Xg)

= h(x[, R .,xk)=h(x1,. NS P .,xk)
since A Xy, ..., ..., ) 2h(x|,...,X;,...,X) by monotonicity
The result follows. []

We now characterize the set of equations determined by SF and SSF grammars.

Theorem 5.22. If G is a SF grammar, then Qg is a collection of WSF equations, while if
G is an SSF grammar, then Qg is a collection of SWSF equations.

Proof. Every equation in Qg is of the form

d¥)=min (g1(dXiy s dKip ) s> Bmld Kigy s+ 18 Ky D)
Now, min is a w.s.f. It follows from Proposition 5.21 that if each g; is an s.f. then the
above equation is an WSF equations (since a superior function is also a weakly superior
function). Similarly, if each g; is an s.s.f., then the above equation is an s.w.s. f. (since
an s.s.f. is also an s.w.s.f.). The result follows. []

Theorem 5.23. Let Q be a collection of k equations, the i-th equation being

X =gilX (s o5 Xk):
If every g; is an s.w.s.f. then Q has a unique fixed point.
Proof. The existence of a fixed point will follow from the algorithm to be presented in
the next Chapter, which computes this fixed point. The uniqueness of the fixed point
may be established as follows.

Assume, to the contrary, that (q; | 1<i<k) and (b; | 1 i <k) are two different
fixed points of Q. Choose the least element of the set {a;|a;#b;} v { b;|la;#b; }.
Without loss of generality, assume that the least element is ;. Thus, we have a; < b;,
and also @ = b; for all a; < ;. Now, we derive a contradiction as follows.

a;=giay,... a) since(g;|1<i<k)isafixed point of @
=gicy,...,cx)  where cj =gy if (a;<a;) then a; else oo
(since g; is a strict w.s.f.)
=gicy,...,cx)  where ¢j =gif (aj<a;) then bj else o
(since a; = b; whenever a; < a;)
>2g;(by,...,b) sincec;2b;foreveryj e [1,k]
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2 b; since (b; | 1 <i <k) is a fixed point of Q.

The contradiction implies that Q has a unique fixed point. [

It is worth mentioning at this point that the above results hold in somewhat more
general form. Define a WSF grammar to be an abstract grammar in which every produc-
tion function is a w.s.f., and an SWSF grammar to be an abstract grammar in which
every production function is an s.w.s.f. The grammar problem for a WSF grammar that
has no useless symbols—a context free grammar is said to have no useless symbols if
each non-terminal in the grammar can derive at least one terminal string—can be solved

Dijkstra Semiring Problem

A

Distributive Dataflow
Analysis Problem

~s———= (_Closed Semiring Problem

SF Grammar Problem (Knuth)

Monotone Dataflow
WSF MFP Problem Analysis Problem
Distributive MFP Problem Distributive Grammar Problem

1 .

Maximal Fixed Point Problem
Monotone Grammar Problem

Figure 5.1. The above figure illustrates the relationship among different classes of problems. Every el-
lipse represents a class of problems and an arrow represents containment—more precisely, an arrow from
one class of problems to another implies that every problem in the first class reduces to some problem in
the second class. Not all classes of problems considered in this chapter are depicted in the above picture.
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by reducing it to the WSF maximum fixed point problem. It is straightforward to show
that, conversely, the WSF maximum fixed point problem can be reduced to the grammar
problem for a WSF grammar with no useless symbols. Similarly, the grammar problem
for an SWSF grammar with no useless symbols is equivalent to the SWSF fixed point
problem.

5.5. Related Work

In this chapter we have looked at the algebraic path problem and the dataflow analysis
problem and at generalizations of these problems. Figure 5.1 illustrates the relationship
between several classes of problems considered in this chapter. Pp Lengauer ef al.
[Len91] explore possible generalizations of the algebraic path problem motivated by
examples where some of the semiring axioms fail to hold. A problem similar to the
grammar problem arises in the context of query evaluation in deductive databases, where
derived relations may be defined using logic programs. Database query languages pro-
vide aggregate operations such as max, min, count, and sum, which may be applied to a |
selected field of a relation. These aggregate operations lead to the problem of “summar-
izing” sets defined via logic programs. Sudarshan [Sud92] discusses special cases of this
problem where techniques similar to those used in Dijkstra’s shortest-path algorithm can
be used.
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Chapter 6
An Incremental Algorithm for a Generalization

of the Shortest-Path Problem

When it is not necessary to change, it is necessary not to change.
—Lord Falkland

6.1. Introduction

In this chapter we present an algorithm for the dynamic SWSF fixed point problem. The
algorithm updates the (unique) fixed point of a collection of SWSF equations after an
arbitrary (possibly non-unit) change to the collection of equations. We then present an
improved version of this algorithm, adapted for the dynamic SSF grammar problem. As
a special case of the algorithm, we obtain a new, simple, and efficient algorithm for the -
dynamic single-source shortest-path problem with positive edge lengths (the dynamic
SSSP>0 problem).

The aspect of the algorithm we present in this chapter that distinguishes it from all
other work on dynamic shortest-path problems, including our own work described in
Chapter 4, is that it handles multiple heterogeneous changes: Between updates, the input
graph is allowed to be restructured by an arbitrary mixture of edge insertions, edge dele-
tions, and edge-length changes. Most previous work on dynamic shortest-path problems
has addressed the problem of updating the solution after the input graph undergoes either
unit changes—i.e, exactly one edge is inserted, deleted, or changed in length—or else
homogeneous changes—i.e., changes to multiple edges are permitted, but all changes
must be of the same kind: either all insertions/length-decreases or all deletions/length-
increases. (A comprehensive comparison of our work with previous work appears in
Section 6.6.)

In general, a single application of an algorithm for heterogeneous changes has the
potential to perform significantly better than either the repeated application of an algo-
rithm for unit changes or the double application of an algorithm for homogeneous
changes. There are two sources of potential savings: combining and cancellation.

Combining: If updating is carried out by using muitiple applications of an algo-
rithm for unit or homogeneous changes, a vertex might be examined several times, with
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the vertex being assigned a new (but temporary and non-final) value on each visit until
the last one. An algorithm for heterogeneous changes has the potential to combine the
effects of all of the different modifications to the input graph, thereby eliminating the
extra vertex examinations.

Cancellation: The effects of insertions and deletions can cancel each other out.
Thus, if updating is carried out by using multiple applications of an algorithm for unit or
homogeneous changes, superfluous work can be performed. In one updating pass, ver-
tices can be given new values only to have a subsequent updating pass revisit the ver-
tices, restoring their original values. With an algorithm for heterogeneous changes, there
is the potential to avoid such needless work.

The updating algorithm presented in this chapter exploits these sources of potential
savings to an essentially optimal degree: if the initial value of a vertex is already its
correct, final value, then the value of that vertex is never changed during the updating; if
the initial value of a vertex is incorrect, then either the value of the vertex is changed .
only once, when it is assigned its correct final value, or the value of the vertex is changed
exactly twice, once when the value is temporarily changed to e, and once when it is
assigned its correct, final value. (Bear in mind that, when updating begins, it is not
known which vertices have correct values and which do not.)

As a consequence, the incremental algorithm we present for the shortest-path prob-
lem is a bounded one. In particular, the algorithm updates the shortest-path solution in
time O (]| 8] log ||8]l), after an arbitrary mixture of edge insertions, edge deletions, and

edge-length changes.! The incremental algorithm we present for the SWSF grammar
problem is a bounded cost scheduling algorithm.

Though the algorithms presented in this chapter are incremental algorithms, they
can be seen as generalizations of batch algorithms. For instance, Dijkstra’s algorithm
turns out to be a special case of our algorithm for the dynamic SSSP>0 problem: when a
collection of edges is inserted into an empty graph, our algorithm works like Dijkstra’s
algorithm. Similarly, a variant of Knuth’s algorithm for the batch grammar problem is
obtained as a special case of our algorithm for the dynamic grammar problem. However,

I'The algorithm can, in fact, update the solution in the same time even if the source (or sink) vertex is
changed to be some other vertex in the graph. However, presumably, more vertices will be affected by
such a change in the input, and || 3] will be correspondingly larger in this case.
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our incremental algorithms encounter “configurations” that can never occur in any run of
the batch algorithms. For example, in the dynamic SSSP>0 algorithm, a vertex u can, at
some stage, have a distance d(u) that is  strictly less  than

riglir:i ( [d (v) + length (v — u)]. This situation never occurs in Dijkstra’s algorithm.
v e Pred(u)

This chapter is organized as follows. In Section 6.2 we present the basic idea
behind the algorithm and prove its correctness. We present the first version of our algo-
rithm, a proof of its correctness, and an analysis of its time complexity in Section 6.3. In
Section 6.4, we discuss an improved version of the first algorithm, and analyze its time
complexity. In Section 6.5 we look at some extensions of the algorithm. In Section 6.6
we discuss related work.

6.2. The Idea Behind the Algorithm

The SWSF fixed point problem (see Section 5.4.4) is to compute the unique fixed point
of a collection of SWSF equations. Assume that the given collection of equations con-
sists of k equations in the k unknowns x| through x, the i-th equation being

X =gi(x1, - Xk)-
The expression on the right-hand side of the i-th equation need not contain all the vari-
ables and it may be more precisely written as

X = 8i(xj  Xji a0 Xjiniy )
We will continue to use the earlier form of the equation as a notational convenience
although an algorithm to compute the fixed point of the collection of equations can use
the sparsity of the equations to its advantage. We define the dependence graph of the
collection Q of equations to be the graph (V,E) where V={x;|1<i<k}, and E = {
xj —>x; | xj occurs in the right-hand-side expression of the equation for x; }. For exam-
ple, the dependence graph of the Bellman-Ford equations induced by an instance (G,s,!)
of the single-source shortest-path problem is the graph G itself (with a self-loop for the
source vertex s).

For the sake of brevity we will often not distinguish between the collection of
equations and the corresponding dependence graph. For instance, we will refer to the
variable x; as “vertex x;”. For convenience, we will refer to the function associated with
a vertex x; by both g; and g,,. Every vertex x; has an associated tentative output value
d[x;], which denotes the value of x; in the unique fixed point of the collection of equa-
tions before modification. Thus, it is the previous output value of vertex x;. (We use
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square brackets, as in d [x;], to indicate variables whose values are maintained by the pro-
gram.) Let d*(x;) denote the actual output value that vertex x; should have in the unique
fixed point of the modified collection of equations. Most of the following terminology is
relative to a given assignment d. The rhs value of a vertex x;, denoted by rhs (x;), is
defined to be gi(d[x,],...,d[x])—it denotes the value of the right-hand side of the
equation associated with the variable x; under the given assignment of values to vari-
ables. We say that vertex x; is consistent if
v d[x;]=rhs(x;).

and that x; is inconsistent otherwise. Two possible types of inconsistency can be
identified. We say x; is an over-consistent vertex if

d[x;]1 > rhs(x;).
We say x; is an under-consistent vertex if

d[x;] < rhs(x;).

A vertex u is said to be a correct vertex if d [u] = d*(u), an over-estimated vertex
if d[u] > d*(u), and an under-estimated vertex if d[u] < d*(u). Because d*(u) is not
known for every vertex u during the updating, an algorithm can only make use of infor-
mation about the “consistency status” of a given vertex, rather than its “correctness
status”.

We have already seen that the SSSP>0 problem is a special case of the SWSF fixed
point problem. Our incremental algorithm for the dynamic SWSF fixed point problem
can best be explained as a generalization of Dijkstra’s algorithm for the batch shortest-
path problem. To draw out the analogy, let us summarize Dijkstra’s algorithm using the
above terminology. ‘

The collection of equations to be solved in the case of the SSSP>0 problem is the
collection of Bellman-Ford equations. In Dijkstra’s algorithm all vertices initially have a
value of o. At any stage of the algorithm, some of the vertices will be consistent while
all the remaining vertices will be over-consistent. The algorithm “processes” the incon-
sistencies in the graph in a particular order: at every stage, it chooses an over-consistent
vertex x; for which the rhs value is minimum, and “fixes” this inconsistency by changing
d[x;] to rhs(x;). The algorithm derives its efficiency by processing the inconsistencies in
the “right order”, which guarantees that it has to process every vertex at most once.

The idea behind our algorithm is the same, namely to process the inconsistencies in
the graph in the right order. The essential difference between our algorithm (for the fully
dynamic problem) and Dijkstra’s algorithm (for the static problem) is that we need to
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handle under-consistent vertices as well. Under-consistent vertices can arise in the
dynamic shortest-path problem, for instance, when some edge on some shortest path is
deleted. This introduces some complications. An inconsistent vertex need not in general
be incorrect; an under-consistent vertex need not in general be an under-estimated vertex;
and an over-consistent vertex need not in general be an over-estimated vertex. (This is
not true in the case of Dijkstra’s algorithm, where under-consistent vertices cannot exist,
and every overconsistent vertex is guaranteed to be an over-estimated vertex.) See Fig-
ure 6.1 for an example illustrating this. If we change the value of an inconsistent but
correct vertex to make it consistent, we may end up with an unbounded algorithm.

What is the right order for processing inconsistent vertices? We will show that the
inconsistencies in the graph should be processed in increasing order of key, where the
key of an inconsistent vertex x;, denoted by key (x;), is defined as follows:

key (x;) =def min (d[x;], rhs(x;)).
In other words, the key of an over-consistent vertex x; is rhs(x;), while the key of an
under-consistent vertex x; is d [x;]. As we will soon show, if u is the inconsistent vertex
with the least key, then u is guaranteed to be an over-estimated vertex if it is over-
consistent, and it is guaranteed to be an under-estimated vertex if it is under-consistent.

dfsource] =0
rhs(source) = 0
source

d[source] =0

source rhs(source) =0

100 1 100,
= dfb] =1 - dlbj=1
d[a] =100 ! d[a] =100 ) I
rhs(a) =100 a — Ly hs(®) =1 ths(@)=100 a=——— " b rhs(b) = 101
1 1 1 i
!
—_—
dic]=101 °© ® dle]=2 diej=101 ¢ € dle1=2
rhs(c) = 101 ths(e) = 2 rhs(c) =3 rhs(e) = 2

Figure 6.1. Example of overconsistent and underconsistent vertices in the dynamic SSSP>0 problem. The
figure on the left indicates a graph for which the single-source shortest-path information has been comput-
ed. All vertices are consistent in this graph. The simulataneous deletion of the edge source —> b and the
insertion of the edge e —>c make vertex b underconsistent and vertex ¢ overconsistent. Observe that
though c is inconsistent it is a correct vertex.
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How is an inconsistent vertex to be processed? We will show that if the incon-
sistent vertex with the least key is over-consistent, then its rhs value is its correct value.
No such result holds true for under-consistent vertices; however, it turns out that an
under-consistent vertex can be “processed” by simply setting its value to e, thereby con-
verting it into either a consistent vertex or an over-consistent vertex.

We now present an outline of algorithm in Figure 6.2. The algorithm works by
repeatedly selecting an inconsistent variable whose key is less than or equal to the key of
every other inconsistent variable and processing it. If the selected variable u is under-
consistent, then it is assigned a new value of o, and if it is over-consistent, then it is
assigned the new value of rhs (u).

Let us now establish that the algorithm is correct, that it does not change the value
of any unaffected vertex, and that it changes the value of a vertex at most twice. We first
sketch the idea behind the proof. The above results will follow once we establish the fol-
lowing two claims:

(1) if the vertex u chosen in line [2] is assigned a value in line [6] (in some particu-
lar iteration), then vertex u becomes consistent and remains consistent subsequently.

(2) if the vertex u chosen in line [2] is assigned a value in line [4] (in some particu-
lar iteration), then u will never be assigned the same value it had before the execution of
line [4]. |

procedure IncrementalFP (Q)

declare
Q : a set of SWSF equations
rhs (u) Zdef gu(d {xl ]’ e id[xk})
key (u) =g min (d [u],rhs (u))

begin

[1]  while there exist inconsistent variables in Q do

2] let u be an inconsistent vertex with minimum key value
3] if d[u] < rhs(u) then

[4} dlu] =oe

[5] else if d[u] > rhs (u) then

{6} dlu) :=rhs(u)

(7 fi

{81 od

end

Figure 6.2. An algorithm to update the unique fixed point of a collection of SWSF equations after a
change in the collection of equations. Note that rhs and key are functions.
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The correctness of the algorithm will follow from (1): it follows from the claim
that line [6] can be executed at most once for each vertex u; line [4] too can be executed
at most once for each vertex u, since once d[u] is set to e, u cannot subsequently
become an under-consistent vertex—as long as d[u] is oo, it cannot satisfy the condition
in line [3]; hence d [u] can only be changed in line [6], in which case the vertex becomes
consistent and remains so, from claim (1). Hence, the algorithm makes at most two itera-
tions for each vertex, and, hence, the algorithm must halt. The correctness follows
immediately from the termination condition for the loop.

How can we establish that the algorithm is bounded? Claim (2) shows that the
values of only affected variables are changed by the algorithm, and it follows from claim
(1) that the algorithm makes at most two iterations for each affected variable. It follows
that the algorithm makes a bounded number of iterations. We will later show that line
[2] can be implemented to run in bounded time, which suffices to establish that the algo-
rithm is bounded.

We will now prove claims (1) and (2). These claims follow from the fact that the
keys of vertices chosen in line [2] over the iterations form a non-decreasing sequence.
We first consider the change in the consistency status and the key value of vertices when
a vertex u is processed (lines [3]-[7]) in some particular iteration. Let us denote the “ini-
tial” values of variables and expressions, that is, the value of these variables and expres-
sions before the execution of lines [3]-[7] in the iteration under consideration, with the
subscript “old”, and to the “final” values of these variables and expressions with the sub-
script “new”. In the following propositions u denotes the vertex chosen in line [2] of the
particular iteration under consideration.

Proposition 6.1. If rhs,, (w) # rhs,q(w) then rhSpew(W) > keyyg(u) and rhsyg(w) >
keyold(u)-
Proof. Note that rhs,.,(w) = gw(dlx(], ... .dnewlul, ... ,d[x¢]), while rhasy(w) =

gwdx1), ..., doualuls ... ,d[x]). It follows from Proposition 5.20(a')2 that both
rhsyg(w) and rhs,,, (w) are greater than min (d,jylu],dpewlu]) = min (dpglu ), rhsyia(u))
=keyog(u). d

2This Proposition is reproduced below from the previous chapter:
Proposition 5.20(d): If g is a sw.s.f. and g(xp, ... X, %) # 8§, .. X x), then
glxy, ..., Xiy .. .2 Xg) > min(x;,x;") and, similarly, g (x, .. ., X', X)) > min (x;,x;).
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Proposition 6.2. If u is over-consistent at the beginning of the iteration, then it is con-
sistent at the end of the iteration.

Proof. Since u is over-consistent initially, d [u ] will be assigned the value rhs,4(«). As
long as this assignment does not change the rhs value of u, 4 must be consistent. But
rhs,z(u) must be equal to rhsy,, (u)—since, otherwise, we would have rhs,(u) >
key,j4(u) = rhs, (u), which is a contradiction. [

Proposition 6.3. For any vertex w that is inconsistent at the end of the iteration,
keYnew(W) 2 keyoia(u).

Proof. Since, keY,ew(W) = min (rhSpew(W),dnew[w 1), by definition, we need to show that
(@) rhspew(W) = keyoa(u), and that (b) dyey[w] 2 keyoia(u). Consider (a). If the rhs
value of w did not change, then w must have been inconsistent originally. Hence,
FhSpew(W) = rhsoq(w) 2 key,ia(w) 2 keyoia(u). If the rhs value of w did change, then it
follows from Proposition 6.1 that rhspe,, (w) 2 key,a(u). Now consider (b). If w was ori-
ginally inconsistent, then dy,,, [w] = dog[w ] 2 keyoia(w) 2 keyyq(u). If w was originally
consistent, then rhs (w) must have changed in value. It follows from Proposition 6.1 that
dpew (W1 = doiglw ] = rhsoia(w) > keyoig(u). U

We now turn our attention to the change in the values and consistency statuses of
variables change over the different iterations of the algorithm. The subscript i attached to
any variable or expression denotes the value of the variable or expression at the begin-
ning of iteration i.

Proposition 6.4. If i < j then key;(;) < key;(u;). In other words, the keys of variables
chosen in line [2] form a monotonically non-decreasing sequence.

Proof. This follows trivially from repeated applications of Proposition 6.3. [

Proposition 6.5. Assume that the vertex u; chosen in line [2] of the i-th iteration is an
over-consistent vertex. Then, u; remains consistent in all subsequent iterations. In par-
ticular, its value is never again changed.

Proof. We showed above in Proposition 6.2 that variable u; is consistent at the end of
the i-th iteration. It can never again become inconsistent because its rhs value can never
again change—this follows because, if rhs (4;) were to change in a subsequent iteration,
say the j-th iteration, then we would have key;(;) = rhs;(u;) = rhsj(u;) > key;(u;), from
Proposition 6.1. But this contradicts Proposition 6.4. Since only the values of incon-
sistent variables are ever changed it follows that d [1;] is never again changed. [
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Proposition 6.6. Assume that the vertex u; chosen in line [2] of the i-th iteration is an

under-consistent vertex. Then, u; is never assigned its original value, d;[4;], again.

Proof. We need to show that the rhs value of variable u; never becomes d;[y;]. This fol-
lows from Proposition 6.1 since if rhs(4;) changes in the j-th iteration, then we have
rhsj () > key;(ug) 2 keyi(u;) = di[u;]. O

Proposition 6.7. Procedure IncrementalFP correctly computes the unique fixed point of
the given collection of equations. Further, during the course of the computation it
changes only the values of the variables that had an incorrect value at the beginning of
the update. It also changes the value of a variable at most twice.

Proof. This proposition follows directly from Proposition 6.5 and Proposition 6.6, as
explained earlier. [

6.3. The Algorithm

In this section we present a detailed version of the algorithm we described in the previous
section for the dynamic SWSF fixed point problem. The algorithm is described as pro-
cedure DynamicSWSF—FP in Figure 6.3. We assume that a dependence graph G of a
collection of SWSF equations is given, and that every vertex u in the graph has a tenta-
tive output value d[u]. We assume that the set U of vertices whose associated equations
have been modified is also part of the input to the algorithm. In other words, only ver-
tices in U may be inconsistent. The other vertices are guaranteed to be consistent. This
is the precondition for the algorithm to compute the correct solution to the modified set
of equations.

The idea behind the algorithm was explained in the previous section. The algo-
rithm maintains the following invariants, and the steps in the algorithm can be under-
stood easier in terms of the invariants. The algorithm maintains a heap of all the incon-
sistent vertices—both over-consistent and under-consistent vertices—in the graph. An
overconsistent vertex u occurs in the heap with a key (priority) of g,(d[x1],. .. ,dx D,
while an under-consistent vertex u occurs in the heap with a key value of d[u]. The heap
is used to identify the inconsistency with the least key value at every stage. For every
inconsistent vertex u, the algorithm also maintains rhs[u ], the value of the right-hand
side of the equation associated with vertex u. Let us say a vertex u satisfies the invariant
if (a) u occurs in Heap with key k iff u is an inconsistent vertex with key (1) = k, and (b)
if u is an inconsistent vertex then rhs[u]=g,(d[x1],. .. Jd[xe D).
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procedure DynamicSWSF-FP (G, U)
declare
G : a dependence graph of a set of SWSF equations
U : the set of modified vertices in G
u, v, w: vertices
Heap: a heap of vertices

preconditions
Every vertex in V(G)-U is consistent
begin
[1] Heap:=9
{21 foru € Udo
[3] rhs[u]:=gu(d[xl]"-~vd[xk])
41 if rhs[u]#d[u] then
(5] InsertintoHeap( Heap, u, min(rhs [u],d [ ]))
(6] fi
{71 od
(8] while Heap # D do
91 u := ExtractAndDeleteMin( Heap )
[10] if rhs [u] < d[u] then /* u is overconsistent */
[11] du):=rhsul
[12] for v € Succ(u)do
[13] rhs[v]:=g,(dlx1], . ... d[xc])
[14] if rhs[v]#div] then
[15] AdjustHeap(Heap, v, min(rhs [v 1,div])
[16] else
(17 if v € Heap then Remove v from Heap fi
(18] fi
[19] od
[20} else /* u is underconsistent */
21} dlu]=ee
[22] forv € (Succ(u)v{u})do
(23] rhsiv] =g, dlx], . ... dlxdD
[24] if rhs[vi#div] then
[25] AdjustHeap(Heap, v, min(rhs [v 1,.dvI)
[26] else
[27] if v € Heap then Remove v from Heap fi
[28]) fi
29] od
{30] fi
{31] od
end
postconditions

Every vertex in V(G) is consistent

Figure 6.3. An algorithm for the dynamic SWSF fixed point problem.

Recall what each heap operation does. The operation InsertintoHeap (H,i,k)
inserts an item i into heap H with a key k. The operation F indAndDeleteMin (H) returns
the item in heap H that has the minimum key and deletes it from the heap. The operation
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AdjustHeap (H,i,k) inserts an item i into Heap with key k if i is not in Heap, and changes
the key of item i in Heap to k if i is in Heap.

We now verify that the algorithm does indeed maintain the invariants described
above. Thus, we first need to show that all vertices satisfy the invariant whenever execu-
tion reaches line [8]. The precondition guarantees that all the initially inconsistent ver-
tices must be in U. In lines [1]-[7], the algorithm creates a heap out of all the initially
inconsistent vertices in the graph, and simultaneously the value rhs [u] is properly
defined for every inconsistent vertex u. Hence the invariant holds when execution
reaches line [8] for the first time.

The loop in lines [8]-[31] processes and “fixes™ the inconsistencies in the graph
one by one, in increasing order of key value. An over-consistent vertex u is processed
(lines [11]-[19]) by updating d[u] to equal g,(d[x],....d[x]), the value of the right-
hand side of the equation associated with vertex u. This converts the over-estimated ver-
tex u into a correct vertex. As a result of the assignment of a new value to d[u] in line
[11] some of the successors of u may fail to satisfy the invariant, though any vertex
which is not a successor of # will continue to satisfy the invariant. When the loop in
lines [12]-[19] completes execution all vertices are guaranteed to satisfy the invariant. In
particular, lines [13]-[18] make sure v satisfies the invariant by computing its rhs value,
determining its consistency status, and adjusting the heap. A

An under-consistent vertex u is processed (lines [21]-[30]) by updating d[u] to
equal oo, followed by an appropriate updating of the heap. This step converts an under-
estimated vertex into either an over-estimated vertex or a correct vertex. Following the
assignment of a new value to d[u] in line [21], only u or some successor of u can fail to
satisfy the invariant. These vertices are appropriately processed in lines [22]-[29], and
hence the invariant is satisfied whenever execution reaches line [8].

To understand how the algorithm makes progress towards the correct solution con-
sider how the correctness status of the vertices in the graph change. In each iteration of
the loop in lines [8]-[31] the value, and hence the correctness status, of only one vertex
(namely u) changes. In particular, in each iteration exactly one of the following happens.
(1) An over-estimated vertex becomes correct. (2) An under-estimated vertex becomes
over-estimated. (3) An under-estimated vertex becomes correct. In particular, the value
of a correct vertex is never changed. An initially (i.e., at the beginning of the algorithm)
over-estimated vertex changes value exactly once. An initially under-estimated vertex
changes values at most twice (either to the correct value oo, or first to e and then to the
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correct final value). It follows that the algorithm must terminate.

Since the heap is empty when the algorithm terminates, it follows immediately
from the loop invariant that there exists no inconsistency in the graph when the algorithm
halts. In particular, the computed d values form the unique fixed point of the collection
Q of equations.

Let us now determine the time complexity of the algorithm. Let M5 be a bound on
the time required to compute the function associated with any vertex in
CHANGED u Succ (CHANGED). The initialization in lines [1]-[7] involves |U | func-
tion evaluations and |U| heap operations (insertions) and consequently takes
O(|U | (Mg+log|U |)) time, which is 0(|8] - (Ms+log|d])) time since U is MODI-
FIEDs.

Every vertex that is in the heap at some point during the execution must be an
affected vertex or the successor of an affected vertex. Hence, the maximum number of
elements in the heap at any point is O(||8]), and every heap operation takes O (logll81)
time. It follows from the explanation given earlier that lines [11]-[19] are executed at
most once for each affected vertex u. In these lines, the function associated with every
vertex in Succ(u) is evaluated once, and at most |Succ ()| heap operations are per-
formed. Hence, the lines [11]-[19] take O(|] {u}I| - (M s+og||8]|)) time (in one itera-
tion). Lines [20]-[30] are similarly executed at most once for each affected vertex u.
Consequently, lines [20]-[30] also take time O(|| {u}]l - (Mgs+logl||d]])) time (in one
iteration).

Consequently, the whole algorithm runs in time O(||8]] - dogl|d|| +M5)), and
the algorithm is a bounded scheduling cost algorithm.

6.4. An Improved Algorithm

The algorithm presented in the previous section is not the most efficient incremental
algorithm for the SSSP>0 problem. The source of inefficiency is that the algorithm
assumes that each function g; is an s.w.s.f. and no more. The functions that arise in the
shortest-path problem (and in any SSF grammar problem), however, have a special form.
The function corresponding to a vertex u« other than the source is

n}}ind( )[d [v]+length (u —>v)]. Such expressions permit the possibility of incremen-
Vv e rea i

tal computation of the expression itself. For instance, evaluating this value from scratch
takes time ©(| Pred (u)|), while if the value of this expression is known, and the value of




procedure DynamicSSF-G (G, P)
declare
G : a SSF grammar;
P : the set of modified productions in G
GlobalHeap: a heap of non-terminals
Heap: array[Nonterminals] of heap of productions;
SP: array[Nonterminals] of set of productions
preconditions: Every production in G—P is consistent. (See Definition 6.8)

procedure recomputeProductionValue(p : a production)
begin

(1] let p be the production ¥ —>g(X, . .., X})

2] value = g(d[X (1, ....,d[X,D)

3] if (value < d[Y]) then

[4] AdjustHeap( Heap [Y], p, value)

[5] else

[6] if p € Heap[Y] then Remove p from Heap (Y] fi
N fi

[8] if (value <d[Y]) then SP[Y]:=SP[Y]u{p} else SP[Y]:=SP[Y]-{p}fi
9] if (SP[Y] =) then /*Y is under-consistent */

[10} AdjustHeap( GlobalHeap, Y, aryy
[11] elseif Heap [Y]# D then /*Yis over-consistent */
[12] AdjustHeap( GlobalHeap, Y, min —key (Heap {Y1))
[13] else /* Yis consistent */
[14] if Y € GlobalHeap then Remove Y from GlobalHeap fi
[15] fi
end
begin

[16] GlobalHeap := &
[17] for every production p € P do
[18] recomputeProductionValue(p)

[19] od

[20] while GlobalHeap # & do

[21] Select and remove from GlobalHeap a non-terminal X with minimum key value

[22] if key (X) < d[X] then /* X is overconsistent */

(23] d[X] = key (X)

[24] SP{X]:= { p|p is a production for X such that value (p) =d[X] }

[25] Heap[X] =D

[26] for every production p with X on the right-hand side do recomputeProductionValue(p) od
[27} else /* X is underconsistent */

(28] d[X]:=ee

[29] SP{X]:={ p|pis aproduction for X }

[30] Heap [X] := makeHeap({ p|pisa production for X with value (p) < diX1}

[31] if Heap [X] # < then AdjustHeap( GlobalHeap, X, min—key (Heap [X])) fi

[32] for every production p with X on the right-hand side do recomputeProductionValue(p) od
{33] fi

[34] od

end

postconditions: Every non-terminal and production in G is consistent

Figure 6.4. An algorithm for the dynamic SSF grammar probl:



105

d[v] decreases for some v € Pred (), the new value of the expression can be recom-
puted incrementally in constant time. Note that this kind of incremental recomputation
of an expression’s value is performed repeatedly in Dijkstra’s algorithm for the batch
SSSP20 problem. Unfortunately, an incremental algorithm for the SSSP problem has to
also contend with the possibility that the value of d[v] increases for some v € Pred (u).

The need to maintain the value of the expression rnind [d[v]+length(u —>v)] as
v € Pred(u)

the values of d[v] change immediately suggests the possibility of maintaining the set of
all values { d[v]+length(u —>v)|v € Pred(u) } as a heap. Our approach is to main-
tain a particular subset of the set { d[v]+length(u —>v) | v € Pred(u) } as a heap,
since maintaining the whole set as a heap requires unnecesary work.

In this section we present a more efficient version of algorithm DynamicSWSF —FP
that utilizes the special form of the equations induced by the SSF grammar problem. The
algorithm is described as procedure DynamicSSF -G in Figure 6.4. The algorithm, as
presented, addresses the dynamic SSF grammar problem, and, hence, might appear to be
less general than the algorithm presented in the previous section, which addresses the
dynamic SWSF fixed point problem. Procedure DynamicSSF —G can, in fact, be used for
the dynamic SWSF fixed point problem with some simple modifications, though it will
be more efficient than procedure DynamicSWSF—FP only when the equations have the
special form described above. We address the less general SSF grammar problem here
since it is this problem that motivates the improvements to the algorithm, but emphasize
that the improved algorithm is as general as the original algorithm in terms of the class of
problem instances that it can handle. For this reason we refer to procedure
DynamicSSF —G as an improvement of Dynamic$ WSF —FP rather than merely a speciali-
zation of DynamicSWSF —FP.

We first explain the idea behind the algorithm, then prove the correctness of the
algorithm, and finally analyze its time complexity.

We assume that an SSF grammar is given, and that every non-terminal X in the
grammar has a tentative output value d[X]. We assume that the change in the input
takes the form of a change in some of the productions and production functions of the
grammar. This type of modification is general enough to include insertions and deletions
of productions as well, since a non-existent production can be treated as a production
whose production function is the constant-valued function . The insertion or deletion
of non-terminals can be handled just as easily. So we assume that the input to the algo-
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rithm includes a set P of productions whose production functions have been modified.

The Steps given in lines [16]-[34] implement essentially the same idea as procedure
DynamicSWSF -FP. A heap, called GlobalHeap, of all the inconsistent non-terminals is
maintained as before, and in each iteration the inconsistent non-terminal X with the least
key is processed, just as before. In DynamicSWSF —FP a change in the value of a vertex
is followed by the complete re-evaluation of the function associated with the successors
of that vertex, in order to identify the change in the consistency status of those vertices.
This is the step that the new algorithm, procedure DynamicSSF -G, performs differently.
The new algorithm identifies changes in the consistency status of other non-terminals in
an incremental fashion. We now describe the auxiliary data structures that the algorithm
uses to do this. These auxiliary data structures are retained across invocations of the pro-
cedure.

Note that the value associated with a non-terminal X is d[X]. We define the value
of a production ¥ — g(Xy, . .. ,Xp) tobe g(d[X;],...,d[Xi]). Forevery non-terminal
X, the algorithm maintains a set SP[X] of all productions with X as the left-hand side
whose value is less than or equal to d[X]. The algorithm also maintains for every non-
terminal X a heap Heap [X] of all the productions with X as the left-hand side whose
value is strictly less than d [X ], with the value of the production being its key in the heap.

Consider a production p = Y —>g(X1, ..., Xk). We say that the production p
satisfies the invariant if (a) p € SP[Y] iff value (p) <d[Y] and (b) p € Heap [Y] iff
value (p) < d[Y]. Thus, we want to maintain SP[Y] and Heap [Y] such that all produc-
tions satisfy the invariant. However, both at the beginning of the update and temporarily
during the update, several productions may fail to satisfy the invariant.

We use these auxiliary data structures to determine the consistency status of non-
terminals. Note that a non-terminal X is under-consistent iff SP[X] is empty and
diX1< 0,3 in which case its key is d [X ]; X is over-consistent iff Heap [X ] is non-empty,
in which case its key is given by min—key (Heap [X1]), the key of the item with the
minimum key value in Heap [X]. The invariant that GlobalHeap satisfies is that every
non-terminal X for which SP[X ] is empty and d[X] is less than e occurs in GlobalHeap
with a key of d[X ], while every non-terminal X for which Heap [X ] is non-empty occurs

3In general, the condition that SP {X] be empty subsumes the condition that d [X ] be less than oo. The latter
condition is relevant only if no production has X on the left-hand side.
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in GlobalHeap with a key of min—key (Heap [X]). It follows from the preceeding expla-
nation that GlobalHeap consists of exactly the inconsistent non-terminals with their
appropriate keys.

We now show that the algorithm maintains these data structures correctly and that
it updates the solution correctly. However, we first need to understand the precondition
these data structures will have to satisfy at the beginning of the algorithm.

Definition 6.8. A production p = ¥ —>g(X,...,Xy) is said to be consistent if (a)
p & Heap[Y] and (b) either value (p) =d[Y] and p € SP[Y] or value(p) > d[Y] and
p & SP[Y]. In other words, p is consistent iff it satisfies the invariant and, in addition,
value (p) 2d[Y].

The precondition we assume to hold at the beginning of the update is that every
unmodified production is consistent. The invariant the algorithm maintains is that when-
ever execution reaches line [20] every production satisfies the invariant, and that the Glo-
balHeap contains exactly the inconsistent non-terminals. The postcondition established -
by the algorithm is that every production and non-terminal in the grammar will be con-
sistent.

The procedure recomputeProductionValue(p) makes production p consistent by
computing its value (in line [2]) and updating the data structures SP([Y] (line [8]) and
Heap [Y] (lines [3]-[7]) appropriately, where Y is the left-hand side of p. These changes
are followed by appropriate updates to GlobalHeap in lines [9]-[15]).

We now show that whenever execution reaches line [20] every production satisfies
the invariant, and GlobalHeap contains exactly the inconsistent non-terminals. The lines
[16]-[19] initially establish the invariant. Subsequently, in each iteration of the loop in
lines [20]-[38], whenever the value of a non-terminal changes (either in line [23] or line
[30]) procedure recomputeProductionValue(p) is called for every production p that might
have become inconsistent. Thus, the invariant is re-established.

It follows from the explanation in the previous paragraph that every non-terminal
and production in the grammar is consistent when the algorithm halts.

Let us now consider the time complexity of the improved algorithm. In Algorithm
DynamicSWSF —FP the individual equations were treated as indivisible units, the smal-
lest units of the input that could be modified. The algorithm outlined in this section,
however, specifically deals with the equations generated by an SSF grammar. A finer
granularity of input modifications is made possible by allowing individual productions to
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be modified. Consequently, it is necessary to consider a refined version of the depen-
dence graph in analyzing the time complexity of the algorithm.

The bipartite graph B = (N,P,E) consists of two disjoint sets of vertices N and P,
and a set of edges E between N and P. The set N consists of a vertex ny for every non-
terminal X in the grammar, while the set P consists of a vertex n, for every production p
in the grammar. For every production p in the grammar, the graph contains an edge
nx —> n, for every non-terminal X that occurs on the right-hand side of p, and an edge
n, —> ny where Yis the left-hand side non-terminal of p. The set AFFECTED consists of
the set of all vertices ny where X is a non-terminal whose output value changes, while the
set MODIFIED consists of the set of all vertices n, where p is a modified production.
The set CHANGED is AFFECTED v MODIFIED.

Let us first consider the time spent in the main procedure, namely lines [16]-[38].
As “explained in the previous section, the loop in lines [20]-[38] iterates at most
2+ | AFFECTED| times. Lines [23]-[28] are executed at most once for every affected
non-terminal X, while lines [30]-[36] are similarly executed at most once for every
affected non-terminal X. Consequently, the steps executed by the main procedure can be
divided into (a) O (|| CHANGED || g) invocations of the procedure recomputeProduction-
Value (lines [18], [27] and [35]), (b) O (| AFFECTED| ) operations on GlobalHeap (line
[21]), and (c) the remaining steps, which take time O (|| CHANGED|| p).

Let us now consider the time taken by a single execution of procedure recompu-
teProductionValue. The procedure essentially performs (a) one function computation
(line [2]), (b) O (1) set operations (lines [8] and [9]), (c) O(1) Heap [Y] operations (lines
[4] or [6]), and (d) O (1) GlobalHeap operations (lines [10], [12] or [14]). The set opera-
tions on SP[Y] can be done in constant time by associating every production
Y—>gXy,...,Xp) with a bit that indicates if it is in the set SP[Y] or not. It can be
easily verified that each Heap[Y] and GlobalHeap have at most || AFFECTED || g ele-
ments. Consequently, each heap operation takes at most log || AFFECTED || g time.

As before, let Mp 5 be a bound on the time required to compute the production
function associated with any production in CHANGED v Succ (CHANGED). Then, pro-
cedure recomputeProductionValue itself takes time O (logl|d|lg+Mp ). Hence, the
whole algorithm runs in time O (||3]] 5" (logl| dllg+Mp 5))

Let us now consider the SSSP>0 problem. Each production function can be
evaluated in constant time in this case, and, hence, the algorithm runs in time
O(]18]log|181]). (Note that in the case of the SSSP>0 problem the input graph G and
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the bipartite graph B are closely related, since each “production” vertex in B corresponds
to an edge in G. Hence, ||8{/3 =0 (ll8ll¢).)

We now consider a special type of input modification for the SSSP>0 problem for
which it is possible to give a better bound on the time taken by the update algorithm.
Assume that the change in the input is a homogeneous decrease in the length of one or
more edges. In other words, no edges are deleted and no edge-length is increased. In
this case it can be seen that no under-consistent vertex exists, and that the value of no
vertex increases during the update. In particular, the AdjustHeap operations (in lines [4],
[10], and [12]) either perform an insertion or decrease the key of an item. Lines [6] and
[14] are never executed. Consequently, procedure recomputeProductionValue takes time
O (1) if relaxed heaps [Dri88] or Fibonacci heaps [Fre87] are used. (In the latter case, the
time complexity is the amortized complexity.) It can also be verified that the number of
elements in any of the heaps is O(|8|). Hence, the algorithm runs in time
O(|I8]l +18{log|8]). In particular, if m edges are inserted into an empty graph with n
vertices, the algorithm works exactly like the O(m+nlogn) implementation of
Dijkstra’s algorithm due to Fredman and Tarjan [Fre87]. The asymptotic complexity of
the algorithm can be further improved by using the recently developed AF-heap data
structure [Fre90a].

6.5. Extensions to the Algorithm
In this section we briefly outline a couple of extensions of the incremental algorithm
described in the previous section.

6.5.1. Maintaining Minimum Cost Derivations

We have so far considered only the problem of maintaining the cost of the minimum cost
derivations, and not the problem of maintaining minimum cost derivations themselves.
However, the algorithm outlined in the previous section can be easily extended to main-
tain the minimum cost derivations too. The set SP[X] computed by the algorithm is the
set of all productions for X that can be utilized as the first production in minimum cost
derivations of terminal strings from X. Hence, all possible minimum cost derivations
from a non-terminal can be recovered from this information. In particular, consider the
SSSP>0 problem. Every production p for a non-terminal N, corresponds to an incoming
edge u —> v of vertex v, where v is a vertex other than the source. The production p will
be in SP [N, ] iff a shortest path from the source to u followed by the edge u —>v yields a
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shortest path from the source to v. Hence, a single shortest-path from the source vertex
to any given vertex can be identified in time proportional to the number of edges in that
path, provided the set SP[X] is implemented as a doubly linked list so that an arbitrary
element from the set can be chosen in constant time.

6.5.2. The All-Pairs Shortest-Path Problem

We have seen that the algorithm outlined in the previous section can be used to update
the solution to the single-source (or the single-sink) shortest-path problem when the
underlying graph undergoes modifications. We briefly sketch how this algorithm can be
adapted to update the solution to the all-pairs shortest-path problem too. The essential
approach is to make repeated use of our incremental algorithm for the SSSP>0 problem.
However, it is not necessary to update the single-source solution for every vertex in the
graph; it is possible to identify a subset of the vertices for which it is sufficient to update
the single-source solution. Let u; —>v;, for 1 S i<k, be the set of modified (inserted or
deleted) edges. Let d (x,y) denote the length of a shortest path from x to y. Then, for any
two vertices s and ¢, d(s,t) can change only if for some i € [1,k] both d(s,v;) and
d (u;,1) change. Hence, by updating the single-source solution for every u;, we can iden-
tify the set of vertices ¢ for which the single-sink solution will change. Similarly, by
updating the single-sink solution for every v;, we can identify the set of vertices s for
which the single-source solution will change. Then, we can update the single-sink solu-
tion and the single-source solution only for those vertices for which the solution can
change. However, we note that for certain special cases, such as updating the solution to
the APSP>0 problem after the insertion of an edge, this approach does not yield the best
possible incremental algorithm. The algorithm presented in Chapter 4 works better in
this special case.

6.5.3. Handling Negative-Length Edges

Consider the use of our incremental algorithm for the SSSP problem. The proof of
correctness of our algorithm and the analysis of its time complexity both rely on the fact
that all edges have a positive length. We now discuss some types of input changes for
which this restriction on the edge lengths can be somewhat relaxed. We first consider
zero-length edges. It can be shown that if the change in the input graph is a homogene-
ous decrease in the length of one or more edges then the algorithm works correctly as
long as all edges have a non-negative length (i.e., zero-length edges do not pose a prob-
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lem). Similarly, if the input change is a homogeneous increase in the length of one or
more edges then the algorithm works correctly as long as all edges have a non-negative
length and there are no cycles in the graph of zero length (i.e., zero-length edges do not
pose a problem as long as no zero-length cycles exist in the graph).

We now consider negative length edges. For certain types of input modifications it
is possible to use a variant of our incremental algorithm to update the solution to the
SSSP problem (with arbitrary edge lengths), as long as all cycles in the graph have a
positive length. The idea, which was discussed earlier in Chapter 4, is to adapt the tech-
nique of Edmonds and Karp for transforming the length of every edge to a non-negative
real without changing the graph’s shortest paths [Edm72,Tar83]. Their technique is
based on the observation that if fis any function that maps vertices of the graph to reals,
and the length of each edge a — b is replaced by f (a) + length(a —>b) - f (b), then the
shortest paths in the graph are unchanged from the original edge-length mapping. If f
satisfies the property that f (a) + length (a —> b) — f (b) 2 0 for every edge a —> b in the
graph, then the transformed length of every edge will be positive.

Now consider the incremental SSSP problem. Let d,;;(u) denote the length of the
shortest path in the input graph G from source (G) to u before G was modified. Consider
the effect of the above edge-length transformation if we simply define f (#) to be d,y(u).
First note that the transformation is well-defined only for edges a — b such that d,(b)
is not o. For every edge a —>b in the original graph we have dy(b) < dpu(a) +
length, (a —> b). Consequently, d,(a) + lengthyy(a —>b) — dyyy(b) 2 0. Hence, the
transformed length of an edge a — b will be non-negative as long as lengthy,,(a —> b)
> length, (@ —> b) (i.e., as long as the length of the edge a — b was not decreased dur-
ing the input modification), and d,4(b) is not os.

In particular, this idea can be used to adapt our incremental algorithm to update the
solution to the SSSP problem when the lengths of a collection of edges are increased
(possibly to =), and no edge is inserted or no edge-length is decreased. This will work
since the length of an edge a —> b is relevant only if a can be reached from the source
vertex and, hence, only if both d,;;(a) and d,4(b) are finite. The transformed length of
all such edges are non-negative, and our incremental algorithm is applicable as long as
there are no cycles of zero length in the graph. Note that it is not necessary to compute
the transformed length for all edges at the beginning; instead, the transformed length of
an edge can be computed as and when the length of that edge is needed. This is essential
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to keep the algorithm a bounded one.

The technique of edge-length transformation can also be used in a special case of
edge insertion or edge-length decrease. Assume that the length of a set of edges F, all
directed to a specific vertex u that was already reachable from the source, are decreased
(possibly from o). The above edge-length transformation makes the lengths of all
relevant edges non-negative. The transformed length of the edges in F are not
guaranteed to be non-negative; however, this causes no difficulties because edges
directed to u are in a sense irrelevant to the updating algorithm. More details can be
found in Chapter 4.

6.6. Related Work

In this chapter we have presented an incremental algorithm for the dynamic SWSF fixed
point problem. The dynamic SWSF fixed point problem includes the dynamic SSF
_grammar problem as a special case, which, in turn, includes the dynamic SSSP>0 prob-
lem as a special case. Thus, we obtain an incremental algorithm for the dynamic SSSP>0 '
problem as a special case of algorithm DynamicSSF -G, which was described in Section
5. We have also described how the algorithm can be generalized to handle negative edge
lengths under certain conditions, and how the algorithm for the dynamic single-source
shortest-path problem can be utilized for the dynamic all-pairs shortest-path problem as
well.

Knuth [Knu77] introduced the grammar problem as a generalization of the
shortest-path problem, and generalized Dijkstra’s algorithm to solve the batch SF gram-
mar problem. We know of no previous work on incremental algorithms for the dynamic
grammar problem.

Previous work on algorithms for the dynamic shortest-path problem includes
papers by Murchland [Mur, Mur67], Loubal [Lou67], Rodionov [Rod68], Halder
[Hal70], Pape [Pap74], Hsieh et al. [Hsi76], Cheston [Che76], Dionne [Dio78], Goto et
al. [Got78], Cheston and Corneil [Che82], Rohnert [Roh85], Even and Gazit [Eve85],
Lin and Chang [Lin90], Ausiello et al. [Aus90,Aus91], and Ramalingam and Reps
[Ram91] (see Chapter 4). These algorithms may be classified into groups based on (a)
the information computed by the algorithm (such as the whether the all-pairs or single-
source version of the problem is addressed), (b) the assumptions made about the edge
lengths, and (c) the type of modification that the algorithm handles. What distinguishes
the work reported in this chapter from all of the work cited above is that it is the first
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incremental algorithm that places no restrictions on how the underlying graph can be
modified between updates. Our work addresses the single-source shortest-path problem
with the restriction that all edges be positive in detail. It also briefly addresses the
dynamic all-pairs shortest-path problem and extensions to handle edges with non-positive
length.

The remainder of this section provides a brief overview of the different groups of
dynamic shortest-path algorithms, the different techniques used by the various algo-
rithms, and a brief comparison of the different algorithms. The table in Figure 6.5 sum-
marizes this discussion. We remind the reader that our comments about the cases of an
edge-insertion or an edge-deletion apply equally well to the cases of a decrease in an
edge length and an increase in an edge length, respectively.

We begin with the version of the problem that has been studied the most, namely
the all-pairs version. Given a graph G and a modification & to the graph, let dpyy(x,y) and

Problem Modifications Best bounded | Other Unbounded
algorithm(s) bounded algorithms
algorithms

APSP Single Edge Insertion [Lin90], Chapter 4, [Dio78], [Rod68],

[Aus91] [Roh85], [Lou67], [Mur67]
[Eve85]

APSP Single Edge Deletion [Roh85], [Eve85],
[Dio78], {Rod68],
[Mur67]

APSP-Cycle>0 | Single Edge Deletion Chapter 4

APSP>0 Single Edge Deletion [Hal70]

APSP>0 Arbitrary Modification This chapter Repeated applications
of algorithms for unit
changes

Muitiple SSSP | Multiple Edge Insertions [Got78]

SSSP>0 Arbitrary Modification This chapter

SSSP-Cycle>0 | Multiple Edge Deletions | This chapter

SSSp Restricted Edge Insertion | This chapter [Got78]

Figure 6.5. Various versions of the dynamic shortest-path problem and incremental algorithms for them.
Note that APSP>0 and SSSP>0 refer to problems where every edge is assumed to have positive length,
while APSP-Cycle>0 and SSSP-Cycle>0 refer to problems where every cycle is assumed to have positive
length, with no restrictions on edge lengths. The modification referred to in the last item of the table,
namely “restricted edge insertion”, is the insertion of one or more edges, all directed to the same vertex, a
vertex that must already be reachable from the source.
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d,ew(%,y) denote the length of a shortest path from x to y in the graphs G and G +39
respectively. The pair (x,y) is said to be an affected pair if dppy (x,y) is different from
da(x,y). A vertex x is said to be an affected source if there exists a vertex y such that
(x,y) is an affected pair; similarly x is said to be an affected sink if there exists a vertex y
such that (y,x) is an affected pair.

Let us now consider the problem of processing the insertion of an edge u —v.
This problem is in some sense the easiest among the various versions of the dynamic
shortest-path problem,; at least, it is fairly straight-forward to determine dpew (x,y) in con-
stant time, for any given pair of vertices (x,y) since

Ao (%,y) = min ( dog(x,y), doia(x,u) + lengthpe, (4 —>v) +doig(v,y) ).()
Computing d,,,, (x,y) for every pair of vertices (x,y) using the above equation takes time
O (n?), which is better than the time complexity of the best batch algorithm for APSP.
Most of the known algorithms for this problem do even better by first identifying an
approximation A to the set of all affected pairs and then updating d(x.y) only for .
(x,y) € A. The best algorithm currently known for this problem, developed indepen-
dently by Lin and Chang [Lin90] and Ausiello et al. [Aus91], restricts the set of pairs of
vertices for which the d value is recomputed by a careful traversal of the shortest-path
trees of the graph before the modification. The algorithm due to Even and Gazit [Eve85]
is similar and identifies the same set of pairs of vertices but is slightly less efficient since
it does not maintain shortest-path trees. The algorithms presented in Rohnert [Roh85]
and Chapter 4 are based also on similar ideas. All of the above algorithms are bounded
algorithms. It is worth mentioning that the improved efficiency of the algorithms
described in [Lin90] and [Aus91] is obtained at a cost: these algorithms make use of the
shortest-path-tree data structure, the maintenance of which can make the processing of an
edge-deletion more expensive. The algorithms due to Murchland [Mur67], Dionne
[Dio78], and Cheston [Che76] are all based on the observation that x is an affected
source [sink] iff (x,v) [(#,x)] is an affected pair. These algorithms identify the set of
affected sources S, and the set of affected sinks S, in O (n) time using equation (}), and
use §; X S, as an approximation to the set of affected pairs. Consequently, these algo-
rithms are unbounded.

Let us now consider the problem of processing the deletion of an edge u —>v from
the graph. Edge deletion is not as easy to handle as edge insertion. As Spira and Pan
[Spi75] show, the batch all-pairs shortest-path problem can, in some sense, be reduced to
the problem of updating the solution to the all-pairs shortest-path problem after an edge
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deletion. An incremental algorithm that saves only shortest-path information cannot, in
the worst case, do any better than a batch algorithm, which is not true in the case of edge
insertion.

Most algorithms for processing an edge deletion follow the approach of first identi-
fying an approximation A to the set of all affected pairs, and then computing the new d
value for every affected pair. We showed in Chapter 4 show that it is possible to identify
the set of affected pairs exactly if the graph does not have zero-length cycles, and
described the only known bounded incremental algorithm for this problem. This algo-
rithm is based on the repeated application of a bounded algorithm for the dynamic
SSSP>0 problem (see below). The set of all affected sinks is identified by using the algo-
rithm for the dynamic SSSP>0 problem with u as the source, since x is an affected sink
iff (u,x) is an affected pair. The APSP solution can then be updated by updating the
single-sink solution for every affected sink.

The algorithms due to Rohnert [Roh85] and Even and Gazit [Eve85] can also be -
viewed as consisting of the repeated application of an algorithm for the dynamic SSSP
problem, though they are not described as such. These algorithms, however, do not iden-
tify the set of affected pairs exactly. A vertex pair (x,y) is treated as a possibly affected
pair iff ¥ —> v is in the current shortest path from x to y that the algorithm maintains.
(Note that an alternative shortest path from x to y that does not contain edge u — v might
exist in the original graph, and hence (x,y) might not be an affected pair.) However,
these algorithms have the advantage that they work even in the presence of zero-length
cycles.

All the above-mentioned algorithms use an adaptation of Dijkstra’s algorithm to
solve the dynamic SSSP algorithm. The algorithms can, however, be adapted to handle
negative length edges using the technique outlined in Section 6.5.3. The algorithms due
to Rodionov [Rod68], Murchland[Mur67], Dionne [Dio78], and Cheston [Che76], are all
based on a different, and less efficient, technique of computing the new d value for every
pair in A, the approximation to the set of affected pairs, using an adaptation of Floyd’s
algorithm for the batch shortest-path problem. A vertex pair (x,y) is considered to be
possibly affected and is included in A iff dyie(x,y) = dou(x,u) + lengthyy(u —>v) +
dyia(v,y). The adapted version of Floyd’s algorithm differs from the original version in
that in each of the # iterations only the d values of vertex pairs in A are recomputed. This
algorithm runs in O(|A | - n) time.
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Let us now consider the problem of updating the solution to the APSP problem
after non-unit changes to the graph. This problem has not received much attention. The
algorithm outlined in Section 6.5.2 for the dynamic APSP>0 problem is the only known
incremental algorithm for any version of the dynamic APSP problem that is capable of
handling insertions and deletions of edges simultaneously. Goto and Sangiovanni-
Vincentelli [Got78] outline an incremental algorithm for updating the solution to multi-
ple SSSP problems on the same graph—that is, the shortest-path information for a given
set of sinks—when the lengths of one or more edges in the graph are decreased.
Rodionov [Rod68] considers the problem of updating the solution to the APSP problem
when the lengths of one or more edges all of which have a common endpoint are
decreased.

Versions of the shortest-path problem other than the all-pairs version have not
received much attention either. Goto and Sangiovanni-Vincentelli {Got78] consider the
dynamic version of the problem of solving multiple single-source shortest-path problem:
given a graph G and a set of source vertices S, determine the length of the shortest path
between s and u for every source vertex s and every vertex u. Hence, the algorithm in
[Got78] applies to the single-source problem as a special case.

Loubal [Lou67], and Halder [Hal70] study a generalization of the all-pairs
shortest-path problem, where a subset S of the vertices in the graph is specified and the
shortest path between any two vertices in § have to be computed.

In conclusion, the work described in this chapter differs from the previous work in
this area in several ways. First, the incremental algorithm we have presented is first algo-
rithm for any version of the dynamic shortest-path problem that is capable of handling
arbitrary modifications to the graph (i.e., multiple heterogeneous changes to the graph).
Second, the version of the dynamic shortest-path problem we address, namely the
single-source version, has been previously considered only in [Got78]. The algorithm
described in this chapter is more efficient and capable of handling more general
modifications than the algorithm described in [Got78]. (However, the latter algorithm,
unlike our algorithm, can handle negative edge lengths.) Finally, we have generalized
our algorithm for a version of the dynamic fixed point problem.
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Chapter 7

Incremental Algorithms for the Circuit Value Annotation Problem

If you see several plans, none of them too sure, if there are several roads diverging
from the point where you are, explore a bit of each road before you venture too far
along any one—any one could lead you to a dead end.

—G. Polya, Mathematical Discovery, Volume 2

7.1. Introduction

This chapter presents results on the dynamic circuit value annotation problem. We intro-
duce a new strategy for updating a circuit’s annotation incrementally, and show that this
strategy yields an exponentially bounded algorithm for the problem. This result, in con-
junction with a previous lower bound[Alp90], establishes that the dynamic circuit value
annotation problem belongs to the exponentially bounded class. We analyze several -
variants of this incremental algorithm, show that a version of this algorithm is quadrati-
cally bounded for a special class of circuits, and develop bounded versions of this algo-
rithm for the weighted circuit value annotation problem. We finally present experimental
results showing the practicality of our incremental algorithm.

A circuit is a dag in which every vertex u is associated with a function F,. The
output value to be computed at a vertex u is obtained by applying function F), to the
values computed at the predecessors of vertex u. The circuit value annotation problem is
to compute the output value associated with each vertex. Thus, the circuit value annota-
tion problem is the problem of computing the unique fixed point of a non-recursive col-
lection of equations. The dynamic version of the problem is to maintain consistent
values at each vertex as the circuit undergoes changes
[Par83, Rep83, Hoo87, Alp89, Alp90].

From a systems-building perspective, the dynamic circuit value annotation prob-
lem is important because it is at the heart of several important kinds of interactive sys-
tems, including the pervasive spreadsheet [Bri79,Par83] as well as language-sensitive
editors created from attribute-grammar specifications [Rep88]. The dynamic circuit
value annotation problem is of interest to incremental computation because the computa-
tion performed by an arbitrary program can be represented by a circuit and used in incre-
mental execution of the same program. As Hoover says:
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If, as a consequence of a modification, the results of all intermediate computations
change, then the problem is not incremental in nature. --- If a large number of the
computed results stay the same, however, these computed values can be saved and
reused to compute the result after the modification. We do this by constructing a direct-
ed graph whose vertices represent the values of computations that are likely to remain
unchanged, and whose edges represent the dependencies among these computations.
We store the most recently computed value of the computation at the vertex. This graph
is called a dependency graph, -+ [Hoo87]

In the case of interactive systems based on attribute grammars, specialized algo-
rithms have been devised that take advantage of the special structure of the problem
[Rep83,Rep84, Yeh83, Rep88]. However, a generalized framework has been proposed
by Alpern et al. that uses the annotation of graphs as a paradigm for specifying other
classes of interactive systems, especially ones that cannot be encoded efficiently with
attribute grammars [Alp89]. Systems created using this paradigm can give rise to arbi-
trary circuits. Similarly, Alphonse [Ho0092], a system for automatically generating
efficient incremental systems from simple exhaustive imperative program specifications,
makes use of incremental algorithms for the general circuit value annotation problem.
Thus, the dynamic circuit value annotation problem is highly relevant to real-world sys-
tems.

Alpern et al. [Alp90] show that the incremental circuit value annotation problem
has a lower bound of Q(Z”S”) under a certain model of incremental computation called
local persistence. (This model of computation is discussed in chapter 8.) This chapter
outlines bounded algorithms for various versions of the dynamic circuit value annotation
problem. In particular, we present an algorithm for the incremental circuit value annota-
tion problem that runs in time O(2 1311}, under the assumption that the evaluation of each
function F, takes unit time. Dropping this assumption leads to the weighted circuit value
annotation problem, which is also discussed in this chapter.

What is the significance of the results presented in this chapter? First, these results
are interesting from the point of view of analyzing the complexity of incremental algo-
rithms in terms of the parameter ||3]|. The results show that the circuit value annotation
problem has a bounded incremental algorithm—previous to our work, no bounded algo-
rithm for the incremental circuit value annotation problem was known, though several
unbounded incremental algorithms were known [Alp90]. Further, the matching exponen-
tial lower and upper bounds for this problem establish that the problem is an inherently
exponentially bounded problem and enriches the complexity hierarchy for incremental
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computation.

Second, the algorithms outlined in this chapter appear to be useful in practice. At
first blush, these algorithms may appear impractical because they are exponentially
bounded, with a worst-case complexity of o2y, In particular, since ||| can be
Q(n) in the worst case (assuming bounded degree graphs for simplicity), it might appear
that the incremental algorithm can take time €2(2") in the worst case. Since a batch algo-
rithm can evaluate the whole circuit in time O(n), again assuming bounded degree
graphs, the incremental algorithm may appear inferior to the batch algorithm. However,
one version of the algorithm we present runs in time linear in the number of vertices it
visits—thus, its worst-case running time is ©(n). Hence, from the conventional perspec-
tive, the incremental algorithm is asymptotically no worse than the batch algorithm or the
nullification-reevaluation incremental algorithm (see Section 7.2) for this problem, while,
from the boundedness perspective, the algorithm is better than the batch algorithm and
the nullification-reevaluation incremental algorithm. from conventional perspective, and
is better than. We present experimental results that show that a version of this incremen-
tal algorithm performs well for the attribute updating problem in a Pascal editor, often
performing close to the minimum number of evaluations necessary—that is, it runs in
time O (]| 9]]) most of the time.

Third, it can be shown that for a special class of circuits, monotonic circuits, and
unit changes, the algorithm we present runs in time O (|| 8| Y,

The rest of the chapter is organized as follows. Section 2 discusses various basic
approaches to the incremental circuit value annotation problem, such as the
nullification-reevaluation strategy and various change propagation strategies, and the
problems associated with these approaches. Section 3 introduces a new strategy, the
iterative evaluate-and-expand strategy, for this problem. Section 4 presents specific
bounded algorithms that follow this strategy. Section 5 concerns a generalization of the
algorithms discussed in Section 4 to handle the weighted circuit value annotation prob-
lem. Section 6 presents experimental results on the performance of a version of these

incremental algorithms.

7.2. The Change Propagation Strategy

Let us begin with some relevant terminology.
A circuit is a dag in which every vertex is associated with a function together with
an an ordering relation on the predecessors of a vertex. Consider a circuit whose vertices
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are annotated with (output) values. Let u.value denote the value annotating vertex u.
Vertex u is said to be consistent if its value equals function F,, applied to the values asso-
ciated with its predecessor vertices. In other words, if the predecessors of vertex u are v
,..., Vg in that order, then u is said to be consistent if:
u.value = F,(vy.value, ... ,vi.value).

The circuit is said to be correctly annotated if each vertex in the circuit is consistent. A
vertex is said to be correct if its value is the one it would have in a correct annotation of
the circuit. Note that a consistent vertex might be incorrect (but only if at least one of its
predecessors is incorrect). A change to the circuit consists of the insertion and/or dele-
tion of vertices and/or edges from the dag, along with the associated modification of the
functions associated with the various vertices. The changes can leave several of the ver-
tices in the circuit inconsistent, and an incremental algorithm for the circuit value annota-
tion problem needs to update the annotation of the circuit so that all the vertices are con-
sistent. In the algorithms we present in this chapter we will not bother about the exact
change to the circuit. Instead, we will assume that an annotated circuit G is given along
with a list of the vertices in the circuit that are (possibly) inconsistent—in this chapter we
will refer to these vertices as the “modified” vertices—from which a correctly annotated
circuit is to be computed. A unit change to the circuit is one that modifies at most one
vertex.

Let us now consider the batch version of the circuit value annotation problem.
Given an unannotated circuit, we can compute a correct annotation of the circuit by visit-
ing the vertices in the circuit in a topological order [Knu73] and evaluating them. (By
“gvaluating” a vertex ¥ we mean applying the function associated with vertex u to the
output values currently associated with the predecessors of u, and making the value so
obtained the output value of vertex u.) This process has been called topological evalua-
tion [Rep84]. This takes time linear in the number of vertices and edges in the circuit,
assuming that the evaluation of each function takes constant time.

The incremental circuit value annotation problem has been studied widely before
[Par83, Rep83, Hoo87, Alp90]. It is worth examining the basic approaches that have
been used for this problem in previous work.

One simple strategy for computing a correct annotation of an inconsistent circuit is
a two-phase algorithm known as the nullification-reevaluation algorithm [Rep84]. In the
first phase of this algorithm, the region “downstream” of the modified vertices—that is,
the set of all vertices reachable from the modified vertices—is determined using a simple



121

graph traversal, and the values associated with the vertices in this region are “nullified”.
In the second phase the values of the nullified vertices are evaluated in a topological
order. Thus, this algorithm runs in time linear in the size of region downstream of the
modified vertices, and is an improvement upon the batch algorithm.

The drawback with the nullification-reevaluation algorithm is that it can perform
many unnecessary computations—it is an unbounded algorithm. Note that it is necessary
to evaluate a vertex only if it is either a modified vertex or the successor of an affected
vertex—otherwise, the vertex must be consistent and re-evaluation will not change its
value. “Change propagation” denotes the propagation of the effects of the input change:
the propagation starts from the modified vertices, and proceeds downstream until all
changes quiesce. It is the basic strategy used in various incremental algorithms for the
circuit value annotation problem that attempt to avoid examining that whole of the region
downstream of the modified vertices. These algorithms repeatedly choose some vertex
for re-evaluation and compute a new value for that vertex from the values of its predeces-
sors until all vertices are consistent. The algorithms differ usually in how they choose
vertices to be evaluated. The naive change propagation algorithm presented in Figure 7.1
uses no special strategy in choosing vertices for re-evaluation.

procedure NaiveChangePropagation (G, U)
declare

G : an annotated circuit

U : asetof vertices in G

WorkSet : a set of vertices

u : avertex
preconditions

Every vertex in V(G)-U is consistent
begin
[11 WorkSet:=U
(21  while WorkSet # @ do

3] Choose and remove some vertex u from WorkSet

[4] previousValue := wu.value

[51 Re-evaluate u.value from the values of u’s predecessors

[6] if u.value # previousValue then Add the successors of u to WorkSet fi
77 od

end

postconditions

Every vertex in G is consistent

Figure 7.1. A naive change propagation algorithm for the incremental circuit value annotation problem.
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If a change propagation algorithm is to avoid unnecessary vertex evaluations it
must ensure that vertices are visited and evaluated in a topological order. For example,
consider the circuit shown in Figure 7.2. Labels attached to the edges denote the output
value associated with the source vertex of that edge. Expressions inside the vertex
denote the function associated with that vertex. The values to the right of the vértex
denote the output values associated with that vertex. Vertex u in the circuit is associated
with a constant value, which is changed from 1 to 2. This change in input affects the out-
put value of only two vertices, namely 4 and v. However, after changing the output value
associated with vertex u, the naive change propagation algorithm has to choose a vertex
from among v and w to re-evaluate. If the algorithm wrongly chooses vertex w to re-
evaluate it will temporarily assign a wrong value to that vertex, because it uses v’s old
(wrong) value of 0 and u’s new (correct) value of 2 in computing w’s new value. This
can cause a “spurious change” to propagate down the circuit. In particular, if the algo-
rithm always chooses the vertex in workset that is farthest down in the figure it will take
time exponential in the number of vertices in the circuit before the spurious change
quiesces and the circuit is correctly annotated. (See [Rep84].) On the other hand, an
algorithm that correctly chooses to re-evaluate v before w will not erroneously change
w’s values, and will, consequently, re-evaluate only the vertices u, v, and w and finish the
updating in O(1) time.

If the updating algorithm is to visit and evaluate vertices in a topological order
then it is necessary to dynamically maintain a topological ordering of the dag, or
equivalent auxiliary information that provides information about the transitive depen-
dences among vertices. For the circuits that arise in the attribute evaluation problem in
language-sensitive editors, specialized algorithms have been devised that maintain such
auxiliary information without any asymptotic increase in the time complexity of the
incremental algorithm [Rep83,Rep84, Yeh83,Rep88]. These algorithms run in time
O (]131]) and are, hence, asymptotically optimal.

For the general circuit value annotation problem, the best known algorithm that
follows this approach is that of Alpern ez al.[AIp90]. A dag is said to be correctly priori-
tized if every vertex u in the dag is assigned a priority, denoted by priority (u), such that
if there is a path in the dag from vertex u to vertex v then priority (u) < priority (v).
Alpern et al. outline an algorithm for the problem of maintaining a correct prioritization
of a circuit as it undergoes modifications. They utilize the priorities in propagating
changes in the circuit in a topological order. Thus, in each iteration of the change propa-
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Figure 7.2. An example to show the problem with naive change propagation. The circuit shown in (a) is a
correctly annotated circuit. The constant-valued function associated with vertex u is modified. The correct
annotation of the resulting circuit is shown in (b). Only « and v are affected by this change in the input.
But the naive change propagation algorithm can potentially visit all vertices that are reachable from u and
temporarily assign wrong values to them. It can also take time exponential in the number of different ver-
tices it visits before it computes the correct annotation of the circuit.

gation algorithm outlined in Figure 7.1, the vertex chosen in line [3] is the vertex in
WorkSet with the minimum priority. This, however, leads to an unbounded algorithm
for the dynamic circuit value annotation problem, because maintaining a topological ord-
ering or priority ordering of the dag can require time unbounded in terms of ||d||—the
priority ordering of the vertices can greatly change following an input modification,
though none of the output values change. For example, it might be necessary to examine
all the vertices that are downstream of the modified vertices updating priorities even
though the values of those vertices are unaffected. Thus, we cannot afford to maintain
priorities or a topological ordering of the vertices of the circuit if we desire a bounded
algorithm for the dynamic circuit value annotation problem.
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7.3. The Iterative Evaluate-and-Expand Strategy

If we do not maintain a priority-ordering or a topological ordering of the vertices of the
circuit, how can we avoid the problems with the naive change propagation? The two
problems with naive change propagation that we would like to avoid are: (1) The number
of vertices that naive change propagation visits and evaluates is not bounded by any
function of the number of affected and modified vertices (2) The number of evaluations
that naive change propagation performs can be exponential in the number of vertices it
visits.

The algorithms we present in this chapter may be described as iterative evaluate-
and-expand strategies. The essential characteristic of these algorithms is presented in
Procedure [terativeEvaluationAndExpansion (see Figure 7.3), which is a general schema
for computing a correct annotation of a circuit G, given a possibly incorrect annotation of
G, and a set of vertices U that are possibly inconsistent. Thus, IterativeEvaluationAn-
dExpansion can handle multiple modifications simultaneously. The algorithm works as
follows. It initializes the set WorkSet to consist of the initially inconsistent vertices
(lines [2]-[5]). Then, the algorithm iteratively does the following until it can be esta-
blished that the circuit has been correctly annotated: (1) Evaluate all the vertices in
WorkSet in a relative topological order (see the following paragraph) (line [8]) and (2)
Expand the WorkSet by adding one or more vertices to it (lines [14]-[18]). After every
evaluation step, the algorithm determines if the circuit is correctly annotated as follows:
The set of all vertices in WorkSet that have a value different from their original value is
identified (line [10]). These vertices are said to be apparently affected—some of these
vertices may not be affected but just have a wrong value temporarily assigned to them.
The set of all successors of the apparently affected vertices, excluding those vertices
already in the workset, is identified (line [11])—these are the newly identified potentially
affected vertices. The algorithm halts if no new vertex is identified as being potentially
affected.

The evaluation step is based on the notion of a relative topological ordering. Let H
denote the subgraph of G induced by a set of vertices S. Any topological ordering of H is
said to yield a relative topological ordering for S. Note in particular that if a vertex u
topologically precedes vertex v in G and all paths in G from u to v pass through some
vertex not in S, then « need not come before v in a relative topological ordering for S.
This is important because, in general, it is not possible to determine an actual topological
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procedure IterativeEvaluationAndExpansion (G, U)
declare
G : an annotated circuit
U : a set of vertices in G
WorkSet, ApparentlyAffected, ToBelncluded : sets of vertices
u, v, w: vertices
preconditions
Every vertex in V(G)~U is consistent
begin
{11  /* Initialize WorkSet */
[2] WorkSet := U
{31 for every vertex u € Udo

[4] u.originalValue := u.value

{51 od

[6] loop

(7] /* Evaluate WorkSet */

[8] for every vertex v € WorkSet in relative topological order do recompute v.value od
91 /* Test for termination */

[10] ApparentlyAffected .= { v € WorkSet : v.value # v.originalValue }
[11] PotentiallyAffected := Succ (ApparentlyAffected) - WorkSet
[12] if PotentiallyAffected = & then exit loop fi

[13] /* Expand WorkSet */
[14] ToBelncluded := any non-empty subset of V(G)—WorkSet
[15] for every vertex v € ToBelncluded do

[16] Insert v into WorkSet
in v.originalValue = v.value
[18] od

[19] end loop

end

postconditions

Every vertex in G is consistent

Figure 7.3. The iterative evaluate-and-expand strategy for the incremental circuit value annotation prob-
lem. An expansion strategy specifies how the set ToBelncluded is to be chosen in line [14] and leads to a
corresponding incremental algorithm for the circuit value annotation problem.

ordering of a set S (i.e., an ordering that accounts for all paths in G) in time bounded by a
function of |S| (or even ||S||; for any fixed value of i). In contrast, it is possible to
determine a relative topological ordering of the vertices of § in time O(|] S1H.

The algorithms presented in this chapter implement specific strategies for the
expansion step. We now establish the correctness and some other properties of Itera-
tiveEvaluationAndExpansion, which are independent of the specific strategy used for the

expansion step.
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Let Var; denote the value of a variable Var at the end of the i-th iteration.

Proposition 7.1.

1.) Let G be an annotated circuit and U a set of vertices in G such that every vertex
in V(G)-U is consistent. Then, the annotation computed by procedure IterativeEvalua-
tionAndExpansion is correct.

2.) If WorkSet; o N (AFFECTED), then the algorithm will exit the loop during the
i+1-th iteration.

3) If WorkSet; 2 AFFECTED, then at least one of the vertices in
PotentiallyAffected; ., is an affected vertex.

Proof.

1.) Consider the circuit as annotated when the procedure terminates. We show that every
vertex in the circuit is correctly annotated by induction on the vertices v of G in “topo-
logical order”: we show for every vertex v in G that, assuming the inductive hypothesis
that every predecessor of v in G is correct, v is itself correct. ’

Let WorkSet denote the final value of WorkSet. First consider the case that v is in
WorkSet. Whenever the value of a vertex is recomputed, the vertex becomes consistent.
It can subsequently become inconsistent only if the value of some of its predecessor
changes because of recomputation. Now, the values for vertices in WorkSet have been
computed in a relative topological order in line [8]—thus, the value of vertex v was
recomputed, and the value of none of its predecessors would have been recomputed after
that. It follows that every vertex in WorkSet is consistent. It follows that every vertex v
in WorkSet is also correct (since its predecessors are correct, according to the inductive
hypothesis).

Now consider the case that v is not in WorkSet. Note that the following condition
holds true when the procedure terminates: if w and v vertices such that w € WorkSet,
vV & m, w—>v € E(G), then w.value = w.originalValue. (Otherwise, v would
have been in PotentiallyAffected in the last iteration, and the algorithm would not have
halted after that iteration.) Hence, any predecessor w of v that is in WorkSet has the
same value as it did originally. Since only the values of vertices in WorkSet could have
changed, any predecessor of v that is not in WorkSet has the same value as it did initially.
Hence, v and all of its predecessors have the same values as they did before the update.
Since v was initially consistent (from the precondition of the procedure), it must still be
consistent and, hence, correct. It follows that IterativeEvaluationAndExpansion com-



putes a correct annotation of the circuit.

2.) Assume that WorkSet; o N(AFFECTED). Then, after the recomputation in the
i +1-th iteration, the circuit must be correctly annotated. This follows by induction: a
vertex in WorkSet must be correct, just as in (1); any vertex not in WorkSet is an unaf-
fected vertex, by assumption, and must be correct since it has its original value.

Hence, ApparentlyAffected;.; must be the same as AFFECTED, and

PotentiallyAffected; .; must be empty. Hence, the algorithm halts after the i+1-th itera-
tion.
3.) Enumerate the vertices of G in some topological order. Let w be the first affected ver-
tex in this ordering that is not in WorkSet;. Since w is not in WorkSet; it cannot be a
modified vertex (that is, one of the vertices in U). Consequently, w must have a prede-
cessor v that is affected. It follows by induction, as before, that every vertex that pre-
cedes w in the topological ordering is correctly annotated. In particular, v must be in
WorkSet; and must have a value different from its original value. Hence, v must be in
ApparentlyAffected; .1 and w must be in PotentiallyAffected; ;. L]

Let us now briefly consider the two concerns we raised at the beginning of the sec-
tion, concerning the number of vertices visited and the number of vertex evaluations per-
formed. The above algorithm performs |WorkSet| evaluations in each iteration, and
iterates at most |M| times, since it adds at least one vertex to WorkSet in each
iteration. Consequently, it performs at most ;mﬁ evaluations—that is, the
number of evaluations the algorithm performs is, in the worst-case, no more than qua-
dratic in the number of vertices it visits. The above claim is true irrespective of the stra-
tegy used to add vertices to the WorkSet. We will show in the next section that a particu-
lar strategy of adding vertices to the WorkSet yields an algorithm in which the number of
evaluations performed is linear in the number of vertices visited. We will also present
strategies to keep the number of vertices visited bounded (by some function of || 8]]).

Remark 7.2. Note that some improvements are possible to the above algorithm. For
instance, instead of evaluating every vertex in WorkSet in line [8] we can do the follow-
ing: we can determine the set of all vertices in WorkSet that are reachable from the set of
vertices that were most recently added to the WorkSet (in line [2] or in lines [15]-[18]) in
the subgraph induced by WorkSet and evaluate only these vertices—the values of other
vertices are guaranteed not to change. We have omitted such improvements to keep the
algorithm description simple. These improvements do not, however, change the worst-
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case time complexity—in the worst-case, the number of vertices evaluated in each itera-
tion will still be O (|WorkSet|). However, we present experimental results in Section
7.6 which show that the above improvements make a big difference in a practical sense.

We will now see how the number of vertices that the algorithm visits can be
bounded by some function of ||8]|.

7.4. Breadth-First Expansion

7.4.1. Bounded-Outdegree Circuits

We now consider two specific strategies for expansion. Let BF_Expansion be the algo-
rithm obtained by refining line 10 of [IterativeEvaluationAndExpansion to
“ToBelncluded = Succ (WorkSet) — WorkSet”. This algorithm expands WorkSet in a
“breadth-first” fashion. At the beginning of the i-th iteration, WorkSet consists exactly
of all the vertices reachable from some modified vertex along a path consisting of (i—1)
or less edges. Let RBF_Expansion be the algorithm obtained by refining line 10 of Itera- -
tiveEvaluationAndExpansion to “ToBelncluded := PotentiallyAffected”. This algorithm
performs a “restricted breadth-first” expansion of WorkSet—expansion occurs beyond a
vertex only if that vertex appears to be an affected vertex.

We now show that both of the above strategies lead to a bounded incremental algo-
rithm in the case of circuits with bounded outdegree. A k-ary circuit is one in which the
outdegree of every vertex is less than or equal to k. In particular, a binary circuit is a cir-
cuit in which the outdegree of every vertex is less than or equal to 2.

Proposition 7.3. Both BF_Expansion and RBF_Expansion process unit changes to
binary circuits in time O(Zlal). They process unit changes to k-ary circuits in time
O(k'31). They process arbitrary changes to binary circuits in time O(|d| -2131y and
arbitrary changes to k-ary circuits in time O(|8] -k 131y

Proof. We prove the result for binary circuits. The result for k-ary circuits follows simi-
larly. Proposition 7.1.3 implies that both BF_Expansion and RBF_Expansion add at least
one affected vertex to WorkSet in each iteration until all the affected vertices are in
WorkSet. It follows that these algorithms make at most | AFFECTED |+1 iterations.
Because every vertex in the circuit has outdegree at most 2, at most U] X 2 new ver-
tices can be added to WorkSet during the i-th iteration. Hence, at the beginning of the i-

i-1 . )
th iteration, |WorkSet| < ¥ |U|x2/ = |U|X (2'-1). The i-th iteration itself takes
j=0
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. _ _ | AFFECTED+1 | ,
time O(|U | x29.1 The whole algorithm takes time O( 3 [U| x2Y) =

i=l
O(| U | x 21AFFECTEDTy " The result follows. [

In the following sections we examine some refinements and special cases of the
algorithms described above.

It follows from the above proof that the above boundedness result holds true for
any expansion strategy that (1) adds at least one affected vertex to WorkSet in each itera-
tion until all affected vertices are in WorkSet and (2) multiplies the size of WorkSet by at
most a factor of two (or some constant k) in each iteration. If instead of (1) we can
guarantee that the expansion strategy adds at least one vertex in N(AFFECTED) to
WorkSet in each iteration, then we would still get a bounded algorithm, albeit an algo-
rithm that processes unit changes in time ()(2”5”) instead of time 0(2'5‘). This is
roughly the idea behind our bounded incremental algorithm for circuits with unbounded
outdegree—we can expand in each iteration by adding, say, one successor of every ver-
tex in ApparentlyAffected to WorkSet. This idea is explored in the following section.

Note that both BF_Expansion and RBF_Expansion have the same worst-case com-
plexity and are both bounded incremental algorithms. Since there seems no good reason
to add all of Succ(WorkSet) to Workset instead of just Succ(ApparentlyAffected),
RBF _Expansion seems preferable to BF_Expansion. But RBF_Expansion does not
always do better than BF_Expansion—while there are classes of input instances where
BF _Expansion can take time that is an exponential function of the time RBF_Expansion
takes, there are also classes of input instances where RBF_Expansion can take time that
is a quadratic function of the time that BF_Expansion takes. Consider, for example, the
circuits shown in Figure 7.4. In both cases consider a modification that changes the con-
stant value associated with the “root” of the circuit from 1 to 2. For the circuit on the
left, BF_Expansion visits all the vertices, while RBF_Expansion visits only the vertices
in the shaded region. In particular, if 4 is the height of the circuit, then BF_Expansion
runs in time O(h?), while RBF_Expansion runs in time O(2"). In contrast, both
BF_Expansion and RBF_Expansion visit all vertices in the circuit on the right. Let h
denote the height of the circuit and n the number of vertices in the circuit. However,

'Note that a relative topological ordering of a set S of vertices can be determined in time O( {S 1) in the
case of binary circuits.
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while BF_Expansion finishes the updating in approximately h iterations, RBF_Expansion
takes approximately 2" iterations. Thus, BF_Expansion takes O (n) time for the updat-
ing, while RBF_Expansion takes O (n 2y time for the updating.

Both BF_Expansion and RBF_Expansion have their advantages. We show in Sec-
tion 7.4.3 that for a particular class of circuits, RBF_Expansion is polynomially bounded.
We present in Section 7.4.4 an adaptation of BF_Expansion that, unlike RBF_Expansion,

runs in time linear in the number of vertices it visits.

7.4.2. Handling Unbounded Outdegree

Note that the breadth-first expansion strategy does not yield a bounded incremental algo-
rithm for circuits in which the outdegrees of vertices cannot be bounded by some con-
stant. The reason is that in procedure RBF_Expansion, an unaffected vertex z, which by
definition is initially correct, may be given an incorrect value at some intermediate itera-

® copy ® copy

ANFAN

A complete binary tree of
copy vertices

® copy & cop
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A complete binary tree of
copy vertices

@CODY @CODY  GCOPY ..ooooee.
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@ COPY @COPY @COPY ..oceo.. @°OPY  @copPy

bcory oM @M .. w
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Figure 7.4. Example circuits for comparing the performance of BF_Expansion and RBF_Expansion. Ver-
tices labelled copy just copy their input to their output—consequently they propagate any change in their
input to their output. Vertices labelled M are associated with the function Ax. max(x, 5)—the examples
have been constructed so that the change in the input values of M vertices do not change their output value;
consequently, these vertices stop change propagation in the case of RBF_Expansion. Vertices labelled sum
output the sum of their two inputs. The “root” vertices of both circuits are associated with the constant
function 1, which is changed to 2.
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tion i. Although, z’s correct value will ultimately be restored by the time
RBF_Expansion terminates, z’s successors are part of the WorkSet at the end of iteration
i. Because z is not affected ||8]| does not include or account for the number of succes-
sors of z. Consequently, the number of successors z has, and the amount of work the
algorithm does, can be arbitrarily large even if || || is bounded by a small constant.

However, the breadth-first expansion strategy can be easily adapted to handle arbi-
trary circuits in a bounded fashion. Let G be any circuit. G* is a binary circuit
equivalent to G obtained as follows. (See Figure 7.5.) Let u be a vertex in G with k suc-
cessors vy, ‘-, ¢ where k > 2. Replace u by k—1 vertices uy, * * - ,u,—; each of out-
degree 2. Vertex u| has the same function and the same set of predecessors as vertex &,
and two successors v and u,. For 1 <i < k-1, vertex u; has a single predecessor u;_1,
and is associated with the identity function. The two successors of vertex u;, where 1 <i
< k-1, are v; and u;,;. The two successors of vertex ug_; are vi—| and v. G* is
obtained from G by thus duplicating all vertices with outdegree greater than 2.

It is trivial to update the structure of G* as and when vertices/edges are inserted
and deleted from G. For any change 8, |8|g+ < |8l g, and {|3{lg» <2- ||8]lg. Conse-
quently, it is possible to handle circuits with unbounded outdegree using the vertex dupli-
cation scheme outlined above. In reality it is not necessary to construct and work with
the circuit G* described above—we can effectively simulate the action of the breadth-
first expansion strategy on G *, given just G. We can expand in each iteration by adding
one successor of every vertex in either WorkSet (breadth-first expansion) or

v
Vit k

Figure 7.5. Duplicating vertices to transform unbounded outdegree graphs to bounded outdegree graphs.
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ApparentlyAffected (restricted breadth-first expansion) to WorkSet.

Proposition 7.4. By using vertex duplication, we can process unit changes in arbitrary
circuits in time O(2!131) and arbitrary changes in arbitrary circuits in time
o(]| 8] -211°h.

7.4.3. Monotonic Circuits: A Special Case

We now show that the running time of RBF_Expansion can be bounded by ||d]| 2 under
some circumstances.

Proposition 7.5. Assume that there exists a total order on the set of all (possible) output
values such that every function F, is monotonic with respect to this total order. Then,
RBF_Expansion processes unit changes (i.e., |U| = 1) in time O(||3|| 2y,

Proof. Assume, without loss of generality, that the new value of the modified vertex u is
greater than its original value. Then, the new value of every affected vertex v must be
greater than its (v’s) original value. In fact, it follows by induction on the steps per-
formed by the algorithm that the recomputation of the value of any vertex v either leaves
its value unaltered or increases it, but never decreases it. Hence, if the value of any ver-
tex v changes (increases) during some particular recomputation step, then no subsequent
recomputation will restore v's original value. That is, v must be an affected vertex.
Hence, every vertex in WorkSet is either an affected vertex or the successor of an
affected vertex. It follows that the algorithm makes at most || 3| iterations. Each itera-
tion takes O(|]|8||) time, under the assumption of bounded outdegree. Unbounded outde-
gree graphs can be handled using vertex duplication. []

Note that the above result does not carry over to the case of non-unit changes (i.e.,
|U| > 1) because, in this case, the values of some of the modified vertices might
increase, while the values of the remaining modified vertices decrease. Spurious propa-
gation is possible in this case, resulting in an exponential time complexity. However, if
the values of all the modified vertex increase together (or decrease together) then the
algorithm does terminate in O(||8]| 2) time.

Note that the monotonic circuit problem is related to some of the problems we
have looked at in previous chapters. Consider the SWSF fixed point problem restricted
to dags—that is, SWSF fixed point problems for which the dependence graph is acyclic.
This problem is a special case of the monotonic circuit problem, since SWSF functions
are a special case of monotonic functions. Similarly, consider the longest path problem
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in dags with one or more source vertices. Again this problem is a monotonic circuit
problem, even in the presence of negative length edges, though it is not a SWSF fixed
point problem. We have seen in earlier chapters that these problems have an
O(]|8]l log ||8]]) algorithm. The algorithm we have presented for the general circuit
value annotation problem, which assumes nothing about the kind of functions associated
with the vertices, turns out to handle these problems reasonably efficiently, in O (/8| 2y
time, at least in the case of unit changes.

7.4.4. A Tradeoff

We observed at the end of Section 7.3 that the number of evaluations performed by any
iterative evaluate-and-expand strategy is no worse than a quadratic function of the
number of vertices it visits. There are classes of input instances for which this worst-case
quadratic behavior is achieved by both BF_Expansion and RBF_Expansion. For exam-
ple, consider a chain of vertices (see Figure 7.6(a)) in which the first vertex is modified
and all the vertices are affected. Let n denote the number of vertices in the chain. Both
BF_Expansion and RBF_Expansion perform n iterations. In the beginning of the j-th
iteration WorkSet consists of the first j vertices in the chain, all of which are evaluated.
Consequently, the algorithms end up performing O(n?) work.

This example shows that BF_Expansion and RBF_Expansion can end up doing
more work than the nullification-reevaluation algorithm, which, since it does work linear
in the number of vertices it visits, can process the example in Figure 7.6(a) in O (n) time.
Of course, the nullification-reevaluation algorithm will often visit many more vertices
than either BF_Expansion or RBF_Expansion. What we see here is a trade-off between
the number of vertices visited and the number of vertex evaluations performed: in trying
to bound the number of vertices visited by a function of ||3|| we have potentially
increased the number of times each vertex is evaluated. We will now see how we can
reduce the cost of repeated evaluations.

The expansion algorithms exhibit the above kind of behavior usually in circuits
which have long chains. In such cases, the cost of repeated evaluations completely dom-
inates the cost of expansion. A simple improvement that can often avoid this kind of
behavior is the improvement outlined in Remark 7.2. With this improvement, the expan-
sion algorithms can process the example in Figure 7.6(a) in O (n) time, since in each
iteration only the vertex most recently added to the WorkSet is evaluated. However, this
does not fix the problem completely. Consider the second example in Figure 7.6. 1If the
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Figure 7.6. The above examples show one of the disadvantages of the original breadth-first expansion.

functions associated with the vertices are appropriately defined, the expansion algorithms
will end up evaluating ©(j) vertices in the j-th iteration, and do O(n?) work overall.

We can, in general, reduce the overhead of repeated evaluations if we choose to
repeatedly expand until the size of WorkSet doubles before we initiate a evaluation step.
This idea leads to the algorithm Balanced_BF_Expansion presented in Figure 7.7, a vari-
ant of BF_Expansion that runs in time linear in the number of vertices it Vvisits.

We briefly explain the algorithm. Recall that in a breadth-first expansion step we
add the vertices in Succ (WorkSet) to WorkSet. Let us denote by Fringe the set of ver-
tices most recently added to WorkSet, that is, in the most recent expansion step. Obvi-
ously, in an expansion step, it is sufficient to add Succ (Fringe) to WorkSet, since
Succ(WorkSet—Fringe) is already contained in WorkSet.

Let us relate the behavior of BF_Expansion to the behavior of
Balanced_BF _Expansion. Let us denote the set X U Succ(X) by F(X). Let F 0(X)
denote X, and let F* *1(X) denote F (F {(X)). BF_Expansion computes and evaluates all
the vertices in FO(U), FL), F2(U), -- -, until it reaches the first F7(U) that contains
AFFECTED u Succ (AFFECTED) at which point the algorithm terminates.
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Balanced_BF _Fxpansion too computes this sequence of sets, but does not perform a
evaluate step for each of these sets. Instead, it evaluates the sequence of sets F i"(U )s
F''(U), -+, F(U), where i; is the minimum k such that? |F¥(U)| 2 |U | x2/. The
algorithm terminates after it performs an evaluation of the first set F i"(U ) that com-
pletely contain AFFECTED v Succ (AFFECTED). The requirement on the cardinality
of F's (U) implies that i, may be greater than p (recall that F”(U) is the last set evaluated
by BF_Expansion) and hence Balanced BF _Expansion may visit and evaluate more ver-
tices than BF_Expansion. But observe that i;_; < p <i,. Consequently, we can place a
bound on the extra number of vertices that Balanced_BF_Expansion visits. We show
below that the number of vertices in F . (U) is at most four times the number of vertices
in F'at (U). It follows that Balanced_BF _Expansion visits at most four times the number
of vertices BF_Expansion visits. We will also show that the time complexity of
Balanced_BF _Expansion is linear in the number of vertices it visits. Consequently,
Balanced_BF _Expansion never does more than a constant times the work that
BF _Expansion does, though BF_Expansion can, in a number of cases, do work that is
quadratic in the work that Balanced_BF _Expansion does.

Proposition 7.6. If the input circuit is a binary circuit, then the following invariant
always holds true at line [18] of procedure Balanced_BF_Expansion: |Fringe| <
|U | % 2l < |WorkSet| < |U | X 2/, (Observe that j is the loop count.)

Proof. The claim is true the very first time execution reaches line [18], since both
WorkSet and Fringe are then equal to U and j is 1. Now we consider two cases.

Let us now assume that the invariant holds true at line [18] at some point. Assume
that lines [18]-[24] are then executed, and that the termination condition in line [25] fails
to hold, and execution returns to line [18]. The lower bound on the cardinality of
WorkSet will still hold trivially, since we have only added vertices to WorkSet. The
upper bound on WorkSet’s cardinality also holds, since otherwise the repeat loop would
have terminated. Note that at the end of executing lines [18]-[24] Fringe denotes exactly
the set of vertices that were added to WorkSet in these lines. Consequently, the cardinal-

2This condition may fail to hold at a boundary situation, when all successors of vertices in WorkSet are al-
ready in the WorkSet, and WorkSet cannot be expanded any more. But this can only happen in the very
last iteration.
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procedure Balanced_BF_Expansion (G, U)
declare
G : an annotated circuit
U : a set of vertices in G
WorkSet, ApparentlyAffected, Fringe, ToBelncluded : sets of vertices
u, v, w. vertices
preconditions
Every vertex in V(G)—U is consistent
begin
[1]  /* Initialize WorkSet and Fringe */
[2] WorkSet ;= U
(3} Fringe:=U
[4] forevery vertexu € Udo

[5] u.originalValue = u.value

(6] od

Mm j=0

[8] loop

(9] ji=j+l

[10} /* Evaluate WorkSet */

(1 for every vertex v € WorkSet in relative topological ordering do recompute v. value od
[12] /* Test for termination */

[13] ApparentlyAffected = { v € WorkSet : v.value # v.originalValue }
[14] PotentiallyAffected := Succ (ApparentlyAffected) — WorkSet
[15] if PotentiallyAffected = & then exit loop fi

[16] /* Tteratively expand WorkSet until its cardinality is at least 2x|U|

nn * unless there are no more vertices to add to WorkSet */
[18] repeat

[19] ToBelncluded = Succ (Fringe)— WorkSet

[20] for every vertex v € ToBelncluded do

[21] Insert v into WorkSet

22} v.originalValue = v.value

[23] od

[24] Fringe = ToBelncluded

[25] until | WorkSet| 2 |U | X 2 or Succ (WorkSet) ¢ WorkSet
[26] end loop
end
postconditions
Every vertex in G is consistent

Figure 7.7. Procedure Balanced_BF_Expansion balances the work done in the expansion step with the
work done in the evaluation step. Consequently, it runs in time linear in the number of vertices it visits.

ity of Fringe must be exactly the increase in the cardinality of WorkSet. Since the cardi-
nality of WorkSet was at least |U | X 2771 at the beginning and is less than |U | X 2, it
follows immediately that the upper bound on the cardinality of Fringe also holds.
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We now consider the case when line [18] is executed the first time in the j-th itera-
tion of the outer loop (lines [8]-[26]) for some j > 1, We assume that the invariant was
true the previous time line [18] was executed, after which lines [19]-[24] were executed,
and the termination condition in line [25] was found to be true. The lines [18]-[24]
replace Fringe with Succ (Fringe)-WorkSet. Since we are dealing with binary circuits,
this can multiply the cardinality of Fringe by at most two. Consequently, the lower
bound on the cardinality of Fringe continues to hold (since the value of j has increased
by one meanwhile). The lower bound on the cardinality of WorkSet follows trivially
from the termination condition in line [25]. The upper bound on the cardinality of
WorkSet follows from the previous upper bound and the upper bound on |Fringe |,
which is the set of vertices that were added to WorkSet. 1

Assume that the algorithm terminates after k iterations of the outer loop. Note that
the above algorithm too is a refinement of the original scheme outlined in Figure 7.3.
Consequently, it follows from Proposition 7.1c that that the algorithm adds at least one
affected vertex to WorkSet in each iteration of the outer loop except possibly the last
one. Hence, we have k £ | AFFECTED |+1. The work done in the i-th iteration can be
bounded by the cardinality of WorkSet at the end of the i-th iteration. Consequently, the
work done in the i-th iteration is ©(|U | x2%), and the algorithm terminates in time
O(|U | x2%), which is O(|U | x 2!AFFECTEDIy  Eyrther, the cardinality of WorkSet,
when the algorithm halts, is (| U | X 2"), from the above Proposition. Hence, this algo-
rithm runs in time linear in the number of vertices it visits.

Since the vertices it visits are all downstream of modified vertices, this algorithm is
strictly better than the nullification-reevaluation algorithm.

7.5. The Weighted Circuit Value Annotation Problem

In general, it is not true that each function F, in a circuit can be computed in unit time.
For instance, it might be necessary to look at the values of all the predecessors of vertex
u in order to compute the value at u. In this case, it might be more reasonable to assume
that the cost of computation of F, is proportional to the indegree of vertex u. In this sec-
tion we consider the weighted version of the incremental circuit value annotation prob-
lem, where the cost of computation of function F, is an arbitrary, but known, value 2 1,
denoted by u.cost. We refer to u.cost as the cost of vertex u. If X is a set of vertices, then
Cost(X) is defined to be the sum of the costs of the vertices in X. We will denote
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Cost(CHANGED U Succ (AFFECTED)) by Cs. We present a bounded-cost scheduling
algorithm for the circuit value annotation problem in this section. As before, the outlined
algorithm works for binary circuits, and general circuits may be handled using vertex
duplication.

The breadth-first expansion does not yield a bounded algorithm for the weighted
circuit value annotation problem. It ensures that the number of vertices visited is
bounded by an exponential function of ||8]|. But the cost of recomputation of the values
of the visited vertices that are not in N (AFFECTED) might be unbounded in terms of
II81] or Cs. In order to bound the cost of recomputation of the values of the visited ver-
tices by some function of ||8|| and Cj, we essentially use a weighted breadth-first
expansion strategy (i.e., a shortest-path-first expansion strategy), where the weight of
each vertex is the cost of recomputation of that vertex’s value.

More formally, the algorithm (see Figure 7.8) works as follows. For any vertex v
reachable from some modified vertex, define v.leastPathCost to be the minimum over all -
paths from some modified vertex to vertex v of the path’s cost. (The cost of a path is the
sum of the costs of the vertices in the path.) Initially WorkSet consists of the set of all
modified vertices (i.e., U). During every iteration, the algorithm chooses the vertex v not
in WorkSet for which v.leastPathCost is minimum and adds it to WorkSet.> This leads
to an 2% €° algorithm for binary circuits, as explained below.

Let WorkSet denote the final value of WorkSet. We first obtain a bound on
Cost(WorkSet).

Proposition 7.7. Cost(WorkSet)< |U | - 2°%.

Proof. It is possible to construct a subgraph F of G, a shortest-path forest, which satisfies
the following condition. F is a forest, consisting of one tree with root « for each vertex u

in U. The set of vertices in F, V(F), is WorkSet. For any vertex v in a tree with root u,
v.leastPathCost = Cost (P), where P is the unique path from u to v in F.

Let w denote the last vertex to be added to WorkSet. Then, v.leastPathCost <
w.leastPathCost, for every vertex v in WorkSet. It follows from Proposition 7.1.3 that w

30bserve that there may be several vertices outside WorkSet whose leastPathCost is minimum. We can
choose any one these vertices and add it to WorkSet. Alternatively, we could add all the vertices with
minimum leastPathCost to WorkSet simultaneously. This would make the algorithm look more like
BF_Expansion, but does not affect any of the following complexity analysis.
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procedure WeightedExpansion (G, U)
declare
G : an annotated circuit
U : aset of vertices in G
WorkSet, ApparentlyAffected, PotentiallyAffected: sets of vertices
u, v, w; vertices
preconditions
Every vertex in V(G)~U is consistent
v.leastPathCost is o for every vertex v
begin
[1] /* Initialize WorkSet */
[2] WorkSet := U
[31 forevery vertexu € Udo

4] u.originalValue := u.value

{51 u.leastPathCost := u.cost

[61 for every vertex w € Succ (u) do

(7] w.leastPathCost := min (w.cost+u.leastPathCost, w.leastPathCost)

[8] od

91 od

{10] loop

[11] /* Evaluate WorkSet */

[12] for every vertex v € WorkSet in relative topological order do recompute v.value od
[13] /* Test for termination */

[14] ApparentiyAffected := { v € WorkSet : v.value # v.originalValue }
[15]} PotentiallyAffected := Succ (ApparentlyAffected) - WorkSet
[16] if PotentiallyAffected = & then exit loop fi

[17] /* Expand WorkSet: identify the vertex in Succ (WorkSet)~WorkSet for which leastPathCost is minimum

[18] * and add it to WorkSet. If there are several minimum vertices, any one can be added to Workset.
[19] * Alternatively, all minimum vertices can be added to Workset. */

(20 Choose a vertex v from Succ (WorkSet) — WorkSet for which v.leastPathCost is minimum

[21] Insert v into WorkSet

[22] v.originalValue = v.value

23] for every vertex w € Succ(v) do

[24] w.leastPathCost := min (w.cost+v.leastPathCost, w.leastPathCost)

[25] od

[26] end lcop
[27] for every vertex v € (WorkSetu Succ (WorkSet)) do v. leastPathCost = o od
end
postconditions
Every vertex in G is consistent
v.leastPathCost is e for every vertex v

Figure 7.8. An incremental algorithm for the weighted circuit value annotation problem.

must be a vertex in N(AFFECTED). Hence, there exists a path P from some vertex inU
to w consisting only of affected vertices (except possibly for w itself). It follows that
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w.leastPathCost < Cost (P) < Cs. Thus, we observe that for every vertex v in the forest
F, v.leastPathCost < Cy.

Let T be a binary tree, every vertex of which has an associated integer cost 2 1. If
v is a vertex in the tree, define v.leastPathCost, as above, to be the sum of the costs of
vertices on the path from the root of the tree to v (including the endpoints). T is said to
be a k-tree if for every vertex v in T, v.leastPathCost < k. If T is a k-tree then, Cost(T),
the sum of the costs of the vertices in 7, is bounded by 2k~1. This can be established as
follows. A tree is a k-tree iff the root has cost i <k, and each of the root’s subtrees are
(k—i)-trees. Let C (k) denote the maximum over all k-trees T of Cost(T). Then,

c@ =0;

c =1,

C(k) = max (i+2 X C(k—i)), fork 20.
1Si<k

It

1+2x C(k-1)), fork 20.
Tt follows immediately that C (k) is 2% 1. (A similar result holds even if vertex costs are
real, instead of being integers.)

It follows that Cost(T) < 2%% for every tree T in the forest F. The number of trees
in Fis |U]. Hence, Cost(WorkSet) is O(|U|-2°%). O
Proposition 7.8. WeightedExpansion processes unit changes in binary circuits in time
0(22’C5). It processes arbitrary changes in binary circuits in time 0(|8|2-22'C5).
Thus, by using vertex duplication, we can process unit changes in arbitrary circuits in
time 0(22'(C8+ ”8”)), and arbitrary changes in arbitrary circuits in time
0| 8][2- 2% o+ 1By,

Proof. We first establish the result for binary circuits. The time taken to recompute
values of vertices in WorkSet is O(Cost(WorkSet)). Hence, a single iteration of the loop
in lines [10]-[26] takes times O (Cost(WorkSet)), which is bounded by
O (Cost m)). The algorithm makes at most IMI iterations. Since
IV_V—E)—J(—S—&—H < Cost(W) the algorithm runs in time O (Cost(m)z). Hence, the
result follows for binary circuits.

The result for arbitrary circuits follows from the technique of vertex duplication.
Note that when using vertex duplication, the cost of computing the identity function
should be taken to be 1. It can be verified that when a unbounded circuit G is converted
into a binary circuit G* using vertex duplication C5 in G* is bounded by Cg+ ||8]] in G.

v
/
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The proposition follows. [

More efficient weighted expansion

We observed earlier that BF_Expansion could be improved by balancing the work done
by the expansion and evaluation steps. Similarly, the weighted expansion algorithm too
can be made more efficient as follows. Let WorkSet denote the the final value of
WorkSet in the above algorithm. Consider the case of unit changes in binary circuits.
The above algorithm can potentially take time @(22‘ C”) to process a change because that
algorithm recomputes the values of vertices in WorkSet every time a vertex is added to
WorkSet. The total time spent on recomputation of values becomes quadratic in
COSI(M), which is @(2C5) in the worst case. If we avoid recomputing values
every time a vertex is added to WorkSet, and instead recompute values every time
Cost(WorkSet) (roughly) doubles, then the total cost of recomputation will be linear in
Cost (M). This idea leads to the algorithm outlined in Figure 7.9. However, the
time complexity of this algorithm is not O(Cost (m». In the worst case, the dom-
inating factor in the time complexity of the new algorithm is the time spent on choosing
the vertex to add to WorkSet in each iteration. This will cost
O(|WorkSet | log | WorkSet|) = O (Cs - 25%).

Proposition 7.9. ImprovedWeightedExpansion processes unit changes in binary circuits
in time O(Cgs- 265). It processes arbitrary changes in binary circuits in time
O(Cs?- 2C5). Thus, by using vertex duplication, we can process unit changes in arbi-

2:- (1311 +Cs)

trary circuits in time O((||3]| +Cs)" 2 ), and arbitrary changes in arbitrary cir-

cuits in time O((||8]] +C5)?- 2% 111 €9)),

Proof. Let WorkSet denote the final value of WorkSet as computed by the We show that
the amount of time spent by ImprovedWeightedExpansion on re-evaluations of values of
vertices is O(Cost(WorkSet)). The algorithm makes O(|WorkSet|) priority queue
operations in choosing vertices to add to WorkSet, each operation taking time

“The WeightedExpansion algorithm is slightly non-deterministic in that it does not specify how to break
ties (line [20] in Figure 7.8) when several vertices have the minimum leastPathCost. Consequently,
WorkSet is not precisely defined. For this proof we can use the final value of WorkSet computed by a
deterministic version of WeightedExpansion that adds all vertices with minimum leastPathCost to WorkSet
when there is tie.
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procedure ImprovedWeightedExpansion (G, U)
declare
G : an annotated circuit
U : a set of vertices in G
WorkSet, ApparentlyAffected, PotentiallyAffected.: sets of vertices
u, v, w: vertices
WorkSetCost, totalCost: integer
preconditions
Every vertex in V(G)-U is consistent and v.leastPathCost is for every vertex v
begin
[1]  /* Initialize WorkSet */
[2] totalCost ;=0
3] WorkSetCost := 0
(4] WorkSet := U
[5] for every vertex u € Udo

[6] u.originalValue = u.value

7 u.leastPathCost := u.cost

[8] WorkSetCost := WorkSetCost + u.cost

9] for every vertex w € Succ(u) do

[10] w.leastPathCost = min (w.cost+u.leastPathCost, w.leastPathCost)
[11] od

{12] od

[13] loop

[14] /* Evaluate WorkSet */

[15] for every vertex v € WorkSet in relative topological order do recompute v.value od
[16] totalCost := totalCost + WorkSetCost

171 /* Test for termination */

(18] ApparentlyAffected := { v € WorkSet : v.value # v.originalValue }
[19]} PotentiallyAffected := Succ (ApparentlyAffected) - WorkSet

[20] if PotentiallyAffected = & then exit loop fi

[21} /* Tteratively expand WorkSet */

[22] Choose a vertex v from Succ (WorkSet)-WorkSet for which v.leastPathCost is minimum
[23] repeat

[24] Insert v into WorkSet

[25] v.originalValue = v.value

[26] WorkSetCost .= WorkSetCost + v.cost

(271 for every vertex w € Succ(v) do

(28] w.leastPathCost := min (w.cost+v.leastPathCost, w.leastPathCost)

[29] od

[30} if Succ (WorkSet)-WorkSet = & then exit inner loop fi

[31] Choose a vertex v from Succ (WorkSet )~WorkSet for which v.leastPathCost is minimum

[32] until WorkSetCost + v.cost > totalCost
[33] end loop
[34] for every vertex v &€ (WorkSetu Succ (WorkSet)) do v.leastPathCost =0 od
end
postconditions
Every vertex in G is consistent v.leastPathCost is e for every vertex v

Figure 7.9. An improved incremental algorithm for the weighted circuit value annotation problem.
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O(log | WorkSet |). Hence, the whole algorithm runs in time
O(Cost (WorkSet) log Cost (WorkSet)).

Note that WorkSerCost;, abbreviated W;, is the sum of the costs of the vertices in
WorkSet at the beginning of the i+1-th iteration, while fotalCost;, abbreviated T;, is
lzl WorkSetCost;. Thus, while W; is the time spent on re-evaluation in the i+1-th itera-
j=0
tion, T; is the time spent on re-evaluations in the first i iterations. Assume that the pro-
cedure makes k iterations of the outer loop. The total time spent on re-evaluations is 7.
We seek a bound on Tj.

If k is 1, then the algorithm takes only time O(Cost(U)), i.e. O(Cs). Fork 22, T
= W,_; + Ty_;. We obtain bounds on each of W _; and Tj_| below.

If k is 2, then Ty, < Cost(U) < Cost(WorkSet). Now consider k = 3. Consider
the k—2-th iteration of the outer loop. Now Succ (WorkSet;_,)—WorkSet;_, must be
nonempty, since the algorithm makes at least two more iterations. Let v be the vertex in
Succ (WorkSety _,) — WorkSet; _, for which v.leastPathCost is minimum. The termina-
tion condition for the inner loop (in the k—2-th iteration of the outer loop) implies that
Wy, + v.cost > Ty_5. Since the algorithm takes two more iterations, WorkSet, , © (v
| WorkSet. Hence Tj_p < Wi, + V.cost < Cost(m). Since Ty = Wpp +
Ty_,, it follows that Ty_; <2+ Cost (WorkSet).

Now we obtain a bound on Wj,_;. Consider the k—1-th iteration of the outer loop.

Case 1. Assume that Wy_; < Ty.;: Then, Ty = Ty + Wiy £ 2Ty S
4- Cost (m).

Case 2. Assume W,_; > Ty_;. Consider the termination condition in line [32]. It
attempts, in the i-th iteration of the outer loop, to ensure that W; < T;, by avoiding adding
any vertex v to WorkSet that will make W; > T;. However, the repeat loop (lines [23-
32D will execute at least once, and the only way the condition W; < T; can fail is if the
repeat loop executes exactly once (during the i-th iteration of the outer loop) and the very
first vertex added to WorkSet makes its cost greater than T;. Hence, if Wy_; > Ty_, then
it must be the case that WorkSet;_; = WorkSet;_» v { v }, where v, as above, is the ver-
tex in Succ (WorkSety_) — WorkSet,_, for which v.leastPathCost is minimum. Thus,
W,._, = Cost(WorkSet,_) < Cost (WorkSet).

It follows that Ty, = Wy _; + Ty <3 Cost(WorkSet). [




7.6. The Empirical Boundedness of Incremental Algorithms

In this section, we present the results of a study in which we explored the use of the
parameter || 8| in the empirical evaluation of incremental algorithms. Earlier, in Section
2.3.2, we discussed the importance of the complexity parameter used in experimental
evaluation of incremental algorithms, and suggested that the parameter [|6]] could be
useful in such experimental studies too. There are a couple of reasons for this approach.
One is that even though worst-case analysis might indicate that an algorithm was
unbounded, it could be the case that on the inputs that arise in practice the algorithm does
behave like a bounded algorithm, and this is worth knowing. The second reason is that if
an algorithm behaves in a bounded fashion on inputs that arise in practice, its complexity
is likely to correlate more to ||8]| than to the input size. In such cases, studying the
algorithm’s complexity as a function of 18] is likely to shed light on the algorithm’s
performance better.

Our study involved three incremental algorithms for the circuit value annotation
problem: RBF_Expansion, a variant of RBF_Expansion, and the priority-ordering based
update algorithm due to Alpern et al [Alp90], which we will call PO_Update. All these
updating algorithms were implemented in the Synthesizer Generator, a system for
automating the construction of customized editors for particular languages
[Rep88a, Rep88]. The Synthesizer Generator was then used to generate a Pascal editor
that does incremental static-semantic checking of the program being edited using the
above-mentioned incremental algorithms. This enabled us to test the performance of the
updating algorithms easily, by performing an extensive sequence of editing operations on
Pascal programs of varying size.

The circuit for which incremental updating is performed is in this case the depen-
dence graph of the attribute instances of the program being edited. Consequently, these
circuits have some structure to them, and the performance results presented in this sec-
tion need not necessarily carry over to the problem of updating the annotations of arbi-
trary circuits. However, the results presented here are promising.

In reporting the results of our experiments, we do not present actual running times
for these incremental algorithms. Instead, we compare the number of operations per-
formed by the updating algorithms as a function of || 3|, which is a lower bound on the
number of operations any updating algorithm has to perform. These results enable us to
identify empirically the “boundedness behavior” of these two incremental algorithms.
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One of the reasons actual timing results have not been presented is that they depend both
on the machine and the implementation details. The figures presented in this section pro-
vide a more machine-independent and implementation-independent view of the situation.

The Performance of RBF_Expansion and Improved_RBF_Expansion

The algorithm we implemented and tested is a variant of RBF_Expansion that incor-
porates the improvements outlined in Remark 7.2—we will refer to this as the
Improved_RBF_Expansion algorithm. One of the chief characteristics that distinguishes
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Figure 7.10. The above graph shows the number of vertex evaluations that Improved_RBF_Expansion
performed as a function of the minimum number of evaluations any algorithm must perform. Each point in
the graph represents an editing operation. Observe that most of the points fall very close to the y = x line.
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this algorithm from other algorithms for this problem, such as the PO_Update algorithm
discussed next, is that it does not maintain any information relating to the topological
ordering of the circuit across invocations. It begins the updating essentially with no
information about transitive dependences between vertices. Hence, the algorithm can
end up evaluating vertices in the wrong order. As a consequence, the algorithm can per-
form more vertex evaluations than necessary, both because some vertices can be
evaluated multiple times and because some vertices that are not potentially affected
might be evaluated.

The graph in Figure 7.10 plots the number of vertex evaluations the algorithm per-
formed against the minimum number of vertex evaluations any algorithm must perform
(that is, | CHANGED u Succ (AFFECTED)|). (See the discussion on the minimum
number of evaluations necessary in Chapter 3.) As the graph shows, this particular algo-
rithm often performs close to the minimum number of evaluations. The algorithm per-
formed exactly the minimum number of evaluations necessary in approximately 70% of
all the updates, and performed less than 1% extra evaluations in approximately 90% of
all the updates. In some rare worst cases it performed approximately two to three times
the minimum number of vertex evaluations necessary. Since the time complexity of the
algorithm is linear in the number of vertex evaluations it performs (in bounded degree
graphs, such as the dependence graphs that arise in the attribute updating problem), obvi-

ously this algorithm’s performance compares reasonably with an asymptotically optimal

algorithm’s perforrna.nc:e.5

The graph in Figure 7.11 similarly plots the number of vertex evaluations the algo-
rithm would have performed if the improvements suggested in Remark 7.2 had not been
incorporated. As the graph shows, the algorithm would have performed very poorly,
with a complexity that appears to be quadratic in || oll.

SSimilar results were reported by Hoover for his incremental algorithm for the same problem, which util-
ized an approximate topological sort ordering to update the circuit [Hoo86a]. However, not too much
weight should be attached to the exact figures quoted above. The results suggest that our algorithm per-
forms close to the minimum number of evaluations necessary for the more common editing operations, but
there are worst-case editing operations where the algorithm may perform approximately twice or thrice the
number of evaluations necessary. The percentages we list above will obviously depend on the mix of edit-
ing operations used in the experimentation. We tried to uniformly create editing operations of different
categories.
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Figure 7.11. The above graph shows the number of vertex evaluations that the straight forward implemen-
tation of RBF_Expansion perform as a function of the minimum number of evaluations any algorithm must
perform. Observe that the scales of the two axis are not the same. The above graph also shows a plot of
the function y = x2 / 30 for comparison. As the graph shows, the behavior of this simple implementation
of RBF_Expansion is non-linear in || 3|, and is approximately quadtratic in || 3| .

The Performance of the Priority-Ordering Based Update Algorithm

We first briefly explain the idea behind the algorithm PO_Update outlined in [Alp90].
PO_Update uses a prioritization of the dag as auxiliary information for the circuit value
annotation problem. Recall that a prioritization of a dag associates each vertex in the dag
with a priority, which is a value drawn from a totally ordered set, such that if there is a
path from a vertex u to a vertex v, then w’s priority is less than v’s priority. After a
change to the circuit, PO_Update first updates the priorities of vertices to obtain a correct




148

prioritization of the current circuit. Then, vertex re-evaluations are scheduled (via a
worklist algorithm that uses a priority queue for the worklist). This algorithm runs in
time
|| 8 PriorityOrdering || * 108 || 8priorityordering I| + | 8Circuitvatue || 108 |l Scircuitvatue |l

where || 8priorityordering Il denotes the size of the change in the input and the auxiliary
information, while || 8¢ircuirvaiue || denotes the size of the change in the input and the out-
put of the circuit value annotation problem. Because the quantity || OPriorityOrdering 1| 18
not bounded by any function of ||3¢ircuirvaiue ||, this algorithm for the incremental
circuit-value problem is unbounded. In other words, we can construct a sequence of cir-
cuits and associated changes in the circuit such that there is no bound on the value of
| 8priorityordering |l in these cases, even though || d¢ircuirvaiue || is bounded by some con-
stant in all these cases.

Unlike RBF_Expansion, this algorithm evaluates the vertices in the right order.
Consequently, it does not have the overhead of extra vertex evaluations. However, it
does have other overheads: the overhead of maintaining auxiliary information, and a log-
arithmic overhead due to the use of a heap to evaluate vertices in the correct order.

We measured the values of both ||8priorityordering || and N OCircuirvaiue || OVer a
number of editing sessions, and the results are shown in Figure 7.12. These results show
that, at least in the case of a Pascal editor, this algorithm behaves effectively like a
bounded incremental algorithm. The reason is that, as the associated graphs show,
|| 8 priorityordering Il is invariably less than or equal to || S¢ircuirvatue Il - In fact, while it was
possible to generate editing operations that produced larger and larger values of || Scircuis-
value || for larger and larger programs, Hapn'on'tyordeﬁng” seemed to be intrinsically

bounded by some constant.

7.7. Some Remarks

In this chapter we studied several, closely related, exponentially bounded incremental
algorithms for the circuit value annotation problem. We also discussed the performance
of some incremental algorithms in a real world example. These empirical results show
that in the case of unbounded algorithms and exponentially bounded algorithms one can
potentially run into the standard drawbacks of worst-case analysis—the behavior of
incremental algorithms might be far better on inputs that arise in practice than for worst-
case instances. These results also highlight another drawback of asymptotic worst-case
analysis: simple improvements, which do not change the asymptotic worst-case behavior
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Figure 7.12. The above graph is a plot of |[3]| for the auxiliary information (that is, priorities) versus
{|8)f for the actual attribute updating problem in the case of a Pascal editor. The graph also shows the
y =x line and y = 2x line. It can be seen that the size of the change in the priorities tends to be bounded by
the size of the change in the attribute values.

of an algorithm, may greatly improve the performance of the algorithm on inputs that
arise in practice. Our experimental findings must be tempered by the fact the algorithms
were tested against a restricted class of inputs, namely for circuits and modifications that
arise in a Pascal editor. There is no guarantee that the algorithms will perform similarly
in the case of circuits and modifications that might arise in a more general situation.

The existence of several variants of the iterative evaluate-and-expand strategy with
incomparable performance characteristics also suggests the possibility of choosing the
updating algorithm for each application based on characteristics of the circuits that arise
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in that particular application.

Reason possesses insights only into that which reason itself constructs according to
its own plan, and though reason may take the lead with its own proposals, it must then
by experiment elicit from nature the wisdom of these proposals. There is a time for
theory and a time to decide the disposition of that theory by nature's behavior.

—Morris Kline, Mathematics: The loss of certainity
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Chapter 8

Inherently Unbounded Incremental Computation Problems

The situation, not infrequent in mathematical research, is this: A theorem has been
already formulated but we have to give a more precise meaning to the terms in which it
is formulated in order to render it strictly correct. ’

—-G. Polya, Mathematics and Plausible Reasoning, Volume 1

... proofs, even though they may not prove, certainly do help improve our conjec-
ture.
—1. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery

8.1. Introduction

In this chapter we establish lower bounds for some incremental computation problems.
In particular, we show in Section 8.3 that the single-source graph reachability problem is
unbounded. We establish in Section 8.4 that various other problems, such as dataflow
analysis problems of various kinds and algebraic path problems, are unbounded by reduc-
ing the incremental version of the reachability problem to other incremental problems.

Lower bounds are usually established with respect to a model of computation. The
lower bounds in this chapter are established with respect to a model of computation
called sparsely-aliasing pointer machine. This is a considerably more powerful model
than the model of locally persistent algorithms [Alp90], which has been previously used
for lower bound proofs in incremental computation, though it is, strictly speaking, not a
generalization of the model of locally persistent algorithms. The lower bound proof can,
however, be easily adapted for locally persistent algorithms and for various extensions of
that model. These different models of computation are discussed in Section 8.2.

8.2. The Model of Computation

8.2.1. Locally Persistent Algorithms

The class LP of locally persistent algorithms was introduced by Alpern et al. in [Alp90].
What follows is their description of this class of algorithms, paraphrased to be applicable
to general graph problems: A locally persistent algorithm may make use of a block of
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storage for each vertex of the graph.l The storage block for vertex u will include pointers
to (the blocks of storage for) the predecessor and successor vertices of u. The storage
block for u will contain the output value for u. The block may also contain an arbitrary
amount of auxiliary information, but no auxiliary pointers (to vertices, i.e., their storage
blocks). No global auxiliary information is maintained in between successive
modifications to the graph: whatever information persists between calls on the algorithm
is distributed among the storage blocks for the vertices. An input change is represented
by a pointer to the vertex or edge modified. A locally persistent algorithm begins with
the representation of a change and follows pointers. The choice of which pointer to fol-
low next may depend (in any deterministic way) on the information at the storage blocks
visited so far. For example, a locally persistent algorithm may make use of worklists or
queues of successors of vertices that have already been visited. The auxiliary informa-
tion at a visited storage block may be updated (again in any way that depends determin-
istically on the information at the visited storage blocks).

In summary, an LP algorithm has two chief characteristics. First, any auxiliary
information used by the algorithm is associated with an edge or a vertex of the graph—
no information is maintained globally. Second, the algorithm starts an update from the
vertices or edges that have been modified and traverses the graph using only the edges of
the graph. In essence, the auxiliary information at a vertex or édge cannot be used to
access non-adjacent vertices and edges.

Alpern et al. utilized this model of computation in establishing a lower bound for
the incremental circuit value problem. They showed that any bounded LP algorithm for
the circuit value problem must take time at least Q21811 to process a change 8. Subse-
quently, Ramalingam and Reps [Ram91] showed that the dynamic single-source reacha-
baility problem (the SS-REACHABILITY problem) and some other graph problems
have no bounded LP algorithm. A similar approach was subsequently used by Berman
[Ber92] to show that other problems, such as the connected components problem, are
unbounded with respect to the class LP.

However, the model of LP algorithms is quite a weak model of computation. All
of the above mentioned lower bound proofs rely heavily on the fact that no information
may be stored globally in the case of LP algorithms. But if one considers a problem like
reachability, it is unreasonable to restrict an incremental algorithm from maintaining a

IThis may be directly generalized to permit storage blocks to be associated with edges too.
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pointer to the source vertex. Once we allow the incremental algorithm to maintain such a
pointer, any auxiliary information maintained at the storage block for the source vertex is
in effect globally available information, and all the above lower bounds fail!

Before we define a suitable generalization of the class LP we consider the cost of
performing elementary operations.

8.2.2. The Cost of Elementary Operations

In the logarithmic cost measure, each basic operation is assigned a cost proportional to
the number of bits needed to represent the operands [Tar83]. Note that under this cost.
measure practically any incremental algorithm will be an unbounded algorithm, since
most operands being manipulated will be O (log n) bits long, and, hence, any basic opera-
tion in the machine will have a cost of O (logn).

In analyzing algorithms it is much more common to use uniform cost measure,
under which each basic operation is assigned a unit cost. However, if basic operations
are allowed to manipulate numbers of arbitrary size, this measure can be misleading. So, ”
it is usual to restrict the sizes of operands in basic operations to be O (logn) bits long,
where n is a measure of the input size. We will use this variant of uniform cost measure
in which each unit cost operation is allowed to manipulate only O (log n) bit quantities.

If there is no restriction on the size of the operands of elementary operations, one
can effectively perform a number of basic operations by performing a single operation on
a huge operand, and obtain algorithms with a misleadingly low cost. We now show that
the version of the dynamic single-source reachability problem in which the set of vertices
is static does have a bounded incremental algorithm in the absence of restrictions of the
above kind.

Let us consider graphs over a given (static) set of vertices V. Let n be the number
of vertices. There are n? possible edges in any graph over V. Consequently, there are
i possible graph instances on the given set of vertices V, since each edge can be
present or absent, independent of the other edges. Consider a finite state automaton
whose set of states is given by the set of v possible graphs. If a graph G, can be
obtained from a graph G by the insertion or deletion of an edge then there is a transition
from G; to G, in the FSA labelled with this modification. The transition is also associ-
ated with the set of vertices whose reachability status changes as a result of this

modification.
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Note that the above FSA can be constructed initially, as part of the preprocessing
step, once the size of the input graph is known. Once the FSA has been constructed, pro-
cessing a modification is simple. The current state describes the current graph. Just
looking up the transition table using both the current state and the input modification as
an index gives us both the new state and the list of vertices whose reachability status
must be changed. This effectively means that the update can be done in O (||8]]) time.

Such an algorithm is unsatisfactory because of the enormous time required for the
preprocessing step and the enormous space requirements for storing the transition table
of the FSA. This objection, by itself, does not argue that the above algorithm is an
unbounded one, since the definition of boundedness places no restriction on the amount
of auxiliary storage that may be used or on the amount of time that can be spent in
preprocessing. However, realistically speaking, the above algorithm is not a bounded
one: with 2% possible states, one needs n? bits to represent a state, and it is not reason-
able to count operations with the state, such as assigning a new value to the state, as con-
stant time operations.

In a sense, the above argument captures the essence of our lower bound proof that
reachability is an unbounded problem. It is hard to imagine an incremental algorithm
that would do better than the above algorithm during the updating step, since the above
algorithm does most of the work during the preprocessing step, and does the minimal
amount of work necessary during the update step. So, what more do we need to do to
establish that reachability is an unbounded problem?

There is a simple point we need to address concerning the above argument. It is
possible that an algorithm that uses a minimized form of the above FSA might do better.
Unfortunately, the minimized FSA will not be much smaller than the above FSA. Since
self loops and edges directed fo the source vertex do not affect the reachability status of
any of the vertices, the state need not contain information about the presence or absence
of the above edges. But all of the remaining (n—1)(n-2) edges are important, and the
state needs to encode the presence or absence of these edges.

What we need to establish in the lower bound proof is that there is no clever
enough representation of the state that allows the updating algorithm to efficiently
change the state by examining and changing only a “small” number of bits in the

representation of the state.
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8.2.3. The Pointer Machine Model and Sparsely Aliasing Algorithms

As explained in the previous section, the idea is to show that no clever encoding of the
“state” exists that allows the updating algorithm to process “trivial” input changes in con-
stant time. Given the way we measure the cost of elementary operations, the algorithm
can examine and manipulate or modify only O (logn) bits of information in a constant
number of steps. We want to show that this is not enough. To establish this, we formal-
ize the way the updating algorithm accesses and updates its state as below.

By “state” we mean the information the incremental algorithm retains across dif-
ferent calls to the updating algorithm. This includes a description of the current graph, in
whatever form the algorithm stores it, and any auxiliary information the algorithm might
choose to maintain, and the output information.

We assume that the state is represented as in the pointer machine model [Tar83].
The memory of a pointer machine model is an expandable collection of nodes or blocks.
Each block is divided into a fixed number of fields, each of which holds either an atomic
value (such as an integer or boolean value) or a pointer to a block. The value stored in a
field of a block can be retrieved only if a pointer to that block is available.

Thus, there are a bounded number of field selectors, which we will denote fis
f2, ..., fm. If pis a pointer to a block, then f;(p) denotes the value in the i-th field of
the block. Every piece of information stored in the memory must be retrieved via a
sequence of pointer dereferencing. Though the memory can contain an unbounded
number of blocks, there must be a bounded number of “base” pointers which are used to
access any piece of information. Consider standard algorithms which create, modify, and
use dynamic data structures: the data structures might grow unbounded, but all the infor-
mation in the data structures is accessible via a bounded number of base or root pointers.
(Information not so accessible is really “garbage” that cannot be used.)

In the case of the reachability problem, a pointer to the source vertex and a pointer
to a linked list of all vertices in the graph are examples of such base pointers. In the case
of an incremental or dynamic algorithm, the base pointers are of two types: “variables”
whose values are retained across different invocations of the incremental algorithm
(these are like the global variables and static local variables of C), and “input arguments”
which are passed to the updating algorithm. Thus, any incremental algorithm for reacha-
bility may maintain a bounded number of pointers P={pi,..., pr}. The updating
algorithm is given as an argument a description of the input change, which includes
pointers to the modified vertices. (We assume that the memory contains a block for each
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vertex in the graph, and that a vertex is represented by a pointer to the corresponding
block.) See Figure 8.1.

The state of the system is, thus, the contents of the pool of blocks and the values
stored in the set of pointers P. But we will often use the word “state” to denote just the
contents of the collection of blocks.

The structure of a state can be described by a graph as follows. The representation
graph of a state ¢ consists of one vertex for each block in the state. It contains an edge
from the vertex representing a block b; to a vertex representing a block b; iff the block b;
has a pointer to block b;. Assume that an input graph G and associated information is

Insert u—>v

wraf

(A description of the
input modification)

Figure 8.1. The organization of the information that an incremental algorithm retains across different in-
vocations, and its retrieval from a set of base pointers. The state information is distributed across a poten-
tially unbounded number of blocks, but all information used by the algorithm must be retrieved via a se-
quence of pointer dereferences starting from one of a bounded number of base pointers. In the case of in-
cremental algorithms, this set of base pointers includes a set of global pointers {p,,...,p,} and a set of
pointers to the modified vertices that is passed in as an argument to the algorithm.
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represented by a state ¢. Then, since a vertex in G is represented by a block in o, the
representation graph of ¢ contains a vertex for each vertex in G. It may, in general, con-
tain a number of other vertices and edges that have no correspondence to edges and ver-
tices in G. The model of LP algorithms requires that the undirected version of the
representation graph be, in fact, isomorphic to the undirected version of the given graph,
though it does not restrict the blocks to be of fixed size.

The indegree of a vertex is the number of predecessors it has. The outdegree of a
vertex is the number of successors it has. The degree of a vertex is the sum of its inde-
gree and its outdegree. The indegree, outdegree, or degree of a graph is defined to be the
maximum indegree, outdegree, or degree of any vertex in the graph. Since each block
has only a bounded number of fields, the outdegree of the representation graph of a state
o is bounded by a constant. There is no such bound on the indegree of the representation
graph.

We now introduce various classes of incremental graph algorithms, characterized
by the “sparsity” (in terms of indegree) of the representation graphs they use. An incre-
mental graph algorithm is said to be an [f(n), g(n)] restricted aliasing algorithm if in any
representation ¢ corresponding to a graph of n vertices at most g (n) vertices have inde-
gree greater than f (n). An incremental graph algorithm is said to satisfy the sparse-
aliasing condition if it is a [O (log"(n)), O (n™)] restricted aliasing algorithm for some
constant r and some constant o < 0.5. We call such algorithms SA algorithrns.2

Let us now compare the class of LP algorithms with the class of SA algorithms. As
explained above, the class of LP algorithms satisfy much more stringent requirements on
the structure of the representation graph than the class of SA algorithms. Since the
undirected versions of the actual input graph and the representation graph need to be iso-
morphic in the case of LP algorithms, the state ¢ of any LP algorithm corresponding to

2Note that if one uses various kinds of adjacency list representations of a graph G then one would need to
have up to degree(G) pointers to the same vertex. Consequently, this definition is too restrictive in that one
cannot use adjacency list representations in the case of dense graphs. A more appropriate approach would
be to define an algorithm to be an [f (n,d), g (n)] restricted aliasing algorithm if in any representation &
corresponding to a graph of n vertices and degree d, at most g(n) vertices have indegree greater than
f (n,d). Then, we could define an algorithm to be an SA algorithm iff it is an [f (n,d), g (n)] restricted
aliasing algorithm for some function f (n,d) that is poly-logarithmic in n for a fixed d, and a function g (n)
= 0 (n®) for some o < 0.5. However, our lower bound proof will involve only graphs of degree at most
three. Hence, we are interested only in bounded degree graphs, and the above definition suffices.
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an input graph G satisfies indegree (G) < degree(G). Consequently, any LP algorithm is
a [d, 0] restricted aliasing algorithm, although the blocks in LP algorithms are not
required to be of bounded size. Thus, LP algorithms would trivially be SA algorithms,
but for the fact that LP algorithms place no restriction on how much information can be
stored in a single block, or on the way information may be stored or organized within a
block corresponding a vertex. The definition of local persistence could afford to ignore
the organization of information within a block primarily because its other requirements
were stringent enough to establish the required lower bounds.

Let us now see how the class of SA algorithms includes many algorithms that are-
not LP algorithms. The definition of SA algorithms removes two of the biggest restric-
tions in the definition of LP algorithms. The first restriction relates to the use of “global
state”. We will refer to the part of the state & accessible from the set P of pointers as the
“global” state. The significance of global state is that it is accessible no matter what the
input modification is. This is in contrast to the model of locally persistent algorithms,
where no such global information is available. In a LP algorithm every piece of informa-
tion is stored in a block associated with a vertex, and one needs a pointer to a vertex in
order to access the information associated with that vertex. This, in turn, implies the fol-
lowing. Consider a sequence of modifications 5, and 8, to a graph G. The only way the
updating done after 6; can affect the way 8, is processed subsequently is by modifying
the information associated with a vertex that is subsequently examined during the pro-
cessing of 8,. In contrast, with global information, the processing of d; can change some
information in the global state and directly affect the way &, is subsequently processed.

The second restriction removed in the definition of SA algorithms relates to the use
of “non-local pointers”. The block representing a vertex u may store pointers to blocks
representing vertices that are non-adjacent to u in the graph, as long as the sparse-aliasing
conditions are met.

Yet there remain some restrictions on the model of computation. The biggest res-
triction is the sparse-aliasing condition. The second restriction, which is common to all
pointer machine models, is that address arithmetic is not allowed. We will discuss these
restrictions again in the conclusion section. Though the sparse-aliasing restriction is
somewhat artificial, the model of computation is a great improvement on the previous
model of LP algorithms. Further, the definition of the model of SA algorithms reflects
the lower bound proof, and suggests some features that an incremental algorithm must
possess if it is to defeat the lower bound argument. Thus, understanding SA algorithms
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could be useful in designing bounded incremental non-SA algorithms for problems such
as reachability and dataflow analysis, though the author suspects that the unboundedness
results hold with respect to even stronger models of computation.

8.3. The Unboundedness of Reachability

In this section we show that the single-source reachability problem has no bounded SA
algorithm. We will consider only bounded degree graphs in which the set of vertices
remains static. We will restrict our attention to “almost-unit” changes: input
modifications that insert at most one edge and delete at most one edge. (We can recast
the proof so that it makes use of only unit changes: input modifications that either insert a
single edge or delete a single edge.) Since our proof establishes that even this restricted
dynamic reachability problem is unbounded, it follows that the more general, fully
dynamic, reachability problem must be unbounded as well.

An input modification is said to be redundant if it does not change the reachability
status of any vertex in the graph. Since we consider only bounded degree graphs and
almost-unit changes, there exists a constant ¢ such that ||3]| < ¢ for any redundant
change 8. In particular, any bounded incremental algorithm for reachability should be
able to process redundant input changes in constant time.

We will consider a simpler form of the dynamic reachability problem below. In
this simpler problem, the algorithm has to respond to every input modification by classi-
fying it as a redundant modification or irredundant modification. A bounded redundancy
checking algorithm is an algorithm that responds to redundant input modifications with
an “yes” in constant time, and one that responds to input modifications that are not redun-
dant with a “no”, taking any amount of time for the processing. Obviously any bounded
incremental algorithm for reachability can be used as a bounded redundancy checking
algorithm. We now establish

Theorem 8.1. The single-source reachability redundancy checking problem has no
bounded SA algorithm.

The proof is by contradiction. We first establish a sequence of propositions, which
will lead us to the contradiction.

Let us assume that there is a bounded SA algorithm A4 for checking the redundancy
of input modifications. Let k be a constant such that 4 performs no more than k elemen-
tary operations in processing any redundant input modification. Assume that the updat-
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ing algorithm is passed a set U of vertices as input argument. (Thus, U is the set of
modified vertices.) Then, the updating algorithm can examine and modify only the part
of the state that is reachable from the set U P of pointers. Further, assume that the
algorithm performs no more than k elementary operations. Then, it can examine or
modify only the part of the state that is reachable in k or less steps from the set U P of
pointers.

We formalize some of these concepts below. If X is a set of pointers, then
o4 (X,k), the part of the state ¢ accessible in k steps or less from X, is a function from
terms of the form (f; of;,0 - of;)(u) to their values where r <k, and u € X.
Observe that there are at most (m+1)%|X | such terms, since there are only m different
fields in a block. Since the value of each term is an O (log n) bit quantity/word, the value
of 64 (X,k) can be completely specified by an O (logn) bit quantity if |X | is considered
to be a constant.

Note that the restriction that every field be an O (logn) bit quantity forces pointers
also to be only O(logn) bits long. This, in turn, implies that the number of blocks
allowed, in the state, is not really unbounded—it has to be bounded by some polynomial
in n, the number of vertices. We can relax this restriction and allow pointers to be arbi-
trarily long, as long as the algorithm uses pointers solely for retrieving values. Thus, the
bit representation of the pointer cannot be used to encode any kind of information. With
this restriction, again the restricted state ¢ ! (X,k) can contain dnly O (log n) bits of use-

ful information.
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Fifure 8.2. We denote the part of the state ¢ accessible in & steps or less from a set X of pointers by
o4 (X,k). In the above picture, A and B denote the sets of blocks accessible from a set of pointers
{g1.....q.} in 1 and 2 steps respectively. For a set X of cardinality bounded by some constant, and for a
fixed constant &, ¢ L (X,k) contains only O (log n) bits worth of information.
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Proposition 8.2. Assume that ) and o0, are such that o, | (MODIFIEDs U P,k) =
o, L (MODIFIEDs U P,k). Then, § is redundant for o iff it is redundant for G,.

Proof. This follows from the choice of k and the fact that the updating algorithm is
deterministic. Assume that 8 is redundant for ¢;. Then, the updating of & on & halts
after performing no more than k operations. Each of these operations uses values
retrieved only from o; | (MODIFIEDsuP,k). Since o; | (MODIFIEDsUP,k) =
o, | (MODIFIED; U P, k), the updating algorithm must behave identically when it is pro-
cessing change § in state 6, too. Consequently, & must be redundant for o, also. [

Our approach to establishing that SS-REACHABILITY has no bounded SA algo-
rithm is to derive a contradiction using the above proposition; the contradiction is
obtained by constructing two graphs G| and G, represented by states 6| and &3, and a
modification & such that  is redundant for one of the graphs but not the other, even
though the restricted state for 8 is identical in both 6| and ;. We will first establish the
result for [O (log”(n)), 0] restricted-aliasing algorithms, and then generalize the result for
any SA algorithm.

We can express the restricted state o\ (MODIFIEDs U P,k) as the union of the
restricted local-state ¢ 4 (MODIFIEDg,k) and the restricted global-state ¢ L(P,k). (Note
that the local-state and global-state need not be disjoint: there can be blocks which are
accessible both from some modified vertex 4 and some global pointer p;.) We will first
establish that the O (logn) bits of information that can be stored in the restricted global-
state cannot be of much use (for certain types of graphs).

Consider the graph G shown in Figure 8.3a. (Straight arrows in the figure indicate
edges of the graph, while wavy lines indicate paths of the indicated length.) All vertices
in this graph are reachable from the source vertex s. The graph has a long path, from vg
to v,41, of length O (n). This path is divided into #+1 smaller paths of length [ = O (n/t)
each, where the i-th path goes from v;_; to v;.

Let o denote the state of the system corresponding to input graph G. Consider the
set of all graphs that can be obtained by adding zero or more cross edges to G, where a
cross-edge is an edge from u; to v; for 1 <i <t A cross-edge u; —v;, when inserted
into the graph G, introduces an alternative path from the source vertex to vertex v; (and
all other vertices in the path from v; to v;).

For any set X of cross-edges, let ox denote the state of the system after it has pro-
cessed the insertion of the edges in X (in a specific order) and let Gy denote the




162

(a)

(b)
cross edge

forward edge

vii N\~ X_’{(\/Vi/\‘/f}/\/‘/m

back edge

Figure 8.3. The graphs used to establish the unboundedness of reachability.

corresponding graph.

Proposition 8.3. For a suitable choice of 7 and ¢, there exist different sets of cross-edges
X and Y such that oy 4 (P,k) = oy L (P,k).

Proof. This follows from a simple counting argument. We observed earlier that the res-
tricted global-state contains only ¢ logn bits of information, for some constant ¢ ;. This

implies that the restricted global-state can take at most 2°11°8" gifferent values. If we
choose ¢ to be greater than ¢ logn, then the restricted global-state must be identical for

some Oy and Oy, since there are 2! different graphs. O

We are now ready to prove our main result, Theorem 8.1, by deriving a contradic-
tion of Proposition 8.2.

Let X and Y be two different sets of cross-edges such that oy L(P,k) =0y L(P.k).
Assume, without loss of generality, that XY is non-empty. Let u; —>v; be a cross-edge
in X-Y. Consider Figure 8.3b. Let P denote the path from v;_; to v;, and let P, denote
the path from v; to v;,;. We will refer to an edge x —y in path P as a forward edge.



163

We will refer to any edge from a vertex z in P, to a vertex in P as a backedge.

Note that neither of the graphs Gx and Gy has any backedges. Back edges can be
potentially inserted into these graphs, while forward edges can be potentially deleted
from these graphs.

For any edge x —>y in P and vertex z on P, let 8, . denote the simultaneous
insertion of the back-edge z —>y and the deletion of the forward edge x —>y. In graph
Gy, this modification does not change the reachability status of any of the vertices
because the cross-edge u; —> v;, the path from v; to z and back-edge z —> y combine to
provide an alternative path to vertex y. In contrast, the same modification causes vertex y
and some other vertices to become unreachable in the case of graph Gy. Thus, 8, ; is
redundant for Gy but not for Gy.

This means that when processing input modification 0, , , the updating algorithm
has to examine the state enough to determine whether the input graph is Gx or Gy.
Further, it has to determine this in no more than k steps. But we just saw in Proposition
8.3 that the updating algorithm cannot make this distinction by examining the restricted
global-state.

Proposition 8.4. There exists an edge x —>y in path P and a vertex z in path P, such
that ox 4 ({x,y,2}.k) = oy 4 ({x,,2},k).

Proof. Our goal is now to show that there exists some forward edge and back edge com-
bination for which the restricted local-state is the same in both the states oy and Oy.
Note that oy and Gy were obtained from o. Further, the updating algorithm performed at
most | X | - k elementary operations in deriving Gx from o, and no more than |Y |- kele-
mentary operations in deriving Gy from ¢. In particular, both oy and oy were obtained
from o by performing no more than O (¢) assignments.

Let us say that a block in Gx (or Gy) is directly touched if some field in that block
was assigned to in deriving Oy (or Oy) from 6. We say that a vertex u is touched if some
block accessible from u in k steps or less was directly touched in Gx or Cy.

Here is where we rely on the sparse-aliasing restriction. Note that at most o)
blocks are directly touched. Let d denote the maximum indegree of any block. Then, at
most O ((d +1)*1) vertices can be touched. Now ¢ is O (logn) and d is bounded by some
poly-logarithmic function. Consequently, only a poly-logarithmic number of vertices can
be touched. But there are O (n/t) = O (n / logn) vertices in each of the paths P and P,.
It follows immediately that, for sufficiently large values of n, there will exist a large
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number of edges x —> y in path P and vertices z in path P such that oy 4 ({x,y,2},k) =
oy ({x,y,2},k). O

Proof of Theorem 8.1. (for [O (log’(n), O] restricted-aliasing algorithms.)

Proof. It follows from Proposition 8.3 and Proposition 8.4 that there exist states Gy, and
oy, and a modification 8, , such that the restricted state for 3y,y.¢ is identical in both oy
and oy, though 9, , is redundant for Gy only. This gives us the desired contradiction of
Proposition 8.2. It follows that there exists no bounded [O (log"(n), 0] restricted-aliasing
algorithm for checking the redundancy of an input modification for the SS-
REACHABILITY problem. [1

We now show how the above proof can be adapted for any SA algorithm.

Consider an [f (n), g (n)] restricted-aliasing algorithm. A block in the representa-
tion graph used by the algorithm is said to be a dense block if its indegree is greater than
f (n). The definition of restricted-aliasing algorithms implies that there can be at most
g (n) dense blocks in the representation graph. Let D denote the set of dense blocks in
the representation graph (where each block is represented by a pointer to the block).

Observe that the following stronger version of Proposition 8.3 can be established:
For a suitable choice of n and ¢, there exist different sets of cross-edges X and Y such that
Ox L(PuDk) = Gyi(PuD,k). The reason is that |D| is bounded by g (n). Conse-
quently, Ox L (PuD,k) has only O(g(n)log(n)) bits of information. Since g(n) is
0 (n®) for some o < 0.5, we can easily choose ¢ to be greater than g (n)log(n), and the
result follows.

The previous proof of Proposition 8.4 assumed that the representation graph had no
dense blocks. Once we have the above stronger version of Proposition 8.3, however, we
no longer need this assumption. The same proof holds once we modify the notion of a
“touched” vertex as follows: We say that a vertex u is touched if some block b accessible
from u in k steps or less was directly touched in Gy or Gy, subject to the additional con-
straint that the access path from u to b not pass through a dense block. Only
O (t log®(n)) vertices can be touched, where s is some constant, and there are O (n/t) ver-
tices in each of the paths P and P,. Since f1is ©(g (n) log(n), Proposition 8.4 follows.

It follows, then, from Proposition 8.3 and Proposition 8.4 that the dynamic single-
source reachability problem has no bounded SA algorithm.
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8.4. Other Unbounded Problems

In this section we show that various path problems in graphs and various dataflow
analysis problems are all unbounded by reducing the reachability problem to these prob-
lems. The reductions utilize a “homomorphic embedding” of the reachability problem
into these other problems.

8.4.1. Unbounded Path Problems

We now show that graph problems described using the closed-semiring formulation are
all unbounded with respect to the SA model of computation. These problems were dis-
cussed in detail in Chapter 5. We review the definition of these problems below.

Definition 8.5. A closed semiring is a system (S, ©, ®, 6, —f) consisting of a set S, two
binary operations © and ® on §, and two elements 0 and 1 of S, satisfying the following

axioms:

N S, @ ,5) is a meet-semilattice with greatest element 0. (Thus, @ is a commutative,
associative, idempotent operator with identity element 0. The meet operator will
also be referred to as the summary operator.) Further, the meet (summary) of any
countably infinite set of elements { a; | i € N } exists and will be denoted by

@a,-.
ieN

2) ¢, ® ,I) is a monoid. (Thus, ® is an associative operator with identity T.)
(3) ® distributes over finite and countably infinite meets: (D a;) ®( @b =
i J

LJ
4) a®0=0.

A unary operator *, called closure, of a closed semiring (S, ®,® ,0,1) is defined
as follows:

a* =def iéz%a‘
where a’ =1and a‘*! =a' ®a.
Different path problems in directed graphs are captured by different closed semir-
ings. An instance of a given path problem involves a directed graph G =(V, E) and an
edge-labeling function that associates a value from S with each e € E.

Consider a directed graph G, and a label function [ that maps each edge of G to an
element of the set S. The function / can be extended to map paths in G to elements of S
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as follows. The label of a path p = [e,es, " ,e,] is defined by I(p) =
I(e)®l(e)® -+ ®l(ey,). If v, w are two vertices in the graph, then C (v,w) is defined
to be the meet (summary) over all paths p from v to w of [(p):
Civyw)= @ [(p).
v—>,w

The closed-semiring framework for path problems captures both “all-pairs” prob-
lems and “single-source” problems. In an all-pairs problem, the goal is to compute
C(v,w) for all pairs of vertices v, we V(G). In a single-source problem, the goal is to
compute only the values C (s,w) where s is the distinguished source vertex. In all these
problems, (unit-time) operations implementing the operators @, ®, and * are assumed
to be available. More formally, letS = (S, ®,® ,0,1) be a specific closed semiring. The
SS-$ problem is defined as follows.

Definition 5.4. Given a directed graph G = (V, E), a vertex s in V, and an edge-labeling
function I : E —> S, the S-S5 problem is to compute C (s,w) for every vertex w in V. We
say that (G, s, 1) is an instance of the SS-§ problem.

In the dynamic version of the SS-$ problem that we consider, the source vertex s is
assumed to be fixed.

For example, let S be the closed-semiring (R U { o }, min, +, %, 0). Then, SS-§
is nothing other than the single-source shortest-path problem with non-negative edge
lengths.

In this section we show that for any closed semiring S, the SS-S problem is
unbounded. We first show that the SS-S problem is “at least as difficult as” the SS-
REACHABILITY problem, even for incremental algorithms, by “reducing” the SS-
REACHABILITY problem to the SS-$ problem, and conclude that the SS-S problem is
unbounded.

However, some caution needs to be exercised in making inferences about the
unboundedness of a problem via a reduction argument. If a problem P is unbounded and
can be reduced to a problem Q in the conventional sense, it does not necessarily follow
that the problem Q is unbounded. For instance, consider any unbounded problem P of
computing some value S(u) for each vertex u of the graph. Consider the (intuitively)
“more difficult” problem Q of computing S(u) and T(u) for each vertex u of the graph,
where T(u) is defined such that it changes whenever the input changes. For example, let
T(u) be the sum of the number of vertices and the number of edges in the graph. If each
input change consists of the addition or deletion of a vertex or an edge, then by
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definition, whenever the input changes every vertex is affected. Consequently, any
update algorithm is a bounded algorithm, and Q is a bounded problem.

Showing that a problem Q is unbounded by reducing an unbounded problem Pto
Q involves the following obligations: (1) We must show how every instance of problem
P (i.e., the input) can be transformed into an instance of problem @, and how the solution
for this transformed problem instance can be translated back into a solution for the origi-
nal problem instance. (2) We must show how any change dp to the original problem
instance can be transformed into a corresponding change 8y in the target problem
instance, and, similarly, how the change in the solution to the target problem instance can
be transformed into the corresponding change in the solution to the original problem
instance. (3) We must show that the time taken for the transformations referred to in (2)
is bounded by some function of ||3p||. (4) We must show that || 3¢ Il is also bounded
by some function of ||8p]|. (5)Finally, since we are dealing with the notion of
unboundedness relative to the class of SA algorithms, we must show that the transforma-
tion algorithms referred to in (2) are SA algorithms.

Proposition 8.7. Let 5 = (S, ©, ®,0, 1) be an arbitrary closed semiring. The SS-S
problem is unbounded for the class of SA algorithms.

Proof. Given an instance of a single-source reachability problem (G, s), there is a
linear-time reduction to an instance of SS-S given by (G, s, Ae.1). In the target problem
instance, the summary value at v, C(s,v) is 1if v is reachable from s, and 0 otherwise.

It is obvious that all the requirements laid down above for reduction among
dynamic problems are met by the above reduction. Therefore, SS-$ is an unbounded
problem. [J

It follows from the above proposition that SSSP>0 is an unbounded problem. In
this particular problem the above reduction associates every edge in the graph with zero
length. Consequently, the length of the shortest-path from the source vertex to a vertex u
is O if the vertex is reachable, and « otherwise.

However, as we saw in Section 3.1, the very similar problem SSSP>0 has a
bounded locally persistent incremental algorithm. This illustrates that only certain input
instances may be the reason why a problem is unbounded. For example, graphs with 0-
length cycles cause SSSP20 to be unbounded. If the problematic input instances are
unrealistic in a given application, it would be appropriate to consider a suitably restricted
version of the problem that does not deal with these difficult instances.
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8.4.2. Unbounded Dataflow Analysis Problems

In this section we show that all non-trivial meet-semilattice dataflow analysis problems
are unbounded. Data-flow analysis problems are often cast in the following framework.
(See Chapter 5.) The program gives rise to a flow graph G with a distinguished entry
vertex s. Without loss of generality, s may be assumed to have no incoming edges. The
problem requires the computation of some information S(u) for each vertex u in the flow
graph. The values S(u) are elements of a meet semilattice L; a (monotonic) function
M (e):L —> L is associated with every edge e in the flow graph; and a constant ¢ € L is
associated with the vertex s. The desired solution S(u) is the maximal fixed point of the
following collection of equations:

Sis)=c

S(u) = 1 M@y —u)(S(v)), foruzs.
v—>ue E(G)

Each semilattice L and constant ¢ € L, often the greatest or least element of the semilat-
tice, determines a dataflow analysis problem, which we call the (L,c)-DFA problem. An
input instance of the problem consists of a graph G and a mapping M from the edges of G
toL —> L.

We now show that an arbitrary meet-semilattice dataflow analysis problem P is
unbounded by reducing SS-REACHABILITY to P.

Proposition 8.8. Let L be a meet-semilattice, and let ¢ € L. Then, the problem (L,c)-
DFA is unbounded for the class of SA algorithms.

Proof. Let fbe a function from L to L such that f(c)# T. Given an instance ((V,E),s)
of the single-source reachability problem we can construct a corresponding instance
(Vu{t},Eu{(t—>s)}),t,M) of problem P where,

M()=f ife=t—>s

Me)=Ax ife#t—>s.
The solution of this problem instance is given by: S (¢) =¢; ifuzt thenSw)is f(c)ifu
is reachable from s, and T otherwise. It follows from the unboundedness of SS-
REACHABILITY that P is unbounded. []

The interpretation of the above result is that any SA incremental algorithm for
problem P is an unbounded algorithm. This does not by itself imply that the dataflow
analysis problem P that arises in practice is an unbounded one for SA algorithms (in other
words, if there is some flexibility in defining the class of valid input instances for prob-
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lem P). The above reduction shows that some “difficult” input instances cannot be han-
dled in time bounded by a function of ||8||. However, these input instances may be
unrealistic input instances in the context of the dataflow analysis problem under con-
sideration. We now argue that, in fact, this is not the case.

The first possible restriction on input instances relates to the flow graph. Ordi-
narily, frameworks for batch dataflow analysis problems impose the assumption that all
vertices in a flow graph be reachable from the graph’s start vertex. Some dataflow
analysis algorithms also assume that the flowgraph is a reducible one. With either of
these restrictions on input instances, the above reduction of SS-REACHABILITY to
problem P is no longer valid. However, we follow Marlowe [Mar89], who argued that
these assumptions should be dropped for studies of incremental dataflow analysis (see
Section 3.3.1 of [Mar89]).

The second possible restriction on input instances relates to the mapping M. Isit
possible that realistic flow-graphs will never have a labeling corresponding to the
“difficult” input instances shown to exist above? We argue below that this is not so.

The reduction above associated every edge with either the identity function or a
function f such that f(c)# T. The identity function is not an unrealistic label for an
edge. (A skip statement, or more generally, any statement that modifies the state in a
way that is irrelevant to the information being computed by the dataflow analysis prob-
lem P is usually associated with the identity function.) As for the function f, we now
show that every non-trivial input instance must have an edge labeled by a function g such
that g(c)# T. Consider any input instance (G, s, M) such that M (e)(c) =TT for every
edge e € E(G). Since M (e) must be monotonic, M (e)(T) must also equal T. Then,
the input instance (G, s, M) has the trivial solution given by:

S(s)=c

Sw)=T foru#s.
Hence, the edge-labeling M from the reduction used in the proof of Proposition 8.8 is, in
fact, realistic.

In conclusion, note that the reduction used in the proof of Proposition 8.8 is
independent of the class of incremental algorithms proposed (i.e., SA algorithms, LP
algorithms, etc.). That is, the incremental version of every dataflow analysis problem is
at least as hard as the dynamic single-source reachability problem. In other words, for a
class of algorithms to have members that are bounded for any dataflow analysis problem,
there must be an algorithm of the class that solves the single-source reachability problem
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in a bounded fashion.

8.5. Some Remarks

There have been several papers on the dynamic reachability problem and the dynamic
transitive closure problem, but most of the previous work has been on incremental algo-
rithms for acyclic graphs, which suggests that the dynamic reachability problem is
difficult in the presence of cycles. The unboundedness result proved in this chapter
establishes, for the first time, that the dynamic reachability problem is hard, in some
sense. Similarly, the results in this chapter also show that incremental dataflow analysis
is hard, from the boundedness point of view, though a similar claim, from the IRLB point
of view (see Section 2.3.1.4), has been previously established by Berman [Ber92].

The lower bounds have been established with respect to the sparsely-aliasing
pointer machine model. The lower bound also applies to LP algorithms (see [Ram91}).
Neither the model of LP algorithms nor the model of SA algorithms allow the use of
arrays (of 2 or higher dimensions) indexed by vertices. Some examples of such arrays
are the adjacency matrix and the transitive closure matrix. It is possible to show that the
unboundedness result holds for LP algorithms even if multi-dimensional arrays indexed
by vertices are allowed. Similarly, the proof in this chapter can be adapted to show that
the unboundedness result holds for LP algorithms even when global auxiliary informa-
tion, organized as in the pointer machine model, is allowed subject to the following
separation constraint: pointers from the local storage (of LP algorithms) cannot point to
the global store, and vice versa. What would be d=sirable is a proof of the unbounded-
ness result for arbitrary pointer machines or, better still, for random access machines.

It is worth mentioning at this point that the restrictions of the models of computa-
tion we have used concern the organization of the auxiliary information that is retained
across input modifications. There is no restriction on the operations that can be used dur-
ing the update itself. Though these models do have some artificial constraints, they do
suggest features an incremental algorithm must exploit to defeat the lower bound proof.

! for one have to admit that | have not yet been able to devise a strict proof of this
theorem ... As however the truth of it has been established in so many cases, there can
be no doubt that it holds good for any solid. Thus, the proposition seems to be satisfac-
torily demonstrated.

Euler, concerning his conjecture that V-E+F = 2 for polyhedrons
—[as cited in} I. Lakatos, Proofs and Refutations: The Logic of Mathematical
Discovery
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Chapter 9
Incremental Algorithms for Reducible Flowgraphs

9.1. Introduction

In this chapter we present incremental algorithms for the single-source reachability prob-
lem and the dominator tree problem in reducible flowgraphs. Both these algorithms are

unbounded algorithms.1 The reachability algorithm, with a running time of
O (||81f logn), is an interesting example of an algorithm with a “hybrid complexity
measure”. The reachability algorithm can be adapted to work for arbitrary graphs, but
the time complexity does not carry over to the case of irreducible graphs.

9.2. Reachability, Domination, and Reducible Flowgraphs

The concepts of reachability, domination, and reducible flowgraphs are closely related to
each other. We first review the concepts of domination and reducibility [Aho86].

A flowgraph is a directed graph with a distinguished source vertex. We initially
consider flowgraphs in which every vertex is reachable from the source vertex. A vertex
u is said to dominate a vertex v in a flowgraph with source s iff every path from s to v
passes through u. Note that every path from s to v contains u iff every acyclic path from
s to v contains u; consequently, to check that v dominates w it is sufficient to examine the
acyclic paths from s to u. Domination is a reflexive and transitive relation—a vertex u
dominates itself and if u dominates v and v dominates w then u dominates w. If u dom-
inates v and u # v then u is said to be a proper dominator of v.

Domination is a special kind of relation. If 4 and v are two dominators of a vertex
w then one of « and v must dominate the other. Consequently, every vertex u has an
immediate dominator v such that any proper dominator of « is a dominator of v. We
denote the immediate dominator of u by idom(u). The dominator tree of a flowgraph is a
tree consisting of all the vertices reachable from the source s constructed as follows: The

I'We saw in the previous chapter that the reachability problem is unbounded with respect to several models
of computation. Reps (personal communication) has shown that the proof of unboundedness of reachabili-
ty with respect to the class of LP algorithms can be adapted for the dynamic dominator tree problem too.
However, these lower bound proofs involve irreducible flowgraphs, and do not apply to the problems con-
sidered here. Nevertheless, the algorithms presented in this chapter show what one may be able to do in
the case of unbounded problems.
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source vertex s is made the root of the dominator tree, and every reachable vertex u, other
than s, is made a child of its immediate dominator. The dominator tree is a concise
representation of the domination relation—a vertex « dominates another vertex v iff u is
an ancestor of v in the dominator tree.

An edge x —>y in a flowgraph is said to be a back edge if vertex y dominates ver-
tex x and it is said to be a forward edge otherwise. A flowgraph is said to be a reducible
flowgraph if the set of all forward edges induces an acyclic graph. Otherwise, it is said
to be irreducible.

The normal definition of a reducible flowgraph assumes that all vertices are reach-
able from the source vertex. We relax this restriction and consider a flowgraph to be a
reducible flowgraph if the set of vertices reachable from the source is a reducible
flowgraph according to the above definition. This relaxation is useful in the context of
incremental computation—in changing one reducible flowgraph into another reducible
flowgraph by inserting and deleting edges it may be necessary to temporarily introduce
unreachable vertices. However, the concept of domination still applies only to reachable
vertices. In particular, the algorithm we outline in this chapter will maintain the domina-

tor tree of the subgraph induced by the reachable vertices.? Also, the classification of an
edge as a back or forward edge is meaningful only if the endpoints of the edge are reach-
able. By the “status” of an edge we mean its status as a back or forward edge.

Recall that an edge u —> v is a back edge iff v dorninatés u. Thus, any path from
the source vertex s that contains a back edge u — v must be a cyclic path since it con-
tains at least two occurrences of the vertex v. This implies that the set of reachable ver-
tices does not change if a back edge u — v is removed from the graph, since a vertex is
reachable iff there exists an acyclic path from the source vertex to that vertex. Similarly,
the domination relation of a flowgraph does not change if a back edge is removed from
the graph, since domination can be defined in terms of acyclic paths. Hence, the prob-

2Carroll [Car88a] extends the definition of dominator tree to that of a dominator forest, in the presence of
unreachable vertices: he considers a decomposition of the whole graph into a collection of flowgraphs,
each with its own source vertex, such that every vertex is reachable from the source of the flowgraph it be-
longs to; the collection of the dominator trees of these flowgraphs constitute a dominator forest. If the
graph has a unique minimal decomposition, then this approach is meaningful. However, a graph need not
Have a unique minimal decomposition, in general, and the dominator forest is not uniquely defined. Since
the advantages of maintaining such a dominator forest are unclear, we restrict our attention to the problem
of maintaining the dominator tree of the reachable vertices.
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lems of maintaining the reachability information and the dominator tree of a reducible
flowgraph are closely related to the problems of maintaining the reachability information
and the dominator tree of a dag (the dag of forward edges), provided we have a way of
identifying the forward edges and back edges of the graph. We now show that the status
of an edge as a forward edge or back edge does not change as edges are inserted into and
deleted from the graph as long as the graph remains reducible throughout this sequence
of modifications. (We are talking only of edges whose endpoints remain reachable in the
flowgraph.)

Proposition 9.1. Let G, and G, be two reducible flowgraphs such that E(G;) =
E(G) v {u—>v}. The status of an edge that is reachable in both graphs is the same.

Proof. It follows easily from the definition of domination that the insertion of an edge
can only shrink the domination relation—hence, if x dominates y in graph G, then x
must dominate y in graph G too. Consequently, a back edge in graph G, must be a
back edge in graph G too (assuming that the edge under consideration is not 4 —>v).
Equivalently, every forward edge in G is a forward edge in G,.

Going the other way, a back edge in G| must be a back edge in G, also, for the
following reason: if x —y is a back edge in G, then there is some path consisting only
of forward edges from y to x in G ; hence, there exists a path of forward edges from y to
x in G, also; if x —>y were a forward edge in G,, then the set of forward edges in G,
would induce a cycle, contradicting the assumption that G, is reducible. []

Let us now consider the status of a newly inserted edge u — v. Since domination
can be defined in terms of acyclic paths, insertion of an edge u — v does not change the
set of dominators of vertex u. Consequently, 4 —> v is a back edge iff v dominates « in
the new graph iff v dominates u in the old graph. This is useful since we can determine
the status of a newly inserted edge from the domination information about the original
graph.

9.3. The Dynamic Single-Source Reachability Problem in Reducible Flowgraphs

The problem addressed here is the following special case of the dynamic single-source
reachability problem: the set of all vertices reachable from a distinguished vertex (the
“source”) of a given graph is to be maintained, as the given graph undergoes
modifications such as the insertion or deletion of an edge, subject to the constraint that at
all times the set of vertices reachable from the source induces a reducible flowgraph. We
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will later discuss how this assumption can be relaxed and also how one can verify that an
input modification does not violate this requirement.

Most previous work on the dynamic reachability problem or the dynamic transitive
closure problem has been on restricted versions of these problems—either only edge
insertions where allowed, or the input graph was restricted to be a dag throughout the
sequence of modifications. The most difficult aspect of the dynamic reachability prob-
lem is, in fact, handling edge deletions in the presence of cycles in the graph. The only
previous algorithm that handles both edge deletions and cyclic graphs is due to La Poutre
and van Leeuwen [Pou88]. This algorithm maintains a strongly connected component
decomposition of the graph in order to maintain the transitive closure of the graph. This
algorithm has been analyzed separately for a sequence of edge insertions and a sequence
of edge deletions, making it difficult to make direct comparisons, but the algorithm
appears to be more expensive than the algorithm outlined in this section in the case of
reducible flowgraphs. The other dynamic reachability algorithms work only for acyclic
graphs and are based on the ideas reproduced below.

Updating the reachability information is reasonably simple when an edge u —> v is
inserted. Nothing needs to be done if u is unreachable or v is already reachable. Other-
wise, v should be marked as being reachable, and the “reachable” status should be pro-
pagated further by performing a graph traversal from v, taking care to avoid visiting suc-
cessors of vertices that were already reachable. This, in fact, takes time O (]| ]]).

Let us now consider the difficulty in updating the reachability information after the
deletion of an edge u —>v. The question to be answered is if the deletion of the edge
u —> v makes v unreachable. If this can be answered, then the reachability information
for the whole graph can be updated by essentially repeatedly asking questions of this
form, as one propagates the “unreachable” status from v, stopping the propagation when-
ever one reaches a vertex that does not become unreachable.

Let us first consider the case of acyclic graphs, where this question has a simple
answer. The deletion of an edge u —> v from a dag leaves v unreachable iff v has no
predecessors (other than ) that are marked reachable. If we determine that v has become
unreachable then we would mark it so and then examine its successors to see if any of
them has become unreachable. Change propagation would proceed in the obvious way.
This leads to a linearly bounded incremental algorithm if carefully implemented: if we
maintain a count, at each vertex, of the number of reachable predecessors it has, then
visiting a vertex is a constant time operation, and the algorithm runs in O (|1d1]) time.
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Of course, this would imply that both the edge-insertion and the edge-deletion algorithm
must update the counts appropriately, but that does not add to the algorithm’s asymptotic
complexity. Observe that this is essentially a simplified version of Phase 1 of algorithm
DeleteEdgesssp-o (see Figure 4.2), where we were interested in the sub-problem of iden-
tifying the vertices that could not reach the sink after the deletion of an edge in the
shortest-paths subgraph (which is a dag).

The above scheme for checking if a vertex has become unreachable fails once we
allow cycles in the graph. If, after the deletion of an edge u —>v, the vertex v has no
predecessors marked reachable then v, in fact, is unreachable. But the converse is not
true: even if v has some predecessor w marked reachable we cannot be sure that v is
reachable. In the graph shown in Figure 9.1, for example, v does have a predecessor w
marked reachable, but all paths to w go through the deleted edge u —>v. What we need
to check, in the presence of cycles, is if v has some predecessor w, marked reachable, that
is not dominated by v. We may restate this as: the deletion of edge u —>v leaves v
unreachable iff v has no incoming forward edge w —> v such that w is marked reachable.
Consequently, this check can be done easily if we can determine which of the edges in
the graph are forward edges and which are back edges.

We now present a simple test for checking if an edge in a reducible flowgraph is a
forward edge or a back edge.

Proposition 9.2. Let T be any directed spanning tree of a reducible flowgraph rooted at
the source vertex. (The edges are directed from the parent to the child.) Anedge x —y
is a back edge in the given graph iff vertex x is a descendant of vertex y inT.

source /\_/> u i
w

Figure 9.1. An example to show how the presence of cycles complicates determining if the deletion of an
edge u —> v leaves vertex v unreachable. It is not sufficient to check if v has some predecessor marked
reachable. We need to determine if v has some predecessor that is marked reachable and is not dominated
by v. All vertices in the above example are marked reachable to begin with.
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Proof. Assume that x —>y is a back edge. Then, y dominates x, from the definition of a
back edge. Hence, any path from the source to x must contain y. Consequently, x must
be a descendant of y in any spanning tree of the graph.

Assume that x is a descendant of y in the spanning tree. Now, any spanning tree
edge u —> v is a forward edge, since v does not dominate «. Hence, there exists a path of
forward edges from y to x. If x —>y were a forward edge, then the forward edges would
induce a cycle in the graph. Hence x — y must be a back edge. [

We now present our algorithm for maintaining reachability information in a redu-
cible flowgraph, based on the ideas outlined above. The algorithm works by maintaining
a spanning tree of the set of all vertices reachable from the source using the link-cut tree
data structure due to Sleator and Tarjan [Sle83]. This dynamic data structure is a
representation of a dynamic forest (collection of trees) that allows a number of operations
to be performed. The only operations that are of interest to us are: a maketree operation
that creates a new tree consisting of a single newly inserted vertex; a link operation that
adds an edge from some vertex u in a tree T; to the root of another tree T, making T,a
subtree of T a cut operation that removes an edge from a tree, breaking it into two

trees; an operation that checks if a vertex u is the descendent of another vertex v.3 Each
of these operations runs in O (log n) time, where 7 is the number of vertices in the forest.

Given a spanning tree of the reachable vertices in a flowgraph, let us say that u is a
support vertex for v if u is a reachable predecessor of v and u is not a descendant of v in
the spanning tree. It follows from the above discussion that u is a support vertex ofvina
reducible flowgraph iff u is a reachable vertex and u —>v is a forward edge. Thus, the
set of support vertices of a vertex v is the same for every spanning tree in the case of
reducible flowgraphs. This is not true for irreducible graphs.

We previously saw that maintaining a count of the number of reachable predeces-
sors of a vertex was useful in updating the reachability information in the case of dags.
Similarly, we will find it useful, in the case of reducible flowgraphs, to maintain the set
of support vertices of every vertex—this is not necessary, but it improves the time com-
plexity of the updating algorithms from O (||8]|, logn) to O(]|8]| logn). Note that a

3The link-cut tree data structure supports an operation that returns the least common ancestor of two ver-
tices in O (log n) time. This can be directly used to check for the ancestor-descendant relationship between
two vertices.
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procedure InsertEdgeg. ,cnapiting (G, T, 16 —> V)
declare )
G: a directed graph
T: a link-cut tree
u —> v: an edge to be inserted into G
WorkSet: a set of edges
preconditions
v—3>we E(G)
T is a spanning tree of the reachable vertices in G
Vv e V(G), support(v) is the set of support vertices for v
Vv e V(G), reachable (v) is true iff v is reachable
begin
[11 Insertedge u —>vinto E(G)
[2]  if reachable(u) then
{31 WorkSet :={u —>v }
4] while WorkSet = & do

[5] Select and remove an edge x —> y from WorkSet
[6] if not reachable(y) then
(7] support(y) = {x}
[8] reachable(y) = true
[9] link(x,y)inT
[10] for every vertex z € Succ (y) do
[11] Insert y — z into WorkSet
[12] od
[13] else if x is not a descendant of y in T then
[14] /* x —>y is a forward edge */
(131 Add x to support(y)
[16] fi
[17] od
[181 fi
postconditions
v—we E(G)

T is a spanning tree of the reachable vertices in G
Vv e V(G), support (v) is the set of support vertices for v
Y v e V(G), reachable (v) is true iff v is reachable

end

Figure 9.2. An algorithm to update the reachability information after the insertion of an edge v —w into

graph G.

vertex is reachable iff its set of suppport vertices is non-empty. Hence, we don’t need to

maintain a separate “reachability” status flag for every vertex, but we do so for readabil-

ity.

9.3.1. Insertion of an Edge

We now consider how the algorithm processes the insertion of an edge u — v into the
graph. See Figure 9.2. If the vertex u is currently unreachable from the source, then
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nothing needs to be done. Otherwise, a work-list is created, initially consisting of the
edge u —> v alone. The algorithm repeatedly extracts an edge x — y from the work-list
and processes it as follows. If y was previously unreachable then y is marked as being
reachable, support(y) is appropriately initialized, the edge x — y is added to the span-
ning tree, and all edges y — z going out of vertex y are added to the work-list. If the ver-
tex y is already reachable from the source, then not much needs to be done—if x is not a
descendant of y then x is a new support vertex for y, so we add it to support(y).

Note that for every edge x —y examined by the algorithm, x must be in
CHANGED. Adding an edge x —> y to the spanning tree takes O (logn) time, since the
spanning tree is maintained as a link-cut tree. Similarly, the test in line [13] also takes
O (log n) time. Hence, the insertion of an edge is processed in time O (|| 8| logn ) time.

9.3.2. Deletion of an Edge

We now consider how the deletion of an edge u —> v is processed. See Figure 9.3. A
work-list is created, initially consisting of the edge # —> v alone. The algorithm repeat-
edly extracts an edge x — y from the work-list and processes it as follows. If x is a sup-
port vertex for y then it is removed from support(y). If x —y is a spanning tree edge
then it is removed from the spanning tree using a cut operation. This gives us the subtree
T of the original spanning tree rooted at vertex y. We check y to see if there exists any
incoming forward edge z — y such that z is marked reachable—recall that such an edge
exists iff support(y) is non-empty. If such a vertex z exists, then we link z and y, i.e., y is
made a child of z in the spanning tree, and the tree T itself becomes a subtree of the tree
rooted at z. If such a vertex z does not exist, then y is marked as being unreachable from
the source, and all edges y — z going out of vertex y are added to the work-list.

Note that for every edge x — y in the work list, the vertex x is in CHANGED.
Consequently, the algorithm runs in time O (|| 5[] log n).

9.3.3. Generalizing the Algorithm to Handle Irreducible Graphs

Let us now consider irreducible graphs. Note that only the insertion of an edge can intro-
duce irreducibility—the deletion of an edge from a reducible flowgraph leaves a reduci-
ble flowgraph. If it is necessary to check if a flowgraph remains reducible during a
sequence of modifications, we can do so by verifying that the subgraph induced by the
forward edges remains acyclic. This can be done, for instance, by maintaining a priority
ordering of the dag of forward edges, as discussed in the Section 9.4. We now briefly
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procedure DeleteEdge geachapitiny (G, Ts 4 —> V)
declare ’
G: a directed graph
T: a link-cut tree
u —> v: an edge to be deleted from G
WorkSet: a set of edges
preconditions
v—>we E(G)
G is a reducible flowgraph
T is a spanning tree of the reachable vertices in G
Vv e V(G), support(v) is the set of support vertices for v
Vv e V(G), reachable (v) is true iff v is reachable
begin
[1] Remove edge u —> v from E(G)
[2]1  if reachable(u) then

3] WorkSet := { u —>v }
4] while WorkSet # & do
[5] Select and remove an edge x —> y from WorkSet
{61 if x is not a descendant of y in T then
(71 Remove x from support(y)
(8] fi
[9] if x —>y is a spanning tree edge in T then
[10] cut(x,y)
{111 if support(y) = & then
[12] reachable(y) = false
{131 for every vertex z € Succ(y)do
[14] Insert y —> z into WorkSet
(15} od
[16] else
[17] Choose some z from support(y)
{18} Link(z,y)in T
[19] fi
[20] fi
[21] od
221 fi
postconditions
v—>we E(G)

T is a spanning tree of the reachable vertices in G
Vv e V(G), support(v) is the set of support vertices for v
Vv e V(G), reachable (v) is true iff v is reachable

end

Figure 9.3. An algorithm to update the reachability information after the deletion of an edge v —> w from

graph G.

show how the above incremental algorithms can be generalized to maintain reachability

information even for irreducible flowgraphs. The generalized algorithms, however, may

not perform the updating in time O (/8] logn) when the input graph is irreducible.
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Let us forget domination, forward edges, and reducibility, and summarize the pre-
vious algorithm as follows. It maintains a spanning tree T of the reachable vertices. It
also maintains the set of support vertices of every vertex, where  is a support vertex for
v if u is a reachable predecessor of v and u is not a descendant of v in the spanning tree.

It can be verified that the algorithm for edge-insertion, in fact, works correctly
even if the input graph is irreducible, and takes only time O (|| 01| logn). But there are
two problems in handling an edge-deletion. The first problem is that the algorithm is
based on the assumption that a vertex is unreachable if its support set becomes empty and
this assumption is not justified in the case of irreducible graphs. It is true, however, that
a vertex is reachable as long as its support set is non-empty. Consequently, every vertex
labelled reachable at the end of the updating must be reachable, but some of the vertices
labelled unreachable may be reachable.

We fix this problem by modifying the edge-deletion algorithm as follows. Con-
sider line [12] where vertex y is marked as being unreachable. Let S denote the set of
predecessors of y that are currently marked reachable. Since we know at this point that y
has no support vertex, every vertex in § must be a descendant of y in the current spanning
tree. We mark y as being unreachable assuming that every vertex in S is, in fact,
unreachable—this assumption is true in the case of reducible flowgraphs, but may not be
true for an irreducible flowgraph. (See Figure 9.4 for an example.) So, we maintain a set
AssumedUnreachable, the set of all vertices that have been assumed to be unreachable.
At line [12] we add all vertices in S to this set. At the end we compute FalselyAs-
sumedUnreachable, the set of all vertices in AssumedUnreachable that were not marked
as having become unreachable during the updating. If this set is not empty, then we
made a mistake. So, we perform a traversal starting from the vertices in FalselyAs-
sumedUnreachable and propagate the “reachable” status (to all wrongly marked ver-
tices). This traversal undoes any mistakes made earlier. In the case of reducible
flowgraphs, FalselyAssumedUnreachable will be empty, and there is no asymptotic
increase in the complexity of the updating. If the graph is irreducible, however, the algo-
rithm may have examined more than ||&]| vertices. In the worst case, the algorithm
might perform ©(m log n) work.

A second problem with handling edge-deletion in the case of irreducible
flowgraphs is that maintaining the support sets is no longer easy—when we change the
spanning tree by moving subtrees in lines [17-18] the support sets can change drastically
if the graph is irreducible. So, we avoid maintaining support sets, and modify lines [11]
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Figure 9.4. An irreducible flowgraph. The solid edges represent the edges of a spanning tree. Note that v
remains reachable even after the deletion of the edge from source to v. The edge-deletion algorithm for
reducible flowgraphs will, however, mark v as having become unreachable. This happens because the only
edge coming into v, after the deletion of source —> v, comes from a descendant of v in the (original) span-
ning tree. Thus, v is marked unreachable under the assumption that w too has become unreachable. How-
ever, w is not marked unreachable when the updating ends (because it has an incoming edge source —>w).
This provides a way of checking if the algorithm updated the reachability information erroneously because
of irreducibility. ‘

and [17] to scan the predecessors of y to determine if it has a support vertex. This has to
be done carefully, since the vertex y might be “examined” in this fashion several times.
In particular, we should ensure that in future visits of vertex y, any predecessor of y that
has already been checked (to see if it is a support vertex for y) is not checked again. If
we take care of this, the deletion of an edge can be processed by the algorithm in time
O (|| 8]| 2 logn) in the case of reducible flowgraphs.

9.4. The Dynamic Dominator Tree Problem in Reducible Flowgraphs

In this section we present an incremental algorithm for maintaining the dominator tree of
the subgraph of reachable vertices of a flowgraph under the assumption that this subgraph
remains reducible as the flowgraph undergoes modifications. We also outline a method
for verifying that the graph, in fact, remains reducible during a sequence of
modifications.

The dominator tree plays an important role in several algorithms for program
analysis and program optimization, and the need for updating the dominator tree of a
flowgraph arises in various contexts. For instance, Carroll and Ryder [Car88] present an
incremental dataflow analysis algorithm that makes use of dominator trees—it 1S neces-
sary as a part of this algorithm to update the dominator tree of the flowgraph. The need
to update the dominator tree can arise even in the context of batch compilation. For
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instance, dominator trees are used in the construction of the static single assignment
(SSA) representation of programs [Cyt89, Cyt91]. As an optimizing compiler repeatedly
applies optimizing transformations, it may be necessary to update the SSA representation
of the program after each transformation.

The only previous algorithm for the problem of maintaining the dominator tree of a
(reducible) flowgraph is due to Carroll and Ryder [Car88]. The algorithm given in this
section has a better worst-case complexity than the Carroll-Ryder algorithm. There are
also good reasons to believe that our algorithm will be more efficient in practice also. A
comparison of the two algorithms is given later in Section 9.4.3.

We saw in Section 9.2 that the dominator tree of a reducible flowgraph is the same
as that of the dag of forward edges of that flowgraph. We will first present a simple batch
algorithm for constructing the dominator tree of a dag. Linear time algorithms that con-
struct the dominator tree of a dag are known [Har85, Och83], but the reason for the fol-
lowing presentation is that it suggests a possible way of incrementally maintaining the
dominator tree of a dag. We will then use this idea for maintaining the dominator tree of
a reducible flowgraph.

Consider a dag with a source vertex. Consider a vertex u in the dag with predeces-
SOIS Vi ,..., Vg A vertex w will properly dominate u iff it dominates all the vertices v
through v;. In other words, Dom (u) = {u} v _rIC\lDom (v;), where Dom (x) denotes the

i=
set of dominators of vertex x. Thus, if we have identified the set of dominators of v
through vy, then the set of proper dominators of « can be obtained by intersecting these
sets. In particular, the immediate dominator of u has to be the least common ancestor of
v through vy in the dominator tree.

The previous paragraph suggests the following scheme for constructing the domi-
nator tree of a dag in an incremental fashion. The vertices in the dag are visited in topo-
logical order and added to the dominator tree one by one. Initially the dominator tree
consists only of the source vertex s. When a vertex u is visited, the least common ances-
tor w of all the predecessors v; through v, of u in the partially constructed tree is
identified. Now, u is made a child of w. Thus, the construction of the dominator tree of a
dag can be considered to be a “pseudo” circuit value annotation problem, where every
vertex u other than the source vertex is associated with the equation

parent(u) = lea(vy, ..., v),
where we use Ica as an abbreviation for “least common ancestor”. The value computed
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for every vertex (other than the source) is its parent in the dominator tree.

Note that the above problem is not a true circuit value annotation problem because
the right-hand side of the above equation is not a “pure function” of the values associated
with the predecessors of vertex u. Hence, the output value of a vertex (that is, its
immediate dominator) can change even though the output value of none of its predeces-
sors have changed. Consider, for example, the dag G shown in Figure 9.5. This dag is
modified into dag G’ by the insertion of an edge b —> c¢. The vertex c is affected in the
sense that its immediate dominator changes. The only successor of ¢, namely d, is not
affected—its immediate dominator is still c. But, vertex e, is affected, even though none
of its predecessors are affected.

The above problem prevents us from using change-propagation techniques in
updating the dominator tree after the insertion or deletion of an edge. However, if we
have a conservative approximation to the set of all affected vertices, then we can use
ideas from the circuit value annotation problem to update the dominator tree. In particu-
lar, we can visit all vertices that might possibly be affected in topological order, and

G G’, obtained by inserting
an edge into G

The dominator tree for G The dominator tree for G’

Figure 9.5. An example to show how the problem of constructing the dominator tree of a dag differs from
a circuit value annotation problem. An edge b — c is inserted into the dag G. The affected vertices in the
resulting dag G’, indicated by the shaded region, do not form a connected region.
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determine their immediate dominators using the above equation. We can use priority-
ordering to visit vertices in a topological sort order, and use the incremental algorithm of
Alpern et al. [Alp90] for updating the priority ordering when the graph undergoes
changes. We can represent the dominator tree using the link-cut tree data structure, since
this data structure lets us compute least common ancestors of vertices in dynamic trees
efficiently.

We now return to the problem of maintaining the dominator tree of a reducible
flowgraph. Let G denote the reducible flowgraph for which the dominator tree has to be
maintained. The algorithm will maintain the following data structures and information:
(a) The reachability status of every vertex will be maintained. (b) Let R(G) denote the
subgraph induced by the reachable vertices. The status of every edge in R (G)—whether
it is a forward edge of back edge—will be maintained. (c) Let F(G) denote the acyclic
subgraph of R (G) induced by the forward edges. Both F(G) and a correct prioritization
of F(G) will be maintained. (d) The dominator tree DT (G) of F(G), which is the same
as the dominator tree of R (G) and G, will be maintained as a link-cut tree.

9.4.1. Insertion of an Edge

We now consider the problem of updating all the above information when an edge
u —> w is inserted into the graph. We will assume that the vertex u was originally reach-
able from the source vertex, since nothing needs to be done otherwise. We will first con-
sider the simpler case where the vertex w was already reachable, which means that there
is no change in the reachability status of vertices.

A Special Case: No Change in Reachability
In this case the set of vertices in R (G) remains the same, while u —> w is added to the set
of edges. We know from Proposition 9.1 that the insertion of u —> w does not change the
status of any other edge in R (G). Consequently, maintaining edge statuses requires only
that we determine the status of the newly inserted edge. If vertex w dominates vertex u
in the original graph, then the edge inserted is a back edge. Otherwise, it is a forward
edge. We can check if v dominates u in the original graph in O (log n) time, since a
representation of the dominator tree as a link-cut tree enables us to check for the
ancestor-descendant relation between two vertices in O (log n) time.

If the edge u —> w is a back edge, then neither F(G) nor DT(G) changes, and
nothing more needs to be done. If the edge is a forward edge, then we insert it into
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F(G), and update the prioritization of F(G) using the algorithm presented in [Alp90].
This algorithm also determines if the insertion of an edge into a dag introduces a cycle.
Hence, we can determine at this point if the insertion of the edge u —> w makes the graph
G irreducible. Updating the priorities takes O (ylog?y) time, where 7 is a measure of the
size of the change in the priorities.

We now consider the problem of updating DT (G) itself. Let us now consider how
the dominator tree can change following the insertion of a forward edge into the
flowgraph.

Proposition 9.3. (See Figure 9.6.) Consider the insertion of an edge u —w into a
flowgraph where both u and w are already reachable. If a vertex y is affected by the
insertion of the edge, then idom (y) must properly dominate w and idom (y) must be prop-

lca (u,w) lea (uw)

.

e,

edge
inserted into
flowgraph N

Path P, in the flowgraph A
\“‘ :.

Sea -

Figure 9.6. The change in the dominator tree of a flowgraph when an edge u —> w is inserted. Solid wavy
lines in the figure indicate paths in the dominator tree, while solid straight lines indicate edges in the domi-
nator tree. Dashed lines indicate edges and paths in the flowgraph. For any affected vertex y, idom ()
must lie in the shaded region of the original dominator tree. Further, the new immediate dominator of any
affected vertex is lca (u,w).
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erly dominated by lca (u,w). Further, the new immediate dominator of every affected

vertex must be lca (u,w).

Proof. We have assumed that vertex w was already reachable in the flowgraph. Hence,
w must occur in the dominator tree of the original flowgraph. Let v denote idom (w).
Consider the least common ancestor of « and w. Consider an affected vertex y, that is, a
vertex y whose immediate dominator changes. Let x denote idom(y) in the original
graph. We noted earlier that the insertion of an edge can only shrink the domination rela-
tion. Hence, y’s new immediate dominator must have been a dominator of y in the origi-
nal graph too—that is, y’s new immediate dominator must be an ancestor of y in the ori-
ginal dominator tree.

What can we infer from the fact that x no longer dominates y? The insertion of the
edge u — w must have created a path from s to y that avoids x. It follows that the origi-
nal graph must contain a path P from s to u and a path P, from w to y both of which
avoid vertex x. This implies that x cannot have been a dominator of  in the original
graph, since otherwise the required path P could not have existed. This also implies
that x must have been a proper dominator of w in the original graph—otherwise, there
must exist a path P in the original graph from s to w that avoids x. Concatenating paths
P and P, yields a path from s to y in the original graph that avoids x, contradicting the
assumption that x dominates y in the original graph.

Hence, x must be a proper ancestor of w, but cannot be an ancestor of u. In other
words, x must be a proper ancestor of w and a proper descendant of lca (u,w)—that is, it
must lie in the shaded region S shown in Figure 9.6. This establishes the first claim in the
proposition.

Now, consider the second claim. Assume that y is an affected vertex. Note that
lca (u,w) dominates y even in the new graph, since there exists no path from s to u that
avoids Ica (u,w). On the other hand, no ancestor ¢ of y in the original dominator tree that
is a proper descendant of lca (u,w) can dominate y in the new graph—there exists a path
P, from w to y that avoids  (since y is assumed to be an affected vertex), and there exists
a path P from s to u that avoids z. Consequently, the new immediate dominator of an

affected vertex y must be lca (u,w). [0
For any two vertices p and g define PossiblyAffected (p,q) to be the set { r |

idom (r) is a proper ancestor of g and a proper descendant of Ica (p,q) }. The above pro-
position shows that PossibleAffected (u,w) is a conservative approximation to the set of
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Figure 9.7. The change in the dominator tree of a flowgraph when an edge u — w is inserted such that w
becomes reachable. The flowgraph is shown on the left side. The tree on the right side shows how the new
dominator tree would look like if there was no edge from a newly reachable vertex to a previously reach-
able vertex—that is, if set X was empty. If X is not empty, then the new dominator tree can be obtained
from the dominator tree on the right by “processing the insertion of edges in F”".

affected vertices when an edge u —> w is inserted, provided both « and w are reachable in
the original graph. We can “re-evaluate” all these vertices in increasing order of priority
to determine the set of affected vertices and to update the dominator tree. The “re-
evaluation” of vertices in PossibleAffected (u,w) is necessary only to determine the ver-
tices that are actually affected, since, as the above proposition shows, the new immediate
dominator of every affected vertex y is lca(u,w). This step takes time
O (|| PossibleAffected (u,w)|| logn).

The General Case

Consider the insertion of an edge u — w where u is reachable but w may or may
not be reachable. This can be processed very easily using a worklist algorithm that
repeatedly invokes the special case updating algorithm, as follows. Create a worklist that
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initially consists of just u — w. Every edge x —y in the worklist will be processed as
follows: If y is already marked reachable, we process edge x —> y using the special case
algorithm previously outlined. (Except for the particular case where the edge x —>y is
the newly inserted edge u —> w, the edge x — y would have already been in the graph,
but would not have been previously processed since vertex x was previously unreachable.
Hence it is being processed now.) If y is marked unreachable then we do the following: y
is marked reachable; the edge x — y is marked as a forward edge; y is assigned a priority
greater than x; y is made a child of vertex x in the dominator tree; and, finally, all the
edges going out of y are added to the worklist.

However, it is possible to do the update somewhat more efficiently in the general
case. Observe that the edges processed in the above worklist algorithm are of two types:
edges of the form x —>y where y was already reachable, and edges of the form x —>y
where y was not previously reachable. The following algorithm first identifies all the
edges and vertices that need to be processed, and partitions them into these two classes,
and processes them separately.

An outline of the algorithm is presented in Figure 9.8. The major steps involved in
the algorithm are: (1) Determining the set R of vertices that become reachable. (2) Pro-
cessing the subgraph <R> induced by R. (3) Determining the set X of edges of the form
x—>y,where x € Randy ¢ R. (4) Processing the set X of edges.

The set R of vertices that become reachable is obtained easily enough from a sim-
ple graph traversal starting from w. Processing the subgraph <R> can be done using a
batch algorithm as follows: The dominator tree D of <R>, with w as the source vertex, is
computed using a batch algorithm. The status of edges in <R> can be computed using a
simple traversal of the dominator tree D. The tree D is made a subtree of the original
dominator tree by making w a child of u. Priorities can be assigned to vertices in R using
a simple batch algorithm—we just need to ensure that the new priorities are all greater
than priority (u).

The above steps are sufficient as long as there is no edge from a vertex in R to
some previously reachable vertices. If there is such an edge, we identify the set X of
edges from vertices in R to vertices outside R. Now we need to process the “insertion” of
the edges in X using the special case algorithm outlined previously. We could process
these edges one by one, but that is not necessary. We know that

\U  PossibleAffected (x,y) is an approximation to the set of affected vertices. This
x—>ye X
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approximation to the affected vertices can be processed as before.

The overall complexity of the algorithm consists of two components: the time
spent on updating priorities, which is O (ylog v),* and the time spent on the remaining
steps, which is O (|| VISITED || logn), where VISITED is the approximation to
AFFECTED identified by the algorithm. '

procedure InsertEdge pominarorrree (G 4 —> W)
declare

G: a directed graph

u —> w: an edge to be inserted into G
begin
[11 Insert edge u — w into E(G)
(2]  if reachable(u) then
3] if not reachable(w) then

[4] Compute the set of newly reachable vertices R and mark them as reachable
{5] Compute the dominator tree D of <R>, the subgraph induced by R, with w as the source vertex
(6] Make D a subtree of u by performing link (u,w)

{7 Determine the status of all edges in <R>

(8] Correctly prioritize the dag induced by the forward edges of <R>,

(9] ensuring that the priorities assigned are greater than priority(u)

[10] Insert all forward edges in <R> into F(G)

[11] Compute X, the set of edges from vertices in R to vertices outside R

[121 else

(13] X={u—>w]}

[14] fi

[15] Determine the status of all edges in X
[16] Insert all the forward edges in X into F (G) and update the prioritization of F(G)

17 S:= U PossibleA d (x,
[17} x__)yexosszbe \ffected (x,y)

(18] for every x € § in increasing order of priority do

[19] y := the least common ancestor of all predecessors in F(G) of x
[20] if y # idom (x) then

[21] cut(idom(x),x)

[22] link(y,x)

23] fi

[24] od

251 fi

end

Figure 9.8. An outline of the algorithm for updating the dominator tree of a reducible flowgraph after the
insertion of an edge v —> w into graph G.

“The Alpern et al. algorithm can take time O (Y* log ) to update priorities after the insertion of a number of
edges into the dag. The special situation that arises in our algorithm is effectively equivalent to the inser-
tion of a single edge and can be processed in O (YlogYy) time.




9.4.2. Deletion of an Edge

We now consider the problem of updating the dominator tree and the auxiliary informa-
tion after the deletion of an edge u —> w. Again, we first consider the special case where
the edge-deletion does not change the reachability status of any vertex. The vertex w
becomes unreachable following the deletion of u — w iff u —>w was the only forward
edge coming into w.

A Special Case: No Change in Reachability .

We know there is no change in the reachability status of w if there is some other
incoming forward edge at w. In this case, we remove the edge 4 —> w from F(G) if the
edge is a forward edge. Since the previous prioritization of F(G) continues to be a
correct prioritization of F(G), no updating of priorities is required. The only non-trivial
work is in updating the dominator tree.

We can very easily determine a good approximation to the set of affected vertices
after the deletion of the edge v —> w.

Proposition 9.4. Consider the deletion of an edge u —> w from a flowgraph, where both
u and w remain reachable in the new graph too. If a vertex y is affected by the deletion
of the edge, then y must be a sibling of w in the original dominator tree—that is,
idom (y) = idom (w) in the original dominator tree.

Proof. Assume we obtain graph G, from graph G by deleting edge u —>w. The inser-
tion of the deleted edge back into G, will restore the dominator tree to its original form.
In other words, the set of affected vertices when u —> w is inserted into G, is the same as
the set of affected vertices when u — w is deleted from G . We know from Proposition
9.3 that if a vertex y is affected by the insertion of edge u —> w into G then it must be a
sibling of w in the dominator tree for G ;. [

The General Case

The general-case updating algorithm for processing the deletion of an edge u —w
is similar to the general-case updating algorithm for processing an edge-insertion. The
algorithm performs the following steps: (1) Determine the set R of vertices that have
become unreachable, (2) Determine the set F of edges of the form x — y, where x € R
and y ¢ R, and (3) Process the set F of edges, by essentially working as though these
edges have been deleted from the graph.
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procedure DeleteEdge pominarorrree (G, 4 —>w)
declare

G: a directed graph

u —> w: an edge to be deleted from G
begin
[1] Remove edge u —> w from E(G)
21 if u —> w is a forward edge then

3] Remove edge u —> w from F(G)

(4] if w has no incoming forward edges then

[5] Let R be the descendants of w in the dominator tree

{6] Mark vertices in R unreachable

7 Let X be the set of forward edges from vertices in R to vertices outside R
[8] Remove X and all forward edges in <R> from F(G)

91 else

[101 X={u—>w}

[11] fi

(12] S .—x__)kfe XSzblmgs(y)

[13] for every x € S in increasing order of priority do

{14} y := the least common ancestor of all predecessors in F(G) of x
[15] if y # idom (x) then

[16] cut(idom (x),x)

(17 link(y,x)

[18] fi

[19] od

(201 fi

end

Figure 9.9. An outline of the algorithm for updating the dominator tree of a reducible flowgraph after the
deletion of an edge v —> w from graph G.

Note that the set R of vertices that have become unreachable is precisely the set of
vertices dominated by w, that is, the set of vertices in the subtree T rooted at w in the ori-
ginal dominator tree. The set F of edges is essentially the set of edges x —>y with x in
the subtree T and y not in T—this set of edges is obtained easily using a traversal of the

subtree T. The “deletion” of the edges in F is processed as follows: _)U FSiblings )
x=—>y €

is an approximation to the set of affected vertices, which can be processed using previ-
ously explained techniques.

The overall complexity of the edge-deletion procedure is O (|| VISITED || log n),
where VISITED is the approximation to the set of affected vertices used by the algorithm.
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9.4.3. Related Work

We now briefly compare our incremental algorithm with the incremental algorithm
presented by Carroll and Ryder [Car88, Car88a] and argue that the new algorithm is more
efficient than the Carroll-Ryder algorithm.

Our algorithm has a better worst-case time complexity than the Carroll-Ryder
algorithm. In the worst case, the algorithm presented in this paper can take O (m logn)
time, where m is the number of edges and » is the number of vertices in the flowgraph.
Note that m is O(n) for typical flowgraphs. Carroll and Ryder do not describe the
worst-case complexity of their algorithm in terms of n and m. In Carroll’s thesis, the
complexity of the Carroll-Ryder incremental algorithm is described in terms of “rota-
tions” (see below): their algorithm can perform Q(n?) rotations in the worst case (even
with sparse flowgraphs), and the cost of a rotation in the worst-case is
O({(f+l)yxgxd 2), where f is the maximum number of children of any vertex in the
dominator tree, g is the maximum degree of any vertex in the control-flow graph aug-
mented with certain “representative edges” (see below), and d is the height of the domi-
nator tree. In the worst case, f, g, and d can each be O (n), though f will usually be a
small constant for typical flowgraphs. It is not obvious if the worst case for the number
of rotations and the parameters f, g, and h can be simultaneously achieved, but the above
clearly demonstrates that our algorithm has a better worst-case complexity.

However, worst-case analysis with the complexity expressed as a function of the
(current) input size often does not characterize the complexity of incremental algorithms
accurately, and the relative merits of incremental algorithms cannot be established by
directly comparing their worst-case complexity measures. For example, the linear-time
batch algorithm for constructing the dominator tree has a better complexity than both our
incremental algorithm and the Carroll-Ryder incremental algorithm, which have a non-
linear worst-case complexity, though the incremental algorithms are arguably better than
the batch algorithm. In his thesis, Carroll presents experimental results showing that the
Carroll-Ryder algorithm is faster than the almost-linear batch algorithm due to Lengauer
and Tarjan [Len79].

There are two reasons why we believe that our algorithm will perform better in
practice than the Carroll-Ryder algorithm. The first is that the Carroll-Ryder algorithm
utilizes certain “representative edges” as auxiliary information, and maintaining this aux-

iliary information can be expensive both in time and space. (For every edge u —>v in
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the flowgraph, and for every vertex w that dominates u but not v, a representative edge
w —> v needs to be maintained.) For example, a single edge-deletion (from a sparse
flowgraph) that is processed in O (log n) time by our algorithm can result in the introduc-
tion of Q(n?) new representative edges, forcing the Carroll-Ryder algorithm to take
Q(n?) time. The second reason is that the Carroll-Ryder algorithm restructures the dom-
inator tree using “local rotation” operations, which move a subtree up or down one level
at a time in the dominator tree. (In particular, an upward rotation makes a vertex the
child of its original grandparent, while a downward rotation makes a vertex the child of
one of its original siblings.) In contrast, our algorithm determines the new immediate
dominator of vertices and moves each subtree only once, but such a move can take
O (logn) time because of the use of link and cut operations. Consequently, one can
easily create input modifications that are processed in O (log n) time by our algorithm for
which the Carroll-Ryder algorithm performs Q(n) rotations, each rotation requiring (n)
time.

One of the differences between our approach and the approach of Carroll and
Ryder is that to handle graphs with unreachable vertices they extend the definition of
dominator tree to that of a dominator forest: they consider a decomposition of the whole
graph into a collection of flowgraphs, each with its own source vertex, such that every
vertex is reachable from the source of the flowgraph it belongs to; the collection of the
dominator trees of these flowgraphs constitute a dominator forest. If the graph has a
unique minimal decomposition, then this approach is meaningful. However, a graph
need not have a unique minimal decomposition, in general, and the dominator forest is
not uniquely defined. Since the advantages of maintaining such a dominator forest are
unclear, we have restricted our attention to the problem of maintaining the dominator tree
of the reachable vertices.

Finally, we should mention that the algorithm described in Carroll’s thesis is capa-
ble of handling the simultaneous insertion and deletion of edges from the flowgraph. The
algorithm presented in this paper can be adapted to handle the deletion of multiple edges
or the insertion of multiple edges. An arbitrary change can be handled by processing all
the deleted edges in one step, and then processing all the inserted edges in a second step.
Further work is required to explore if the algorithm can be adapted to handle the insertion
and deletion of edges simultaneously.
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9.4.4. Some Remarks

An interesting direction for future research is suggested by a generalization of the link-
cut tree data structure due to Cohen and Tamassia [Coh92, Coh92a]. Consider a tree in
which each vertex is associated with some attributes, each of which is defined in terms of
attributes of adjacent vertices. Cohen and Tamassia show how to efficiently maintain
such an attributed tree dynamically when the attribute equations are linear expressions
involving operators that form a semiring. Their algorithm performs link and cut opera-
tions in O (logn) time. Attribute values are not maintained but can be computed on
demand in logarithmic time. Carroll and Ryder show that monotonic dataflow analysis
problems can be reduced to an attribute evaluation problem over the dominator tree, and
use Reps’s [Rep82] incremental attribute updating algorithm to perform incremental
dataflow analysis. Since the function spaces of distributive dataflow analysis frameworks
form a semiring with respect to function composition and meet, it seems worthwhile
exploring the possibility of using the Cohen and Tamassia algorithm, in conjunction with
our incremental dominator tree algorithm, to perform incremental dataflow analysis.
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Chapter 10

Conclusions

... the efficiency measure chosen suggests the approach to be taken in tackling an
algorithmic problem and guides the development of a solution.
) —R.E. Tarjan, 1986 Turing Award Lecture

In 1982, Reps [Rep82] proposed an incremental algorithm for the attribute updating
problem, which he characterized as being “asymptotically optimal” because it ran in time
o(lI8l).

In 1989, Alpern et al. [Alp90], addressing a generalization of the attribute updating
problem, showed that the dynamic circuit value annotation problem had a lower bound of
Q2 W81y under a particular model of computation. They also presented an
0(]|8]] log {|8]]) algorithm for the problem of updating priorities in a dag, and used it in
an unbounded incremental algorithm for the circuit value annotation problem.

In 1991, Ramalingam and Reps outlined “almost optimal”, O (|| 51| log l1811),
incremental algorithms for the problem of updating shortest-path information for a graph,
a problem that arose in a networking application. (The algorithms presented in Chapter 4
are adaptations and extensions of these algorithms.)

Almost no other incremental graph algorithm had, meanwhile, been characterized

as being “optimal” or “almost optimal” in this sense.! The complexity of no other algo-
rithm we were aware of had been analyzed in terms of the parameter || oll.

This led us to ask the question “Why?”, and to the work described in this thesis.

Most of the results presented in this thesis were motivated by the desire to describe
the complexity of incremental algorithms in terms of the parameter ||3||. This thesis
presents an interesting hierarchy for incremental computation that emerges from this
desire to measure complexity in terms of ||8{|. On the more practical side, the thesis
presents several useful incremental algorithms.

Undeniably, the complexity measure used can guide the development of an algo-
rithm. An implication of this is that the complexity measure used can, sometimes, fail to
guide the algorithm designer in the right direction (if it is a wrongly chosen measure).

'Except for other optimal incremental algorithms for several variants of the attribute updating problem.
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The guiding role played by the complexity measure in algorithm design is illustrated by
the following examples, drawn from Chapter 7, where we discussed the dynamic circuit
value annotation problem:

e It was the desire for a bounded incremental algorithm that suggested the breadth-
first iterative evaluate-and-expand strategy for this problem. The complexity meas-
ure, worst-case analysis in terms of ||8]||, however, fails to distinguish between
BF_Expansion and RBF_Expansion, while common sense suggests that
RBF_Expansion is the better algorithm. The author, in fact, originally chose to dis-
cuss BF_Expansion because the analysis of the algorithm and the proof of bounded-

ness were easier for that algorithm.?

e  Analyzing the complexity of the algorithms as a function of the number of vertices
they visit suggested the double-and-evaluate improvement outlined in
Balanced_BF _Expansion.

e  The use of worst-case analysis, on the other hand, almost led the author to ignore an
improvement, the one outlined in Remark 7.2. This improvement was relegated to
the status of a mere remark as it did not improve the asymptotic worst-case com-
plexity in any way. Yet, this was probably the most effective improvement to the
basic strategy, at least for the particular problem of updating attributes in a Pascal
editor, as evidenced by experimental results.

Though a complexity measure can help even in the process of algorithm design, its
more conventional role is to provide us with a good idea about the performance charac-
teristics of algorithms. It should enable us to compare algorithms and determine which is
a better algorithm if, in fact, one of the algorithms is significantly better than the other. It
should ideally, though not necessarily, enable us to determine if an algorithm is
“optimal”, one that leaves very little scope for improvement.

Summarizing the discussion in Section 2.3, an analytic complexity measure is
likely to better fulfill its role as described above when it presents a reasonable approxi-
mation to the time the algorithm takes to process most or all input instances, than when it
describes only the time the algorithm takes to process some small fraction of all input
instances. An analytic complexity measure can achieve this only if it is expressed as a

“This is no longer true for the current proof.
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function of the parameter(s) of the input that really determine the running time of the
algorithm.

The difficulty in analyzing incremental algorithms, especially those that require
solving a number of subproblems, such as the dynamic dominator tree algorithm
presented in Chapter 9, is, perhaps, that the running time depends on a large number of
parameters.

There appears to be no silver bullet, no single approach to complexity analysis of
incremental algorithms that is universally applicable. Each approach to complexity
analysis has the potential to make its own contribution to the development of algorithms
for any particular problem. Each has its own limitations and scope in terms of answering
the above questions. Each has a domain of applicability, where it serves its role well.

Analysis in terms of |[8|| is one such approach.

.. The subjectively last step comes just before; it is to finish the book itself-—to stop
writing. That’s hard.

There is always something left undone, always either something more to say, or a
better way to say something, or, at the very least, a disturbing vague sense that the per-
fect addition or improvement is just around the corner, and the dread that its omission
would be everlasting cause for regret.

Don't wait and hope for one more result, and don’t keep on polishing. Even if you
do get that result or do remove that sharp corner, you'll only discover another mirage

Just ahead.
—P.R. Halmos, How to write mathematics
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