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ABSTRACT

Program development, debugging, and maintenance can be greatly improved by the use of
software tools that provide information about program behavior. This thesis focuses on a number
of useful software tools and shows how their efficiency, generality, and precision can be
increased through the use of control-flow and control dependence analysis. We consider two
classes of tools: execution measurement tools, which collect information about a particular pro-
gram execution; and program analysis tools, which provide information about potential program
behavior by statically analyzing the program.

We consider three tools that measure aspects of a program’s execution: profiling, tracing, and
event counting tools. We describe algorithms for profiling and tracing programs that use a com-
bination of control-flow analysis and program instrumentation to produce exact profiles and
traces with low run-time overhead. Rather than record information at every point in a program,
the algorithms record information at a subset of points that uniquely determines the information
at unmeasured points. A unique part of our work is to classify various profiling problems, based
on what is profiled and where profiling code is placed, and to compare the run-time costs of the
various problems. Event counting is a special form of profiling that maintains an aggregate count
of events in an execution.

We also consider three semantics-based software tools: slicing, differencing, and integration.
A slicing tool computes a projection of a program that preserves the behavior of the original pro-
gram at a particular statement. Such a tool is useful for debugging, since statements not in the
projection have no effect on the statement of interest. Differencing compares the behavior of two
programs, and integration merges variants of an original program so as to preserve the changed
computations in each variant with respect to the original program. To date, no work has ade-
quately addressed how to slice, difference, and integrate programs with complex control-flow
(i.e., programs containing unconditional jumps such as GOTOs). We show how to extend slicing,
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differencing, and integration to languages with complex control-flow. Our results on control

dependence are the basis for extending these tools to handle a larger class of languages.
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Chapter 1

INTRODUCTION

Program development, debugging, and maintenance can be greatly improved by the use of
software tools that provide information about program behavior. This thesis focuses on a number
of useful software tools and shows how their efficiency, generality, and precision can be
increased through the use of control-flow [1] and control dependence analysis [17]. We consider
two classes of tools: execution measurement tools, which dynamically collect information about a
particular execution of a program; and program analysis tools, which provide information about
potential program behavior by statically analyzing the program.

In the area of execution measurement, we consider three tools that provide information about
the behavior of a program’s execution: profiling, tracing, and event counting. A basic block or
control-flow edge profiler records the number of times each basic block or control-flow transfer in
a program occurs in an execution. Program profiles have many uses: they are used during pro-
gram testing to determine which parts of a program have been exercised and, in program perfor-
mance tuning, to point to "hot spots" in program execution, where improvements can be
made [26]. Profile information also assists many compiler optimizations [19,48, 53]. Tracing
tools record the sequence of events in a program’s execution [45]. Traces are often used for per-
formance analysis, simulation, and debugging. Finally, event counting is a special form of
profiling that maintains an aggregate count of the number of events that have occurred in a
program’s execution. Event counting is needed in applications that require efficient on-line
querying of event information, which is not possible with basic block counters.

Other tools provide information about possible program behavior solely by the static analysis
of programs. We consider three such semantics-based software tools: slicing, differencing, and
integration tools. A slicing tool computes a projection (slice) of a program that preserves the
behavior of the original program at a particular program statement [70]. Such a tool is clearly

useful for debugging, since a slice ignores those parts of a program that cannot contribute to a



particular computation. The operation of slicing is also important to differencing and integrating.
A differencing tool compares two programs and determines those points at which the programs
may compute different values [31]. An integration tool takes three programs as input, an original
program and two variants, and determines whether the programs can be merged in such a way as
to preserve the changed computations in each variant with respect to the original program [30].
A main application of program integration is reconciling divergent lines of program development
in a multi-programmer project. Other uses are described by Horwitz and Reps [34]. In both dif-
ferencing and integration, slicing is used to conservatively determine when two points in different
programs have equivalent behavior. In integration, slicing is also used to extract relevant code
from the input programs to form the merged program.

The first two contributions of this thesis are efficient algorithms for profiling and tracing pro-
grams. These algorithms use a combination of control-flow analysis and program instrumenta-
tion to produce exact profiles and traces with low run-time overhead. Sampling, another popular
method, periodically examines the state of the program’s execution but produces inexact results.
Many instrumentation-based approaches to profiling and tracing incur high overhead because of
the large amount of extra code introduced into the program. Rather than record information at
every point in a program, the algorithms described here record information at a subset of points
that uniquely determines the information at other points in the program. Furthermore, when pos-
sible, code is placed in areas of the program that execute less frequently, further decreasing the
run-time overhead. Control flow analysis is used both to determine those places at which to
record information and to generate full profile or trace information from the recorded informa-
tion.

As described in Chapter 3, there has been considerable work on efficiently profiling and tracing
programs. Three factors significantly distinguish our work from previous work. First, we con-
sider both the theoretic and algorithmic underpinnings of program profiling and tracing. Second,
unlike most previous work, we implemented the algorithms and experimented with different

instrumentation strategies on a collection of real programs. This experience exposed deficiencies




in previous algorithms and led to extensions that make these algorithms robust enough for practi-
cal use. Third, we implemented and compared several strategies for profiling and tracing. These
approaches can be categorized as to whether they measure basic block or control-flow edge fre-
quency, and whether they place instrumentation code in basic blocks or along control-flow edges.
This categorization helps to relate the efficiency of various approaches. Through this categoriza-
tion, we identified a new problem that has not been previously considered: basic block profiling
with edge counters. We characterize this new problem and compare it to existing approaches.
The third contribution of this thesis is an algorithm for efficiently counting events in a
program’s execution, with support for on-line queries of the event count. We present a new
 method for efficiently counting and querying program events that uses program instrumentation.
As with the profiling and tracing algorithms, this algorithm finds a subset of the points in a pro-
gram. to instrument while guaranteeing that accurate event counts can be obtained efficiently at

every point in the execution.

Slicing, differencing, and integration tools have been developed for languages with scalar vari-
ables, structured control-flow, and multiple procedures [8,30]. Related work in the area of alias
and dependence analysis can aid in extending slicing to programs with arrays and
pointers [7,43, 56]. Other differencing and integration tools are not semantics-based. For exam-
ple, the tools diff [35] and diff3 are text-based and can be applied to any programs (or arbitrary
text files, for that matter). However, no semantic guarantees can be made about the results of
such tools (diff3 may not even produce programs that are syntactically correct).

To date, no work has fully addressed the issues of slicing and semantics-based differencing,
and integrating of programs in a language with more complex control-flow (i.e., programs con-
taining unconditional jumps such as break, continue, goto, etc.) In fact, some existing slicing
algorithms compute semantically incorrect program projections in the presence of complex
control-flow. Other algorithms that do handle gotos are overly conservative in nature, producing
larger projections than necessary. Chapters 6 and 7 show how to extend slicing, differencing, and

integration to languages with complex control-flow. Control dependence plays a key role in all



three tools.

The main problem in slicing programs with complex control-flow is to identify when uncondi-
tional jumps are required in a slice in order to preserve a computation. Using the standard
control-flow translation, existing slicing algorithms, which use backwards closure over data and
control dependences (relations defined over the control-flow graph) to identify the statements of a
slice, do not correctly identify when an unconditional jump is required. We show how an aug-
mented control-flow translation enables these algorithms to compute correct slices. With the aug-
mented translation, control dependences correctly identify when unconditional jumps are required
in a slice.

We show how our results for slicing programs with complex control-flow allow us to compare
the execution behaviors of statements in different programs. The ability to compare behaviors
across programs leads to a differencing algorithm for programs with complex control-flow. The
integration algorithm also makes use of this ability. This algorithm has three basic steps:

(1) Identify those statements whose computations in either one of the variants differ from the
original program (i.e., changed behaviors) and those statements whose computations are the
same in all three programs (i.e., preserved behaviors);

(2) Identify those slices of each program that should be incorporated in the merged program in
order to replicate the changed and preserved behaviors;

(3) Combine the slices identified in step (2) into a merged program so that the behavior of each
individual slice is correctly replicated. (In general, it may not be possible to construct such
a program because the changed behaviors from the variants may interfere with one another.)

Our new slicing algorithm allows us to perform steps (1) and (2) for a language with complex

control-flow. Step (3) presents an unusual problem: when merging the slices into one program,

the statements must be ordered with respect to one another to ensure that the data dependences
and control dependences from the slices are preserved in the merged program and that no new
dependences are introduced (in order to guarantee that the behavior of the slices is correctly repli-

cated). We refer to this process as reconstitution. We have shown that a reconstitution algorithm




fora language with structured control-flow is correct [3]. The difficult part of this algorithm is to
order the program statements to preserve data dependences. With the introduction of more com-
plex control-flow into a language, the reconstitution process becomes more complex, as control
dependences must be taken into account when ordering the statements of the merged program.
We define a reconstitution algorithm for a language with mostly reducible control-flow, which
completes the integration algorithm and allows integration of programs with more complex
control-flow. This reconstitution algorithm can also be used to produce sequential code from pro-
grams written in a parallel language.

The thesis is organized as follows. Comparisons with related work are found in each chapter.
Chapter 2 provides background material for profiling, tracing, and event counting. Chapter 3
considers the problems of profiling and tracing programs efficiently. Chapter 4 shows how to
efficiently count events in a program’s execution with support for on-line queries. The remainder
of the chapters are devoted to the problems of slicing, differencing, and integrating programs with
complex control-flow. Chapter 5 provides background material on program dependences needed
for slicing, differencing, and integrating. Chapter 6 describes and solves the problem of slicing
programs with complex control-flow. Chapter 7 presents our integration algorithm for programs
with reducible control-flow. The main problem addressed in this chapter is that of reconstituting
a merged program from a set of slices. Chapter 8 concludes the thesis and discusses future direc-

tions for research.



Chapter 2

BACKGROUND FOR PROFILING, TRACING,
AND EVENT COUNTING

Chapters 3 and 4 present algorithms for instrumenting programs to record information about their
execution-time behavior. These algorithms use the intraprocedural control-flow structure of pro-
grams in order to determine where to place instrumentation code. The programs under considera-
tion are assumed to have been written in an imperative language with procedures, in which
control-flow within a procedure is statically determinable. Interprocedural control-flow occurs
mainly by procedure call and procedure return, although we will show how the algorithms can be
extended to handle exceptions and interprocedural jumps. Whether or not procedures are first-
class objects does not affect the instrumentation algorithms. The algorithms require only that a
control-flow graph can be constructed for each procedure in the program. It is not necessary to
know which procedure is called at a particular call site.

We first review some graph terminology. A directed graph G = (V, E) consists of a set of ver-
tices V and set of edges E, where an edge e is an ordered pair of vertices, denoted by v—w (note
that parallel edges between vertices are allowed; the notation v—w is an abbreviation). Vertex v
is the source of edge e, denoted by src (), and vertex w is the rarget of edge e, denoted by g1 (e).
Edge v —w is an incoming edge of vertex w and an outgoing edge of vertex v. If v—w, then ver-
tex v is a predecessor of vertex w and vertex w is a successor of vertex v. A path in a directed
graph is a sequence of n vertices and n—1 edges of the form (v, €1, V2, - €n~1, Vn), Where for
each edge ¢;, either ¢; = v;—v; 11 Or g; = vj41—Vi. A cycle is a path such that v =v,. A path or
cycle is directed if for every edge €;, ¢; =vi—V;4+]- Finally, a simple cycle is a cycle in which
{v{---vy_1} are distinct. If a cycle is simple then the edges in the cycle are distinct, but the

converse is not true.




In the next two chapters, we use the terms path and cycle to denote undirected paths and cycles.
When edge direction is important we explicitly state that a path or cycle is directed.

A control-flow graph (CFG) is a rooted directed graph G = (V, E) that corresponds to a pro-
cedure in a program in the following way: each vertex in V represents a basic block of instruc-
tions (a straight-line sequence of instructions) and each edge in E represents the transfer of con-
trol from one basic block to another. In addition, the CFG includes a special vertex EXIT that
corresponds to procedure exit (return). The root vertex is the first basic block in the procedure.
There is a directed path from the root to every vertex and a directed path from every vertex to
EXIT. Finally, for the profiling algorithm, it is convenient to insert an edge EXIT -->root to make
the CFG strongly connected. This edge does not correspond to an actual flow of control and is
not instrumented. The EXIT vertex has no successors other than the root vertex.

A vertex p is a predicate if there are distinct vertices a and b such that p—a and p—b.

A weighting W of CFG G assigns a non-negative value (integer or real) to every edge subject to
Kirchoff's flow law: for each vertex v, the sum of the weights of the incoming edges of v must
equal the sum of the weights of the outgoing edges of v. The weight of a vertex is the sum of the
weights of its incoming (outgoing) edges. The cost of a set of edges and/or vertices is the sum of
the weights of the edges and/or vertices in the set.

An execution of a procedure is represented by a directed path EX through its CFG that begins at
the root vertex (procedure entry) and ends at EXIT (procedure return). The frequency of a vertex
v or edge e in an execution EX is the number of times that v or e appears in EX. If a vertex or
edge does not appear in EX, its frequency is zero, except that for any execution, the frequency of
the edge EXIT—root is defined to be the number of times that EXIT appears in the execution.
The edge frequencies for any execution of a CFG constitute a weighting of the CFG.

Because the algorithms presented in the next two chapters depend on spanning trees, we
quickly review some of the terminology of this area. Although the CFG is a directed graph, the
spanning trees of the CFGs that we consider are undirected (edge direction does not matter). A

spanning tree of a directed graph G is a subgraph H=(V, T), where T C E, with a unique path



between each pair of vertices. The edges in T are called tree edges while the other edges (in
E-T) are called chords (of the spanning tree). The addition of a chord e to the spanning tree
creates exactly one simple cycle. This cycle is called the fundamental cycle of e and is denoted
by C(e). It is important to note that fundamental cycles are always defined with respect to some
spanning tree. A maximum spanning tree of a weighted graph is one such that the cost of the tree
edges is maximal. The maximum spanning tree for a graph can be computed efficiently (linear
time) by a variety of algorithms [68].

Figure 2.1 illustrates these definitions. The first graph is the CFG of the program. This graph
has been given a weighting. The second graph is a maximum spanning tree of the first graph.
Note that any vertex in a spanning tree can serve as a root and that the direction of the edges in
the tree is unimportant. For example, vertices C and EXIT are connected in the spanning tree by
the path C—P«EXIT. Edge Q—A in the CFG is a chord of the spanning tree shown in the

figure. The fundamental cycle associated with chord Q—A is Q—A—R—-C—P—Q (which

program

while P do
if Q then
A

else
B

fi
if R then break fi
C

od

end

Figure 2.1. A program, its CFG with a weighting, and a maximum spanning tree. The edge EXIT—P is
needed so that the flow equations for the root vertex (P) and EXIT are consistent. This edge does
not correspond to an actual flow of control and is not instrumented.
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Pipeless Cycle : Diamond Directed Cycle Other

Piped Cycles

Figure 2.2. Classification of cycles.

happens to be directed, in this case).

An underlying concept in the instrumentation problems we consider is that certain cycles in a
CFG must contain instrumentation code (i.e., the instrumentation code must break certain
cycles). We classify cycles based on the direction of their edges. Let u,v and w be three consecu-
tive vertices in a cycle. There is a fork at v if u<v—w, a join if u—v<w, and a pipe otherwise
(u—sv—w or ucvew). A cycle is pipeless if it contains no pipes (i.e, the direction of edges
strictly alternate around the cycle). A cycle is piped if it contains at least one pipe. Piped cycles
are further classified: a directed cycle contains only pipes (all edges are in the same direction); a
diamond is a cycle with more than two distinct edges that has exactly one fork and one join (there
are two changes of direction in the cycle); other cycles are all other piped cycles. Figure 2.2

gives examples of these cycles.
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Chapter 3

OPTIMALLY PROFILING AND
TRACING PROGRAMS

A well-known technique for recording program behavior and measuring program performance is
to insert code into a program and execute the modified program. This chapter discusses how to
insert monitoring code to either profile or trace programs. Program profiling counts the number
of times that each basic block or control-flow edge in a program executes. It is widely used to
measure instruction set utilization, identify program bottlenecks, and estimate program execution
times for code optimization [13, 19, 26,48, 50, 53, 64]. Instruction tracing records the sequence of
basic blocks traversed in a program execution. It is the basis for trace-driven architectural simu-
lation and analysis and is also used in trace-driven debugging [11,44, 66]. Both techniques have
been implemented in a wide variety of systems.

In this chapter, we describe algorithms for placing profiling and tracing code that greatly
reduce the cost of measuring programs, compared to previously implemented approaches. The
algorithms reduce measurement overhead in two ways: by inserting less instrumentation code and
by placing the code where it is less likely to be executed. The algorithms have been implemented
in a widely-distributed profiling/tracing tool called gpt [45], which instruments executable files,
and performs very well in practice.

The algorithms in this chapter produce an exact basic block profile or trace, contrasted with sta-
tistical tools such as the Unix™ prof command, which samples the program counter during pro-
gram execution. The algorithms consist of a pre-execution phase and a post-execution phase.
The first phase selects points in a program at which to insert profiling or tracing code. Instrumen-
tation code is inserted at these points, producing an instrumented version of the program. The
algorithms for inserting instrumentation for profiling and tracing are nearly identical. Both com-

pute a spanning tree of the program’s control-flow graph and place the instrumentation code on
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control-flow graph edges not in the spanning tree. In profiling, the instrumentation code incre-

ments a counter that records how many times an edge executes. In tracing, the instrumentation

code writes a unique token (witness) to a trace file. Placement of instrumentation code can be
optimized with respect to a weighting that orders the execution frequency of edges or vertices.

Weightings can be obtained either by empirical measurement (profiling) or by estimation. After

the instrumented program executes, the second phase uses the results collected during execution

and the program’s control-flow graph to derive a complete profile or trace.
The major contributions of this chapter are:

e  We enumerate the space of profiling problems based on what is profiled and where profiling
code is placed. A vertex profile counts the number of executions of each vertex (basic
block) in a control-flow graph. An edge profile counts the number of times each control-
flow edge executes. An edge profile determines a vertex profile, but the converse does not
always hold. Knuth has published efficient algorithms for finding the minimum number of
vertex counters necessary and sufficient for vertex profiling [41], denoted by Vprof (Vent),
and the minimum number of edge counters for edge profiling [40], denoted by
Eprof (Ecnt). We consider the new problem of finding a set of edge counters for vertex
profiling, Vprof (Ecnt), and characterize when a set of instrumented edges is necessary and
sufficient for vertex profiling.

e  We relate the optimal solutions to three profiling problems, Vprof (Vent), Eprof (Ecnt), and
Vprof (Ecnt), and compare their run-time overhead in practice. We show that for a given
CFG and weighting, an optimal solution to Vprof (Vent) or Eprof (Ecnt) is never better
than an optimal solution to Vprof (Ecnt). Unfortunately, finding an optimal solution to
Vprof (Ecnt) seems to be a hard problem in general. We believe the problem is NP-
complete but do not have a proof as of yet. However, we show that for a large class of
structured control-flow graphs, an optimal solution to Eprof (Ecnt) is an optimal solution to
Vprof (Ecnt). Furthermore, we show that Eprof (Ecnt) has lower overhead than

Vprof (Vent) in practice.
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e  We show that for both profiling and tracing, placing instrumentation code on edges is better
than placing it on vertices. Intuitively this is because there are more edges than vertices in
the control-flow graph. Instrumenting edges provides more opportunities to place instru-
mentation code in areas of low execution frequency.

e  We show that a simple heuristic for estimating execution frequencies (based on analysis of
the control-flow graph) can accurately predict areas of low execution frequency at which to
place instrumentation code.

e  We show that any solution to a profiling problem is sufficient to solve the tracing problem.
However, such a solution is not necessarily optimal. Ramamoorthy, Kim, and Chen have
given a necessary and sufficient condition for when a set of edges solves the tracing prob-
lem for single procedure programs [57]. However, this condition does not work for multi-
procedure programs. We reformulate this condition in a more intuitive manner and show
how it can be extended to apply to multi-procedure programs.

Our work shows that Knuth’s algorithm for Eprof (Ecnt) profiling is the algorithm of choice: It is

simple and efficient, finds optimal counter placements in most cases, and yields more information

than a vertex profile (by measuring edge frequency as well as vertex frequency). We show how
to extend this algorithm to handle early procedure termination caused by exceptions.

We emphasize that the algorithms presented here are based solely on control-flow information.
They are applicable to any control-flow graph. The graphs need not be reducible or have other
properties that would preclude the analysis of some programs. The algorithms do not make use
of other semantic information that could be derived from the program text (e.g., via constant pro-
pagation or induction variable analysis). However, such information could be used to further
improve instrumentation code.

The remainder of this chapter is organized as follows. Section 3.1 shows how to profile pro-
grams efficiently and Section 3.2 describes how to trace programs efficiently. Section 3.3
presents our heuristic weighting algorithm. Section 3.4 presents performance results. Section 3.5

reviews related work on profiling, tracing, and heuristics for minimizing instrumentation
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overhead and estimating execution frequency.

3.1. PROGRAM PROFILING

In order to determine how many times each basic block in a program executes, the program can
be instrumented with counting code. The simplest approach places a counter at every basic block
(pixie and other instrumentation tools use this method [67]). There are two drawbacks to such an
approach: (1) too many counters are used and (2) the total number of increments during an execu-
tion is larger than necessary.

The vertex profiling problem, denoted by Vprof (cnt), is to determine a placement of counters
cnt (a set of edges and/or vertices) in CFG G such that the frequency of each vertex in any execu-
tion of G can be deduced solely from the CFG G and the measured frequencies of edges and ver-
tices in cnt. Furthermore, to reduce the cost of profiling, the sét cnt should minimize cost for a
weighting W.

A similar problem is the edge profiling problem, denoted by Eprof (cnt): determine a place-
ment of counters cnz in CFG G such that the frequency of each edge in any execution of G can be
deduced solely from the CFG G and the measured frequencies of edges and vertices in cnt. A
solution to the edge frequency problem obviously yields a solution to the vertex frequency prob-
lem by summing the frequencies of incoming or outgoing edges of each vertex.

Given that we can place counters on vertices or edges, a counter placement can take one of
three forms: a set of edges (Ecnt); a set of vertices (Vcnt); a mixture of edges and vertices (Mcnt).
Combined with the two profiling problems, this yields six possibilities. We do not consider
Eprof (Vent), since there are CFGs for which there are no solutions to this problem [55]. That is,
it is not always possible to determine edge frequencies from vertex frequencies. Mixed place-

ments are of interest because placing counters on vertices rather than edges eliminates the need to
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insert unconditional jumps.! On the other hand, a vertex is executed more frequently than any of
its outgoing edges, implying that it might be worthwhile to instrument some outgoing edges
rather than the vertex. The usefulness of mixed placements depends on the cost of an uncondi-
tional jump relative to the cost of incrementing a counter in memory. On RISC machines (for
which we constructed a profiling tool) the code sequence for incrementing a counter or generating
a tracing token ranges from 5 to 11 instructions (cycles). The cost of an unconditional branch is
quite small in comparison (usually 1 cycle, as the delay slot of an unconditional branch can
almost always be filled with a useful instruction). In this case, there is questionable benefit from
mixed placements. In fact, Samples has shown that mixed placements provide little benefit over
edge placements on a machine in which the increment and branch costs were comparable, and
were worse in some cases [63]. Furthermore, as shown in Section 3.4.1, for all the benchmarks
we examined, less than half of the instrumented edges (which is about one quarter of the total
number of control-flow edges) required unconditional jumps when profiling with edge counters.
For these reasons, we do not consider mixed counter placements.
We focus on the remaining three profiling problems: Vprof (Vent), Eprof (Ecnt), and
Vprof (Ecnt). This section presents four results:
(1) A comparison of the optimal solutions to Vprof (Vent), Eprof (Ecnt), and Vprof (Ecnt).
Figure 3.1(a) summarizes the relationship between these three problems for general CFGs.
X < Y means that for any given CFG and weighting, an optimal solution to problem X has
cost less than or equal to the cost of an optimal solution to problem Y. In general, for any
weighted CFG, an optimal solution to Vprof (Ecnt) is always at least as cheap as

Eprof (Ecnt) or Vprof (Vcnt).

IPlacing instrumentation code along edges of the CFG essentially creates new basic blocks, which may re-
quire the insertion of unconditional jumps (assuming that the linearization of the original basic blocks is the
same in the instrumented program as in the original program). On the other hand, placing instrumentation
code in vertices simply expands the extent of the original basic blocks, and does not require insertion of
jumps. It is possible to rearrange the placement of basic blocks to minimize the number of unconditional
jumps needed, as discussed by Ramanath and Solomon [58]. However, our algorithms do not perform such
an optimization, as they respect the original linearization.
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(2) = A characterization of when a set of edges Ecnt is necessary and sufficient for Eprof (Ecnt),
and an algorithm to solve Eprof (Ecnt) optimally. We also describe the problem introduced
by early procedure termination and a simple solution.

(3) A characterization of when a set of edges Ecnt is necessary and sufficient for Vprof (Ecnt).
However, it appears difficult to efficiently find a minimal size or cost set of such edges. We
show that an optimal solution to Eprof (Ecnt) is also an optimal solution to Vprof (Ecnt)
for a large class of structured CFGs and present a heuristic for solving Vprof (Ecnt) using
the Eprof (Ecnt) algorithm as a subcomponent.

(4) A discussion of the time complexity of the profiling and tracing problems, based on their

characterization as cycle breaking problems.

3.1.1. Comparing the Three Profiling Problems
This section examines the relationships between the optimal solutions to Vprof (Vent),
Eprof (Ecnt), and Vprof (Ecnt) for general CFGs, as summarized in Figure 3.1(a).

The three CFGs in Figure 3.2 illustrate optimal solutions to Vprof (Vent), Eprof (Ecnt), and
Vprof (Ecnt) (for the weighting given in the first CFG). The black dots represent counters. The

costs of the three counter placements are 124, 62 and 59, respectively. In each case, every

@  Eprof(Ecnt) VprofiVcent)
N\ v

Vprof(Ecnt)

®  Eprof(Ecnt) = Vprof(Ecnt) = Vprof( Vent)

Figure 3.1. (a) The relationship between the costs of the optimal solutions of the three frequency problems
for general CFGs. (b) The relationship when the CEGs are constructed from while loops, if-then-else con-
ditionals, and begin-end blocks.
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53 + 43 + 22 + 2*3 cost
124

22 4+ 21 + 10 + 3*3 cost
62

22 + 21 + 10 + 2*3
59

cost

B
[ ]

#on

VprofiVent) Eprof{Ecnt) VprofiEcnt)

(@) (b) (©

Figure 3.2. Optimal solutions for (a) vertex profiling with vertex counters, (b) edge profiling with edge
counters and (c) vertex profiling with edge counters.

counter is necessary to uniquely determine a profile and no lower cost placements will suffice.
For example, if the counter on vertex b in case (a) were eliminated, it would be impossible to
determine how many times b or e executed. In case (a), the counts for vertices a, e, f, and EXIT
are not directly measured, but can be deduced from the measured vertices as follows: e = b;
a = f = EXIT = g+h. In case (b), the count for each unmeasured edge is uniquely determined by
the counts for the measured edges by Kirchoff’s flow law (e.g., a—f = f—g + foh —e—f). In
case (c), the count for each unmeasured edge except those in the set { a—b, e—b,e—f,a—>f}is
uniquely determined by the measured edges. This yields enough information to deduce the count

for each vertex.
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For any CFG and weighting, an optimal solution to Vprof (Vent) never has lower cost than an
optimal solution to Vprof (Ecnt) (for every vertex v in Vent, v's counter can be “pushed” off v
onto each outgoing edge of v, resulting in counter placement Ecnt, which clearly solves the vertex
profiling problem with cost equal to Venr). Figure 3.2 shows an example where Vprof (Ecnt) has
lower cost than Vprof (Vent). The counter placement in case (c) solves Vprof (Ecnt) and has
lower cost than the counter placement in case (a) that solves Vprof (Vent).

Since any solution to Eprof (Ecnt) must also solve Vprof (Ecnt), an optimal solution to
Eprof (Ecnt) can never have lower cost than an optimal solution to Vprof (Ecnt), for a given
CFG and weighting. The counter placement in case () solves Vprof (Ecnt) and has lower cost
than the counter placement in case (b) that solves Eprof (Ecnt). In comparing Eprof (Ecnt) and
Vprof (Vent), there are examples in which one has lower cost than the other and vice versa.
Cases (b) and (a) of Figure 3.2 show an example where Eprof (Ecnt) has lower cost than
Vprof (Vent). Figure 3.2(c) can be easily modified to show an example where Vprof (Vent) has
lower cost than Eprof (Ecnt). Consider each black dot as a vertex in its own right and split the
dotted edge into two edges. The dots constitute the set Vent and solve Vprof (Vent) with cost 59.

The optimal solution to Eprof (Ecnt) for this graph still has cost 62.

3.1.2. Edge Profiling with Edge Counters
Eprof (Ecnt) can be solved by placing a counter on the outgoing edges of each predicate vertex.
However, this placement uses more counters than necessary. Knuth describes how it follows
from Kirchoff’s law that an edge-counter placement Ecnt solves Eprof (Ecnt) for CFG G = (V,E)
iff (E = Ecnt) contains no (undirected) cycle [40]. Since a spanning tree of a CFG represents a
maximum subset of edges without a cycle, it follows that Ecnt is a minimum size solution to
Eprof (Ecnt) iff (E — Ecnt) is a spanning tree of G. Thus, the minimum number of counters
necessary to solve Eprof (Ecnt) is|El - VI]-1).

To see how such a placement solves the edge frequency problem, consider a CFG G and a set
Ecnt such that E — Ecnt is a spanning tree of G. Let each edge e in Ecnt have an associated

counter that is initially set to 0 and is incremented once each time e executes. If vertex v is a leaf
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in the spanning tree (i.e., only one tree edge is incident to v), then all remaining edges incident to
v are in Ecnt. Since the edge frequencies for an execution satisfy Kirchoff’s law, the unmeasured
edge’s frequency is uniquely determined by the flow equation for v and the known frequencies of
the other incoming and outgoing edges of v. The remaining edges with unknown frequency still
form a tree, so this process can be repeated until the frequencies of all edges in E — Ecnt are
uniquely determined. If E — Ecnt contains no cycles but is not a spanning tree, then E ~ Ecnt is a
forest of trees. The above approach can be applied to each tree separately to determine the fre-
quencies for the edges in E — Ecnt.

Any of the well-known maximum spanning tree algorithms described by Tarjan [68] will
efficiently find a maximum spanning tree of CFG G with respect to weighting W. The edges that
are not in the spanning tree solve Eprof (Ecnt) and minimize the cost of Ecnt. As a result,
counters are placed in areas of lower execution frequency in the CFG. To ensure that a counter is
never placed on EXIT—root, the maximum spanning tree algorithm can be seeded with the edge
EXIT—sroot. In fact, for any CFG and weighting, there is always a maximum spanning tree that
includes the edge EXIT—root. The derived count for the edge EXIT—root represents the
number of times the procedure associated with CFG G executed.

Figure 3.3(a) illustrates how the frequencies of edges in E — Ecnt can be derived from the fre-
quencies of edges in Ecnt. Black dots identify edges in Ecnt. The other edges are in E — Ecnt and
form a spanning tree of the CFG. The edge frequencies are those for the execution shown. How-
ever, we emphasize that the only edges for which frequencies will be recorded are the edges with
black dots. Let vertex P be the root of the spanning tree. Vertex O is a leaf in the spanning tree
and has flow equation (P —Q = Q »A + Q —B). Since the frequencies for P—Q and Q —A are
known, we can substitute them into this equation and derive the frequency for Q —B. Once the
frequency for Q — B is known, the frequency for B —R can be derived from the flow equation for
B, and so on. For the weighting W given in Figure 2.1, the solution in Figure 3.3(a) has cost
16.75. However, Figure 3.3(b) shows a solution based on the maximum spanning tree with resul-

tant cost of 11.5.
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Execution: PQARC PQBRC PQBR EXIT

Ii B 2 B
I

(a) EXIT )] EXIT

Figure 3.3. Solving Eprof (Ecnt) using the spanning tree. For the weighting given in Figure 2.1, the
counter placement in case (a) is not optimal (minimal) but the counter placement in case (b) is
optimal.

The propagation algorithm in Figure 3.4 performs a post-order traversal of the spanning tree
E — Ecnt to propagate the frequencies of edges in Ecnt to the unprofiled edges in the spanning
tree. The procedure DFS calculates the frequency of a spanning tree edge. Since the calculation
is carried out post-order, once the last line in DFS(G, Ecnt, v, €) is reached, the counts of all
edges incident to vertex v except e have been calculated. The flow equation for v states that the
sum of v’s incoming edges is equal to the sum of v’s outgoing edges. One of these sums includes
the count from edge e, which has been initially set to 0. The count for e is found by subtracting
the minimum of the two sums from the maximum.

Although profiling has been described in terms of a single CFG, the algorithm requires few
changes to deal with multi-procedure programs. The pre-execution spanning tree algorithm and
post-execution propagation of edge frequencies can be applied to each procedure’s CFG
separately. This simple extension for multi-procedure profiling will determine the correct fre-

quencies whenever interprocedural control-flow occurs only via procedure call and return and
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global
G: control-flow graph
E: edgesof G
cnt: array[edge] of integer;  /* for each edge e in Ecnt, cnt[e] = frequency of e in execution */

procedure propagate_counts(Ecnt: set of edges)
begin
for each ¢ € E — Ecnt do cnt[e] :=0od
DFES(Ecnt, root-vertex(G), NULL)
end

procedure DFS(Ecnt: set of edges; v: vertex; e: edge)
let IN(v) ={e’|le’eEandv=1gt(e’)} and OUT(v)={ e’'|le’e Eandv=src(e”)} in
in_sum =0;
foreache’ € IN(v)do
if(e’#e)and e’ e E — Ecnt then DFS(Ecnt, src (e Y e)fi
in_sum = in_sum + cnt{e ']
od
out_sum :=0;
foreache’ € OUT(v)do
if (e’ #e)and e’ € E — Ecnt then DFS(Ecnt, 1gt(e”’), i
out_sum := out_sum + cntfe ']
od
if e # NULL then cnt[e] := max(in_sum, out_sum) — min(in_sum, out_sum) fi
ni

Figure 3.4. Edge propagation algorithm determines the frequencies of edges in the spanning tree E-Ecnt
given the frequencies of edges in Ecnt. The algorithm uses a post-order traversal of the spanning tree.

each call eventually has a corresponding return.? Statically-determinable interprocedural jumps
(other than procedure call and return) can be handled by adding edges corresponding to the inter-
procedural jumps and instrumenting these edges. Determining whether or not such an interpro-
cedural edge needs to be instrumented would require interprocedural analysis that we did not per-
form.

A problem arises with dynamically computed interprocedural jumps such as

setjmp/longjmp in the C language [38], or early program termination, as may be caused by a

2For the purposes of determining the frequencies of intraprocedural control-flow edges, it does not matter
whether procedures and functions are first class objects. For programs with a fixed call graph structure, the
intraprocedural frequency information is sufficient to determine the frequency of edges in the call graph.
For programs with procedure or function parameters, a tool must record the callee at call sites at which the
callee is determined at run-time.
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system call or an error condition. In these cases, one or more procedures terminate before reach-
ing the EXIT vertex, breaking Kirchoff’s law. For example, suppose that the CFG in Figure
3.5(a) executes the path shown at the top of the figure. Furthermore, suppose that the execution
terminates early at vertex A because of a divide by zero error. As a result, control enters vertex A
once via the edge Q->A once but never exits via A—R. However, because the propagation algo-
rithm (see Figure 3.4) assumes that Kirchoff’s law holds at each vertex, edge A—R will receive a
count of 1, as shown in Figure 3.5(2). In this example, the count is off by one. However, in gen-
eral, if multiple procedures on the activation stack are exited early and early exiting is a common
occurrence, the counts may diverge greatly.

In this case, information available on the activation stack is sufficient to correct the count error.
Conceptually, for each procedure X on the activation stack that exits early an edge v—EXIT with
a count of 1 is added to procedure X’s CFG, where v is the vertex from which procedure X called

the next procedure. This edge models early termination of procedure X at vertex v. In practice,

Execution: P QBRC P QA (divide by 0)

(b)

Figure 3.5. (a) Early termination at vertex A yields incorrect counts, (b) which are corrected by the addi-
tion of edge A—EXIT.
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the edge v—EXIT is represented by an “exit” counter that is associated with the vertex v. This
counter is incremented once for each time procedure X exits early when at vertex v. For early ter-
mination caused by a conditional exception (such as divide by zero) the increment code must be
placed in the exception handler rather than at vertex v, since the code should only be invoked
only when v raises the exception. For early termination caused by longjump, the increment
code must also be in the handler since longjump may pop many activation frames off the
stack, each of which requires incrementing the associated exit counter.

Figure 3.5(b) illustrates how the early exit problem is solved. Because the procedure ter-
minates early at vertex A, the edge A—EXIT is added to the CFG and given a count of 1. This
additional edge correctly siphons off the incoming flow to vertex A so that the propagation algo-

rithm yields correct counts. As shown in case(b), edge A—R correctly receives a count of 0.

3.1.3. Vertex Profiling with Edge Counters

This section addresses the problem of vertex profiling with edge counters. Section 3.1.3.1 charac-
terizes when a set of edges Ecnt solves Vprof (Ecnt) and gives an algorithm for propagating edge
frequencies through the CFG in order to determine vertex frequencies. As discussed later in Sec-
tion 3.1.4, it appears difficult to solve Vprof (Ecnt) efficiently while minimizing the size or cost
of Ecnt. However, as discussed in Section 3.1.3.2, there are certain classes of CFGs for which an
optimal solution to Eprof (Ecnt) is also an optimal solution to Vprof (Ecnt). For this class of
CFGs, the counter placements induced by the maximum spanning tree are optimal. Finally, Sec-
tion 3.1.3.3 presents a heuristic for finding an Ecnt placement to solve Vprof (Ecnt) that improves

on the spanning tree approach in certain situations.

3.1.3.1. Characterization and algorithm

Edge profiling with edge counters requires that every (undirected) cycle in the CFG contain a
counter. Since an edge profile determines a vertex profile, vertex profiling requires no more edge
counters than does edge profiling. However, as illustrated by the example in Figure 3.2(c), there

are cases in which fewer edge counters are needed for vertex profiling than for edge profiling. In
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this example, there is a cycle of counter-free edges, yet there is enough information recorded to
determine the frequency of every vertex. This section formalizes this observation. That is, cer-
tain types of counter-free cycles are allowed when using edge counters for vertex profiling, as
captured by the following theorem:

THEOREM. A set of edges Ecnt solves Vprof (Ecnt) for CFG G = (V,E) iff each simple cycle in
E — Ecnt is pipeless (i.e., edges in any simple cycle in E — Ecnt alternate directions).

Pipeless cycles are allowed in E — Ecnt as well as non-simple piped cycles, as long as the sim-
ple cycles that compose it are pipeless. In Figure 3.2(c), the counter-free cycle comprised by the
set of edges { a—b, e—b, e—f, a—f } is pipeless. In Figure 3.7(a), the counter-free edges con-
tain a piped cycle; however, the cycle is not simple. Both simple counter-free cycles in this
example are pipeless.

Let freq be the function mapping edges in a CFG to their frequency in an execution. We give
an algorithm that (given the frequencies of edges in Ecnt in the execution and the assumption that
E — Ecnt contains no simple piped cycle) will find a function freq’ from edges to frequencies that
is vertex-frequency equivalent to freq. That is, for any vertex v the sum of the frequencies of v's
incoming (outgoing) edges under freq’ is the same as under freq. We first explain the algorithm
and show how it operates on an example. We then prove the correctness of the algorithm, show-
ing that if E — Ecnt contains no simple piped cycle then Ecnt solves Vprof (Ecnt). Finally, we
show that if E — Ecnt contains a simple piped cycle then it is not possible for Ecnt to solve
Vprof (Ecnt).

Figure 3.6 presents the propagation algorithm. The frequencies for edges in Ecnt have been
determined by an execution EX. The algorithm operates as follows: while there is a (simple)
cycle C in the set of edges E—(Ecnt U Break), an edge e from cycle C is added to the set Break
and the frequency of edge e is initialized to zero. Once E—(Ecnt L Break) is acyclic, it follows
that the frequencies of edges in Ecnt U Break uniquely determine the frequencies of the other
edges (by the spanning tree propagation algorithm, as given in Figure 3.4). As we will show, the

vertex frequencies determined by these edge frequencies are the true vertex frequencies in the



/* Assumption: E — Ecnt contains no simple piped cycle */
/* for each edge e in Ecnt, cntfe] = frequency of e in execution */

Break = &
while there is a simple cycle C in E—(Ecnt v Break) do
let e be an edge in C in
Break = Break v { e };
cntfe] :=0;
ni
od

propagate_counts(Ecnt U Break) /* from Figure 3.4 */

Figure 3.6. Algorithm for propagating edge counts to determine vertex counts.

execution EX.

Figure 3.7 presents an example of how this algorithm works. The CFG in Figure 3.7(a) con-
tains two simple cycles in E—Ecnt. As usual, edges in Ecnt are marked with black dots. Each of
the counter-free simple cycles is clearly pipeless. These two simple cycles combine into a non-
simple cycle containing a pipe, which is allowed under the structural characterization of
Vprof (Ecnt). The edges in the CFG are numbered with their frequencies from some execution.
The frequencies of the checked edges can be derived easily from the frequencies of the edges in
Ecnt. From these frequencies, the count of every vertex except the grey vertex can clearly be
determined. How do we derive counts for the edges in the two simple pipeless cycles in order to
determine the frequency of the grey vertex? Suppose the algorithm chooses to break the two sim-
ple cycles in E—Ecnt by putting the dashed edges (see Figure 3.7(b)) into the set Break, giving
both frequency 0, as shown in case (b). Spanning tree propagation of edge frequencies in the set
Ecnt U Break to edges in E—(Ecnt U Break) will assign unique frequencies to the other edges in
the simple pipeless cycles, as shown in case (b). The sum of the frequencies of the incoming
(outgoing) edges to the grey vertex is 2, which is the correct frequency (even though the frequen-

cies of edges in the pipeless cycle are not the same as in the execution).
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(b)

Figure 3.7. (a) An example CFG in which E-Ecnt contains two simple pipeless cycles. (b) If the dashed
edges are assigned frequency 0, spanning tree propagation will assign the remaining edges in the simple
pipeless cycles the frequencies shown. This yields a count of two for the grey vertex, which is its correct
frequency.

We now prove the correctness of the algorithm. Let freq be the function mapping edges ina
CFG to their frequency in an execution, and let freq ’ be the function from edges to frequencies
created by the algorithm of Figure 3.6. We show that freq’ is vertex-frequency equivalent to
freq by induction on the size of Break (as determined by the algorithm).

Base case: |Break| =0. In this case, E-Ecnt contains no cycles. Therefore, Ecnt solves
Eprof (Ecnt), so freq’ = freq. It follows directly that freq” is vertex-frequency equivalent to
freq.

Induction Hypothesis: If |Break | < n then freq’ is vertex-frequency equivalent to freq.

Induction Step: Suppose that | Break | =n+1. Consider taking an edge e from Break and putting
it in Ecnt, resulting in sets Break, and Ecnt,. By the Induction Hypothesis, the function freqy,
(defined by Break, and Ecnt,) is vertex-frequency equivalent to freq. We show that function
freq’ is vertex-frequency equivalent to fregy, completing the proof. Let T = E—(Ecnt v Break).

The addition of edge e to T creates a simple pipeless cycle Cin T. We define a function g, based
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on function freq,, edge e, and cycle C, as shown below. We show that function g has three pro-
perties:
(1) Function g is vertex-frequency equivalent to freqp;
(2) Function g satisfies Kirchoff’s flow law at every vertex;
(3) For each edge fe Ecnt uBreak, g(f) = freq '(f).
Points (2) and (3) imply that g and freq’ are identical functions (because the values of edges in
Ecnt U Break uniquely determine the values of all other edges by Kirchoff’s flow law). There-
fore, point (1) implies that freq’ is vertex-frequency equivalent to fregn,. The function g is
defined as follows:

| freqn(f) if edge fis not in cycle C

g(f) =13 freqn(f)— freqn(e) if edge fis in cycle C, in the same direction as edge e
freqn(f) + freq,(e) otherwise

We first show that Kirchoff’s flow law holds at every vertex under g and that g is vertex-
frequency equivalent to freg,. This is obvious for vertices that are not in C (since the frequency
of any edge incident to such a vertex is the same under g and freq,). Because every vertex v inC
either appears in a fork or join in the cycle, one of the edges incident to v will have freq,(e) sub-
tracted from its frequency and the other will have freq,(e) added to its frequency, thus preserving
the flow law and vertex frequency at v.

We now prove point (3). It is clear that g(e)=0= freq'(e). We must show that for each edge
fe Ecnt L Break,, g(f) = freq '(f). By definition, for each edge f & C, g(f) = freg,(f). Cycle
C contains no edges from EcntuBreak,. Since freq'(f)= freq,(f) for all edges in
Ecnt U Break,,, it follows that for each such edge f, g (f) = freq "(f).
|

If E—Ecnt contains a simple piped cycle, then there are two executions of G with different fre-
quencies for some vertex but for which the frequencies of edges in Ecnt are the same. This is

clear if E—Ecnt contains a directed cycle, or two edge-disjoint directed paths between a pair of
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vertices (i.e., a diamond). Figure 3.8 gives an example of a CFG in which E—Ecnt contains a
piped cycle (the pipe is at vertex B) that is neither a directed cycle nor a diamond and shows two
different execution paths. Both execution paths traverse each instrumented edge (x,y,z) exactly
once. However, EX | contains vertex B while EX does not.

Another way to look at this is that the edge frequencies in a cycle in E—Ecnt are unconstrained.
Let freq be a function mapping edges to values that satisfies Kirchoff’s flow law at every vertex.
Applying the function transformation defined earlier to freq based on a piped cycle in E-Ecnt
results in function freq ’ such that Kirchoff’s flow law holds at every vertex. While the frequency
of each vertex in a fork or join in the cycle remains the same (as shown above), the frequency of

the vertex in the pipe will have changed.

1 EXIT, P, R, A, EXIT
y Z
EX,
P, Q, A, EXIT, P, R, EXIT
X Z y

Figure 3.8. An example of instrumentation that is not sufficient for vertex profiling. The dashed edges in
the CFG constitute a simple cycle of uninstrumented edges with a pipe (at vertex B). Executions EX and
EX, traverse each instrumented edge the same number of times but EX contains B and EX, does
not.



3.1.3.2. Cases for which Eprof (Ecnt) = Vprof (Ecnt)

This section examines a class of CEGs for which Vprof (Ecnt) can be solved optimally, namely
those for which an optimal solution to Eprof (Ecnt) is also an optimal solution to Vprof (Ecnt).
Let G represent all CFGs in which every cycle contains a pipe. For any CFG G in G" with
weighting W, the following statements are equivalent:

(1)  Ecnt is a minimal cost set of edges such that E — Ecnt contains no simple piped cycle;

(2) E — Ecnt is a maximum spanning tree of G.

It follows directly from these two observations that for any CFG in G, an optimal solution to
Eprof (Ecnt) is also an optimal solution to Vprof (Ecnt). The class of graphs G* contains CFGs
with multiple exit loops (such as in Figure 2.1), CFGs that can only be generated using gotos, and
even some irreducible graphs. The class G * contains those structured CFGS generated by while
loops, if-then-else conditionals, and begin-end blocks (because every simple cycle in these CFGs
is either a directed cycle or a diamond). However, in general, CFGs of programs with repeat-
until loops or breaks are not always members of G*. The CFG in Figure 3.2 is an example of

such a graph.

3.1.3.3. Heuristic for Vprof (Ecnt)

Because we believg Vprof (Ecnt) is a hard problem to solve optimally, we developed a heuristic
for Vprof (Ecnt). Our heuristic first computes a maximum spanning tree ST and then checks if
any counters can be removed (from the set of chord edges associated with ST) without creating
simple piped cycles in the set of counter-free edges. An algorithm for the heuristic is given in
Figure 3.9.

The heuristic examines each fundamental cycle C (¢) associated with counter edge (chord) ¢ in
turn. To prevent two pipeless cycles from combining into a simple piped cycle, we mark all ver-
tices in the cycle C(e) when a counter is removed from e; we remove a counter from an edge e
only if C(e) is pipeless and contains no marked vertices. The heuristic is described in detail in
Figure 3.9. Upon termination, the set “Remove” contains all edges whose counters can be

removed safely. By considering edges in decreasing order of weight, the algorithm tries to
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Remove :=J
unmark all vertices in G
find a maximum spanning tree ST of G
for each edge e & ST (in decreasing order in weight) do
if (C (e) is pipeless) and (no vertex in C (e) is marked) then
mark each vertex in C(e)
Remove := Remove U { e}
fi
od

Figure 3.9. A heuristic for Vprof (Ecnt).

remove counters with high cost first.

Consider the application of the heuristic to the CFG in Figure 3.2. Case (b) shows the counter
placement resulting from the maximum spanning tree algorithm. Removing the counter on edge
e—>f creates a pipeless cycle in the set of counter-free edges. Removing the counter from any
other edge creates a piped cycle in the set of counter-free edges. In this example, the heuristic
produces the optimal counter placement in case (c). However, there are examples for which this

heuristic will not find an optimal solution to Vprof (Ecnt).

3.1.4. Cycle Breaking Problems
The problems of profiling and tracing programs with edge instrumentation can be described as
cycle breaking problems, where certain types of cycles in the CFG must contain instrumentation
code in order to solve a profiling or tracing problem. Figure 3.10 summarizes the classification of
cycles presented in Chapter 2, the problems they correspond to, and the known time complexity
for (optimally) breaking each class of cycle. Solving Eprof (Ecnt) corresponds to breaking all
undirected cycles. Solving Vprof (Ecnt) corresponds to breaking all simple piped cycles, as we
have shown in Section 3.1.3. Finally, as discussed in Section 3.2, solving the tracing problem
corresponds to breaking all directed cycles and diamonds.

Of course, we are interested in a minimum cost set of edges that breaks a certain class of

cycles. Finding a minimum size set of edges that breaks all directed cycles is an NP-complete
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Eprof(Ecnt)
Undirected Cycles
/ P
Vprof{Ecnt) \
Piped Cycles ) Pipeless Cycles
?: ??

Trace( Ewit)

Other

NP

Figure 3.10. Hierarchy of cycles, the profiling or tracing problems they correspond to, and time complexi-
ty for breaking all cycles of a given type (P = polynomial; NP = NP-complete; ?? = unknown).

problem (Feedback Arc Set [23]). Maheshwari showed that finding a minimum size set of edges
that breaks diamonds is also NP-complete (Uniconnected Subgraph [23,47]). Minimizing with
respect to a weighting (that satisfies Kirchoff’s flow law) does not make either of these problems
easier. Furthermore, it is easy to show that optimally breaking both directed cycles and diamonds
is no easier than either problem in isolation. Solving the tracing problem so that the cost of the
instrumented edges is minimized is an NP-complete problem, as shown in an unpublished result
by S. Pottle [54]. The reduction is similar to that used by Maheshwari but is complicated by the
requirement that a weighting satisfies Kirchoff’s flow law.

We believe that optimally solving Vprof (Ecnt) (minimizing the size or cost of Ecnt) is an NP-
complete problem, but do not have a proof as of yet. We have shown that a related problem,
finding a minimum size set of edges that breaks all pipes, is NP-complete. Breaking all pipes
guarantees that all piped cycles will be broken, but not necessarily optimally (as it is possible to

break all piped cycles and still have a pipe).
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3.2. PROGRAM TRACING

Just as a program can be instrumented to record basic block execution frequency, it also can be
instrumented to record the sequence of executed basic blocks. The tracing problem is to record
enough information about a program’s execution to reproduce the entire execution. A straightfor-
ward way to solve this problem is to instrument each basic block so whenever it executes, it
writes a unique token (called a wimess) to a trace file. In this case, the trace file need only be
read to regenerate the execution. A more efficient method is to write a witness only at basic
blocks that are targets of predicates [44]. The following code regenerates the execution from a

predicate trace file and the program’s CFG G:

pc := root-vertex(G);

output(pc);

do
if not IsPredicate(pc) then pc := successor(G, pc)
else pc = read(trace) fi
output(pc);

until ( pc = EXIT)

Assuming a standard representation for witnesses (i.e., a byte, half-word, or word per witness),
the tracing problem can be solved with significantly less time and storage overhead than the
above solution by writing witnesses when edges are traversed (not when vertices are executed)
and carefully choosing the witnessed edges. Section 3.2.1 formalizes the tracing problem for
single-procedure programs. Section 3.2.2 considers complications introduced by multi-procedure

programs.

3.2.1. Single-Procedure Tracing

In this section, assume basic blocks do not contain calls and that the extra edge EXIT—root is not
included in the CEG. The set of instrumented edges in the CFG is denoted by Ewit. For tracing,
whenever an edge in Ewit is traversed, a “witness” to that edge’s execution is written to a trace
file. We assume that no two edges in Ewit generate the same witness, although this is stronger
than necessary as it may be possible to reuse witnesses in some cases. The statement of the trac-

ing problem relies on the following definitions:



32

DEFINITION. A path in CFG G is witness-free with respect to a set of edges Ewit iff no edge in

the path is in Ewit.

DEFINITION. Given a CFG G, a set of edges Ewit, and edge p—q where p is a predicate, the wiz-

ness set (to vertex g) for predicate p is:

witness (G, Ewit, p, q) =
{w]| p—q € Ewit (and writes witness w) }
u { w]| x—y € Ewit (and writes witness w) and 3 witness-free path p—>g— * -+ —=x }

v { EOF| 3 witness-free path p—q— - - - —EXIT }

Figure 3.11 illustrates these definitions. We use wimness(p, ) as an abbreviation for
witness (G, Ewit, p, q).
Let us examine how the execution in Figure 3.11 can be regenerated from its trace. Re-

execution starts at predicate P, the root vertex. To determine the successor of P, we read witness

Execution: PAA CPB AA CPBCEXT

A A
Trace: t u v EOF
A
v witness(P, A) = {t} witness(B,A) = {u}
c witness(P,B) = {u, v} witness(B,C) = { v}
Y witness(C, P) = { t,u, v}
lEXITI

witness(C, EXIT) = { EOF }

Figure 3.11. Example of a traced function. Vertices P, B, and C are predicates. The witnesses are shown
by labeled dots on edges. For the execution shown, the trace generated is (t, u, v, EOF). The witness EOF
is always the last witness in a trace. The execution can be reconstructed from the trace using the witness
sets to guide which branches to take.
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t from the trace, which is a member of witness (P,A) but not of witness (P,B). Therefore, A is the
next vertex in the execution. Vertex C follows A in the execution as it is the sole successor of A.
Since the edge that produced witness t (P —A) has been traversed already, we read the next wit-
ness. Witness u is a member of witness (C,P) but not witness (C,EXIT), so vertex P follows C.
At vertex P, witness u is still valid (since the edge B —A has not been traversed yet) and deter-
mines B as P’s successor. Continuing in this manner, the original execution can be reconstructed.

If a witness w is a member of both witness (G, Ewit, p, a) and witness (G, Ewit, p, b), where
a #b, then two different executions of G generate the same trace, which makes regeneration
based solely on control-flow and trace information impossible. For example, in Figure 3.11, if
the edge P—A did not generate a witness, then witness (P,A) = { u, v, EOF } and witness (P,B) =
{ u, v }. The executions (P, 4, C, P, B, C, EXIT) and (P, B, C, EXIT) both generate the trace

(v, EOF). This motivates our definition of the tracing problem:

DEFINITION. A set of edges, Ewit, solves the tracing problem for CFG G, denoted by
Trace (Ewit), iff for each predicate p in G with successors g, ..., gm. for all pairs (g;, ¢;) such

that i # j, witness (G, Ewit, p, q;) 0 witness (G, Ewit, p, gj) = <.

It is straightforward to show that Ewit solves Trace (Ewit) for CFG G iff E—Ewit contains no
diamonds or directed cycles. Optimally breaking diamonds and directed cycles is an NP-
complete problem,' as discussed in Section 3.1.4. Note that any solution to Eprof (Ecnt) or
Vprof (Ecnt) is also a solution to Trace (Ewit), as breaking all undirected cycles or all simple
piped cycles is guaranteed to break all directed cycles and diamonds. Edges not in the maximum
spanning tree of the CFG comprise Ewit and solve Trace (Ewit) (but not necessarily optimally).
However, for any CFG G in G, an optimal solution to Eprof (Ecnt) is also an optimal solution
to Trace (Ewit) (because all directed cycles and diamonds are piped cycles and every cycle in a
CFG from G " is piped).

Given a CFG G, a set of edges Ewit that solves Trace (Ewit), and the trace produced by an exe-

cution EX, the algorithm in Figure 3.12 regenerates the execution EX.
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procedure regenerate(G: CFG; Ewit: set of witnessed edges; trace: file of witnesses )
declare

pc, newpc : vertices;

wit : witness;

begin
pc = root-vertex(G); wit := read(trace);
output(pc);
do

if not IsPredicate(pc) then
newpc = successor(G, pc);

else
newpc = q such that wit € witness (G, Ewit, pc, q)
fi
if pc—newpc € Ewit then wit := read(trace) fi
DC = Rewpc;
output(pc);

until ( pc = EXIT)
end

Figure 3.12. Algorithm for regenerating an execution from a trace.

3.2.2. Multi-Procedure Tracing

Unfortunately, tracing does not extend as easily to multiple procedures as profiling. There are
several complications that we illustrate with the CFG in Figure 3.11. Suppose that basic block B
contains a call to procedure X and execution proceeds from P to B, where procedure X is called.
After X returns, suppose that C executes. This call creates problems for the regeneration process
since the witnesses generated by procedure X and the procedures it invokes, possibly an enor-
mous number of them, precede witness v in the trace file.

In order to determine which branch of predicate P to take, the witnesses generated by pro-
cedure X could be buffered or witness set information could be propagated across calls and
returns (i.e., along call graph edges as well as control-flow edges). The first solution is impracti-
cal since the number of witnesses that may have to be buffered is unbounded. The second solu-
tion is made expensive by the need to propagate information interprocedurally, and is compli-
cated by multiple calls to the same procedure, calls to unknown procedures, and recursive calls.

Furthermore, if witness numbers are reused in different procedures, which greatly reduces the
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amount of storage needed for a witness, then the second approach becomes even more compli-
cated. (If a separate trace file were maintained for each procedure then all these problems would
disappear and extending tracing to multiple procedures would be quite straightforward. How-
ever, this solution is not practical for anything but toy programs for obvious reasons.)

Our solution places “blocking” witnesses on some edges of the paths from a predicate to a call
site, and from a predicate to the EXIT vertex. This ensures that whenever the regeneration pro-

cedure is in CFG G and reads a witness to determine which branch of a predicate to take, the wit-

ness will have been generated by an edge in G3

DEFINITION. The set Ewit has the blocking property for CFG G iff there is no predicate p in G
such that there is a witness-free directed path from p to the EXIT vertex or a vertex containing a

call.

DEFINITION. The set { Ewit1, ..., Ewity, } solves the tracing problem for a set of CFGs {G1,

G, } iff, for all i, Ewit; solves Trace(Ewit;) for G; and Ewit; has the blocking property for G;.

The regeneration algorithm in Figure 3.12 need only be modified to maintain a stack of
currently active procedures. When the algorithm encounters a call vertex, it pushes the current
CFG name and pc value onto the stack and starts executing the callee. When the algorithm
encounters an EXIT vertex, it pops the stack and resumes executing the caller.

An easy way to ensure that Ewit has the blocking property is to include each incoming edge to
a call or EXIT vertex in Ewit. Figure 3.13 illustrates why this approach is suboptimal. The
shaded vertices (B, I, and H) are call vertices. In the first subgraph, a blocking witness is placed
on each incoming edge to a call vertex (black dots). In addition, a witness is needed on edge

B—sD (white dot). This placement is suboptimal because the witness on edge H—I is not

3In some tracing applications, data other than witnesses (such as addresses) are also written to the trace file.
Vertices in the CFG that generate addresses can be blocked with witnesses so that no address is ever mis-
takenly read as a witness. It would also be feasible in this situation to break the trace file into two files, one
for the witnesses and the other for the addresses, to avoid placing more blocking witnesses.
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needed, and because the witnesses on edges B—D and G—/I (with cost = 3) can be replaced by
witnesses on edges B—D and B—E (with cost =2). In the second subgraph, blocking witnesses
are placed as far from call vertices as possible, resulting in an optimal placement.

Consider a call vertex v and any directed path from a predicate p to v such that no vertex
between p and v in the path is a predicate. For any weighting of G, placing a blocking witness on
the outgoing edge of predicate p in each such path has cost equal to placing a blocking witness on
each incoming edge to v (since no vertex between p and v is a predicate). However, placing
blocking witnesses as far away as possible from v ensures that no blocking witnesses are redun-
dant. Furthermore, placing the blocking witnesses in this fashion increases the likelihood that
they solve Trace (Ewit).

In general, it is not always the case that a blocking witness placement will solve Trace (Ewit).
Therefore, computing Ewit becomes a two step process: (1) place ‘the blocking witnesses; (2)

ensure that Trace (Ewit) is solved by adding edges to Ewit. The details of the algorithm follow:

blockersB) = {A->B}
blockers(l) = {B->D, B—>E,
C->F, C->H}
blockersH) = {C->F, C-—>H}
cost=06

Figure 3.13. Two placements of blocking witnesses: a suboptimal placement and an optimal placement.
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DEFINITION. Let v be a vertex in CFG G. The blockers of v are defined as follows:

blockers(G, v) = { p—xg | there is a path p—xg— - - - —>x, Where pis a predicate,

v =xp,, and for 0 < i < n, x; is not a predicate }

First, for each vertex v that is a call or EXIT vertex, all edges in blockers(G, v) are added to
Ewit (which is initially empty). To ensure that Ewit solves Trace (Ewit), we must add additional
edges to Ewit so that E-Ewit contains no diamonds or directed cycles. The maximum spanning

tree algorithm can be modified to add these edges. No edge that is already in Ewit is allowed in

the spanning tree.* Edges that are not in the spanning tree are added to Ewi, which guarantees
that Ewit solves Trace(Ewit). Applying this algorithm to the control-flow fragment in Figure
3.14(a), the blocking phase adds the black dot edges to Ewit. The spanning tree phase adds the

white dot edge to Ewit.

(a) (b)

cost = 15 cost = 20

Figure 3.14. Ordering of blocking witness placement and spanning tree placement affects optimality.

“The modified spanning tree algorithm may not actually be able to create a spanning tree of G because of
the edges already in Ewit. In this case the algorithm simply identifies the maximal cost set of edges in
E —Ewit that contains no (undirected) cycle.
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One might question whether it is better to reverse the above process and first compute an Ewit
that solves Trace(Ewit), using the maximum spanning tree algorithm, and add blocking
witnesses as needed afterwards. Figure 3.14(b) shows that this approach can yield undesirable
results. The black dot edges are placed by the spanning tree phase and solve Trace (Ewir) but do
not satisfy the blocking property. The white dot edge must be added to satisfy the blocking pro-

perty and creates a suboptimal Ewit.

3.3. A HEURISTIC WEIGHTING ALGORITHM
In order to profile or trace efficiently, instrumentation code should be placed in areas of low exe-
cution frequency. It may appear that to find areas of low execution frequency requires profiling.
However, structural analysis of the CFG can often accurately predict that some portions are less
frequently executed than others. This section presents a simple heuristic for weighting edges,
based solely on control-flow information. As shown in Section 3.4, this simple heuristic is quite
effective in reducing instrumentation overhead. The basic idea is to give edges that are more dee-
ply nested in conditional control structures lower weight, as these areas will be less frequently
executed. In general, every path through a loop requires instrumention. However, within a loop
containing conditionals, we would still like instrumentation to be as deeply nested as possible.
For the CFG in Figure 3.15, the heuristic will generate the weighting shown in case (a). Any
weighting of a CFG (i.e., edge frequencies satisfying Kirchoff’s flow law) that assigns each edge
a non-zero weight will give edges that are more deeply nested lower weight. As discussed in
Section 3.5, there are expensive matrix-oriented methods for generating weightings. Our heuris-
tic has the advantage that it requires only a depth-first search and topological traversal of the
CFG.

The heuristic has several steps. First, a depth-first search of the CFG from its root vertex
identifies backedges in the CFG. The heuristic uses a topological traversal of the backedge-free
graph of the CFG to compute the weighting. The weighting algorithm uses natural loops to iden-

tify loops and loop-exit edges [1]. The natural loop of a backedge x -y is defined as follows:
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if (P&&(QIIR))

]

(a) (b)

Figure 3.15. A program fragment, (a) its CFG with a weighting satisfying Kirchoff’s flow, and an optimal
edge counter placement (black dots). Case(b) shows a weighting derived using a post-order numbering of
vertices (an edge’s value is the post-order number of its source vertex), and the sub-optimal placement that
results from finding a maximum spanning tree with respect to this weighting.

nat—loop (x —»y) =

{y} u { w] there is a directed path from w to x that does not include y }

A vertex is a loop-entry if it is the target of one or more backedges. The natural loop of a loop-
entry y, denoted by nat—loop (¥), is simply the union of all natural loops nat—loop (x —Yy), where
x—>y is a backedge. If a and b are different loop-entry vertices, then either nat—loop (a) and
nat—loop (b) are disjoint or one is entirely contained within the other. This nesting property is

used to define the exit edges of a loop with entry y:
exit—edges (y)={ a—b € E|a € nat—loop (y)and b € nat—loop (y) }

Edge a —b is an exit edge if there exists a loop-entry y such that a —b € exit—edges(y).
The heuristic assumes each loop iterates LOOP_MULTIPLIER times (for our implementation,
10 times) and that each branch of a predicate is equally likely to be chosen. Exit edges are spe-

cially handled, as described below. The weight of the edge EXIT —root is fixed at 1 and does not
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change. The edge EXIT — root is not treated as a backedge even though it is identified as such by

depth-first search. The following rules describe how to compute edge and vertex weights:

(1) The weight of a vertex is the sum of the weights of its incoming edges that are not back-
edges.

(2) If vertex v is a loop-entry with weight W and N = |exit—edges (v)|, then each edge in
exit—edges (v) has weight W/N.

(3) Ifvis a loop-entry vertex then let W be the weight of vertex v times LOOP_MULTIPLIER,
otherwise let W be the weight of vertex v. If W is the sum of the weights of the outgoing
edges of v that are exit-edges, then each non-exit outgoing edge of v has weight
(W — Wg)/N, where N is the number of non-exit outgoing edges of v.

The rules are applied in a single topological traversal of the backedge-free graph of a CFG (how-

ever, backedges are given weights by rule (3)). An edge is assigned a weight by the first rule that

applies to it in the traversal, as follows. When vertex v is first visited during the traversal, the
weights of its incoming non-backedges are known. Rule (1) determines the weight of vertex v. If

vertex v is a loop-entry then rule (2) is used to assign a weight to each edge in exit—edges (v).

Finally, rule (3) determines the weight of each outgoing edge of v that is not an exit edge.

3.4. PERFORMANCE RESULTS

This section describes several experiments that demonstrate that the algorithms presented above
significantly reduce the cost of profiling and tracing real programs. Sections 3.4.1 and 3.4.2 dis-
cuss the performance of the profiling and tracing algorithms, respectively. Section 3.4.3 consid-
ers some optimizations that can further decrease the overhead of profiling and tracing. Section

3.4.4 examines the effectiveness of the heuristic weighting algorithm.

3.4.1. Profiling Performance
We implemented the profiling counter placement algorithm in gpt [45], which is a basic block
profiler similar to MIPS’s pixie [67]. Opt instruments object code and can either insert counters

in every basic block in a program (redundant mode) or along the subset of edges identified by the
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spanning tree algorithm (optimal mode).

We used the SPEC benchmark suite to test gpt [14]. This is a collection of 10 moderately large
Fortran and C programs that is widely used to evaluate computer system performance. The pro-
grams were compiled at a high level of optimization (either -O2 or -O3, which does interpro-
cedural register allocation). However, we did not use the MIPS utility cord, which reorganizes
blocks to improve cache behavior, or interprocedural delay slot filling. Both optimizations con-
fuse a program’s structure and greatly complicate constructing a control-flow graph. Timings
were rin on a DECstation 5000/200 with local disks and 96MB of main memory. Times are
elapsed times.

Table 3.1 describes the 10 benchmarks and shows the size of the object files and the time
required to insert profiling code in redundant and optimal mode (keep in mind that gpt has not
been tuned because its current speed is more than adequate for most executables encountered in
practice). As can be seen, instrumenting for optimal profiling is slightly (22-38%) slower than
instrumenting for redundant profiling. This is due to the extra work to find the loops in a CFG
and to compute a weighting, to drive the maximum spanning tree algorithm. In practice, this

extra instrumentation overhead is quickly regained from the reduction in profiling overhead.

SPEC Size Redundant | Optimal Increase
Benchmark Description (bytes) (sec.) (sec.) (Opt./Red.)
ccl (C) C compiler 1075840 9.2 124 1.35
espresso (C) | PLA minimization 298032 2.2 2.9 1.32
xlisp (C) Lisp interpreter 175920 38 4.8 1.27
eqntott (C) Boolean eqns. to truth table 94924 1.9 2.5 1.32
spice Circuit simulation 551836 1.1 1.4 1.27
doduc Monte Carlo hydrocode simul. 280940 1.9 2.5 1.32
dnasa7 Floating point kernels 162996 1.1 1.4 1.27
matrix300 Matrix multiply 122440 0.9 1.1 1.22
fpppp Two-electron integral deriv. 254720 1.7 2.1 1.24
tomcatv Vectorized mesh generation 125316 0.8 1.1 1.38

Table 3.1. SPEC benchmarks. Size of input object files and times for instrumenting programs for Redun-
dant and Optimal profiling. The first four programs are C programs. The remainder are FORTRAN pro-
grams.
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Graph 3.1 shows the (normalized) execution time of the benchmarks without profiling, with gpt
redundant profiling, with pixie profiling (which inserts a counter in each basic block), and with
gpt optimal profiling. Pixie rewrites the program to free 3 registers, which enables it to insert a
code sequence that is almost half the size of the one used by gpt (6 instructions vs. 11 instruc-
tions). Of course, pixie may have to insert spill code in order to free registers.

As can be seen from Graph 3.1, Optimal profiling reduces the overhead of profiling dramati-
cally over Redundant profiling, from 10-225% to 5-91%. These timings are affected by varia-
tions in instruction and data cache behavior caused by instrumentation. We measured profiling
improvement in another way that factors out these variations. Graph 3.2 records the reduction in

counter increments in going from Redundant to Optimal profiling (i.e., the number of counter

4.0
[} uninstrumented
- Redundant :
ol pixie
3.0

Normalized execution fime
N
(@]
I

Graph 3.1. Normalized profiling execution times. For Redundant profiling, gpt inserts a counter in each
basic block (vertex). For Optimal profiling, gpt inserts a counter along selected edges (Eprof (Ecnt)).
Pixie is a MIPS utility that inserts a counter in each basic block.
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increments in Redundant mode / the number of increments in Optimal mode ). The graph also
records the reduction in number of instrumentation instructions executed (assuming 5 instructions
for a counter increment and 1 instruction for an unconditional branch for the edge profiling code).
In general, this reduction is less than the reduction in counter increments since edge profiling may
require the insertion of unconditional jumps.

Fortunately, the greatest improvements occurred in programs in which profiling overhead was

largest, since these programs had more conditional branches and more opportunities for
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Graph 3.2. Reduction in counter increments and instrumentation instructions due to optimized counter
placement, as guided by the heuristic weighting described in Section 3.3. Reduction in increments is
(number of counter increments for Redundant profiling / number of counter increments for Optimal
profiling). Reduction in instrumentation is (5 * number of basic blocks) / (5 * increments + number of ex-
tra jumps). The average dynamic basic block size (in instructions) for each program is shown in

parenthesis.
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optimization. For programs that frequently executed conditional branches, the improvements
were large. For the four C programs (ccl, espresso, xlisp, and egntott), the placement algorithm
reduced the number of increments by a factor of 3-4 and the overhead by a factor of 2-3. For the
Fortran programs, the improvements varied. In programs with large basic blocks that execute
few conditional branches (where profiling was already inexpensive), improved counter placement
did not have much of an effect on the number of increments or the cost of profiling. The FOR-
TRAN program doduc, while it has a dynamic block size of 12.4 instructions, has “an abundance
of short branches” [14] that accounts for its reduction in counter increments. The decrease in run
time overhead for doduc was substantial (38% to 5%). The fpppp benchmark produced an
interesting result. While it showed the largest reduction in counter increments, the overhead for
measuring every basic block was already quite low at 18% and the average dynamic basic block
size was 103.5 instructions. This implies that large basic blocks dominated its execution. Thus,
even though many basic blocks of smaller size executed (yielding the dramatic reduction in
counter increments), they contributed little to the running time of the program.

Graph 3.3 compares the reduction in dynamic instrumentation overhead for the Eprof (Ecnt)
algorithm (optimal profiling), the Vprof (Ecnt) heuristic, and Knuth and Stevenson’s
Vprof (Vent) algorithm, as compared to redundant profiling (measure at every vertex). All algo-
rithms used the same weighting to compute a counter placement. Given a counter placemént for
one of the algorithms, we used the profile information collected from a previous run to determine
how many times each counter would have been incremented and how many extra jumps would
have been needed (Vprof (Vent) does not require extra jumps since counting code is placed on
vertices). By doing so, we avoided instrumenting and running the programs for every algorithm,
while still collecting accurate results. For all the benchmarks, Eprof (Ecnt) is superior to
Vprof (Vent), producing a greater reduction in instrumentation instructions, as predicted. The
heuristic for Vprof (Ecnt) yields almost no improvement over Eprof (Ecnt), as there are very few

cases when a counter can be eliminated.
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Graph 3.3. Comparison of instrumentation reduction of Eprof (Ecnt), Vprof (Ecnt), and Vprof (Vent).
The larger a plot, the better (i.e., the greater the reduction of instrumentation code). Instrumenta-
tion reduction = (5 * basic blocks) / (5 * increments + number of extra jumps).

Table 3.2 provides statistics on the number of edges in each program (“Total Edges”), the
number of edges that had counting code placed on them using the spanning tree algorithm
(“Profiled Edges™), and the number of profiled edges that did not require the insertion of an
unconditional jump (“No-Jump Edges™). We make two observations. First, notice that the per-
centage of all edges that are profiled is in the narrow range of 39-46%. This is consistent with the
facts that most CFGs have almost (but not quite) twice as many edges as vertices and that the

number of edge counters required for edge profiling is |E] — ([V] - 1). Second, less than half of all

profiled edges require the insertion of an unconditional jump.
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Total Profiled Edges No-Jump Edges
Program Edges | # % of Total | # % of Profiled
ccl 48398 | 20577 43 10533 51
eSpresso 11059 4540 41 2426 53
xlisp 4813 2207 46 1264 57
eqntott 3095 1296 42 756 58
spice 15145 5888 39 3131 53
doduc 7957 3128 39 1672 53
dnasa7 5517 2274 41 1241 55
matrix300 4744 1969 42 1116 57
fpppp 7042 2887 41 1630 56
tomcatv 4661 1923 41 1099 57

Table 3.2. Static statistics on control-flow edges. “Total Edges” shows the total number of control-flow
graph edges in each program. “Profiled Edges” shows the number of edges that had counters placed on
them using the spanning tree algorithm. “No-Jump Edges” shows the number of profiled edges that do not
require the insertion of an unconditional jump.

3.4.2. Tracing Performance
The witness placement algorithm was implemented in the AE program-tracing system [44],
which has since been incorporated as part of the gpt tool. AE originally recorded the outcome of
each conditional branch and used this record to regenerate a full control-flow trace. One compli-
cation is that AE traces both the instruction and data references so a trace file contains informa-
tion to reconstruct data addresses as well as the witnesses. Combining this information in one file
requires additional blocking witnesses, as described in Section 3.2.2.

Table 3.3 shows the reduction in total file size (“File™), witness trace size (“Trace”), and execu-

tion time that result from switching the original algorithm of recording each conditional (“Old”)

Program | OldFile New File Old/|Old Trace New Trace Old/ | Old Run New Run Old/
(bytes) (bytes)  New | (bytes) (bytes) New | (sec.) (sec.) New
compress | 6,026,198 4,691,816 1.3 | 2,760,522 926,180 3.0 6.6 54 1.2
sgefa 1,717,923 1,550,131 1.1 | 1,298,882 1,131,091 1.2 4.1 4.5 0.9
polyd 19,509,062 16,033,055 1.2 | 5,523,958 2,047,951 2.7 19.0 15.5 1.2
pdp 11,314,225 10,875,475 1.0 | 1,496,013 1,057,263 14 104 9.2 1.1

Table 3.3. Improvement in the AE program-tracing system. Old refers to the original version of AE,
which recorded the outcome of every conditional branch. New refers to the improved version of AE,
which uses the witness placement algorithm of Section 3.2. File refers to the total size of the recorded in-
formation, which includes both witness and data references. Trace refers to the total size of the witness in-
formation.
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to the witness placement described in Section 3.2 (“New’). As with the profiling results, the pro-
grams with regular control-flow, sgefa and pdp, do not gain much from the tracing algorithm.
For the programs with more complex control-flow, compress and polyd, the tracing algorithm
reduced the size of the trace file by factors of 3 and 2.7 times, respectively.

In the discussion of tracing we assumed that a standard representation was used for witnesses
(per CFG). In modern architectures it is convenient for this representation to be a multiple of a
byte. Thus, it is often the case that we record more bits per witness than necessary. We explored
another method for tracing, called bit tracing, which seeks to reduce the size of the trace. With
bit tracing, each outgoing edge of a predicate vertex generates a witness and witness values are
reused. For predicates with two successors, only one bit of information is required to distinguish
its witness sets. In general, a predicate with N successors requires logyN bits. Figure 3.16 illus-
trates the tradeoff between the spanning tree approach and bit tracing. In case (a), witnesses are
placed according to the spanning tree approach. No pair of distinct witnesses from the set { a, b,
¢, d } can be assigned the same value, so two bits per witness are required. In case (b), only one
bit per witness is required. Any iteration of the loop in this CFG will generate three bits of trace.
However, in case (a) the amount of trace generated per iteration can either be two or four bits. In
this example, neither witness placement is a clear winner.

If compared to the spanning tree approach that naively uses a byte (or more, if needed) of
storage per witness, bit tracing is clearly superior. Although more instrumentation code is exe-
cuted, less trace is generated, which reduces /O overhead. This method decreases the size of the
trace 3-7 times over the spanning tree approach. However, as shown in Figure 3.16, by using
only as many bits as necessary, the spanning tree approach can be improved upon. In this exam-
ple, two bits per witness are needed. In general, if there are N witnesses for a CFQG then at most
logyN bits per witness are needed. However, there are situations where witness values can be
reused, possibly decreasing the number of bits needed. This is complicated by the fact that dif-
ferent placements of witnesses may give rise to different opportunities for the reuse of values.

Further investigation in optimizing the spanning tree approach is clearly needed.
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Figui'e 3.16. Tradeoff between (a) placing witnesses according to the spanning tree approach and (b) plac-
ing witnesses on every outgoing edge of a predicate vertex.

Bit tracing avoids the multi-procedure tracing problem discussed in Section 3.2.2 as there is no
witness-free directed path from a predicate to a call vertex. If an address trace also is generated
from the program, bit tracing requires that two separate files be maintained (for efficiency), one
for the instruction trace and one for the address trace. The cost of bit tracing is the additional

implementation complexity required to manage witnesses at the bit level.

3.4.3. Optimizations

Several optimizations can further decrease the overhead of profiling and tracing. The first optimi-
zation, register scavenging, is specific to instrumenting object code. For RISC machines, counter
increment code requires two registers, one to hold the counter’s address (because addressing on
RISC machines is done by indirection off of a register) and one to hold the counter’s value. If
both registers need to be saved and restored (to preserve their values), the instrumentation code
jumps from 5 to 11 instructions. Register scavenging notes the unused caller-saved registers in a

procedure. These registers can be used by instrumentation code without preserving their values,
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since the procedure’s callers expect these registers to be modified.’ For many of the benchmarks,
specifically the FORTRAN programs with large basic blocks and few unused registers, register
scavenging had little effect on execution overhead. For other benchmarks, the results varied from
small reductions of a few percent to larger reductions in the range of 6-21%.

The second optimization can substantially reduce profiling overhead by removing counters
from loops. If the number of iterations of a loop can be determined before the loop executes or
from an induction variable whose value is recorded before and after the loop, then a counter can
be eliminated from the loop body (allowing one counter-free path through the loop). Both Sarkar
and Goldberg have successfully implemented this approach in profiling tools [24, 64]. For exam-
ple, Goldberg reports that for egntort the reduction in increments increased from 4.3 to 7.7 after
adding induction variable analysis. Some scientific codes benefitted greatly from this analysis (a
33-fold decrease in instrumentation code executed for matrix300). However, for pointer-chasing
programs such as xlisp the benefits of this analysis were quite small, as few induction variables
are present in such programs.

As mentioned before, placing instrumentation code on edges may require the insertion of
jumps in order to avoid executing other instrumentation code. For example, in the control-flow

fragment of Figure 3.17(a) there are two instrumented incoming edges to a vertex. Because we

(@) (b)

Figure 3.17. (a) Placement requiring insertion of jump. (b) No jumps required.

SWe discuss the problems of register scavenging and instrumenting object files in greater detail else-
where [46].
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use the general rule that the instrumentation code associated with an edge is placed just before the
code associated with the vertex that is the target of the edge, this fragment will require at least
one unconditional jump (in order to jump over the instrumention code associated with the other
edge). However, the grey vertex has only one incoming edge and only one outgoing edge, so the
instrumentation point can be moved from its outgoing edge to its incoming edge, resulting in the
placement in case (b). This placement may require no extra jumps (unless the grey vertex’s out-
going edge is a fall-through). Jump optimization searches for vertices with one incoming and one
outgoing edge with instrumentation code on the outgoing edge. The instrumentation code is sim-
ply moved to the incoming edge. This simple optimization may reduce (and will never increase)
the number of extra jumps. In the case of xlisp, this optimization reduced execution overhead by

10 percent.

3.4.4. Effectiveness of the Heuristic Weighting Algorithm

The effectiveness of the heuristic weighting algorithm was measured in two ways, as presented in
Graph 3.4. First, we measured the reduction in counter increments (number of increments in
Redundant mode / numer of increments in Optimal mode ) using an exact edge weighting from a
previous run of the same program with identical input. This number, “Exact-Max”, represents
the best one could hope to do without semantics-based optimizations (such as induction variable
analysis). Second, for both the heuristic and exact weightings, we also computed what the reduc-
tion in increments would be if a minimum spanning tree were used to place counters. While the
maximum spanning tree places counters in less frequently executed areas of the CFG, a minimum
spanning tree places counters in more frequently executed areas. Thus, “Exact-Min” is the worst
possible reduction for the spanning tree algorithm. As the difference between “Exact-Min” and
“Exact-Max” shows, there is great variation in the reduction in counter increments, depending on
which spanning tree is chosen. The heuristic is clearly successful at predicting areas of low exe-
cution frequency, as there is a noticeable difference between the reduction in increments for the
counter placements determined by maximum and minimum spanning trees. Note that

“Heuristic-Max” always produced a better reduction than “Heuristic-Min”. The difference in
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Graph 3.4. Heuristic weighting vs. exact weighting: reduction in increments (Redundant/Optimal).
R_eductions in increments are computed for counter placements from both maximum and minimum span-
ning trees.

reduction between the heuristic and exact weightings was usually small (ranging from 1% to
34%). Not surprisingly, the heuristic was quite accurate for the FORTRAN programs with few
conditional branchs.

Graph 3.5 shows the normalized times for the benchmarks run under Optimal profiling for the
heuristic weighting (corresponds to ‘“Heuristic-Max” in Graph 3.4) and exact weighting
(corresponds to “Exact-Max” in Graph 3.4). In one case (foppp), the run time with the exact
weighting is greater than the run time with the heuristic weighting. Such an aberration is most
likely due to different instruction and data cache behavior of the instrumented program under the
different counter placements, and requires further investigation.

The heuristic weighting algorithm assumes each branch of a predicate is equally likely to be
chosen. For most programs, varying this probability does not have a great effect on instrumenta-

tion overhead. However, weighting schemes that attempt to pick likely branch directions
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Graph 3.5. Normalized profiling times for heuristic and exact weightings.

independently may have greater success. For example, favoring edges leading to blocks contain-
ing loops (which have a high dynamic cost) reduces instrumentation overhead for a few of the

benchmarks.
3.5. RELATED WORK

3.5.1. Edge Profiling

The spanning tree solution to Eprof (Ecnt) has been known for a long time. In the area of net-
work programming, the problem is known as the specialization of the simplex method to the net-
work program [37]. Knuth describes how to use the spanning tree for profiling in [40]. Other
authors that have written about the application of the spanning tree to profiling include Gold-
berg [24], Samples [63], and Probert [55]. As far as we know, Goldberg and Samples are the

only other researchers that have implemented the spanning tree approach and performed
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significant experimentation with real programs. Their work occurred concurrently with ours.

Goldberg implemented edge profiling by instrumenting executable files [24]. His profiler was
built as part of a system to analyze the memory performance of programs [25]. Goldberg optim-
ized his instrumentation in two ways that we do not consider. First, his tool selected the two stati-
cally least-used registers in the executable and eliminated all uses by inserting loads and stores
around existing uses of these registers. This allows every counting code sequence to use these
registers without saving and restoring them. A similar approach is used by MIPS’s pixie profiling
tool [67]. As a result, the number of instructions needed to increment a counter in memory can
be cut roughly in half. Our tool only looks for free registers to scavenge and often must save and
restore registers in the counter increment code sequence. Second, Goldberg identifies simple
loop induction variables. This allows a counter to be eliminated from a loop (because the number
of iterations can be inferred from the beginning and ending values of the induction variable),
lowering instrumentation overhead drastically for scientific codes. Our tool does not perform this
optimization.

Samples considers a refinement that takes into account the unconditional jump that may have
to be inserted into the profiled program when placing a counter on an edge. His algorithm places
counters on a mixture of edges and vertices to reduce the number of unconditional jumps as well
as the number of counter increments. His approach is useful for architectures in which the cost of
an unconditional jump is comparable to the cost of incrementing a counter in memory. However,
as mentioned before, Samples’ results show that the overhead incurred by mixed placements did
not differ much from edge placements.

Probert discusses solving Eprof (Vent), which is not always possible in general. Using graph
grammars, he characterizes a set of “well-delimited” programs for which Eprof (Vcnt) can always
be solved. This class of graphs arises by introducing “delimiter” vertices into well-structured
programs. Probert discusses how to find a minimal number of vertex measurement points as

opposed to a minimal cost set of measurement points.
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Sarkar describes how to choose profiling points using control dependence and has implemented
a profiling tool for the PTRAN system [64]. His algorithm finds a minimum sized solution to
Eprof (Ecnt) based on a variety of rules about control dependence, as opposed to the spanning
tree approach. There are several other major differences between his work and our work: (1) His
algorithm only works for a subclass of reducible CFGs; (2) His algorithm does not use a weight-
ing to place counters at points of lower execution frequency. As a result, the algorithm may pro-
duce suboptimal solutions; (3) When the bounds of a DO loop are known before execution of the

loop, his algorithm eliminates the loop iteration counter, as done by Goldberg.

3.5.2. Vertex Profiling

Knuth and Stevenson exactly characterize when a set of vertices Vent solves Vprof (Vent) and
show how to efficiently compute a minimum size Vcnt that solves Vprof (Vent) [41]. The authors
note that their algorithm can be modified to compute a minimum cost solution to Vprof (Vent)
given a set of measured or estimated vertex frequencies. Our work shows that it is less costly to

measure vertex frequency by instrumenting edges rather than vertices.

3.5.3. Tracing

Ramamoorthy, Kim, and Chen consider how to instrument a single-procedure program with a
minimal number of monitors, so the traversal of any directed path through the program may be
ascertained after an execution [57]. This is equivalent to the tracing problem for single-procedure
programs discussed here. The authors do not give an algorithm for reconstructing an execution
from a trace or consider how to trace multi-procedure programs. Further, they are interested in
finding a minimal size solution to the tracing problem, an NP-complete problem [47]. However,

a minimum size solution does not necessarily yield a minimum cost solution.

3.5.4. Minimizing instrumentation overhead
A CFG has many spanning trees, each of which induces a counter placements with an associated
run-time overhead cost. Section 3.3 presented our heuristic for estimating edge frequency in

order to drive the maximum spanning tree algorithm. This section compares our heuristic to other
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methods for minimizing instrumentation overhead (which may include methods for estimating
frequency). We use the CFG in Figure 3.15(a) as a basis for comparing the various heuristics dis-
cussed below. The weighting of this CFG satisfies the flow law and the edges with black dots are
an optimal edge counter placement for profiling (with respect to this weighting). The other edges
form a maximum spanning tree. As mentioned before, our heuristic will generate the weighting
in case (a).

Forman discusses the problem of minimizing counter overhead with the spanning tree approach
from a graph theoretic perspective [20]. He defines a partial order on the spanning trees of a CFG
such that for any weighting, if a spanning tree T is not a least element in the partial order then
there is some spanning tree lower in the order that induces a counter placement with lower cost
than the one induced by T. Of course, there may be more than one least element in the partial
order. The spanning tree in Figure 3.15(a) is a least element. Forman proposes a structural
method for computing a least element, but it works only for structured CFGs. Our heuristic
works for any CFG. He also proposes a more general solution that generates a weighting, given
branch probabilities for the predicate vertices in any CFG. A maximum spanning tree found
under this weighting corresponds to a least element in Forman’s partial order. To generate the
weighting requires matrix operations on what are essentially adjacency matrix representations of
the CFG. As such, this general approach would be much slower than our heuristic, which
operates directly on the control-flow graph structure. Our heuristic generates edge frequencies
satisfying the flow law and can easily be adapted to take branch probabilities into account.

Goldberg developed a heuristic for his profiling tool that uses a post-order numbering of the
vertices in the CFG (as determined by a depth-first search from the root vertex) to assign edge
weights [24]. He defines an edge’s weight to be the post-order number of its source vertex.
However, if an edge is a loop backedge then it is given a weight Jarger than the number of ver-
tices in the graph. The rationale for this heuristic is that “...a node always executes at least as
many times as any of its descendants [successors}; hence, it seems best to place counters on nodes

as far from the root as possible.” This heuristic clearly does not produce a weighting satisfying
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the flow law, as Figure 3.15(b) shows. Because the distance of an edge from the root vertex does
not always correspond to its level of nesting, Goldberg’s heuristic will not always lead to the best
counter placements. In the example of Figure 3.15(b), the maximum spanning tree for the given
weighting (determined by his heuristic) induces a sub-optimal counter placement.

Wall experimented with a number of heuristics for estimating basic block and procedure
profiles solely from program text, reporting poor results [69]. Wall’s heuristics use information
about loop nesting and call graph structure to predict basic block and procedure profiles, but do
not take into account conditional control-flow (i.e., predicting that code that is more deeply
nested in conditionals is executed less frequently), as our heuristic does. It is this aspect of our
heuristic that is key to reducing instrumentation overhead (this is also the main idea behind
Forman’s partial order). With Wall’s heuristic, every basic block that is contained in the same
number of loops gets the same weight. In the example graph of Figure 3.15, each block would
get the same weight, which is clearly not useful for the purposes of minimizing instrumentation
cost.

Other authors have presented heuristics that are similar to ours, usually for the purpose of aid-
ing code optimization. For example, Fisher, Ellis, Ruttenberg, and Nicolau use loop nesting level
and programmer-supplied hints to estimate block execution frequency for trace scheduling [19].
However, few of these heuristics have the goal of producing edge frequencies satisfying the flow
law.

None of the heuristics mentioned above nor our heuristic attempts to predict branch directions.
If branches can be accurately predicted, then instrumentation code can be placed on the less fre-
quently executed branch when a choice is possible. More recent work on branch prediction by

the author of this thesis, in association with J. R. Larus, could be used in this application [5].
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Chapter 4

EFFICIENTLY COUNTING PROGRAM EVENTS WITH
SUPPORT FOR ON-LINE QUERIES

Many applications require counting how many times certain events occur in a program’s execu-
tion. For example, instruction counts can be used to determine how much time is spent in a pro-
cedure [26]. Event counting can be used to implement countdown timers for debugger break-
points or execution-driven simulators so that control returns from the executing program to the
debugger or simulator after a certain number of events [49,59]. Counts of synchronization
events, /O events, and system calls also can be used to measure the performance of parallel pro-
grams [27]. Furthermore, many of these applications require the capability to query the event
count on-line, while the program executes, rather than off-line, after the program has terminated.
For example, interactive performance measurement tools need to make such queries in order to
update displays in a timely fashion.

This chapter investigates how to count events in a program execution efficiently, with support
for on-line queries of the event count. We present a new method for efficiently counting and
querying program events that uses program instrumentation. Rather than instrument every basic
block in the program, our algorithms find select points in a program to instrument while guaran-
teeing that accurate event counts can be obtained efficiently at every point in the execution.

Event counting has a simple formalization. Associated with each basic block B is some con-
stant Events (B) that denotes the number of events in basic block B. This may be the number of
instructions, cycles, stores/loads, etc. For any execution path, the goal of event counting is to
keep track of the number of events in basic blocks that have executed fully. Because there are
applications that require completely accurate event counts (such as debuggers and simulators),
sampling the program counter to determine event counts will not suffice. Instead, we use instru-

mentation to provide accurate measurements. There are two basic instrumentation methods for
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event counting:

(1) Instrument the program with code to record the number of times each basic block executes
(i.e., maintain a basic block profile). Given basic block counts, the event count can be
derived from the basic block count by summing the basic block counters, weighted
appropriately (e.g., if basic block B executes i times then add i*Events(B) to the event
count). Because of the potentially large number of counters that must be summed each time
a query is made, this approach is suitable only if there are few queries of the event count
during the execution of the program, or the query is made off-line.

(2) Instrument the program to record the number of events directly in an event counter. A
straightforward approach is to prepend code to each basic block B that increments the event
counter by Events(B) each time that block B executes. This approach can incur high over-

head (in the range of 200-300%) for programs with small basic blocks [4]. Furthermore, if
instrumentation code is dynamically added to and deleted from programs by patching a
basic block with a jump to a code stub rather than by rewriting the original code, the over-
head can increase substantially [39].

This chapter defines a new approach to event counting that is similar to (2) above; however,
our approach involves instrumenting control-flow edges (rather than basic blocks) in a
procedure’s control-flow graph. As shown in Chapter 3, instrumentation of edges in the control-
flow graph can be used to profile programs with low execution-time overhead. Instrumentation
code is placed along edges of the control-flow graph rather than in basic blocks because this gives
greater opportunity to place the code in areas of lower execution frequency.

In profiling, each instrumented edge has its own counter, which is incremented whenever the
edge is traversed in an execution. In event counting, the event counter is incremented by more
than one instrumented edge, with different increments at each instrumented edge. The challenge
is to determine a necessary and sufficient set of edges at which to place instrumentation code and
to compute the increment associated with each instrumented edge. Figure 4.1 gives an example

of efficient event counting. In this example, the number of events in a vertex (basic block) is
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n Edge e Increment(e) Vertex v Querylnc(v)
w (+P +EXIT) P (+F)
w (o x (+P +Q +A +R +C) Q (+P+Q)
A (-R-C)
E y (+P +Q +B +R +C)
B (-R-C)
Z (-C +EXIT) R (=C)
c 0

EXIT 0

Figure 4.1. An example of efficient event counting.

denoted by the vertex’s label. The example control-flow graph has four instrumented edges
(w, x, v, z), marked with black dots. For each instrumented edge e, there is an constant integer
increment Increment (¢). This amount is added to the event counter each time edge e is traversed
in an execution. It is not hard to verify that for any execution path from P to EXIT the event
count (as measured by the instrumented edges that appear in the execution) is correct. For exam-
ple, the count for the execution path P—Q—A—R-—EXIT is Increment(x) + Increment (z) =
(+P+Q+A+R+C) + (—C+EXIT) = (+P+Q+A+R+EXIT).

An effect of our algorithm for counting events is that the value of the event counter is not
guaranteed to be accurate at all points in the control-flow graph. In the example of Figure 4.1, if
execution has only progressed to vertex Q then the event counter has not been incremented at all!
On the other hand, if the path P—Q->A has been executed then the event count overestimates the
true count since the counts for vertices R and C have been taken into account. We solve this
problem by computing for every vertex v a “query increment” that, when added to the event
counter, produces the correct count at the end of the basic block corresponding to that vertex.
That is, when a query is made just after executing vertex v, the value

“EventCounter + Querylnc (v)” is the correct response. Figure 4.1 also shows the query



60

increment for each vertex in the example control-flow graph.

The uninstrumented edges in the control-flow graph of Figure 4.1 form an (undirected) span-
ning tree of the graph. Our first result shows that for any spanning tree of the control-flow graph,
instrumentation of non-tree edges is sufficient for event counting. We also give a simple algo-
rithm that computes the increment value for each non-tree edge. It is possible to allow certain
types of cycles in the set of uninstrumented edges, and we precisely characterize when a set of
instrumented edges is necessary for event counting. Furthermore, we show how to accommodate
control-edge events in addition to vertex (basic block) events.

This chapter is organized as follows. Section 4.1 presents some additional material on span-
ning tree theory needed in this chapter. Section 4.2 shows how to count events within a pro-
cedure efficiently. Section 4.3 shows how the results of Section 4.2 can easily be extended to

count events interprocedurally. Section 4.4 discusses related work.

4.1. ADDITIONAL BACKGROUND

Let G be a CFG and let T be a spanning tree of G. Knuth [40] has proved a theorem about
directed cycles that we will make use of here. Briefly stated, this theorem shows that the number
of times any edge appears in a directed cycle in G is uniquely determined by the number of times
each chord of the spanning tree T appears in the cycle.

Let D be a directed (not necessarily simple) cycle and let f be any edge in G. Let Num(D,f)
denote the number of times edge f appears in cycle D. Let Same (D, f) and Opp (D, f) denote the
number of chords e in D such that fis in C(e) and edges fand e are directed in the same direction
or in opposite directions in the fundamental cycle C (e), respectively. Keep in mind that these
last two definitions are relative to the CFG G and spanning tree T of G. To simplify notation,

explicit mention of T and G is omitted.

THEOREM (1). Let G be a CFG, let T be a spanning tree of G, and let D be a directed (not neces-

sarily simple) cycle in G. For all edges fin CFG G, Num (D.f) = Same (D,f) - Opp (D,f).
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We give an example of an application of this theorem. Figure 4.2 shows the fundamental
cycles associated with the spanning tree of the CFG from Figure 4.1. Each edge with a black dot
is a chord of the spanning tree. Figure 4.3 shows a simple directed cycle EX. There are two
chords in this directed cycle, edges x and z. Figure 4.3 also shows the fundamental cycles C(x)
and C(z). Consider an edge fe EX, so Num(EX,f)=1. As Figure 4.3 shows, edge f either
appears in C (x) or C(z) (but not both fundamental cycles) in the same direction as chord x or z.
Therefore, Same(EX,f)=1 and Opp(EX,f)=0, so Same(EX,f) - Opp(EX,f)= Num(EX.f).
Consider an edge f& EX. It is clear that Num (EX,f) =0. If fdoes not appear in either C(x) or
C(z) then it follows directly that Same (EX,f) = Opp (EX,f)=0. In this example, for each edge
f& EX that is in C(x) or C(z) (i.e., edges R—C and C—P), fis in the same direction as edge x in
fundamental cycle C(x) and is in the opposite direction from edge z in fundamental cycle C(z).
Therefore, for all edges f not in EX, Same (D,f) — Opp(D,f)=0.

The number of times a vertex v appears in a directed cycle EX is equivalent to the number of

edges e in EX such that src(e) =v. We denote this quantity by Num (EX,v). An execution of a

[r]
R Z

C
Clw) C(x) (y) Cz)

Figure 4.2. The fundamental cycles of the CFG from Figure 4.1with respect to the spanning tree in that
figure.
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EX C(z)

Figure 4.3. The directed cycle EX (from the CFG in Figure 4.1) and the two fundamental cycles associat-
ed with it.

procedure induces a directed path P in the CFG that starts at the root vertex (entry point) and ends
at the EXIT vertex (return point). The addition of edge EXIT—root to the end of path P turns it
into a directed cycle P’, so an execution path is modelled by a directed cycle. It is clear that for

any vertex v, the number of times vertex v appears in path P is equal to Num (P ).

4.2. INTRAPROCEDURAL EVENT COUNTING
We assume that each vertex v in the CFG contains a constant number of events, denoted by
Events(v). The goal of intraprocedural event counting is to find a (small) set of edges E’cEand

for each edge e € E’ a constant Increment (e) such that for any directed cycle EX in the CFG:

Y. Events(src(e)) = Y. Increment(e).
ee EX ee E’
andee EX

This definition does not address the problem of where accurate queries of the event count can
be made in the execution path. The EXIT vertex is always an accurate query point since pro-
cedure execution ends at EXIT. As mentioned previously, not every vertex in the CFG is
guaranteed to be an accurate query point. Given a set of edges E ’ and their increment values, we

would like to find for each vertex w in the CFG, a constant Querylnc(w) such that for any
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incomplete execution path X starting at the root vertex and ending at vertex w:

(3 Events(src (e)) ) + Events(w) = (3 Increment(e)) + Querylnc(w)
ee IX eec E’
andee IX

Section 4.2.1 shows that placing instrumentation code on the chords of any spanning tree of the

CFG is sufficient for event counting.! Section 4.2.1 also shows show to determine the increment
for a chord e straightforwardly from its fundamental cycle C(e). Section 4.2.2 describes how to
accommodate edge events in this framework by the operation of edge-splitting. Section 4.2.3
presents a depth-first search algorithm that computes the increment for all chords in linear time.
Section 4.2.4 supplies an exact structural characterization of when a set of edges is necessary and
sufficient for event counting and shows how the algorithm in Section 4.2.3 can be easily adapted
to compute increments in the exact case. Finally, Section 4.2.5 shows how to compute the query

increment for any vertex in the CFG.

4.2.1. Computing Edge Event Increments
The increment value for a chord e is defined by its fundamental cycle C(e) and the direction of
the edges in this cycle. Given a chord e, we define two sets:
PipeSame (e) =
{ v | there is a pipe at v in C (¢) whose edges are in the same direction as e in C(e) }
PipeOpp (e) =
{ v | there is a pipe at v in C (¢) whose edges are in the opposite direction frome }.

The event increment for a chord e is defined to be:

Increment{(e) = Y, Events(v) - > Events (v).
v e PipeSame(e) ve PipeOpp(e)

I As discussed in Chapter 3, spanning trees must be chosen carefully in order to reduce the execution over-
head incurred by instrumenting the chords.



Of course, if Increment (e) = 0 then edge e does not have to be instrumented.

Figure 4.2 shows the fundamental cycle of each chord in the CFG from Figure 4.1 (with respect
to the spanning tree in that figure). The increment for chord w is defined to be (+P +EXIT) since
there are pipes at both P and EXIT in C(w) and these pipes are in the same direction as edge w.
The fundamental cycle C(z) defines Increment (z) = (-C +EXIT) since there is a pipe at vertex C
in the opposite direction to edge z and a pipe at EXIT in the same direction as z.

We now show that this method is correct. Let G be a CFG and let T be a spanning tree of G.

Given any directed cycle EX in CFG G, we want to show that:

* Y. Events(src(e)) = Y. Increment(e).
ee EX ee E-T
andee EX

Given a vertex v, let VPipeSame (EX,v) be the number of edges e in EX such that e is a chord and
ve PipeSame (e), and let VPipeSame (EX,v) be the number of edges e in EX such that e is a
chord and v € PipeOpp (e). We show that

(e for all vertices v, VPipeSame (EX,v) — VPipeOpp (EX,v) = Num (EX,v).

This results implies (*) directly, since for every vertex v in the directed cycle EX, Events(v)

makes a positive contribution to

Y. Increment(e)

ee E~-T
andee EX

Num (EX,v) more times t‘han it does negatively because VPipeSame (EX,v) — VPipeOpp (EX,v) =
Num(EX,v) > 0. Furthermore, for every vertex v that is not in EX (i.e. Num (EX,v)=0),
Events(v) makes an equal number of positive and negative contributions (because
VPipeSame (EX,v) — VPipeOpp (EX,v) =0). Figure 4.3 illustrates this point. The directed cycle
EX contains two chords, edges x and z. Every vertex that appears in EX appears in a pipe in
either C(x) or C(z) in the same direction as the cycle’s chord. Vertex C, which is not in EX,
appears in a pipe in both C (x) and C(z). In C(x) the pipe is in the same direction as edge x but
in C(z) the pipe is in the opposite direction from z, so Events (C) makes a positive contribution to

Increment (x) and a negative contribution to Increment (z), cancelling each other.
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The proof of (e) relies on Theorem (1), as stated in Section 4.1. Given this theorem it is easy to

show (e) as we do now. We require the following definitions:

SrcSame (EX,v) = Yy Same (EX,¢e)
Ve :src(e)=v
SrcOpp (EX,v) = Y, Opp (EX,e)

Ve :src(e)=v

Consider any vertex v in G. By theorem (1), it follows that
SrcSame (EX,v) — SrcOpp (EX,v) = Y, Num(EX,e).
Ve :src(e)=v
By definition, the number of times a vertex v appears in directed cycle EX is equal to the number
of edges in EX with source v. That is,
Y Num(EX,e) = Num(EX,v).
Ve :src(e)=v

It follows from the above two points that SrcSame (EX,v) — SrcOpp (EX,v) = Num(EX,v). Any
fundamental cycle C (e) that contains v must have exactly two edges incident on v. These edges
form either a pipe, a fork or a join at v. A fork at v contributes one unit to both SrcSame (EX,v)
and SrcOpp (EX,v). Let Fork(EX,v) be the number of edges e in EX such that e is a chord and
there is a fork at v in C(e). A join at v clearly cannot contribute to either SrcSame(EX,v) or
SrcOpp (EX,v). A pipe at v either contributes one unit to SrcSame(EX,v), or one unit to

SrcOpp (EX,v), depending on its direction in C (e). Therefore, the following relationships hold:
SrcSame (EX,v) = Fork(EX,v)+ VPipeSame(EX,v)
SrcOpp(EX,v) = Fork(EX,v)+ VPipeOpp (EX,v)

It follows that SrcSame(EX,v) — SrcOpp(EX,v) = VPipeSame(EX,v) — VPipeOpp (EX,v).
Therefore, VPipeSame (EX,v) — VPipeOpp (EX,v) = Num (EX,v). 1]
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4.2.2. Accommodating Edge Events

In addition to vertex events, it is also possible to have edge events. Given an edge e, let
Events (e) denote the number of events associated with the execution of edge e. Edge events can
be easily accommodated in our framework by a transformation that is applied to the CFG before
the spanning tree is found and the chord increments are computed. This transformation turns an
edge event into a vertex event.

If an edge e = v —w has an event value Events (e), then eliminate the edge v—w, add a new
vertex x,, and add edges v —x, and x,—w to the CFG. The event value for vertex x, is defined to
be Events(x.) = Events(e). Any cycle that used to include the edge v—w will now include the
pipe v—x,—w. It is easy to verify that the event value for edge e will be correctly taken into

account by this transformation.

4.2.3. Computing Edge Increments via a Depth-first Search
A naive algorithm for determining Increment (e) for each chord e would simply traverse each
fundamental cycle C(e). Since each fundamental cycle is, in the worst case, of size O(E) and
there are E — (V — 1) event edges, this naive algorithm would run in O(EX(E — V)) worst-case
time. Figure 4.4 presents an algorithm that uses a depth-first search of the spanning tree to deter-
mine the increments for all chords in time O(E). There are two parameters to the depth-first
search functions dfs_from_src and dfs_from_tgt: an integer events which is the current event
increment and an edge e which is the current edge in the depth-first search. Function
dfs_from_src visits all edges incident on src(e), while dfs_from_tgt visits all edges incident on
tgt(e). Each chord is visited twice by the algorithm, once by dfs_from_src and once by
dfs_from_tgt. Each tree edge is visited exactly once, except for the initial edge d, which is
visited twice. The running time of this algorithm is clearly O (E).

We now explain the algorithm and show that it correctly computes Increment (e) for each chord
e. At some point the depth-first search will have just traversed an acyclic path P that begins with

edge d and ends with chord e. For each pipe (at vertex v) in P, Events(v) has been added to
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for each ¢ € E — T do Increment(e) =0 od
let d be an edge in T in

dfs_from_tgt( 0, d)

dfs_from_src( 0, d)
ni

function dfs_from_tgt(integer events, edge €)
let v = tgr(e) in
if e ¢ Tthen
for each f: f# eand v =1gt(f) do // join
dfs_from_src( —events, f)
od
for each f: v =src(f) do //pipe
dfs_from_tgt( events + Events (v), f)
od
else // ee E~T
Increment (e) .= Increment (e) + events
fi
ni

function dfs_from_src(integer events, edge e)
letv =src(e)in
if ee T then
for each f: f# eand v =src(f) do // fork
dfs_from_tgt( —events, f)
od
for each f: v =1gt(f) do // pipe
dfs_from_src( events + Events (v), f)
od
else // ee E-T
Increment (e) = Increment (e) + events
fi
ni

Figure 4.4. Algorithm for determining Increment(e) for each chord e using a depth-first search of span-
ning tree T of graph G.
events. For each join or fork in P, events has been negated. As shown in lemma (1) (see the end
of this section), if two edges in an acyclic path P are in the same direction then there are an even
total number of forks and joins in the subpath of P delimited by (and including) these edges.
Therefore, for each pipe (at vertex v) in P in the same direction as e, Events (v) will be negated an
even number of times (through the negation of events) making a positive contribution to
Increment(¢) (when the assignment “Increment(e):= Increment (e) + events” takes place).
Lemma (1) also shows that if the edges in P are in opposite directions then there are an odd total
number of forks and joins in the subpath. Therefore, for any pipe (at vertex v) in P in the oppo-
site direction from e, Events (v) will be negated an odd numbers of times, making a negative con-
tribution to Increment (e).

To show that Increment (e) is correctly computed for any chord e, there are two cases we must
consider: de C(e) and d€ C(e). In the former case, the depth-first search will reach e two

times from edge d (by paths P and P3). The only edges shared by the two paths are d and e, and
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the union of the edges in P| and P, is C(e). As a result, each pipe in C(e) is traversed by the
depth-first search. As shown above, pipes in the same direction as e make a positive contribution
to Increment(e) while pipes in the opposite direction from e make a negative contribution to
Increment (e), as desired.

Suppose that d & C(e). The depth-first search will still reach e two times from edge d (by
paths P and P;). However, in this case P| and P share a common prefix Q containing edges
that are not members of C(e). Let f be the last edge in Q, let P’} be the suffix of P (ie.,
P;=0Q||P’;) and let P’; be the suffix of P;. Furthermore, let g be the first edge of P ‘1 and
let g5 be the first edge of P’;. The only edge shared by P’; and P “; is e and the union of the
edges in P’ and P’y is C(e). It is clear that the event values for pipes present in P’y and P )
will be correctly accounted for in Increment(e). We must show that the event values accumu-
lated in prefix Q cancel out and that Increment (e) is correctly computed when g1 and g2 form a
pipe in C (e).

Suppose that edge f is encountered by the call dfs_from_tgt(x, /) (the proof for
dfs_from_sre(x, f) is symmetrical). Figure 4.5 shows the three cases that can arise: g and g2
form a pipe, fork, or join at v. For each case, Figure 4.5 illustrates the value for events that will
be associated with the function call for each edge.

(a) Edges g1 and g, form a pipe at v. In this case, f must form a pipe with one of the edges
and a join with the other edge. Without loss of generality, assume that f forms a join with
g1 and a pipe with g5. The value of events is (—x) for g| and is (x + Events(v)) for g;.
Because g; and g, form a pipe in C(e), either both expressions will be added to
Increment (¢) or subtracted from Increment(e). Therefore, x will cancel out and Events W)
will be correctly accounted for.

(b) Edges g and g, form a fork at v. In this case, the value of events associated with both
edges is (x + Events (v)). One of the edges must be in the same direction as e and the other
in the opposite direction, so (x + Events (v)) will be both added to and subtracted from

Increment (e).
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....... C(e)
8 :
f X x + Events(v)
x + Events(v) X X+ Eyents(v)
8y ;
(@ (b) ()

Figure 4.5. Entering a fundamental cycle via depth-first search.

(c) Edges g and g, form a join at v. In this case, the value of events associated with both
edges is (—x). As in case (b), (-x) will be both added to and subtracted from Increment (e).

a

LEMMA (1). Let e and f be the first and last edges in an acyclic path P (e # f). If e and f are in

the same direction in P then the number of forks in P is equal to the number of joins in P. If e

and f point towards each other in P then the number of joins in P is one greater than the number

of forks in P. If e and f point away from each other in P then the number of forks in P is one

greater than the number of joins in P.

PROOF. The proof for the three claims is easily accomplished by induction on the length of P.

Base case: |P | =2. It is clear that e and f form either a pipe, fork, or join, depending on the

directions.

Induction Step: Suppose that all three claims hold for paths of length less than n (n>2). Let P be

a path of length n+1, let g be the n'h edge in P, and let P’ be the path containing the first n edges

of P. We prove the three claims by case analysis on the direction of edges e and g:

(1) Edges e and g are in the same direction. By the Induction Hypothesis, P’ contains the same
number of forks as joins. There are three possible cases: (a) g and f form a pipe, so the

number of joins and forks in P is the same as in P ’. In this case, edges ¢ and f point in the
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" same direction; (b) g and £ form a join, so P contains one more join than fork. In this case,
edges e and f point towards each other; (c) g and f form a fork, so P contains one more fork
than join. In this case, edges e and f point away from other.

(2) Edges e and g point towards each other By the Induction Hypothesis, P * contains one more
join than fork. There are two possible cases: (a) g and f form a pipe, so P contains one more
join than fork. In this case, edges e and f point towards each other; (b) g and f form a fork,
so P contains the same number of forks and joins. In this case, edges e and f point in the
same direction.

(3) Edges e and g point away from each other. The proof for this case is symmetric to the proof
for case (2).

O

4.2.4. Exact Characterization

Section 4.2.1 showed that if E~E’ is a spanning tree of the CFG then E’ is sufficient for event
counting. A spanning tree is a maximal subset of edges without a (undirected) cycle. This sec-
tion shows that it is possible to allow certain types of cycles in E~E .

If a fundamental cycle C(e) contains no pipe (is pipeless) then Increment(e)=0, which
implies that edge e does not have to be instrumented at all. This leads us to the following obser-
vation: if every simple cycle in E~E’ is pipeless then E’ is sufficient for event counting. Sup-
pose that E~E ’ is a spanning subgraph of the CFG and that every simple cycle in E-E " is pipe-
less (note that any subgraph may be turned into a spanning subgraph without introducing any new
cycles into the subgraph). Let F c E—E’ be a set of edges such that E~(E’wF) is a spanning
tree of the CFG. By the results of Section 4.2.1, E’UF is sufficient for event counting. How-
ever, for every edge fe F, the fundamental cycle C(f) must be pipeless, so Increment () =0.
Therefore, E ’ is sufficient for eventing counting.

As discussed in Chapter 3, the problem of finding a minimal size E’ such that every simple
cycle in E-E’ is pipeless appears to be a difficult problem to solve efficiently. This problem

shares some characteristics with other NP-complete cycle-breaking problems such as Feedback
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Arc Set and Uniconnected Subgraph [23].

Not surprisingly, the condition that every simple cycle in E~E’ is pipeless also is necessary for
event counting. If E~E’ contains a simple cycle with a pipe then it is possible to find two execu-
tions EX | and EX that exhibit different numbers of events but for which the event count com-

puted by the instrumented points is the same. We refer the reader back to Figure 3.8 of Chapter

3.

4.2.5. Computing Query Increments

As mentioned before, there is a trade-off between efficiently counting program events and the
number of points in a program at which queries are guaranteed to give correct results. If every
basic block updates the event counter then queries of the event counter are accurate at any basic
block. On the other hand, updating the event count only at the chord edges of the spanning tree
leads to fewer points at which queries are accurate. This section shows that this problem can be
easily solved by computing a query increment, Querylnc (w), for each vertex w in the CFG. Ifa
query is made just after executing vertex w then Querylnc(w) is simply added to the event
counter to obtain the correct event count (the event counter is not updated by this operation).

That is, for any incomplete execution path IX starting at the root vertex and ending at vertex w:

(Y Events(src(e)))+ Events(w) = (Y Increment(e)) + Querylnc(w)
ee IX ee E’
andee IX

Computing Querylnc (w) is an easy matter. Let T be the set of spanning tree edges. We simply
add an edge e,, = w—root to the CFG and treat it as a member of E-T. This edge e, is a chord
of the spanning tree T with fundamental cycle C(ey). Querylnc(w) is then defined to be
Increment (e,,).> The addition of edge e,, to any incomplete path IX from the root vertex to w

yields a directed cycle IX ’ that contains the same set of vertices as IX. Therefore, by the results

2If the query is to be made at the beginning of the basic block associated with vertex w then Queryinc (w)
should be decremented by Events (w). If the query is to be made at some intermediate point in the block
then Querylnc (w) can be adjusted by the appropriate amount.
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of Section 4.2.1 it follows that for any incomplete path /X ending with vertex w:

(3, Events(src(e)) )+ Events(w) = Y. Increment(e) =
ee IX ee E~-T
andee IX'

(Y Increment(e)) + Increment(ey)

ee E-T
andee IX

Figure 4.6 illustrates this process on the example CFG from Figure 4.1. To compute
Querylnc (B) the CFG is augmented with a chord edge b = B—P, defining a fundamental cycle
C(b). Querylnc(B) = Increment (b) = (—R —C). To compute the query increment for all vertices
in the CFG, we first add chord edge e, = v-—root for each vertex v and then apply the algorithm
of Figure 4.4 to determine the increments (for all chord edges).

Note that query increments can also be used to correctly update the event counter when execu-
tion of a procedure terminates early (i.e., not at the EXIT vertex) due to an exceptional condi-
tional or interprocedural transfer of control (such as set jmp/longjmp). If a procedure exits

early at vertex v then simply update the event counter by adding Querylnc (v) to it.

C(b)

Querylnc(B) = Increment(b) = ( —R -C)

(@ (b)

Figure 4.6. Computing Querylnc(B).
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4.3. INTERPROCEDURAL EVENT COUNTING

The previous section addressed how to count events within a procedure efficiently. This section
describes two problems in efficiently counting events across procedure boundaries and their solu-
tions.

The first problem is to maintain a global counter that counts the number of events executed
throughout the entire program, with the capability to accurately query the counter at any place in
the program. This problem is easily solved using the resuits of the previous section. The first
step computes a spanning tree and determines the chord edge increments for each procedure’s
CFG. The second step ensures that the event count is correct whenever a procedure passes con-
trol to another procedure by treating procedure calls as queries: Immediately before the call the
event counter is incremented by the query increment for the call, and immediately after the call

the event counter is decremented by the same value (to ensure that counts will be correct after the

call).? To query the event counter at vertex w in procedure X, we need only add Querylnc (w) to
the event counter.

Without the second step, queries of the event counter would be prohibitively expensive, as the
following example illustrates. Suppose that vertex B in the CFG of Figure 4.1 contains a call to
procedure X. When B passes control to X the event count is off because Increment (y) has already
accounted for vertices R and C, even though they have not executed. Therefore, to make an accu-
rate query from vertex w in procedure X, the query must add both Querylnc (w) and Querylnc (R)
to the event counter. In general, without the second step, the query may have to add in a query
increment for each active procedure.

The second problem is to maintain a counter cntp ; for each call site (s: call Q) in procedure
P that tracks the number of events executed by the procedure Q (and procedures called transi-

tively) when called from s in procedure P. A number of counters are used to solve this problem.

3For each call, it should be possible to eliminate either the increment or decrement by incorporating either
one into the increment of nearby chords.
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First, there is a global counter cntp for each procedure P. This counter is initialized to O at the
beginning of program execution and counts the number of events executed by P and all pro-
cedures (transitively) called by P. However, cntp is only updated inside of procedure P. Second,
for each (procedure P, call site s: call Q) pair, there is a global counter cntp s and a counter
Lentp g, local to procedure P. The counter cntp s is initialized to 0 at the beginning of execution
and Lentp  is initialized as described below.

Counter increments are determined as follows. For each procedure P, a spanning tree is found
and chord increments are computed. These increments are for events solely inside P and update
the counter cntp. For each call site (s: call Q) in procedure P, the assignment “Lentp s = cntg”
is placed immediately before the call, and the assignments “cntp s :=cntp s + (cntg — Lentp s);
cntp = cntp + (cntg — Lentp )" are placed immediately after the call.

It is not difficult to see that this solution is correct by induction over the calling history of the
program (as represented by a call tree). We show the base case. The induction step is quite simi-
lar. In the base case (at the leaves of the call tree) we have a call (s: call Q) from procedure P
such that procedure Q makes no calls. By recording cntg in Lents p before the call, we ensure
that the difference (cntg — Lentp ) is the number of events executed by procedure Q when called
by P at s.

A query of a call site counter cntp 5 will reflect the number of events for all terminated calls
made from that call site. The effect of still active calls is not reflected in the count until after the
calls terminate. Within a procedure P, we can apply the query increment to cntp to get an accu-
rate event count for cntp. However, outside of procedure P, the value of cnzp will not be current
(i.e., reflect the number of events executed by P and procedures called by P) since cntp is only

updated inside of procedure P.

4.4. RELATED WORK
As discussed in Chapter 3, there are a number of works on the related topic of efficiently profiling
programs with instrumentation [4,24, 40,41, 55,63, 64]. All of these (except [64]) use the span-

ning tree to determine a (small) set of points in a control-flow graph at which to place counters so
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that full and accurate vertex (basic block) profiles or edge profiles can be derived from the meas-
ured points. Knuth’s theorem, stated in Section 4.1, shows that the number of times each
control-flow edge appears in an execution is uniquely determined by the number of times each
chord (of some spanning tree) appears in the execution. For edge profiling, this means that
counters only have to be associated with chord edges, as described in Chapter 3. We have shown
that this theorem can also be applied to event counting. Chapter 3 characterized when a set of
edge counters is necessary and sufficient for vertex profiling [6]. This characterization is structur-
ally equivalent to the characterization for event counting given in Section 4.2.4.

Mellor-Crummey and LeBlanc describe what they call a software instruction counter [49].
This term is misleading, since the software instruction counter does not actually count the number
of instructions that have executed. Rather, the software instruction counter is a pair (PC,SIC)
where PC is the program counter and SIC is a counter that is incremented for each backwards
branch and procedure call executed. Because a program counter’s value can only be reused if a
backwards branch is taken or a chain of recursive calls is made, this pair of values uniquely
identifies a particular instruction in a program’s execution history. Such a counter has utility in
cyclic debugging where one is interested in repeated executions and stopping at a particular state.
However, as defined, the software instruction counter cannot be used to count the number of

instructions executed.
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Chapter 5

BACKGROUND FOR SLICING, DIFFERENCING,
AND INTEGRATION

This chapter defines the goals of slicing, differencing, and integration. As the statements of these
operations will make clear, each is an undecidable problem because each requires reasoning
about when the behavior of one statement of a program affects the behavior of another statement.
However, as with all undecidable problems of program behavior, it is possible to determine a safe
approximation to the problem under consideration. As mentioned in Chapter 1, most previous
work on slicing, differencing and integration has been limited to programs with structured
control-flow. Chapters 6 and 7 describe conservative algorithms for slicing, differencing and
integration in the presence of more complex control-flow.

To simplify our presentation and focus on the problems of slicing, differencing, and integration
of programs with arbitrary control-flow, we consider a simplified language with the following
characteristics: Expressions contain only scalar variables and constants; statements are either
assignment statements, jump statements (e.g., break, halt, goto), output statements, conditional
statements (if-then or if-then-else), or loops (while and repeat). It is easy to generalize our tech-
niques to handle languages with N-way branch constructs, such as case statements, and other
looping constructs. The problems of slicing, differencing, and integration in the presence of mul-
tiple procedures [8, 32, 34,36], non-scalar variables, and other language features [10] are orthogo-
nal to the problems introduced by complex control-flow.

Section 5.1 reviews the control-flow graph representation that is used in the succeeding
chapters and its execution semantics. Section 5.2 discusses the dependence relationships in the
control-flow graph that form the foundation of our algorithms. Section 5.3 formally defines the
goal of slicing. Section 5.4 describes the notion of corresponding components in different pro-

grams and Section 5.5 formally defines the goals of differencing and integration.
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5.1. CONTROL-FLOW GRAPHS AND SEMANTICS

This section defines the control-flow graph, the standard translation from a program to a control-
flow graph, and the execution semantics of the control-flow graph. The control-flow graph
representation for slicing, differencing, and integration differs from the representation for
profiling and tracing in two major respects: vertices in the former represent single instructions
rather than basic blocks of instructions, and the root vertex of the former is a special ENTRY ver-
tex, rather than the vertex that represents the first basic block to be executed. Paths and cycles in

graphs are now assumed to be directed.

5.1.1. The Control-flow Graph

A control-flow graph (CFG) is any directed, rooted graph that satisfies the following conditions.
The CFG has three types of vertices: Statement vertices (either assignment statements or output
statements), which have one successor; predicate vertices, which have one true-successor and one
false-successor; and an EXIT vertex, which has no successors. The root of the CFG is the ENTRY
vertex, which is a predicate that has the EXIT vertex as its false-successor. Every vertex is reach-
able from the ENTRY vertex, and the EXIT vertex is reachable from every vertex. Edges in the
CFG are labeled; the outgoing edges of a predicate vertex are labeled true or false (as appropri-

ate) and the outgoing edge of a statement vertex is labeled null.

5.1.2. Standard Control-flow Translation

In the standard translation from a program to a CFG, the CFG includes a vertex for every assign-
ment statement, output statement, and predicate in the program. The edges of the CFG represent
the flow of control (the ENTRY vertex’s true-successor is the first statement in the program).
Jump statements (such as break and goto) are not represented directly as vertices in the CFG;
instead, they are represented indirectly in that they affect the flow of control, and therefore the

targets of some CFG edges. Figure 5.1 presents an example program and its CFG.
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begin

sum =0

prod =1

i=0

while { < Ndo
[ =i+l
sum = sum-+i
prod = prod*i

od

output(sum)

output(prod)

end

(a) Example program (b) Example control-flow graph

Figure 5.1. A program and its control-flow graph.

Figure 5.2 presents an attribute grammar for the language under consideration, in which the
attributes are used to define the translation from a program to its CFG. The grammar is given in
the style used in [60], in which the underlying context free grammar defines a program’s abstract
(rather than concrete) syntax. Operator names are used to identify productions uniquely. Each
production in the grammar is of the form “xq: op(x1 x2 - - x)”, where op is an operator name
and each x; is a nonterminal. Every nonterminal has a synthesized attribute entry and an inher-
ited attribute cont, both of which represent vertices in the CFG. The constructor Pred(z,v,w)
creates a predicate vertex with text ¢, true-successor v, and false-successor w, while the construc-
tor FallThrough(z,v) creates a fall-through vertex with text z and successor v.

The notation “aftr ={ - --}” is an upward remote attribute reference; its value is the first
instance of a set element encountered on the path to the root in the abstract syntax tree. For

example, a break statement passes control to the continuation of the innermost enclosing loop. A
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prog:
Program ( seq ) {
prog.entry = Pred( "ENTRY", seq.entry, seq.cont)
prog.cont = seq.cont = FallThrough( "EXIT", null)

}7

seq:
NullSeq () {
seq.entry = seq.cont
}
| Sequence ( stmtseq ) {
seq.entry = stmt.entry
stmt.cont = seqy.entry
seqp.cont = seq;.cont

},

stmt:
NullStmt () {
stmt.entry = stmt.cont
}
| While ( exprseq ) {
stmt.entry = Pred( "expr", seq.entry, stmt.cont)
seq.cont = stmt.entry
}
| Repeat ( seq expr) {
stmt.entry = seq.entry
seq.cont = Pred( "expr", stmt.cont, seq.entry)

}

IfThen ( expr seq ) {
stmt.entry =
Pred( "expr", seq.entry, stmt.cont)
seq.cont = stmt.cont

}
IfThenElse ( expr seq seq ) {
stmt.entry =

Pred( "expr", seqy .entry, seqp.entry)
seq .cont = seqy.cont = stmt.cont

}
Assign (ID expr) {
stmt.entry =
FallThrough( "ID := expr", stmt.cont)

}

Label (ID ) {
stmt.entry = stmt.cont
insert(ID, stmt.entry)

}
Break () {
stmt.entry = { Repeat.cont, While.cont }

}
Halt () {
stmt.entry = { Program.cont }

}
Goto (ID ) {

stmt.entry = lookup(ID)
B

Figure 5.2. Abstract syntax for the language under consideration with attribution that defines the control-
flow graph. The notation “expr” means some appropriate representation of the expression; for example, its
parse tree.

global symbol table (with operations insert and lookup) is used to manage the control-flow
between Goto and Label. In a pure attribute grammar the symbol table would be threaded
through the abstract syntax tree.

The grammar presented in Figure 5.2 makes precise the relationship between a program’s
abstract syntax tree and its CFG. Every vertex in the CFG is associated with the stmt production
that created the vertex. In the remainder of the thesis, we use the term program component to
refer to an instance of a stmt production in a program (i.e., a node in the abstract syntax tree) that

creates a CFG vertéx (some productions, such as Label do not create a vertex). Given a stmt
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subtree T, vert (T) denotes the CFG vertex associated with T”s root production.

We note that there are programs whose standard control-flow translation does not yield a CFG.
For example, it is possible to create code that is not reachable from ENTRY or from which the
EXIT vertex is unreachable, or to define a program whose control-flow translation is not well-
defined (for example, a goto to an undefined label or a break that is not enclosed in a loop). We

consider only programs that yield a CFG under the standard translation.

5.1.3. Control-flow Graph Semantics

The operational semantics for the CFG is defined as follows: Execution starts at the ENTRY ver-
tex (which always evaluates to true), with an initial state ; at any moment there is a single point
of control together with a state mapping variables to values; the execution of each statement or
predicate vertex passes control to a single successor. The execution of an assignment statement
changes the state. Execution terminates normally if EXIT is reached (execution can fail to ter-
minate normally if the program includes an infinite loop or an exception such as division by
zero). An execution of CFG G on initial state ¢ is denoted by G ().

For an execution G (G), we characterize the behavior at a vertex by the sequence of values that
arise at that vertex!. This is defined as follows: For an assignment statement vertex, the sequence
of values assigned to the left-hand-side variable; for an output statement, the sequence of values
output; and for a predicate vertex, the sequence of boolean values to which the predicate’s
boolean expression evaluates. G(c)(v) denotes the sequence of values that arise at vertex v in
execution G(G).

A common thread in the operations of slicing, differencing, and integration is the comparison

of the behavior of components across programs. The following definition defines what we mean

Note that our definition of a vertex’s behavior differs from the more standard definition, which character-
izes a vertex’s behavior as the sequence of states that arise at that vertex during an execution (where a state
associates a value with every variable in the program).
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for two vertices in different CFGs to have equivalent behavior. This definition will be used to

define the goals of slicing, differencing, and integration.

DEFINITION (equivalent behavior of vertices). Vertices vg and vy of CFGs G and H, respec-

tively, have equivalent behavior iff all the following hold:

° For all ¢ such that both G(o) and H(c) terminate normally, G(6)(vg) = H(0)(vy)-

e  For all ¢ such that neither G(6) nor H(c) terminates normally, G(6)(vg) is a prefix of
H(o)(vg), or vice versa.

® For all ¢ such that G(o) terminates normally but H(c) does not, H(G)(vy) is a prefix of
G(o)ve).

e  For all ¢ such that H(G) terminates normally but G(c) does not, G(0)(vg) is a prefix of

H(0)(vH)-

5.2. PROGRAM DEPENDENCES
Slicing, differencing, and integration make use of program dependences, relations between ver-
tices in a CFG. We consider two types of dependences: control dependences and flow depen-

dences.

DEFINITION (postdominance). Let v and w be vertices in a CFG G. Vertex w postdominates ver-
tex v, denoted by w pd v, iff w # v and w is on every path from v to the EXIT vertex. Vertex w
postdominates the L-branch of predicate vertex v (where L is either true or false), denoted by w
pd (v,L), iff w is the L-successor of v or w postdominates the L-successor of v. While no vertex
can postdominate itself, a vertex can postdominate its own L-branch. The immediate postdomi-
nator of a vertex v, denoted by ipd(G,v), is the postdominator of v such that there is no vertex w

such that ipd(G,v) pdw pdv.

DEFINITION (control dependence). Let v and w be vertices in a CFG. Vertex w is directly L-
control dependent on v (written v —>L w) iff w postdominates the L-branch of v and w does not

postdominate v. Intuitively, if v —>Lyw, then whenever v executes and evaluates to L, w will
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eventually execute, barring abnormal termination. Furthermore, if v executes and does not evalu-

ate to L, w might not execute.

DEFINITION (transitive control dependence). Given a CFG G and vertex v, transCD(G,v) denotes
the set of vertices that are reflexively and transitively control dependent on v (i.e., { w|v —>iw
1). It is well known that this set can be equivalently defined as the set of vertices reachable from v

in G via a path that does not include ipd(G,v).

DEFINITION (flow dependence). Let v and w be vertices in a CFG G. There is a flow dependence
from vertex v to vertex w (written v —>¢w) iff vertex v assigns to variable x, vertex w uses x, and

there is a path in G from v to w that does not include an assignment to x (excluding v and w).

The program dependence graph (PDG) is a graph that contains the same vertex set as the CFG

(except for the EXIT vertex) [17]. The edges of the PDG are the control and flow dependences, as

defined above.2 Given a CFG G, let PDG(G) denote G’s program dependence graph. The control
dependence subgraph of PDG(G), denoted by CDG(G), contains only control dependence edges.
Figure 5.3 shows the program dependence graph of the CFG in Figure 5.1(a). Solid edges are

control dependences and dashed edges are flow dependences.

5.3. SLICING PROGRAMS

Program slicing, a program transformation originally defined by Mark Weiser [71], is useful in
program debugging [42], program maintenance [30], and other applications that involve under-
standing program behavior [31]. Given a program component ¢ and a set of variables V, the goal

of slicing (as defined by Weiser) is to create a projection of the program (by eliminating some

2In addition to control and flow dependences, program dependence graphs usually include either def-order
dependences [29] or output and anti-dependences [17]. These additional edges are not needed for slicing,
and so are omitted from the definition given here. We also do not need to distinguish between loop-
independent and loop-carried dependences (which are ill-defined for irreducible control-flow). We will in-
troduce a new type of edge needed for differencing and integration in Chapter 7.




83

___________________
......

output (prod)

wer’
e

.

A
A
..

.
.
~ -
......

R
-
.
......
-------------------

Ve
.
“ea

o
.
e

Figure 5.3. The program dependence graph of the CFG in Figure 5.1(a). Solid edges are control depen-
dences and dashed edges are flow dependences.

statements), such that the projection and the original program compute the same values for all
variables in V at component ¢. Implicit in the goal of slicing is that the program projection be as

small as possible. The program shown in Figure 5.4(a) computes the sum and product of the

numbers from 1 to N°. Figure 5.4(b) shows the result of slicing the example program with
respect to the statement output(prod) and the variable prod. For any value of N, the example
program and the program projection compute the same value for variable prod in the output
statement.

We consider a slightly restricted version of slicing in which the set of variables V includes only
variables used or defined at component c. However, following the example of Reps and
Yang [62], we strengthen the goal of slicing by requiring that each component of the program
projection have equivalent behavior to its corresponding component in the original program. That
is, given a program P and component c, the goal of slicing is to find a program projection Q that

includes ¢ such that each component of Q has equivalent behavior to its corresponding

3In the example program, variable N is used without being explicitly initialized. It is assumed that such
variables get their values from an initial state on which the program is executed.



begin begin
sum =0
prod =1 prod =1
i=0 i=0
while i < Ndo while i < Ndo
i=i+l =i+l
sum = sum-+i
prod = prod*i prod = prod*i
od od
output(sum)
output(prod) output(prod)
end end
(a) Example Program (b) Result of slicing with respect to output(prod)

Figure 5.4. An example program, and the result of slicing with respect to output(prod).

component in P. The program projection in Figure 5.4(b) meets this stronger requirement.

5.4. CORRESPONDING COMPONENTS
The operation of slicing creates a program Q from program P by eliminating components of pro-
gram P. Therefore, the correspondence between components of P and @ is straightforwardly
determined. However, the operations of differencing and integration take more than one program
as input: Differencing compares the behavior of two different programs, while integration
attempts to merge two variants of an original program in a satisfactory manner. Differencing and
integration require that corresponding program components in different programs be identified in
some way. A correspondence between programs New and Old is a 1-1 partial function f from
components (vertices) of New to components of Old such that for all vertices v of New, either (1)
f (v) is a component of Old with the same abstract syntax and associated text as v, or (2) f(v) is
undefined. There are several ways in which a correspondence may be established:
® A language-based editor may be used to tag program components and track them over edit-
ing changes in order to maintain the correspondence, as suggested by Horwitz, Prins, and

Reps [30].
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e  The correspondence can be computed directly from the two programs. For example,
Horwitz suggests a number of approaches for computing a correspondence based on pro-
gram dependences [31], while Yang gives an algorithm that finds a maximal syntactic
match between two programs by dynamic programming [72].

We will not concern ourselves here with how a correspondence is established, relying on one of

the above techniques to provide the mapping between programs.

5.5. DIFFERENCING AND INTEGRATION

Given two programs, Old and New, and a correspondence between components of the programs,
the difference of New with respect to Old is a set of components whose behavior in New is dif-
ferent than in Old. In particular, the difference of New with respect to Old includes all com-
ponents of New that have no corresponding component in Old, as well as all components in New
whose corresponding component in Old has inequivalent behavior. Because it is impossible to
identify this set exactly, a safe algorithm will also sometimes include components of New whose

corresponding component in Old has equivalent behavior. Figure 5.5 shows two programs, Old

old New
begin begin
sum =0 sum =N “— o
prod =1 prod =1
i=0 =0
while i < Ndo while i < Ndo
i=i+l i=i+1
sum ;= sum-+i sum =sum+i ¢ ®
prod = prod*i prod = prod*i
od od
output(sum) output(sum) “— o
output(prod) output(prod)
end end

Figure 5.5. Computing the differences of program New with respect to program Old Program New is an-
nonated to show components that may exhibit different behavior from the corresponding components of
old.



86

and New. The assignment statement “sum := 0” in Old has been changed to “sum := N” in New

so that New computes the sum of the numbers from N+1 to N+N. Differencing shows those

components of New whose behaviors may be different.

Program integration takes three programs as input: an original program BASE, and programs A
and B, which are variants of BASE. Correspondence mappings between A and BASE, and B and
BASE are also required. Informally stated, the goal of integration is to automatically determine
the changes in each variant with respect to BASE, and incorporate these changes, as well as the
portion of BASE that is preserved in the variants, into a merged program M. Stated more for-
mally, the goal of integration is to find a program M such that for any initial state ¢ on which A,
B, and BASE all terminate normally, all of the following hold:

(1) M (o) terminates normally;

(2) If there are comesponding components v4 and vpasg  such  that
A(0)(v4) # BASE(0)(vpasg), then there is a component v in M such that
M(c)(v)=A(0)(va);

(3) If there are cormresponding components vp and vpasg  such  that
B(0)(vp) # BASE(6)(vpasg), then there is a component v in M such that
M(c)(v) = B(0)(vB);

(4) If there is a component v in BASE with corresponding components in A and B such that the
sequence of values at v in A, B, and BASE is the same then there is a component w in M
such that M (6)(w) = BASE (G)(v).

An additional goal of integration is that the program M should resemble the input programs as

much as possible.

Figure 5.6 presents an example of a successful integration. Program BASE sums the integers
from 1 to N. Variant A changes the initial assignment to the variable sum to compute the sum of
the numbers from N to N +N (rather than from 1 to N). Variant B adds code to compute the pro-

duct of the numbers from 1 to N. Program M is a merged program that successfully merges the
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BASE

begin
sum =0
i=0
while i < Ndo
=i+l
SUm = Sum-+i
od
output(sum)
end

A

begin
sum =N
i:=0
while i < Ndo
=i+l
sum = sum-+i
od
output(sum)
end

&

(__

(._.

B

begin

sum =0
prod =1 “— o
i=0
while i < N do

=i+l

sum = sum+i

prod = prod*i « e
od
output(sum)
output(prod) “— o

end

M

begin

sum =1

prod =1

i=0

while i < Ndo
=i+
sum = sum-+i
prod = prod*i

od

output(sum)

output(prod)

end

Figure 5.6. Integration of programs A and B with respect to BASE. Programs A and B are variants of pro-
gram BASE. Those components marked with bullets in the variants represent components whose behavior
is not equivalent to the corresponding component in BASE. Program M is an acceptable result of integra-

tion.

changes introduced in the variants and preserves the common behavior of all three (the computa-

tions involving induction variable i). Of course, there are input programs for which integration

will not succeed because the changes made in variants A and B conflict with one another. For

example, in Figure 5.6, if variant B had changed the assignment “sum := 0" in BASE to “sum .=

17, this would conflict with the change to the assignment made in variant A.



Chapter 6

SLICING PROGRAMS WITH ARBITRARY
CONTROL-FLOW

This chapter addresses the problem of slicing programs with unstructured control-flow, i.e., pro-
grams that include constructs such as break, continue, and goto. Previous algorithms for slicing
programs with unstructured control-flow are ad-hoc, overly conservative in their approach (that
is, the projections they produce are unnecessarily large), and lack any accompanying proofs of
correctness. We give a program-slicing algorithm based on program dependence graphs that
correctly handles such programs, and we prove that the program projections produced by our
algorithm meet the semantic goal of program slicing: each component in the projection has
equivalent behavior to its corresponding component in the original program (including the point
of the slice). Our algorithm works for programs with completely arbitrary control-flow, including
irreducible control-flow [1].

Algorithms for slicing programs with structured control-flow have been defined by Weiser [71]
and by the Ottensteins [52]. Neither of these algorithms works correctly for programs with
unstructured control-flow. Lyle developed an ad-hoc algorithm for slicing programs in the pres-
ence of arbitrary control-flow but his algorithm is overly conservative, as described by Gallagher
[21]. Gallagher refined Lyle’s algorithm to produce smaller slices but his algorithm contains
some errors that cause it to produce semantically incorrect program projections [21].

We focus on the Ottensteins’ algorithm and consider the problems that arise if one tries to
apply this algorithm to programs with unstructured control-flow. The Ottensteins’ algorithm
makes use of the control-flow graph and program dependence graph representations. There are
two steps to the algorithm for slicing with respect to program component c. In Step 1, control
and flow dependence edges are traversed in the reverse direction in the program dependence

graph from the vertex corresponding to component ¢ (we refer to this step as backwards-closure),
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identifying a set of vertices S in the program dependence graph. Step 2 produces the program
projection by eliminating from the original program all components that do not correspond to a
vertex in S.

If one uses the standard control-flow graph for programs with unstructured control-flow (i.e., a
graph in which a jump gives rise to a single control-flow edge—see Figure 6.1(b)), the program
projections computed by the Ottensteins’ algorithm may fail to meet the semantic goal of pro-
gram slicing; that is, the projections may compute different values than the original program at
the point of the slice. The problem is that the algorithm does not correctly detect when uncondi-
tional jumps in the program (such as the break in Figure 6.1) are required in the program projec-

tion in order to meet the semantic goal of slicing.

Example. Consider the program shown in Figure 6.1(a). Figure 6.1(b) shows the standard
control-flow graph for this program, and Figure 6.1(c) shows the program dependence graph of
this control-flow graph. In the two graphs, shading is used to indicate the vertices that would be
identified by backwards-closure in the program dependence graph with respect to
“output(prod)”. Figure 6.1(d) shows the program projection obtained by eliminating all com-
ponents not identified by the slicing algorithm. Because the break statement is absent from the
projection, it does not satisfy the semantic goal (i.e., for some values of N and MAXINT, different
final values of prod will be output by the original program and by the projection). A projection
that does satisfy the semantic goal (and that would be produced by the slicing algorithm defined
in this chapter) is shown in Figure 6.1(e). [1

Simply including a vertex for the break in the control-flow graph, such that the break vertex
has a single successor, does not solve the problem. The break will still be omitted from the slice
because in the program dependence graph the break vertex will have no outgoing flow or control
dependence edges, and so there will be no path from the break to the vertex “output(prod)”.

The main result of this chapter is a slicing algorithm for programs with unstructured control-

flow, and a proof of the correctness of this algorithm; that is, we show that the program
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begin
sum =0
prod =1
i:=0
while i < Ndo
=i+l
if prod > MAXINT/i then
i=i-1
break
fi
sum = sum-+i
prod = prod*i
od
output(i)
output(sum)
output(prod)
end

(a) Example program

(c) Program dependence graph

begin begin
prod =1 prod =1
i=0 i=0
while i < Ndo while i < Ndo
=i+l {=i+l
if prod > MAXINT/i then if prod > MAXINT/i then
fi break
prod = prod*i fi
prod = prod*i
output(prod) od
end output(prod)
end
(d) Incorrect projection (e) Correct projection

Figure 6.1. An example program, its control-flow graph, its program dependence graph (solid arrows are
control dependences, dashed arrows are flow dependences), the (incorrect) projection that would be com-
puted using the Ottensteins’ algorithm to slice with respect to output(prod), and the correct projection.
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projections produced by the algorithm have the desired semantic property: Both the original pro-
gram and the projection compute the same values at the point of the slice. The algorithm is in the
style of the Ottensteins’ algorithm in that it operates on a program dependence graph representa-
tion of a program; however, the program dependence graph is based on a control-flow graph in
which a jump is represented as a pseudo-predicate vertex (that always evaluates to true). The
jump vertex’s true-successor is the target of the jump, and its false-successor is the vertex that
represents the jump statement’s continuation (that is, the vertex that would be the jump vertex’s
successor if it were a “no-op” rather than a jump). We are able to prove that by using this aug-
mented control-flow graph, a projection of the program that has the desired semantic property can
be formed.

This chapter is organized as follows. Section 6.1 presents our slicing algorithm and gives an
outline of its proof of correctness. Section 6.2 fills in the details of the proof. Section 6.3
discusses the issues of minimal slices. Section 6.4 describes how to slice in the presence of loop-
ing and conditional control constructs other than those described in Chapter 5. Section 6.5

reviews related work in the area of slicing.

6.1. ALGORITHM AND PROOF SKETCH

In this section we present our slicing algorithm and sketch a proof that it produces program pro-
jections with the desired semantic property: Given program P and component ¢, our algorithm,
Slice(P,c), produces a projection Q including component ¢ such that each component of Q has

equivalent behavior to its corresponding component in P.

6.1.1. The Slicing Algorithm

Our slicing algorithm is similar to the Ottensteins’ algorithm in that it uses backwards-closure in
the program dependence graph (PDG) to identify the program components in the slice. In partic-
ular, given a PDG and a vertex v (corresponding to component c: v = vert (¢)) from which to
slice, Step 1 of our algorithm identifies the subset of the PDG’s vertices from which there is a

path along control and/or flow dependence edges to vertex v (i.e., Step 1 computes the backwards
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reflexive transitive closure over control and flow dependences from vertex v). Step 2 of the algo-
rithm creates a program projection by eliminating components from the original program P that
do not correspond to the vertices identified in Step 1, resulting in program Q. For each vertex w
that is not identified by Step 1 of the algorithm, Step 2 eliminates the stmt subtree T such that
vert(T) = w. Eliminating a stmt subtree T that contains no Label subtrees is accomplished sim-
ply by replacing that subtree by the NullStmt subtree (Figure 6.2(a)). If T contains Label sub-
trees, they are sequenced together to replace T (Figure 6.2(b)). The order of the labels in the
sequence is not important. If there is no Goto to a Label subtree in the program, then the Label
subtree can be eliminated by replacing it with NullStmt.

The important difference between our algorithm and the Ottensteins’ is that we use an aug-
mented control-flow translation from the program to the CFG, from which the PDG is built. The
translations for all the structured constructs (i.e., if-then, if-then-else, while, and repeat) remain

the same. However, jump statements are explicitly represented in the CFG as pseudo-predicate

Sequence Sequence
stmt seq NullStmt seq
(a) el
Sequence Sequence
®) stmt seq Label  Sequence
[ !

L1 Label
|

L2

Figure 6.2. Eliminating a stmt subtree without labels (a) and with labels (b).




93

vertices that always evaluate to true. Figure 6.3 presents the translations of these constructs
under the angmented translation. A jump vertex’s true-successor is the target of the jump; its
false-successor is the vertex that represents the jump statement’s fall-through or continuation
(that is, the vertex that would be the jump vertex’s successor if it were a “no-op” rather than a
jump). The outgoing false edge of a jump vertex is a “dummy” edge that is never actually
traversed in an execution.! Representing a jump statement this way causes it to be the source of
control dependence edges in the PDG. This in turn allows the jump vertex to be correctly

included in the backwards-closure in the PDG.

Example. Figure 6.4(a) repeats the program of Figure 6.1(a) and shows the program’s aug-
mented CFG. Figure 6.4(b) shows the vertices, control edges, and some of the flow edges of the
corresponding PDG (flow edges that are not relevant to the backwards-closure with respect to

“output(prod)” are omitted).

stmt:
Break () {
stmt.entry = Pred( "break”, { Repeat.cont, While.cont }, stmt.cont)

}

| Halt () {
_ stmt.entry = Pred( "halt", { Program.cont }, stmt.cont)
} N

| Goto (ID) {
stmt.entry = Pred( "goto ID", lookup(ID), stmt.cont)
B

Figure 6.3. Augmented control-flow translations for jump statements.

! It is important to note that representing jump statements this way in the CFG does not change the seman-
tics of the CFG as defined in Chapter 5. In particular, since a jump is treated as a predicate that always
evaluates to frue, and since the jump vertex’s true-successor is the target of the jump, it is clear that for
every vertex v in the standard CFG G and every initial state o, the behavior at v when G is executed on G is
the same as the behavior at the corresponding vertex when the augmented CFG is executed on ©.
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begin
sum =0
prod =1
i=0
while i < Ndo
i =i+l
if prod > MAXINT/i then
[=i-1
break
fi
sum = sum+i
prod = prod*i

od
output(i
ougutés)um)
output(prod)
end

(a) Example program and its augmented CFG

(b) Corresponding PDG

Figure 6.4. The example program from Figure 6.1(a), its augmented CFG, and the corresponding PDG.
Shading is used to indicate the PDG vertices identified by backwards-closure with respect to
“output(prod)”. Flow edges that are not relevant to the backwards-closure with respect to “output(prod)”
are omitted.

Note that in this PDG, the break vertex has three outgoing control dependence edges (which are
not in the PDG of Figure 6.1(c)). These edges are consistent with the intuition behind control
dependence: Removing the break might change the number of times the assignments to sum and
prod as well as the evaluation of the loop predicate were performed (and therefore there are con-
trol dependence edges from the break vertex to the vertices that represent these three com-

ponents). However, the presence or absence of the break has no effect on whether or not
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statements outside the loop are executed (and therefore there are no control dependence edges

from the break vertex to a vertex that represents a statement outside the loop).

In Figure 6.4(b), shading is used to indicate the PDG vertices that are identified by backwards-
closure with respect to “output(prod)”. Note that the shaded vertices correspond to the program
components that are included in the correct program projection shown in Figure 6.1(e). [J

We note that if flow dependences are computed in the augmented CFG, some flow depen-
dences arise as a result of paths including dummy edges. Since dummy edges are never actually
traversed in an execution, these flow dependences can never be realized in an execution. To
avoid these flow dependence edges (and increase the precision of slicing), dummy edges should
be ignored when computing flow dependences in the augmented CFG. (Equivalently, flow

dependences can be computed in the standard CFG rather than the augmented CFG.)

6.1.2. Sketch of Correctness
In this section we sketch a proof that our slicing algorithm produces a program projection with

the desired semantic property.

6.1.2.1. A semantics-preserving transformation on CFGs
The first step of the proof is to show that eliminating the vertices not identified by backwards-

closure in the PDG with respect to the slicing vertex (Step 1 of the algorithm) is a semantics-

preserving transformation on CFGs.? In particular, we show that every vertex in the resulting
CFG has equivalent behavior to its corresponding vertex in the original CFG. This part of the
proof does not rely at all on the augmented translation. That is, the results here are for arbitrary

CFGs, regardless of the program from which they were derived.

2 To eliminate a vertex x from CFG G: For every vertex a such that there is an edge a—L1x and for every
vertex b such that there is an edge x—>L2p, remove edges a—L1x and x—2b; add edge a—sL'1b. Remove

vertex x.
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Example. Figure 6.5 repeats the (augmented) CFG of Figure 6.4(a) and shows the CFG that
results from eliminating the vertices not identified by backwards-closure with respect to
“output(prod)”. [

The proof that eliminating the vertices not identified by backwards-closure in the PDG is a

semantics-preserving transformation relies on the following definitions and theorems:

DEFINITION (CFG path). For the purposes of this chapter, we define a path in a CFG as a

sequence of alternating vertices and edge labels of the form (v1,l1, * = * vy —1,ln—1,Vs) such that

for every label /; there is an edge v,~-—>l‘ v;+1 in the CFG.

DEFINITION (project operator). Given a path PTH and a set of vertices V, project(PTH,V) is
defined to be the sequence resulting from deleting from PTH each vertex v; and label /; such that

v; € V. We refer to PTH as a generating path of project(PTH, V).

)

(a) Original (augmented) CFG of the example (b) After eliminating unshaded vertices.
program. Shading indicates the vertices
identified by backwards-closure with respect

to “output(prod)”.

Figure 6.5. Eliminating vertices not in the backwards-closure preserves CFG semantics.
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DEFINITION (path-projection). CFG H is a path-projection of CFG G iff all of the following hold:

(1) V(H)< V(G), the vertices of H are a subset of the vertices of G.>
(2) For each path PTH in G, project(PTH, V(H)) is a path in H.

(3) For each path in H there is a generating path in G for that path.

DEFINITION (flow/path-projection). CFG H is a flow/path-projection of CFG G iff both of the

following hold:

(1) H is a path-projection of G.
(2) Forevery vertexwe V(H),if G induces the flow dependence v —>w, then v € V(H).

Example. Figure 6.6 shows four CFGs. Both H and J are path-projections of G; however, K is
not. This is because G includes the path (Entry, T, x>0, F, y =0, null, output(y), null, output(x),
null, Exit), but the path (Entry, T, Exit) is not in K. His also a flow/path-projection of G, but J is
not. This is because vertex “output(y)” is in J, graph G induces a flow dependence from “y =17

to “output(y)”, but vertex “y:=1"isnotinJ. [J

CFG G CFG H CFG J CFG K

Figure 6.6. H and J are path-projections of G; K is not. H is also a flow/path-projection of G; J is not.

3Given a graph G, V(G) denotes the vertex set of G. We use this notation to clarify which graph is under
consideration.
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THEOREM 6.1. (flow/path-projections preserve CFG semantics). If CFG H is a flow/path-

projection of CFG G, then for each vertex ve V(H):

e For all ¢ such that G(c) terminates normally, H(o) terminates normally and
G(o)v) = H(O)().

° For all ¢ such that G(c) does not terminate normally, G(6)(v) is a prefix of H(c)(v).

It is straightforward to see that these two points imply that each vertex in CFG H has equivalent

behavior to its corresponding vertex in CFG G.

PROOF. See Section 6.2.1.

The following theorem shows that backwards-closure in the PDG finds the set of vertices

necessary and sufficient to form a CFG that is a flow/path-projection of the original CFG.

THEOREM 6.2. (backwards closure in PDG finds flow/path-projection). Given: CFG G, its PDG
D, and vertex v. Eliminating the vertices from G that are not in the backwards closure of D with
respect to v yields a CFG that is the minimal flow/path-projection of G that contains v.

PROOF. See Section 6.2.2.

6.1.2.2. A semantics-preserving transformation on programs

Recall that the goal of program slicing is to produce a projection of a given program, not to pro-
duce a projection éf a given CFG. As illustrated by the example of Figure 6.1, under the standard
control-flow translation, creating a program projection by eliminating components that do not
correspond to the vertices identified by backwards-closure does not result in a projection with the
desired semantic property.

The second part of the proof of correctness of our algorithm involves showing that under the
augmented translation, eliminating program components that do not correspond to the vertices
identified by backwards-closure (Step 2 of the algorithm) is a semantics-preserving transforma-
tion on programs. To prove this, we show that the relationships pictured in Figure 6.7(a) hold.
That is, given a program P and a component ¢, we show that the program Q that results from

applying our slicing algorithm to P has a CFG H that is a flow/path-projection of P’s CFG G. By
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make—-CFG make-CFG
P G | G
! A I !
Slice( P, c) h—projection— eliminate vertices of G
’ flow/path=projection=of Slice( P, ¢ ) not identified by
l Step 1 of Slice( P, ¢ )
Q make-CFG
make—-CFG Q H
Programs CFGs
Programs CFGs
(a) (b)

Figure 6.7. Slicing is a semantics-preserving transformation on programs.

the results of the previous section, this means that the vertices in H (in particular, the vertex that
corresponds to ¢) have equivalent behavior to their corresponding vertices in G. This part of the
proof relies on several properties relating the abstract syntax of the language to the augmented
CFG. Rather than argue directly that H is a flow/path-projection of G, we have shown that H can
be obtained from G by eliminating all vertices not identified by backwards-closure, as pictured in
Figure 6.7(b). It then follows from the results of the previous section that H is a flow/path-

projection of G. See Section 6.2.3 for the proof.

6.2. PROOF OF CORRECTNESS

This section contains proofs of the results stated in Section 6.1.2.

6.2.1. The Behavior of Flow/Path-Projections

This section proves Theorem 6.1. The execution path of execution G(0) is the (possibly infinite)
path executed by G(o). If the execution terminates normally, the path ends with the EXIT vertex.
Otherwise, the path is infinite or ends at the first point of failure (i.e., a vertex at which an excep-
tion occurs). The i instance of a vertex v in G(o), denoted by vi, is the i™ occurrence of vertex

v in the execution path of G(0).
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The proof of Theorem 6.1 follows directly from the following lemma. This lemma shows that
if H is a flow/path-projection of G, then, for any initial state o, the execution path of H(C) is a
projection of the execution path of G (o) and, furthermore, that intermediate states at correspond-
ing instances in the two executions agree on certain variables. Since H is a path-projection of G,
it may omit some assignment statements that appear in G. Therefore, we cannot expect the inter-
mediate states of H (o) and G (0) to agree on all variables. Instead, we show that the intermediate
states before an instance v¢ in H (o) and its corresponding instance in G (o) are guaranteed to

agree on all variables that are live before vertex v in CFG H.

DEFINITION (state at execution of instance v;). state(G(0), vi) denotes the state immediately
before the execution of instance v’ in G(G).
DEFINITION (variables live before vertex v). live_before(G,v) = { x | there is a path in G from v to

a vertex w that uses variable x such that no vertex in the path (excluding w but including v) con-

tains an assignment to x }.*

LEMMA 6.3. If CFG H is a flow/path-projection of CFG G then for any initial state o, if PTH is a
prefix of G(G)’s execution path then
(1) project(PTH, V(H)) is a prefix of H(G)’s execution path, and
(2) for every instance viin PTH such that ve V(H), Vx e live_before(H,v):
state(G (6),v!)(x) = state(H(0),v")(x).
PROOF. By induction on n, the number of vertices in PTH that are in V (H).
Base Case: n=1. In this case, PTH = (ENTRY). Trivial.
Induction Step: Assume that the lemma holds when PTH includes n vertices that are in V(H).

Show that the lemma holds when PTH includes n+1 vertices that are in V(H). Let v be the n'"

4We can also add the restriction that no edge in the path is a dummy edge (as done for the computation of
flow dependences). This does not affect the correctness of the proof, since a dummy edge can never ap-
pear in an execution path.
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vertex in PTH that is in V(H); let w/ be the n+1% (and last) vertex in PTH that is in V(H). PTH
contains three subpaths of interest (see Figure 6.8(a)):
e  PTHI is the prefix of PTH from ENTRY up to and including vi,
° PTH? is the middle part of PTH that includes everything in PTH from v; to wi.
° PTH3 is the suffix of PTH that includes everything from w; to the end of PTH. Note that
w; is the only vertex in PTH3 that is in V (H).

By point (1) of the Induction Hypothesis, project(PTHI, V(H)) is a prefix of H(o)’s execution
path. By point (2), Vxe live_before(H,v), state(G (0),vi)(x) = state(H (G),vi)(x). Every vari-
able used at v¢ is in live_before(H,v), so the value computed at vt is the same in the two execu-

tions. Since H is a path-projection of G, if v is a fall-through vertex, then w will be the next

| PTH?2 1
—— PTHI /1 —— PTH3 —
ENTRY -~ .. v -—'l» B A
(@) P Empem R v
A B C D

PTH

1 project(PTH2, V(H))
[~ project(PTHI, V(H})) —

/

ENTRY - Yo
A B C D

b projec(PTH, V(H)) ——

Figure 6.8. An execution path in CFG G (a) and its projection in CFG H (b). The grey bars denote those
vertices in the path in CFG G that are in V(H).
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vertex to execute after v/ in H (o). If v is a predicate vertex, then since the value computed at vi
is the same in H (o) as in G (o), w will be the next vertex to execute after viinH (6). Therefore,
project(PTH, V (H)) is a prefix of H(c)’s execution path (see Figure 6.8(b)).

We now show that Vx e live_before(H,w): state(G (G),wj Y}x) = state(H (G),wj )(x). Suppose
that dxe live_before(H,w) such that state(G(G),wj )x) # state(H (G),wj )(x). Since xe
live_before(H,w), either x € live_before(H,v) and v does not assign to x, or v assigns to x. By the
Induction Hypothesis, if x € live_before(H,v), state(G(0),v*)(x) = state(H(c),v")(x). Further-
more, the difference in the value of x at w/ cannot have been caused by an assignment at v, since
the same value is computed at v in both executions. Therefore, there must be a vertex z that
occurs in PTH2 between v’ and w/ such that: (a) z assigns to x, and (b) there is no other vertex
that assigns to x between z and w/. Let PTHy be a path in H from w to vertex y that induces x’s
membership in live_before(H,w) (y uses variable x and no vertex in PTHy, except possibly y,
assigns to x). Let PTH( be a generating path for PTHy. Without loss of generality, assume that
PTH,; begins with w and ends with y. Since H is a flow/path-projection of G, no vertex in PTHg,
except y, can assign to x (otherwise by point (2) of the definition of flow/path-projection, that ver-
tex would also be in V(H), and by point (2) of the definition of path-projection, it would occur in
PTHy before y). This implies that G induces the flow dependence z —>y. Since y € V(H) and

H is a flow/path-projection of G, z must be a member of V (H). Contradiction. []

PROOF. (Theorem 6.1).

Let CFG H be a flow/path-projection of CFG G. Let PTH be a prefix of G(0)’s execution path.
By point (1) of lemma 6.3, project(PTH,V(H)) is a prefix of H(G)'s execution path. Point (2)
implies that the value of the expressions in corresponding instances v’ in PTH and
project(PTH, V (H)) are the same. We make the following observations:

e If G(0) terminates normally then its execution path is finite and ends with EXIT, so H(0)

must terminate normally. In this case, for all v e V(H), H(c)(v) = G(O)(v).
® If G(o) does not terminate normally, then H(C) may or may not terminate normally,

depending on whether or not the non-terminating or exception-producing computation in G
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is present in H. In either case, for all v & V(H), G(G)(v) is a prefix of H(c)(v). [

6.2.2. A Semantics-preserving Operation on CFGs
This section proves Theorem 6.2. That is, eliminating from a CFG G the vertices not identified
by backwards-closure in the PDG (with respect to a vertex v) produces a CFG H that is a
flow/path-projection of G (and includes vertex v). In fact, we only need to argue that H is a path-
projection of CFG G. Backwards-closure guarantees that if a vertex w is included in H then all of
w’s flow dependence predecessors in G’s PDG are also in H. Therefore, if H is a path-projection
of G, it is guaranteed to be a flow/path-projection too. We also show that CFG H is the minimal
flow/path-projection that contains the vertex v; that is, every flow/path-projection of G that con-
tains v must also contain all vertices in the backwards-closure of G’s PDG with respect to v.

The set of vertices S identified by backwards-closure (Step 1 of the algorithm) has the property
that if w is in S and v —>, w in CFG G’s PDG, then v is in S. The following lemma shows that
for any set of vertices that satisfies this property, eliminating the vertices not in S from G yields a

graph H that is a CFG and a path-projection of G.

LEMMA 6.4. Let G be a CFG and let S be a set of vertices in G such that if we S and v —>, w is
in G’s PDG, then v € S. Eliminating the vertices not in S from CFG G yields a graph H that isa
CFG and a path-projection of G.

PROOF. The vertex elimination operation has two properties that are trivial to prove: first, the
order in which the vertex elimination operations are applied does not affect the resulting graph;
second, if G is a CFG and vertex elimination is applied to some vertex (other than ENTRY and
EXIT) then the resulting graph is a path-projection of G and meets the reachability requirements
of a CFG. The problem is that a single application of the vertex elimination operation is not
guaranteed to produce a graph that is a CFG. This happens because the operation may create a
graph that contains a vertex with two distinct L-successors. For example, consider the graph that
results from eliminating the vertex (x>0) from CFG G in Figure 6.6: the ENTRY vertex in this

graph has two T-successors, (y :=1) and (y :=0).



104

To complete the proof we must show that there is no vertex with two distinct L-successors in
H. The proof is by contradiction. Suppose H contains a vertex v with distinct L-successors y and
z. Since H is formed from G by eliminating vertices of G, H is a path-projection of G, as dis-
cussed before. Let P be a generating path in G for v-—)Ly and let P, be a generating path in G
for v—Lz. Both P; and P, begin with vertex v, edge label L, and the vertex w that is v’s L-
successor in G. No vertex in P other than v and y is in V (H); no vertex in P, other than v and z
is in V(H). It is impossible for both y and z to postdominate each other in G. Without loss of
generality, assume that z does not postdominate y in G. Since there is a path in G from w to y and
z does not postdominate y, there must be at least one vertex on the path from w to z that is not
postdominated by z. Let a be the last such vertex (other than z itself) in this path. Let b be the
vertex after a in this path. It is clear that either z =5 or z pd b. By the definition of control
dependence it must be that @ —>, z, implying that a € S. However, the only vertex in P that is

in Sis z and z # a. Contradiction. [

The next lemma shows that backwards closure over control dependence is necessary for creat-
ing CFG path-projections. That is, if CFG H is a path-projection of CFG G, w e V(H) and G

induces v —>, w, then v € V(H).

LEMMA 6.5. If CFG H is a path-projection of CFG G, G induces v —>Lw and w e V(H), then
ve V(H).

PROOF. Suppose that G induces v —Lw, we V(H), and v& V(H). Let P} be a path in G from
ENTRY to v. Let z be the last vertex in P that is in V(H) (z # v since v & V(H)). Let L ’ be the
label on the outgoing edge from z in P;. Because v —>Lw, the following two paths exist in G:
P, a w-free path from v’s non-L-successor to EXIT; P3, an acyclic path from v’s L-successor to
w. Since w postdominates the L-branch of v, w postdominates every vertex in P3 (except itself).
It is clear that w cannot postdominate any vertex in Pp. Therefore, P, and P3 have no vertices in
common. Since H is a path-projection of G and z is the last vertex in P that is in V(H), z must

have an L ’-successor in project(P7,V (H))— since EXIT is in V(H }—and an L ’-successor in
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prdject(P3, V (H))—since w is in V(H). Since P, and P3 have no vertices in common, these two

vertices must be distinct, which means H is not a CFG. Contradiction. (]

6.2.3. A Semantics-preserving Operation on Programs

The results of this section rely on the augmented control-flow translation. In the remainder of

this section, we use the word “CFG” to mean “augmented CFG”.

This section shows Step 2 of our slicing algorithm, eliminating stmt subtrees that do not
correspond to the vertices identified by Step 1 (backwards-closure), is a semantics-preserving
transformation on programs. To prove this, we show that given a program P and a component c,
the program Q that results from applying our slicing algorithm to P has a CFG H that is a
flow/path-projection of P’s CFG G. Rather than arguing directly that H is a flow/path-projection
of G, we show that H is identical to the CFG obtained from G by eliminating all vertices not
identified by backwards-closure. The results of the previous section imply that this CFG isa
flow/path-projection of G.

The proof of this result focuses on the relationship between transitive control dependence and a
program’s abstract syntax tree. The proof has three main parts:

(1) We first show that the CFG vertices generated by productions in stmt subtree T are a subset
of transCD(G,vert(T)). This implies that when the slicing algorithm eliminates a stmt sub-
tree (because vert (T) is not in the set S identified by Step 1) it does not eliminate any ver-
tices that are in S. (Section 6.2.3.1).

(2) We next show that eliminating the subtrees (see Figure 6.2) from program P that correspond
to vertices in transCD(G,v) yields a program Q with CFG H that is identical to the CFG
resulting from eliminating the vertices in transCD(G,v) from G (Section 6.2.3.2). Lemma
6.4 guarantees that eliminating the vertices in transCD(G,v) from CFG G produces a CFG.

The edge set of H is:
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{ y-—)Lz | neither y nor z is in transCD(G,v) and y—->Lz isin CFG G }
U {y-Lipd(G,v)|y€ transCD(G,v), and 3z € transCD(G,v) such that
y~—>Lz isin CFG G }

Figure 6.9 illustrates the effect of eliminating the vertices in transCD(G,v) from CFG G.

(3) Let S be the set of vertices identified by backwards-closure in the PDG. Eliminating the
vertices in V(G)-S corresponds to eliminating multiple transCD sets rather than just one
transCD set (as in point (2)). Using the above two results, we show the main result of this
section: eliminating the subtrees from program P that correspond to vertices in V(G)-S
yields a program whose CFG is identical to the CFG obtained by eliminating the vertices in

V(G)-S from G (Section 6.2.3.3).

6.2.3.1. The relationship between transCD and stmt subtrees
Consider any stmt subtree T in a program and the program’s CFG. Let Verts(T) be the set of
CFG vertices defined by the productions in stmt subtree T. In the augmented translation, every

vertex in Verts(T) is reachable from vert(T) and no vertex in Verts(T) postdominates vert (T)

Figure 6.9. Eliminating the vertices in transCD(G,v).
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(this is clearly true for any stmz subtree that does not contain a jump statement, even under the
standard translation; because jump statements generate an edge to their continuation as well as to
their target in the augmented translation, it is also true for subtrees containing jump statements).
Therefore, Verts(T)c transCD(G,vert(T)). However, since unconditional jumps may transfer
control to any place in the program, transCD(G,vert(T)) may contain other vertices. It is clear
that if w e transCD(G,v) then transCD(G,w) < transCD(G,v). Therefore, if S is a stmt subtree

and vert (S) € transCD(G,vert(T)) then
Verts (S) < transCD(G,vert(S)) < transCD(G,vert (T)).

This implies that any transCD(G,v) can be expressed as the union of the Verts sets of a set of sub-
trees. We say that a stmt subtree T is contained in a set of vertices V iff Verts(T)# & and

Verts(T) c V.

6.2.3.2. Vertex and subtree elimination commute for transCD
Let P be a program with CFG G. Let P; be the program with CFG G; resulting from eliminating
i subtrees in transCD(G,v) from program P. We show (by induction) that the following invariant
holds for all i: the edge set of G; minus the set { y-»z | ye transCD(G,v) and ze€
transCD(G,v) v ipd(G,v) } is
{ y—z | neither y nor z is in transCD(G, v) and y =Lz is in CFG G }
U {y-tz|y transCD(G,v), z € transCD(G,v)wipd(G,v),
and 3z’ € transCD(G,v) such that y-—-)Lz “15in CFG G) }
Let Q be the program resulting from eliminating all subtrees in transCD(G,v) from program P.
Since all the subtrees contained in transCD(G,v) have been eliminated, the CFG of program Q
does not contain any of the vertices in transCD(G,v). By the invariant, the CFG of program @ is:
{ y—Lz | neither y nor z is in transCD(G, ) and y—z is in CFG G }
U { y~—>L ipd(G,v) | y & transCD(G,v) and 3z € transCD(G,v) such that
y—sLzis in CFG G }
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which is exactly the graph that results from eliminating all vertices in transCD(G,v) from CFG G.
The proof of the above invariant relies on the following lemma, which characterizes how the
elimination of a single stmt subtree from a program affects control-flow. Let Tp.attr denote the

value of the attribute attr in the root production of subtree T in program P.

LEMMA 6.6. Let P be a program with CFG G. Let Q be the program resulting from eliminating
stmt subtree T from program P. The edge set of program Q’s CFG is:
{ y—-)Lz | neither y nor z is in Verts (T) and y-—)Lz isin CFG G }
U { y-—)LTp.cant | y & Verts(T) and 3z € Verts (T) such that y—aLz isinCFG G }

PROOF. Subtree T is replaced by the NullStmt subtree (or a sequence of Label subtrees). Note
that Tg.entry = Tg.cont = Tp.cont. The proof of this lemma follows from the following observa-
tions: any attribute in program P whose value is a vertex in Verts(T) has the value Tp.cont in
program Q; any attribute in program P whose value is a vertex not in Verts (T) has the same value

in program Q. [

We are now in a position to prove the invariant. Let P be the original program with CFG G.
The proof is by induction on the number of subtrees in transCD(G,v) that have been eliminated
from program P.

Base Case: No subtrees eliminated. The invariant clearly holds.

Induction Step: Suppose that the invariant is true after the elimination of n subtrees contained in
transCD(G, v) from program P. Let P’ be the resulting program with CFG G’. Let T be a stmt
subtree in transCD(G,v) that is in program P’ and let Q be the program (with CFG H) resulting
from eliminating T from P ’. By lemma 6.6, the edge set of H is:

{ y-—)Lz | neither y nor z is in Verts(T) and y——>Lz isinCFG G’}
v | y-—)LTp'.cont | y & Verts(T) and 3z € Verts(T) such that y——)l‘z isin CFG G’ }

If we can show that Tp+.conte transCD(G,v)uipd(G,v) then CFG H satisfies the invariant
(since Verts(T) < transCD(G,v) and CFG G’ satisfies the invariant). To see that Tp-.cont €

transCD(G,v) v ipd(G,v), note that there must be a vertex y € Verts (T) such that y—Tp-.cont is
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in CFG G’ (this is clearly true if T does not contain a jump statement, even under the standard
translation; because jump statements generate an edge to their continuation as well as to their tar-
get in the augmented translation, it is also true if T contains jump statements). Since the invariant
was assumed to hold for G’, and since y € transCD(G,v), it must be that Tp-.cont is in

transCD(G,v) v ipd(G,v). O

6.2.3.3. Putting it all together

Let S be the set of CFG vertices identified by backwards-closure in the PDG. Let V=V (G)-S.
The set of vertices V is closed under transCD (i.e., for all v € V, transCD(G,v) < V). Eliminating
the vertices in V corresponds to eliminating a set of transCD sets, which corresponds to a set of
subtrees in program P. Let Q be the program (with CFG H) resulting from eliminating the sub-
trees associated with V. The following lemma shows (by induction on the size of V) that the CFG

H is identical to the CFG obtained by eliminating the vertices in V from CFG G:

LEMMA. Given program P with CFG G and a set of vertices V in G that is closed under transCD.
Let Q be the program (with CFG H) that results from eliminating from P all subtrees that
correspond to vertices in V. CFG H is identical to the CFG obtained by eliminating the vertices
in V from G.
PROOF. By induction on the size of V.
Base Case: |V | =1. Thatis, V = {v}, so transCD(G,v) = {v}. The result of the previous section
implies that CFG H is the CFG resulting from eliminating v from CFG G.
Induction Step: Assume that the result is true for V of size less than n. Suppose that V is of size n.
Let v be a vertex in V. Let P’ be the program resulting from eliminating the subtrees in
transCD(G, v) from program P, and let G’ be the CFG of P ’. Let V' =V —transCD(G,v). V' is
clearly of size less than n. To apply the induction hypothesis, we must show that V'’ is closed
under transCD.

By the results of the previous section, G is the CFG resulting from eliminating the vertices in

transCD(G,v) from CFG G. It can be shown (see lemma below) that for any vertex w in G,
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transCD(G ’,w) = transCD(G,w) — transCD(G,v). This fact implies the following: (1) for every
vertex w € V', transCD(G ’,w) < V. Therefore, V" is closed under transCD; (2) the subtrees of
P’ contained in V' are the subtrees of P contained in V minus the subtrees of P contained in
transCD(G, v); By the Induction Hypothesis, eliminating the subtrees in V'’ from P’ yields a pro-
gram Q whose CFG H is identical to the CFG resulting from eliminating the vertices in V' from
G’. Program Q is the program that results from eliminating all subtrees in V from program P and
CFG H is the CFG that results from eliminating the vertices in V from G. This proves our main

result. [J

LEMMA. Let G be a CFG and let G’ be the CFG resulting from eliminating the vertices in
transCD(G, v) from G. For any vertex w in G’, transCD(G ’,w) = transCD(G, w) — transCD(G, v).
PROOF. Since G’ is a path-projection of G, for any distinct pair of vertices (y,z) in G’, y pd z in
G'iffypdzinG.

Any path PTHg’ in G’ that starts with w and contains no postdominators of w contributes all
its vertices to transCD(G ’,w). Any generating path in G for PTHg must contribute the same ver-
tices to transCD(G,w). None of these vertices are in transCD(G,v). Therefore, transCD(G W)
c transCD(G,w) — transCD(G, v).

Any path PTHg in G that starts with w and contains no postdominators of w contributes all its
vertices to transCD(G,w). Any vertices in the projection of PTHg in G’ must be in
transCD(G ’,w). This projected path does not include vertices from transCD(G,v). Therefore,

transCD(G,w) — transCD(G,v) < transCD(G’,w). O

6.3. SLICES AND MINIMALITY

A slicing algorithm identifies a program projection that behaves identically to the original pro-
gram at some point of interest. As has been noted before, the usefulness of a slicing algorithm is
inversely proportional to the size of the slices it produces. While it is an undecidable problem to
find slices of minimal size, it would be possible to employ common compiler optimizations to

further reduce the size of slices. For example, copy propagation could be used to prune away
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copy chains from a slice, as shown below (of course, some renaming may need to be done also):
x+1; X = x+1;
X;

A Z =X

N < M

We believe that smaller slices are useful, up to a point. In this chapter, we have shown that our
slicing algorithm based on the program dependence graph produces programs whose CFGs are
flow/path-projections of the original program’s CFG. That is, they preserve paths of the original
program (modulo projection) and the flow of values between components. While these properties
are useful for proving the semantic results, they also are intuitively appealing. A slice that does
not preserve the paths in a program or the flow of values amongst its components may compute
the same result as the original program, but does so in a different way than the programmer origi-
nally intended. Flow/path-projections retain the structure of the computation as well as its result.

We also have shown that backwards-closure in the PDG identifies the minimal set of vertices
needed to form a flow/path-projection of a CFG (that includes a given vertex). In particular, con-
trol dependence identifies the vertices that must necessarily be included in a slice in order to form
a path-projection. That is, if CFG H is a path-projection of CFG G, w is in Hand v—.wis in
G’s PDG, then v must also be in H.

There are cases where a flow/path-projection that is minimal under the augmented translation is
not minimal under the standard translation. In the example below, program Y is the projection
that results from slicing program X with respect to C (using the augmented translation). How-
ever, under the standard translation, the CFG of program Z is a path-projection of program Y's
CFG. Under the standard translation, C is not control dependent on predicate Q (as there is no
path from Q to C in the standard CFG). Therefore, Q is not needed in order to form a path-
projection including C (under the standard translation). However, under the augmented transla-

tion, C is control dependent on Q.
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X Y Z
if P then if P then if P then
if Q then if Q then
A
goto L; goto L;
fi fi
B
goto L; goto L; goto L;
fi fi fi
C C C
I. D L: L:

It remains an open question whether there is an efficient algorithm for finding a program projec-
tion that is the minimal flow/path-projection of the original program under the standard control-
flow translation.

We have defined the slice of a program to be a projection of that program. That is, the program
slice must be formed by eliminating statements from the original program. Because one of the
major applications of slicing is debugging, this is a natural restriction. Presenting the program-
mer with a slice that does not resemble the original program is clearly unsatisfactory. However,
if we drop the requirement that the resulting program be a projection of the original program then
it is easy to construct programs that are minimal flow/path-projections with respect to the stan-
dard control-flow translation. For example, given a program P with standard CFG G, one could
construct the minimal flow/path-projection of G with respect to some vertex (using backwards-
closure in the PDG to identify the required vertices) and then synthesize a program from that
CFG using a structuring algorithm such as Baker’s [2]. However, in a language with unstructured
control-flow, there can be many programs with the same CFG. The program that results from
such an approach may not be a projection of the original program, even though it meets the

semantic goal (because its CFG is a flow/path-projection of the original program’s CFG).

6.4. OTHER CONTROL CONSTRUCTS

The language considered in this chapter has arbitrary control-flow, due to the inclusion of the
goto statement. It also has looping and conditional constructs (repeat and while) found in many
languages. However, the question naturally arises: do the results of this chapter extend to other

control constructs, such as for loops and case statements? As we have shown, the program
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dependence graph can be used to form flow/path-projections of completely arbitrary control-flow
graphs. However, to ensure that the program projection operation works (see Figure 6.7) control
constructs must satisfy a few simple properties.

A looping construct must generate a vertex v in the control-flow graph such that: (1) v passes
control to the continuation of the loop construct (i.e., there is a loop exit); (2) every vertex gen-
erated by the (abstract syntax) subtrees enclosed by the looping construct is reachable fromv. A
for loop meets these requirements. However, a construct such as loop-forever does not. For-
tunately, it is usually possible to translate a construct so that by the addition of dummy vertices
and edges, it meets the requirements. For example, a loop-forever construct can be treated as a
while loop where the predicate is true. This results in a dummy vertex with an outgoing false
edge that is not executable.

A selection construct must generate a vertex v such that: (1) every vertex generated by subtrees
enclosed by the selection construct is reachable from v; (2) every subtree immediately enclosed
by the selection construct passes control to the continuation of the selection construct; The trans-

lations of selection constructs such as if-then, if-then-else, and case meet these requirements.

6.5. RELATED WORK

As mentioned previously, Weiser defined the first program slicing algorithm [71]. The Otten-
steins defined a more efficient program slicing algorithm using the program dependence
graph [52]. Neither algorithm handles unstructured control-flow correctly. Lyle defined an algo-
rithm to slice programs containing gotos, which is summarized by Gallagher [21], but it is quite
conservative (i.e., produces projections that are larger than necessary), as we show below.
Defined in our terminc;logy, Lyle’s algorithm includes a goto in the projection only if there is a
flow dependence x —>¢y traversed by the backwards-closure such that the goto is in a control-
flow path that induces the flow dependence x —¢y. Consider slicing the following program with

respect to its last statement:
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X:=1

i=1

while i < M do
if i = N then goto L fi
i:=1+l1

od

L y=x

Because the goto is in a path that induces the flow dependence from (x:=1) to (y:=x), Lyle’s algo-
rithm will include the goto and, as a result, the entire while loop and the statement (i:=1), in addi-
tion to (y:=x) and (x:=1). His algorithm forms a projection that is identical to the original pro-
gram. However, the following program is an acceptable projection (which our slicing algorithm

will produce):

x:=1
y:i=X

Gallagher made a refinement to Lyle’s algorithm to address this imprecision [21], but his algo-
rithm, as defined in his thesis, may produce semantically incorrect projections. Basically,
Gallagher’s algorithm includes “goto L” only if a control dependence predecessor of the goto is
in the slice and the statement labelled L is included in the slice. The following example shows a
program for which both Gallagher’s algorithm fails to produce a semantically correct projection.

Suppose that we wish to slice program X with respect to the statement (y:=x+1).

| X R4 | Z
ifPthengotoL fi | if P then fi if P then goto L fi
xm=1 x =1 x:=1
y = x+1 y = x+1 y = x+1

L: a:=2 L:

Program Y is the projection that will result from the application of Gallagher’s algorithm. This
program is not a semantically correct projection of program X because in program X, if the vari-
able P is true then the statements (x:=1) and (y:=x-+1) are not executed, while in program Y they
execute unconditionally. Gallagher’s algorithm does not include the goto because the statement
(a:=2) is not in the slice.

Gallagher has modified his slicing algorithm since the publication of his thesis [22]. However,

although his updated algorithm seems to be an improvement over the algorithm given in his
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theéis, he has no proof that it is correct and there still seem to be cases in which it fails to produce
a semantically correct slice.

Reps and Yang gave the first formal proof that the program slices formed by using the program
dependence graph have the desired semantic property [62]. Furthermore, they showed that slic-
ing using the program dependence graph guarantees equivalent behavior at every point in the
slice (not just at the slicing vertex). However, they proved this only for programs with structured
control-flow. We have shown that the program dependence graph can be used to slice programs
with arbitrary control-flow with the guarantee of equivalent behavior at every point. We note that
Reps and Yang defined a program slice to allow the possible reordering of program statements
(including conditionals and loops). Under their definition, the second program shown below is a

slice of the first (and vice versa):

o o
WO
B -

[\ =)

e
O g
TR T

+b

B et

+b

Although the ordering of statements in the two programs differs, the same sequence of values is
computed at each point. Under our framework, neither program’s CFG is a path-projection of the
other’s CEG, so our semantic result about flow/path-projections cannot be applied to compare the
programs’ behaviors. However, we believe it is possible to extend slicing with reordering even in
the presence of arbitrary control-flow.

Choi and Ferrante independently discovered the same problem of slicing programs with arbi-
trary control-flow (using the program dependence graph)[12]. They proposed two solutions to the
problem. The first uses the idea of an augmented CFG, much the same as ours. The second solu-
tion uses the PDG of the program’s standard CFG to decide which statements to eliminate. In
addition to deleting statements from the original program, their second approach inserts addi-
tional gotos to ensure correct control-flow. Thus, the resultant program may not be a projection
of the original program. As discussed in Section 6.3, if it is not necessary to form a program pro-
jection, then the PDG of the standard CFG can be used to form a minimal CFG flow/path-

projection (with respect to the standard translation). A structuring algorithm can then be used to
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form a program from the CFG. Structuring algorithms attempt to minimize the number of gotos
needed and will probably produce more readable code than the second approach of Choi and Fer-
rante.

The major difference between our work and the first solution proposed by Choi and Ferrante is
the generality of the results. Our algorithm is defined for a language that includes (arbitrarily
nested) conditional statements and loops as well as breaks and gotes. In contrast, Choi and
Ferrante’s first algorithm is defined for a much more limited language in which the only con-
structs that affect control-flow are conditional and unconditional gotos. As Choi and Ferrante
note, any structured control construct (such as an if-then-else or a while loop) can be synthesized
in this simple language. However, as the following example shows, synthesizing control con-
structs in their simple language can lead to unnecessarily larger slices when the augmented CFG

is used. Consider the following structured code and its translation into Choi and Ferrante’s

language:

if P then if not(P) then goto 1;
A A;
if Q then if Q then goto 3;

halt goto 2;

fi 1: B;

else 2: C;
B 3.

fi

C

Under the augmented control-flow translation of the first program, there is no path from predicate
0 to statement B, so B cannot be control dependent on Q. However, in the second program, state-
ment B is control dependent on Q because of the edge from “goto 2” to B. Thus, a slice with
respect to B in this program picks up predicate Q. One could argue that the statement “goto 2”
should not be treated the same as other gotos that are explicitly written by the programmer.
However, then one must define some other procedure for determining when these implicit gotos

are needed in a slice.
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Chapter 7

DIFFERENCING AND INTEGRATION
IN THE PRESENCE
OF COMPLEX CONTROL-FLOW

This chapter presents algorithms for computing the semantic difference of control-flow graphs
with completely arbitrary control-flow and integration of control-flow graphs with mostly reduci-
ble control-flow. The definition of the differencing operation (Section 7.1) is based on our results
on slicing from Chapter 6. It is essential to understand the results on differencing before proceed-
ing to the integration algorithm (Section 7.2), in which differencing plays a key role. Section 7.3
contains proofs of the results stated in Sections 7.1 and 7.2. Section 7.4 discusses related work on

differencing and integration.

7.1. DIFFERENCING

Given two programs, Old and New, and a correspondence between vertices of the programs, the
difference of New with respect to Old includes all vertices of New that have no corresponding
vertex in Old, as well as all vertices in New whose corresponding vertex in Old has inequivalent
behavior. Because it is impossible to identify this set exactly, a safe algorithm will also some-
times include a vertex of New whose corresponding vertex in Old has equivalent behavior.

This section shows how the results on flow/path-projections from Chapter 6 can be used to
compare the behavior of corresponding vertices in different CFGs. These CFGs may contain
arbitrary control-flow. We present three algorithms for computing the difference of two CFGs,
each more efficient than the previous one. Section 7.1.1 shows how the isomorphism of
flow/path-projections can be used to compute the difference of two CFGs, and shows how CFG
isomorphism may be efficiently determined. Section 7.1.2 shows that it is not necessary to actu-
ally construct flow/path-projections to compute the difference. Rather, we can use the program

dependence graph to achieve the same result. Section 7.1.3 shows how the efficiency of PDG-
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based differencing can be improved upon.

7.1.1. Differencing With Flow/Path-Projections

NOTATION. We will use FPP(G,v) to denote the minimal CFG flow/path-projection of CFG G

that contains vertex v.

Let Old and New be CFGs containing corresponding vertices v and w, respectively. Suppose that

CFG H = FPP(Old,v) = FPP (New,w).! We can use this fact and Theorem 6.1 (from Chapter 6)

to relate the execution behavior of vertex v in Old to the behavior of w in New. That is, vertex v

in Old has equivalent behavior to vertex w in New, as we show now. Keep in mind that because

H is isomorphic to FPP (Old,v) and FPP (New,w), for any inital state 6, H(G)(v) = H(C)(w).

Let ¢ be a state such that both Old(c) and New(o) terminate normally. Theorem 6.1

-implies that H(c) terminates normally, H(G)(v) = Old(c)(v), and H(c)(w) = New(0)(w).

Therefore, Old(c)(v) = New (G)(w).

Let o be a state such that neither Old(G) nor New(o) terminates normaily. Theorem 6.1
implies that Old(c)(v) is a prefix of H(G)(v), and New(o)(w) is a prefix of H(c)(w). It fol-
lows that either Old(c)(v) is a prefix of New(c)(w), or vice versa.

Let G be a state such that Old(c) terminates normally and New(o) does not terminate nor-
mally. In this case, Theorem 6.1 implies that H(c)(v) = 0ld(0)(v), and New(o)(w) is a
prefix of H(o)(w). Therefore, New(G)(w) is a prefix of Old(c)(v).

Let o be a state such that New(o) terminates normally and Old(c) does not terminate nor-
mally. In this case, Theorem 6.1 implies that H(G)(w) = New(c)(w), and Old(G)(v) is a
prefix of H(c)(v). Therefore, Old(c)(v) is a prefix of New(c)(w).

'In the context of graphs, = denotes isomorphism. Two graphs G| and G, are isomorphic if and only if
there is a 1-to-1, onto mapping ffrom V(G ) to V(G3) such that the following conditions all hold:

For every vertex v in V(G 1), v and f (v) have the same text.
For every edge v—w in G, there is an edge f (v)—-)f (w) in G, with the same label.
For every edge v-»w in G there is an edge f (v)——)f (w) in G 1 with the same label.
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We use this observation to define the goal of a differencing algorithm: The difference of New
with respect to Old, denoted by Diff(New,Old), should include all vertices in New that have no
corresponding vertex in Old, as well as all vertices w in New with corresponding vertex v in old

such that FPP (New,v) # FPP (Old,w).

DEFINITION (the difference of New with respect to Old).

Diff(New,0Old) = { ve V(New) | v has no corresponding vertex in Old }
u {ve V(New)| FPP(New,v) # FPP(Old,v) }

While isomorphism of general graphs appears to be a hard problem to answer efficiently [23],
isornorphism of CFGs can be determined in linear time because the outgoing edges of each vertex
in a CFG are uniquely labelled. Given CFGs G and H, simply perform a depth-first search on
both G and H (from ENTRY) such that the False successor of a predicate vertex is always visited
before the True successor. If G and H are isomorphic then the map between vertices established
by common depth-first numbers is clearly an isomorphism map. If the CFGs are not isomorphic
then no numbering of the vertices can be an isomorphism map. It is easy to check whether the
CFGs are isomorphic under the map established by the depth-first numberings, answering the iso-

morphism question.

7.1.2. Differencing With the Program Dependence Graph

With the algorithm outlined above, to check whether a corresponding pair of vertices in two
CFGs has equivalent behavior requires backwards-closure in the PDG of each CFG, formation of
the CFG flow/path-projections, and the isomorphism check of these CFGs. We now define a
more efficient differencing method, which operates solely on the PDG representation and does
not require the construction of the flow/path-projections. This method is also better suited to

integration, as will become clear in the next section. We require the following definitions:

DEFINITION (ordering edge). Let a and b be distinct vertices in a CFG. If there is a vertex p such

that p —>% a and p —>L b, then vertices a and b must be ordered by the postdomination relation
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since a and b both postdominate the L-branch of p. If a pd b (a postdominates b) then there is an
ordering edge b —>,, a. Otherwise, b pd a and there is an ordering edge a —>,, b.
NOTATION (program dependence graph with ordering edges). Given a CFG G, let OPDG(G) be
G’s program dependence graph augmented with ordering edges, as defined above.
NOTATION (subgraph induced by backwards-closure). Let P be a PDG with or without ordering
edges and let S be the set of vertices in P from which v is reachable via a path of control and/or

flow dependences (i.e., the vertices in the backwards-closure over control and flow dependences

in P). The subgraph of P induced by S is denoted by P/

We show in Section 7.3 that FPP(Old,v) = FPP (New,v) iff OPDG(Old)/v = OPDG(New)/v.
That is, we can test the isomorphism of the flow/path-projections without constructing them by
testing the isomorphism of the ordered PDG subgraphs induced by backwards-closure. There-

fore, Diff(New, Old) can be redefined as:

DEFINITION (the difference of New with respect to Old).

Diff(New,0ld) = { ve V(New) | v has no corresponding vertex in Old }
u { ve V(New) | OPDG(New)/v # OPDG(Old)/v }

Isomorphism of ordered program dependence (sub)graphs can be accomplished in linear time (as
is done with CFGs) because the control dependence successors of any vertex are totally ordered
by the ordering edges. The depth-first search traverses only control dependence and ordering
edges, visiting control dependence successors before ordering successors and visiting the False
control dependence successors of a predicate vertex before the True successors. The depth-first

number of a vertex is assigned when leaving a vertex (i.e., postorder).

~

Given a graph G and a set of vertices S ¢ V(G), the subgraph of G induced by S is (S, { vow |
v—w € E(G),ve S,andwe S }).
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7.1.3. Improving the Efficiency of PDG-based Differencing

Testing the isomorphism of PDG subgraphs for every pair of corresponding vertices can still be
expensive, but can be avoided for many vertices, as we now show. The algorithm in Figure 7.1
computes Diff(New,Old). The justification for this algorithm is straightforward. If vertex v in
New has no corresponding vertex in Old or differs in incoming flow or control dependence edges
in PDG(New) from PDG(0OId), then OPDG(O!d)/v cannot be isomorphic to OPDG(New)/v. The
set DAV(New,Old) contains these vertices. Furthermore, for any vertex w reachable from v in
PDG(New), OPDG(Old)/w cannot be isomorphic to OPDG(New)/w. However, it is still possible
that the only reason two PDG subgraphs are not isomorphic is due to a difference in ordering
edges. Unfortunately, a difference in incoming ordering edges to a vertex v does not imply that
OPDG(New)/v and OPDG(OId)/v are not isomorphic. Therefore, after the first two steps of the
algorithm in Figure 7.1, the algorithm must check, for each vertex v e V(New) such that v &
Diff(New, 0ld), if OPDG(OId)/v # OPDG(New)/v. If the graphs are not isomorphic, then v (and

all vertices reachable from v in PDG(New)) are added to Diff(New, Old).

DAV (New,Old) =
{ v e V(New) | v has no corresponding vertex in V(0ld) }
w {ve V(New)|v has a different set of incoming flow or control dependence edges
in PDG(New) than in OPDG(Old) }

Diff(New,Old) =
DAV (New,Old)
v { we V(New)|w is reachable in PDG(New) from a vertex v € DAV(New,0ld) }

while v e V(New) such that v & Diff(New,Old) and OPDG(Old)/v # OPDG(New)/v do
Diff(New, Old) := Diff(New,Old) v { w| w is reachable in PDG(New) from vertex v }
od

Figure 7.1. Algorithm for computing Diff(New, Old).
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7.2. INTEGRATION
We first show how the results on differencing can be used to characterize when a CFG M is an
acceptable integration of CFGs A, B, and BASE. This formalizes the goal of our integration algo-

rithm, presented in Sections 7.2.1-7.2.4. We require the following definition:

DEFINITION (Equiv(New,Old)). If Old and New are CFGs, then Equiv(New,Old) is defined to be
V (New) — Diff(New,Old). These are the vertices of New that have a corresponding vertex in Old

with equivalent behavior.

Let BASE, A, and B be CFGs with correspondences between BASE and A, and BASE and B.
The goal of our integration algorithm will be to find a CFG M that meets the following structural
criteria:
® If ve Diff(A,BASE) then there exists a vertex v in M such that OPDG(M)/v = OPDG(A)/v.3
® If v e Diff(B, BASE) then there exists a vertex v in M such that OPDG(M)/v = OPDG(B)/v.
® If ve Equiv(A,BASE) n Equiv(B,BASE) then there exists a vertex v in M such that

OPDGM)/v = OPDG(BASE)/v.
In addition, we require that every flow/path-projection of M be a flow/path-projection of CFG A
or B. That is, for every vertex v in M, either OPDG(M)/v = OPDG(A)/v, OPDG(M)/v =
OPDG(B)/v, or OPDG(M)/v = OPDG(BASE)/v. This prevents M from containing “spurious” code
that could affect whether or not M terminates normally.

We now show that if such a CFG M exists, then it meets the semantic criteria of integration, as
defined in Chapter 5. First, we must show that if G is a state on which A, B, and BASE all ter-
minate normally, then M (o) terminates normally. We show that for any vertex v in M, M(o)v)
is finite and a prefix of either A (6)(v) or B(c)(v). This implies that M (c) terminates normally.
By the definition of M, either OPDG(M)/v = OPDG(A)/v or OPDG(M)/v = OPDG(B)/v. Suppose

the former, which implies that vertex v has equivalent behavior in A and M. Since A(0)

SEquivalently, FPP (M,v) = FPP(A,v).
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terminates normally, M (c)(v) is finite and a prefix of A(c)(v). The proof is symmetric in the
case that OPDG(M)/v = OPDG(B)/v.

We now prove point (2) of the semantic goal of integration. Suppose that G is a state on which
A, B and BASE all terminate normally. By (1), M(c) terminates normally. Suppose that
A (0)(v) # BASE (6)(v). Vertex v does not have equivalent behavior in A and BASE, so ve
Diff(A,BASE). By construction, OPDG(M)/v = OPDG(A)/v, so v has equivalent behavior in M
and A. Since M and A both terminate normally on ¢, M (6)(v) = A (6)(v). Points (3) and (4) of
the semantic goal of integration follow by similar arguments.

Ultimately, we would like an integration algorithm that constructs a CFG M meeting the above
structural criteria whenever such a CFG exists. We describe an integration algorithm that, given
CFGs BASE, A and B, will find a CFG M (that meets the structural criteria) when it exists, for a
certain class of CFGs. In particular, BASE, A and B must be reducible CFGs whose loops must
be in a normal form that we call while loops. Section 7.2.1 describes this class of CFGs. Follow-
ing the integration algorithm of Horwitz, Prins and Reps (the HPR algorithm) [30], our integra-

tion algorithm has three main steps (Section 7.4 compares our algorithm to the HPR algorithm):

(1) Determine the vertices of A and B that have different behavior than their corresponding ver-
tices in BASE (using differencing, as defined in the previous section), and create a merged
program dependence graph Pyy. Specifically: if ve Diff(A,BASE) then Pp contains
OPDG(A)v; if ve Diff(B,BASE) then Pys contains OPDG(B)/v; and if ve Equiv(A,BASE)
~ Equiv(B,BASE) then Py contains OPDG(BASE)/v (Section 7.2.2).

(2) Determine whether or not A and B interfere with respect to BASE by examination of the
graphs Py, OPDG(A), and OPDG(B). Graph Py passes the interference test iff for each
vertex v in Py if ve Diff(A,BASE) then Pylv = OPDG(A)/v; if v € Diff(B,BASE) then
Pylv = OPDG(B)/v; otherwise v & Equiv(A,BASE) ~ Equiv(B,BASE) and Pylv =
OPDG(BASE)/v. If Py does not pass the interference test then integration fails (Section

7.2.3).
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(3) Find a CFG M such that for each vertex v in OPDG(M), OPDG(M)/v = Py/v. We refer to
this process as reconstitution. Reconstitution may fail to find such a CFG, in which case
integration fails (Section 7.2.4).

If the above algorithm succeeds then it is clear that CFG M meets the structural criteria defined at

the beginning of this section, and is an acceptable integration of CFGs A, B, and BASE. As men-

tioned before, our integration algorithm is only guaranteed to work for a certain class of CFGs

(described in the next section). This restriction is due to step (3) of the algorithm, the process of

reconstituting a CFG from graph Pyy. Steps (1) and (2) work for arbitrary CFGs.

7.2.1. Normal-form CFGs and Other Considerations

This section describes the class of CFGs that our integration algorithm accepts and produces.
The first property of normal-form CFGs is that they are reducible. Informally stated, reducibility
restricts loops to have a single entry point (although they may have more than one exit point).

The concept of domination in a graph is used to define reducibility.

DEFINITION (domination in a rooted graph). Vertex v dominates vertex w, denoted by v dom w,
in a graph rooted at ENTRY iff every path from ENTRY to w contains v.

DEFINITION (reducibility in a rooted graph). A rooted graph G is reducible iff the removal of
every edge v-—w from G such that w dom v leaves an acyclic graph. Equivalently, G is reducible
iff any depth-first search of G identifies the same set of edges as backedges. There are many

other equivalent characterizations of reducibility [1].

The second property of normal-form CFGs is that each loop in the CFG must be in the form of

a while loop. We use the concept of natural loop [1] to define the structure of a while loop:
DEFINITION (natural loop). The natural loop of a backedge v—w is defined to be

nat-loop(v—w) = { w } u { x| there is a w-free path from x to v }.

The natural loop associated with a loop entry w (i.e., a vertex that is the target of one or more

backedges), denoted by nat-loop(w), is the union of all nat-loop(v—w), where v—w is a
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backedge. Any two natural loops in a reducible CFG are either disjoint or properly nested.

DEFINITION (while loop). A natural-loop nat-loop(w) is a while loop if no vertex in nat-loop(w)

postdominates w. Each natural loop in a normal-form CFG must be a while loop.*

The integration algorithm also requires that flow dependences be further classified as to
whether or not they are carried by a loop and that special initial definition vertices are present in

the CFG.

DEFINITION (loop-carried flow dependences). A flow dependence x —> Y is carried by loop entry
w if x and y are both members of nat-loop(w) and there is a path that induces the flow dependence
x —>y that includes a backedge of the form v—w. A loop-carried flow dependence is labelled

with the loop entry of the outermost loop that carries the dependence.

For every variable x that may be used before being defined (i.e., the CFG contains an x-
definition free path from ENTRY to a use of x), an initial definition vertex w = (x := InitialState(o,
x)) must be added to the CFG. Vertex w becomes the True successor of ENTRY and the former
True successor of ENTRY becomes the successor of w. Vertex w represents the initial assignment
of x’s value from the initial execution state 6. The order in which the initial definition vertices

are added to the CFG is immaterial.

7.2.2. Construction of the Merged Dependence Graph Py

This section describes how to construct the merged dependence graph Pys. Given CFGs BASE,
A, and B (and the correspondence maps), differencing determines the sets Diff(A,BASE),
Equiv(A,BASE), Diff(B,BASE), and Equiv(B,BASE). Any vertex that in Diff(A,BASE) or
Diff(B, BASE) represents a possible change of behavior and should be included in Pyy. The sub-

graph (of the relevant PDG) that is responsible for this behavior also is included in Pp. Any

*A loop in a reducible CFG that is not a while loop can easily be transformed into one while preserving
reducibility and the transitive control dependence relation.
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vertex that is in Equiv(4,BASE) n Equiv(B,BASE) and its associated subgraph should also be
included in Pps. Graph Py is the graph union of three subgraphs (where the correspondence

maps identify identical vertices across program dependence graphs):

Py = { OPDG(A)/v | v € Diff(A,BASE) }
U { OPDG(B)/v|v e Diff(B,BASE) }
v { OPDG(BASE)/v | v € Equiv(B,BASE) n Equiv(B,BASE) }

There are a few facts about the structure of Py that are worth pointing out, as they affect the next
two steps of the integration algorithm. First, a vertex v may have control, flow, or ordering
predecessors in Py that it does not have in its PDG of origin. This occurs if and only if there is a
vertex v in BASE with corresponding vertices in both A and B such that v e Diff(A,BASE), v €

Diff(B,BASE), and OPDG(A)/v # OPDG(B)/v. Second, not every pair of vertices with a common
control dependence parent in Py, is ordered by an ordering edge (as is the case in OPDG(A),

OPDG(B), and OPDG(BASE)).

7.2.3. Interference Between Variants
By construction, a vertex in the graph Py is either from Diff(A,BASE), Diff(B,BASE), or
Equiv(A,BASE) n Equiv(B,BASE). Variants A and B interfere v:/ith one another iff there is a ver-
tex v e Diff(A,BASE) such that Py/v # OPDG(A)/v, or there is a vertex v € Diff(B,BASE) such
that Pyg/v # OPDG(B)/v. It is clear that for any vertex v in Equiv(A,BASE) n Equiv(B,BASE),
OPDG(A)/v = OPDG(B)/v. Therefore, Pps/v =0OPDG(A)/v = OPDG(B)/v.

If there is interference as defined above then the integration algorithm fails. Horwitz, Prins,
and Reps call this Type I interference [30]. Reps and Bricker describe how the results of interfer-
ence can be used to guide the programmer to code in variants A and B that introduces the

conflict [61].
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7.2.4. Reconstitution of a CFG from Py,

As stated before, the goal of reconstitution is to find a CFG M that includes all of the vertices of
Py, such that for every vertex v in OPDG(M), OPDG(M)/v = Ppy/v. Because Py is the union of
subgraphs from OPDG(A), OPDG(B) and OPDG(BASE), it may be only a partially ordered pro-
gram dependence graph. That is, there may be vertices a and b that share a common control
parent in Py (i.e., there exists a p such that p —>L g and p =L b), yet there is no ordering edge
between a and b in Pys. This complicates the reconstitution process. To explain why, we need

the following definitions:

DEFINITION ((a,b) pair). A distinct pair of vertices (a,b) in a CDG is an “(a,b) pair” if there is a
predicate p in the CDG such that p —>Lgandp —Lb.

DEFINITION (corresponding CFG). Given a (partially) ordered PDG P, CFG M is a correspond-
ing CFG of P iff OPDG(M) is a supergraph of P that includes the same set of vertices, control
edges, and flow edges, and a superset of P’s ordering edges.

DEFINITION (feasible PDG). (Partially) ordered PDG P is feasible iff it has at least one
corresponding CFG. Otherwise, P is infeasible.

DEFINITION (R-feasible): (Partially) ordered PDG P is R-feasible iff it has at least one

corresponding normal-form CFG. Otherwise, P is R-infeasible

Given an arbitrary (partially) ordered PDG P, it is not in general true that every corresponding
CFG M will satisfy the goal of reconstitution (for every vertex v in OPDG(M), OPDG(M)/v =
P/v). This is because P may be missing an ordering edge between two vertices that are both
included in P/v. However, in the context of integration, this is not possible; that is, every CFG
that corresponds to Py will satisfy the goal of reconstitution. This is because Py is the graph
union of subgraphs of the form OPDG(A)/v, OPDG(B)/v, or OPDG(BASE)/v.

Therefore, reconstituting Py involves finding a corresponding CFG, or determining that no
such CFG exists. This is accomplished by adding “missing” ordering edges to Py (for every

(a,b) pair that does not have an ordering edge) until it is a (totally) ordered PDG, which uniquely



128

determines a CFG. At first, it might seem that we can simply topologically sort the vertices of
Py in accordance with the existing ordering edges to get a total ordering of the vertices, and use
this ordering to fill in “missing” ordering edges. However, this approach is not suitable because
the control and flow dependences of Py; may require certain orders. If we are not careful about
the addition of the ordering edges, we may end up with a CFG M such that OPDG(M) contains
flow or control dependences not present in Py (or vice versa); in that case, we would not have
found a corresponding CFG, and the goal of reconstitution would not be achieved. Instead, we
must determine, for all (a,b) pairs in Py, which of the following holds:
(i) Vertex a postdominates vertex b in all corresponding control-flow graphs.
(ii) Vertex b postdominates vertex a in all corresponding control-flow graphs.
(iii) There is a corresponding control-flow graph in which vertex a postdominates vertex b, and
a corresponding control-flow graph in which vertex b postdominates vertex a.

Pairs that fall into categories (i) and (i) must be ordered b —>,,a and a —>,, b, respectively;
pairs that fall into category (iii) may be ordered nondeterministically as long as the resulting post-
domination order over all the pairs is acyclic.

Figure 7.2 gives a high-level view of our reconstitution algorithm. First, P’y is initialized as a
copy of Py. Second, procedure OrderByControl adds ordering edges to P “y, as necessitated by

control dependences (Section 7.2.4.1). Third, procedure OrderByFlow adds ordering edges to

function Reconstitute(Pys: PDG):CFG or FAIL

begin

(1] P'y:=Py

[2] if OrderByControl(P ) fails then return (FAIL) fi
[3] if OrderByFlow(P ) fails then return (FAIL) fi
[4] M :=ConstructCFG(P ")

[5] if OPDG(M) # P’)q then return (FAIL) fi

[6] return (M)

end

Figure 7.2. Reconstitution of a CFG from the PDG Py.
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Py, as necessitated by flow dependences (Section 7.2.4.2). Either of these steps may fail
because of contradictory information in Py, leading to a cycle in the ordering edges. (This can
happen if Py is either infeasible or R-infeasible.) Otherwise, a CFG M consistent with the order-
ing edges in P “p is constructed by function ConstructCFG (Section 7.2.4.3). Finally, the iso-
morphism of OPDG(G) and P is determined. This is necessary because it is possible for Py

to be infeasible yet for the ordering steps (lines [2-3]) to succeed.

7.2.4.1. Procedure OrderByControl

This section focuses on the ordering requirements imposed solely by control dependences. We
therefore refer to the control dependence graph (CDG), which is the subgraph of the PDG that
includes only control dependence edges. A CDG or (partially) ordered CDG may or may not be

feasible, as is the case with a PDG, depending on whether or not the CDG has a corresponding

CFG.

DEFINITION (good order). By definition, an order for all (a,b) pairs in a CDG C is a good order
for C if it is consistent with the postdomination ordering in a corresponding CFG. An infeasible

CDG has no good order, while a feasible CDG may have more than one good order.

We introduce several ordering properties that determine when the order of an (a,b) pair is fixed
(i.e., the same postdomination relation holds in all corresponding CFGs) and show how to deter-
mine a good order. These properties are used to define procedure OrderByControl. Unfor-
tunately, these properties are not complete for all feasible CDGs. However, they are complete for
the CDGs of normal-form CFGs, which we term R-feasible CDGs. The first two properties are
about feasible CDGs: Property OrderFixed states that if a certain structural condition holds in a
feasible CDG with respect to an (a,b) pair, then b pd a (b postdominates a) in all corresponding
CFGs; Property OrderArbitrary states that if a different condition holds in a feasible CDG, then
the postdomination order of the (a,b) pair is not fixed (i.e., there is a corresponding CFG in which
a pd b and a corresponding CFG in which b pd a). Property Complete shows that if CDG C is

R-feasible then for any (a,b) pair, either property OrderFixed or OrderArbitrary holds (this is not
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true for all feasible CDGs). The proofs of these properties can be found in Section 7.3.
DEFINITION (parent(a)-free path). A path in CDG C is parent(a)-free iff for all edges v —-)ﬂ‘ win
the path, v —Laisnotin C.

DEFINITION (Reach(C,v)). Reach(C,v) denotes the set of vertices reachable from v in C (i.e., { x|

v——):x H.

PROPERTY OrderFixed. Consider an (a,b) pair in feasible CDG C. If there is a parent(a)-free

path from ENTRY to a vertex in Reach(C,b), then b pd a in every corresponding CFG of C.

The intuition behind property OrderFixed is as follows: if there is a parent(a)-free path from
ENTRY to x, then there may be some execution of a corresponding CFG in which x executes at
least once and a never executes. Suppose that x€ Reach(C,b) and that @ pd b in some
corresponding CFG G of C. By several properties of control dependence, a pd b and x €
Reach(C,b) imply that a pd x in G. Therefore, any time x is executed, a must eventually execute,
which contradicts our claim that x may be executed once while a is never executed. Therefore, b
pd a in all corresponding CFGs of C if there is a parent(a)-free path from ENTRY to a vertex in
Reach(C,b).

Example. Consider CDG C! in Figure 7.3: in this CDG, there is a parent(a)-free path from the
ENTRY vertex to b: ENTRY —Tp —1Iq —>F b. Therefore, b pd a in all CFGs corresponding to
Cl. Vertex p is in Reach(CI, c¢) and ENTRY —T p is a parent(g)-free path, so ¢ pd ¢ in all CFGs

corresponding to C1.

DEFINITION (DomReach(C)). Given CDG C, DomReach(C) = { v |V x € Reach(C,v): v dom
x}.

Example. DomReach(Cl) = {ENTRY, p, d, g, a, b} and DomReach(C2) = {ENTRY, g, c,
a, b}.

DEFINITION (b over a). Given an (a,b) pair in CDG C, b over a (by edge v —>L b) iff there exists

v —>L b such that (not v —L @) and (not b dom v).
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Figure 7.3. Control flow graphs G/ and G2 and their control dependence graphs C! and C2.

Example. In CDG CI of Figure 7.3, b over a by edge g —>Fb, and (not a over b).

PROPERTY OrderArbitrary. Consider an (a,b) pair in feasible CDG C. If not a over b, not b
over a, and a,b € DomReach(C), then there is a corresponding CFG in which b pd a, and a
corresponding CFG in which a pd b.

Example. Consider CDG CI in Figure 7.3. Since OrderArbitrary holds for the pair (p,d), there
are at least two good orders for CI, one in which d pd p and one in which p pd d. In fact, there
are exactly two good orders for this CDG, since property OrderFixed holds for every other (a,b)
pairin CI.

In a feasible CDG, it is impossible for both property OrderFixed and OrderArbitrary to hold
for an (a,b) pair. However, there are feasible CDGs for which neither property holds for some
(a,b) pair. That is, these properties are not complete for feasible CDGs. However, they are com-

plete for R-feasible CDGs:
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PROPERTY Complete. If CDG C is R-feasible then for any (a,b) pair, either property OrderFixed

holds (in one direction) or property OrderArbitrary holds.

The above three properties give us enough information to determine for which (a,b) pairs the
postdomination order is fixed (and in what direction). The following property characterizes how

to determine a good order for an R-feasible CDG:

PROPERTY Permutations. If CDG C is R-feasible, then an order for the (a,b) pairs of C is a good
order iff it (1) respects the fixed pair orderings determined by property OrderFixed and (2) orders
the (a,b) pairs for which OrderFixed does not hold according to an arbitrary total ordering of C’s

vertices.

Property Permutations tells us that we cannot simply use the flip of a coin to determine an order
for each (a,b) pair for which property OrderArbitrary holds. Cycles in the ordering are not

allowed (in particular, because the postdomination relation is acyclic).

Figure 7.4 presents procedure OrderByControl. This procedure makes use of the above proper-
ties in conjunction with regions of control dependence [17]. Regions partition the vertices of a
PDG, grouping vertices with common sets of control dependence parents. Vertices a and b are in

the same region iff
{ ,L)| v —>L a and not a dom v) } = { (v,L) | v —>% b and not b dom v) } # &.

This is equivalent to: a and b are in the same region iff they are an (a,b) pair, (not a over b), and
(not b over a). In CDG CI of Figure 7.3, vertices p and & occupy a region, as do vertices g and c.
Every other vertex is in a singleton region.

An (a,b) pair either spans two regions (i.e., a and b are in different regions, R; and R;) or ver-
tices a and b are in the same region. If an (a,b) pair spans two regions then it is clearly impossi-
ble for property OrderArbitrary to hold for this pair. In this case, property OrderFixed will deter-
mine a postdomination order for the (a,b) pair. Furthermore, for any two (a,b) pairs (call them

(c,d) and (e, f)) such that ¢ and e are in R; and d and f are in R}, property OrderFixed implies that
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procedure OrderByControl(P: PDG)
C: the control dependence subgraph of P
begin
[1]1  for each pair of regions (R;,R}) spanned by an (a,b) pair do
[2] apply property OrderFixed to (a,b) to order all (a,b) pairs that span R; and R;
[3] od
[4] foreachregionR={r; -'r,}do
5] last :={ r; | r; € DomReach(C) }
(6] if [last| > 1 then

[7] return (FAIL)

[8] else if |last] = 1 then

9] let x be the single vertex in last in
[10] Vri#x,add r; —>, xto P

[11] ni

[12] fi

[13] od

end

Figure 7.4. Procedure OrderByControl adds ordering edges to PDG P as determined by control depen-
dences.

d pd c iff property OrderFixed implies that f pd e. Thus, to order all the (a,b) pairs that span the
same two regions requires only one application of property OrderF ixed. Lines [1-3] of procedure
OrderByControl reflect this observation.

Suppose that region R contains the vertices {ry, -~ ,rp}. If both r; and r; are members of
DomReach(C), then property OrderArbitrary holds for (r;,r;). It is clear that property Order-
Fixed implies that r; pd r; iff r; & DomReach(C). Conversely, property OrderFixed implies that
ripdr;iffrjé DomReach(C). Therefore, if C is R-feasible then there is at most one ry such that
rx € DomReach(C) (otherwise a cycle would arise in the postdomination order). This implies
that if no such ry exists then property OrderArbitrary holds for all pairs in R, and that if such an
ri exists then it must postdominate all other vertices in R and property OrderArbitrary holds for
all the other pairs in R. We need only examine each vertex in a region once to determine an order
for all the (a,b) pairs in the region. Lines [4-13] of procedure OrderByControl reflect this obser-

vation.
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7.2.4.2. Procedure OrderByFlow

As the previous section showed, the order of an (a,b) pair is not fixed by control dependence iff a
and b are in the same region and both vertices are in DomReach(C), This section shows how flow
dependences may fix the order of such a pair. The ordering requirements imposed by flow depen-
dences in the presence of complex control dependence are quite similar to the structured case, in
which the control dependence subgraph is a tree [3].

To understand the operation of procedure OrderByFlow it is necessary to give some more
details about regions of control dependence. Suppose that region R contains the vertices
{rq---ry}. Let R’ be the subset of vertices in R that are in DomReach(C). Property OrderArbi-
trary holds for every pair of vertices in R " and all the vertices in R " have been ordered before the
vertex in R — R’ (by procedure OrderByControl). Let C; = Reach(C,r;) and let AlIC be the union
of all the C;. Figure 7.5 illustrates this structure. Consider an (7;,7;) pair. Because r; and r; are
in the same region there must be a predicate p such that p —Ly,p—oEkr j, not r; dom p and not

rj dom p. These facts imply that C; and C; are disjoint sets of vertices. Thus, given a flow edge

Figure 7.5. Regions of control dependence. Each vertex r; in the region dominates its reaching set C;.
Each pair of reaching sets (C;,C;) is disjoint.
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with one or more endpoints inside AlIC, we can say exactly which C; contains each endpoint.

The only flow dependences that can affect the ordering of the vertices in region R are the follow-

ing:

° A flow dependence from a vertex in C; to a vertex in C; (i#)). Edge e in Figure 7.5 is an
example of such an edge. In this case there must be an ordering edge between r; and rj in
P (by construction of Py).

° A flow dependence from a vertex in C; to a vertex outside of AlIC, or a flow dependence
from a vertex outside of AlIC to a vertex in C;. Edges e, and e3 in Figure 7.5 are examples
of such edges.

. A loop-carried flow dependence from a vertex in C; to a vertex in C; (i and j may be equal
in this case) that is carried by a loop entry outside of AlIC.

No other flow edges in the PDG can affect the ordering of vertices within region R ’. Determin-

ing the order within each region could be expensive if we had to search each C; subgraph for the

above flow dependences. Procedure OrderByFlow avoids this problem by processing regions in a

“pottom-up” manner so that when region R’ is considered, all the relevant flow edges will have

been projected up to the vertices in the region (i.e., if there is a flow edge from a vertex in C; to a

vertex in C; then when region R * is considered, this flow edge will have been projected up to be

between r; and r;). Therefore, ordering the vertices within region R will only require examining
edges with at least one endpoint in R ".

The reason that this bottom-up approach is possible has to do with another property of the ver-
tices within a region: all the vertices in a region have the same immediate dominator in C.> Stated

another way, all the vertices in a region have the same parent in C’s dominator tree. By visiting

the vertices in a bottom-up traversal of C’s dominator tree, we guarantee that for each vertex r; in

5This follows directly from the observation that the immediate dominator of a vertex x is the least common
ancestor in C’s dominator tree of all the predecessors of x in C. Since the vertices in a region have the
same predecessors in C (except for predecessors that they themselves dominate, which are not a concern),
the vertices in a region have the same immediate dominator in C.
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region R’ (recall that r; is in DomReach(C)), all the vertices in C; — {r;} will have been visited
before r; is visited. If there is a flow edge x —>fy such that x € C; and y & C; then the source of
this edge will have been projected up to r; (by the processing of vertices in C;) before r; is
visited.

Figure 7.6 presents procedure OrderByFlow. The procedure makes a copy P¢ of the PDG P in

which to perform projection of the flow edges. The vertices of the PDG are visited by a bottom-

up traversal of the control dependence subgraph’s dominator tree (line [21).8 If v is the current
vertex in the traversal, then R is the region enclosing v. Region R’ contains those vertices in R
that are in DomReach(C); that is, those vertices for which flow dependences can determine an
order (recall that R — R’ contains at most one vertex, and that vertex will have been ordered after

all other vertices in R by procedure OrderByControl). All vertices in R are marked to ensure that

procedure OrderByFlow( P:PDG )
P_: acopy of P
C: the control dependence subgraph of P,
begin
[11 unmark all vertices in C
[2] for each unmarked vertex v in a bottom-up traversal of C’s dominator tree do
[31 let R be the region containing v

4] R’=R -{y|ye Randy € DomReach(C) }

[5] w =v’'s parent in C’s dominator tree (i.e., w is v’s immediate dominator)
[6] in

[7] mark all vertices in R

[8] PreserveExposedUsesAndDefs(P, ,R ")

9] if PreserveSpans(P,,R ’ }) fails then return (FAIL) else TopSort(R i

[10] ProjectInfo(P,,w,R)
[11] add ordering edges between vertices in R to PDG P

[12] ni
[13] od
end

Figure 7.6. Procedure OrderByFlow: orderings imposed by flow dependences.

That is, a vertex v in the tree is not visited until all of its descendents in the tree have been visited.
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they are not visited a second time in the traversal (line [7]). The procedures PreserveEx-
posedUsesAndDefs and PreserveSpans (described in Sections 7.2.4.2.1-2) add ordering edges
between the vertices in region R’ to force an ordering of the vertices consistent with the flow
dependences (lines [8-9]). If this process introduces a cycle in R ’, OrderByFlow fails; otherwise,
a topological sort of region R’ produces an ordering consistent with the region’s ordering edges.
Procedure ProjectInfo projects flow edge information onto the vertex w that is the immediate
dominator of the vertices in R (Section 7.2.4.2.3). Finally, the ordering edges added to region R’
in P, are copied to PDG P (line [11]).

7.2.4.2.1. Procedure PreserveExposedUsesAndDefs
Procedure PreserveExposedUsesAndDefs uses flow edges of graph P, having only one endpoint
inside region R * and loop-carried edges with both endpoints inside R * to identify exposed uses
and definitions. It adds ordering edges to R’ to ensure that these exposed uses and definitions are
ordered correctly with respect to other definitions in R .
(1) Identify upwards-exposed uses.
If a vertex u € R’ uses variable x and is the target of a flow edge whose source is outside
R’, or is the target of a loop-carried flow edge, then vertex u represents an upwards-exposed
use of x. Mark each such vertex UPWARDS-EXPOSED-USE(x).
(2) Identify downwards-exposed definitions.
If a vertex d € R’ assigns to variable x and is the source of a flow edge whose target is out-
side R’, or is the source of a loop-carried flow edge then vertex d represents a downwards-
exposed definition of x. Mark each such vertex DOWNWARDS-EXPOSED-DEF(x).
(3) Preserve exposed uses and definitions.
For each vertex u marked UPWARDS-EXPOSED-USE(x), add an edge u —,, d if vertex
de R’ assigns to variable x and there is no ordering edge d —,, u. For each vertex dy
marked DOWNWARDS-EXPOSED-DEF(x), add an edge dy —,,d; if vertex doe R’

assigns to variable x and there is no ordering edge d1 —,, d2.



138

7.2.4.2.2. Procedure PreserveSpans

Consider a definition d in region R’ that defines variable x, and the set of uses u € R’ that are
flow targets of d and ordered d{ —,, 1. In general, if there is a definition d to variable x in R !
it must either precede d or follow all the uses reached by d1. Otherwise definition d, may inad-

vertently “capture” one of the uses u.

DEFINITION (Span(d,x)). Let d be a vertex in R’ that defines variable x. Span(d,x) = {d} v

{ueR’|d ——);u and d —>,, u}.” Span(d,x) is called an x-span and vertex d is its head.

Two x-spans are said to be dependent if there is a path of ordering edges from a vertex in one
span to a vertex in the other span. The following rule is used to order such dependent spans:
e If there is a path of ordering edges from a vertex in Span(d,x) to a vertex in Span(d2,x)
and there is no edge dy —,, d 1, then add an ordering edge from each vertex in Span(d {,x)
— Span(dy,x) to dj.
If there is a path of ordering edges from Span(di,x) to Span(dz,x) and no ordering edge
dy —>,, d1, then we only add ordering edges from vertices in Span(dy,x) — Span(ds,y) to dg
(rather than adding edges from every vertex in Span(d 1,x) to d). The reason for this is that two
x-spans may overlap. Figure 7.7 shows the three ways in which two x-spans may overlap. In
cases (a) and (b), adding edges from all vertices in Span(d | ,x) to Span(d3,x) would create a cycle
in the ordering edges, making a topological order impossible. Case(c) shows why we insist that
there is no edge dy —>,,d1. In this case, it appears that each span should be ordered before the
other. Without this condition, the ordering rule would add the edge d| —>,, d2 even though
d, —,, d already existed, creating a cycle.
Procedure PreserveSpans operates in our algorithm exactly as in the algorithm for the struc-

tured case [3], but uses our updated rule for ordering dependent spans. First, the ordering edges

"The notation d —-);u means that the source of the flow dependence (d) assigns to variable x.
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Span( dl,x) Span( dz,x)

by 0 T

Span( d],x)

Span( dl.x)

Span( cé,x)

Figure 7.7. The three ways in which x-spans may overlap.

in R’ are transitively closed (i.e., if x —>,,y and y —>,, z then x —>,,2). Second, all dependent
spans are ordered. However, after this step there may be independent x-spans (x-spans with no
path of ordering edges between them) that must still be ordered. Although it appears that an arbi-
trary choice can be made, there are examples in which choosing one way leads to a cycle in the
set of ordering edges. As shown by Horwitz, Prins, and Reps, the problem of determining the
correct choice in this situation is NP-complete [28]. In practice, a simple backtracking algorithm
appears to suffice. Given a pair of independent x-spans Span(d {,x) and Span(dy,x) an ordering
edge is added (either d| —>,, dy or dy —>,,d) to make them dependent, the ordering edges in
R’ are transitively closed, and the spans are ordered by applying the rule for ordering dependent
spans. If a cycle is introduced in the ordering edges during this process, PreserveSpans back-
tracks to the most recent choice point and tries the other choice. If all choices lead to a cycle then

PreserveSpans fails. Ball, Horwitz, and Reps proved the correctness of this approach [3].

7.2.4.2.3. Procedure Projectinfo
Procedure ProjectInfo projects flow edges with one or more endpoints inside region R to the ver-
tex w in the control dependence subgraph C that dominates the vertices in R. This ensures that if

we DomReach(C) when w is considered in its enclosing region, it represents all uses and
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definitions that occur in Reach(C,w). The procedure takes the following steps:

(1) Let V be the set of variables that are defined by vertices in R. Label w as defining every

variable in V.

(2) Replace all flow edges a -—);b such that w does not dominate a in C and b € R with an
edge a —)’}w. Label w as representing a use of variable x. Replace all flow edges a —->;b
such that a € R and w does not dominate b in C with an edge w —>;b.

(3) Consider each loop-carried flow edge d —é;u such that d and u are both in R. If the edge
d -—->)]Ccu is labelled with loop entry w then remove the edge; otherwise replace the edge

(labelled with loop entry z) with a loop-carried flow edge w —-);w (labelled with loop entry

z) and label w as representing a use of variable x.

7.2.4.3. Function ConstructCFG: constructing the CFG
This section shows how to construct a corresponding CFG from P ‘. For each predicate p in
P’jy, the L control dependence successors of p are totally ordered by the ordering edges of P ‘M-
Let the list CLIST(p, L) = (v1,...,V;y ) be the L control dependence successors of p ordered so that
for all i, 1<i<m, v; —>,, vi+1. The following rules describe how CFG postdomination informa-
tion can be propagated in a top-down fashion over P 'y and used to determine the edge set of the
desired CFG M (a CFG that corresponds to P “y):
e The immediate postdominator of the ENTRY vertex in any CFG is the EXIT vertex.
® If vertex w immediately follows v in CLIST(p,L), then w = ipd(G,v).
® If vertex v occurs last in CLIST(g,L) and w = ipd(G,g) then w = ipd(G, v).

These rules provide the basis for the function ConstructCFG of Figure 7.8, which first builds
the CLISTs and then calls the procedure DFS to produce the edge set of the CFG via a depth-first

search of the control dependence subgraph of P ’ys. The first parameter to DFS (v) is the current




141

global
CLIST : (vertex, LABEL) —» list of vertices;
Edges : set of edges

function ConstructCFG(

P’y fully ordered PDG

): CFG

begin

Edges =&

unmark all vertices in P’y

DFS(ENTRY,EXIT)

return( (vertices(P "yy) v {EXIT}, Edges))
end

procedure DFS( v,w : vertices );
begin
if not Marked(v) then
Marked(v) := TRUE;
if v is a predicate then
for LBL := false to true do
if CLIST(v,LBL) = () then
Edges := Edges u {v —» 8L w}
else
curr = head(CLIST(v,LBL));
rest = tail(CLIST(v,LBL));
Edges :=Edges v {v — LBL cyrr }
while rest # () do

DFS(curr,head(rest))
curr = head(rest); rest := tail(rest)
od
/* curr is now the last vertex */
DFS(curr,w)
fi
od

else /* v is a fall-through vertex */
Edges :=Edges v {v —»w }
fi
fi

end

Figure 7.8. Function ConstructCFG uses a depth-first search over the control dependences of P’y to gen-

erate the edges for the CFG M.

vertex of the depth-first search and the second parameter (w) is always the immediate postdomi-

nator of v, which is updated in accordance with the above rules. The edges of the control-flow

graph are determined as follows:

° The CEG successor of a vertex that is not a predicate is its immediate postdominator.

° The CFG L-successor of a predicate p such that CLIST(p,L) # () is the first vertex in

CLIST(p,L).

e  The CEG L-successor of a predicate p such that CLIST(p,L) = () is p’s immediate postdomi-

nator.

If P’y is feasible then function ConstructCFG will return a corresponding CFG for C. Other-

wise, ConstructCFG will return a CFG that does not correspond to C. ‘Section 7.3 proves the
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correctness of function ConstructCFG.

Example. We now show how function ConstructCFG produces a CFG from an ordered CDG.
Consider the R-feasible CDG in Figure 7.9(a). Thin edges represent control dependences while
thick edges represent ordering edges. There is an ordering edge between each (a,b) pair (for rea-

dability, we have omitted transitive edges). Property OrderFixed only holds for two (a,b) pairs;

(a)

(b)

Figure 7.9. (a) An R-feasible CDG with ordering edges; (b) the corresponding CFG that would be con-
structed by function ConstructCFG.




143

it determines that 4 pd 3 and 13 pd 12. Property OrderArbitrary holds for every other (a,b) pair.
Thus, we are free to give any total order to the T-successors of ENTRY and to the T-successors of
vertex 6 (note that (10,11) is not an (a,b) pair because 10 and 11 do not share a common L-
parent). We have chosen to order these vertices as shown in the figure but emphasize that there
are other good orders for this CDG.

The graph in Figure 7.9(b) is the corresponding CFG that results from applying function Con-
structCFG to the CDG and the good order. We illustrate how a portion of the CFG is built. Fig-
ure 7.10 shows some of the CLISTs and a portion of the execution of function DFS (see Figure
7.8), which creates the edge set of the CFG. Recall that the second vertex in the call to DFS is
always the immediate postdominator of the first. DFS is initially invoked (line [1]) with the call
DFS(ENTRY,EXIT). Since CLIST(ENTRY,F) is empty, the edge ENTRY —FEXIT is made (line
[2]). The edge ENTRYT =1 is added because 1 is the first vertex in CLIST(ENTRY,T) (line [3]).
Since 5 follows 1 in CLIST(ENTRY,T), 5 is passed down as the immediate postdominator of 1 in
the call DFS(1,5) (line [4]). The edge 1-+F4 is added because 4 is the first vertex in CLIST(1,F).

Some CLISTSs Execution of DFS
CLIST(ENTRY,F) = () [1] DFES(ENTRY,EXIT)
CLIST(ENTRY,T) = (1,5,6,14) 2] add edge ENTRY—! EXIT
CLIST(1,F) = (4) (3] add edge ENTRY—T1
CLIST(1,T) = (2) [4]  DFS(1,5)

CLIST(2,F) = () (5] add edge 174
CLIST(2,T) = (3,4) [6) DFS(4,5)
[7] add edge 45
18] add edge 172
(9] DFS(2,5)
[10] add edge 2—%'5
[11] add edge 273
[12] DFS(3,4)
[13] add edge 3—4
[14] DFS(4,5)
[15] DFS(5,6)

Figure 7.10. Some CLISTs and a portion of the execution of function DFS.
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Since 4 is also the last vertex in CLIST(1,F), 5 is passed down as the immediate postdominator
of 4 in the call DFS(4,5) (line [6]). Because 4 is a fall-through vertex, the edge 4—5 is added
(line {7]). At this point, we return to process CLIST(1,7) in the active call DFS(1,5).

7.3. PROOFS

This section contains the proofs of the results stated in this chapter. Section 7.3.1 reviews some
basic results about control dependence. Section 7.3.2 proves that FPP(G,v)=FPP(H,w) iff
OPDG(G)/v = OPDG(H)/w and proves the correctness of function ConstructCFG. Section 7.3.3
proves the correctness of the control dependence ordering properties OrderFixed, OrderArbi-

trary, Complete, and Permutations.

7.3.1. Some Basic Results About Control Dependence

LEMMA(7.1). If CFG G has vertices v, w, and z such that z pd vand v —>.w is in CDG(G), then
there is a non-empty z-free path from v tow in G.

PROOF. By contradiction. Since v —>, w there must be a non-empty path from v to w. Suppose
that every such path contains z. The facts that not w pd v and z pd v imply that not w pd z.
Because z is on every path from v to w and not w pd z, w cannot postdominate the L-branch of v,

as required by v —>Lw. Contradiction. (I

LEMMA(7.2). If CEG G has vertices v, w, and z such that z pd v and v —>.w in CDG(G), then
zpdw.
PROOF. By lemma (7.1), there must be a non-empty z-free path from v to w. If there were a z-free

path from w to EXIT then z could not postdominate v. Therefore, z pd w. U

LEMMA(7.3). If CFG G has vertices a, b, and x such that b pd a and a —>¥ x in CDG(G), then
b pd x.

PROOF. Let a —>,x1 —>, - * * —>. x, be a control dependence path from a to x where x, = x. By
lemma (7.2), b pd a and a —>.x; implies b pd x;. Given b pd x; and x; =2 X;+1, 1<i<n,

lemma (7.2) implies that b pd x;.;. Therefore, b pd x. (1
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LEMMA(7.4). v = w in CDG(G) iff there is a non-empty path from v to w in G that does not
contain any postdominators of v.

PROOF.

(=) Let v—>,x1 —>, ' -+ —>x, be a control dependence path from v to w where x, = w. By
lemma (7.3), any postdominator of v must postdominate all x;. Since v —>x1, there must be a
non-empty path from v to x|. By lemma (7.1), one of these paths contains no postdominators of
v. By similar reasoning, for all i (1<i<n), since x; —, x;+1 and any postdominator of v postdom-
inates x;, there must be a non-empty, path from x; to x; 4 that contains no postdominators of v.
Therefore, there must be a non-empty path from v to w that does not contain any postdominators
of v.

(&) Let PTH be a path from v to w that contains no postdominators of v. The proof is by induc-
tion on the number of predicates in PTH (not including w). If there is one predicate in PTH, it
must be v (if v were a fall-through vertex then PTH contains a postdominator of v). Since every
other vertex in PTH is a fall-through vertex, w must postdominate a branch of v. Since not w pd
v, it follows that v —>, w. The induction hypothesis is that if there are fewer than N predicates in
PTH, then v —>} w. The induction step follows: since PTH is contains no postdominators of v,
the induction hypothesis implies that all the predicates in PTH (except v and w) are transitively
control dependent on v. Let p be the last predicate in PTH such that not w pd p (such a p must
exist since not w pd v). It is clear that w postdominates every fall-through and predicate vertex
between p and w in PTH. Therefore, w postdominates a branch of p and p —>. w exists. Since

v —>7 p, it follows that v —>7 w. O

LEMMA(7.5). If a pd v in CFG G (where a is not the EXIT vertex), then every path from ENTRY
to v in CDG(G) must include an edge p —>L x such that p —>L g and a pd x in G (i.e., there is no
path from ENTRY to v that is parent(a)-free).

PROOF. By induction on the length of the path PTH from ENTRY to v in CDG(G).

Base Case: length of PTH = 1. In this case, PTH = ENTRY —>Ty and p = ENTRY and x =v.

Since a # EXIT, it follows that not a pd ENTRY. Furthermore, since a pd v and v postdominates
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the T-branch of ENTRY, it follows that a postdominates the T-branch of ENTRY. Therefore,
ENTRY —T a exists. Since x =v and a pd v, it follows that a pd x.

Induction Hypothesis: If a pd v then for all PTH of length < N, there is an edge p —Lxin PTH
such that p =% a and a pd x.

Induction Step: PTH of length =N. Suppose the control dependence parent of v in PTH
(p =% v) is not postdominated by a. Since a pd v it follows that p —>L 4. Instead, suppose a pd
p. p —>L a obviously cannot exist. Let PTH,, be the prefix of PTH up to predicate p. The length
of this path is less than N. Therefore, by the induction hypothesis, since a pd p, there must be a

g —E xin PTH), such that ¢ —L ganda pdx. O.

7.3.2. PDG Isomorphism and Function ConstructCFG

The results on ordered PDG isomorphism and the correctness of function ConstructCFG rely on
the following four lemmas that relate the structure of a CFG G to the structure of its ordered CDG
C. In the following lemmas, let the list CLIST(p,L) = ( v1,...,V), ) be the L-children of p in CDG

C ordered so that for all i, 1<i<m, v; =>4, vi+1 isin C.

LEMMA (7.6). Let G be a CFG with ordered CDG C. If w immediately follows v in CLIST(p,L),
then w = ipd(G,v).

PROOF. By contradiction. Suppose x (# w) is the immediate postdominator of v in G. Since x
impd v and w pd v in G (since w occurs after v in CLIST(p,)), w pd x pd v in G. Since
p—twandp —>Ly, and w pd x pd v, it follows that p —>L x is in C. Therefore, x must occur

between v and w in CLIST(p,L). Contradiction. []

LEMMA (7.7). Let G be a CFG with ordered CDG C. If vertex v occurs last in CLIST(q,L) and
r =ipd(G,q), then r = ipd(G,v).

PROOF. Assume that w # r is the immediate postdominator of v in G. Since r impd ¢ in G and v
is directly control dependent on g, lemma (7.2) implies that r pd v in G. Since w pdvandrpdv
in G, either w pd r or r pd w must hold in G. The former implies that w is not the immediate

postdominator of v in G. Therefore, r pd w pd v. Since v postdominates the L-branch of g and w
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pd v, but not w pd g (since r pd w), g —>L w must be in C. However, since w pd v, w must fol-

low v in CLIST(q,L), contradicting an initial assumption. []

LEMMA (7.8). Let G be a CFG with ordered CDG C. The immediate postdominator of every
vertex in G is determined solely by the structure of C.

PROOF. The proof is by induction on the length of an acyclic path in C from ENTRY to a vertex
v. The base case is a path length of 0, in which case v = ENTRY. In any CFG, the immediate
postdominator of ENTRY is always EXIT. Suppose that r = ipd(G,q) and that there is an acyclic
path of length N from ENTRY to g. By the Induction Hypothesis, r can be determined solely by
the structure of C. We show that the immediate postdominator of each vertex v in CLIST(g,L) is
determined solely by the structure of C, completing the induction step. If v is not the last vertex
in CLIST(g,L) then lemma (7.6) implies that w =ipd(G,v), where w immediéte follows v in

CLIST(q,L). If v is the last vertex in CLIST(g,L) then lemma (7.7) implies that r = ipd(G,v). O

LEMMA (7.9). Let G be a CFG with ordered CDG C. The edge set of G is determined solely by

the structure of C.

PROOF. In any CFG, the control-flow successor of a fall-through vertex is its immediate post-

dominator. By lemma (7.8), the immediate postdominator of every vertex in G is determined

solely by the structure of C. Therefore, so is the successor of every fall-through vertex. We now
show that the true and false control-flow successors of each predicate p in G are determined
solely by the structure of C. There are two cases to consider:

(1) p has no L-successors in C. In this case, ipd(G,p) is the L-successor of p in G. Suppose that
x (x # ipd(G,p)) is the L-successor of p in G. This implies that p —>L x is in C, which con-
tradicts the fact that p has no L-successors in C.

(2) p has L-successors in C. In this case, the first vertex in CLIST(p,L) is the L-successor of p
in G. Let x be the L-successor of p in G. Vertex x cannot postdominate p, otherwise there
would be no L-successors of p in C. This implies that p —>L x. Since x is the L-successor

of p in G, it must be the first vertex in CLIST(p,L) (because every other vertex that is L
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control dependent on p must postdominate x). []

THEOREM. Given CFGs G and H containing vertices v and w, respectively. Let G’ = FPP(G,v)
and H' = FPP(H,w). G’ =H" iff OPDG(G)/v = OPDG(H,w)

PROOF. The proof has two major parts:

(1) Given CFG G, if G’ = FPP(G,v) then OPDG(G ") = OPDG(G)/v.

(2) Given CFGs [ and J, I = J iff OPDG(/) = OPDG(/).

The theorem follows directly from these points: Since G’ = FPP(G,v) and H’ = FPP (H,w),
point (1) implies that OPDG(G ) = OPDG(G)/v and OPDG(H ") = OPDG(H)/w. This fact and
point (2) implies that G " = H’ iff OPDG(G)/v = OPDG(H)/w.

We first prove point (1). By definition, G’ has the same vertex set as OPDG(G)/v (except for
the EXIT vertex). Since G’ is a path-projection of G, it follows that for any two vertices (a,b) in
G’,apdbinG’iff a pd b in G and a postdominates the L-branch of b in G ” iff a postdominates
the L-branch of b in G. Therefore, for any two vertices (a,b) in G, a —L b is in OPDG(G ) iff
a —>L b is in OPDG(G)/v. Since the postdomination order of vertices in G “ and G is the same, it
is clear that a —>,, b is in OPDG(G ") iff a —>,, b is in OPDG(G)/v. To complete the proof of
point (1) we must show that @ — b is in OPDG(G ") iff a —>¢b is in OPDG(G)/v. Consider a
path in G that induces a flow dependence a —>¢b in OPDG(G)/v. The projection of this path in
G’ clearly induceé the flow dependence a —> ;b in OPDG(G *). Consider a path P’ in G that
induces a flow dependence a —>¢b in OPDG(G ). Let P be a generating path in G for P’ that
begins with a and ends with b. Assume that vertex a assigns to variable x. Since G'is a
flow/path-projection of G, no vertex in P before b, except a, can assign to x (otherwise by point
(2) of the definition of flow/path-projection, that vertex would also be in V(G"), and by point (2)
of the definition of path-projection, it would occur in P’ before b). This implies that path P
induces the flow dependence a —¢b.

We now prove point (2). It is clear that if CFGs / and J are isomorphic that OPDG() =
OPDG(J). The other direction follows directly from lemma (7.9). By this lemma, the edge set of

I is completely determined by the control dependences and ordering edges of OPDG(]), and
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likewise for J. Therefore, if OPDG(I) = OPDG(J), it follows that I =J. [J

THEOREM. Let G be a CFG with ordered CDG C. Given CDG C, function ConstructCFG will
build CFG G.

PROOF. This follows directly from lemma (7.8) and (7.9). By lemma (7.8), it is clear that for any
call to DFS, vertex w is the immediate postdominator of vertex v in CFG G. Since function Con-
structCFG correctly determines the immediate postdominators, lemma (7.9) implies that it

correctly determines the edge set of G. [

7.3.3. Proofs of CDG Ordering Properties

Section 7.3.3.1 proves property OrderFixed and Section 7.3.3.2 proves property OrderArbitrary.
Section 7.3.3.2 shows that properties OrderFixed and OrderArbitrary are complete for acyclic
feasible CDGs. Section 7.3.3.3 proves that R-feasible CDGs are reducible. Section 7.3.3.4 shows
that removing the backedges from an R-feasible CDG yields a feasible CDG. Using the results of
the previous three sections, Section 7.3.3.5 proves property Complete: properties OrderFixed and
OrderArbitrary are complete for (possibly cyclic) R-feasible CDGs. Finally, Section 7.3.3.6

proves property Permutations.

7.3.3.1. Property OrderFixed

PROPERTY OrderFixed. Consider an (a,b) pair in feasible CDG C. If there is a parent(a)-free
path PTH from ENTRY to a vertex in Reach(C,b), then b pd a in every corresponding CFG of C.
PROOF. By contradiction. Assume all conditions, except that a pd b in some G (since a and b
share a common parent, either b pd a or a pd b must hold). Let v be the vertex in Reach(C,b) to
which there is a parent(a)-free path from ENTRY. By lemma (7.3), b —>.vand a pd b imply that

a pd v. Lemma (7.5) implies that PTH is not parent(a)-free, a contradiction. [

7.3.3.2. Property OrderArbitrary
PROPERTY OrderArbitrary. Consider an (a,b) pair in feasible CDG C. If not a over b, not b

over a, and a,b € DomReach(C), then there is a corresponding CFG in which b pd a, and a
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corresponding CFG in which a pd b.
The correctness of property OrderArbitrary follows immediately from the following lemma,

which is used in the proof of property Permutations.

LEMMA (7.10). Consider an (a,b) pair in feasible CDG C and a corresponding CFG in which b
pd x pd a (or b impd a). If not a over b, not b over g, and a,b € DomReach(C), then there is a

corresponding CFG in which a pd x pd b (a impd b).

PROOF. Consider the special case where a and b are statement vertices. Since a and b have no
outgoing edges in C, neither dominates any vertex besides itself in C. This fact together with (not
a over b) and (not b over a) implies that the sets { (v,L) | v —La}yand { L) | v —>Lp } are
equal. Thus, if G is a corresponding CFG in which b pd x pd a (or b impd a), then simply
renaming a to b and vice-versa yields a corresponding CFG G’ in which a pd x pd b (a impd b).
To extend this proof to the case where a and b are predicates requires the notion of a control-
flow hammock. A hammock is a single-entry, single-exit subgraph of the CFG (it is useful to
think of a hammock as a “super vertex”). When the conditions of property OrderArbitrary hold,
it is possible to swap the hammocks with entries a and b in a corresponding CFG in which bpda
to yield a corresponding CFG in which a pd b. The remainder of this section proves this in
greater detail.
DEFINITION (hammock). A hammock H is an induced subgraph of CFG G with entry vertex v in

H and exit vertex v’ not in H such that:

1. All edges from (G—H) to H go to v.
2. All edges from H to (G-H) goto v”.

LEMMA(7.11). Consider a vertex v in CDG C with corresponding CFG G. Let H = Reach(C,v).
Vertex v dominates all vertices in H in C iff H is a hammock in G where v is the entry and
ipd(G,v) is the exit.

PROOF.
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(<) By lemma (7.4), every vertex in H must be transitively control dependent on v (because no

vertex in H can postdominate v). Since H is a hammock, all edges from G—H to H go to v.

These facts imply for any vertex w € H and w # v, w cannot be directly control dependent on a

vertex outside of H. Therefore, v dominates all vertices in H in C.

(=) We show that the two conditions for H (Reach(C,v)) to be a hammock must hold:

(1) Suppose that there is an edge x—y in CFG G where x € Reach(C,v), ye Reach(C,v), and
v #y. If not y pd x in G, then x —> y, which contradicts the assumption that v dominates
Reach(C,v). Therefore, y pd x in G. By lemma (7.5), along any path from ENTRY to x in C
there must be an edge p —>~ z in the path such that p —>Ly. If p & Reach(C,v) then v can-
not dominate Reach(C,v). If pe Reach(C,v), then since p —>*x, it follows that x &
Reach(C,v). Contradiction.

(2) Suppose that there is an edge x—y in CFG G where xe V(H), ye V(G-H), and y #
ipd(G,v). Since v —>{ x, lemma (7.4) implies that there is a from v to x in G containing no
postdominators of v. If not y pd v then there is a path from v to y containing no postdomi-
nators of v and lemma (7.4) implies that v —7 y. This implies that y € Reach(C,v), a con-
tradiction of y € V(G-H). Therefore, y pd v. However, since v —>7 x, there must be a path
from v to x in G that does not contain a postdominator of v. Therefore, there is a path from
v to y in G in which y is the first postdominator of v in the path. This implies that y =

ipd(G,v). Contradiction. []

We are now in a position to prove lemma (7.10) in its full generality. We assume that the fol-
lowing hold for the given (a,b) pair: not a over b, not b over a, and a,b € DomReach(C). We
assume, without loss of generality, that C has a corresponding CFG G in which b pd x pda(orb
impd a). We must show that C also has a corresponding CFG G ’ in which a pd x pd b (a impd
b).

Since both @ and b are in DomReach(C), lemma (7.11) implies that G must contain a hammock
H, = Reach(C,a) with entry a and exit ipd(G,a), and a hammock Hj, = Reach(C,b) with entry b

and exit ipd(G,b). Hammocks are either disjoint or nested. Since b pd a in CFG G and no vertex
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in H, can postdominate a, H, and Hy, must be disjoint.
The CFG G’ contains the same vertex set as G. The edge set of CFG G’ is defined as follows:
{ v—lw | volwisin Gand [ (v,w & Hy UHp) or (v,we Hy) or (v,we Hp) ]}
U {volb|volaisinGandve H, }
v {v-sla|voLbisinGandve Hy )
U {voLipd(G,b)|v—t ipd(G,a)isin Gandve H, }
U  {v—oLipd(G,a)|v—t ipd(G,b)isin Gand v e Hp }
The relationship between CFGs G and G’ is depicted in Figure 7.11. It is obvious that a pd x pd
b (or a impd b) in CFG G’ and that H, and H}, are hammocks in CFG G’. To show that G’
corresponds to C we must show that CDG(G ) is identical to C. This follows from the four
observations below (the last three have symmetrical counterparts replacing a with b and H, with
Hp):
(1) Since hammocks are single-entry and single-exit subgraphs, swapping hammocks H, and
H}, cannot affect any control dependence between vertices v and w that are both outside of
(Hg v Hp).
(2) Since swapping the hammocks does not change any paths strictly inside H, and does not
change any postdomination ordering between vertices strictly inside H,, there is no effect
on control dependence between vertices v and w that are both inside H,.
(3) Since (not a over b) and (not b over a) in CDG C, swapping the hammocks cannot affect
the control dependence predecessors of a that lie outside of H,.
(4) Since H, is a hammock in both G and G ’, lemma (7.11) implies that there can be no control
dependence in either C or CDG(G ’) from a vertex inside H, to a vertex outside of H,, or

from a vertex outside of H, to a vertex inside of H, other than a. [J

7.3.3.3. Completeness for acyclic feasible CDGs
In this section we show that either property OrderFixed or property OrderArbitrary holds for
every (a,b) pair in an acyclic feasible CDG (it is clearly impossible for OrderFixed to hold in

both directions in a feasible CDG). The proof relies on the following definition and lemma:
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CFG G
B Ty
CFG G’
y = ipd(G,a) z = ipd(G,b)

Figure 7.11.

LEMMA (7.12). There is a cycle in CFG G iff there is a cycle in CDG(G).

PROOF. Straightforward, from the definition of control dependence. [

LEMMA (7.13). Consider an (a,b) pair in CDG C of CFG G. If there is a vertex x such that x €
Reach(C,a) and x € Reach(C,b), then there is a cycle in C.

PROOF. Without loss of generality, assume that b pd a in G. This implies that x # b(fx=b
then a —>} b, which is not possible since b pd a). Since x € Reach(C,a) and b pd a, lemma
(7.3) implies that b pd x. There must be a path in G from b to x (because b —>7¥ x) and a path in
G from x to b (because b pd x); therefore, b and x participate in a cycle in G. By lemma (7.12),

there must be a cycle in CDG C. [J

DEFINITION (parent(a,b)-free path). A path in a CDG is parent(a,b)-free iff for each edge

x —>L y in the path, not (x —>L g and x 5L b).

LEMMA (7.14). Consider an (a,b) pair in CDG C. If there is no parent(a)-free path (from ENTRY)
to a vertex in Reach(C,b), and no parent(b)-free path to a vertex in Reach(C,a), then for any z in

Reach(C,a) u Reach(C,b), there is no parent(a, b)-free path from ENTRY to z.



154

PROOF. By contradiction. Assume the antecedent but that there is a z in Reach(C,a) v
Reach(C,b) such that there is a parent(a,b)-free path PTH from ENTRY to z. Consider the
parent(a)-free and parent(b)-free prefix (possibly empty) of PTH. Let p —>L x be the edge in
PTH immediately after the prefix. Either p —>L g or p =% b (but not both) exists. This implies
that there is parent(b)-free path to a or a parent(a)-free path to b (consisting of the prefix followed

by the edge p —>L g or p —L b). Contradiction. O

LEMMA (7.15). Properties OrderFixed and OrderArbitrary are complete for acyclic feasible

CDGs.

PROOF. By contradiction. We suppose that there is an (a,b) pair in an acyclic feasible CDG C

for which neither property holds and yield the contradiction that C must contain a cycle. If pro-

perty OrderFixed does not hold in either direction for an (a,b) pair, then there is no parent(a)-free
path (from ENTRY) to a vertex in Reach(C,b), nor is there a parent(b)-free path to a vertex in

Reach(C,a). Lemma (7.14) implies that for any z in Reach(C,a) v Reach(C,b), there is no

parent(a,b)-free path from ENTRY to z. Suppose that property OrderArbitrary does not hold,

either because (1) a € DomReach(C) or (2) a over b:

(1) Suppose that a€ DomReach(C) because there is some v & Reach(C,a) and we
Reach(C,a) such that v —>,w and w # a. Since there can be no parent(a,b)-free path from
ENTRY to w, on every path from ENTRY to w that ends with v —>, w there must be an edge
x —>L y such that x —L g and x —Lp, Ifx=v theny=w andy #a (because w #a). If
x #v then y # a (otherwise v € Reach(C,a)). In either case, vertices y and a are distinct,
share a common control parent (x) and reach a common vertex (w), so lemma (7.13) implies
that there must be a cycle in C. Contradiction.

(2) Suppose that a over b by edge v —>L 4. Since there can be no parent(a,b)-free path from
ENTRY to a, on every path from ENTRY to v there must be an edge x —>Ly such that
x —>L q and x —L b. Since a over b by v —>L g, v # x, which implies that y # a. Vertices
y and a are distinct, share a common control parent (x) and reach a common vertex (a),

yielding the same contradiction as in (1). [J
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7.3.3.4. R-feasible CDGs are reducible

This section shows that R-feasible CDGs are reducible. There are many equivalent definitions of

reducibility. A graph G (rooted at ENTRY) is reducible iff any of the following is true:

(1) For each back edge v-»w of G (as identified by a depth-first search of G starting at the
ENTRY vertex) w dom v.

(2) Every depth-first search of G identifies the same set of edges as backedges.

(3) For any cycle in G, there is a vertex v in the cycle that dominates all other vertices in the
cycle.

The following lemma relates domination in the CFG to domination in the CDG:

LEMMA (7.16). If v dominates w in reducible CFG G and v ——): w CDG(G), then v dominates w

in CDG(G).

PROOF. Suppose that v dominates w in reducible CFG G and that v —>-w CDG(G). Let H be the

set of vertices that are dominated by v and postdominated by ipd(G,v) in G. Suppose there is a

v-free path in CDG(G) from ENTRY to w. Since ENTRY € H and w € H, this path must

include an edge z —>.z " such that z € H and z” € H. We will show that no vertex in H other

than v can be directly control dependent on a vertex z outside H; thus, this path cannot exist and v

dominates w in CDG(G). There are two cases to consider, depending on whether or not there is a

v-free control-flow path from z to a vertex in H:

(1) Every control-flow path from z to a vertex u in H contains v. If u =v then u can be directly
control dependent on z. However, if u # v, then u cannot be directly control dependent on z,
as we now argue. Since every control-flow path from z to « must pass through v and no ver-
tex in H can postdominate v, it is impossible for u to postdominate the T-branch (or F-
branch) of z. Thus, u could not be control dependent on z.

(2) There is a v-free control-flow path PTH from z to a vertex in H. Without loss of generality
assume that the last vertex (x) in PTH is in H and that all other vertices in PTH are not in H.
Let t—>u be the last edge in PTH. We show that u cannot dominate ¢ in G and that there isa

depth-first search of G that identifies t—>u as a backedge. This implies that G is irreducible,
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yielding a contradiction.

It should be clear that no vertex in H (except v) can dominate a vertex outside of H. All that
remains to be shown is that there is a cycle-free path from ENTRY to ¢ that includes u
(which implies that some depth-first search would identify ¢—u as a backedge). There isa
cycle-free path PTH( from ENTRY to v such that no vertex in PTHq (except v) is in H.
There is a cycle-free path PTH | from v to ipd(G,v) that includes u such that every vertex in
PTH | (except ipd(G,v)) is in H. There is a cycle-free path PTH from ipd(G,v) to t such
that no vertex in PTH is in H. The only way a cycle could arise in the concatenation of
the three paths is if PTH, and PTH share a vertex x (x # v, since no vertex in PTH, is in
H). Concatenating the prefix of PTH up to and including x, the suffix of prefix of PTH,
starting at x, and the edge ¢ —u, yields a v-free path from ENTRY to u, contradicting u’s

membership in H. Therefore (PTH || PTH || PTH7) must be cycle-free. O

LEMMA (7.17). If CFG G is a normal-form CFG (i.e., CDG(G) is R-feasible) then C = CDG(G) is
reducible.

PROOF. We show that for any cycle Cyclec in C, there is a vertex in Cyclec that dominates all
other vertices in Cyclec in C. In particular, we show that there is a loop-entry w such that all the
vertices in Cyclec belong to nat-loop(w) and that w is in Cyclec. Since w dominates all vertices
in nat-loop(w) in G (because G is reducible), lemma (7.16) implies that w dominates all vertices
in Cyclec in C.

Let Cyclec be represented by the path of control dependences vi —>cva ="~ —>. v, Where
v1 =v,. For each control dependence v; —Ly, 1 in Cyclec, there is path P; in G from v; to v; 41
such that:

(1) P; begins with the L-branch of v;.
(2) v;4+1 postdominates every vertex in P; except v; (otherwise v; could not postdominate the
L-branch of v; or v; ;1 pd v;, either of which would imply that v; —>L y; 11 could not exist in

() and itself.
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Linked together, these paths form a cycle Cycleg in CFG G. There must be some backedge v—w
in G in Cycleg such that every vertex in Cycleg is in nat-loop(w). We need only show that there
is a v; such that w = v; in order to complete the proof. Since every vertex in Cycleg is in nat-
loop(w) and every natural loop in G is a while loop (as G is a normal-form CFG), it follows that
no vertex in Cycleg can postdominate w. Consider a subpath P; of Cycleg that contains w. By
point (2) above, vertex v;41 postdominates every vertex in P; except v; and itself. Therefore,

eitherw =v; orw =v;41. O

7.3.3.5. The feasibility of backedge-free R-feasible CDGs

Given a reducible CDG C, its backedge-free counterpart (BF(C)) is uniquely defined. While

BF(C) is an acyclic CDG, it is not necessarily a feasible CDG. However, we show that for any

R-feasible CDG C, BF(C) is feasible.

LEMMA(7.18). If CDG C is R-feasible, then BF(C) is feasible.

PROOF. Given a CEG G in the restricted class, we show that BF(CDG(G)) is feasible. The proof

is by induction on the number of backedges in G.

Base Case: If G has no backedges then, by lemma (7.12), CDG(G) has no backedges either. This

implies that BE(CDG(G)) = CDG(G).

Induction Hypothesis: If G has fewer than N backedges (N >0) then BF(CDG(G)) is feasible.

Induction Step: If CFG G has N backedges (N >0) then BF(CDG(G)) is feasible. The proof con-

sists of three steps:

(1) Find an outermost loop in CFG G headed by loop entry w and pick a backedge v—w. Con-
struct CEG G’ from G as follows: G’ = (vertices(G),edges(G)—{v—w} u {v—>ipd(G,w) }).

(2) Show that G’ is in the restricted class and contains fewer than N backedges. This implies
that CDG(G *) is reducible, so BF(CDG(G ")) is uniquely defined.

(3) Show that BF(CDG(G)) = BF(CDG(G ).

Since G’ is in the restricted class and contains fewer than N backedges, the Induction Hypothesis

implies that BE(CDG(G ") is feasible. Since BF(CDG(G)) = BF(CDG(G ), BF(CDG(G)) is

feasible.
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We now turn to proving (2) and (3). The proofs of these steps rely on the following properties

relating postdomination and domination in G and G . In the remainder of this section, z denotes

the vertex ipd(G,w). The proofs make use of the following two observations: any v —w-free path

in G is also in G ’; any v ->z-free path in G " is also in G.

(a)

(b)

(©)

(d)

Vx, Vy:noty pdxinG = noty pdxin G .

If there is a y-free path from x to EXIT in G that is v—w-free, then the same path is clearly
in G’. If the only y-free path from x to EXIT in G contains v—>w, then there must be a y-
free and v—w-free path from x to v and from w to EXIT (and from z to EXIT, since z pd w)
in G. The same paths are in G’. Since v is connected to z by v—z in G, it follows that not
ypdxin G’

Vy,y#w:noty pdxinG’ = noty pdx in G.

If there is a y-free path from x to EXIT in G’ that is v—z-free, then the same path is in G. If
the only y-free path PTH from x to EXIT in G’ contains v—z, then there must be a y-free
and v—z-free path from x to v and from z to EXIT in G . Thus, the same paths are in G If
there is a y-free path from w to z in G, then not y pd x in G. If y is on every path from w to
z in G, then since z = ipd(G,w), it follows that either y =w or y =z. The first case contrad-
icts the assumption that y # w. The second case implies that PTH is not y-free.

Vx, x € nat-loop(w)in G:notw pdxin G’ = notw pdxin G.

If there is a w-free path from x to EXIT in G’ that is v—z-free, then the same path is in G.
If the only w-free path PTH from x to EXIT in G’ contains v—z, then there must be a w-free
and v—z-free path from x to v in G’, and thus in G. However, since x € nat-loop(w) and
v € nat-loop(w), any path from x to v in G must contain w.

Vx, Vy:notydom xin G => noty domxin G'.

If there is a y-free path from ENTRY to x in G that is v—w-free, then the same path is in G .
It is not possible that the only y-free path from ENTRY to x in G contains v—w, since w

domvin G.
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(e)‘ Vx, Vy:noty dom xin G’ = noty dom x in G.
If there is a y-free path from ENTRY to x in G’ that is v—z-free, then the same path is in G.
If the only y-free path PTH from ENTRY to x in G’ contains v—z, then there is a y-free path
PTH’ (a prefix of PTH) from ENTRY to v and a y-free path fromzto x in G. Since w dom v
in G, w occurs in PTH’ and thus in PTH. If there is a y-free path from w to z in G, then
there is a y-free path from ENTRY to x in G. If y is on every path from w to z in G, then
since z = ipd(G,w), either y =z or y =w. In the former case, PTH cannot be y-free. In the

latter case, since y =w and w is in PTH, PTH cannot be y-free.

e G'’isreducible.

Since z = ipd(G,w) and G is in the restricted class, z cannot be in nat-loop(w). This and the fact
that nat-loop(w) is an outermost loop imply that w and z cannot participate in a loop in G.
Because z = ipd(G,w), there can be no path from z to w in G. It follows that there can be no path
from z to a member of nat-loop(w) in G. Thus, the edge v—z cannot participate in any loop in
G’

A graph is irreducible iff it contains a cycle such that there is no vertex in the cycle that dom-
inates all other vertices in the cycle. Suppose that such a situation occurs in G *. Since v—z can-
not participate in this loop, the same loop exists in G. Furthermore, (e) implies that if not y dom

xin G’ then not y dom x in G. This implies that G is irreducible.

e G’ contains fewer than N backedges

Since G and G’ are reducible and y dom x in G iff y dom x in G’ (by (d) and (e)), it follows
that any backedge in G (excluding v —w) is a backedge in G’, and that any backedge in G’ (with
the exception of v->z) is a backedge in G. We show that v —z cannot be a backedge in G (not z
dom v in G "), which implies that G’ contains N-1 backedges. As shown above, z and v cannot
participate in a loop in G. Since there is a path from v to zin G (as v—ow and z = ipd(G,w)), it

follows that not z dom v in G. Thus, (d) implies that not z dom vin G .
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e (' isin the restricted class.

We prove that for each loop entry d in G, no vertex in nat-loop(d) postdominates d. As shown

above, every backedge in G’ is also a backedge in G. Since v—z cannot participate in any loop,

for each backedge c-»d in G, nat-loop(c —d) in G’ is equal to nat-loop(c —d) in G. Consider

any vertex f in nat-loop(c —»d) in G . Vertex fis also in nat-loop(c —>d) in G. Since G is in the

restricted class it follows that not f pd d. By (a), not f pd d in G’. Thus, G is in the restricted

class.

e BF(CDG(G))=BF(CDG(G")).

We prove that BR(CDG(G)) = BF(CDG(G ")) by showing the following relationships between

CDG(G) and CDG(G ')

®

(i)

(iii)

Vx, Yy, y#w : x =Ly in CDG(G) ¢ x —%y in CDG(G ).

From (a) and (b) it follows that if y # w then not y pd x in G iff not y pd xin G ’, and that y
postdominates the L-branch of x in G iff y postdominates the L-branch of x in G’. There-
fore, if y#w, then x —>% y in CDG(G) iff x —>%'y in CDG(G ).

Vx, x & nat-loop(w) in G : x —>k w in CDG(G) ¢ x —>f w in CDG(G ).

From (a) and (c) it follows that if x & nat-loop(w), then not w pd x in G iff not w pd x in
G’, and that w postdominates the L-branch of x in G iff w postdominates the L-branch of x
inG". |

Vx, x € nat-loop(w) in G : w dom x in CDG(G) and CDG(G’). This implies that if
x —-)ﬂ w is in CDG(G) or CDG(G "), then it is a backedge of that CDG.

Since x € nat-loop(w) in G, w dom x in G. By (e), w dom x in G ’

Since G is reducible and no member of nat-loop(w) can postdominate w in G, there is a path
PTH from w to x in G containing no postdominators of w (without loss of generality, we can
assume that PTH is v—w free, since inclusion of v—w would imply that PTH contains a
cycle). Since PTH is v—w-free in G, PTH exists in G ’. Since no vertex in PTH postdom-
inates w in G, (a) implies that no vertex in PTH postdominates w in G’. Thus, lemma (7.4)

implies that w —¢ x in CDG(G) and in CDG(G ).
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Since w dom x in G and G’, and w —} x in CDG(G) and CDG(G *), lemma (7.16) implies
that w dom x in CDG(G) and in CDG(G ).
(iv) Vx, Yy:y dom xin CDG(G) < y dom x in CDG(G").
Follows from (i), (ii), and (iii). We prove (). The proof of (=>) is symmetrical (switch
CDG(G) and CDG(G ")). Suppose that not y dom x in CDG(G). Let PTH be a y-free path
from ENTRY to x in CDG(G). Note that we can always pick PTH such that for each edge
a—>.b in PTH, not b dom a in CDG(G). PTH cannot contain an edge of the form
a —>.w, where a € nat-loop(w) in G, because (iii) implies that w dom a in CDG(G).
Thus, (i) and (ii) imply that PTH is in CDG(G ’y and not y dom x in CDG(G ).
The above four points imply that the only edges on which CDG(G) and CDG(G ) can differ are
backedges (edges for which the target dominates the source in the CDG). Thus, BF(CDG(G)) =
BF(CDG(G ). O

7.3.3.6. Completeness for R-feasible CDGs
In this section we show that properties OrderFixed and OrderArbitrary are complete for R-

feasible CDGs. The following lemmas characterize some important relationships between R-

feasible CDG C and BF(C), C’s backedge-free counterpart.

LEMMA(7.19). If CDG C is R-feasible, then

(1) b over ain BF(C)iff b over ain C, and

(2) b DomReach(BF(C)) = b€ DomReach(C)

PROOF.

(1) (<)Ifboverabyv —>Lbin C, then v —>L b, not b dom v, and not v —L g, Since Cis
reducible and not b dom v, it follows that v —>£ b cannot be a backedge. Thus, b over a by
v —L b in BF(C).
(=) Suppose b over a in BF(C) by v —>L b (i.e., v —>, a is not in BF(C) and not b dom v
in BF(C)). Since C is reducible, it follows that y dom x in C iff y dom x in BF(C). There-

fore, not b dom v in C. Suppose that v —>Lgisin C. Since v —>L 4 is a backedge it
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" follows that @ dom v in C, and thus in BF(C). This means that @ —>{ b in BF(C). Lemma
(7.13) implies that there is a loop in BF(C). Contradiction.
(2) If b€ DomReach(BF(C)), then there must be a vertex x (x #b) in Reach(BF(C),b) such
that there is a b-free path from ENTRY to x in BF(C). The same path must obviously exist
in C.

LEMMA(7.20). Given an (a,b) pair in R-feasible CDG C. If be DomReach(BF(C)) and be
DomReach(C), then there is a parent(a)-free path from ENTRY to a member of Reach(C, b).
PROOF. Since C is reducible, b dom x in BE(C) iff » dom x in C. If no vertex in Reach(BF(C),b)
is the source of a backedge in C, then be DomReach(C). If for every vertex v in
Reach(BF(C),b) that is the source of a backedge v —>,w in C, wis in Reach(BF(C),b), then b &
DomReach(C).

The only case left is where there is a vertex v in Reach(BF(C),b) that is the source of a back-
edge v—>.win C, and w & Reach(BF(C),b). Since C is reducible, w must dominate b in this
case. We show that w dom a, which implies that there must be a parent(a)-free path to w (a
member of Reach(C,b)).

Let p be the common parent of vertices a and b. Since w dom b and p —>, b, eitherw =p or w
dom p. It follows that w —>{ a and that b —>*+a. Since a and b have a common parent, either b
pd a or a pd b in a corresponding CFG. However, by lemma (7.4), if a pd b in a corresponding
CFG then b —>} a cannot exist. Therefore, b pd a in all corresponding CFGs. Suppose that not
w dom a by some path PTH. Since b pd a in all corresponding CFGs, lemma (7.5) implies that
there is some x —>% y in PTH such that x —>L p. This implies that there is an w-free path from
ENTRY to b consisting of the prefix of PTH up to x, followed by the edge x —>L pb. This contrad-

icts the fact that w dom b. [J

LEMMA(7.21). If C is R-feasible and there is a parent(a)-free path from ENTRY to a vertex in

Reach(C,b) in BF(C), then the same path is parent(a)-free in C.
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PROOF. By contradiction. If the path is not parent(a)-free in C, then it must be because of a
backedge (v —>.a). Since C is reducible, it follows that a dom v. This implies that a is in the
parent(a)-free path in BF(C), which is clearly a contradiction as a parent(a)-free path cannot con-

tain a. O

PROPERTY Complete. Properties OrderFixed and OrderArbitrary are complete for R-feasible

CDGs.

PROOF. To show that properties OrderFixed and OrderArbitrary are complete for a given R-

feasible CDG C, we consider which property holds in BF(C). Since BF(C) is feasible and acy-

clic, one of the properties must hold for a given (a,b) pair.

(A) Assume that property OrderFixed holds (in some direction) in BF(C) for (a,b). Lemma
(7.21) implies that property OrderFixed holds in the same direction in C.

(B) Assume that property OrderArbitrary holds in BF(C) for (a,b). If property OrderArbitrary
holds in C, then we are done. If it does not hold, then lemma (7.19) part (1) implies that
either a or b is not a member of DomReach(C). Lemma (7.20) implies that property Order-
Fixed must hold in C. []

7.3.3.7. Property Permutations

The proof of property Permutations relies on the following lemma.

LEMMA (7.23). Given feasible CDG C. If property OrderArbitrary holds for (a, b) and b pd x
pd a in a corresponding CFG of C, then (1) there is a vertex p such that p —% a, p —>% x, and
P —>L b, and (2) property OrderArbitrary holds for (a,x) and (x,b).

PROOF. There must be a vertex p such that p —Lgandp —>L b, Since b pd x pd q, it follows
that p —>L x. By lemma (7.10), there must be a corresponding CFG G in which a pd x pd b,
which implies (2). [
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PROPERTY Permutations. If CDG C is R-feasible, then an order for the (a,b) pairs of C is a good
order iff it (1) respects the fixed pair orderings determined by property OrderFixed and (2) orders
the (a,b) pairs for which property OrderArbitrary holds according to an arbitrary total ordering of

C’s vertices.

PROOF.

(=) If Order is a good order, then Order must be acyclic and respect the fixed orderings of pro-
perty OrderFixed. Since Order is acyclic it must be possible to find a total ordering of C’s ver-
tices that respects the pair orderings of those (a,b) pairs for which property OrderArbitrary holds.
(&) Since property OrderArbitrary cannot hold for an (a,b) pair that spans regions and regions
partition the vertex set of C, we only need to argue that within any region the (a,b) pairs for
which property OrderArbitrary holds can be ordered according to an arbitrary order of the ver-
tices in that region. Within any region R = { x1,....x, } of an R-feasible CDG C, at most one xi
cannot be a member of DomReach(C). Such an x; must postdominate all other vertices in the
region. Property OrderArbitrary holds for every pair of vertices from the set S = (R — { x| xx €
DomReach(C) D).

Consider a corresponding CFG of C, and let x,, be the vertex from S such that x,, postdominates
all other vertices in S and let x| be the vertex from S such that all other vertices in S postdom-
inate x . This chain contains all the vertices in S and no others (if there was an x; & S such that
x, pd x; pd x| then lemma (7.23) implies that property OrderArbitrary holds for (x,,x;) and
(xg,x1) which implies that x; € S). Since property OrderArbitrary holds for every pair in the
chain, lemma (7.10) implies that there is a corresponding CFG for every possible postdomination

ordering of vertices in S. []
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7.4. RELATED WORK

7.4.1. Related Work on Differencing

There are many techniques for determining the difference between two programs. Some of these
techniques are based solely on program text and others take program semantics into account. The
Unix ™ utility diff computes the textual difference between two files [35]. An extension of this
tool, called spiff, is a differential comparator that uses lexical parsing of files to provide comparis-
ons at the level of tokens [S1]. For example, spiff can be told to ignore whitespace and comments
when examining files or to ignore the differences between floating point numbers up to some
threshold (this can be useful for comparing the output of floating point calculations in the pres-
ence of roundoff errors). Yang developed a tool called cdiff that computes the syntactic differ-
ence of two C programs [72]. This tool goes a step beyond spiff by representing programs as
abstract syntax trees rather than a stream of tokens and comparing the abstract syntax trees. None
of the above tools take program semantics into account and so they may not report differences in
sections of code that actually exhibit different behavior.

There are a number of works on semantics-based differencing. Yang and Reps showed that the
isomorphism of subgraphs induced by backwards-closure in the program dependence graph (a
slightly different form of graph from the one defined in Chapter 5) can be used to compare the
behavior of components in different (structured) programs [62]. Horwitz and Reps gave an
efficient procedure for determining the isomorphism of these PDG subgraphs [33]. We have
extended the former result to show how ordered program dependence graphs can be used to com-
pare the behavior of components in programs with arbitrary control-flow. Furthermore, we have
shown that isomorphism of these ordered graphs and subgraphs can be decided efficiently, as
done by Horwitz and Reps for the structured case.

Yang, Horwitz, and Reps defined a different algorithm for determining components with
equivalent behavior across programs that uses a representation called the program representation
graph [73], which has some similarities to static single assignment form [15]. Although this

algorithm is able to find more cases where components have equivalent behavior, it is still limited



166

to programs with structured control-flow. Binkley describes how to perform semantics-based dif-

ferencing on multi-procedure programs with applications to regression testing [ 9].

7.4.2. Related Work on Integration

The first semantics-based integration algorithm (the HPR algorithm) was developed by Horwitz,

Prins and Reps [30]. Yang and Reps proved that when this integration algorithm succeeds it will

produce a program meeting the semantic criteria of integration [62]. The HPR algorithm is res-

tricted to programs with structured control-flow. Our algorithm has the same basic steps as the

HPR algorithm: identification of vertices with different and equivalent behavior (affected and

preserved behavior in the terminology of the HPR algorithm) and construction of merged depen-

dence graph Pjs; Type [ interference test; reconstitution of a CFG (program) from Pyy. There are
three major differences between the two algorithms.

® As the HPR algorithm deals only with structured programs, the problem of reconstitution is
greatly simplified (because the control dependence subgraph of the merged dependence
graph is a tree). In fact, when the control dependence subgraph is a tree there are no order-
ing constraints imposed by control dependences. The correctness of the simplified reconsti-
tution algorithm was proved correct by Ball, Horwitz, and Reps [3]. In contrast, our algo-
rithm must deal with ordering constraints imposed by control dependences as well as flow
dependences. This was the major difficulty in extending the integration algorithm to handle
more complex control-flow.

e  The result of the HPR algorithm is a program while the result of our integration algorithm is
a CFG. Because the HPR algorithm deals only with structured programs, it is straightfor-
ward to map the merged dependence graph back to a program (in fact, the control depen-
dence subtree closely resembles the abstract syntax tree, except that children of a vertex in
the abstract syntax tree are totally ordered). However, in the presence of complex control-
flow there are multiple programs that have the same control-flow and dependence graph
representation. We have chosen to produce a CFG rather than a program, sidestepping the

problem of which program to generate from the output CFG M. This has the advantage that
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the integration algorithm is independent of the source language and its syntax. Ultimately,
one would like integration to produce a program (and perhaps one that resembles the source
programs as much as possible). One could use a structuring algorithm such as Baker’s to
produce a program from the CFG [2], but there is no guarantee that this program will
resemble the source programs. Another approach is to carry along syntactic information
from the source programs through the integration process, and use this to guide the creation
of an appropriate program from the output CFG M.

) The program dependence graph representation used by the HPR allows the algorithm to
identify vertices that have equivalent behavior in the presence of reordering. To repeat an
example from Chapter 6, the HPR algorithm would identify vertices ¢:=a +b in the follow-

ing two programs as having equivalent behavior:

2
1

O oW
W
[\) o

®
(eI~

+b a+b

On the other hand, our algorithm identifies these vertices as having (potentially) ine-
quivalent behavior. While our algorithm allows for a greater class of control-flow, there are
cases (such as the one above) where our algorithm will identify vertices as having (poten-
tially) inequivalent behavior when the HPR algorithm will identify the vertices as having
equivalent behavior. This will allow the HPR algorithm to succeed in some cases where

our algorithm will fail.
Binkley extended integration to handle programs with multiple procedures [8] and Yang
developed a new integration algorithm that is able to accommodate semantics-preserving
transformations on programs [73]. Both of these algorithms assume structured control-flow

within a procedure or program.

7.4.3. Related Work on Reconstitution
Horwitz, Prins, and Reps were the first to formalize that program dependence graphs are an “ade-

quate” program representation [29]. They proved that PDGs distinguish between nonequivalent
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structured programs. That is, any two structured programs with inequivalent behavior have non-
isomorphic PDGs. This result is important to HPR integration because it implies that all pro-
grams that could be created from the merged PDG by reconstitution have equivalent behavior (at
each corresponding component). While we have not explicitly stated an adequacy result for
ordered PDGs, a similar adequacy result follows directly from our results. If G and H are CFGs
and v and w are corresponding vertices from G and H, respectively, with inequivalent behavior,
then OPDG(G)/v cannot be isomorphic to OPDG(H)/v. When it succeeds, our reconstitution
algorithm guarantees that for each vertex v in the CFG M constructed from the merged depen-
dence graph Py, OPDG(M)/v = Py/v. Therefore, all the CFGs that could be created from Py by
reconstitution have equivalent behavior (at each corresponding vertex).

Previous work on PDG reconstitution has been done by Ferrante and Mace [16], Ferrante,
Mace and Simons [18], and Simons, Alpern and Ferrante [65]. In these works, the PDG is
viewed as a representation of a parallel program and the goal is to translate this program to a
sequential program. In order to do this, ordering must be introduced between the control depen-
dencé successors of a predicate vertex, which is the same problem we have addressed. All three
works consider control dependence that may not be tree-shaped. The first two works were incom-
plete and contained some errors that were corrected in [65], which takes the most formal
approach to PDG reconstitution. We discuss the similarities and differences between that work
and our work on PDG reconstitution. Both works handle essentially the same class of PDGs, as
we discuss later. However, the formulation of our ordering properties are different due to a dif-
ferent representation of control dependence. Furthermore, we present a much more complete
description of how flow dependences order vertices within a region. Simons et al. do not address
the issue of upwards-exposed uses, downwards-exposed definitions, or dependent and indepen-
dent x-spans, as we do.

Two aspects of the work of [65] that appear different but that are actually only superficially so,
have to do with the class of control dependence graphs that can be handled. Both the algorithm

presented in this chapter and the algorithms of [65] handle restricted classes of feasible CDGs.
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(d) (e)

Figure 7.12. (a) A CFG that is not in normal form (vertex b postdominates vertex a which is a loop entry).
(b) The CDG of this CFG. (c) The CDG, as transformed by Simons et al. (d) Translation of the CFG in (a)
into normal form. (¢) The CDG of the CFG in (d).

In [65] these restrictions are defined directly in terms of properties of the CDGs. In contrast, we
define the restrictions indirectly by saying that we handle only those CDGs that correspond to
normal-form CFGs. Simons et al. restrict the CDGs to be reducible and have certain structure
that essentially makes them isomorphic to the CDGs of normal-form CFGs. We illustrate this
with an example. Consider the CFG in Figure 7.12(a). Vertex a is a loop entry but vertex b,
which is in the loop headed by a, postdominates a (i.e., the loop is not a while loop). Case (b)
shows the control dependence graph of this CFG. This CDG does not meet the Simon’s require-
ments. The CDG in case (c) shows the form in which they need the CDG, which requires the

insertion of the vertex FA (called a forall vertex, which groups vertices a and b into the same
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region). On the other hand, consider the CFG in case (d). If we consider the vertex FA as a
predicate that always evaluates to true, then this CFG has the same set of executable paths as the
CFG in case (b). However, the loop in this CFG is a while loop. Case (e) shows the control
dependence graph of this CFG, which is clearly isomorphic to Simon’s CDG in case (c) (except
that in their representation the outgoing edges of a forall vertex have no labels). In this way, we
arrive at the same class of CDGs.

Another aspect of the question of what CDGs are handled has to do with region vertices (also
called forall vertices), which are assumed in [65] to have been added explicitly to the CDG
(region vertices are added to a CDG to gather all vertices with the same set of control conditions
together). Their ordering properties are stated in terms of control dependence paths and the forall
vertices, whereas our properties are stated only in terms of control dependence paths. However,
our algorithm (procedure OrderByControl in Figure 7.4) uses regions to reduce the number of

ordering queries that must be made.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

This thesis has shown how the control-flow and control dependence information in programs can
be used in a variety of software tools to collect information about program executions (profiling,
tracing, and event counting) and to help with the debugging and maintenance of programs (slic-
ing, differencing, and integration).

Chapters 3 and 4 showed how the control-flow graph can be used to instrument programs fora
variety of analyses that provide information about the execution behavior of a program over a
single run: profiling measures the execution frequency of basic blocks or control-flow edges,
tracing records the sequence of basic blocks traversed in an execution, and event counting main-
tains an aggregate count of the number of events in an execution.

Rather than instrument at every point, these algorithms place code along select edges in the
control-flow graph, by use of the spanning tree, with the guarantee that complete and accurate
information can be ascertained for every point. This guarantee can be made because programs
(usually) obey Kirchoff’s flow law: the number of times execution enters a block is equal to the
number of times execution leaves a block. We have shown that instrumenting control-flow edges
rather than basic blocks is key to reducing the overhead introduced by instrumentation. Instru-
menting edges rather than blocks gives more opportunity to place instrumentation code in areas
of low execution frequency. Because placement of instrumentation code is driven by the span-
ning tree, selection of an appropriate spanning tree is also important in reducing overhead. We
have given a simple heuristic for edge frequency that drives the spanning tree algorithms and is
quite good at predicting areas of low execution frequency.

All the edge instrumentation problems can be characterized as cycle breaking problems, in
which certain types of cycles in the control-flow graph must contain an edge with instrumentation

code: all undirected cycles must be broken for edge profiling; all simple piped cycles must be
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broken for vertex profiling; all directed cycles and diamonds must be broken for tracing. We
have shown how the cost of the optimal solutions to these various problems relate to one another
(for a given control-flow graph and weighting) and presented a class of graphs for which optimal
solutions to edge profiling are also optimal solutions to vertex profiling.

While the graph theoretic properties of these problems are important to understand, they must
be tempered by experience in order to translate them into algorithms that can cope with programs
found in practice. In practice, programs may not obey Kirchoff’s flow law or obey standard cal-
ling conventions. We have shown how to profile programs that do not obey the flow law and
have extended tracing to handle programs with multiple procedures.

Several open questions remain in the area of profiling. First, is there an efficient algorithm to
optimally solve the vertex frequency problem with a set of edge counters or is the problem
intractable? Second, are there better weighting schemes that can more accurately guide the place-
ment of instrumentation code? Other interesting questions lie in the applications of the informa-
tion produced by these tools. Once the profile or trace data has been collected, how does one
present it in a way that helps the programmer understand how the program operates or where a
performance bottleneck is?

Chapters 6 and 7 showed how the operations of slicing, differencing and integration can be
extended to programs with complex control-flow. In particular, we have presented algorithms for
slicing and computing the difference of programs with completely arbitrary control-flow and for
integration of control-flow graphs with mostly reducible control-flow. The basis for the slicing
and differencing algorithms lies in our result about flow/path-projections. We have shown that a
control-flow graph H that is a flow/path-projection of a control-flow graph G has similar behavior
to G: every vertex in H has equivalent behavior to its corresponding vertex in G. Backwards-
closure along control and flow dependence edges in the program dependence graph is both neces-
sary and sufficient for forming a flow/path-projection of a control-flow graph with respect to
some vertex. We also defined the augmented control-flow graph in order to correctly determine

when to include unconditional jumps in a program projection. It remains an open question
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whether there is an efficient algorithm for finding a program projection that is the minimal
flow/path-projection of the original program under the standard control-flow translation.
Differencing uses the results about flow/path-projections to compare the behavior of vertices in
different control-flow graphs. The differencing algorithm works for CFGs with completely arbi-
trary control-flow. Integration relies on the differencing operation in order to form a merged pro-
gram dependence graph from the dependence graphs of the input programs. The main problem of
integration is in reconstituting a control-flow graph from this merged graph. Reconstitution
requires that certain ordering choices be made in order to produce a corresponding control-flow
graph. We characterized how both control dependences and flow dependences force certain ord-
ering choices and leave others open. Because the reconstitution algorithm is limited to producing
a restricted set of CFGs, the integration algorithm is likewise limited and we cannot claim that it
works for arbitrary control-flow graphs. Extending reconstitution so that it places no limitation

on the structure of CFGs is highly desirable.
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