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ABSTRACT

The IEEE standard for Distributed Queue Dual Bus, or DQDB, metropolitan area network
(MAN) communication supports neither preemptive priorities nor fair allocation of bandwidth
among same-priority hosts. Liebeherr, Akyildiz, and Tantawi have proposed an improvement on
the standard that solves these problems, but with their protocol the loss of even one slot of data
can cause starvation. This paper proposes a revision of their protocol that performs almost
identically but can survive slot loss. Simulation studies of both single-priority and multiple-
priority versions of all three protocols clearly demonstrate the nearly identical performance of the
two newer protocols, as well as the advantages of this paper’s protocol over the standard.

1. INTRODUCTION

This paper describes and compares three protocols for Distributed Queue Dual Bus,
or DQDB, metropolitan area network (MAN) communication: the IEEE standard [1], an
improvement on this standard [2], and a modified form of the second approach that
accounts for loss of information due to noise or host restarts (e.g., after a crash).
Simulation studies demonstrate the superiority of the newer protocols over the IEEE
standard in terms of (1) appropriate distribution of bandwidth among priorities in a
multi-priority system, (2) fair distribution of bandwidth among hosts transmitting at the
same priority, and (3) robustness of (1) and (2) when noise causes high data corruption.
The standard only outperforms the newer protocols in total bandwidth utilization, but the

standard accomplishes this by inappropriate bandwidth allocation among contending
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hosts.

2. STANDARD DQDB

The IEEE 802.6 working group has standardized the DQDB protocol in [1]. This
standard, which this paper calls Standard DQDB, specifies physical-layer network
communication among various hosts, or stations, in a network. Two unidirectional buses
connect these stations, each sending data in opposite directions. The stations control
access to these buses by means of a distributed protocol, where each station monitors the

traffic on the buses to determine when it should transmit data.

At one end of a bus, a hardware device (possibly one of the stations) transmits empty
slots, which divide the transmission medium into 53-byte units. Each slot contains the
usual header information (e.g., destination address), a section for data, a BUSY bit, and
bits that specify requests for slots to transmit on the other bus. When a station has a slot
of data to transmit on one bus, it marks a request bit in a slot on the other bus. This tells
upstream stations (i.e., stations closer to the slot generator) to leave one slot free, so that
the requesting station may transmit its data. Each station monitors these requests and
free slots, and each station repeats this process of requesting and sending for each slot of

data that it has to send.

This paper only examines transmission of data in one direction, because transmission in
the other direction works in an identical but independent manner. The remainder of this
paper refers to the bus used for transmitting data as the data bus (DB), the bus used for

transmitting requests as the request bus (RB), slots transmitted on the data bus as data



slots, and slots transmitted on the request bus as request slots.

DQDB allows for transmission of data at several priority levels. Conceptually, a single
station consists of several modules, where each module processes all outgoing messages
(transmissions of unlimited size) at one particular priority level. In other words, each
station has a module for transmitting priority 1 data, another module for transmitting
priority 2 data, and so on. Conceptually, these modules are connected to the data bus in
decreasing order by priority number; the high-priority modules of a station are upstream
from the low-priority modules. (Higher priority numbers correspond to more important
data.) Each request slot contains one request bit for each priority level; thus, one slot

could carry several requests.
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Figure 1. Standard DQDB with No Waiting Segments

Figure 1 shows the protocol used by a priority-p module that does not have data waiting
for transmission. Modules send data on the DB bus (data bus) and requests on the RB
bus (request bus). RQ, keeps track of the number of unsatisfied requests that have

passed the module on the request bus. The module increments this counter for each



request at equal or higher priority and decrements this counter for each free data slot.

(No DQDB counters ever hold negative values.)
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Figure 2. Standard DQDB with Waiting Segments

Figure 2 shows the protocol used by a priority-p module that has data waiting for
transmission. When a message arrives at the module for transmission, the module
divides it into segments, where each segment fits into one data slot. Then, the module
sends a request on the request bus and (in parallel) copies RQ,, into a second counter
named CD),, and resets RQ), to zero. The module uses CD,, to count down how many
data slots it must let pass before it can transmit its slot. From this point on, the module
continues to increment RQ,, for each passing priority-p request. The module also
increments CD),, for each passing request at priority greater than p and decrements CD),
for each free passing data slot. The module may transmit its slot when CD),, contains
zero and a free data slot reaches it. In this way, RQP contains the number of free data
slots that must pass before the module can transmit the next slot, and CD,, contains the

number of free data slots that must pass before the module can transmit the current slot,



taking into account requests by other modules to transmit higher priority data. The
module executes this same transmission protocol for each slot of data waiting for

transmission, one slot at a time.

Standard DQDB also has bandwidth balancing, which attempts to correct for the
inherent unfairness in DQDB. Because downstream modules must explicitly request a
free slot for transmission, upstream modules may utilize more bandwidth than
downstream modules. With bandwidth balancing, each module must increment RQ,
after transmitting 3 slots, thus allowing an extra data slot to pass unused "just in case

another module needs it." ([1] uses 8 for f.)

3. LIEBEHERR-AKYILDIZ-TANTAWI (LAT) DQDB

Despite the addition of bandwidth balancing, Standard DQDB still suffers from
unfairness. This unfairness affects the network in two main ways. First, Standard
DQDB lacks preemptive priorities. Protocols that implement preemptive priorities
allocate network bandwidth such that the modules transmit highest priority data at the
exclusion of lower priority data. In other words, no module stops sending data because
of bandwidth needs for lower priorities. High priority modules take as much bandwidth
as they need, up to the limits of the network, even if that completely prevents lower
priority modules from transmitting. In Standard DQDB, low priority modules can affect
the bandwidth used by high priority modules. Standard DQDB also unfairly allocates
bandwidth among modules at the same priority level. As described in the last section,
this second bias in allocation favors modules by their nearness to the slot generator on

the data bus.
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Figure 3. LAT DQDB with No Waiting Segments
In [2], Liebeherr, Akyildiz, and Tantawi define several different qualities of DQDB

service in terms of priority preemption and bandwidth utilization. They not only note the
theoretical weaknesses of Standard DQDB, but they provide theorems describing the
nature of an optimal DQDB protocol. This optimal DQDB protocol perfectly
implements preemptive priorities and equal sharing of bandwidth among same-priority
modules without wasting any bandwidth. The modules using the optimal protocol decide
how much bandwidth they can use in the following manner. A module is overloaded if
it needs more bandwidth than it currently can get. A module is underloaded if it can get
all of the bandwidth that it needs. For a particular priority-p module, if any downstream
modules with priority greater than p are overloaded, then the module does not transmit at
all. Otherwise, the priority-p module evenly divides the unused bandwidth among itself

and all of the overloaded downstream priority-p modules. If this does not satisfy the



module’s needs, then the module is overloaded. Note how this protocol preempts lower-
priority modules and evenly divides bandwidth among same-priority modules as

appropriate.

The authors of [2] then propose an implementation of DQDB that would approximate the
optimal, which this paper calls LAT DQDB (after the creators’ initials). (T he optimal
DQDB protocol cannot be directly implemented because it assumes immediate reception
of all transmissions, without concern for timing delays.) Figure 3 shows the protocol
used by a priority-p module that does not have data waiting for transmission. Note the
addition of two bits to the request slot, PLUS and MINUS, and the addition of a BUSY bit
for each priority to the data slot. As in Standard DQDB, the module increments the
counter RQ,, for each request at priority equal to or greater than p and decrements RO,
for each passing free data slot. In addition, LAT DQDB modules decrement RQ),, for
each passing data slot with priority less than p. Modules also have two counters for
monitoring overloaded downstream modules: ORQ, and STOP,. ORQ,, contains the
number of overloaded downstream modules at priority p. STOP, contains the number of
overloaded downstream modules at priority greater than p. When a module becomes
overloaded, it transmits a special request slot in which (1) the only request bit set to 1 is
the request bit for the same priority as the module, and (2) the PLUS bit is also set.
When a module becomes underloaded, it transmits a special request slot in which (1) the
only request bit set to 1 is the request bit for the same priority as the module, and (2) the
MINUS bit is also set. It cannot transmit either special request slot until it receives a

request slot with no request bits set. Other than these special requests, overloaded



modules do not transmit request slots. Thus, a module monitors the overloaded
downstream modules by incrementing ORQ,, for each passing priority-p request with the
PLUS bit set, decrementing ORQ),, for each priority-p request with the MINUS bit set,
incrementing STOP), for each request at priority greater than p with the PLUS bit set, and

decrementing STOP, for each request at priority greater than p with the MINUS bit set.
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Figure 4. LAT DQDB with Waiting Segments

Figure 4 shows the protocol used by a module that has data waiting for transmission. In
addition to the operations performed by Standard DQDB, a LAT DQDB module copies
ORQ,, into OCD,,. (Note that, unlike RQ,,, ORQ,, retains its value at this point.) Similar
to CD,, OCD,, counts down free data slots before transmission can commence, one slot

per overloaded downstream priority-p module. The module modifies RQ,, and CD,, in



the same manner as in Standard DQDB except that, similar to when the module does not
have any slots to transmit, the module decrements CD,, for each busy data slot that passes
at priority less than p. It modifies ORQ,, and STOP,, in the same manner as in Figure 3.
Once CD,, reaches zero, the module decrements OCD,, for each passing data slot that is
either free or contains data with priority less than p. When CD,,, OCD,, and STOP,, all
contain zero, the module may transmit its slot. As in Standard DQDB, this entire process

begins when the module prepares to transmit the next slot.

Each module has additional counters for calculating how much bandwidth it can use. A
module stores the number of slots queued for it to transmit in NumSeg,. It also
increments SlotCtr,, for each passing data slot and increments Busy, for each passing
busy data slot with priority greater than or equal to p. When SlotCtr,, reaches the value
Basis (a predefined constant), the module uses these counters to determine Quotay,, the
maximum number of slots the module can transmit out of the next Basis passing data

slots. It then resets SlotCtr,, and Busy, to zero and continues with normal operation.

If STOP,, does not contain zero, then the module sets Quota,, to zero. This means that
the module cannot transmit any data in the next Basis slots, regardless of the values in its
other counters. If STOP), contains zero, the module uses the following formula to

calculate Quotay,:

Basis — Busy, — RQ, — CD,

f
Quotay ORQ, + 1

This formula reasonably approximates the optimal DQDB protocol, as defined earlier.

At this point, if NumSeg, is greater than Quotay,, the module is overloaded and responds
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as described above. Otherwise, the module is underloaded and responds as described
above if it just was overloaded. In summary, a module can only transmit data when CD,,
OCD,, and STOP), all contain zero and the module has transmitted less than Quota,, data
slots since it last calculated Quota,. Note that a module will not transmit request slots

either when Quota, or STOP), contains zero.

Unfortunately, LAT DQDB has two pathological flaws when implemented. First, loss of
"I’m underloaded" request slots can cause lower-priority modules to starve and same-
priority modules to waste bandwidth. This occurs because the STOP, counter will never
reach zero in lower-priority modules and the ORQ),, counter will always be one greater
than the correct value in same-priority modules. Similarly, loss of "I'm overloaded"
request slots inhibits the operation of preemptive priorities, increasing delays during data
transmission. Solutions to these problems involving resending "I’m overloaded" and
"I’m underloaded" request slots clearly cannot succeed. In addition to this problem, if a
station crashes and restarts, its modules cannot determine the appropriate values for their

counters.

Standard DQDB is inherently unfair and wasteful. LAT DQDB should approach
optimality in fairness and bandwidth utilization, but it does not handle slot loss or station
restarts well. This paper proposes a modified version of LAT DQDB that also
approaches optimality in fairness and bandwidth utilization, but that survives both
restarts and even heavy slot losses. Because of its characteristics, this paper calls the

new protocol Sterner DQDB.
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4. STERNER DQODB

This section describes Sterner DQDB in terms of modifications to LAT DQDB.
Figure 5 shows the protocol used by a module that does not have data waiting for
transmission. In place of LAT DQDB’s PLUS and MINUS bits, Sterner DQDB request
slots have one overload bit for each priority level. The module increments ORQ,, for
each request slot that passes with the priority-p overload bit set and sets STOP,, to two

when a request slot passes with an overload bit set for priority greater than p.

—_—————
0 0 1 0
DB
decrement for
slots that are
empty oxr have
priority < p ORQ
P
increment for increment for set to 2 for
each request each overload each overload
at pricrity >= p at priority p at priority > p
RB
- 1 0 1 0 0 0 1 0
R R R R ) 0 o] o]
EQEQEQEVVVV
E E E E
1 2 3 Q4 R

R R R
12 3 4
Figure 5. Sterner DQDB with No Waiting Segments

Figure 6 shows the protocol used by a module that has data waiting for transmission.
The module modifies ORQ),, and STOP, in the same manner as when it has no slots to
transmit, and it uses the counters to determine if it can transmit in the same manner as

LAT DQDB (i.e., the module cannot transmit until CDp, OCDP, and STOPP all contain
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zero and the module has transmitted fewer than Quota, data slots since last calculating
Quotay,). The remaining modifications to LAT DQDB involve the initial value for OCD,,

and the operations performed when SlotCtr, equals Basis.
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Figure 6. Sterner DQDB with Waiting Segments

Each time another Basis data slots pass a module, it performs five operations. First, if
S TOPI, is greater than zero, the module decrements it. Second, the module calculates
Quotay, in the same manner as in LAT DQDB. Third, if the module is overloaded and
STOP), contains zero, the module marks the overload bit for its priority within a passing
request slot. Fourth, the module copies the value in ORQ), to the counter NumOver,,
which contains the number of overloaded downstream priority-p modules during the

module’s most recent calculation of Quotap. Finally, the module sets ORQI,, SlotCtrp,
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and Busy,, to zero. When the module prepares to transmit a data slot, instead of copying
ORQ,, into OCD,, as in LAT DQDB, it copies the larger of ORQ),, and NumOQver,, into
OCD,,. This prevents a module from using an inappropriately small initial value for
OCD,, if the module happens to prepare to transmit a slot shortly after calculating

Quotay,.

Essentially, Sterner DQDB replaces LAT DQDB’s explicit overload/underload requests
with a timeout mechanism. In other words, it replaces the message, "I’m overloaded
until I say otherwise,” with the message, "I’m going to be overloaded for at least the next
Basis slots." Note that by using NumOver),, a module must account for other overloaded
downstream priority-p modules for at least the next Basis slots after seeing their overload
requests. In addition, by setting STOP,, to two after seeing an overload request at priority
greater than p, the module cannot transmit any slots for at least the next Basis slots, even

if the module calculates Quota, immediately after receiving the overload request.

With this approach, modules automatically retransmit lost overload/underload requests,
but these requests only have value for a bounded (and brief) period of time. In addition,
any station that crashes and restarts may determine its appropriate counter values after
only seeing Basis data slots pass. Even with these changes, Sterner DQDB nearly
duplicates LAT DQDB in the calculation of Quota,, and in the use of its counters for

determining when a module can transmit a data slot.

Of course, starvation can still occur in Sterner DQDB if a module never sees a free data

slot, and external noise damages all of the module’s request slots immediately after it
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transmits them. However, such a situation would cause starvation in any DQDB protocol
because of DQDB’s use of requests to alert upstream modules of a module’s bandwidth

needs.

5. SIMULATIONS

This section describes the parameters of the simulations discussed in the following
two sections. An appendix to this paper describes the criteria for selecting these

parameters and the mechanics of the simulations in greater detail.
5.1 Constants

e number of stations: 10, where station 0 is the furthest upstream on the data bus and
station 9 is the furthest downstream (i.e., station O is adjacent to the data-bus slot

generator, and station 9 is adjacent to the request-bus slot generator)

e length of simulation: 55 seconds simulated real time (about 20 million data-slot

transmissions)
e B in Standard DQDB (for bandwidth balancing): 8 (as specified in [1])

e size of messages by priority level: 1 slot for priority 3, 1-2 slots for priority 2, 1-3
slots for priority 1, 100-1105 slots for priority O (Size was randomly selected within

the specified ranges using a uniform probability distribution.)
¢ maximum number of messages queued for transmission at a module: 10

o offered load: 150 percent (100 percent was also simulated with similar results, so this

paper only examines the 150 percent simulations)
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¢ breakdown of 150 percent offered load by priority level: 7.5 percent for priority 3,
22.5 percent for priority 2, 45 percent for priority 1, and 75 percent for priority 0
e description of arrivals: Let
s; = average slots —per —message at priority i,

I; = offered load at priority i,

=
I

probability of a message arriving at priority i, and
P; = per—station probability of a message arriving at priority i.
The simulations selected p; such that

l;
pi = and
Si
Di
number of stations

i -

5.2 Variables
e number of priorities: 1 or 4
e number of slots per bus: 10 (in the single-priority case only), 20, or 40
e slot loss: O percent, 0.75 percent, or 7.5 percent.

o number of slots lost at one time: 5-10 slots (randomly selected within this range

using a uniform probability distribution)
e Basis = 2 * (number of slots per bus) = 1 round trip time

5.3 Measurements

The simulations measure three quantities: bandwidth used per module, average delay

experienced per message per module, and total network bandwidth utilization. These
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measurements are used to calculate bandwidth utilization and average delay experienced
per priority level. This paper expresses the bandwidth measurements as fractions of the
total possible bandwidth and the delay measurements as multiples of message size, to
compensate for variations in delay caused by differing message sizes (e.g., a message
delay of 2 means that during transmission of the message, the module could not use

2 * (number of slots in message) of the data slots that passed it).

6. SINGLE-PRIORITY PERFORMANCE

This section discusses simulations performed where modules transmit all data at only

one priority level.

simulation number | number of stations | percent slot loss
0 10 0
1 20 0
2 40 0
3 20 0.75
4 20 7.5

TABLE 1. Single-priority Simulation Parameters
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Figure 7. Bandwidth Utilization (one priority)
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6.1 Total Bandwidth Utilization

Figure 7 shows total bandwidth utilization for the five sets of parameters given in
Table 1. It shows the superiority of Sterner DQDB and LAT DQDB under a variety of
situations, utilizing 100 percent of the bandwidth in three of the simulations. The dip in
the Sterner DQDB and LAT DQDB graphs represent simulation of very high slot loss
(7.5 percent). This effect occurs because these protocols sacrifice bandwidth in order to
maintain fairness among the modules. Whenever one of these networks loses many slots,

its modules remain overloaded longer because they cannot use slots marked as "lost."

6.2 Fairness Among Modules

Figures 8, 9, and 10 show the fairness of bandwidth allocation among the modules for
a network with 10, 20, and 40 slots per bus respectively (with no slot loss). In all three
cases, Sterner DQDB and LAT DQDB perfectly divide the bandwidth, whereas Standard
DQDB favors the first two stations on the data bus. Note further that Sterner DQDB and
LAT DQDB perform identically for all topologies, while Standard DQDB becomes more
unfair with increasing inter-station distance, decreasing bandwidth and increasing delays

for all but the first two stations.

The unfairness of Standard DQDB occurs because station O only allows slots to pass
unused when it has seen an explicit request for a free slot. This means that station O can
often send a burst of data slots, followed by allowing one slot to pass unused, followed

by another burst of data slots.
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7. MULTI-PRIORITY PERFORMANCE

This section discusses simulations performed where stations have modules for each

of four priority levels.

7.1 Total Bandwidth Utilization

Figure 11 shows total bandwidth utilization for the four sets of parameters given in
Table 2. It shows the slight superiority of Standard DQDB in overall bandwidth
utilization for multi-priority systems. This results from how both Sterner DQDB and
LAT DQDB waste some bandwidth in order to better distribute the bandwidth among the

modules, as discussed below.

simulation number | number of stations | percent slot loss
0 20 0
1 40 0
2 20 0.75
3 20 7.5

TABLE 2. Multi-priority Simulation Parameters
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Figure 11. Bandwidth Utilization (four priorities)

With no slot loss, LAT DQDB and Sterner DQDB waste bandwidth when low-priority

modules stop transmitting to free up bandwidth for higher-priority modules. This results
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from the use of Basis by modules instead of modules instantaneously receiving request
slots, as in the optimal DQDB. (Future simulation studies should explore the relationship
between Basis and bandwidth utilization.) As slot loss increases, the performance of

LAT DQDB degrades sharply.
7.2 Preemptive Priorities and Topology

Figure 12 compares the preemptiveness of the protocols for 20-slot and 40-slot buses
(with no slot loss). These graphs show the nearly identical bandwidth and delay
characteristics of Sterner DQDB and LAT DQDB. The graphs further show the
superiority of these two protocols over Standard DQDB in both bandwidth allocation and
transmission delay. (Recall that the optimal DQDB protocol would allocate 7.5 percent
of the bandwidth to priority 3 traffic, 22.5 percent of the bandwidth to priority 2 traffic,
45 percent of the bandwidth to priority 1 traffic, and the remaining bandwidth to priority
0 traffic, with priority O traffic carrying most of the burden for delays.) Note also that

topology had little effect on the performance of the protocols.
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7.3 Preemptive Priorities and Slot Loss

Figures 13 and 14 compare the preemptiveness of Standard DQDB with that of

Sterner DQDB for each of the loss percentages. Note that Sterner DQDB approximates

the optimal DQDB, while Standard DQDB becomes less and less preemptive as slot loss

increases. When Standard DQDB suffers from 7.5 percent slot loss, it actually transmits

more priority 0 data than for lesser amounts of loss. This results from the loss of request

slots in Standard DQDB, which enables modules to transmit without allowing as many

free slots to pass on the data bus. One might expect that Sterner DQDB would also suffer
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greatly from increased slot loss (because of the loss of overload information), but Figures

13 and 14 contradict this. Why doesn’t Sterner DQDB suffer like Standard DQDB?

High-priority Sterner DQDB modules become overloaded more easily with slot loss than
without, so they transmit many more overload requests. Even with high levels of loss,
modules are unlikely to lose two consecutive overload requests. Because the counter
STOP,, must count down from fwo to zero before transmission can continue, high-priority
modules can still transmit, while priority O modules cannot transmit as often. Thus, the

burden of additional slot loss rests almost solely on the lowest priority, as it should.

Figures 13 and 14 also show that Sterner DQDB suffers from little additional delay
during high slot loss. Standard DQDB suffers from increasing delays, particularly once

the slot loss reaches 7.5 percent.

These figures further verify the expected effect of slot loss on LAT DQDB. As slot loss
increases, LAT DQDB’s performance degrades in every way. In fact, the priority 0
points for LAT DQDB in Figures 13 and 14 are too large to graph without obscuring the
differences between the other lines. (For priority O data with 0.75 percent slot loss, the

LAT DQDB delay is 102; with 7.5 percent slot loss, the LAT DQDB delay is 4147.)
7.4 Fairness Among Modules

Figures 15, 16, 17, and 18 compare the fairness among same-priority modules using a
20-slot bus. (In these graphs the Sterner DQDB and LAT DQDB results are virtually
identical, so the graphs each contain only one line for both protocols.) Note once again

the unfairness of Standard DQDB in bandwidth allocation and delays for lower-priority



traffic. Both Sterner DQDB and Standard DQDB suffer from unfairness at priority 0,

where upstream modules gain greater bandwidth (resulting from the same cause as the

unfairness in single-priority Standard DQDB, where downstream modules have to send

more requests to gain bandwidth than upstream modules), but Sterner DQDB’s method

of splitting bandwidth among overloaded modules greatly reduces this unfairness. Note

further that the priority-0 delays at downstream modules for Standard DQDB are an order

of magnitude greater than the corresponding delays for Sterner DQDB.
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Figure 15. Priority Three, 20 Slots Per Bus (no slot loss)
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Figure 16. Priority Two, 20 Slots Per Bus (no slot loss)
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Figure 18. Priority Zero, 20 Slots Per Bus (no slot loss)

The 40-slot simulations have similar results, except for a slight increase in delay (as

expected). For this reason, this paper does not present the 40-slot results in detail.

8. CONCLUSIONS

This paper demonstrates the advantages of Sterner DQDB over Standard DQDB for
heavy-traffic environments, particularly for single-priority systems. Only in total
bandwidth utilization does Standard DQDB surpass Sterner DQDB (by a small amount),

but Standard DQDB achieves this by unfair and non-preemptive bandwidth allocation.
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However, Sterner DQDB is more complex than Standard DQDB, and its behavior is
more difficult to understand. Considering that these protocols would most likely be
implemented in hardware, further study of both methods should be made to determine if

the advantages of Sterner DQDB outweigh the anticipated additional costs.

This paper also demonstrates the robustness of Sterner DQDB over LAT DQDB for
heavy-traffic, multi-priority environments. As slot loss increases, Sterner DQDB is
virtually unaffected, while LAT DQDB’s performance quickly and unacceptably

degrades. These two approaches are nearly identical in complexity, making Sterner

DQDB the best choice for implementation.

Until metropolitan area networks gain wide acceptance, the traffic loads and patterns that
DQDB protocols must support cannot be reliably determined. The simulations described
in this paper used one model of traffic, but future DQDB simulations should explore

other traffic models.
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APPENDIX A: BACKGROUND ON SIMULATIONS

This section provides additional background information on the simulations discussed in
the body of the paper. The simulations use arrays of records to simulate the two buses.
The main loop of the simulations consists of the following:

for each iteration:

e randomly create messages for transmission

e move request slots ahead one position on the bus, creating a new slot in the most

upstream position (relative to the request bus)

e process the request slot adjacent to each module

e move data slots ahead one position on the bus, creating a new slot in the most

upstream position (relative to the data bus)

e process the data slot adjacent to each module

o randomly mark slots as "lost" (if simulating slot loss)
The number of iterations is fixed at 20 million. For a 155 Mb/sec bus, this simulates
about 55 seconds of real time. Note that all of the modules within a single station are
adjacent to the same slot on a bus. As described above, the modules each examine the
adjacent data slot in decreasing order by priority and examine the adjacent request slot in

increasing order by priority.

The random number generator uses uniform probability distribution.

Four-priority simulations were performed because all three protocols can support up to
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four priorities in a slot with a two-byte access-control header field. All of the simulations
use 53-byte slots [1]. If a network only uses three priorities, Standard DQDB can
manage with only a one-byte access-control header field. The simulations do not explore
this difference among the protocols because initial tests of the simulator indicated that
the header-size differences would only noticeably affect the relative performance of the
protocols if a common network application frequently sent messages containing exactly

52 bytes of data.

The message sizes and frequencies arise out of Internet traffic patterns. The simulations
assume that modules use priority O for file transfer, priority 1 for remote terminal
operations, priority 2 for high-priority user communication and low-priority network
administration, and priority 3 for high-priority network administration. Note, however,
that because the simulations randomly generate messages such that the overall bandwidth
utilization approximates fixed percentages, the size of those messages matters little in the
long run: if message size increases the frequency of message generation must decrease to

maintain the fixed percentages.

Slot loss, specified in the body of this paper in terms of percentage, is simulated by
means of a "slot loss constant" such that

slot loss percentage = (slot loss constant) * (average loss amount),
where average loss amount is the average number of slots damaged during a slot loss
situation. The slot loss constant indicates how often a simulator should lose slots; the
location of this decision within the simulator was noted earlier in this section. When the

simulator decides to lose slots, it randomly chooses the first slot to lose, randomly
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chooses how many slots to lose (from 5 to 10), and marks the slots from the first through
the (first + number lost - 1) slot as "lost." All of these randomization decisions use a
uniform probability distribution. Note that this assumes that modules neither read nor

overwrite lost slots.



