Managing Memory to Meet Multiclass
Workload Response Time Goals

Kurt P. Brown
Michael J. Carey
Miron Livny

Technical Report #1146

April 1993






Managing Memory to Meet
Multiclass Workload Response Time Goals*

Kurt P. Brownf Michael J. Carey Miron Livny

Computer Sciences Department
University of Wisconsin, Madison
{brown,carey,miron}@cs.wisc.edu

Abstract

In this paper we propose and evaluate an approach to DBMS memory management that addresses
multiclass workloads with per-class response time goals. It operates by monitoring per-class database
reference frequencies as well as the state of the system relative to the goals of each class; the information
that it gathers is used to help existing memory allocation and page replacement mechanisms avoid making
decisions that may jeopardize performance goals.

1 Introduction

A widening range of application areas, as well as requirements for data sharing and continuous operation, are
contributing to an increase in the diversity of workloads that a DBMS must be able to cope with. However,
providing adequate performance for each class in a multiclass DBMS workload is stils ¢n open problem [Pirahesh 90,
Brown 92, DeWitt 92]. A multiclass workload is characterized by distinct classes of work that may have widely
varying resource demands, each with its own performance objective. A DBMS that is unaware of these performance
objectives may penalize one class or another in an unpredictable way. Consider the issue of buffer page replacement,
for example. A replacement policy based on recency of reference will tend to penalize workload classes with low
locality; one based on frequency of reference may be biased against workload classes with low arrival rates; and a
policy which uses hints about the relative value of pages based on their type (e.g. index or data) will be biased
against whatever workload class uses the “wrong” page type. In order to avoid such “hard-wired” biases, a DBMS
must be able to accept performance objectives for each class as inputs, and to use those goals as the basis for its

resource management decisions.

Given a set of performance objectives for each class, there are a number of mechanisms that a DBMS can use to
achieve them: load control, CPU scheduling, disk scheduling, and memory management. While a complete solution
to the problem of satisfying performance goals in a multiclass environment would likzly include all of these options,
in this paper we investigate the use of memory allocation and page replacement mechanisms for this purpose. It is

well known that memory management is a critical factor in database system performance, which accounts for the
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large volume of ongoing research in this area [Chou 85, Sacco 86, Cornell 89, Robinsca 90, Ng 91, Falou 91, Yu 93,
O’Neil 93].- However, none of the previous work specifically addresses how memory management can be used to

achieve per-class performance objectives for a multiclass workload.

There are two ways that memory can be used to improve DBMS performance: for buffering disk pages, and
for working storage areas (join hash tables, sort work areas, etc.). At any point in time, some number of pages
are being used for disk buffers (the disk buffer region), and some are being used for working storage (the working
storage region). A DBMS memory allocation policy is responsible for two decisions: it must decide how many pages
to devote to disk buffers versus working storage, i.e. it must logically “draw a line” between the disk buffer region
and the working storage region; and it must allocate memory within the working storage region among competing
transactions.! A page replacement policy is responsible for deciding which specific disk pages should reside in the

disk buffer region at any point in time.

In a multiclass environment these decisions need to be driven by per-class performance goals, as stated earlier.
For workloads that vary over time, they need to be dynamic as well. Otherwise, the response time goals will at
best be satisfied only on average, where the average is defined over a large enough interval of time to eliminate any
workload variance. For many workloads, this time frame would have to be extended to days, or even weeks. Iu

contrast we would like performance goals to be satisfied over time frames on the order of tens of seconds or minutes.

In this paper, we propose and evaluate an approach to DBMS memory management called fragment fencing
that specifically addresses multiclass workloads with per-class performance objectives. It is designed to be used in
conjunction with existing page replacement and allocation mechanisms and acts to prevent allocation or replacement
decisions that could violate the performance objectives of a class. Fragment fencing cperates by periodically moni-
toring per-class database reference frequencies as well as the state of the system rela; ve to the goals of each class;
it then uses this information to dynamically set the boundary between the disk buffcr and working storage regions

of memory, and to guide the allocation of pages within the disk buffer region to diffi v nt fragments of the database.

The remainder of the paper is organized as follows: We begin by reviewing existing memory management tech-
niques in Section 2. The fragment fencing algorithm is then presented in Section 3. We describe the simulation model
used to evaluate fragment fencing in Section 4, and we show the results of that evaluation in Section 5. Section 6
discusses some additional issues and possible extensions to fragment fencing, and our conclusions and future plans

are summarized in Section 7.

2 Related Work

With respect to database memory management, the only relevant work which specifically addresses multiclass work-
loads are commercial systems, such as IBM’s DB2 [Cheng 84, Teng 84}, which provides basic mechanisms to partition

its buffer pool and to place different portions of the database in specific partitions. DB2’s page replacement policy is

17t would also be responsible for allocating memory within the disk buffer region as well, if a local allocation policy is used there.
More commonly, a global allocation policy is used for the disk buffer region, and individual disk buffe: pages are never explicitly assigned
to any individual transaction.



local within each partition, so competition between the different pools is eliminated. While in theory, this mechanism
could be used to satisfy multiclass performance objectives, there are two problems in using it for this purpose. First,
it is static in nature, so it cannot respond to workload variance and shifts. Second, the connection between response
time goals for each workload class and which parts of the database to place in each partition, as well as the relative
sizes of each partition, must be somehow determined manually by the database administrator. Ideally, we would like

the DBMS to perform these tasks dynamically, based on the current system state and the response time goals.

We categorize recent developments in database buffer management into three categories: modified global LRU,
frequency-based,and local query analysis. The modified global LRU approaches extend a basic global LRU allocation
and replacement mechanism by permitting query operators to provide hints to the bufler manager about the relative
“value” of a page. For example, index pages could be considered more valuable than data pages, as in the Domain
Separation algorithm [Reiter 76]; randomly accessed pages could be treated as more valuable than sequentially
accessed pages, as in the DB2 Buffer Manager [Cheng 84, Teng 84]; or the inner relation of a nested loop join cculd
be preferred over the outer, as in the Starburst Buffer Manager [Haas 90]. Information on the value of a page is then
combined with information on recency of reference and used as input to guide page replacement decisions. These
approaches are attractive because they address the major limitations of pure global LRU with a minimum amount
of work. However, the hints are based on static heuristics that are unrelated to response time goals, and therefore

may be inappropriate in a multiclass environment.

The second category of memory management approaches combines information on frequency of reference with
recency of reference into the replacement criteria. This is logical because recency of reference is a good basis for
replacement when database references exhibit temporal locality, while frequency of relerence is best when references
are skewed, but uncorrelated [Coffman 73]. Real database reference behavior is a combiaation of both. The Frequency
Based Replacement policy (FBR) [Robinson 90] and the LRU-K algorithm [O’Neil 93] are examples of this approach,
tracking frequency statistics on a page-by-page basis. The Bubba parallel database prototype [Boral 90] can be
placed in this category as well, but unlike FBR and LRU-K, which are both dynamic, Bubba statically determined
a boundary between that portion of memory which is managed by frequency of reference (the file cache), and that
which is managed by recency (normal global LRU). This boundary is determined off-line by a “56 Minute Rule” typ:
of analysis [Gray 87]. The Bubba scheme tracks frequency information on a per-file basis and uses a size-normalized
frequency metric called temperature [Copeland 88] (references per second per megabyte). Entire files are statically
placed in the file cache in decreasing order of temperature. By statically or dynamically combining frequency and
recency into the replacement policy, these approaches each provide better performance than pure LRU while avoiding

any requirements for “hint-passing”.

Examples of the local query analysis approach are Hot Set [Sacco 86], DBMIN [Chau 85], Marginal Gains [Ng 91],
Predictive Load Control [Falou 91], and Threshold [Yu 93]. All of these algorithms use information in the query
plan to determine the optimal amount of memory to allocate on a local basis (to qu«ries, subqueries, or query /file
combinations). The Hot Set, DBMIN, Marginal Gains, and Predictive Load Contrcl approaches all address 1isk
buffer memory allocation, and the Threshold algorithm addresses working storage allocation. However, none of

them address the trade-off between the two types of memory. Interestingly, altho'igh some of these algorithms



use response time predictions internally (e.g. Predictive Load Control and Threshold), none of them are driven by
response time goals. An obvious question is whether these approaches can be modified to be driven by their response
time predictions instead of just using them as a means to another end. Unfortunately, the difficulty with trying to
drive them by their response time predictions is that they can be quite inaccurate when trying to predict transient
response times, especially in a multiclass environment where each class has widely varying resource demands. Buffer
hit rates, communication delays, lock waits, and queuing at the disk and CPU are al: factors that can significantly

affect the performance of a query when it runs concurrently with other work.

3 Fragment Fencing

3.1 Overview

Before we can explain how fragment fencing works, we must first define the terms performance goal and fragmént.
While there are many possible ways to specify a performance goal, it will be defined for our purposes as follows: for
each workload class, the DBMS will attempt to maintain a user specified average response time. Of course, some
response times will exceed the goal and some will be below it, but the average of all response times for a class should
approach the goal as the number of transaction completions increases. If a response time goal is not specified for a
workload class, then we expect the DBMS to “do its best” with respect to that class. In addition, because we are
primarily interested in allocation and replacement policies in this study, we do not allow any work to be postponed

by a load controller; it must be allowed to execute upon arrival, even if it has no goal specified.

A fragment is a statically determined set of database pages that have relatively uniform access probabilities. It is
simply a generalization of any distinct external storage structures used by a DBMS, and its actual definition would
be DBMS-specific. A fragment could correspond to the operating system files that store the database, or it could
be composed of a subset of file pages. One example of a file that could be broken up into multiple fragments is a
tree-structured index. Each level of the index tree could be a separate fragment because the pages in each level have
distinct access probabilities. A relational DBMS that stored multiple relations in tihe same operating system file
would likely define each relation as a fragment. For the rest of the paper, we assume that the term fragment refers

either to a single index level or an entire data file.

Given a set of response time goals for each workload class, and a set of fragments that each class references, the
basic idea behind fragment fencing is to achieve the response time goals for a class by individually controlling the hit
rates on the fragments referenced by the class. For each fragment, the algorithm deterrnines a target residency, which
is the minimum number of the fragment’s pages that should remain memory resident in order to meet response time
goals. Response times for each class are continuously checked by the algorithm at we:! defined intervals and if a c ass
is not meeting its goal, then the target residencies for fragments referenced by that class are increased. If a class
is over-performing relative to its goal, the target residencies are decreased. The actual amount of each fragment to
retain in memory is determined using two inputs: the observed access frequencies of each fragment (those with higher
access frequencies are favored for memory residency), and a “best guess” as to the recponse time improvement that

will result when the fragment’s memory residency is increased. The details of this process are discussed in Section



3.4.

Target residencies for each fragment are enforced by modifying the existing (base) replacement policy to avoid
stealing a page if that would bring the number of memory resident pages below the target for a fragment. Enforcing
target residencies thus provides a passive way to “fence off” fragments from the possibility of replacement when they

would otherwise be chosen by the existing replacement criteria.

Any individual fragment may transiently be in one of three states: in deficit (below target), on target, or in
surplus (exceeding its target). A fragment can be in deficit immediately after its target residency increases, and will
remain so until enough pages are faulted in to meet its target. If the demand for memory is low, fragments may
exceed their targets and will then be susceptible to stealing by the normal page replacement mechanism when the
demand for memory rises. Just like fragments, the system as a whole can be in one of three states: it is in deficit
when one or more fragments are in deficit, in surplus when no fragments are in deficit and one or more are in surplus,

and on target when no fragments are in deficit or surplus.

At any particular moment, the sum of the target residencies for every fragment in the database is called the
resident volume, and the size of the remaining portion of memory is called the unreserved volume. The resident
volume dynamically determines a “line” that sets a minimum size for the disk buffer region of memory. The resident
volume should obviously not grow so large as to consume all of available memory. At the very least, enough must be
set aside to satisfy the minimum requirements of the average set of concurrently executing transactions. Therefore,
we limit the resident volume to 80% of available memory.? Memory which is not reserved for caching fragments can
be allocated either for working storage or for additional disk buffer pages, as determined by the base allocation policy.
The base allocation policy is responsible for insuring that the sum of all allocated working storage does not exceed
the unreserved volume. Figure 1 illustrates these concepts. Note that the line separating the memory reserved for
caching fragments and the unreserved memory is dynamic, whereas the line which Jefines the amount of memory

set aside for minimum transaction requirements is static.

{‘
l

Transaction working stprage
(hash tables, sort worklareas)

Maximum resident
volume limit

Set-aside for minimum
transaction requirements

g

Resident Volume -—e@=ww | =3  Unreserved Volume

Figure 1: Logical Memory Layout

2 Athough this constant would be DBMS dependent, for this study we chose 80% as a reasonable limit.



3.2 Implementation Details

Fragment fencing maintains the following state data about classes and fragments:
Global data:

Naes 4 of fragments in deficit (observed)
Nur # of fragments in surplus (observed)
Resvol Resident volume (calculated)
For each fragment f:
Sizeg Size, in pages (input)
Res$¥™™ Current # of memory resident pages (observed)
Res f“rg et Target # of memory resident pages (calculated)
SzDiskRes; Sizey — Resy™™*! (calculated)
For each workload class c:
Rgeo! Response time goal (input)
; I, Observation interval length (input)
109y Avg # disk I/Os (buffer misses) per
transaction during observation interval I, (observed)
Rgbev Avg transaction response time
during observation interval I, (observed)
For each fragment/class combination f,c:
Refsy . # references to frag f by an average class ¢
transaction during observation interval I, (observed)
Hitsg . # buffer hits on frag f by an average class ¢
transaction during observation interval I, (observed)
Missesy.  Refss. - Hitsfe (calculated)

The observation interval length I, indicates the frequency at which response time goals should be checked by the
algorithm. For example, with an interval of 100 completions, each group of 100 individual transaction response times
are averaged together to form an interval response time, which is then compared against the user specified response
time goal. I, is actually maintained as two values: one is a number of transaction completions, and the other records
the number of seconds that elapsed during those completions. Shorter intervals result in more responsive behavior
and longer intervals result in more stable behavior. Ideally, the tradeoff between stahility and responsiveness should
perhaps be decided by the user and not the DBMS, but in the initial version of fragment fencing, we explicitly set
the interval size by hand for each workload (see Section 4.3).% The observed I/Os and response times (I02*¥ and
R2?) as well as the reference and hit counts (Refsy,c and Hits;, ;) are all relative to the current observation interval

only, and are reset to zero at the start of every interval.

On every buffer reference to a fragment f from a class ¢, the algorithm incremenis Refsf.. For a buffer hit or
miss it increments Hitsy . or I 02%bsY | respectively. Res;“" is also updated for the cuirent fragment, if necessary, as
well as for any fragment whose page was replaced. Nees and Ny, are also updated if any page movement between

disk and memory changes the state of a fragment.

On every transaction completion for a class ¢ which has a response time goal specified, the observed response
time for the transaction is added to the running average for the class. If the current interval, I, has expired, then

the next action to take is based on the current job class state:

3We explore the sensitivity of fragment fencing to different observation interval sizes in Section 5.2.
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Warmup: The class is waiting for the buffer to fill up after a system cold start. All job classes enter the warmup
state on system initialization, and they all leave the warmup state simultaneously when the replacement poiicy

first kicks in, moving to the history build state. No action is taken on this transition except to reset all statistics.

o Transition Up: A class enters this state if any target residency was increased in order to satisfy its goal.
When the system leaves the deficit state (Naey = 0), the class is moved to the history build state. No action is

taken except to reset all statistics.

o Transition Down: This state is similar to transition up, but is entered when target residencies were decreased.

The class is moved to the history build state when N,,r = 0. No action is taken except to reset all statistics.

e History Build: A class enters this state from the warmup, transition up, or iransition down states. Movement
to the history build state is required in order to achieve a statistically significant sample of the newly obtained
system state (a recently changed resident volume). The time in this state is set to a number of transaction
completions that provides statistical significance. We currently set it to 50 in a1l cases, but this length could
also be dynamically determined for each class using sampling techniques [Haas 91]. If response time goals are
being met at the end of 50 completions, then the class is moved to steady state, otherwise new target residencies

are set, statistics are reset, and the class moves to transition up or transition down.

o Steady State: A class enters steady state when its response time goals are being met. The goals are checked
again after I, completions; if they are still being met, then this state is entered once again to wait another I,
completions. If the goals are not being met, new target residencies are set, statistics are reset, and the class

moves to transition up or transilion down.

3.3 Checking the Goals

If the observed average response time for a class ¢ is within plus or minus some percentage of the user-specified
response time goal (i.e. with some tolerance band, T; of the goal), then the goals are considered to be satisfied.
Otherwise, if the observed response times are higher than the goal, target residencies for one or more fragments
referenced by class ¢ are increased and the class is placed in the transition up state. If the observed response time
is lower then the goal, then one or more target residencies are decreased and the class is placed in the transition
down state. While our definition of performance goals allows a class to over-achieve, we still want to lower target
residencies if we can. The motivation for this is to insure that the amount of memory available for working storage

is always as large as possible.

As is typical of any feedback mechanism, 7, turns out to be the most sensitive parameter for fragment fencing. If
there is a large amount of “natural” variance in the class’s response times, then T, must be wide enough to prevent
the algorithm from attempting to manage natural statistical fluctuations. A narrow T, should be used with lower

variances in order to reduce the number of interval response times that violate the goals.

The value of T, cannot be set a priori, as it depends on the workload and the dynamic state of the system.

Therefore, the algorithm computes it dynamically based on the observed standard deviation across multiple intervals.



Given a sufficient number of samples, the distribution of average interval response times can be approximated by a
normal distribution. We therefore set T. such that it includes 90% of the area under a normal distribution curve
(i.e. T, is plus or minus 1.65 times the observed standard deviation). However, we must take care in the standard
deviation calculation to avoid including any observations that occur during transitions in resident volume. These
observations would act to inflate the algorithm’s estimation of natural variance in the workload, and T, would then
become excessively large (loose). Therefore, observations are only added to the runiing computation of stancard
deviation if the workload class has observed some consecutive number of steady state intervals. A default tolerance

band (currently set to plus or minus 10%) is used until T;, can be computed from actual response time observations.

In addition to insuring that we record only “natural” variance, we must also recompute the standard deviation
for a class after it undergoes any transition in target residencies. This is because the existing sums and sums of
squares used to compute the standard deviation are all relative to a previous set of target residencies, and therefore
they are all relative to a different mean response time as well. Combining observations previous to the transition
with observations after the transition will also result in a higher estimation of variance than is occurring naturally
in the workload. Thus, on any transition, the running sums and sums of squares used to compute the standard
deviation are reset, and the previous T, is used temporarily until there have been enough consecutive steady state

intervals under the new target residencies to allow the standard deviation to be recomputed.

3.4 Changing Target Residencies

If a class is not meeting its goals, then the fragment fencing algorithm makes an “informed guess” regarding new
target residencies that would move it towards its goal. Its guesses are based on a simplistic model of transacuion

behavior that consists of two assumptions:

1. Transaction response times are directly proportional to the number of 1/Os that they require (the I/0 domi-

nance assumplion).

9. Hit rates observed on a particular fragment will be equal to the percentage of tiiat fragment which is memory
resident (the hit rate assumption).

The most common reason for a violation of the first assumption (I/O dominance) is that the bottleneck resource
for a particular workload class may be something other than the disk. The extent to which the second (hit rate)
assumption holds depends on the degree to which accesses within the fragment are uniformly distributed and on
how the base replacement policy deals with different access patterns. Because the algcrithm is continually observing
the system and readjusting target residencies based on those observations, violations of these two assumptions are
not critical. However, extreme cases can cause the algorithm to “try too hard,” mearing that it could increase the

resident volume even when there is very little benefit in terms of response time improvements.

Using the state data maintained for each class and fragment, together with the model of transaction behavior just
described, new target residencies for a class ¢ are determined in two steps: calculating the change in I/Os required

for the class, and setting target residencies in order to achieve that 1/0 increase or reduction. The change in the



number of I/Os for an average transaction of class c is computed using the /O dominance assumption as follows:

Iozarget —_ Iogbw/(R:bw/R‘zOM)
AIO, 1020 — 109!

Note that AIO, will be positive if 1/Os are to be reduced, or negative if they are to be increased. In order to dami)en
the feedback mechanism, we limit AIO, to at most 20% of I Q2% on any individual change in target residencies

(thus 1/O deltas larger than 20% require multiple observation intervals to be achieved).
Setting Target Residencies

Every fragment has a certain observed frequency of reference by the transactions of a class, and the fragments
with higher reference frequencies should be favored for memory residency over those with lower frequencies. On the
other hand, some fragments are much larger than others; therefore, for a given frequency of reference, small files
should be favored over larger ones, as their per-page reference frequencies will be higher. The notion of temperature
[Copeland 88] combines both of these factors into a single number of references per second per megabyte. We extend
the definition of temperature to record access frequencies for a specific class instead of for the system as a whole, and
we call the resulting metric class temperature. Each fragment has a class temperature for every class that references
it.

If a class is not meeting its response time goals, AIO, will be positive, and target residencies will need to be
increased. In this case, fragments are sorted in decreasing order of class temperature (“biggest bang for the buck”
first). If a class is exceeding its goals, AIO. will be negative, and target residencies will need to be decreased. Here,

fragments will be sorted in increasing order of class temperature (“lowest bang for the buck” first).

Each fragment f is then processed in sorted order. First, the absolute change in the fragment’s hit rate (as
compared to its current hit rate) that is required to achieve AIQ, is computed as:

MIN(1.0, AIO./Missess,) if AIO. >0

Abhitratey . = { MAX(-1.0, AIO./Hitss.) otherwise

If the absolute value of Ahitratey,. is greater than 1.0, this means that fragment f is not currently experiencing
enough buffer misses (hits) from class ¢ to completely satisfy the required AIO., so the next fragment in the sorted
list will need to be investigated as well. Otherwise, fragment f can accomplish the change in 1/O by itself; in this
case, the increase (or decrease) in hit rate is simply equal to the ratio of AIO, to Missess . (or Hitss . for a hit
rate decrease). Finally, the hit rate assumption is used to translate hit rate changes into absolute target residency

changes (as compared to the current target residency) as follows:

SzDiskRes; * Ahitrates . if Ahitrate; . >0
f 5 1,
Res}™™  « Ahitrates . otherwise

target __
AResg = {
Changes in target residencies and total resident volume are limited to 10% of available memory, in order to dampen
the feedback mechanism.

To illustrate the process just described, consider a class ¢ with a response time goal of 1 second and an observed

response time of 1.5 seconds. Suppose that class ¢ references two fragments, f1 and f2, with an average of 5 buffer



misses on f; and 25 misses on f, for an average of 30 disk I/Os per class ¢ transaction. We first compute a
target number of I/Os that would result in a 1 second (goal) response time as I oterget = OV /(RS /R =
30/(1.5/1.0) = 20, and thus AIO, = TO%bsv — [Oter9et = 30 — 20 = 10. Assuming that fragment f has the higher
class temperature, we compute the required increase in f1’s hit rate as Ahitrates . = MIN(1, AIQ./Missesy,) =
MIN(1,10/5) = 1. Becase Ahitrates . = 1, fi cannot satisfy the change in I/O all by itself. We make all of f;
memory resident, taking care of 5 out of the 10 I/Os that we are trying to eliminate, leaving a AIO, of 5 which
must be satisfied by fragment f,. The required change in hit rate for fs is MIN(1,5/25) = 0.2. Suppose that f; is
200 pages and that it has a current target residency of 100 pages. Therefore, if we need to increase fo’s hit rate by

20%, we must bring in 20% of its 100 disk resident pages, resulting in a new target residency for f, of 120 pages.

4 Simulation Model

The simulator that we use for our performance study of fragment fencing was built as part of an ongoing investigation
into resource allocation and scheduling for parallel database systems. For this stucy, however, we define a very
simple centralized configuration that consists of one processing node with a single CPU, memory, and two disks.
The remainder of this section provides a more detailed description of the relevant portions of the current simulation

model, and concludes with a table of the simulation parameter settings used for this study.

4.1 Hardware and Software Configuration Model

Terminals

The simulated terminals model the external workload source for the system. Ewch terminal submits a stream
of transactions of a particular class, one after another. As each transaction is form.ated, the terminal sends i* to
the DBMS for execution and then waits for a response before continuing on to the next transaction. In between
submissions, each terminal ”thinks” (i.e. waits) for some random (exponentially distributed) amount of simulated
time. The number of terminals and the think times used in this study were chosen to insure an average disk utilization

of 50 to 60% under normal operating conditions.
Disks

The simulated disks are modeled after the Fujitsu Model M2266 (1 GB, 5.25”) disk drive. This disk provides a
956 KB cache that we divide into eight 32 KB cache contexts for use in prefetching 8K pages for sequential scans. In
our model of the disk, which is a slight simplification of the real disk, the cache is managed in the following manner:
Each I/0O request, along with the required page number, specifies whether or not prefetching is desired. If so, one
context’s worth of disk blocks (4 blocks) are read into a cache context after the originally requested data page has
been transferred from the disk to memory. The requester is not released until the entire cache context is loaded,
however (synchronous cache loading). Subsequent requests to one of the prefetch2d blocks can then be satisfied
without incurring an 1/O operation. A simple round-robin replacement policy is used to allocate cache contéxts

if the number of concurrent prefetch requests exceeds the number of available cache contexts. The disk queue is

10



File name ” # records ] Record size | # pages I Fraction of memory

big file 100,000 100 1234 2.400
big index 100,000 16 196 0.380
medium file 40,000 100 493 0.960
medium index 40,000 16 79 0.150
small file 10,000 100 123 0.240
small index 10,000 16 20 0.040
tiny file 1,000 100 12 0.020
tiny index 1,000 16 2 0.004
query files 20,100 200 502 0.980

Table 1;: Database characteristics

managed using an elevator algorithm.
CPU and Memory Management

The CPU is scheduled using a round-robin policy with a 5 msec time slice. The buffer pool models a set of
main memory page frames, 8K bytes each. We use two base replacement and allocation policies in this study: pure
global LRU, and a modified global LRU scheme augmented with 3 levels of hints. The hints are given by the query
execution operators when a page is unfixed, and define 3 levels of value as follows: index pages are considered more
valuable than data pages, and randomly accessed data pages are considered more valuable than sequentially accessed
data pages. Pages are chosen for replacement in the following order: unused frames (not mapped to any database
page), sequentially accessed data pages using an MRU criteria, randomly accessed data pages using an LRU criteria,
and finally, index pages using an LRU criteria. A memory reservation mechanism allows query execution operators
to reserve memory for their working storage, preventing those reserved frames from being stolen while the reservation

is in effect. This function is used by hash join operators to reserve memory for their Lash tables.

4.2 Database Model

The database is modeled as a set of files, each of which can can have one or more asscciated B+ tree indices. All of
the indices used in this study are unclustered secondary indices, implying that accesses to the data pages through an
index scan occur in a random (versus sequential) pattern. Key sizes are 12 bytes, and key/pointer pairs are 16 bytes.
Table 1 lists the files and indices used for all of the experiments in this study. The large, medium, small, and tiny
files are used by the transaction and batch classes (which are described in the next section). The query files consist
of a set of 200 identical files and reside on a different disk than the transaction/batch files to limit any competition
at the disk from the query class. There will be a small amount of disk interference between the query class and the
other classes, however, because its hash join intermediate bucket files are written to randomly chosen disks. There
are also two sets of the transaction/batch files, each on a separate disk, to eliminate the disk interference between

transaction and batch classes or between multiple transaction classes.

11



4.3 Workload Model

Since we are primarily interested in the effects of page replacement decisions and working storage allocation on trans-
action performance, the key workload characteristics are page reference patterns and working storage requiremeats.
Therefore, our simulated workload classes are relatively simple examples of variations in these two characteristics.
For the purposes of this paper, we define a workload as any pair of the following classes: transactions, queries, or

batch.
Transactions

The transaction workload class models page reference behaviors typical of transactions in the TPC-A benchmark
[Gray 91]. They perform nonclustered, single record index selects on 4 files: big, medium, small, and tiny (see
Table 1 above). Since all of our indices are 2 levels deep, this adds up to a total of 12 random page references per
transaction. Although each file is accessed the same number of times per transaction, their differing sizes insures
that some will have higher per-page access rates (i.e. higher temperatures) than others. Transactions require no

working storage, and the key factor in their performance is their buffer hit rate.

For every experiment in the performance analysis section that includes transactions, we fix the number of terminals
submitting transactions at a population of 100. Their think times are exponentially distributed with 15 second
means. These two values were chosen such that average disk utilizations remain in the 50-60% range. The resulting
transaction throughput is approximately 5 completions per second, and depending on the response times experienced,
there are an average of 0.5 to 1.5 transactions resident in the system at any moment with peaks of 10-12. Enough
memory is set aside to insure that at no point is a transaction forced to wait for memory, as we do not wish to

address load control issues in this initial study.

The interval over which the average transaction response times are computed is set to 300 completions (about
60 seconds). This interval represents a balance point that allows the fragment fencing algorithm to provide a high
degree of responsiveness while at the same time exhibiting very stable behavior with respect to changes in target

residencies. As mentioned earlier, we will explore the effect of varying observation interval lengths in section 5.2.
Batch

The batch workload class consists of a single sequential scan of the medium date, file. Obviously, the medium
file has a fairly high temperature for this class. Because of this one hot file, the word “batch” is somewhat of a
misnomer; while real batch workloads can normally be characterized by sequential scans, the files they reference are
typically of a fairly low temperature. For this study, however, straight sequential scans of low temperature files are
uninteresting because their buffer hit rates are near zero. This class is actually more of a stand-in for any type of
workload that can be characterized by sequential accesses to a small portion of the database and very low working
storage requirements. As before, because we wish to exclude load control issues from this study, we fix the nulﬁber

of terminals submitting batch queries to one, and we set its think time to zero.

The interval over which average batch response times is computed is set at 30 completions in length (about 60

seconds). The rationale for this interval is the same as that for the transactions: it represents a good balance point
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between responsiveness and stability.
Queries

We model a query workload using binary relational join operators on two randomly chosen query files (see Table
1). Since we want to ignore any possible effect of query optimization decisions, the inner and outer join files are
always of the same size here. We use the hybrid hash join algorithm [DeWitt 84] because it is generally accepted as
a good ad hoc join method. Since the query files are nearly the same size as the configuration memory, allocating
all of available memory to a join query will allow it to execute the with the minimum aumber of I/Os (a single scan
of each relation). Allocating less memory (down to a minimum of 28 pages for these files) increases the number of
1/0s required in a linear fashion. Since the queries choose their two join files from a set of 200, no single query file
will have a very high access rate, and therefore the primary factor in their performance is the amount of working

storage allocated to them as opposed to their buffer hit rates (which are essentially 7€10).

Since queries can demand and be allocated large portions of memory, the potential for more than one simultaneous
query arrival would complicate our study of replacement policies with issues related to load control. Setting aside
memory to avoid possible memory waits, as was done for the transaction class, is not feasible for queries since they
can use such large amounts of memory. We therefore restrict the number of terminals that submit queries here to
one at all times. We set the think time for this terminal to zero when studying steady state behavior (Section 5.1),
because in this case it doesn’t really matter if there are some points in time when a query is present or not - only
average values are of interest. In our analysis of fragment fencing’s transient behavior (Section 5.2), we investigate

the effects of varying the query think time.

No average response time computation interval is needed for the query class. Since query performarnce cannot be
affected by changes in disk buffer hit rates, we do not set any goals for them and we expect the DBMS to “do its

best” for this class.

4.4 Parameter Summary

The important parameters of the simulated DBMS are listed in Table 2. The MIFs rating is typical of high-end
workstations or mid-range computers and was chosen so that CPU utilizations could be kept below 10% in order to
insure that the two workload classes primarily compete for memory, not CPU cycles. The number of terminals and
think times were chosen to insure that disk utilizations lie in the 50 to 60% range. The memory size of 4 megabytes
is obviously small, but was chosen to limit the amount of simulation time required for the performance studies. This
does not limit the applicability of our performance analyses however, since the important factor is not the absolute
size of memory but its size relative to the database and the working sets of concurreat transactions. The software
parameters are based on instruction counts taken from the Gamma parallel database prototype [DeWitt 90]. The

disk characteristics approximate those of the Fujitsu Model M2266 disk drive, as des:ribed earlier.
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Parameter | Value H Parameter l Value I

Transaction terminals 100 || Mean transaction think time (exponential) 15 sec
Query terminals 1 || Query think time 0 (varied)
Batch terminals 1 || Batch think time 0
Number of CPUs 1 || # instructions to read record off of buffer page 300
CPU speed 50 MIPS || # instructions to write record intc buffer page 100
Number of disks 2 || # instructions to insert record in hash table 100
Page size 8 KB || # instructions to probe hash table 200
Memory size 4 MB (512 pages) || # instructions to apply a predicate 100
Disk cylinder size 83 pages || # instructions to test an index entry 50
Disk seek factor 0.617 || 4t instructions to copy 8K msg 10000
Disk rotation time 16.667 msec || # instructions to start an I/O 1000
Disk settle time 2.0 msec || # instructions to initiate select 20000
Disk transfer rate 3.09 MB/sec || # instructions to terminate select 5000
Disk cache context size 4 pages || # instructions to initiate join 40000 !
Disk cache size 8 contexts || # instructions to terminate join 10000

Table 2: Simulation parameter settings

5 Fragment Fencing Performance

In this section, we use the simulation model described previously to examine the both the steady state and the
transient performance of fragment fencing. The steady state analysis addresses the basic question of how well
fragment fencing can achieve response time goals for various workloads and system configurations. We explore four
different pairings of the workload classes described in Section 4.3: transactions with queries, batch with querles,
transactions with transactions, and transactions with batch. Half the cases specify goals for only one of the two
classes, and the other half specify goals for both. Besides varying workloads and goals, we also explore the effects
of different base replacement policies as well as varying levels of competition at the disk or CPU between the two
classes. The transient analysis section explores the behavior of fragment fencing over time and addresses questions
of stability and responsiveness that are always a concern for systems that exploit feedback. Holding the worklioad
and configuration constant there, we explore two parameters: the length of the observation interval and the stability

of the workload.

5.1 Steady State Behavior

The performance metric we adopt for judging steady state behavior is the average response time for each workload
class. All of the experiments in this section execute the workload for 50 simulated minutes and collect statistics for
only the final 30 minutes of simulated time in order to remove warm-up transients from the averages. We insure a

minimum of 15,000 transaction completions, 500 batch job completions, and 50 query completions. :

The results of each experiment in this section are presented in tables of a similar format, with a column for the
average response time of each class. Every row represents a different response time goal. For comparison purposes,
we include rows labeled “alone” that show the response time of each class when it is executed alone in the system, as

well as rows labeled “base” that show results when no goal is specified for either class. The “alone” rows repres}.ent
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lower bounds on the response times that can be expected for each class, and the “base” rows show how the Fase

replacement policy acts without any assistance from the fragment fencing algorithm.

Additionally, if the query class is present, we add a column showing the amount «. working storage allocated to
the hash join under the guidance of fragment fencing. We also need to split the “base” row into two cases when
queries are present, because without any guidance from the fragment fencing algorithm, the base allocation palicy
is free to decide on its own how much working storage to allocate to a hash join operator. We explore two cases:
minimum, which is the minimum allocation required for the join to execute, and maximum, which is all of memory
except for that portion which is set aside for “system” use and to insure that no transaction memory waits occur

(20% of memory, or about 100 frames).
Transactions & Queries

We begin this section with a set of four experiments using a mix of transactions and queries. The detailed
behavior and parameters of each workload class were described previously in Section 4.3. The first experiment
isolates the effects of adding fragment fencing to an existing memory manager. Pure global LRU is used as the base
memory manager to show the effects of fragment fencing as distinct from any other “hints” about the relative value
of a page. We also insure that memory is the only resource where the two classes compete to any significant degree.
This is accomplished by segregating the data referenced by each class onto separate Jisks and by setting the CPU
speed such that processor utilizations are 10% or below (50 MIPS). Table 3 shows the resulting response times %md

memory allocations for this first experiment.

Examining the first two rows in Table 3, we see the impact of adding queries to a transaction workload: transaction
response times double — even when those queries are allocated the absolute minimum amount of working storage.
Since there is no significant contention at the disk or CPU in this experiment, the only -eason for the change is a drop
in transaction buffer hit rates when queries are added, resulting in an increase in the average 1/Os per transaciion
from about 2 to about 4. This hit rate decrease is due to the inability of pure global LRU to distinguish the more

frequently accessed transaction pages from the less valuable pages accessed by the queries.

The second and third rows of Table 3 show the effects of adding fragment fencing to a pure global LRU memiory
manager. While the 60 msec goal is not achievable for the transactions, their average response time of 71 msecs under
fragment fencing approaches their stand-alone performance of 64.5 msecs. The reason is, of course, the increase in
buffer hit rates provided by fragment fencing. In these same two rows we can see thai query performance improves
as well, even though the amount of memory allocated to the queries is the same (28 pages) with or without fragn%ient
fencing. This is because the transaction response times, with fragment fencing trying to enforce a 60 msec géal,
are nearly halved relative to the pure LRU case. The response time improvement for the transactions lowers their
average number in the system from 0.9 to 0.5, reducing what little competition the queries experience at the CPU
and disk from the transactions (hash join buckets are written to a randomly chosen disk, which occasionally causes
some interference at the disk between the two classes). Looking at the remaining rows, we can see that fragment

féncing manages to meet the goals fairly well, with at most a 1% violation for the 80 and 150 msec cases.

The second experiment dealing with transactions and queries retains the workload and configuration of the
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previous one. This time, however, the base memory manager uses a 3-level global LRU policy instead of pure
LRU. Table 4 shows the results of this experiment. If we examine the first two rows of this table and compare
them to the previous experiment (Table 3), we can see that adding hints on page type and reference patterns
significantly reduces the impact of adding queries to a transaction workload relative to the pure LRU case. This is
largely because sequential flooding?* is eliminated via the hints. The second and third rows of Table 4 show that
the additional guidance provided by fragment fencing still results in improved transaction response times. Even
though the 3-level LRU base replacement policy can now distinguish the more valuable transaction data from the
less valuable query data, it still does not discriminate between more frequently accessed and less frequently accessed
data within the transaction class. The rest of Table 4 shows results similar to the previous experiment with pure
LRU, except that all of the query response times are correspondingly lower. Looking at the query memory allocaéion
column of Tables 3 and 4, we see that transaction response time goals under a 3-level LRU policy can be achieved
with much less memory, leaving more left over to allocate to the queries. This shows clearly how fragment fencing’s
feedback approach allows it to adapt to the behavior of the base memory manager. The fencing algorithm doesn’t
know that response times are improved because the base replacement policy is smarter; it just knows that it has to
keep less data in memory here to achieve the response time goals. For the rest of the paper, we will adopt a 3-level

LRU replacement policy since it is clearly superior to pure LRU.

The final two experiments with a transaction/query workload examine the effects of increased competition between
the two workload classes at resources other than memory: CPU and disk. Table 5 shows the effects of the increased
disk competition that results from placing all the data of both classes on a single disk. Table 6 shows the effects of
increased CPU competition by decreasing the MIP rating from 50 to 8. CPU utilizations rise from 10% or less in

the previous experiments to between 50 and 75%.

Both tables 5 and 6 show a similar phenomenon. Response times rise uniformly relative to the more powe:ful
system configuration used in Table 4, and the more aggressive response time goals in the top few rows become
unachievable. Both of these effects are due to the increased competition between tie two classes at the CPU or
the disk (disk response times nearly double due to queueing delays). The amount of memory made available to the
queries drops as well, indicating that the fencing algorithm is trying to compensate for the response time increases
by retaining more and more of the database in memory. Similar to the pure LRU versus 3-level LRU case, the
fragment fencing algorithm only knows that response times are higher for some reasou, and the only thing it can do
is to increase the memory resident portion of the database. Even though goal oriented CPU scheduling might be a
more effective way to control response times in this case, we can see that fragment fzacing still performs better for

both classes than the base 3-level LRU strategy does by itself (“Base (min)” row).
Batch & Queries

The second workload that we examine is a combination of “batch” jobs, which consist of file scan operations, and
hash join queries (see section 4.3 for detailed workload descriptions and parameters). Because the batch jobs acc:ss

a “hot” file, fragment fencing can be effective in controlling their response times. Normally, a hint-based memory

4 Sequential flooding is a problem characteristic of a pure LRU replacement policy. Processes pe.forming sequential scans can flood
the buffer pool with pages that are not likely to be reaccessed, displacing pages with a much higher probability of reaccess.
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Avg tran Avg qry | Qry mem

resp (msec) | resp (sec) (pages)

Tran alone 64.5 - -
Base (min) 138.4 33.7 28
Goal 60 ms 71.0 30.5 28
Goal 80 ms 80.8 25.3 100
Goal 100 ms 98.8 21.8 203
Goal 150 ms 151.6 16.6 350
Goal 200 ms 196.9 15.6 392
Base (max) 232.3 15.6 412
Qry alone - 11.7 412

Table 3: Pure LRU, separate disks

Avg tran Avg qry | Qry mem

resp (msec) | resp (sec) (pages)

Tran alone 55.0 - -
Base (min) 135.8 58.9 28
Goal 60 ms 112.8 53.2 28
Goal 80 ms 112.8 53.2 28
Goal 100 ms 112.8 53.2 28
Goal 150 ms 146.7 44.3 174
Goal 200 ms 201.0 43.2 280
Base (max) 333.2 43.5 412
Qry alone - 11.7 412

Table 5: 3-level LRU, disk interference

Avg Batch Avg qry | Qry mem

resp (sec) | resp (sec) (pages)

Batch alone 0.80 - -
Base (min) 3.12 37.7 28
Goal 1.3 sec 1.42 37.7 28
Goal 1.6 sec 1.711 32.8 58
Goal 1.9 sec 1.96 28.4 140
Goal 2.5 sec 2.65 22.6 284
Goal 2.8 sec 2.86 22.5 300
Base (max) 3.27 17.0 412
Qry alone - 11.7 412

Table 7: Batch & Queries
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Avg tran Avg qry | Qry mem

resp (msec) | resp (sec) (pages)

Tran alone 54.9 - -
Base (min) 75.1 30.8 28
Goal 60 ms 60.8 30.0 28
Goal 80 ms 77.6 22.1 181
Goal 100 ms 101.2 19.2 273
Goal 150 ms 146.4 14.7 399
Goal 200 ms 182.5 14.8 411
Base (max) 182.1 14.5 412
Qry alone - 11.7 412

Table 4: 3-level LRU, separate disks

Avg tran Avg qry | Qry mem

resp (msec) | resp (sec) (pages)

Tran alone 68.7 - -
Base (min) 103.0 36.8 28
Goal 60 ms 91.0 36.1 28
Goal 80 ms 91.0 36.1 28
Goal 100 ms 100.1 29.2 116
Goal 150 ms 153.8 22.9 300
Goal 200 ms 190.0 19.8 395
Base (max) 230.3 19.9 412
Qry alone - 15.7 412

Table 6: 3-level LRU, slow CPU

T1 resp | T2 resp

(msec) | (msec)

T1 alone 55.0 -
T2 alone - 55.0
T1 Goal 150 msec 131.1 60.6
T1 Goal 125 msec 126.3 60.6
T1 Goal 100 msec 102.2 60.1
T1 Goal 80 msec 91.4 64.8

| Base [ 1064 ] 106.0]

Table 8: Trans 1 & Trans 2 (60 msec goal)




rrianager would consistently penalize this batch workload because all of its data is accessed sequentially. On the
other hand, a frequency-based memory manager would consistently favor a batch workload of this sort, because it
understands that retaining frequently accessed data will increase overall hit rates. Table 7 shows the results of this
experiment. If we look at the first two rows, we see a phenomenon that is identical to the first experiment (Table
3), where queries were added to a transaction workload under the pure LRU replacernent strategy: response tines
for the batch class are more than doubled. In the first experiment, transaction response times doubled because thc
base replacement policy couldn’t distinguish between the pages of each workload class, and buffer hit rates for the
transactions thus dropped significantly. By adding hints on page reference patterns to the replacement policy, the
problem with the transaction/query workload was fixed. However, those same hints are useless for the batch/query
workload in this experiment because both classes access the same type of data with the same reference pattern

(sequential data file scans).

Looking at the average response times for the batch workload in Table 7, we see that fragment fencing can achieve

the goals reasonably well for this workload, with at most a 6% violation in the 2.5 second case.
Transactions & Transactions

The third workload that we examine here is a combination of two TPC-A-like transaction classes, each with their
own response time goals. The behavior of both workload classes is identical to that which was described in Section
4.3, except that each references an identically sized but distinct set of files to eliminate data sharing effects. 'The
data used by the two transaction classes is segregated on separate disks as well, so there is no competition at ihe

disk between the two classes.

This experiment investigates the behavior of fragment fencing when the goals for both classes can be achieved,
and also when they cannot. Table 8 shows the response times that result. Class T2’s goals are fixed at 60 msecs,
which is very close to the lower bound of 55 msecs. Class T1’s goals are progressively tightened until they become
impossible to achieve, which occurs at the 80 msec goal. Because the behavior of each class in this workload is very
similar, goals for both classes are violated when either one cannot be achieved. Class T2’s performance suffers a bit
more relative to class T1, however. It turns out that this is purely a matter of chance. Since fragment fencing does
not have a notion of priority between classes, the first class to violate its goals will win the race for any remaining

memory; which class violates its goal first simply depends on the random arrival processes of each class.

Another interesting result of this experiment is the behavior of fragment fencing with extremely tight goals
(the 80/60 msec case) relative to the performance of the base 3-level LRU replacement policy. Although the base
replacement policy gives each class the same performance, it is significantly worse (see the “Base” row of the table}
than when fragment fencing is activated. The reason is the same as in the second experiment (Table 4): the
base replacement policy has no information about the relative frequencies of reference among pages with the same
“hint” level. The situation becomes even worse with two classes because of the interference between them (external
thrashing). Because fragment fencing tracks the frequency of reference to each fragment, it can guide the base

replacement policy into making more intelligent replacement decisions.
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B resp | T resp B resp | T resp : Bresp | T resp
(sec) | (msec) (sec) | (msec) (sec) | (msec)
| Tran alone H - ] 55.0 l ! Tran alone ” - ' 55.0 l ] Tran alone H - ] 55.0 |

Goal 2.70 2.70 60.8 Goal 2.70 2.70 60.8 Goal 2.70 2.70 60.8
Goal 2.30 2.40 82.3 Goal 2.30 2.40 82.3 Goal 2.30 2.39 79.9
Goal 2.00 2.06 | 115.9 Goal 2.00 2.06 99.7 Goal 2.00 2.06 85.9
Goal 1.70 1.76 140.3 Goal 1.70 1.75 | 107.0 Goal 1.70 2.07 85.8
Goal 1.40 1.40 162.2 Goal 1.40 1.75 107.0 Goal 1.40 2.07 85.8
Batch alone 0.80 - Batch alone 0.80 - Batch alone 0.80 -
Base 2.70 60.8 Base 2.70 60.8 Base 2.70 60.8

Table 9: Trans (150 ms) & Batch Table 10: Trans (100 ms) & Batch Table 11: Trans (80 ms) & Batch

Transactions & Batch

The final workload that we investigate in this section is a combination of TPC-A-like transactions and “batch”
jobs that consist of scans over “hot” files. Tables 9, 10, and 11 fix the transaction class goals at 150, 100 and 80
msecs respectively. Transaction and batch response times in these tables are shown under the “T resp” and “B resp”
columns respectively. For each of the three transaction class goals, the batch class goals are varied from loose to
tight. Table 9 shows the response times that result with the loosest transaction class goal (150 msecs). In all cases,
the batch class goals are met, and in all except the last row, the transactions out perform their 150 msec target. This
is because the base replacement policy is favoring the transaction class’s pages over the batch class’s pages, allowing
the transaction class to use all of the memory that is not required to meet the batch response time goals. Tables 10
and 11 show the same experiment with the transaction class goals set at 100 and 80 1asecs, respectively. In the 100
msec transaction case, batch class goals are unattainable beyond 1.75 seconds. Under the tightest transaction g[mls

of 80 msecs (Table 11), the batch goals are unattainable beyond 2 seconds.

An interesting aspect of this workload is how fragment fencing can modify the base replacement policy’s treatment
of each class: always favoring transactions over batch. With fragment fencing, the base replacement policy can be
“coerced” to favor the transactions less and less, allowing the batch class to move closer to its stand-alone response

time.

We conclude our examination of steady state performance by noting that fragment fencing seems capable of
successfully achieving steady state response time goals for these example workloads, and that in many cases it can
provide better performance for the classes that do not specify any goal as well (relative to the base buffer manager’s
stand-alone performance). We have also seen that fragment fencing is able to adjust to different degrees of intelligence
in the base buffer manager, and to high device utilizations which violate its simplistic model of transaction behavior.
Thus, fragment fencing appears quite promising as a mechanism to provide users or svstem administrators with the

ability to automatically tune a DBMS according to a set of application-level performance requirements.
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5.2 Transient Behavior

There are many possible ways to satisfy an average performance metric over some specified time interval. For example,
a one second average response time goal over some interval could be satisfied such that 80% of the transactions in
the interval experience a quarter second response time, while 20% of the transactions experience 4 second response
times. Since only the average value of the metric and the interval over which it should be computed were specified,
we cannot say if this particular way of satisfying the goal is good or bad. Most likely a more complete performance
specification would include more information on the distribution of response times that are considered “good,”

perhaps by specifying standard deviations, percentiles, or maximums.

Even though fragment fencing currently lacks mechanisms to specify or act on a more detailed specification
of response time goals, we can state a simple requirement for its transient behavicr in any case: it should not
introduce more variance in the workload than would exist if fragment fencing were not activated. Since the cnly
way fragment fencing can introduce variance is to change the size of the resident database volume, we need to see if
there is excessive movement of the line separating the resident volume from the non-resident volume. We explore two
variables which could cause the algorithm to adjust the resident volume excessively: the length of the interval used
to compute average response times, and the length of the think time between arrivals of resource intensive queres.
Both experiments use the same workload as in the first steady state experiment: TPC-A-like transactions mixed

with hash join queries (see Section 4.3 for detailed workload descriptions).

The length of the observation interval can cause excessive movement of the resident volume line for basic statistical
reasons. When the interval is shorter, fewer transactions are used to compute the average observed response times
at each interval completion. As in any statistical sample of a large population, the smaller the sample size, the larger
the variance that will be observed between each sample. Small observation intervals (an therefore present a picture
of a very unstable system to the fragment fencing algorithm. The challenge is not to over-react and try to manage
what are purely statistical fluctuations in the system load. Larger observation inteivi.ls help to mask these natral
fluctuations in load, and thus provide a much more stable input to the algorithm. In this case, the algorithm will be

less likely to attempt to over-manage the system.

To give an idea of the input that the fragment fencing algorithm is attempting to deal with, Figure 2 shows
a graph of the average transaction response times over intervals of 50 completions with fragment fencing tumed
off. The X axis is a count of transaction completions, and the Y axis is the average response time over each 50-
transaction interval. The upper line in the graphs shows the behavior of transactions when the queries are allocated
their maximum amount of working storage, leaving very little for the transaction class data. The lower line shows
the results of a minimum memory allocation to the queries, with most of memory being allocated to transaction
data. Note that even this picture shows less variance than is actually occurring in the system, since it represents
averages over 50 transaction completions. We use an interval length of 50 completions as our lower bound since
any smaller intervals start to lose statistical significance.> One phenomenon that can be seen in this graph is the

rélationship between the amount of memory available to the transactions and the resulting variance in their response

5While the actual number of samples required by any statistical analysis depends on the amount of error that can be tolerated, sainple
sizes less than 30 or 40 are normally considered “small.”
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t
times. The more memory, the lower the probability of disk I/Os, and the lower the variance becomes. An interesting
implication of this phenomenon for fragment fencing is that as the resident volume increases because of tighter
and tighter response time goals, the variance decreases. Surprisingly, this means that loose response time goals are

actually more difficult to manage than tight ones are.

We show the effects on resident volume of varying the observation interval lengths in Figures 3, 4, and 5 for interval
lengths of 50, 100, and 300 completions, respectively. The X axis of these graphs shows transaction completion counts
(time), and the Y axis shows the resident volume in pages. The maximum resident volﬁme allowed is about 400 pages
(80% of the memory in the configuration). Each line in the graphs represents a different goal for the transaction
class. Higher lines (larger resident volumes) correspond to tighter response time goals, and lower lines correspond to
looser goals. The throughput of the transactions in this experiment is approximately 5 per second, so the intervals
of 50, 100, and 300 completions translate to 10, 20, and 60 seconds. While it is difficult to develop a precise metric
to gauge the relative “goodness” of each of these graphs, they show how the stability of the algorithm improves as
the observation interval lengthens. Even though there are more fluctuations with smaller intervals, the algorithm
seems firmly anchored around a central point in each case. We also experimented with intervals greater than 300,

but the results were essentially identical to the 300 case and we therefore omit them here.

The implication of this analysis is that for a workload class with sufficiently high throughput (greater than 5
per second), an observation interval of around one minute or larger provides very stable performance. For workload
classes with lower throughput, however, there is going to be a larger trade-off between stability and responsiveness.
While lower throughput workloads (e.g. batch jobs) seem likely to experience much lower natural variance in response
times, and can therefore perhaps deal with a smaller observation interval, the proper setting of this parameter for

low throughput workloads remains an area for further investigation.

. The second variable that we investigate here is the gap between query arrivals. We explore deterministic query
class think times ranging from 10 to 120 seconds for a transaction workload with a reéponse time goal of 70 millisec-
ohds. The transactions have a throughput of approximately 5 per second, so the nuniber of transaction completions
that could occur during the gap between query arrivals varies from 50 to 1500. The iuterval over which we compute
the average response times is 100 completions (20 seconds at 5 transactions per second). This interval size is sméller
than that recommended by the previous analysis, but it allows us to exaggerate the effects of query think time
slightly by increasing the responsiveness of the fencing algorithm. If we look at query think time simply as another
way to introduce variance in the system load, then obviously a large enough observation interval could cancel the
effects of any think time-related variance as well. For the purposes of this experiment, however, we want to limit'the

dampening effect of a longer observation interval (even though it is a perfectly valid way to address the problem).

Figure 6 shows the size of the resident volume as a function of time for each of four query think time values. The
two straight lines at the top of the graph are the 10 and 30 second think time results. Since these think times are
similar in length to the observation interval, their effects are completely dampened by the averaging that occurs over
the observation interval, as explained in the previous analysis. The resident volume for the 30 second think time line
is lower than the 10 second think time line because as the query think time increases, there are more periods where

the transactions do not have to compete for memory and thus their response times improve as a result. The fencing
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algorithm reacts to this by reducing the resident volume required to maintain the 70 u sec transaction response time

goal.

The next two (wobbly) lines in Figure 6 show 60 and 120 second query think times, in order of decreasing average
resident volume. The 60 second think time is just large enough for three observation intervals to occur during the
gap in between queries. These three observations are enough to convince the fencing algorithm to reduce the resident
volume required, only to raise it again in the following interval. The 120 second think time line is similar, but che
time span between lowering and raising the resident volume becomes larger. The 60 second think time represents a
worst case scenario for this experiment (with its 20 second observatiorn interval lengtl:), as there is no benefit there

to lowering the resident volume - it will have to be raised again almost immediately.

Figure 7 shows the effect of excessive movement of the resident volume line on transaction response times. The
line with higher variance corresponds to the worst case 60 second query think time, and the line with the lower
variance corresponds to a more favorable scenario involving a 10 second query think time. The 10 second think time
represents a favorable case because the resident volume line is never moved here, and any variance in response tilines
is thus due to natural statistical fluctuations in the transaction workload itself. Clearly, lowering the resident volume
in the 60 second think time case is a bad idea; the additional variance introduced could even cause the average

response time goals to be jeopardized. We plan on investigating this issue further in cur future work.

6 Issues and Extensions

In this section, we briefly discuss some important remaining challenges for the fragment fencing approach and our
current thoughts on how we plan to address them. One key challenge is to address violations of the algorithm’s
assumption that the hit rate for a fragment is equal to the fraction of the fragment that is memory resident.
Violations of this assumption could be caused either by non-uniform reference patierns (e.g. temporal locality,
correlated references, append-only access, etc.) or by deficiencies in the base replacement policy (e.g. LRU for a loop
that cannot fit in memory). Such violations currently can cause fragment fencing to continue increasing the target
residency of a fragment even when little or no hit rate increase results from doing co. However, the information
needed to detect a violation of this assumption is already collected by the algorithm (i.e., it keeps the % resideilcy

and the observed hit rate for each fragment), so it should not be too difficult to improve the algorithm in this regard.

Another area for improvement is to address violations of the algorithm’s assumption that a transaction’s response
time is linearly related to the number of I/Os that it requires. As we saw in the steady state performance analysis
(Tables 5 and 6), violations of this assumption translate into a larger resident volume being required to achieve a
given goal. In fact, fragment fencing may try foo hard to achieve a goal when this assumption is violated, increasing
the resident volume by larger and larger amounts in order to achieve only small improvements in response times.
As for the hit rate assumption above, the algorithm should be modified to check the validity of this I/O dominance
assumption before acting on it. This can be accomplished by monitoring the average observed disk response time
per class; by multiplying this quantity by the average number of disk I/Os for a class, the algorithm can identify

classes for which I/O time is a relatively small component of the overall average response time.
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Still another challenge lies in addressing potential problems caused by low temperature fragments, as these may
also cause the fragment fencing algorithm to increase the target residency of a fragment by large amount for only a
small return. If a workload class performs a large number of 1/Os, but on very “cold” data, then even filling up all of
available memory with the class’s data would not significantly reduce the number of I/ Js required by transactions of
the class. An example of this type of behavior would be a batch job that sequentially scanned a very large database.
An obvious approach to addressing this issue is to check for some minimum temperature before increasing the target
residency. The algorithm already determines whether a single fragment can completely satisfy any required change in
1/0, or if multiple fragments are required. This decision can easily be extended to determine if any set of fragrnénts

referenced by the class can satisfy the required change in 1/0.

Finally, as seen in the transient performance analysis (Figure 6), long-running classes with large working storage
requirements (such as hash joins) can present special challenges with respect to the transient behavior of fragment
fencing. Once fragment fencing gives away some working storage to a long-running hash join, it can suffer the
consequences of that decision for long time to come. The situation would be exacerbated further if the relative
response times of such queries are many orders of magnitude larger than those of the competing goal classes. (OQur
performance analysis only considered response time ratios of up to 100 or so betweer. classes). While it is unlikely
that fragment fencing can ever be prevented from making mistakes, there are certainly ways to limit the penalty of
doing so. One promising possibility is the exploitation of memory-adaptive query processing algorithms, e.g. memory
adaptive hash join and sorting methods [Zeller 90, Pang 93a, Pang 93b]. These join methods can dynamically adapt
to changes in the amount of available working storage during execution, so fragment fencing could actually “take
back” some of the working storage from long running queries when it is necessary incicase the resident volume while

such queries are active.

In summary, the primary pathology of fragment fencing is the possibility of its attempting large increases in the
resident volume in return for small improvements in I/Os or response times for certnin classes. By modifying the
algorithm to first check its assumptions, and to react to violations that it detects, it is likely that such problem®ti:
behavior can be avoided. In addition, memory-adaptive schemes appear promising as a way to address the problem

of long-running consumers of working storage.

7 Conclusions and Future Work

In this paper we have explored the potential of using memory allocation and pags replacement mechanisms to
implement per-class performance goals for multiclass workloads. We described an algorithm called fragment fencing
that takes as input a set of per-class response time goals and a description of the <ata and index fragments that
make up the database. The algorithm that we described observes the per-class reference frequencies and moni;‘cors
the state of the system relative to its stated goals; the information that it gathers s used to help existing buffer

allocation and page replacement mechanisms to avoid making decisions that may vioiate the goals.

Using a detailed simulation model, we studied both the steady state and transient performance of fragment,

fencing when it is coupled with a modified global LRU memory manager with three levels of “hints.” Our results
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showed fragment fencing to be capable of successfully achieving steady state response time goals for a number of
example multiclass workloads. For workloads where one of the classes did not specify any goals, fragment fencing
usually provided better performance than the base buffer manager alone for the non-goal class as well. Moreover,; by
coupling fragment fencing with a pure global LRU replacement mechanism, we demonstrated that the approach is
able to coexist with base buffer managers with varying degrees of intelligence. Fragment fencing was able to achieve
the same goals with an LRU scheme as it did with the more intelligent 3-level LRU scheme, although at a higher
cost in terms of the amount of memory dedicated to fragment caching. Finally, we explored violations of fragment
fencing’s simple assumptions regarding transaction behavior as well as possible enhancements to limit the impac‘t of
these violations. We conclude that fragment fencing appears quite promising as a way to provide users or system

administrators with the ability to tune a DBMS according to a set of application-level performance requirements.

Besides the extensions listed in the previous section, our future work will explore additional mechanisms for
dealing with conflicting goals between classes, for allowing more detailed specifications of response time goals (such
as maximums and percentiles), and for limiting the penalty incurred as a result of workload shifts (via persistent
statistics). We also plan on coupling fragment fencing with algorithms that handle load control and working storage
allocation among competing queries in order to explore the performance of multiple concurrent queries competing with
transactions and batch classes [Mehta 93], and we plan on integrating fragment fencing with goal-oriented CPU and
disk scheduling mechanisms as well. The information collected by the algorithm on hit rates and percent residencies
for individual fragments could also be a useful input to recently proposed techniques for run-time selection of query
plans [Hong 91, Ioann 92]. Finally, we would like to exploit the capabilities of memory-adaptive query processing

techniques, e.g., preemptible hash join and sorting methods [Pang 93a, Pang 93b]. :

q
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